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Abstract

In this paper, we develop an equilibrium model for market liquidity and its impact on

asset prices when constant participation in the market is costly. We show that, even

when investors’ trading needs are perfectly matched, costly participation prevents them

from synchronize their trades, which gives rise to the need for liquidity in the market.

Fluctuations in liquidity needs cause asset prices to deviate from the fundamentals.

Moreover, these price deviations tend to have large magnitudes in absence of any

aggregate shocks, resembling what can be called “liquidity crashes”, and lead to fat

tails in return distributions. We also show that the lack of coordination among investors

in the demand and the supply of liquidity generates negative externalities, and the loss

in social welfare can out-weight the savings on participation costs.
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1. Introduction

It is well recognized that liquidity is of critical importance to the stability and the efficiency

of the financial market.1 Yet, there is little consensus about exactly what liquidity is, what

determines it and how it impacts asset prices. Market frictions such as transactions costs

have been considered as important determinants of liquidity and asset prices.2 But the

precise nature of this link and its significance is not well understood due to the difficulty

in analyzing the complex interactions among diverse market participants in the presence of

transactions costs. Most of the existing analysis examine how market frictions affect the

provision of liquidity and the resulting prices, taking as given the liquidity needs that often

arise from exogenous changes in preferences or portfolio positions.3 Such an approach ignores

the fact that it is the same transactions costs that give rise to the need for liquidity in the

first place. To study liquidity, it is essential to understand how transactions costs give rise

to the need for liquidity, what drives the liquidity need and how liquidity impact prices.

In this paper, we study how transactions costs lead to investors’ needs for liquidity, and

how such needs affect asset prices. We focus our attention on a specific form of transactions

costs, namely, the cost to participate in the market. We show that participation costs

prevent investors from being present in the market at all times. Their infrequent presence in

the market leads to non-synchronization in their trades even when their underlying trading

needs are perfectly matched. This endogenous non-synchronous trading gives rise to order

imbalances and needs for liquidity in certain states, which can cause large price movements

in absence of any aggregate shocks to the fundamentals. The high likelihood of these large

price movements also gives rise to fat-tails in returns.

Two elements are essential to liquidity: the need to trade and the cost to trade. In

the absence of any trading needs, there will be no need for liquidity. In the absence of

1See, for example, Allen and Gale (1994), Grossman and Miller (1988), Kiyotaki and Moore (1997),
Holmstrom and Tirole (1996, 1998).

2See, for example, Amihud and Mendelson (1986), Constantinides (1986), Campbell, Grossman, and Wang
(1993), Vayanos (1998), Vayanos (2004), Chordia, Roll, and Subrahmanyam (2000), Pastor and Stambaugh
(2003), Acharya and Pedersen (2004), Lo, Mamaysky, and Wang (2004).

3See, for example, Grossman and Miller (1988), Allen and Gale (1994), Huang (2003), Kyle and Xiong
(2001). In most of the market micro-structure literature, which has liquidity as one of its central focus,
the need for liquidity, as described by the order flow process, is often taken as given. See, for example,
Glosten and Milgrom (1985), Kyle (1985), Stoll (1985, 1989). There are a few authors who have modelled
the liquidity needs endogenously, such as Vayanos (1998) and Lo, Mamaysky, and Wang (2004).



transactions costs, investors can trade in the market at all times in response to exogenous

shocks and prices adjust to match the buyers with the sellers. Although in this case the

equilibrium price may well adjust to equalize the demand and supply, the market is perfectly

liquid in the sense the market prices reflect the “fair value” of the assets. Actual markets

do not function in this “gigantic town meeting” style, as Grossman and Miller (1988) called

it, where all potential buyers and sellers are present at all times and trades are conducted

to balance the full demand and supply. Costs prevent potential buyers and sellers from

constantly participating in the market. Instead, only a subset of buyers and sellers are

in the market at any given instant. When a trader arrives at the market, he only faces a

“partial” demand/supply. Adjustments in price fail to attract all potential buyers and sellers

and to synchronize their trades. It is this non-synchronization in trading due to transactions

costs that gives rise to the need for liquidity and its impact on asset prices.

We start with an economy in which potential traders have idiosyncratic risk exposures

and desire to transact in a competitive financial market to share these risks. In the absence of

participation costs, they are in the market at all times, representing the full demand/supply

of the asset. The market price adjusts to perfectly coordinate all buyers and sellers. Each

trader is getting the best price possible for his trade, reflecting its full market value. More-

over, the price is fully determined by the “fundamentals” of the asset, namely, its future

payoffs. In particular, the price does not depend on the idiosyncratic trading needs of indi-

vidual traders. In the presence of participation costs, potential traders will no longer be in

the market at all times. Each trader comes to the market only when he wants to trade. He

cannot be sure who else will be in the market and only faces a partial demand/supply. The

price fails to coordinate all potential buyers and sellers. This lack of coordination among the

potential market participants leads to temporary order imbalances and need for liquidity in

the market, which then causes the price to deviate from its fundamental value.

We show that the order imbalance and the need for liquidity is highly nonlinear in the idio-

syncratic shocks which drive the diversity in investors’ risk exposure and their trading needs.

First, given the level of aggregate risk exposure, the order imbalance is always onesided. In

particular, when the aggregate risk exposure is positive, investors with higher than average

risk exposures always have higher gains from trading and participate more in the market.

Their sell orders will overwhelm the buy orders in the market and drive down the asset price.

Next, the price drop from the order imbalance tends to occur at finite sizes, giving what can
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be called “liquidity crashes”. This is because when the magnitude of idiosyncratic shocks is

very small or large, investors’ participation decisions are highly correlated. Either they all

participate when gains from trading are large (for large idiosyncratic shocks) or not when

gains from trading are small (for small idiosyncratic shocks). Only for intermediate mag-

nitudes of idiosyncratic shocks, there is less correlation in investors’ participation decisions

and more non-synchronization in their trades, which lead to the negative impact on prices

of finite magnitudes. As a result, when liquidity need arises in the market, it is often of

finite sizes causing prices to drop discretely in absence of any shocks to the fundamentals.

Moreover, such a non-linear price impact of liquidity gives rise to the fat tails as well as high

volatility in asset returns.

The added price sensitivity to liquidity trades provides a quantitative measure of illiq-

uidity in the market. We show that this measure of illiquidity increases significantly with

the level of aggregate risk of the economy. With the lack of liquidity, individual market par-

ticipants can no longer achieve efficient risk sharing, thus have to bear certain idiosyncratic

risks, in addition to the aggregate risk. As the level of aggregate risk increases, each market

participant’s tolerance for any idiosyncratic risk decreases. Thus, the slope of his demand

for the asset also increases.

The lack of coordination among participants to trade generates negative externality.

Withdrawal from the market by a trader for cost saving not only gives up his own gains

from trading but also reduces the gains from trading for other traders. This discourages

other traders from participating in the market, which in turn further discourages the trader

himself. As a result of this negative externality, the overall welfare loss can be very high.

In particular, it is possible, as we show in the paper, that traders can be made better off

if they are all forced to pay the cost and participate in the market, rather than having the

individual choice to participate.

Our analysis is closely related to Grossman and Miller (1988), who consider the role of

market makers in providing liquidity and reducing price volatility. They take as given the

non-synchronization in trades and examine the impact of market makers who face partici-

pation costs. For their purpose, which is to analyze the role of market makers in liquidity

provision, such a simplification is not crucial. For our purpose, which is to examine the fun-

damental link between transactions costs and liquidity, it is essential to explicitly model how
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transactions costs endogenously lead to the need for liquidity in the first place and how liq-

uidity needs generate additional price fluctuations. Like Grossman and Miller (1988), most

of the literature on liquidity focuses on the supply of liquidity, assuming certain demand for

liquidity (see, for example, Allen and Gale (1994) and Glosten and Milgrom (1985), among

others). Our analysis provides a more comprehensive analysis for demand for liquidity as

well as the supply of liquidity.

Our model also shares many features with the model of Lo, Mamaysky, and Wang (2004),

who consider the impact of transactions costs on trading volume and the level of asset prices.

The main distinction is that we explicitly model the possible imbalance in liquidity needs and

its impact on prices while they do not. They avoid the coordination problem among traders

by allowing the cost to be allocated endogenously so that the trading needs of different

market participants are always synchronized in equilibrium. Thus, there is no imbalance

between liquidity provision and consumption and asset prices are not affected by liquidity

needs. But in practice, the imbalance in liquidity needs, despite the presence of market

makers, is a key element in determining the importance of liquidity and its impact on asset

prices, which we examine in this paper.

The paper proceeds as follows. Section 2. describes the basic model. Section 3. solves

for the optimal participation and trading decisions of different market participants and the

intertemporal equilibrium of the economy. In Section 5., we discuss the measure of liquidity,

how it is driven by the underlying trading needs of different market participants and how

it affects the behavior of asset prices. In Section 6., we analyze the welfare implications of

liquidity. Section 7. concludes. Proofs are in the appendix.

2. The Model

We hope to construct a model that captures several important factors in analyzing liquid-

ity, especially, the need to trade and the cost to constantly participate in the market. For

tractability, we consider a finite-horizon setting, although it can be embedded in an infi-

nite horizon setting. We maintain parsimony to avoid any unnecessary complexities in our

analysis and return to the discussion of extensions later in the paper.
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2.1. Economy

We consider a finite horizon economy with four dates, t = 0, 1, 2, 3.

Securities Market

There are two securities traded in a competitive securities market, a risk-free bond and a

risky stock. The risk-free bond gives a sure terminal payoff of 1 at date t = 3 and the stock

gives a risky terminal payoff V3, given by

V3 = V + v3 (1)

where V is a positive constant and v3 is a normal random variable with a mean of zero and

a volatility of σv. The bond will be used as the numeraire. Hence, its price remains at one

over time. The price of the stock at date t is denoted by Pt. Clearly, P3 = V3.

Agents

There is a continuum of agents in the economy, represented by the interval [0, µ + 2ν]. The

agents consist of two types, with population weight µ and 2ν, respectively, who have different

trading needs and face different transactions costs in the securities market. The first type of

agents, denoted by m, are “market makers”. They have no inherent trading needs, but are

present in the securities market at all times, ready to trade with others. The second type of

agents are “traders”, who have inherent trading needs and have to pay a cost to participate

in the market. There are two equal subgroups of traders, indexed by i = a, b, respectively,

each with population weight ν. They arrive at the market at date t = 1.

Each agent is initially endowed with zero units of the bond and zero shares of the stock.

Agent i receives a non-traded income N i
3 at the terminal date t = 3, where i = a, b, m. The

non-traded income is given by

N i
3 = (Y + Zi

1 + Zi
2)n3, i = a, b, m (2a)

Zm
t = 0, Za

t = Zt, Zb
t = −Zt, t = 1, 2 (2b)

where Y , Z1, Z2, and n3 are mutually independent, normal random variables with mean of

zero and volatility of σy, σz1 , σz2 , σn, respectively. The risk of the non-traded income, n3, is

assumed to be correlated with the risk of the stock payoff v3. For simplicity, we let n3 = v3.
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Let X i
1 = Zi

1 and X i
2 = Zi

1 + Zi
2. For agent i, Y + X i

t defines his exposure to the risk

of the non-traded income at date t. Since
∑

i=a,b,m X i
t = 0, Y gives the aggregate exposure

to the non-traded risk, which is distributed equally among the agents. The idiosyncratic

exposure to the non-traded risk is defined by X i
t at date t, t = 1, 2. The market makers

inherit no idiosyncratic exposure and the two groups of traders inherit offsetting idiosyncratic

exposures. In the absence of idiosyncratic exposures, all agents are exposed to the same

amount of aggregate exposure and there will be no trading needs among the agents. In the

presence of idiosyncratic exposures, however, the two groups of traders will want to trade

among themselves for risk sharing. In particular, given the correlation between the non-

traded risk and the stock payoff risk, they want to adjust their stock positions in order to

hedge their non-traded risk. Thus, changes in the traders’ idiosyncratic exposures to the

non-traded risk give rise to their inherent trading needs.4

By definition, the idiosyncratic exposure to the non-traded risk sum to zero. That is,

Xa
t = −Xb

t , as assumed. Thus, the traders’ underlying trading needs are perfectly matched.

If all traders are present in the market at all times, a seller is always matched with a buyer

and there is perfect synchronization in agents’ trades.

For tractability, we assume that all investors have constant absolute risk aversion (CARA)

utility over their terminal wealth W i
3 at date t = 3:

E
[
−e−αW i

3

]
, i = a, b,m, (3)

and all agents have the same risk aversion α. In addition, we impose the following parameter

constraint:

α2
(
σ2

y + σ2
z1

+ σ2
z2

)
σ2

v < 1 (4)

for the model to behave properly.5
4In our setting, heterogeneity in risk exposure is merely a device to introduce the need to trade for risk-

sharing, as in Wang (1994), Huang and Wang (1997), Lo, Mamaysky, and Wang (2004). Other forms of
heterogeneity among agents can also generate risk-sharing trading needs, such as difference in preferences
(e.g., Dumas (1992) and Wang (1996)) or beliefs (e.g., Detemple and Murthy (1994)). Our modeling choice
here is mainly motivated by tractability.

5In appendix A, we show that if the constraint does not hold, the expected utility of traders becomes
infinitely negative, which is unreasonable.
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Transactions Costs

The market makers can always trade in the securities market at no cost.6 The traders,

however, face a fixed cost c ≥ 0 to participate in the market. There is a one-period lag

between paying the cost and being able to trade in the market. This form of transactions

costs is consistent with the costs of entering a market by setting up a trading operation,

constantly monitoring the market, gathering and incorporating the information into their

trading activities. We consider only the fixed setup cost occurred before traders transact

in the market since it is sufficient to illustrate our main point of non-synchronized trading

among different trader groups.

Time Line

At dates t = 0, only the market makers are present in the market, and they stay in the

market at all dates. At date t = 1, trader i, i = a, b, arrives. Although he cannot trade in

the market, he can decide whether or not to pay a cost c in order to trade in the next period.

At date t = 2, those traders who have paid the participation cost can trade with both the

market maker and other participating traders, and those who haven’t paid the cost stay out

of the market.

Let ηi
1 be the discrete choice variable at t = 1 for trader i of whether or not to partic-

ipate, where ηi
1 = 1 denotes participation and ηi

1 = 0 denotes no participation. We use a

continuous variable ωi
1 in the range of [0, 1] to denote the fraction of type i traders who pay

the participation cost (i.e., choose ηi
1 = 1) at date t = 1.

We use θi
t to denote the number of stock shares that agent i (i = a, b, m) holds after

trading at date t. Before date 2, no trader is allowed to trade, and all agents simply hold

their initial endowment, hence, θi
t = 0, i = a, b, m, at t = 0 or 1. At date t = 2, θi

t is a function

of date 1 participation decision. Specifically, θi
2(η

i
1 = 0) = 0 for the nonparticipating traders,

and θi
2(η

i
1 = 1) for the participating traders needs to be solved in equilibrium. Without much

risk of confusion, we use θi
2 to denote θi

2(η
i
1 = 1) in the future. The date line of the economy

is illustrated in Figure 1.

6We later generalize the setting by introducing a set up cost for market makers and endogenously deter-
mine the participation decision of market makers.
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0 1 2 3 time

Shocks Y , Xi
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2 V3, N i
3
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1 θi

2

Equilibrium P0 ωi
1, P1 P2

Figure 1: The time line of the economy.

2.2. Definition of Equilibrium

The equilibrium of the economy defined above requires three conditions. First, taking prices

as given, all agents optimize with respect to their participation and portfolio decisions.

Second, agents’ participation reaches an equilibrium. Third, the securities market clears.

We now specify these conditions explicitly.

Agents’ Optimization Problem

For agent i, we use F i
3 to denote his financial wealth at date 3, which is the total value of

his bond and stock holdings. F i
3 is given by

F i
3 =

2∑
t=1

θi
t(Pt+1 − Pt)− ciηi

1 (5)

where ci = c for i = a, b and ci = 0 for i = m. Agent i’s terminal wealth is then given by

W i
3 = F i

3 + N i
3. (6)

A market maker (i = m) can choose his optimal portfolio θm
t at all dates, t = 0, 1, 2. A

trader (i = a, b) cannot trade at date t = 0, 1 and hence are forced to hold θi
t = 0. At date 2,

however, traders who decided to participate at date 1 (ηi
1 = 1) can trade in the market to

choose their stock holdings θi
2, while those who decided not to participate at date 1 (ηi

1 = 0)

are excluded from the market and forced to set θi
2 = θi

1 = 0.

Let J i
t denote the value function of agent i at date t, i = a, b, m. We can express his
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optimization problem as

J i
t = max

{θi
t,η

i
t}

Et

[
J i

t+1

]
(7)

where J i
3 = −e−αW i

3 .

Participation and Market Equilibrium

At date 0 and 1, only the market makers are present in the market. They determine the

competitive equilibrium price P0 and P1 through the market clearing condition θm
t = 0 for

t = 0, 1.

At date 1, traders decide whether or not to pay a cost in order to trade next period.

Let ωi
t denote the fraction of type i agents who participate in the market at date t, i =

a, b, m. A participation equilibrium is reached if either all traders within the same group

choose identical participation decisions (i.e., ωi
1 = 0, or 1), or they are indifferent between

participating or not.

At date t = 2, both the market maker and the participating traders are present in the

market. The total number of stock shares brought to the market by participating agents is

µ θm
1 + ν

∑
i∈{a,b} ωi

1θ
i
1, where θi

1 is the stock holding of trader i at date 1, which is assumed

to be zero for all traders. Market clearing at date 1 implies θm
1 = 0. Hence, the clearing of

the securities market at date 2 requires that

µ θm
2 + ν

∑

i∈{a,b}
ωi

1θ
i
2 = 0 (8)

which determines the securities market equilibrium at 2.

2.3. Equilibrium with Costless Participation

Before solving the equilibrium for the model defined above, we describe the case when par-

ticipation costs are zero for all agents. This case serves as a benchmark when we examine the

impact of participation costs on market liquidity and stock prices. If ci = 0 ∀ i, all traders

and market makers always participate in the market, ωi
1 = 1 ∀ i. The equilibrium price and
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agents’ optimal trading policies are:

P3 = V3, θi
3 = 0

P2 = V − ασ2
vY, θi

2 = −X i
2

P1 = V − ασ2
vY, θi

1 = 0

P0 = V, θi
0 = 0

(9)

where i = a, b, m.

We can interpret the quantity ασ2
v as the risk premium per unit of aggregate risk exposure,

which is constant over time. Clearly, Pt is determined by its expected payoff V and the

aggregate exposure Y to the non-traded risk, which we call the “fundamentals”. Especially,

the price does not depend on the idiosyncratic liquidity exposure X i
t . It is important to

point out that all traders choose to participate, and their order flows θi
2 at date 2 depend on

X i
2. Hence, the market is perfectly liquid in the sense that order flows have no price impact.

Moreover, the market makers perform no role in providing liquidity since their holdings are

always θm
t = 0. The lack of needs for liquidity provision is due to the fact that the traders’

liquidity needs and the resulting trades exactly offset each other, hence, there is no liquidity

demand at the aggregate level.

3. Equilibrium

We now solve for the equilibrium of the economy. As discussed earlier, the market makers

always trade in the market, and the traders make their participation decision at date 1 and

trading decisions at date 2 if they have chosen to participate. We solve the equilibrium

backwards. First, taking the participation decisions at t = 1 as given, we solve the market

equilibrium at t = 2. Next, we solve for the traders’ participation decisions (ηi
1, i = a, b) and

the participation equilibrium at t = 1 (ωi
1, i = a, b), given the market equilibrium at t = 2.

Finally, we solve the market equilibrium at t = 1 and t = 0.

3.1. Market Equilibrium at t = 2

At t = 2, the state variables are {ωi
1, θ

i
1, Y,X i

2; i = a, b, m}, where ωi
1 is the fraction of type

i agents who will participate in the market at date 2, θi
1 is their stock holding, Y is the

realization of aggregate exposure to the non-traded risk, and X i
2 is the realizations of the
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idiosyncratic exposure for agent i at date 2. For convenience, we define

δ1 ≡ ν(ωa
1 − ωb

1)

µ + ν(ωa
1 + ωb

1)
, and δa

1 = −δb
1 = δ1. (10)

The quantity δi
1 denotes the excess participation of type i traders normalized by the total

population weight of agents who participate in the market at date t = 2. For example, when

δa
1 > 0, there are more group a traders than group b traders participating in the market.

Proposition 1. Let δ1 be the difference in market participation levels for the two groups of

traders, the equilibrium price at date t = 2 is

P2 = V − ασ2
v Y − ασ2

v δ1X2. (11)

The optimal stock holding for participating agent i is

θi
2 = δ1X2 −X i

2, i = a, b, m. (12)

When δ1 = 0, the participation of the two groups of traders is symmetric. Since their

trading decisions are driven only by X i
2, which always offset each other, there is a perfect

match in their buy and sell orders. As a result, the equilibrium price is not affected by

the idiosyncratic shocks. Moreover, market makers hold zero position and perform no role

in providing liquidity. When δ1 6= 0, the participation of the two trader groups becomes

asymmetric. Proposition 1 indicates that the idiosyncratic liquidity shock X2 can affect the

equilibrium price. Consider, for example, the case when δ1 > 0, i.e., more group-a traders

participate than group-b traders. If the realization of liquidity shock is X2 > 0, Xa
2 = X2 > 0

and Xb
2 = −X2 < 0; trader a wants to sell while trader b wants to buy. Given that there are

more group-a traders in the market, there will be more sellers than buyers. Consequently, the

stock price has to decrease in order to attract the market makers as well as the participating

group-b traders to absorb the selling orders. Thus, even though traders face offsetting shocks,

their asymmetric participation can give rise to mismatch in their trades, inducing market

makers to provide liquidity, and causing the price to change in response to these shocks.

3.2. Optimal Individual Participation Decision at t = 1

Given the market equilibrium at t = 2, we now consider the participation equilibrium at

date 1, which can be solved in two steps. First, taking as a given the participation decision
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of all other traders, we derive the optimal participation decision of an individual trader i

(i = a or b). Then we find the competitive equilibrium for participation decisions.

An individual trader i makes his participation decision after observing the date 1 liquidity

shock X i
1. He chooses to participate if and only if the gain from trading at t = 2 exceeds

the cost to participate. Since the current liquidity shock is persistent, the current realization

X i
1 of the liquidity shock predicts future trading needs and the expected gain from trading.

Therefore, trader i is more likely to participate after receiving a larger liquidity shock.

Let J i
1(η

i
1 = 1) and J i

1(η
i
1 = 0) denote the value function of an individual group i trader

who chooses to participate or not to participate at date t = 1, respectively. Taking as given

the difference δ1 in the market participation rate for the two groups of traders, the certainty

equivalence wealth gain from participating for a trader i, net of the cost, can be defined as

g(θi
1, Y, X i

1, δ
i
1) = − 1

α
ln

J i
1(η

i
1 = 1)

J i
1(η

i
1 = 0)

(13)

where the minus sign on the right-hand-side adjusts for the fact that J i
1 < 0. The optimal

decision for trader i is to participate if and only if the net gain from participating is positive,

or g(·) ≥ 0. The following proposition describes the optimal participation policy for an

individual trader.

Proposition 2. Given Y, X i
1, δi

1, and θi
1, trader i’s participation gain is given by

g(θi
1, Y, X i

1, δ
i
1) = g1(δ

i
1, θ

i
1) + g2(δ

i
1)− c (14)

where

g2(δ
i
1) =

1

2α
ln

[
1 + (1−δi

1)
2k/(1−k)

]
(15a)

g1(δ
i
1, θ

i
1) = h(δi

1)
(
θi
1 − θ̂i

1

)2
(15b)

and

k = α2σ2
z2

σ2
v , θ̂i

1 = − 1−δi
1

1−kδi
1

(kY +X i
1), h(δi

1) =
ασ2

v(1−kδi
1)

2

2(1−k)[1−k+k(1−δi
1)

2]
.

Trader i chooses to participate at date 1 iff

(
θi
1 − θ̂i

1

)2
>

[
c− g2(δ

i
1)

]
/h(δi

1). (16)

The gain from participating consists of three terms. The first term, g1(δ
i
1, θ

i
1), represents the

trading benefit of adjusting his existing positions. This term is zero when θi
1 = θ̂i

1. Thus, θ̂i
1
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can be interpreted as trader i’s desired stock holding at t = 1, given the market condition δi
1

and his risk exposure Y and Xi1. The second term, g2(δ
i
1), is the expected trading benefit by

sharing future idiosyncratic liquidity shocks, Zi
2. This term depends both on future market

condition δi
1 (through its impact on P2) and on the future trading needs k, which increases

with the volatility of future shocks and the risk aversion of traders. The last term, −c, is

simply the cost of participation.

Given the decomposition of trading gains, the participation decision is straightforward.

When the participation cost is smaller than the expected future gain from trading, i.e.,

g2(δ
i
1) ≥ c, (16) is always satisfied and trader i always chooses to participate. The more

interesting case is when c > g2(δ
i
1), trader i chooses to participate only if the gain from ad-

justing his current position is sufficiently large, which happens when his holding is sufficiently

far away from the desired level, i.e., when |θi
1 − θ̂i

1| >
√[

c−g2(δi
1)

]
/h(δi

1).

3.3. Participation Equilibrium at t = 1

Given the individual participation decision, we can solve for the participation equilibrium.

Let index i denote the trader group whose X i
1 has the same sign as Y and −i the other group

whose X−i
1 has the opposite sign as Y . The following proposition describes the participation

equilibrium at date 1.

Proposition 3. Given state variables Y and X1 and the initial holdings θi
1 = 0, we define

the gain from trading for trader i as

gi(δi
1) ≡ g(0, Y, X i

1, δ
i
1). (17)

Let δ̄ ≡ ν
µ+ν

, the participation equilibrium at date 1 is fully specified by the following five

cases:

A. If 0 ≤ g−i(0) ≤ gi(0), ωi
1 = ω−i

1 = 1 and all traders participate.

B. If g−i(0) < 0 and gi(0) ≤ 0, ωi
1 = ω−i

1 = 0 and no trader participates.

C. If g−i(−δ̄) < 0 < gi(δ̄), ωi
1 = 1 and ω−i

1 = 0.

Otherwise, let δ∗ be the minimum δ ∈ (0, δ̄ ] that violates g−i(−δ) < 0 < gi(δ).

D. If g−i(−δ∗) = 0 ≤ gi(δ∗), ωi
1 = 1 and ω−i

1 ∈ (0, 1).
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E. If g−i(−δ∗) < 0 = gi(δ∗), ωi
1 ∈ (0, 1) and ω−i

1 = 0.

The partial participation levels ω−i
1 and ωi

1 in cases D and E are given in Appendix A.7

In case A, all traders have (weakly) positive gains from trading under symmetric market

participation (δi
1 = 0). Thus, they all choose to enter the market and the market participation

is indeed symmetric. Similarly in case B, the trading gain is negative for all traders when

participation is symmetric. Hence, no participation is the only equilibrium outcome.

Since δ̄ corresponds to the value of δi
1 when ωi

1 = 1 and ω−i
1 = 0, the case δi

1 = δ̄ reflects

a market situation when only traders from group i participates, hence is the least favorable

market condition for trader i. The only trading benefit comes from risk sharing with the

market makers at date 2. In contrast, it also is the most favorable market condition for

an individual trader −i since he can unload all his idiosyncratic risks to group i traders in

the market. Case C corresponds to a situation where traders of group i have positive gains

under the least favorable market condition while traders of group −i have negative gains

even under the most favorable market condition. Naturally, the only equilibrium outcome is

that all group i traders participate and no one from group −i participates.

Cases D and E describe situations when there is partial participation from one group.

For example, in case D, all traders of group i participate while there is partial participation

from group −i. Since case C corresponds to the situation when the condition g−i(−δ) <

0<gi(δ) is satisfied at δ̄, it has to be violated in cases D and E. Hence, there always exists

a δ∗ ∈ (0, δ] that violates the condition. Moreover, since g−i(0) < 0 < gi(0) in cases D

and E, we know that the condition is satisfied at δ = 0. Given that gi(δi
1) (and g−i(−δi

1))

are monotonically decreasing (and increasing) continuous functions in δi
1, as we gradually

increase δ from 0 until the condition is violated, either case D or E has to be true. In case D,

if the market participation difference is δ∗, group i traders are better off participating, and

the only equilibrium is a corner solution where all of them participate, i.e., ωi
1 = 1. Traders

in group −i are indifferent between participating or not. They reach a partial participation

level ω−i so that the difference between the two groups is exactly δi
1 = δ∗, confirming the

overall participation equilibrium. Similarly, case E corresponds to the situation when traders

of group i break even and traders of group −i are worse off participating. The equilibrium

7In the case of A and B, when the gain from trading is zero for a group of traders, their participation
rate may not be unique, in which case we choose a particular value for convenience.
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outcome is partial participation from group i and no participation from group −i. In all cases

other than cases A and B, more traders from group i, the group with higher trading gains,

enter the market despite the fact that fewer counter-parties will do so. Their entry creates

the imbalance in trades and need for liquidity, which is provided by the market makers.

3.4. Market Equilibrium at t = 1

At t = 1, only market makers are present in the market. Given the realizations of state

variables Y and X1, the participation equilibrium is fully determined in Proposition 3, which

in turn determines the market equilibrium at t = 2. Thus, we can easily compute the market

equilibrium at t = 1, which is given below.

Proposition 4. Given the difference δ1 in equilibrium participation rates, the equilibrium

price at date t = 1 is

P1 = V − ασ2
v Y − ασ2

v

δ1

1+k δ2
1

X1. (18)

Clearly, δ1 measures the degree of asymmetric participation between the two groups of

traders, and is fully determined by the realizations of Y and X1. When the participa-

tion is asymmetric between the two groups of traders, i.e., when δ1 6= 0, date 1 price P1

depends not only on the fundamentals, i.e., V and Y , but also on the idiosyncratic risk X1.

3.5. Market Equilibrium at t = 0

At date 0, again only market makers are present in the market. Given the equilibrium at

t = 1, we can easily compute the equilibrium at t = 0.

Proposition 5. The equilibrium price at date t = 0 is P0 = V .

4. Limited Participation and Liquidity

The equilibrium under costly participation shows several striking results. First, despite the

fact that the two groups of traders have perfectly matching trading needs, their actual trades

are not synchronized when participation in the market is costly. The non-synchronization

in their trades gives rise to the need for liquidity in the market. A group of traders may
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bring their orders to the market while traders with off-setting trading needs are absent,

creating an imbalance of orders and a shortage of liquidity. The stock price will have to

adjust in response to the order imbalance and to attract the market makers to accommodate

the orders. As a result, the price of the stock not only depends on the fundamentals (i.e.,

its expected future payoffs and total risk), but also depends on idiosyncratic shocks market

participants face. In this section, we examine in more detail these results and the economic

intuition behind them.

4.1. Gains from Trading and Individual Participation Decisions

We start with the individual participation decisions and the participation equilibrium. The

traders’ participation decision depends on the trade off between the cost to be in the market

and the gains from trading. Due to the lag between the entry decision (at date 1) and the

time to trade (at date 2), the gain from trading consists of two parts. The first part comes

from trading to hedge the risk from the current shocks, Y and X i
1 = Zi

1, which persists into

the future. The second part comes from trading to hedge the risk from future idiosyncratic

shock X i
2−X i

1 = Zi
2. From Proposition 2, these two parts are captured by g1(δ

i
1, θ̂

i
1) and

g2(δ
i
1), respectively.

Given any market participation rate δi
1, the gain g1 is equal to h(δi

1)(θ
i
1 − θ̂i

1)
2, where θi

1

is the trader’s current asset holding and θ̂i
1 is his desired holding given the current shocks.

Clearly, the larger the difference between the two, |θi
1−θ̂i

1|, the larger the benefit from trading.

The desired holding, θ̂i
1 = (kY +X i

1)(1−δi
1)/(1−kδi

1), depends on the current shocks Y and

X i
1, thus so does the gain g1. On the other hand, g2 does not depend on the current shocks.

If the gain from trading against future shocks is larger than the entry cost along, i.e.,

g2(δ
i
1) ≥ c, trader i will choose to participate in the market independent of the current

shocks. If this is not the case, then traders will enter only if the benefit from trading against

the current shocks is large enough. In this case, their entry decision will depend on the

current state variables Y and X i
1.

What is important is that in general the gain from trading is different between the

traders. This is true even though the idiosyncratic shocks among the two groups of traders

are perfectly offsetting, i.e., Xa
t = −Xb

t (t = 1, 2). In order to see this, let us consider the

simple situation when δi
1 = 0, i.e., the participation in the market is symmetric between the
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two groups. In this case, θ̂i
1 = −(kY+X i

1). Given that the current holding is zero, i.e., θi
1 = 0

for both groups of traders, (θi
1−θ̂i

1)
2 is higher for traders whose X i

1 has the same sign as Y .

This is intuitive. A shock X i
1 in the same direction as Y increases the distance between his

current position and his desired posiition, which is kY +X i
1. This makes him more willing to

trade in order to reduce his total risk exposure than traders whose idiosyncratic shock has

the opposite sign. Obviously, such a difference in the gains from trading among the traders

is present in general when δi
1 6= 0 and θi

1 6= 0. Thus, we have the following result:

Result 1. The gain from trading is in general different between traders even when their

trading needs are perfectly matched.

It is important to recognize that Result 1 is a general phenomenon when trading is costly.

The reason is as follows. When the traders can trade continuously, they will constantly

maintain at the optimal position and the gains from trading is always symmetric for small

deviations from the optimal position. Let u(θ) denote the utility from holding θ and θ∗ the

optimal holding. Then, u′(θ∗) = 0. For a small deviation from the optimum x = θ − θ∗,

the gain from trading is given by u(θ∗)− u(θ) ' −u′′(θ∗)(θ−θ∗)2/2, which is symmetric for

an opposite deviation −(θ−θ∗) = −x. Thus, at the margin, traders with offsetting shocks

or trading needs always have the same gain from trading. This is no longer the case when

trading is costly. Facing a cost to trade, traders no longer trade constantly. They only trade

when the deviation from the optimal is sufficiently large. But for a finite deviation x = θ−θ∗,

u(θ∗)−u(θ∗+x) 6= u(θ∗)−u(θ∗−x) and the gains from trading are different between traders

with perfectly matching trading needs.8 Naturally, the asymmetry in gains from trading can

in general lead to asymmetric participation between the traders.

A trader’s gain from trading also depends on how many other traders are in the market.

This is obvious since g2(δ
i
1) and h(δi

1) both depend on δi
1. Moreover, g′2(δ

i
1) ≤ 0 and h′(δi

1) > 0.

Thus, holding the deviation from the desired position |θi
1−θ̂i

1| constant, the gain from trading

for an individual trader i decreases with δi
1. Thus, we have the following result:

Result 2. The benefit from trading for a trader decreases with the population of participating

8It is worth pointing out that the gain from trading also depend on the initial position θi
1. In our setting,

θi
1 = 0. In a stationary intertemporal setting, θi should be the optimal holding determined by the trader’s

dynamic optimization problem. In a discrete setting like the one in this paper, θi
1 is always different from

θ̂i
1 since the latter depends on the current shocks while the former does not. In setting similar to ours, Lo,

Mamaysky, and Wang (2004) show that even in continuous-time the gain from trading is asymmetric around
the optimal holding due to the fact that traders only trade infrequently.
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traders from the same group and increases with the population of participating traders from

the different group.

The fact that the gain from trading depends on the participation of other traders gives rise

to the externality of a trader’s participation decision. As we will see later, this externality is

an important driving force in the determination of participation equilibrium, liquidity and

prices.

4.2. Non-Synchronized Trading and Need for Liquidity

Given the individual trader’s entry policy, we now examine the participation equilibrium.

From the discussion above and Proposition 3, we know that if the participation cost is

sufficiently small, i.e., c ≤ g2(0), traders will all enter unconditionally. The more interesting

case is when c > g2(0) and the participation equilibrium will depend on the state variables,

Y and X1, as stated in Proposition 3.

(a) Participation Rate ωa
1 and ωb

1 (b) Difference in Participation Rate δ1
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Figure 2: Equilibrium Participation. The figure plots the equilibrium participation rate for
the two trader groups for different values of idiosyncratic shock X1, while the aggregate shock is
held constant at Y = 1. Panel A reports the equilibrium fraction of type i traders who choose to
participate, where the dotted line refers to trader a (ωa

1 ) and the dashed line refers to trader b (ωb
1).

Panel B reports the difference in participation decisions, δ1 = ν(ωa
1−ωb

1)/[µ+ν(ωa
1 +ωb

1)]. Other
Parameters are set at the following values: α = 4, ν = µ = 1

3 , c = 0.1, σv = 0.2, and σz2 = 0.8.

Figures 2 shows the equilibrium participation decisions as a function of the idiosyncratic

shock X1 for a given realization of aggregate shock Y , which is set to Y = 1. Panel (a)

reports the fraction ωi
1 of traders within each group who choose to participate. The dotted

line plots ωa
1 and the dashed line plots ωb

1. Panel (b) reports the difference in participation

ratio between the two groups of traders δ1, defined in equation (10), as a function of X1. For

a range of X1 around 0, ωa
1 = 0, that is, trader a choose not to participate simply because the
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benefit from trading is too small. This is the no-participation region. It is worth pointing out

that the no-participation region is not symmetric about 0, reflecting the fact that a trader’s

gain from trading is asymmetric between positive and negative idiosyncratic shocks. As X1

falls outside the no-participation region, ωa
1 starts to increase, indicating that more and more

group a traders choose to participate. Moreover, ωa
1 is larger when X1 is positive (in the

same direction as Y ). When X1 exceeds certain thresholds, the gain from trading dominates

the cost, all group a traders choose to participate and ωa
1 reaches 1. The participation rate

of group b traders, ωb
1, behaves similarly. In fact, ωb

1 is simply the mirror image of ωa
1 around

the vertical axis because trader a and b face opposite idiosyncratic shocks. When X1 < 0,

the risk exposure of group-a traders is below the average (which is Y = 1), their gains from

trading is lower than that of group-b traders. Thus, ωa
1 ≤ ωb

1 and δ1 < 0, indicating that

group a traders are less likely to participate. When X1 > 0, their idiosyncratic shock has

the same sign as the aggregate shock, and group a traders are more likely to participate, or

δ1 > 0.

0.2 0.4 0.6 0.8 1 1.2 1.4
X1

1

2

3

4

5

6

Y

B

A

A

C

E
D

D

A: Ω1
a
= Ω1

b
= 1

B: Ω1
a
= Ω1

b
= 0

C: Ω1
a
= 1, Ω1

b
= 0

D: Ω1
a
= 1, 0 < Ω1

b
< 1

E: 0 < Ω1
a
< 1, Ω1

b
= 0

Figure 3: Participation equilibrium. The figure shows the different participation rates of the
two groups of traders for different realizations of aggregate risk exposure Y and idiosyncratic risk
exposure X1. Other parameters are set at the following values: α = 4, ν = µ = 1/3, c = 0.15,
σz2 = 0.8, σv = 0.2.

In general, the equilibrium participation depends on both Y and X1. Figure 3 shows

the nature of the participation equilibrium in the space of state variables, or the “phase

diagram”. We only plot the first quadrant of the phase diagram since the other quadrants

are symmetric.

As stated in Proposition 3, there are five regions in the state space, corresponding to the

five cases, A, B, C, D, and E in Proposition 3, respectively. When both Y and X i
1 are small,
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i.e., in the area close to the origin and below the downward sloping solid-line, the initial

holding θi
1 = 0 is close to the desired position θ̂i

1 = kY +X i
1 and the gain from trading is

small. As a result, no traders choose to enter the market. This corresponds to case B in

the proposition. For large values of Y or X1, i.e., the areas above the top upward sloping

solid-line and below the bottom upward sloping solid-line, θi
1 is significantly different from

θ̂i
1 and the gain from trading is large for both groups of traders. In equilibrium, all traders

enter the market, i.e., ωa
1 = ωb

1 = 1 and we have Case A.

For values of X1 close to kY , i.e., in the area between the three solid lines, the situation

becomes more interesting. When X1 is close to kY , θ̂a
1 = kY +X1 is large and far away from

θa
1 = 0 and the gain from trading is large for group-a traders. But θ̂b

1 = kY −X1 is small

and close to θb
1 = 0, and the gain from trade is small for group-b traders. Thus, we have the

situation where group a traders are willing to enter the market while group-b traders are less

eager.

There are two possibilities under this situation. When kY +X1 is sufficiently large, in

regions C and D, group-a traders see large gains from trading, even if only with the market

makers, and they will choose to enter, i.e., ωa
1 = 1. The high participation rate of group-a

traders increases the gains from trading for group-b traders, given their offsetting trading

needs. In region C, kY −X1 is too small and such an inducement does not increase the gain

from trading for group-b traders sufficiently. As a result, they remain out of the market.

However, in region D where kY −X1 is not too small, the participation of group-a traders

increases the gains from trading sufficiently for group-b traders so that at least some of them

choose to participate as well. When kY +X1 is modest as in region E, the gain from trading

is only large enough to induce a fraction of group-a traders to participate. It is not enough,

even with the participation of some group-a traders, to induce any group-b traders to enter

the market. In this case, we have 0 < ωa
1 < 1 and ωb

1 = 0.

Clearly, even with perfectly matching trading needs, the traders fail to synchronize their

trades under costly participation. In particular, for certain realizations of the shocks Y and

X1, the participation is asymmetric, causing a mismatch in the buy and sell orders in the

market. This creates the need for liquidity in the market. Thus, we have the following result.

Result 3. In equilibrium, participation can be asymmetric among traders even when their

trading needs are perfectly matched, giving rise to non-synchronization in their trades and
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the endogenous need for liquidity. Moreover, the liquidity need depends on the idiosyncratic

shocks traders face as well as the aggregate risk exposure.

From Proposition 3, we observe that δi
1 is always positive for trader i whose idiosyncratic

shock X i
1 has the same sign as Y , the aggregate risk exposure. Hence, δ1X1 = δi

1X
i
1 always

has the same sign as Y . This gives the following result:

Result 4. In equilibrium, traders with risk exposures exceeding the average, i.e., whose

idiosyncratic risk exposure is in the same direction as the aggregate exposure, participate

more in the market.

5. Liquidity and Equilibrium Stock Price

Our analysis above suggests that participation costs prevent traders from always being in

the market, and the benefit from trading is different for different traders. As a result, self

interest fails to coordinate their participating decisions and synchronize their trades even

when their trading needs perfectly match. This non-synchronization in trades gives rise to

imbalances in asset demand and the need for liquidity. Such exogenous order imbalances

are the starting point of Grossman and Miller (1988) and market microstructure models like

Glosten and Milgrom (1985) and Stoll (1985, 1989). In our model, by explicitly modeling

the motives and the cost to be in the market, we endogenously derive the order imbalance

and its dependence on market conditions. In particular, we show that the order imbalance is

always in the same direction as the aggregate risk exposure. This correlation between trade

imbalances and the aggregate risk exposure leads to interesting implications on equilibrium

prices, which we now turn our attention to.

From Equations (11) and (18), the equilibrium stock price consists of two components:

the risk-adjusted “fundamental value”, V − ασ2
vY , and the liquidity effect. Naturally, we

focus on the second component, which is defined by

p̃t ≡ Pt − (V −ασ2
vY ) = −λtXt (19)

where t = 1, 2, λ1 = λ2/(1+kδ2
1) and λ2 = ασ2

vδ1. In the absence of participation costs, all

traders participate in the market and there is no need for liquidity. The stock price equals

the fundamental value (thus p̃t = 0, t = 1, 2) and does not depend on the idiosyncratic
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shocks individual traders face. In the presence of participation cost, partial participation

leads to non-synchronized trades among traders and the need for liquidity. The stock price

has to adjust to attract the market makers to provide the liquidity and to accommodate the

trades. In general, p̃t 6= 0 and the stock price becomes dependent on the idiosyncratic shocks

of individual traders.

To fix ideas, let us consider the case when Y > 0, i.e., the aggregate risk exposure is

positive. As Result 4 states, traders whose risk exposure is higher than the average are more

willing to enter the market. In this case, they are the traders with a positive X i
1, which has

the same sign as Y , and who want to sell the stock. Thus, the order imbalance, as captured

by −δ1X1, is negative, which leads to a negative p̃t, t = 1, 2. It is important to note that

the sign of p̃t is independent of the sign of X1. In other words, it does not depend on the

distribution of idiosyncratic shocks among the traders, but only depends on the aggregate

risk exposure. Since a positive aggregate risk exposure (i.e., Y > 0) leads to a discount on

the stock price, we have the following result:

Result 5. The impact of liquidity on the asset price always magnifies the impact of the

aggregate risk on the price.

The magnitude of the liquidity effect on price depends on X1. Figure 4(a) plots p̃1 against

X1 for two different values of Y : the solid line for Y = 1 and the dashed line for Y = 0.5.

First, we note that at t = 1, both groups of traders receive their idiosyncratic shocks but

are not trading in the market. However, in anticipation of their trades at date 2 and the

need for liquidity due to the order imbalances, the current price already adjusts. Second,

given that Y is positive, the liquidity effect on the price is always negative, as mentioned

before. More importantly, the impact of liquidity on the stock price is not linear in X1, the

idiosyncratic shocks to the traders. In particular, for small values of X1, gains from trading

are small for all traders and they do not enter the market. As a result, there is no need for

liquidity and price equals the fundamental. For large values of X1, gains from trading are

sufficiently large for all traders and they all enter the market. As a result, their traders are

synchronized and there is no need for liquidity. The stock price also equals the fundamental.

For intermediate ranges of X1, the gains from trading are large enough for some traders to

enter the market, but not for all traders. It is in this case when trades are non-synchronized

and liquidity is needed in the market, which will in turn affect the stock price. As Figure
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4 shows, the price impact of liquidity reaches the maximum for a certain magnitude of the

idiosyncratic shock.

(a) Liquidity Factor in Price (p̃1|Y ) (b) Probability Distribution of p̃1|Y
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Figure 4: The conditional liquidity factor. The figure reports the date t = 1 conditional liquidity
factor, p̃1|Y ≡ P1 − (V − πY ), which captures the price movement in excess of the “fundamentals”.
The solid line corresponds to the case when the realization of aggregate shock is Y = 1, and the
dotted line is when Y = 0.5. Panel (a) plots the conditional liquidity factor as a function of the
idiosyncratic liquidity shocks (X1). Panel (b) reports the conditional probability density function
of p̃1|Y , except at the point p̃1|Y = 0 where the value corresponds to the total probability mass at
the point (since the density function should be infinity at the point). For ease of exposition, except
at the point of p̃1 = 0, we scale down the probability density function by a factor of 400 in the plot.
Other parameters are set at the following values: α = 4, ν = µ = 1

3 , c = 0.1, σv = 0.2, σz1 = 0.5,
and σz2 = 0.8.

The results that the price impact of liquidity is one-sided (always negative when the

aggregate risk exposure is positive) and highly non-linear arise from the fact that liquidity

needs are endogenous in our model. In most of the existing models of liquidity, such as

Grossman and Miller (1988), liquidity needs are exogenously specified. Consequently, its

price impact is linear in the exogenous liquidity needs and symmetrically distributed. Our

analysis shows that modelling the liquidity needs endogenously is important to understand

the impact of liquidity on prices. After all, it is the same economic factor, the cost to

participating in the market, that drives both the liquidity needs of the traders and the

liquidity provision of market makers.

It is also worth pointing out that the magnitude of the price impact of liquidity depends

on the value of Y , the level of aggregate risk exposure. For large values of Y , individual

traders bear a significant amount of aggregate risk. Their idiosyncratic shocks create a larger

dispersion in their gains from trading, which raises the likelihood of asymmetric participation,

non-synchronization in trading and the need for liquidity. As shown in Figure 4(a), the price

impact of liquidity is smaller for Y = 0.5, shown by the dashed line, than for Y = 1, shown
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by the solid line.

The non-linearity in the price impact of liquidity leads to another interesting result:

large and frequent price movements in absence of any aggregate shocks. Figure 4(b) plots

the probability distribution of p̃1, conditional on a given value of Y . The solid line is for

Y = 1.0 and the dashed line is for Y = 0.5. Even though the underlying idiosyncratic shocks

that drive the individual traders’ trading needs are normally distributed, their price impact

as measured by p̃1 has a fat-tailed distribution. Aside from a non-zero probability mass at

the origin, the distribution peaks at a finite and negative value. This simply reflects the

fact that liquidity becomes important and affects the price only for a range of finite shocks.

Moreover, the impact of liquidity gives rise to the possibility of a large price movement in

absence of any shocks to the fundamentals of the stock. Since such a price movement is

associated with a large imbalance in trades and a surge of liquidity needs, it can be called

“liquidity crashes”. Summarizing the results above, we have the following:

Result 6. The impact of liquidity on the stock price is nonlinear in the idiosyncratic shocks

among traders and is more important for a range of finite idiosyncratic shocks. Especially, it

can lead to “liquidity crashes” in which large price movements occur in the absence of shocks

to the fundamentals.

The discussion above takes the aggregate risk exposure as given and examines the impact

of liquidity from individuals’ trading needs on prices. We now examine how liquidity can

affect the relation between aggregate risk exposure and the price. For this purpose, we

consider the average p̃t over possible values of Xt:

p̄t ≡ E[Pt|Y ]− (V −ασ2
vY ) = −E[λtXt|Y ] (20)

where t = 1, 2. Clearly, p̄t captures how liquidity enhances the impact of aggregate risk on

the stock price. In absence of any aggregate risk, there is also no liquidity effect. Trading

needs are perfectly matched between traders and so are their gains from trading. Their

participation is always symmetric and trades are synchronized. There is no need for liquidity

and the price of the stock equals its fundamental value, which is simply V . In the presence of

aggregate risk exposure, gains from trading becomes different among traders, depending on

the direction of the idiosyncratic shocks to their risk exposure relative to the aggregate risk

exposure. Thus, the presence of aggregate risk in the fundamentals is an important source
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of liquidity needs in our model.
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Figure 5: The conditional mean of the liquidity factor. The figure reports the expected
liquidity factor p̄1 ≡ E[p̃1|Y ] as a function of the aggregate risk exposure Y . Other parameters are
set at the following values: α = 4, ν = µ = 1

3 , c = 0.1, σv = 0.2, σz1 = 0.5, σz2 = 0.8, and σy = .8.

Figure 5 plots p̄1 as a function of Y . (The plot for p̄2 is similar and hence is omitted.)

Since the aggregate risk exposure gives a risk discount on the stock equal to ασ2
vY and p̄1

has the same sign as Y , the effect of liquidity magnifies the impact of aggregate risk on the

stock price. In other words, as the aggregate level of risk increases, not only the risk discount

on the stock price increases. The potential need for liquidity also increases, which leads to

an impact on the price in the same direction as the risk discount. As shown in Figure 5(a),

the impact of liquidity on the stock price is highly nonlinear in Y . It diminishes when Y

approaches zero or infinity since liquidity needs are minimal in these cases as participation is

symmetric. However, it is significant for intermediate ranges of Y . As we have seen earlier,

such a feature is shared by the impact of idiosyncratic shock X1 on the price. The fact that

the liquidity effect tends make the stock price more dependent on the shocks to both the

aggregate and idiosyncratic risk exposure and such a dependence is stronger for shocks of

finite sizes leads to the following result:

Result 7. The impact of liquidity increases the price volatility of the stock and leads to fat

tails in its returns.

Figure 6 plots the probability distribution of p̃1. In absence of the liquidity effect, i.e., when

the participation cost is zero, the distribution is a delta-function at zero (which is equivalent

to a normal density function with zero volatility).
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Figure 6: “Fat tail” in the return distribution. The figure reports the probability density
function of the unconditional liquidity factor p̃1, which captures the price movement in excess of the
“fundamentals”. We report the total probably mass at the point p̄1 = 0 since the density function
should be infinity at the point. For ease of exposition, except at the point of p̄1 = 0, we scale
down the probability density function by a factor of 40 in the plot. Other parameters are set at the
following values: α = 4, ν = µ = 1

3 , c = 0.1, σv = 0.2, σz1 = 0.5, σz2 = 0.8, and σy = .8.

6. Externality in Trading and Welfare

As stated in Proposition 3 and shown in Figure 3, the participation equilibrium has an

interesting feature, that is, it is always a corner equilibrium. In other words, the participation

rate is either zero or one for at least one trader group. This reflects the externality in the

traders’ entry decisions. In particular, the withdrawal of a trader from the market also takes

away the opportunity for other traders to trade with him. Thus, it reduces the liquidity

in the market and the gains from trading for other traders. Furthermore, it reduces the

incentive for other traders to participate in the market.

When entry is costly, individual traders make their participation decision based on their

own gains from trading. Such an optimizing behavior at the individual level ignores the

externality in each trader’s participation decisions. In this section, we examine the welfare

implications of such an externality in the traders’ participation decisions.

6.1. Externality of Individual Participation

To analyze the externality of individual participation, we plot in Figure 7 the gains from

trading for the two groups of traders as a function of δ1, the relative excess participation

of group-a traders over group-b traders, where the solid line is for group-a traders and the

dashed line is for group-b traders. It clearly shows that the gain from trading, say for group-a

traders, decreases as more of them participates (in excess of group-b traders), i.e., when δ1

becomes more positive, but increases as more of group-b traders participates, i.e., when δ1
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becomes more negative. The fact that the participation of one group of traders can increase

the participation of the other group of traders reflects the externality of their participation

decisions. Such an externality drives the market towards a corner equilibrium.

Case B: Y = 2.6 Case E: Y = 1.2
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Case D: Y = 2.2 Case A: Y = 1.6
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Figure 7: Individual gains from trading. The figure reports the trading gain as functions of δ1,
where the solid lines report the gain for trader a, ga(δ1) ≡ g(0, Y, X1, δ1), and the dashed lines report
gains for trader b, gb(−δ1) ≡ g(0, Y,−X1,−δ1), respectively. The gain g(·) is defined in Equation
(14). The only parameter that changes between difference cases is Y . Other parameters are set at
the following values: X1 = .2, α = 4, ν = µ = 1

3 , c = 0.15, σv = 0.2, and σz2 = 0.8.

In the upper left panel of Figure 7, at δ1 = 0 the gain from trading is negative for both

groups of traders. Consequently, no traders choose to enter the market (Case B in Proposition

3). In the upper right panel, at δ1 = 0 the gain from trading is positive for group-a traders

but negative for group-b traders. Thus, a subset of group-a traders will choose to enter the

market. However, for δ1 sufficiently large, the gain from trading remains negative for group-b

traders and they remain out of the market. Given that no group-b traders enters the market

to provide additional liquidity, the gain from trading quickly diminishes as more group-a

traders enter the market to consume the limited amount of liquidity the market makers

provide. As a result, we have the situation in which only a fraction of group-a traders enter

to trade with the market makers while no group-b traders enter. This corresponds to Case

E in Proposition 3.

The lower left panel of Figure 7 best illustrates the positive participation externality

between the two groups. At δ1 = 0, the gain from trading is positive for group-a traders and
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negative for group-b traders. However, as group-a traders enter the market, the gain from

trading starts to increase for group-b traders and quickly becomes positive. This induces

group-b traders to enter the market. Moreover, their participation in the market keeps

the gain from trading positive for group-a traders, which lures more group-a traders into

the market. The positive feedback stops only when all group-a are in the market. The

equilibrium is reached when enough group-b traders enter the market such that the gain

from trading becomes zero. This corresponds to Case D in which ωa
1 = 1 and 0 < ωb ≤ 1.

The positive externality is reflected by the fact that the equilibrium is reached at a level

of participation higher than the level when either group is alone in the market. Obviously,

without the participation of group-a traders, it is not feasible for any group-b traders to

participate since their gain only becomes positive when there are more group-a traders in

the market (when δa
1 > 0). Interestingly, without the participation of group-b traders, it is

not feasible for all group-a traders to participate either, since the trading gains for type-a

trader is negative at the point δa
1 = δ = 1

2
, which corresponds to the case when ωa

1 = 1 and

ωb
1 = 0. The lower right panel shows the simple situation when gain from trading is positive

for both groups at δ1 = 0, in which case they all participate in the market and we have Case

A in which ωa
1 = ωb

1 = 1.

Thus, we conclude the following: A trader’s participation decreases the gain from trading

for traders with similar trading needs but increases the gain for traders with offsetting trading

needs. When the latter effect dominates, as in the case shown in the lower left panel of

Figure 7, a trader generates a net positive externality by participating in the market. His

participation attracts more traders with offsetting trading needs, which in turn will attract

more traders of his own type.

6.2. Welfare Implications

When individual traders make decentralized participation decisions based only on their trad-

ing benefits, it is possible that they choose not to participate even though the social gain

of their participation is large. To understand the welfare implication of the participation

externality, we compare our equilibrium outcome with the equilibrium when all traders are

forced to participate. In the latter case, instead of allowing each trader to optimally make

their participation decisions, we assume that all traders are forced to pay the cost c at date
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1 so that they can all trade at date 2. We solve for the market equilibrium at date 1 and

2 in the case of forced participation and compute the value function at date 0 for traders

and market makers, which is denoted by J i
0,FP , where i = a, b, m. We then compare this

value function with the value function of agent i achieved in the equilibrium with optimal

individual participation, J i
0. Given the form of the value function in both cases, which is

negative exponential in financial wealth, we can define the certainty equivalence of agent i’s

value function as follows:

CEi = − ln
(−J i

0

)
, CEi

FP = − ln
(−J i

0,FP

)
, i = a, b, m. (21)

For investor i, we define his “welfare gain under forced participation” as the difference

between his certainty equivalent wealth levels in the equilibrium under forced participation

and in the equilibrium under optimal participation.

∆i ≡ CEi
FP − CEi, i = a, b, m. (22)

Since the certainty equivalence measures the ex ante expected utility, they are the same for

both types of traders. Of course, they are different between traders and market makers.

Market makers do not pay transactions costs and always participate in the market. If

all traders are forced to participate, there is a perfect match in their trades and the market

makers have no role to play. If, instead, traders optimally choose when to participate, as

we have seen in the previous discussions, non-synchronous participation arises, leading to

mismatch in their trades. Market makers then provide liquidity service and are compensated

for it. Thus, they are worse off when traders are forced to participate, i.e., ∆m ≤ 0.

Since CEi
0 measures the welfare achieved when traders choose their participation opti-

mally, one might expect that they will be worse off when forced to participate unconditionally,

i.e., ∆i should always be negative for i = a, b. This is certainly true if we ignore the exter-

nality generated by the traders’ participation decisions. After observing their own shocks,

traders can avoid the participation cost if the gain from trade is small. However, the with-

drawal from the market by many traders will have a negative impact on market liquidity

and the gains from trading for traders who participate. In particular, since the gains from

trading are asymmetric between the two groups of traders, their incentives to participate

are different. Despite the price adjustment, the potential gain from trading cannot always

be fully internalized and appropriately allocated among traders so that they all choose to
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participate when it is socially optimal to do so. In fact, for certain parameter values, we

find that ∆a and ∆b become positive, indicating that traders are ex-ante better off when

they are all forced to participate rather than leaving the choice to themselves. Moreover, the

welfare gains for the traders can significantly out weight the losses for the market makers.

In summary, we have the following result.

Result 8. Individual participation choices can lead to a lack of coordination among traders

to be in the market, which generates a lack of liquidity and negative externalities, and the

social welfare loss can out-weight total participation costs.

Figure 8 plots the welfare gains for individual agents under forced participation relative

to that under optimal participation. In the two panes, A and B, the plot on the left reports

the welfare gains for a trader (∆a = ∆b), the solid line, and a market maker (∆m), the dotted

line. The plot on the right reports the social welfare improvement, 2ν∆a + µ∆m, which is

the weighted average of welfare gains for all agents.

Panel (a) reports the welfare gain of forced participation as a function of the participation

cost for traders. The difference between the forced and the optimal participation equilibrium

comes from the balance between paying the participation cost when ex-post trading needs

are small and the additional risk sharing benefit with more counter-parties when ex-post

trading needs are large. As shown in Proposition 3 and discussed in Section 4., when the

cost is small, all traders will choose to participate unconditionally. The equilibrium under

optimal participation is identical to that under forced participation. Thus, ∆m = ∆a = 0, as

Figure 8.A shows. When the cost is prohibitively high, traders are clearly worse off if forced

to participate, and ∆a < 0. The interesting case is for intermediate levels of participation

costs. Some traders optimally choose not to participate when the ex-post gain from trading

is small. Their withdrawal from the market reduces the risk sharing capacity in the market.

In the figure, there exists a range of participation costs when the welfare gain of forced

participation is positive, indicating that the benefit of improved risk sharing when traders

are forced to participate dominates the cost of participation. Traders are better off when

all of them are forced to participate. Although, as previously discussed, the market makers

are always worse off, socially it is still beneficial to force participation when the gains to

the traders are sufficiently large. This is shown in the left the plot on the right in Figure

8. The positive social welfare gain of forced participation illustrates a situation of market
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failure. Optimal behavior at the individual level within a conventional market setting does

not necessarily lead to optimal risk-sharing.

Panel (b) considers the impact of idiosyncratic needs, measured by the volatility of idio-

syncratic risk exposure σz, on the welfare gain of forced participation. When idiosyncratic

trading needs are small, so are the gains from trading. Hence, forcing traders to participate

reduces individual and social welfare, as indicated by the negative ∆ for small σx. As the

idiosyncratic trading needs increase, gains from trading become larger and traders are more

willing to participate. However, the ex-post trading gains are generally different for traders

with offsetting needs, and they may not choose to participate at the same time. The market

can fail to coordinate their entry and synchronize their trades, which lead to a net social

welfare loss. We see from Figure 8.B that, as σx increases and the trading needs become

more dispersed, the market failure is more likely and the agents are better off if all of them

are forced to participate.

Despite our restrictive model assumptions, the mechanism we have identified for a market

failure in coordinating the trades of potential traders under costly participation seems rather

general: Each market participant not only benefits from trading on his own but also brings

liquidity to the market. Under costly participation, while bearing the full cost along, each

trader may not be able to sufficiently internalize the benefit he creates for the market as a

whole. In other words, other participants can free-ride on the extra liquidity he brings to the

market. As a result, the traders’ participation decisions, while optimal at the the individual

level, may well be socially sub-optimal.9

7. Conclusion

In this paper, we show that frictions such as participation costs can induce non-synchronization

in agents’ trades even when their trading needs are perfectly matched. Each trader, when

9Allen and Gale (1988), Allen and Gale (1994) considered situations when agents need to pay a fixed cost
to create market for new securities. Duffie and Jackson (1989) considered the introduction of new futures
contracts. In these cases, they also show that the free-rider problem can lead to sub-optimal outcomes of
the economy. However, the situation considered in these papers are different from the situation here since
there decisions by the agents, what securities to introduce into the market, are macroscopic by nature. The
externality involved is more explicit as changes in market structure can drastically change the equilibrium
and the allocation. In our case, the participation decision of individual traders is microscopic by nature.
The externality is more implicit and endogenous. It arises from the interaction among the agents through
the feedback of their individual actions on each other.
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Figure 8: Welfare improvement from forced participation. The plot on the left in each panel
reports the welfare gains from forced participation for the market makers (∆m) with the dotted lines
and the traders (∆a) with the solid lines. The plot on the right reports the population-weighted
total social welfare gain, 2ν∆a + µ∆m. Panel (a) and (b) report welfare gains as a function of
transactions costs c and the volatility of individual liquidity shock σz2 , respectively. In panel (a),
the volatility of date 2 trading needs is set at σz2 = 0.8, with the transactions cost c varying in the
range of [0, .5]. In panel (b) the transactions cost is set at c = 0.15 with varying date 2 trading
needs σz2 ∈ [0, 0.82]. Other parameters are set at the following values: α = 4, ν = µ = 1

3 , σv = 0.2,
σz1 = 0.5, and σy = .8.
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arriving at the market, faces only a partial demand/supply of the asset. The mismatch in

the timing and the size of trades in the market creates temporary order imbalance and the

need of liquidity which causes asset prices to deviate from the fundamentals. In particular,

purely idiosyncratic liquidity shocks can affect prices, introducing additional price volatility.

Moreover, the price deviations tend to be highly skewed. In the setting we consider and

when the aggregate risk exposure is positive, the shortage of liquidity always cause the price

to decrease and when it happens, the price tends to drop significantly, resembling a crash

due to a sudden surge in liquidity needs. We further show that partial participation in the

market by a subset of traders can have important welfare implications. In particular, the

withdrawal of a subset of traders from the market reduces market liquidity and the incen-

tives for others to participate in the market. The fact that participating agents cannot fully

internalize the benefit from their liquidity provision leads to sub-optimal allocations of the

economy despite the optimizing behavior at the individual level.
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A Appendix: Proofs

Proof of Proposition 1.

Given any stock price P2, the participating agent i’s expected utility is given by

J i
2(η

i
1 = 1) = max

θi
2

E2

[
−e−αW i

3

]
= max

θi
2

−e−α[F i
2−ci+N i

2+θi
2(V−P2)− 1

2
ασ2

v(θi
2+Xi

2)2] .

His optimal stock holding is easily calculated by solving the first order condition with respect

to θi
2 for all agents,

θi
2 =

1

ασ2
v

(V − P2)− Y −X i
2, i = a, b, m.

The market clearing condition (8) implies an equilibrium price at date 2 of

P2 = V − ασ2
vY − ασ2

v

ω1


ν

∑

i∈{a,b}
ωi

1X
i
2




where ω1 is the total amount of participating agents defined in (10). Further plugging in the

definition of liquidity shock Xa
2 = −Xb

2 = X2 and Xm
2 = 0 yields the result.

Proof of Proposition 2.

Calculating the expected value function for the participating and non-participating traders,

J i
2(η

i
1 = 1) and J i

2(η
i
1 = 0), and plugging into equation (13) yield the result. Trader i chooses

to participate in the market if and only if gains from trading is positive, or g(θi
1, Y,X i

1, δ
i
1) > 0.

Proof of Proposition 3.

Since all investors start with zero initial stock holding, θi
1 = 0, the participation gain

g(θi
1, Y,X i

1, δ
i
1) in equation (14) can be simplified. Specifically, we have

gi(δi
1) ≡ g(0, Y, X i

1, δ
i
1) = g2(δ

i
1)− c +

1

2

ασ2
v(1− δi

1)
2

(1− k) (1− k + k(1− δi
1)

2)

(
kY + X i

1

)2

Since δi
1 ≤ 1, both g2(·) and gi(·) are monotonically decreasing in δi

1. Let si
1 be the positive

root of the equation

gi(si
1) = 0.
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Then the equilibrium fraction of type i traders (ωi
1) who participate in the market can be

determined as follows:

Case 1: If min[sa1, sb1] > 0, then both traders always participate and ωa
1 = ωb

1 = 1.

Case 2: If max[sa1, sb1] < 0, then neither trader participates and ωa
1 = ωb

1 = 0.

Case 3: If min[sa1, sb1] < 0 < max[sa1, sb1], denote trader i as the trader with si1 =

max[sa1, sb1], and j as the other trader with sj1 = min[sa1, sb1], then

– if sa1 + sb1 > 0, ωi
1 = 1 and ωj

1 = max
[
0, min

[
1, µ+2ν

ν
( 1

1−sj
1

−1)+1
]]

– if sa1 + sb1 < 0, ωi
1 = max

[
0, min

[
1, µ

ν
( 1

1−si1
−1)

]]
and ωj

1 = 0

– if sa1 + sb1 = 0, any linear combination of the above two solutions is a solution.

To understand the result, assume that sa
1 solves equation ga(sa

1) = 0, and that ωa
1 fraction

of class a traders choose to participate. Moreover, we assume that given the participation

ratio ωb
1 of class b traders, δ1 =

µ(ωa
1−ωb

1)

ω1
< sa1. Since the utility gain for class a traders is

monotonically decreasing in δ1, we must have gi(δ1) > 0, implying that individual traders

within class i would find it optimal to participate. As a matter of fact, they would find it

optimal to participate until ωa
1 increases to the level such that δ1 = sa

1, at which time their

gains from participation decreases to zero. Therefore, taking as a given the participation

decision of the type b traders, the optimal fraction of class a traders who choose to participate

(ωa
1) must solve δ1 |ωb

1
= sa

1. Similarly for the class b traders. The optimal response functions

for traders a and b can be written as

ωa
1 = max

[
0, min

[
1,

µ

ν

(
sa
1

1− sa
1

)
+

(
1 + sa

1

1− sa
1

)
ωb

1

]]
,

ωb
1 = max

[
0, min

[
1,

µ

ν

(
sb
1

1− sb
1

)
+

(
1 + sb

1

1− sb
1

)
ωa

1

]]
.

Ignoring the constraints, the solution to the above set of equations is ωa
1 = ωb

1 = − µ
2ν

. If we

plot both response functions in the same figure with ωa
1 as the x-axis and ωb

1 as the y-axis,

we have two lines passing through the same point
(− µ

2ν
,− µ

2ν

)
, with a slope of (

1+sb
1

1−sb
1
) for the

response function of ωb
1, and (

1−sa
1

1+sa
1
) for the response function of ωa

1 .

From the above equations, we note that ωi
1 increases in si

1, therefore, a higher si
1 implies

higher participation ratio for trader i. With constraints, if both sa
1 > 1 and sb

1 > 1, then
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both traders participate, or ωa
1 = ωb

1 = 1. When both sa
1 < 1 and sb

1 < 1, only ωa
1 = ωb

1 = 0

emerges as a solution, or no one participates. Otherwise, the solution depends both the

relative size of si
1, and on the slope of the two lines. Specifically, if sa

1 > sb
1, then trader a is

more likely to participate. And if the slope of the response function for ωb
1 is higher, or

2

1− sb
1

− 1 >
1

2
1−sa

1
− 1

⇐⇒ sa
1 + sb

1 > 0,

then ωa
1 = 1 and ωb

1 solve the above equation. All other cases follows similarly.

Proof of Proposition 4.

Given the realization of shocks Y and X1, individual participation decisions are fully deter-

mined in Proposition 3, and so is the equilibrium price P2 in equation (11). We can calculate

the expected value function of the market maker at date t = 1 if they choose to hold θm
1

stocks:

E[Jm
2 | θm

1 , P1, Y, X1] = − 1√
1 + kδ2

1

e
−α

�
F m

1 +θm
1 (V−P1)− 1

2
ασ2

v(θm
1 )2+

1
2 ασ2

v(θm
1 −δ1X1)2

1+kδ21

�

where Fm
1 is total financial wealth at beginning of period. Taking first order condition with

respect to θm
1 and applying market clearing condition θm

1 = 0 yields the equilibrium price P1.

Proof of Proposition 5.

Let λ1 ≡ λ2

1+k δ2
1

and λ2 ≡ ασ2
vδ1 be the coefficient in front of idiosyncratic shocks Xt in (18)

and (11) for equilibrium stock prices at date 1 and 2, the equilibrium price at date t = 0

conditional on the realization of Y is the solution to the following equation

P0|Y = V −
E

[√
λ1/λ2 (λ1X1) e−

1
2
α[−ασ2

vY +λ1δ1X2
1 ]

]

E
[√

λ1/λ2 e−
1
2
α[−ασ2

vY +λ1δ1X2
1 ]

]

Since δ1(Y ) = −δ1(−Y ), λ1(Y ) = −λ1(−Y ) and λ2(Y ) = −λ2(−Y ), it is easy to verify that

P0|Y − V = −(P0|−Y − V ). Given the symmetry between the case of Y and −Y , the only

feasible price is P0 = V .
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