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Abstract

The existing empirical studies indicate that inferences on the intertemporal relation between

expected return and volatility are highly sensitive to empirical specifications of return dynam-

ics. Glosten, Jagannathan, and Runkle (1993) attempt to resolve this confusing situation by

examining several generalizations of the standard GARCH-M model. They conclude a negative

risk-return relation solely based on the models that are identified through a variety of diagnos-

tic tests as relatively “better” models. It has not been shown, however, whether those selected

models outperform the alternatives decisively or only marginally. To the extent the strength of

sample evidences supporting those selected models is unclear, the inference that is made solely

based on those selected models remain questionable because of model uncertainty concern. Our

paper propose a Bayesian model comparison approach to explicitly assess the strength of the

evidence in support of the models that typically indicate a negative risk-return relation. The

empirically computed Bayes factors show that those models indeed outperform, at a decisive

degree, the alternative models that suggest a contrary result. Further, with priors that slightly

favor return nonpredictability, evidence still indicates a negative relation after model uncer-

tainty is accounted for. Our study, therefore, complements the work of Glosten, Jagannathan,

and Runkle (1993).

1 Introduction

Although dozens of papers have studied the time-series relation between the conditional mean and

volatility of stock returns, the evidence is inconclusive and leads to inference that is highly sensitive

to empirical model specifications (e.g., Harvey (2001)).1 As Glosten, Jagannathan, and Runkle

(1993, p.1780) point out: Most of the support for a zero or positive relation has come from studies

∗I am grateful to Michael Brandt, Craig MacKinlay, Andrew Metrick, Jessica Wachter, Yihong Xia, and especially
my dissertation advisor Robert Stambaugh at the Wharton School of the University of Pennsylvania, for their
numerous helpful comments and suggestions. I am fully responsible for any weakness of the paper.

†Correspondence address: School of Business, Singapore Management University, 469 Bukit Timah Road, Singa-
pore 259756. Phone: (65) 6822-0763. Email: lpwang@smu.edu.sg.

1 Intuition suggests that risk and return should be positively related over time. It has been shown, however, that
risk premium on the market portfolio could, in equilibrium, be lower during relatively riskier times if average investors
have time varying risk aversion levels.(Abel (1988) and Backus and Gregory (1992)) One intuitive explanation for
the negative intertemporal risk-return relation, as suggested by Brandt and Kang (2004), can be seen from habit
formation models (Constantinides (1990) and Campbell and Cochrane (1999)). At the peak (trough) of a business
cycle, when expected return is typically low (high), the better(worse)-than-habit consumption levels make investors
more (less) risk tolerant and thus require a lower (higher) reward-to-risk ratio.
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that use the standard GARCH-M model of stochastic volatility. Other studies, using alternative

techniques, have documented a negative relation between expected return and conditional variance.2

This aspect is undesirable as it renders the empirical evidence subject to model misspecification

concerns.

This issue appears even more serious as we note that most studies in this area are solely based

on one single empirically motivated, but theoretically unjustified, specifications.3 An exception

is Glosten, Jagannathan, and Runkle (1993) who examine various generalizations of the standard

GARCH-M approach by incorporating additional information conveyed by certain observable in-

struments and allowing for asymmetric volatility effects. To resolve the conflict surrounding the

sign of the risk-return relation, they use a variety of diagnostic tests to determine whether the esti-

mated residuals of the candidate models are independent and identically distributed with reduced

excess skewness and kurtosis, as required in the model assumptions. They then reach a conclusion

of a negative risk-return relation by showing that the models which indicate a negative risk-return

relation perform better in the diagnostic tests than the alternative models which suggest a contrary

result. However, the diagnostic tests they employ can be used only to select the “best” models,

but not to assess the strength of the evidence supporting the model selection decision. In other

words, it is unclear whether the models, based on which Glosten et al (1993) conclude a negative

risk-return relation, outperform the alternative models significantly or only marginally. If the lat-

ter is the case, further efforts will need to be made to take into account the contrary information

conveyed by the alternative models in the inference making because of the increasing concern over

model uncertainty in recent finance studies (e.g., Avramov (2002)). Therefore, to the extent the

sign of this fundamental relationship is important to finance research, it is important to show that

their selected models indeed decisively outperform the alternatives or that their conclusion of a

negative risk-return relation is robust to model uncertainty. After all, as it is important to report

standard errors or confidence intervals as a measure for accuracy in parameter estimations, it is

also important to associate the selected model with a measure for the strength of the supporting

evidence.

Our paper addresses this challenge and proposes a full Bayesian specification of model compar-

isons, which can also be easily applied to account for model uncertainty when necessary. In the

investigation of the risk-return relation, the Bayesian methodology is attractive. First, unlike the

classical approach, the Bayesian framework has no requirement of nested models, standard prob-

ability distributions, or asymptotic regularity, and thus make it possible to compare the various

empirical specifications in the risk-return relation literature that typically differ in many aspects.

Focusing on the typical model classes used in the literature, we update our prior opinion to the pos-

terior opinion on the uncertainty surrounding the correct model by computing the posterior odds

ratio. The posterior odds ratio can be interpreted as the ratio of the posterior model probabilities

conditional on the data, and is commonly termed the Bayes factor when two models are equally

likely a priori. It summarizes all the sample evidence in favor of one model against its alternative.

2Examples falling in the first category include French, Schwert, and Stambaugh (1987), Campbell and Hentschel
(1992), Chan, Karolyi, and Stulz (1992), and Bali and Peng (2003); those in the second category include Campbell
(1987), Breen, Glosten, and Jagannathan (1989), and Whitelaw (1994), who use some exogenous instruments such
as short-term interest rates in the specification of conditional moments.

3Note that the existing asset pricing theories are not explicit about how return moments evolve over time.
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Motivated by the aforenoted observation made by Glosten, Jagannathan, and Runkle (1993),

we particularly focus on comparing the distinct volatility specifications that lead to the conflicting

conclusions about the risk-return relation. The first model class includes the models that forecast

the return volatility with only the information in the return history; the GARCH-in-mean model

of Engle, Lilien, and Robins (1987) is a typical example. It also includes the MIDAS volatility

specifications employed in Ghysels, Santa-Clara, and Valkanov (2003), who use past squared daily

returns to forecast monthly return volatility to improve estimation accuracy. In general, this class

of models yields a positive (if sometimes weakly significant) risk-return relation. The second model

class, proposed by Campbell (1987), includes exogenous instrumental variables in the information

set for volatility forecasting, and suggests a negative risk-return relation. These two model classes

are typically not nested.4

Second, the Bayes factor, in terms of posterior model probabilities, is easy to interpret and

provides a meaningful scale of the evidence. According to the criteria proposed by Jeffreys (1961),

BAB = 200, for example, would suggest decisive evidence at odds of two hundred to one that the

data favor HA over HB. In our context, we find decisive sample evidence in favor of the Campbell’s

instrumental variables model, which yields a significantly negative risk-return relation.

Third, the Bayesian model averaging approach makes it possible to incorporate the contrary

information conveyed by the “rejected” model in our investigation. This turns out especially impor-

tant if an investigator tends to believe neither return moment is predictable, in which case sample

evidences would only marginally but not decisively support the Campbell’s instrumental variables

model. To be precise, the Bayesian approach assigns posterior probabilities to several competing

models, and then obtain an optimally weighted model using the probabilities as weights on the

individual models. This weighted model is then used for further analysis. The results still indicate

a negative, although weakly significant, risk-return relation. Further, this conclusion of a negative

intertemporal risk-return relation is shown to be robust to prior specifications.

We also investigate return dynamics combining the features of both the GARCH-M and instru-

mental variables models, that is, models predicting future volatility using past volatilities, squared

return innovations, and exogenous instruments. Then, we add in terms allowing for an asymmetric

volatility effect of positive or negative return shocks. Models framed this way capture the main

characteristics of the volatility specifications used in Glosten, Jagannathan, and Runkle (1993).

It turns out that these models suggest a negative risk-return relation, and the most importantly,

outperform the alternatives at a decisive degree in the sense of data-fitting. As a result, our study

fortifies the results of Glosten et al (1993), and therefore, can be viewed as supplementary to their

work.

This paper is organized as follows. Section 2 describes the model uncertainty issue and the two

typical model classes in the investigation of the risk-return relation. Section 3 presents the Bayesian

model comparison framework (i) to empirically identify the “right” model and evaluate the scale

of the supporting evidence from data and (ii) to take into account the uncertainty about the true

model when necessary. Section 4 provides the main empirical results. It also extends the examined

4Although it is possible to implement the classical hypothesis test by extending the parameter space to have a
more general specification that can nest other models, the power of the test will be significantly reduced due to the
increased number of unknown parameters. Further and more important, in the case of accepting the null in the
classical approach, the strength of such evidence is still unknown without the knowledge about the power of the test.

3



models to capture more well-documented features in the data and identifies the best model among

those under consideration. Section 5 concludes.

2 Model Uncertainty

2.1 Intertemporal Risk-Return Relation

An equilibrium relationship between the market risk premium, defined as the expected stock mar-

ket return in excess of the risk-free interest rate, and risk as measured by the volatility of the

stock market, is derived by Merton (1973) in the context of a time varying economy. Its simplest

form, under the assumption that a single state variable St is sufficient to describe changes in the

investment opportunity set, can be written as

Et(Rt+1) =

∙
−JWWW

JW

¸
Vt(Rt+1) +

∙
−JWS

JW

¸
COVt(Rt+1, St+1), (1)

where Et[·], Vt[·] and COVt[·] are, respectively, the expectation, variance, and covariance operator
conditional on the information set at time t, and Rt is the monthly excess stock return over the

risk-free interest rate. Subscripts on the derived utility of wealth function, J(W,S, t), denote partial

derivatives.5 If the investment opportunity set is i.i.d. or if investors have log utility, the relation

(1) reduces to a simple proportional relation

Et(Rt+1) =

∙
−JWWW

JW

¸
Vt(Rt+1).

Hence, assuming
h
−JWWW

JW

i
to be an intertemporal constant, but unknown, Merton (1980) estimates

the proportionate relation

Et(Rt+1) = gVt(Rt+1), (2)

where g is interpreted as the reward-to-risk ratio.

Furthermore, rather than working in continuous time as Merton (1973), Campbell (1993) takes

a different approach by using a loglinear approximation to the intertemporal budget constraint and

analytically derives a linear relation

Et(Rt+1) = f + gVt(Rt+1). (3)

that holds in equilibrium. The parameter g relates the expected return to the conditional volatility,

and its sign is what attracts most attention. This linear relation (3) nests the proportionate relation

(2) and has been examined by a number of papers, such as French, Schwert, and Stambaugh (1987),

Breen, Glosten, and Jagannathan (1989), and Campbell (1987), among others. It thus forms the

basis for our empirical work.

Note that the information set available at time t, which the expectation and variance are

conditional on, is generally not observable to econometricians. To address any discrepancy between

5See Scruggs (1998) for a discussion on the relation (1) for different forms of the function J(W,S, t).
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econometricians’ and investors’ information sets, a variety of assumptions are typically imposed.

One conventional assumption, which we adopt as well, is that the econometricians’ information

set is broad enough to approximate the investors’ information set, at least to the degree that the

resulting inferences are not sensitive to the difference.

To proceed with estimation of the relation (3), we need to specify how the conditional volatility

changes over time. The specifications are typically empirically motivated given the lack of any

theoretical guidance, and are formed primarily to replicate documented characteristics of the time-

varying return volatility in the stock market (and are hence somewhat ad hoc).

2.2 Volatility Specifications

For illustration purpose, in Table I we first present an overview of which volatility conditioning

variables are included in the analysis of the risk-return relation for several representative papers

and their corresponding conclusions. This list is by no means exhaustive. Several observations

regarding this table are in order. First, all these studies conduct estimations and inferences based

on one predetermined information set. Although some authors do consider several distinct model

specifications in the analysis, no meaningful measure is provided to distinguish among models.

Second, it should be clear that there is no agreement on whether the expected stock return is

positively or negatively related to the return volatility over time. The parameter g, relating the

first two moments of stock returns, is reported as either positive or negative in different studies.

Third, as Glosten, Jagannathan, and Runkle (1993) observe, the models that forecast volatility

using past volatilities and squared return innovations indicate a positive intertemporal risk-return

relation, while those including some exogenous instruments such as short-term risk-free interest

rates in the volatility prediction typically give a negative sign. Hence, uncertainty about the correct

information set used in volatility forecasting could be a potential source of such inconclusive results.

We thus focus on two often-used model classes categorized by the conditioning information

set used in the volatility specification. The first class forecasts return volatility using only the

information in past returns (e.g., French et al. (1987)), while the second class uses exogenous

predictive variables (e.g., Campbell (1987)). We describe the model specifications as follows.

Hypothesis A:

A widely used model to capture the time-varying volatility in financial data is the ARCH

model of Engle (1982) and its various extensions such as the GARCH of Bollerslev (1986) and the

EGARCH of Nelson (1991). This approach models the conditional volatility as a nonstochastic

function of the unanticipated part of lagged excess stock returns and lagged conditional volatility.

One appealing feature of this structure is that it reflects the characteristic observed in financial data

that big surprises are often followed by big surprises, a phenomenon commonly termed volatility

clustering.

We start with the most generic model of this type – the ARCH(1) given by

Model A1:

σ2t = α+ βε2t ,

where σ2t stands for the return volatility Vt(Rt+1), and εt is the disturbance given by Rt− Et−1(Rt).

At time t− 1, εt is normally distributed with mean zero and variance σ2t−1.
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To allow for possible higher-order volatility persistence, we also examine an ARCH(2) given by:

Model A2:

σ2t = α+ βε2t + δε2t−1,

and a more parsimonious GARCH(1, 1) described by:

Model A3:

σ2t = α+ βε2t + γσ2t−1.

In all specifications where relevant, α, β, γ, and δ need to be nonnegative to prevent return

volatility from falling below zero. Nelson (1991) points out that the nonnegativity constraints

required by these models can sometimes present difficulties in estimation. One example is Engle,

Lilien, and Robins (1987), who must impose additional structure on the coefficients to conduct an

efficient estimation.

An alternative model that successfully avoids the nonnegativity constraint on the parameters

while retaining reasonable return volatilities is the EGARCH(1, 1) of Nelson (1991) denoted by:

Model A4:

lnσ2t = α+ βz2t + γ lnσ2t−1,

where zt denotes εt/σt−1, which is used instead of εt in the EGARCH specification to ensure a well-

behaved volatility process. Nelson (1991) proves by theorem that the conditional volatility process

specified in the EGARCH is strictly stationary, ergodic, and covariance-stationary if and only if γ

is less than one in absolute value. Note that, as he points out, there is no necessary implication

from strict stationarity to covariance stationarity in this case since the conditional moments of a

general process may explode even under ergodic strict stationarity.

Each volatility specification together with the linear risk-return relation given in (3) forms

a particular case of the GARCH-M model of Engle, Lilien, and Robins (1987), which has been

investigated by several researchers (e.g., French, Schwert, and Stambaugh (1987)). We label this

category as Model A, denoted by HA. Glosten, Jagannathan, and Runkle (1993) also examine a

generalization of the GARCH-M approach by allowing for seasonal effects, volatility asymmetries,

information contained in nominal interest rates, and exponential form of conditional volatility. We

will analyze this type of models later in an attempt to identify a better model in the sense of data

fitting.

In an anticipation that high-frequency data may improve the accuracy of the volatility estimates,

French, Schwert, and Stambaugh (1987) and Ghysels, Santa-Clara, and Valkanov (2003) use past

daily returns to forecast monthly return volatilities. The former propose a simple and intuitive one-

month rolling-window estimator with equal weights on past squared daily returns, and find a mostly

insignificant risk-return relation. The latter use a longer estimation window – roughly one year

of trading days– with a relatively more flexible form of parameterization on the weights given to

the lagged squared daily returns, and report a significantly positive relation between the expected

return and variance of the aggregate stock market. We include their volatility specifications as

follows.
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Models A5 & A6:

σ2t = 22
PD

d=1wdr
2
t−d (4)

where D is the number of days used in the estimation of variance , rt−d denotes the daily return at

the date t−d (i.e., d days previous to the first day of month t+1), and wd is the weight given to the

squared returns r2t−d, which sums up to one. Note that we use lower case r to denote daily returns

and upper case R to denote monthly returns. Weighted past squared daily returns are normalized

by the factor 22 to monthly units since one month typically consists of 22 trading days.

More interestingly, Ghysels, Santa-Clara, and Valkanov (2003) find that when the estimation

window size in equation (4) is lengthened from one month to three or four months and equal weights

are used, the risk-return coefficient changes from an insignificant estimate in French, Schwert, and

Stambaugh (1987) to a significantly positive estimate; the maximum likelihood across window sizes

is obtained with a four-month window. For this reason, we investigate this volatility specification

using a choice of four-month rolling windows; i.e., D = 88.

We examine two forms of weighting functions. In Model A5, equal weights are set on each day

in the estimation window. In Model A6, the weight wd is set to be proportional to exp(−0.03d),
which declines as a function of the number of lags.6 By putting more weight on recent observations,

more attention is paid to capturing the time variation of return volatility than to controlling for

estimation error. Following Ghysels, Santa-Clara, and Valkanov (2003), we call these two models

the mixed data sampling (or MIDAS) approach.

Hypothesis B:

Campbell (1987) suggests a competing class of models that forecasts volatility using certain

exogenous instruments, given the empirical evidence that stock market movements can be predicted

by variables related to the business cycle (e.g., Chen, Roll, and Ross (1986), Keim and Stambaugh

(1986), Campbell and Shiller (1988), Fama and French (1988), and Ferson and Harvey (1991)).

A fairly extensive literature examines the relation between stock market excess returns and

interest rates. Breen, Glosten, and Jagannathan (1989), for example, investigate the ability of

nominal interest rates to predict stock market excess returns and find a statistically significant

negative correlation between the two. This result, under the assumption that interest rates are

good proxies for expected inflation, can be explained by a negative relation between stock excess

returns and inflation. Stulz (1986) constructs a simple representative agent model and shows

that worsening productivity could induce increases in expected inflation associated with declines

in excess stock returns. To the extent that changing market risks are correlated with changing

market premiums, nominal interest rates could also be a good predictor of future return volatility.

Breen, Glosten, and Jagannathan (1989), for example, empirically demonstrate that the one-month

interest rate is useful in forecasting the volatility of excess stock returns.

We examine a model specified as

6Ghysels, Santa-Clara, and Valkanov (2003) study a more flexible form of model specification postulating weights
as a function of unknown parameters, which are estimated jointly with the risk-return coefficient using maximum-
likelihood estimation. In order to simplify the model comparisons while retaining the key features of their model, to
which they attribute the finding of a significantly positive risk-return relation, we simply take those weight-related
parameters as given. The specific factor −0.03 is chosen to obtain the maximum likelihood after several experiments.
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Model B:

σ2t = c+ dxt,

where xt denotes the one-month risk-free interest rate. Following Glosten, Jagannathan, and Runkle

(1993), we call this approach Campbell’s instrumental variables model, and label it as Model B,

denoted by HB. We investigate only one specific form of such a model using short-term interest

rate as the single predictive variable mainly because interest rate is the most often-used instrument

in this literature. In addition, because models using other instruments have all been shown to lead

to a negative risk-return relation (e.g., Campbell (1987), Whitelaw (1994), and Harvey (2001)),

enlarging this model class by including more instruments will only strengthen our conclusion of a

negative risk-return relation, a final result reported later.

3 Econometric Approach

The models of interest in comparison are the two most often-used but competing model hypotheses

denoted by HA and HB. Although differing only in the specifications of the information set used

to forecast conditional volatility, these two models lead to paradoxical answers to how the first two

return moments move together over time, one of the most fundamental questions in finance. As

financial theory has little to say on how stock returns evolve over time, it remains an empirical

question as to which model better describes the underlying return dynamics. In other words, we

should let the data help us distinguish between the two competing model specifications HA and

HB.

The most popular data-based model selection techniques between two competing statistical

models are based on an interpretation of p-values under the classical hypothesis test framework.7

The classical approach, however, is not very general in that essentially it requires nested models,

standard probability distributions, or asymptotic regularity. Furthermore, it is often arbitrary to

take one of the two nonnested models, HA and HB, as the null hypothesis, and the two tests taking

each model in turn as the null hypothesis may not present consistent conclusions. In particular,

both models, HA and HB, may be rejected or may fail to be rejected, in which case the tests provide

no means of model comparison, not to mention that merely failing to reject the null hypothesis

does not indicate the strength of the evidence in favor of the null since the power characteristics of

a test set at certain significance level are often unknown and hard to obtain.

To overcome these well-known drawbacks of classical model selection techniques, we use a

Bayesian approach, which, rather than testing the validity of one model against another, treats the

problem as model comparison (instead of model selection), recognizing that no model is absolutely

perfect, and more important, offers a way of evaluating the strength of evidence favoring each

hypothesis.

3.1 Bayesian Model Comparison

Let θi be the unknown parameter vector of model Hi (i = A or B). The vector θi could have

common parameters such as g across the models. Conditional on a model Hi and its involved

7Examples are the J test (see Davidson and MacKinnon (1981)) and the Cox (1961, 1962) test, to name a few.
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parameter vector θi, we can express the conditional probability distribution of the data, denoted

by D:

Hi: p(D|θi,Hi), for i = A or B.

To reflect the ex ante opinion of the uncertainty surrounding the models and parameter values,

we assign a prior probability p(Hi) to each model, and a prior probability distribution p(θi|Hi) to

the parameter vector of each model. This prior formulation induces a complete model specification

described by the joint distribution:

p(D, θi,Hi) = p(D|θi,Hi)p(θi|Hi)p(Hi),

and can be intuitively understood as a three stage hierarchical mixture model for generating the

data D; first the model Hi is generated from p(Hi), second the parameter vector θi is generated

from p(θi|Hi), and third the data D is generated from p(D|θi,Hi).

Conditional on having observed the data D, we can then update our prior opinion to a poste-

rior opinion on model uncertainty by computing the posterior model probability using the Bayes

theorem:

p(Hi|D) =
p(D|Hi)p(Hi)P

i=A, B p(D|Hi)p(Hi)
,

where

p(D|Hi) =

Z
p(D|θi,Hi)p(θi|Hi)dθi (5)

represents the marginal likelihood of Hi. This posterior distribution extracts all the relevant infor-

mation in the data and provides a complete and coherent summary of post data uncertainty about

the correct model that generates the data. The direct probability interpretation of the Bayes factor

is readily understandable even by nonstatisticians, while it is very hard to properly interpret the

p-values many classical schemes are directly or indirectly based on (See, e.g., Berger and Sellke

(1987)).

Furthermore, given these posterior probabilities, comparison between HA and HB can be sum-

marized by the posterior odds:
p(HA|D)
p(HB|D)

= BAB ·
p(HA)

p(HB)
, (6)

where the Bayes factor BAB is defined as

BAB =
p(D|HA)

p(D|HB)
, (7)

and can often be interpreted as the odds provided by the data for model HA versus HB. Equation

(6) reveals the way the data, through the Bayes factor BAB, update the prior odds
p(HA)
p(HB)

to form the

posterior odds. In a form independent of the prior model probabilities, the Bayes factor summarizes

the evidence provided by the data in favor of one model as opposed to another. Further, it is a simple

and popular choice to use the uniform model prior p(HA) = p(HB) = 0.5, which is noninformative

in the sense of favoring both models equally. In this case, the Bayes factor is identical to the

posterior odds, defined as the ratio of the posterior model probabilities. Thus BAB = 0.1, for
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example, would suggest that the data favor HB over HA at odds of ten to one.8

Note that the Bayes factor is analogous to the likelihood ratio statistic; the only difference is

in the way the parameter vector θi is eliminated. The marginal likelihood of Hi involved in the

Bayes factor eliminates θi by the integration (5), while the likelihood ratio statistic does so by

maximization.

Unlike the classical tests that either accept or reject a hypothesized model, the Bayesian ap-

proach offers a way to evaluate evidence in favor of any individual model, and thus should be more

appropriately called model comparison (rather than model selection). The most important appeal

of this feature is that, when the evidence in the data only marginally favor one model over another,

we can apply Bayesian model averaging to account for model uncertainty in making inferences on

parameters of interest.

Further, Bayesian model comparison and model averaging can be easily applied to cases involv-

ing far more than two models, which is quite common in practical data analysis.9 One example

is Avramov (2002), who examines the sample evidence on return predictability in the presence of

model uncertainty, particularly uncertainty about the choice of independent predictors. Carrying

out classical tests in this case is hard and could produce misleading results (see Freedman (1983)).

3.2 Sensitivity analysis of prior specifications

Computing BAB requires specification of p(θi|Hi) (i = 1, 2). However, it is well known that the

Bayes factor can be quite sensitive to prior specifications. Indeed, the dependence of the Bayes factor

on the prior distributions in model comparison is much stronger than in, say, parameter estimation

conditioning on a single model. As sample sizes grow, the influence of the prior distribution vanishes

in parameter estimation, but not in model comparison. Therefore it is important to evaluate the

Bayes factor over a range of reasonable priors and examine the robustness of the inference to the

prior specifications.

Given our little knowledge about values of the model parameters, either from analysis using

other related data or from the implications of finance theory, we begin with priors that are relatively

noninformative or reflect little information beyond that already incorporated in the data, which

leads to the so-called objective Bayesian model comparison. Improper or diffuse priors, which are

intended to be noninformative by construction are, therefore, our first choice of parameter priors.

However, while one can successfully implement diffuse priors in many Bayesian parameter es-

timations conditioning on a single model, it is problematical to directly insert improper priors

into (5) for model comparison because of indeterminacy issue. To see this, suppose that improper

parameter priors πA and πB are used for model HA and HB, and the Bayes factor BAB is then

calculated. Because the priors are improper, they are defined only up to an undefined multiplicative

constant. Therefore, one could have just as well used cAπA and cBπB as noninformative priors, in

which case the resulting Bayes factor would be (cA/cB) · BAB. Since the choice of cA and cB is

8The framework can be easily applied to include distinct modeling assumptions on other dimensions such as the
specific functional forms of the risk-return relation. Also motivated by Merton’s (1973) intertemporal capital asset
pricing model (ICAPM), Scruggs (1998) investigates a different functional form of risk-return relation – a conditional
two-factor model.

9For an introduction of the Bayesian model comparison approach applied to the multi-model case, see Kass and
Raftery (1995).
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arbitrary, the Bayes factor is clearly indeterminate.

One way around this difficulty is to use the intrinsic Bayes factor (IBF) proposed by Berger and

Perrichi (1996). The idea is to use part of the data as a training sample to convert the improper

noninformative prior to a proper posterior distribution, which is then combined with the remaining

data to compute the Bayes factor. The resulting measure, for comparing HA and HB, can be

expressed as the product of the Bayes factor of model HA to HB using the whole sample and the

Bayes factor of HB to HA using the training sample:10

BAB(l) = BN
AB(D) ·BN

BA(D(l)), (8)

where D(l) denotes the training sample of size l, and the superscript N indicates the use of non-

informative priors. By construction, BAB(l) no longer depends on the scales of the improper prior

p(θi|Hi) (i = 1, 2) as the arbitrary ratio cA/cB that multiplies BN
AB(D) is cancelled by the ratio

cB/cA that multiplies BN
BA(D(l)).

We use the first 20 years of return data as the training sample in our analysis. This choice

is arbitrary, beyond the requirement that sample size needs to be large enough to guarantee a

proper posterior density. Training samples of different sizes were also tried, and the results are

qualitatively the same.

Given ongoing debate in the Bayesian literature on the incoherence of Bayesian formulations

caused by the use of training samples, we also examine priors in the forms of proper distributions

as a robustness check. In particular, the priors are assumed in the form of a multivariate normal

distribution as

p(θi|Hi) ∼ N(µi, Σi), (9)

where the restricted parameters, such as the ARCH coefficients, are appropriately truncated and

normalized. µi is the mean vector and Σi is the covariance matrix, both remaining to be specified.

The specification of the prior dispersion Σi is a crucial challenge. On the one hand, it should

be large enough to avoid too much prior influence; on the other hand, it should be small enough

to avoid producing too low a model probability and arbitrary values for the Bayes factor (see

Chipman, George, and McCulloch (2001)). We specify, for our second choice of parameter priors,

µi and Σi as the mean vector and covariance matrix of the posterior distribution derived using

diffuse noninformative priors conditioning on the individual model Hi.11 To be precise, we first

obtain the posterior probability distribution with a diffuse prior conditioning on model Hi and

compute the posterior mean vector and covariance matrix, denoted by µpi and Σ
p
i , respectively.

Then, in calculating the Bayes factor for model comparison, the parameter prior distribution for

model Hi is assumed to be distributed as N(µ
p
i , Σ

p
i ).
12 This choice is made primarily to incorporate

in the prior as little information as possible beyond that already incorporated in the data.

We also entertain prior distributions that slightly favor the view of no predictability of stock

10See Berger and Perrichi (1996) for the proof and detailed discussions of IBF.
11Since those parameters required to be nonnegative are in fact distributed mostly in the positive range, the

truncated normal distributions closely approximate the normal distributions. Thus in practice, we simply ignore the
normalizing terms. This choice, given the extremely strong evidence obtained in the model comparisons reported
later, is very unlikely to affect the results qualitatively.
12The practice of specifying the hyperparameters in the prior distribution with statistics from the actual sample is

commonly termed empirical Bayes (see Maritz and Lwin (1989)).
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returns by choosing the appropriate values for µi and Σi in (9). Note that in both models, HA and

HB, g = 0 indicates constant expected excess stock returns over time, and β, γ, δ, d = 0 suggest

no time variation of return volatility. Thus, in choosing our third form of priors, we let those

parameters be centered around zero, i.e., distributed with marginal means of zero. f is assumed

to be distributed around R = 1
T

PT
t=1Rt, the sample mean, and α of GARCH(1, 1) (or eα of

EGARCH(1, 1)) and c around bσ2R = 1
T

PT
t=1(Rt− R)2, the sample variance. For simplicity, all the

parameters are assumed to be independent of each other in the priors. The priors defined in this

way represent, at the point of maximum likelihood, the belief of an i.i.d. return series normally

distributed with sample mean and sample variance. The prior dispersions are specified in a similar

manner as in the second choice of the prior specification. The only difference is that, here, for the

common parameters appearing in both models, f and g, the prior marginal variances are chosen

to be the average of the corresponding posterior variances given in Σp1 and Σ
p
2. The variances of

the other parameters that are unique to one model, say, Hi, are assumed to take the values of the

corresponding parts in Σpi .

The Bayes factors computed using the above three forms of parameter prior distributions are

denoted by BF1, BF2, and BF3, respectively. To provide a more convincing robustness check of our

results to the prior specifications, we also report the Schwarz (1978) criterion as an approximation

of the Bayes factor, which can be written in the form of

BS
AB =

p(D|bθ1,HA)

p(D|bθ2,HB)
n(d2−d1)/2,

where bθi is the MLE under Hi, n is the sample size, and di is the dimension of θi. This quantity,

arising from Laplace’s asymptotic method, has the advantage of simplicity and freedom from prior

assumptions (see Tierney and Kadane (1986)).13 In this sense, it provides a reasonable reference

procedure for model comparison. We denote BS
AB by BF4.

3.3 Bayesian Model Averaging

Selecting a model on the basis of data, and then using the same data for estimation and inference

based on the model, is well known to yield (often severely) overoptimistic estimates of accuracy.

Such an issue is particularly serious if the model is only marginally favored by the data, but

not to a decisive degree, over an alternative model. To address this concern, we investigate the

sample evidence on risk-return relation based on a composite weighted model, using the posterior

probabilities p(Hi|D) as weights on the individual models Hi.

Much of the sample evidence regarding the parameter g is represented in its posterior probability

distribution as follows:

p(g|D) =
X

i=A, B

p(g|D,Hi)p(Hi|D).

This is an average of the posterior distributions under each model considered, weighted by their

posterior model probabilities. Note that the posterior information is formed on the basis of only the

13 In the case of large samples, BS
AB should provide a reasonable assessment of the model evidence, but extreme

caution needs to be taken in drawing inferences for models with irregular asymptotics or with likelihood concentrating
at the boundary of the parameter space.

12



observed data. As a result, any inference made according to this distribution explicitly incorporates

model uncertainty and is thereby robust to model misspecification, at least within the universe of

the examined models. The posterior mean and variance of g are given as follows (see Kass and

Raftery (1995)):

E(g|D) =
X

i=A, B

E(g|D,Hi)p(Hi|D) (10)

and

V ar(g|D) =
X

i=A, B

(V ar(g|D,Hi) + (E(g|D,Hi))
2)p(Hi|D)−E(g|D)2. (11)

The mean and variance in Equations (10) and (11) follows by iterated expectations, conditioning

first on the model space. The posterior mean is merely a weighted average of the estimates from

individual models. The posterior variance incorporates the parameter uncertainty attributed to

both the estimation error in each competing model and the uncertainty about the correct model,

which is reflected by the dispersion in the posterior model probabilities. The latter component

distinguishes this measure of estimation error from the well-known classical counterpart in that it

explicitly takes into account the inability to identify the true return dynamics.

Recent research using the Bayesian model averaging approach to incorporate model uncertainty

includes Avramov (2002) and Cremers (2002). Their work concentrates more on the variable

selection problem. Concerned with data-snooping critics as to the use of various predictive variables

in the return predictability literature, they attempt to analyze the sample evidence of stock return

predictability, and identify the most important predictors by comparing all possible linear predictive

regressions simultaneously in a Bayesian framework. Our paper investigates a different and more

serious issue, where model misspecification could in essence induce seriously spurious conclusions

since two different model classes produce profoundly conflicting indications.

4 Empirical Results

4.1 Date, Estimation, and Model-Dependent Inference

The monthly returns on the value-weighted NYSE index available from the Center for Research in

Security Prices (CRSP) are used as a proxy for the market return. All the returns are calculated in

excess of the 30-day Treasury bill rate obtained from CRSP. The 30-day Treasury bill rate is also

used as an instrument in the volatility forecasting in the instrumental variables model. Monthly

data are from June 1951 through December 2001. We restrict the data to this post-1951 period to

avoid the time before the announcement of the Treasury-Federal Reserve Accord in March 1951,

when interest rates were held almost constant by the Federal Reserve Board.

We first evaluate the implication of each specification individually regarding the intertemporal

relation of expected return and variance. Although these models have all been examined by earlier

studies, at least in analogous forms, we want to replicate those results here not only to demonstrate

the confusing situation but also to facilitate the subsequent model comparison analysis. For this

purpose, we estimate parameters using the Bayesian approach instead of classical methods such as

MLE and linear regression that most earlier studies apply.14

14Although it is easy to show that MLE provides consistent estimators, it is harder to show the asymptotic
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The posterior mean and posterior standard deviation (in parentheses) for each parameter are

reported in Table II. We report the posterior standard deviation rather than the t-value because esti-

mation is in a Bayesian framework. The posterior distribution is obtained by updating the standard

diffuse and independent prior distribution, aiming to draw “objective” Bayesian inferences that are

little affected by information external to the observed data. The use of such convenient noninfor-

mative prior distributions can be justified by the asymptotic irrelevance of the prior distributions.

Further, since the resulting posterior is far from any typical form, the Markov Chain Monte Carlo

(MCMC) approach is used to obtain the desired posterior properties of the unknowns.15

As Table II shows, the implications of the models for the risk-return relation, captured by

the parameter g, are generally consistent with those reported in studies using classical methods.

Models that include only the past returns in the conditioning information set yield mostly positive

estimates for g, except for the ARCH(1)-M model (Model A1), which estimates the risk-return

coefficient to be −0.57, with posterior standard deviation at 14.54, indicating little significance. It
is interesting to note that, when a possibly higher degree of volatility persistence is captured by

the higher-order ARCH structures, such as the ARCH(2) (Model A2) or the more parsimonious

GARCH(1, 1) (Model A3) and EGARCH(1, 1) (Model A4), the estimate of g turns to positive,

ranging from 4.87 to 10.39 (and more than one and a half posterior standard deviations away from

zero for the GARCH(1, 1)-M model). Under the MIDAS modeling assumption of the forecasting

ability of past squared daily returns on the monthly return volatility, the risk-return coefficient g

is estimated to be 2.36 and 2.11 for Model A5 and Model A6, respectively, both about one and a

half posterior standard deviations away from zero. This is consistent with the findings of Ghysels,

Santa-Clara, and Valkanov (2003). By the instrumental variables model (Model B), however, the

posterior mean and standard deviation of g are −11.40 and 4.49, respectively, indicating that the
conditional expected return and volatility are negatively related over time. The slope coefficient for

the interest rate, d, is positive and more than two posterior standard deviations away from zero.

It is quite evident that the answer to whether risk is positively or negatively related to the

risk premium over time depends, to a large extent, on the modeling assumptions. Therefore, the

potential issue of model uncertainty should be of serious concern to investigators.

4.2 Model comparisons

However, very few researchers have seriously considered the model specification issue. Glosten,

Jagannathan, and Runkle (1993) does apply a specification test to their models, while most others

simply use statistical inference based on one rather ad hoc return model. While Glosten, Jagan-

nathan, and Runkle (1993) identify the most satisfactory model through a variety of diagnostic

tests, it is, however, difficult to evaluate the strength of the evidence supporting their model selec-

tion decision, a formidable obstacle in the classical hypothesis test because of the extreme difficulty

properties needed in the subsequent inferences since the required regularity conditions are quite difficult to verify
for general heteroskedastic models. Lee and Hansen (1994) give some results for the GARCH(1, 1) process in this
respect, but many other concerns, especially regarding more general models, remain unanswered. In practice, however,
the regularity problem is typically ignored, and empirical researchers use standard estimation procedures under the
assumption that the usual regularity conditions are satisfied.
15See the appendix in Wang (2004) for a brief description of the simulation procedure used. Gilks, Richardson,

and Spiegelhalter (1996) provide a textbook treatment of more general MCMC approaches.
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of properly interpreting a p-value (see, e.g., Berger and Sellke (1987)).16 It is, therefore, theoret-

ically possible that their selected model, based on which the conclusion of a negative risk-return

relation is made, outperforms the alternative models only marginally. If that is the case, to make

their result convincing to finance researchers, it is important and necessary to show that their result

is robust to model uncertainty. After all, as it is important to report standard errors or confidence

intervals as a measure for accuracy in parameter estimations, it is also important to associate the

selected model with a measure for the strength of the supporting evidence.

To address this concern, in the following sections we use the Bayesian framework to explicitly

compare and evaluate the data-based evidence for model classes HA and HB, and to account for

model uncertainty in inference making when evidence favoring one model against the other is not

strong enough.

Table III reports the Bayes factors BAB of the model HA, as opposed to the instrumental

variables model, HB. We calculate the Bayes factor for each specific form of the GARCH-M and

MIDAS models (Models A1-A6), against the simplest form of the instrumental variables model

(Model B) using the one-month interest rate as the single predictor. The Bayes factors under a

variety of prior specifications are BF1-BF4, as discussed in Section 3. The Monte Carlo simulation

approach is used in calculation of the Bayes factors. See the appendix for a brief description of this

technique. To evaluate the accuracy of the Monte Carlo integrations, we repeated the numerical

procedure for a range of replication numbers, and checked the variations of the results across

several different simulations. The reported results are obtained with 10, 000 replications for each

integration.17

The Bayes factor BAB can be interpreted as the posterior probability that the model hypothesis

HA is true, divided by the posterior probability that the alternative HB is true. Thus a Bayes factor

BAB with a value lower than one, for example, is evidence in favor of the modelHB. Table III reports

that the Bayes factors, corresponding to distinct specifications within the universe of the GARCH-

M and MIDAS models and a variety of prior specifications, are uniformly less than one, indicating

consistent evidence in favor of the instrumental variables model. This is favorable evidence that

the expected return on the aggregate stock market is negatively related to the volatility over time,

which implies that the unconditional return distribution is negatively skewed.

The Bayesian approach is consistent in that the Bayes factor will favor the true model if one of

the examined models, HA and HB, is the true model and if enough data is observed, while most

classical model selection techniques, such as p-values and AIC, does not guarantee consistency

(Berger and Pericchi (2001)). Furthermore, Berk (1966) and Dmochowski (1996) show that, even

if the true model is not included in the model space, the Bayesian approach will favor the model

among the candidates that is closest to the true model under a certain criterion.18

More important, the values of those posterior odds give us valuable information to assess the

strength of the evidence. This is especially important because drawing inferences from the selected

instrumental variables approach alone, with no knowledge of how strong the evidence is in its

16There is no reason to expect a p-value to be similar to the posterior probability that the null hypothesis is correct.
17The simulations from MCMC are quite stable and the resulting numerical integrations achieve fast convergence

with 10,000 simulations.
18 In contrast, frequentist tests tend to reject a null hypothesis almost systematically in the case of very large

samples because no single model could precisely describe the true underlying stochastic process that generates the
data.
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favor, would suffer from the critique of ignoring model uncertainty, and could lead to overoptimistic

estimates of accuracy. Toward this end, we use the criterion proposed by Jeffreys (1961, App. B) as

a scale of evidence for the interpretation of the Bayes factor BAB. It suggests substantial evidence

against the hypothesis HA in favor of HB if the Bayes factor BAB is between 0.1 and 0.3, strong

evidence if BAB is between 0.01 and 0.1, and decisive evidence if BAB is less than 0.01.

With the noninformative diffuse parameter priors (BF1), the highest Bayes factor value un-

der the ARCH structures (A1-A4) is only 0.0098, which indicates that data-fitting even the best

ARCH-M model specification is significantly poorer than the instrumental variables approach. The

evidence in support of the instrumental variables model becomes even stronger with the proper

but nearly noninformative prior (BF2), and is further confirmed by the prior-independent Schwarz

criterion (BF4), as most of the Bayes factor values are lower than 0.0001. Meanwhile, the MIDAS

approach using high-frequency data in volatility forecasting does not perform any better than the

GARCH-M model and is thus also decisively rejected by the data.

Given such strong evidence in the model comparisons conveyed by the Bayes factors, inves-

tigators with noninformative prior beliefs on the parameter values would reasonably choose the

instrumental variables model for subsequent analysis with no need for concern over model uncer-

tainty, and consequently favor the conclusion of the negative risk-return relation seen in Table II.

This is some justification of the early practice of drawing inferences on the risk-return relation

exclusively from the instrumental variables models (e.g., Breen, Glosten, and Jagannathan (1989)).

When the prior distributions slightly favor the nonpredictability of stock returns as to both

expected return and volatility, the evidence (BF3) in support of hypothesis HB is not as strong.

The Bayes factors corresponding to the ARCH-M class in this case range from 0.0023 to 0.6606,

and the highest value corresponds to the posterior odds for the ARCH(2)-M model versus the

instrumental variables model. To better understand the interpretation of those numbers, we look

at its implied posterior model probabilities. Taking the two models to be equally likely a priori,

and noting that the posterior model probabilities sum to one, we use a simple transformation to

evaluate the updated uncertainty surrounding the modeling assumptions:

p(HA|D) =
BAB

1 +BAB
(12)

and

p(HB|D) = 1− p(HA|D).

Take, for example, the comparison between the ARCH(2)-M model and the instrumental vari-

ables model that yields the BF3 of 0.6606. According to (12), the posterior probability of HA is

0.3978, certainly not low enough in relation to the posterior probability of HB, 0.6022, to justify

ignoring model HA in the subsequent analysis.

As a result, researchers with such nonpredictability prior beliefs must acknowledge that neither

the ARCH-M model nor the instrumental variables approach is perfect in describing the true

underlying data-generating process, and therefore, the information conveyed by both models should

be carefully incorporated in the analysis. This case will be further analyzed in section 4.3.

In both model classes, HA and HB, conditional returns are assumed to be normally distributed.

Although it has been shown that daily returns have more mass in the tail areas than would be
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predicted by a normal distribution, in practice the Central Limit Theorem applies and drives

longer-horizon returns towards normality. For instance, Campbell, Lo, and MacKinlay (1997)

reports an extremely high and statistically significant sample excess kurtosis of 34.9 for daily index

returns and a contrastingly low estimate of only 2.42 for monthly index returns. In spite of this

evidence, to determine the robustness of our results to the normality assumption we also compare

two model classes that are slightly modified to capture the potential fat-tailed return distributions.

Specifically, we compute the Schwarz criterion for models HA and HB under the assumption that

εt has a scaled t-distribution with 5 degrees of freedom instead of a normal distribution. All but

one of the resulting Bayes factors BAB are lower than 0.0001 (the exception is for the GARCH-M

model, which gives a Bayes factor of 0.0013), suggesting that the decisive evidence favoring the

model HB is not attributed to the normality approximation.

4.3 Inference based on model averaging

For simplicity of the computation involved in (10) and (11), the posterior mean and variance

of g conditional on either model is computed using the noninformative diffuse prior throughout,

regardless of the distinct forms of priors used in obtaining the Bayes factor. This simplicity is

achieved at the cost of some coherence of Bayesian analysis. However, the results should not be

affected since in the parameter estimation any influence of the prior specification on the posterior

is expected to wash out in the large sample.

The estimation results regarding g, including the posterior mean and standard deviation, ac-

counting for model uncertainty, are presented in Table IV. Again, the analysis is conducted for

each pair of models, formed with one specification from each model class. The numbered rows

correspond to the four different Bayes factors BF1-BF4 reported in Table III, from which the pos-

terior model probabilities are computed. We see from rows (1), (2), and (4) that the estimation

of g conditional on the data alone produces posterior means around −11.4 and posterior standard
deviations around 4.5 consistently across prior distributions and model pairs, indicating a signifi-

cantly negative risk-return relation. Further, these numbers are all quite close to those obtained

conditional on the instrumental variables model reported in Table II. This is to be expected, given

the decisive evidence conveyed by the Bayes factors, BF1, BF2, and BF4 in Table III, that the

model class HB outperforms HA.

The more interesting evidence is in row (3), which corresponds to the nonpredictability prior

that leads to evidence only marginally favoring the instrumental variables model over the GARCH-

M model. In this case, even with the relatively high values of the Bayes factors corresponding

to A1-A4 illustrated in Table III, the posterior means of g are still negative, ranging from −11.4
to −2.7, although the significance levels vary. The comparison between the ARCH(2)-M model

and the instrumental variables model yields an estimate of −2.7 for g with a posterior standard
deviation of 12.6, which suggests no significance. This large measurement error is caused mainly

by the considerable uncertainty surrounding the choice between these two model specifications, as

indicated by the Bayes factor, 0.6606. In contrast, the inferences accounting for the uncertainty

between the EGARCH(1, 1)-M model and the instrumental variables model, due to their relatively

low Bayes factors, still produce strong statistically significant evidence regarding the negative value

for g. Here, we borrow terminology from the classical approach here. We say that an estimate
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is significantly (weakly significantly) different from zero if the posterior mean of the unknown

parameter is about two (one and a half) posterior standard deviations away from zero.

It is apparent that the spurious indication of a positive risk-return relation is a result of the

ARCH specification of conditional volatility. Although the linear relation in (3), as a good approx-

imation to Merton’s (1973) intertemporal CAPM, is ideally suited to investigating the trade-off

between the risk and the expected return, consistent estimation for the parameters in this linear

relation requires that the full model be correctly specified since the information matrix of the model

is no longer block diagonal between the parameters in the conditional mean and variance (Pagan

and Ullah (1988)). Hence, if stock returns evolve according to model HB, the variance process in

HA is misspecified and leads to the biased and inconsistent estimates for the parameters f and

g. Furthermore, Pagan (1986) shows that in the two-stage estimation of models A5 and A6 the

conventional standard errors may not be appropriate and could result in misleading conclusions

about the true underlying relation between expected return and volatility.

4.4 Model extensions

In any statistical modeling, the ultimate goal is a stochastic process that closely approximates

the underlying data-generating mechanism, in that it captures most of the key characteristics

observed in the data. Although Berk (1966) and Dmochowski (1996) show that the Bayesian model

comparison can guarantee selection of the model among the candidates that is closest to the true

model, to the extent that the favored model differs from the true one in a manner that is critical

to capture certain important characteristics of data, the resulting inference is still questionable.

In our case, although the instrumental variables model that forecasts volatility with exogenous

instruments is supported by the evidence of the data, the model is inconsistent with at least one

important feature of the data, that is, the well-documented volatility clustering phenomenon.

In an effort to identify the “right” model, we extend the model space by considering several

extensions of the instrumental variables model. In particular, when making volatility forecasting,

we incorporate not only the information in the instruments but also that reflected in past returns

so as to capture persistence in the conditional volatility. We add a GARCH component to the

instrumental variables model:

Model C1:

σ2t = α+ βε2t + γσ2t−1 + dxt.

Researchers beginning with Black (1976) have found evidence supporting a negative correlation

between current returns and future return volatilities.19 This feature, however, is ruled out in

the GARCH structure considered above, which is symmetric in that negative and positive shocks

εt have the same impact on the volatility. If the conditional volatility is related to past returns

not only through squared return shocks, a symmetric GARCH structure is misspecified, and any

empirical results based on it are not reliable. To handle this, we further extend Model C1 by

including a term reflecting this asymmetric volatility effect as:

19Two popular explanations for the association of negative return innovations with positive volatility shocks are
the leverage hypothesis (Black (1976)) and the volatility-feedback hypothesis (Campbell and Hentschel (1992)). See
Campbell, Lo, and MacKinlay (1997) for further discussion.
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Model C2:

σ2t = α+ β|εt − η|2 + γσ2t−1 + dxt.

Here if the shift parameter η = 0, we are back to the symmetric Model C1. If η is positive,

volatility increases less when there is a positive shock of size η than when there is no shock.20

Table V presents the estimation results of these two generalized models. Model C1 reflects a

certain degree of persistence in the monthly return volatility, i.e., either β or γ is positive and at

least weakly significantly different from zero.21 Under the more general Model C2, the parameter

on the asymmetry of volatility effect, η, is estimated to be 0.0977 and statistically significant with

a posterior standard deviation of 0.0328, which, along with the positive β and γ, is consistent with

the early finding that negative shocks to stock returns tend to increase volatility more than positive

shocks of the same magnitude.

More important, the coefficient on the risk-return relation, g, is negative in both models, and

weakly significant in Model C2. The fact that this negative relation remains significant even after

adding past returns to the information set suggests the crucial role of the one-month interest rate in

the intertemporal relation of stock return moments. This result is in accordance with the findings

of Glosten, Jagannathan, and Runkle (1993), who examine models similar to Model C2.

Models C1 and C2 can also be viewed as generalizations based on Model A3, the simple

GARCH(1, 1) structure. From this perspective, there are several points worth noting as well.

First, the risk-return coefficient g changes from positive in Model A3 to negative as soon as the

interest rate is added as an instrument in Model C1, and remains negative after the asymmetric

volatility effect is allowed in Model C2. Second, the volatility persistence captured by the ARCH

and GARCH components, as roughly measured by the sum of β and γ, quickly declines from around

0.9 in the simple GARCH(1, 1) model to around 0.3 in the generalized versions. Third, both β and

γ are estimated to be strongly significant in Model A3, where the posterior mean of β is around

four times the posterior standard deviation away from zero and the posterior mean of γ is at least

20 times the posterior standard deviation away from zero, but these significances are much weaker

in Model C1 and C2. The latter two observations occur because much of the volatility persistence

is now captured by the interest rate series, which is itself highly persistent, with a first-order auto-

correlation of 0.95 (note that the slope coefficient of the interest rate is positive and substantially

distinguishable from zero).

Table VI compares the generalized models, HC , and the instrumental variables model, HB,

and Table VII estimates the parameter β by averaging the information conveyed by these two

models. The Bayes factors corresponding to C1 versus B seem quite sensitive to the parameter

prior distributions, yielding values lower or higher than one, depending on the forms of the priors.

This sensitivity is not surprising, given the close similarity of the two model classes, HB and HC .

Further, because both C1 and B produce a negative estimate of g, our conclusion of a negative risk-

return relation is unchanged, regardless of which model outperforms the other, as shown in Table

VII. In other words, model uncertainty between models C1 and B is not critical to our ultimate

20See Campbell, Lo, and MacKinlay (1997) for a discussion about alternative functional forms to capture volatility
asymmetry.
21A more serious test on the time variation of the return volatility will be to run a joint test of both β and γ being

equal to zero.
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inference on the parameter of particular interest.

When the asymmetric volatility effect is incorporated, the data decisively and consistently favor

Model C2 over Model B, as the Bayes factors in this case are mostly greater than 104 across a variety

of prior specifications, and the smallest value is close to 103. This demonstrates that the asymmetric

volatility effect of return shocks of different signs plays an important role in the time variation of

stock return volatility.

Readers may have already noted that the generalized model, HC , has nested the simpler versions

HA and HB, and thus the classical hypothesis test can also be applied to test HA or HB against

the alternative HC . Because of the aforenoted analogy of the likelihood ratio statistic to the Bayes

factor, the classical hypothesis test should be expected to lead to results consistent with those from

our Bayesian approach, that is, to reject the null hypothesis and accept HC . Unlike the Bayes

factors, the p-value from classical tests is far from a probability measure and is therefore difficult

to interpret by nonstatisticians in an attempt to assess the strength of the supporting evidence.

This is one of the most important advantages that the Bayesian model comparison approach has

over the classical method.

Since the finding of a negative risk-return relation seems to be primarily a result of the use

of the one-month interest rate for the volatility forecasting, this calls for some further empirical

investigation of the true forecasting ability of this instrument that is extensively used in the return

predictability literature. For this purpose, we first estimate the realized variance of the monthly

returns following French, Schwert, and Stambaugh (1987) as:

bσ2t =PNt
d=1 r

2
t−d + 2

PNt−1
d=1 rt−drt−d−1, (13)

where bσ2t denotes the realized volatility in month t, Nt is the number of trading days in month t,

and r denotes daily returns.22 The second term in (13) is included to adjust for serial correlation

in the daily returns induced by nonsynchronous trading.

Figure I shows the time series of realized volatilities (thin line) and one-month interest rates

(thick line), along with their correlations. We see that the one-month interest rates do provide

somewhat valuable information regarding the realized volatility, as suggested by their similar pat-

terns in the time-varying trend and the correlation of 0.14. This could be partly explained by

the fact that return volatility tends to increase with an increase in expected inflation, which is

incorporated by the market in the determination of the interest rate.

Figure II plots the time series of realized (thin line) and forecasted (thick line) variance of

monthly returns for June 1951 through December 2001 using monthly data and the parameter

estimates reported in Table II. The first plot displays the forecasted variance estimated by the

GARCH(1, 1)-M model (Model A3), and the second one that estimated by the generalized GARCH-

M model (Model C2). For a better view on how the forecasted variance tracks the realized variance

over time, we display the same plots in the shorter 15-year period January 1987 through December

2001 in Figure III. Correlations between series for the full sample are given below each plot.

In general, the volatility process forecasted by the simple GARCH(1, 1) structure is too smooth

to capture many small oscillations in the realized variance, although it does a good job in reflecting

22No adjustment is included with respect to the sample mean since, as French, Schwert, and Stambaugh (1987)
note, the impact of such small modifications is minimal.
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the long-run trend. The generalized GARCH structure, however, after incorporating the infor-

mation in interest rates and allowing for an asymmetric volatility effect, produces a conditional

volatility series that tracks the realized volatility much more closely. This is partially because of

the additional oscillation induced by the interest rate series and the correlation of 0.14 between

interest rates and the realized volatilities.

5 Conclusion

This paper proposes a Bayesian model comparison framework for examining how the expected

return and volatility of the aggregate stock market move together over time, whether they are

positively or negatively related. The mixed results in the literature are due largely to differences in

the return moment specifications. In general, models that forecast next-month’s return volatility

using only past returns data produce a positive, albeit sometimes weakly significant, risk-return

relation, while models that make use of exogenous instruments such as one-month interest rates

indicate a contrary negative relation.

The Bayesian procedure in our paper complements the work by Glosten, Jagannathan, and

Runkle (1993), who find that among several generalizations of the standard GARCH-M model, the

models that indicate a negative risk-return relation are better specified than those that suggest a

contrary result. The diagnostic tests they employ cannot provide a measure for the strength of the

evidence supporting their model selection decision, based on which they make the conclusion of a

negative risk-return relation. As it is important to report standard errors or confidence intervals

as a measure for accuracy in parameter estimations, it is also important to associate the selected

model with a measure for the strength of the supporting evidence.

This has been achieved in our study. Overall, models that include one-month interest rates in

the information set for volatility forecasting generally outperform models that do not, and models

that allow for an asymmetric volatility effect outperform models that rule it out. In addition,

the evidences that distinguish those models are shown to be decisive. We thus conclude that the

sample evidence strongly favors a negative relation between the time-varying conditional means

and volatilities of stock returns. This result is robust to model uncertainty, at least within the

universe of the models examined.

Several studies have assessed the implications of the time-varying return moments, either ex-

pected return or volatility or both, for portfolio decision making.23 If the negative intertemporal

relation between the first two return moments exists, more interesting results are expected regard-

ing portfolio implications, since any impact of either return moment on the optimal portfolio can

be magnified by the associated movement of the other return moment. For instance, Kandel and

Stambaugh (1996) show significant economic values of predictability on expected return by showing

that current values of predictive variables can exhibit a substantial impact on a Bayesian investor’s

one-month optimal stock allocation. Incorporating the conditional heteroskedasticity and acknowl-

edging the negative relation between the first and second return moments could cause a higher

sensitivity of the optimal stock allocation to the current values of predictive variables. Of course,

23See, for example, Kandel and Stambaugh (1996), Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira
(1999), Barberis (2000), Lynch and Balduzzi (2000), and Wang (2004).

21



adding these two new features into the return dynamics could also change the manner by which

the current values of predictive variables influence future return moments.

Our study illustrates the importance of model comparison in the face of conflicting indications

of different empirical specifications, and shows the effectiveness of the Bayesian technique in im-

plementing this idea to resolve a puzzling situation. Besides the volatility specifications, there

are certainly many other interesting dimensions for possibly having different modeling approaches.

Further, in other areas, such as the term structure models of interest rates, where a variety of

empirically motivated specifications exist, special care also needs to be taken in making inference

that could potentially depend on the used model. The framework we employ in this study can be

easily applied to those situations although it will be computationally more challenging with more

complicated models.
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Appendix A. A description of the Monte Carlo integration used in computing
the Bayes factors

In most cases, evaluating the integral (5) involved in the Bayes factor, which we rewrite here as

I =

Z
p(D|θ,H)p(θ|H)dθ, (A-1)

can be challenging in the absence of analytical solutions, which are rarely available. The traditional

grid method of numerical integration such as Gaussian or Gauss-Hermite quadrature algorithms can

be difficult to implement, especially when the parameter space is high-dimensional. With moderate

or large sample sizes, the likelihood function p(D|θ,H) is likely to be highly peaked around its
maximum, so extreme care needs to be taken to ensure the accuracy of the numerical solution

by appropriately adjusting the grids around the peak. This difficulty increases rapidly with the

dimension of the parameter space.

A Monte Carlo simulation method offers a convenient and efficient way to solve high-dimensional

integration problems. This appendix describes how to use the Monte Carlo integration technique in

the Bayesian approach where one term in the integrand, p(θ|H), is the parameter prior distribution,
which could be proper or improper. For a textbook treatment of the Bayesian calculation, see Berger

(1985).

In the case of a proper parameter prior, it is possible to generate an i.i.d. sequence of random

samples {θi, i = 1, ..., m} from the density p(θ|H), where m is the replication number. Note that

the integral in (A-1) can be written in the expectation form

I = E[p(D|eθ,H)]
where the random variable eθ is distributed according to p(θ|H). It then follows from the strong

law of large numbers in probability theory that, under mild regularity conditions, the simple Monte

Carlo integration estimate

bI = 1

m

Pm
i=1 p(D|θi,H) (A-2)

almost surely converges to I.

When the likelihood function is highly peaked, it is nearly zero over all but a small portion

of the support of p(θ|H), so most of the random samples drawn from the density p(D|θ,H) will
contribute little to the integral value and to reducing variability across simulations. Thus, in

practice a large number of replications, m, are needed for each simulation, and several different

series of the simulated {θi} are tried in (A-2) to check its variability so as to ensure accuracy of

the estimate.

For improper prior p(θ|H), we apply a slightly modified version of the above Monte Carlo
technique, often referred to as the importance sampling approach. It begins by writing the integral

I as

I =

Z
p(D|θ,H)p(θ|H)

h(θ)
h(θ)dθ,
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where h(θ) is some proper density from which an i.i.d. sequence of random samples {θi, i = 1, ...,

m} can be drawn. The integral I can then be approximated with

bbI = 1

m

Pm
i=1

p(D|θi,H)p(θi|H)
h(θi)

.

The key issue here is to find a suitable h(θ). Some guidance may be gained by looking at the

variance of the importance sampling estimate:

V (
bbI) = 1

m
V (

p(D|eθ,H)p(eθ|H)
h(eθ) ).

where eθ is distributed according to the density h(θ).
As one can see, the ideal choice of h(θ) will be one that is exactly proportional to p(D|θ,H)p(θ|H),

but this cannot be achieved since it requires us to know the integral value, which is what we are

trying to estimate. This still provides a rule of thumb that h(θ) should try to mimic the posterior

distribution as closely as possible. For large sample sizes of D, theory shows that, under commonly

satisfied assumptions, the posterior distribution will typically be well approximated by a multivari-

ate normal distribution N(µp, Σp), where µp and Σp are the posterior mean and covariance matrix

(Berger (1985), subsection 4.7.8). Thus this normal density could be a reasonable choice of h(θ).
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Table I: Existing literature on the risk-return relation

The table reports the conditioning variables used in the literature on forming the parametric return variance

process to examine the monthly stock risk-return relation:

E(Rt+1|Ft) = f + gV (Rt+1|Ft),

where Rt denotes the monthly excess return of the stock index in excess of the risk-free return, Ft is the

information set available to investors at time t, and f and g are the parameters, with the sign of g of

particular interest. For each paper we report the authors, the year of publication, the information set used

in the analysis, and the consequent conclusions on the sign of g. In other notation, εt is the disturbance given

by Rt− E(Rt|Ft−1), σ2t denotes the conditional volatility, R
f
i,t stands for the ith-month bill rate, OCTt

and JANt are the dummy variables for October and January, respectively, yst denotes the Baa-Aaa yield

spread, dyt is the excess dividend yield, cst is the commercial paper-treasury spread, and It is an indicator

function that takes the value of one if εt is positive.24 A + and − indicate at least weakly significant positive
and negative values for the parameter g, respectively. 0 means that g is statistically indistinguishable from

zero.

Authors Year Volatility conditioning variables g

French, Schwert, and Stambaugh25 1987 σ2t−1, ε
2
t , ε

2
t−1 +

past daily squared returns 0

Campbell 1987 Rf
1,t, R

f
k,t −Rf

1,t, R
f
2,t−1 −Rf

1,t−1 −
Breen, Glosten, and Jagannathan 1989 Rf

1,t −
Chan, Karolyi, and Stulz 1992 bivariate GARCH-M 0

Campbell and Hentschel 1992 σ2t−1, (εt − b)2 +

Glosten, Jagannathan, and Runkle 1993 σ2t−1, ε
2
t +

Rf
1,t, OCTt, JANt, ε2t , ε

2
t It −

Whitelaw 1994 yst, dyt, R
f
12,t, cst −

Harvey 2001 ε2t−j , j = 0, ..., 7 +

ε2t , R
f
3,t −Rf

1,t, yst, dyt −
ε2t , εt/σt−1 +

Ghysels, Santa-Clara, and Valkanov 2003 past daily squared returns +

24The rule we use for dating variables differs from that in some other studies. Throughout our paper, we
give the variable a time subscript t if its value is observable at the end of month t.
25 In order to capture the effect of nonsynchronous trading, French, Schwert, and Stambaugh include the moving

average term θεt−1in the return innovations, yielding a model slightly different from ours.
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Table II: Parameter estimations conditional on a single model of various types

The table reports the Bayesian posterior means and standard deviations of the parameters exclusively con-

ditional on a single model of various types – Models A1-A6 and Model B. Parameters are assumed a priori

independent and diffusely distributed on the corresponding parameter spaces. The posterior standard devi-

ation of each parameter is given in the parentheses. The results regarding the parameter g, which relates

expected return to volatility, is of particular concern and is emphasized with boldface. The sample period is

1951.6 through 2001.12.

Model specifications

A1 A2 A3 A4 A5 A6 B

f 0.0081 −0.0108 −0.0013 −0.0080 0.0025 0.0029 0.0251

(0.0244) (0.0158) (0.0046) (0.0152) (0.0018) (0.0018) (0.0071)

g −0.5669 10.3900 4.8715 8.7968 2.3578 2.1058 −11.3987
(14.5439) (9.2081) (2.7212) (9.1656) (1.6579) (1.5975) (4.4863)

α 0.0016 0.0015 0.0001 −1.2398
(0.0001) (0.0001) (0.0000) (1.1350)

β 0.0896 0.0637 0.0872 0.0499

(0.0493) (0.0414) (0.0227) (0.0172)

δ 0.0904

(0.0509)

γ 0.8407 0.8142

(0.0409) (0.1773)

c 0.0007

(0.0002)

d 0.2283

(0.0469)
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Table III: Bayes factor of various specifications within model class HA as opposed to HB

The table reports the Bayes factor (or equivalently the ratio of posterior model probabilities) of the various

specifications within the model class HA, denoted by Models A1-A6, as opposed to Model B. The Bayes

factor, defined as BAB = p(D|HA)
p(D|HB)

, is computed numerically. In a robustness check, we report the Bayes

factors computed using three distinct forms of the parameter prior distributions, one noninformative improper

prior and two proper priors. The resulting Bayes factors are denoted by BF1, BF2, and BF3. The Schwarz

(1978) criterion, denoted by BF4, is also reported as a reference to the Bayes factor.

Model pairs

Bayes factor A1 vs B A2 vs B A3 vs B A4 vs B A5 vs B A6 vs B

BF1 0.0020 0.0015 0.0098 0.0024 < 0.0001 0.0024

BF2 < 0.0001 < 0.0001 0.0032 < 0.0001 < 0.0001 < 0.0001

BF3 0.2043 0.6606 0.1972 0.0023 < 0.0001 < 0.0001

BF4 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table IV: Estimations of risk-return relation on the monthly stock index accounting for model

uncertainty

The table reports posterior means and standard deviations of the parameter g using the Bayesian model

averaging technique. Model uncertainty is incorporated between the various specifications within the model

class HA, denoted by Models A1-A6, and Model B, by reporting an average of the posterior distributions

under each model weighted by posterior model probabilities. The numbered rows correspond to the four

different Bayes factors BF1-BF4 reported in Table III, from which the model posterior probabilities are

computed. Posterior standard deviations are given in parentheses. The sample period is 1951.6 through

2001.12.

Model pairs

g A1 vs B A2 vs B A3 vs B A4 vs B A5 vs B A6 vs B

(1) −11.3775 −11.3657 −11.2409 −11.3508 −11.3983 −11.3667
(4.5530) (4.5762) (4.7482) (4.6090) (4.4868) (4.5294)

(2) −11.3987 −11.3987 −11.3470 −11.3978 −11.3987 −11.3987
(4.4863) (4.4864) (4.5744) (4.4887) (4.4863) (4.4863)

(3) −9.5615 −2.7313 −8.7189 −11.3525 −11.3987 −11.3987
(8.3135) (12.6323) (7.3791) (4.6046) (4.4863) (4.4863)

(4) −11.3987 −11.3987 −11.3966 −11.3982 −11.3987 −11.3987
(4.4863) (4.4863) (4.4899) (4.4875) (4.4863) (4.4863)
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Table V: Parameter estimations conditional on a single model of various generalizations of the

simple GARCH(1, 1)-M model and instrumental variables model

The table reports the Bayesian posterior means and standard deviations of the parameters exclusively con-

ditional on a single model of two generalizations, Models C1 and C2. Parameters are assumed a priori

independent and diffusely distributed on the corresponding parameter spaces. Posterior standard deviations

are given in parentheses. The results regarding the parameter g, which relates expected return to volatility,

is of particular concern and is emphasized with boldface. The sample period is 1951.6 through 2001.12.

Model specifications

C1 C2

f 0.0168 0.0142

(0.0058) (0.0040)

g −5.8715 −4.8484
(3.6614) (2.5819)

α 0.0005 0.0001

(0.0002) (0.0003)

β 0.0664 0.0800

(0.0376) (0.0352)

η 0.0977

(0.0328)

γ 0.2427 0.1934

(0.1786) (0.1167)

d 0.1680 0.1204

(0.0537) (0.0379)
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Table VI: Bayes factor of various specifications within model class HC as opposed to HB

The table reports the Bayes factor (or equivalently the ratio of posterior model probabilities) of the various

specifications within the model class HC , denoted by Models C1 and C2, and Model B. The Bayes factor,

defined as BCB =
p(D|HC)
p(D|HB)

, is computed numerically. In a robustness check, we report the Bayes factors

computed using three distinct forms of the parameter prior distributions, one noninformative improper prior

and two proper priors. The resulting Bayes factors are denoted by BF1, BF2, and BF3. The Schwarz (1978)

criterion, denoted by BF4, is also reported as a reference to the Bayes factor.

Model pairs

Bayes factor C1 vs B C2 vs B

BF1 3.4307 > 10000

BF2 0.8064 > 10000

BF3 2.3846 1122

BF4 0.0023 1141

Table VII: Estimations of risk-return relation on the monthly stock index accounting for model

uncertainty

The table reports posterior means and standard deviations of the parameter g using the Bayesian model

averaging technique. Model uncertainty is incorporated between the various specifications within the model

classHC , denoted by Models C1 and C2, and Model B, by reporting an average of the posterior distributions

under each model weighted by posterior model probabilities. The numbered rows correspond to the four

different Bayes factors BF1-BF4 reported in Table III, from which the model posterior probabilities are

computed. Posterior standard deviations are given in parentheses. The sample period is 1951.6 through

2001.12.

Model pairs

g C1 vs B C2 vs B

(1) −7.1189 −4.8484
(4.5013) (2.5819)

(2) −8.9313 −4.8484
(4.9675) (2.5819)

(3) −7.5045 −4.8543
(4.6638) (2.5916)

(4) −11.3862 −4.8542
(4.4922) (2.5914)
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Figure I: Realized variance of monthly returns and one-month interest rates

This figure plots the time series of the realized variance of monthly returns (thin line), estimated using

equation (13) with within-month daily returns, and the one-month interest rates (thick line) for the period

June 1951 through December 2001. To give a clear view of the plot as a whole, we truncate the realized

variance of October 1987 at 0.02. The actual value is 0.0689. The correlation between the two series for the

full sample is given below the plot.

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

  0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Year

Correlation = 0.14

34



Figure II: Realized and forecasted variance of monthly returns

This figure plots the time series of the realized (thin line) and forecasted (thick line) variance of monthly

returns for the period June 1951 through December 2001. The realized variances are estimated using equation

(13) with within-month daily returns. The first plot displays the forecasted variance estimated by the

GARCH-M model (Model A3), and the second plot the variance estimated by the generalized GARCH-M

model (Model C3), where the estimates reported in Table II are taken as the true values of the parameters.

To give a clear view of the plot as a whole, we truncate the realized variance of October 1987 at 0.02. The

actual value is 0.0689. The correlations between the two series for the full sample are given below the plots.
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Figure III: Realized and forecasted variance of monthly returns

This figure plots the time series of the realized (thin line) and forecasted (thick line) variance of monthly

returns for the subsample period January 1987 through December 2001. The realized variances are estimated

using equation (13) with within-month daily returns. The first plot displays the forecasted variance estimated

by the GARCH-Mmodel (Model A3), and the second plot the variance estimated by the generalized GARCH-

M model (Model C3), where the estimates reported in Table II are taken as the true values of the parameters.

To give a clear view of the plot as a whole, we truncate the realized variance of October 1987 at 0.02. The

actual value is 0.0689. The correlations between the two series for the full sample period June 1951 through

December 2001 are given below the plots.
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