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1 Introduction

Transaction costs are prevalent in almost all financial markets. Extensive research has
been conducted on the optimal consumption and investment policy in the presence of
transaction costs (e.g., Constantinides (1986), Davis and Norman (1990), Koo (1992a), Liu
and Loewenstein (2002), Liu (2004)). As shown in these studies, the presence of transaction
costs significantly changes the optimal consumption and optimal investment strategy. For
example, an investor no longer trades continuously and even a small transaction cost can
dramatically decrease the frequency of trading to save transaction costs. However, the
utility loss is found to be small by most of the existing literature. In particular, in his
seminal paper Constantinides (1986) finds that the liquidity premium (i.e., the maximum
expected return an investor is willing to give up in exchange for zero transaction cost)
is small relative to the transaction cost, even for a suboptimal trading strategy and thus
concludes that transaction costs are of second-order effect for asset pricing.

One of the common assumptions of the existing literature on optimal consumption and
investment with transaction costs is that the investment opportunity set is constant. For
example, Constantinides (1986), Davis and Norman (1990), Liu and Loewenstein (2002),
and Liu (2004) all assume that not only the expected stock return, the return volatility
but also the liquidity (transaction cost) are constant throughout the investment horizon.
Intuitively, with a constant investment opportunity set, an investor does not need to trade
much and thus the transaction costs incurred is small. Empirical research, however, docu-
mented a great deal of evidence against the constant investment opportunity set hypoth-
esis. For example, Campbell (1991) and Lewellen (2003) find that expected returns on
equities change over time. Schwert (1989) and Campbell and Hentschel (1992) conclude
the volatilities of stock returns also vary substantially over time. Fama and French (1988)
and Poterba and Summers (1988) conclude that there is a mean reversion component in
stock prices. In addition, large liquidity shock may also appear from time to time (e.g.,
1987 crash, 1998 LTCM event).

Taking into account the stochastic nature of the investment opportunity set may qual-
itatively change the well-known conclusion of Constantinides (1986) that the transaction
costs are of second-order effect. This conjecture follows from a simple intuition that if
the investment opportunity set changes stochastically, an investor would need to rebalance
more often and thus would incur higher transaction costs. Following this intuition, in this
paper we build a model similar to Constantinides (1986) and Davis and Norman (1990),
but with a regime switching for fundamental parameters that include expected return,
volatility, and liquidity. Specifically, we consider the optimal consumption and investment
problem for a small investor (i.e., no price impact) who derives constant relative risk averse
(CRRA) utility from intertemporal consumption and bequest.1 The investor can invest in
one stock and one risk-free asset. In contrast to most of the existing literature, we assume
that the investment opportunity set is not constant and there are two regimes with differ-
ent fundamental parameters. One regime switches to the other regime at the first jump

1The bequest can also be interpreted as an exogenous need to cash.
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time of an independent, regime dependent Poisson process.2

Our extensive numerical analysis demonstrates that in contrast to the now standard
conclusion that transaction costs only have a second-order effect and consistent with our
intuition, transaction costs may have a first-order effect if investment opportunity set varies
stochastically. Specifically, the liquidity premium to transaction cost ratio could be well
above 1 for a wide range of parameters similar to those used in Constantinides (1986).
This is in sharp contrast with the results in Constantinides (1986). The consideration of
time-varying investment opportunity set makes this ratio almost 10 times higher (recall
that Constantinides (1986) used a suboptimal consumption policy to emphasize how small
the liquidity premium is). In addition, we find that the liquidity premium to transaction
cost (LPTC) ratio increases with expected return and decreases with return volatility.
Intuitively, as expected return increases or volatility decreases, an investor invests more
in the stock, trades more often and thus incurs higher transaction costs. In addition, as
the transaction cost in one regime increases, the LPTC ratio in the other regime increases,
while the ratio in this regime decreases. This dichotomy is caused by the investor’s cross-
regime smoothing behavior. For example, as the bull regime transaction cost increases,
the investor trades less often in the bull regime because it is more costly and trades more
in the bear regime because it becomes relatively cheaper to trade in this regime. This
example also shows a general result that changes in the parameters of one regime affect
the optimal policies not only in that regime but also in the other regime, due to the cross
regime smoothing behavior. For another example, as the expected return in the bull regime
increases, the investor increases consumption not only in the bull regime but also in the
bear regime.

In addition, our model also has important implications for the resolution of the Equity-
Premium Puzzle. We show that concerns over a potential liquidity crash, no matter how
unlikely it is, can dramatically reduce investment in stock even when the current market
is perfectly liquid and the expected excess return is high. Intuitively, if an investor has to
liquidate her stock position at an exogenously given random time due to death or other
sudden need, the sheer possibility of a liquidity crash, no matter how small the probability
is, would make leverage suboptimal no matter how high the equity premium is or how
liquid the current market is. This suggests that the existence of liquidity risk may largely
explain the Equity-Premium Puzzle. In contrast to the existing literature, this liquidity
risk explanation does not require high risk aversion (e.g., Mehra and Prescott (1985)) or
the separation of the risk aversion and the intertemporal rate of substitution (e.g., Epstein
and Zin (1989)) or habit formation (e.g., Constantinides (1990)).

Extending the two-regime model into a model with more regimes is straightforward
but requires significantly more intensive computation. More importantly, the qualitative
results obtained in our paper would stay the same as long as the transaction cost is small
relative to the changes in the optimal portfolio target through these regimes. Intuitively,
when the transaction cost is small, the investor trades more frequently to stay close to the

2The investor we consider in this paper can be an institutional investor who does not have any price
impact and updates the estimates of fundamental parameters from time to time.

2



optimal target and thus incurs high transaction costs, which makes it a first order effect.
This intuition also applies to the case with the investment opportunity set dependent on a
continuous state variable. Therefore jumps in the fundamental parameters in the financial
market is critical for our results and employed only for tractability.

The rest of the paper is organized as follows. Section 2 presents the model with transac-
tion cost and regime switching. Section 3 derives the steady-state distribution for the stock
investment and several measures of liquidity premium. Numerical and graphical analysis
is presented in Section 4. Section 5 closes the paper. All of the proofs are in the Appendix.

2 Optimal Consumption and Investment

2.1 The Basic Model

Throughout this paper we assume a probability space (Ω,F , P ) and a filtration {Ft}.
Uncertainty in the model is generated by a standard one dimensional Brownian motion w
and the regime switch risk. We will assume that wt is adapted.

There are two assets an investor can trade. The first asset (“the bond”) is a money
market account and the second asset (“the stock”) is a risky investment. There exist two
regimes: “Bull” (regime B) and “bear” (regime b) and the fundamental parameters in the
financial market may be regime dependent. In addition, we assume that regime i switches
into regime j at the first jump time of an independent Poisson process with intensity λi,
for i, j ∈ {B, b}. In regime i, the risk-free interest rate is ri and the investor can buy the
stock at the ask price SA

t = (1 + θi)St and sell the stock at the bid price SB
t = (1 − αi)St,

where 0 ≤ θi, αi < 1 represents the proportional transaction cost rates and St satisfies

dSt

St

= µidt + σidwt, (1)

where we assume all parameters are positive constants and µi > ri.
As in Constantinides (1986), we consider a constant relative risk aversion (CRRA)

investor who derives von Neumann-Morgenstern time additive utility from intertemporal
consumption c with weight 1 − k and bequest with weight k at death with time discount
rate of ρ. We assume the mortality rate δ is constant for simplicity; that is,

U(c) ≡ E
[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt
]

.

In regime i ∈ {B, b}, when θi+αi > 0, the above model gives rise to equations governing
the evolution of the amount invested in the bond, xt, and the amount invested in the stock,
yt:

dxt = rixtdt − (1 + θi)dIt + (1 − αi)dDt − ctdt, (2)

dyt = µiytdt + σiytdwt + dIt − dDt, (3)
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where the processes D and I represent the cumulative dollar amount of sales and purchases
of the stock, respectively. These processes are nondecreasing, right continuous adapted
processes with D(0) = I(0) = 0. Let x0 and y0 be the given initial positions in the bond
and the stock respectively. We let Θ(x0, y0) denote the set of admissible trading strategies
(c,D, I) such that (2) and (3) are satisfied,

∫ t

0
csds < ∞ for all t, and the investor is always

solvent, i.e.,
xt + (1 − αi)yt ≥ 0,∀t ≥ 0 and i ∈ {B, b}. (4)

Then the investor solves
max

(c,D,I)∈Θ(x0,y0)
U(c). (5)

2.2 Optimal Policies with No Transaction Costs

In this section we solve the optimal consumption and portfolio selection problem in the
absence of transaction costs, i.e. θi = αi = 0, under the regime-switching model presented
in the previous section. The results in this section can serve as a benchmark for the
subsequent analysis.

In this case, the cumulative purchases and sales of the stock can be of infinite variation.
Let τi be the first jump time since the beginning of regime i. The investor’s problem in
regime i ∈ {B, b} can be rewritten as

Vi(W ) = sup
{yt:t≥0}

E
[

∫ τi

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

W 1−γ
t

1 − γ

)

dt + e−(ρ+δ)τiVj(Wτi
)
]

, (6)

subject to
dWt = riWtdt + (µi − ri)ytdt + σiytdwt,∀i ∈ {B, b}, (7)

where Wt ≡ xt + yt ≥ 0 and Vj(x, y) is the value function in regime j.
Under regularity conditions on Vi and Vj, the Hamilton-Jacobi-Bellman(HJB) equations

take the form

sup
(ci,yi)

{1

2
σ2

i y
2
i ViWW + riWViW + (µi − ri)yiViW − ciViW − (ρ + δ + λi)Vi + λiVj

+(1 − k)
c1−γ
i

1 − γ
+ kδ

W 1−γ
t

1 − γ

}

= 0, (8)

where i, j ∈ {B, b}, i 6= j. We conjecture

Vi(W ) = Mi
W 1−γ

1 − γ
for Mi > 0, i ∈ {B, b}. (9)

By the first-order conditions we have

ci =

(

ViW

1 − k

)− 1
γ

and yi = −(µi − ri)ViW

σ2
i ViWW

.
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Then plugging (9) into (8), we obtain that Mi and Mj satisfy the system of equations

−(ηi + λi)Mi + γ(1 − k)1/γM
1−1/γ
i + λiMj + kδ = 0, (10)

where

ηi = ρ + δ − (1 − γ)
(

ri +
κ2

i

2γ

)

, κi =
µi − r

σi

.

To ensure the existence of optimal solution, we adopt the following assumption similar to
Merton (1971).

Assumption 1. ηi > 0,∀i ∈ {B, b}.

Lemma 2.1 Under Assumption 1, there is a unique solution (MB,Mb) to (10). In addi-
tion, there exist finite constants M̄ and M such that

M̄ ≥ Mi ≥ M.

Proof: see Appendix.

The following verification theorem shows that indeed our conjecture is correct.

Theorem 2.2 Under Assumption 1 for regime i ∈ {B, b}, Vi defined in (9) is the value

function defined in (6). In addition, the optimal consumption policy is c∗i =
(

Mi

1−k

)− 1
γ W

and the optimal fraction of wealth invested in the stock is π∗
i =

µi − ri

γσ2
i

.

Proof: This follows from a similar and simpler argument presented in the proof of The-
orem 2.3 that is provided in the Appendix of Davis and Norman (1990).

Theorem 2.2 implies that both the optimal consumption and the optimal dollar amount
invested in the stock is a constant fraction of the investor’s wealth in each regime. However,
the investor does smooth consumption across regimes. This is reflected in the fact that Mi

and Mj are jointly determined by equations (10). In contrast the optimal investment policy
is myopic in the sense that π∗

i only depends on the current regime parameters. Intuitively,
the risk of regime switching is unhedgable using the existing securities.

2.3 Optimal Policies with Transaction Costs

Now suppose there are transaction costs in each regime, i.e., θi + αi > 0, i ∈ {B, b}. Using
the same notations as in the previous section, we can rewrite the investor’s problem as

vi(x, y) = sup
(c,D,I)

E
[

∫ τi

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt

+e−(ρ+δ)τivj(xτi
, yτi

)
]

, (11)
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subject to (2)-(4).
It can be easily verified that the value functions vB and vb are concave and homogeneous

of degree 1− γ in (x, y).(cf. Fleming and Soner(1993), Lemma VIII.3.2). As in Davis and
Norman(1990), Liu and Loewenstein (2002) the solvency region Si splits into three regions,
a ‘no-trading’(NTi) region, a ‘buy’(Bi) region and a ‘sell’(Si) region. The homogeneity of
vi implies that the transaction boundaries are straight lines (see Figure 1). In addition,
there exists an interval [zi, z̄i] such that in regime i the investor trades only the minimum
amount to keep the ratio

z =
x

y

inside the interval. We depict this analysis in Figures 2 and 3. Figure 2 shows the solvency
region when the two no-transaction regions (NTB and NTb) are separated. Intuitively,
this case occurs when the difference between the two regimes is large and the transition
probability is low (e.g, the expected return on stock in the bull regime is sufficiently larger
than that in the bear regime). As the transition probability increases, the no-transaction
regions move toward each other and eventually they become overlapped, as shown in Figure
3.

The above optimal transaction policy implies that the HJB equation takes the following
form

1

2
σ2

i y
2viyy+rixvix+µiyviy+

γ

1 − γ
(1−k)1/γv

1−1/γ
ix −(ρ+δ)vi+kδ

(x + (1 − αi)y)1−γ

1 − γ
+λi(vj−vi) = 0,

(12)
for j 6= i in NT i. In the sell region, the investor transacts immediately to the sell boundary.
Therefore,

vi(x, y) = Ai
(x + (1 − αi)y)1−γ

1 − γ
, (13)

where Ai is also a positive constant to be determined. Similarly, in the buy region, the
investor transacts immediately to the buy boundary. Therefore,

vi(x, y) = Bi
(x + (1 + θi)y)1−γ

1 − γ
, (14)

where Bi is a positive constant to be determined.
By the homogeneity of the value functions, there exists a function ψi : (zi, z̄i) → R in

regime i satisfying

vi(x, y) ≡ y1−γψi

(x

y

)

. (15)

This implies that

ψi(z) =

{

Ai
(z+(1−αi))

1−γ

1−γ
z < zi.

Bi
(z+(1+θi))

1−γ

1−γ
z > z̄i

(16)
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Using Equation (15) and the ratio z, we can simplify the partial differential equa-
tion(PDE) to get the following ordinary differential equation (ODE) in NTi:

βi
2z

2ψ′′
i (z)+βi

1zψ
′
i(z)+βi

0ψi(z)+
γ

1 − γ
(1−k)1/γψ′

i(z)1−1/γ+kδ
(z + (1 − αi))

1−γ

1 − γ
+λiψj(z) = 0,

(17)
i 6= j for z ∈ (zi, z̄i), where βi

2 = 1
2
σ2

i , βi
1 = γσ2

i − (µi − ri), βi
0 = 1

2
σ2

i γ(γ − 1)+ (1− γ)µi −
ρ − δ − λi.

Theorem 2.3 For i, j ∈ {B, b} and j 6= i, suppose we have concave, increasing, and
homothetic C2,2 solutions to

1

2
σ2

i y
2viyy+rixvix+µiyviy+

γ

1 − γ
(1−k)1/γv

1− 1
γ

ix −(ρ+δ)vi+kδ
(x + (1 − αi)y)1−γ

1 − γ
+λi(vj−vi) ≤ 0

(18)
with equality for x

y
∈ [zi, z̄i],which satisfy

(1 + θi)vix ≥ viy (19)

with equality for x
y

> z̄i, and

(1 − αi)vix ≤ viy (20)

with equality for x
y

< zi. Then vi is the value function, the optimal consumption is given by

c∗ =

(

vix

1 − k

)− 1
γ

, (21)

and the optimal transaction policy is to transact the minimum amount so as to keep x
y

between zi and z̄i.

Proof: See Appendix.

The following propositions give closed-form solutions of the free boundary problem with
k = 1, that is, the case that the investor derives the utility only from bequest.

Proposition 2.4 Suppose k = 1 and all the conditions in Theorem 2.3 are satisfied by
vi(x, y) defined in (15) and (16) and 0 < zB < z̄B < zb < z̄b < ∞. Then

ψB(z) = C1Bzξ1B + C2Bzξ2B + ψp
B(z) (22)

and
ψb(z) = C1bz

ξ1b + C2bz
ξ2b + ψp

b (z), (23)

where

ψp
B(z) ≡

∫ z

zB

tξ1Bzξ2B − zξ1B tξ2B

βB
2 (ξ1B − ξ2B)tξ1B+ξ2B+1

[

δ
(t + 1 − αB)1−γ

1 − γ
+ λBAb

(t + 1 − αb)
1−γ

1 − γ

]

dt, (24)
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ψp
b (z) ≡

∫ z

zb

tξ1bzξ2b − zξ1btξ2b

βb
2(ξ1b − ξ2b)tξ1b+ξ2b+1

[

δ
(t + 1 − αb)

1−γ

1 − γ
+ λbBB

(t + 1 + θB)1−γ

1 − γ

]

dt, (25)

ξ1i =
(βi

2 − βi
1) +

√

(βi
2 − βi

1)
2 − 4βi

0β
i
2

2
, ξ2i =

(βi
2 − βi

1) −
√

(βi
2 − βi

1)
2 − 4βi

0β
i
2

2
,

and constants C1i and C2i are determined together with zi, z̄i, Ai, and Bi (i ∈ {B, b}) by
the twelve smooth pasting conditions.

Proof: See Appendix.

Proposition 2.5 Suppose k = 1, λB > 0, and λb > 0. If all the conditions in Theorem
2.3 are satisfied by vi(x, y) defined in (15) and (16) and 0 < zB < zb < z̄B < z̄b < ∞, then

1. if zB ≤ z ≤ zb, ψB(z) is of the same form with (22),

2. if z̄B ≤ z ≤ z̄b, ψb(z) is of the same form with (23),

3. if zb ≤ z ≤ z̄B, then

(

ψB(z)
ψb(z)

)

=

(

∑4
j=1 zNj(Dj + uj(z))

∑4
j=1 ajz

Nj(Dj + uj(z))

)

, (26)

where Nj and aj are as specified in (84) and (85) and uj is determined by (88), (92),
and (94),

where constants C1i, C2i, D1, D2, D3 and D4 together with zi, z̄i, Ai, Bi(i ∈ {B, b}) are
determined by sixteen smooth pasting conditions.

Proof: See Appendix.

One can directly extend these results to the case that at least one of NT region contains
the y-axis, i.e., z = 0.

There is a large literature on the explanation of the Equity-Premium Puzzle (Risk-free
Rate Puzzle) first identified by Mehra and Prescott (1985), including using separation of
the risk aversion and the intertemporal rate of substitution (e.g., Epstein and Zin (1989))
or using habit formation (e.g., Constantinides (1990)). Our model suggests that this puzzle
may be resolved by the existence of liquidity risk.

To make clear the basic intuition why our model can potentially explain the puzzle,
suppose there are two liquidity regimes where only liquidity changes across the regimes and
the investor has to liquidate her stock position at the first jump time of a Poisson process
with intensity δ (i.e., kδ > 0). To really drive home this basic intuition, suppose further
that in the “Liquid” regime the market is perfectly liquid (i.e., no transaction cost) and in
the “Illiquid” regime the market is perfectly illiquid (i.e., αI = 1). At any point in time,

9



there is a positive (but maybe very small) probability of switching from the Liquid regime
to the Illiquid regime (i.e., the Liquid regime Poisson intensity λL > 0). Then it can be
shown that in the Liquid regime the value function vL takes the following form:

vL(x, y) = AL
(x + y)1−γ

1 − γ
, (27)

where AL is a constant. This implies that in the Illiquid regime the value function ψI

satisfies

βI
2z

2ψ′′
I (z)+βI

1zψ
′
I(z)+βI

0ψI(z)+
γ

1 − γ
(1−k)1/γψ′

I(z)1−1/γ+kδ
z1−γ

1 − γ
+λIAL

(z + 1)1−γ

1 − γ
= 0,

(28)
where βI

2 , βI
1 , βI

0 , and λI are the corresponding parameters in Theorem 2.3 after relabelling.
This equation implies in particular that in the no-transaction region z > 0, i.e., the investor
does not lever up in the Illiquid regime and

lim
z→0

ψ′
I(z) = ∞.

Back to the Liquid regime, as in the Merton case, the investor invests a constant fraction
1/(z∗ +1) of wealth in the stock due to the absence of transaction cost in this regime. The
value function satisfies the following equation at z∗:

−ALγβL
2 z∗2(z∗ + 1)−γ−1 + βL

1 z∗(z∗ + 1)−γ + βL
0 AL

(z∗ + 1)1−γ

1 − γ

+
γ

1 − γ
(1 − k)1/γA

1−1/γ
L (z∗ + 1)1−γ + kδ

(z∗ + 1)1−γ

1 − γ
+ λLψI(z

∗) = 0, (29)

where βL
2 , βL

1 , βL
0 , and λL are the corresponding parameters in Theorem 2.3 after rela-

belling. Since the marginal utility ψ′
I(z) at z = 0 is infinity, the investor would never

lever up in the Liquid market either, no matter how large the risk premium is. This is
because there is always a positive probability of the liquidity crash and there is a positive
probability the investor has to liquidate her stock position in the Illiquid regime.

Similar intuition implies that even when the liquidity shock is not as extreme as above,
the investor would reduce significantly her stock investment even when the market is per-
fectly liquid.3 This shows that concerns over a potential liquidity crash, no matter how
unlikely it is, can dramatically reduce investment in stock even when the current market
is perfectly liquid and the expected excess return is high. This suggests that the existence
of liquidity risk may largely explain the Equity-Premium Puzzle.

In this special case, as the transaction cost for a sale αI in the illiquid regime increases,
the sell boundary zI approaches 0, i.e., the investor becomes more and more unlikely to sell
in the illiquid regime. The following proposition provides the limit of the value functions
and the transaction boundaries, which serves as a good approximation for the solution
when αI is high.

3Our ongoing, preliminary numerical analysis (to be included in the next version) also supports this
claim.
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Proposition 2.6 Suppose k = 1, 0 < αI < 1, and αL = θL = 0. Then as zI → 0, the
value functions in the liquid and illiquid regimes approach

ψL(z) = AL
(z + 1)1−γ

1 − γ
(30)

and

ψI(z) =







C1z
m + C2z

ξ − 1
βI
2

∫ z̄I

z
tmzξ−tξzm

(m−ξ)tm+ξ+1

(

δ (t+1−αI)1−γ

1−γ
+ λIAL

(t+1)1−γ

1−γ

)

dt z ≤ z̄I

BI
(z+1+θI)1−γ

1−γ
z > z̄I ,

(31)
respectively, where

m =
(βI

2 − βI
1) +

√

(βI
2 − βI

1)
2 − 4βI

0β
I
2

2βI
2

, ξ =
(βI

2 − βI
1) −

√

(βI
2 − βI

1)
2 − 4βI

0β
I
2

2βI
2

, (32)

and in the liquid regime it is optimal to keep zt constantly at z∗L, while in the illiquid regime
it is optimal to buy only when zt > z̄I , where constants AL, BI , z̄I , z∗L, C1, and C2 solve
equations (97)-(105) in the Appendix.

Proof: See Appendix

3 Steady-state Distribution, Liquidity Premium and

Expected Transaction Costs

To facilitate subsequent analysis we also derive the steady-state distribution of zt. It can
be verified that

dzt = µzi(zt)dt − σiztdwt, (33)

where

µzi(z) = (ri − µi + σ2
i )z −

(

ψ′
i(z)

1 − k

)−1/γ

.

For simplicity, we focus on the case with separated no-transaction regions. The corre-
sponding results for other cases can be derived using the same method.

Proposition 3.1 Suppose 0 < zB < z̄B < zb < z̄b. Let φ(z) be the steady-state density
function. Then we have

φ(z) =







φB(z) zB < z < z̄B

φb(z) zb < z < z̄b

0 otherwise,
(34)

where φB(z) and φb(z) solve

1

2
σ2

Bz2φ′′
B(z) − (µzB(z) − 2σ2

Bz)φ′
B(z) − (λB − σ2

B + µ′
zB(z))φB(z) = 0,

11



subject to
1

2
σ2

Bz2
Bφ′

B(zB) − (µzB(zB) − σ2
BzB)φB(zB) = 0,

1

2
σ2

B z̄2
Bφ′

B(z̄B) − (µzB(z̄B) − σ2
B z̄B)φB(z̄B) − λbλB

λb + λB

= 0

and
1

2
σ2

bz
2φ′′

b (z) − (µzb(z) − 2σ2
bz)φ′

b(z) − (λb − σ2
b + µ′

zb(z))φb(z) = 0,

subject to
1

2
σ2

bz
2
bφ

′
b(zb) − (µzb(zb) − σ2

bzb)φb(zb) +
λbλB

λb + λB

= 0,

1

2
σ2

b z̄
2
bφ

′
b(z̄b) − (µzb(z̄b) − σ2

b z̄b)φb(z̄b) = 0.

Proof: See Appendix.

Note that Proposition 3.1 implies that
∫ z̄B

zB

φB(z)dz =
λb

λb + λB

and

∫ z̄b

zb

φb(z)dz =
λB

λb + λB

.

In the seminal paper, Constantinides (1986) introduces the concept of liquidity premia.
He defines the liquidity premium to be the decrease in the expected return which combined
with the elimination of the transaction costs that makes the investor obtain the same utility.
He concludes that transaction costs have only second-order effect on investors’ utility, i.e.,
the ratio of the liquidity premium to the transaction cost rate is much smaller than 1.
However, he assumes that an investor’s investment opportunity set is constant all the
time. This assumption tends to decrease the effect of transaction cost because an investor
trades infrequently. In contrast to his model, investment opportunity set is stochastically
changing in our model. This time-varying opportunity set may induce an investor to trade
more frequently and may produce a first-order effect of the transaction cost.

To investigate this possibility, we will use two alternative measures to compute the
liquidity premium. For the first measure, similar to Constantinides (1986), we take the
liquidity premium to be the maximum expected return that an investor is willing to give
up in both regimes to get rid of the transaction costs.

Definition 3.2 Let ∆i(x0, y0) be the liquidity premium in regime i at (x0, y0) for i ∈
{B, b}. Then ∆i is such that

vi(x0, y0) = Mi
(x0 + y0)

1−γ

1 − γ
, (35)

where Mi is the unique solution of (10) with

κi =
(µi − ∆i − ri)

+

σi

, κj =
(µj − ∆i − rj)

+

σj

, (36)

and j 6= i.

12



In this measure, we take the positive parts because an investor’s utility is minimized when
the risk premium is zero. For the second measure, we use the steady-state distribution of
zt to compute the average liquidity premium. This can also be interpreted as the cross
sectional liquidity premium average for different investors. Let ∆i(x0, y0) be the liquidity
premium in regime i at (x0, y0) for i ∈ {B, b}, as defined in Definition 3.2. Then the
average liquidity premium ∆̄i in regime i for i ∈ {B, b} is

∆̄i =

∫ z̄i

zi

∆i(z, 1)
λB + λb

λb

φi(z)dz. (37)

The average liquidity premium across both regimes is

∆̄ =
λb

λB + λb

∆̄B +
λB

λB + λb

∆̄b. (38)

Another measure of the effect of transaction costs is the expected discounted transaction
costs an investor expects to pay over the entire investment horizon. The following propo-
sition shows one way of computing these costs for the case with separated no-transaction
regions.

Proposition 3.3 Suppose ν > maxi[−λi + ri + (µi − ri)/(zB + 1)] and 0 < zB < z̄B <
zb < z̄b. Let Ci(xt, yt) be the expected discounted transaction costs in regime i starting from
(xt, yt). Then given the optimal polity (I∗

t , D∗
t ),

Ci(x, y) ≡ E

[∫ τi

0

e−νt(θidI∗
t + αidD∗

t ) + e−ντiCj(xτi
, yτi

)

]

= ygi(x/y),

where for zi ≤ z ≤ z̄i, gi(·) solves

1

2
σ2z2g′′

i (z) −
(

(µi − ri)z +

(

ψ′(z)

1 − k

)−1/γ
)

g′
i(z) − (ν + λi − µi)gi(z) + λigj(z) = 0, (39)

subject to
gi(z̄i) − (z̄i + 1 + θi)g

′
i(z̄i) + θi = 0 (40)

and
gi(zi) − (zi + 1 − αi)g

′
i(zi) − αi = 0, (41)

gb(z) = αb
zb − z

zb + 1 − αb

+ gb(zb) (42)

for z < zb, and

gB(z) = θB
z − z̄B

z̄B + 1 + θB

+ gB(z̄B) (43)

for z > z̄B.

Proof: See Appendix.
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4 Numerical Analysis

In this section we conduct an extensive numerical analysis on the optimal investment, opti-
mal consumption, and liquidity premium. In the subsequent analysis we use the following
default parameters: µB = 0.165, µb = 0.105, σB = 0.144, σb = 0.26, λB = 0.6, λb = 1.8,
ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB = 0.01, θb = αb = 0.01, k = 0, and δ = 0.4

These parameters are chosen such that the the average (across regimes) parameter value
is the same as that in Constantinides (1986). In particular, we set k = 0 and δ = 0 so that
the utility is only from consumption as in Constantinides (1986). The Poisson jump inten-
sities are chosen to be consistent with the typical pattern that bull regime lasts longer than
a bear regime. The higher volatility in the bear regime is supported by many empirical
studies (e.g., Ang and Bekaert (1999), Bekaert and Wu (2000)).

We use an iterative method to solve the coupled free boundary value problem described
in equations (16) and (17).

4.1 Changes in Transaction Costs

Figure 4 plots the fraction of liquidation wealth invested in the stock in the Bull regime
against the transaction cost in the Bull regime. Similar to Liu and Loewenstein (2002), as
the transaction cost increases, the buy boundary goes down and the sell boundary goes up.
The expansion of the no-transaction region decreases the trading frequency and thus the
transaction costs incurred. Figure 5 shows that the change in the Bull regime transaction
cost also has a significant impact on the no-transaction region in the bear regime. As the
Bull regime transaction cost increases, the investor trades less often in the Bull regime and
invests more in the stock in the bear regime.

Figure 6 plots the consumption to the liquidation wealth ratio in the both regimes
against the transaction cost in the Bull regime. This figure shows that as the Bull regime
transaction cost increases, both consumption in not only the bull regime but also in the
bear regime decreases.

Figure 7 plots the steady-state average liquidity premia against the transaction cost
in the Bull regime. This figure shows that when the transaction cost is small, in both
regimes transaction cost has a first-order effect on the liquidity premium, i.e., the liquidity
premium to the transaction cost ratio is greater than 1. Even when the transaction cost
becomes large, the ratio is still much greater than what Constantinides (1986) find. This
suggests that time-varying investment opportunity set is important in affecting the liquidity
premium.

Although we focus on the case with jumps in the parameters across regimes in this
paper, the existence of jumps is not critical for our central result that transaction costs
can have first order effect on liquidity premium. To see this, consider the case where the
investor has a log preference and only the expected return changes continuously through

4It is worth noting that although the risk-free rate appears high, what matters to our analysis is the
risk premium.
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Figure 4: The fraction of wealth invested in the stock in the Bull regime, as a

function of the transaction cost in the Bull regime for parameters: µB = 0.165,
µb = 0.105, σB = 0.144, σb = 0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10,
θB = αB, , θb = αb = 0.01, k = 0, and δ = 0.

time. To illustrate the fundamental intuition, suppose that the expected return changes
seasonally through a year. In this case, without transaction cost, then the investor’s optimal
fraction of wealth in stock also varies seasonally through time, as depicted in Figure 8 along
the middle curve. When there is a small transaction cost, the investor would form a small
no-transaction interval around the optimal target (represented by the upper and the lower
curves in Figure 8). Therefore as time passes, the investor would trade to keep the fraction
close to the target. In addition, since the transaction cost is proportional, the investor is
basically earning an effective risk premium that is equal to the true risk premium minus
the transaction cost rate. Therefore, transaction cost can have a first order effect on the
liquidity premium whether the parameters vary discretely or not, as long as they vary
significantly and the transaction cost is small.

4.2 Changes in the Expected Return

Figure 9 plots the fraction of liquidation wealth invested in the stock in the Bull regime
against the expected return in the Bull regime. Similar to Liu and Loewenstein (2002)
and Liu (2004), as the expected return increases, both the buy boundary and the sell
boundary go up. This basically follows the Merton line (the target line in the absence of
transaction costs). Figure 10 shows that the change in the Bull regime expected return
also has a significant impact on the no-transaction region in the bear regime. As the
Bull regime expected return increases, the sell boundary in the bear regime moves down
significantly, reflecting the tendency to reduce holding in stock in the bear regime given
that the investment opportunity becomes better in the bull regime. On the other hand the
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Figure 5: The fraction of wealth invested in the stock in the bear regime, as a

function of the transaction cost in the Bull regime for parameters: µB = 0.165,
µb = 0.105, σB = 0.144, σb = 0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10,
θB = αB, , θb = αb = 0.01, k = 0, and δ = 0.
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Figure 6: The consumption to wealth ratio, as a function of the transaction

cost for parameters: µB = 0.165, µb = 0.105, σB = 0.144, σb = 0.26, λB = 0.6,
λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB, , θb = αb = 0.01, k = 0, and δ = 0.
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Figure 7: The liquidity premium to transaction cost ratio, as a function of the

transaction cost for parameters: µB = 0.165, µb = 0.105, σB = 0.144, σb = 0.26,
λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB, , θb = αb = 0.01, k = 0,
and δ = 0.
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Figure 8: Continuously varying optimal target and NT region: an illustration.
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Figure 9: The fraction of wealth invested in the stock in the Bull regime, as a

function of the expected return in the Bull regime for parameters: µb = 0.105,
σB = 0.144, σb = 0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10,
θB = αB = 0.01, , θb = αb = 0.01, k = 0, and δ = 0.

buy boundary is less sensitive to the increase of the expected return in the bull regime.
Figure 11 plots the consumption to the liquidation wealth ratio in the both regimes

against the expected return in the Bull regime. This figure shows that as the Bull regime
expected return increases, not only the consumption in the bull regime but also the con-
sumption in the bear regime increases because of the expected increase in the market
returns and consumption smoothing.

Figure 12 plots the steady-state average liquidity premia against the expected return in
the Bull regime. This figure shows that when the expected return increases, the liquidity
premium becomes even greater. This is because that as the two regimes become further
separated, an investor needs to pay more transaction costs at the regime switching time.

4.3 Changes in the Volatility of Stock

Figure 13 plots the fraction of liquidation wealth invested in the stock in the Bull regime
against the return volatility in the Bull regime. As the expected return increases, both the
buy boundary and the sell boundary go down. Similar to the case with changing expected
return, this pattern basically follows the Merton line. In the bear regime, we obtain a
similar pattern.

Figure 14 plots the consumption to the liquidation wealth ratio in the both regimes
against the return volatility in the Bull regime. This figure shows that as the Bull regime
return volatility increases, not only the consumption in the bull regime but also the con-
sumption in the bear regime decreases because of the increase in the riskiness of the in-
vestment and thus the present value of future wealth.
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Figure 10: The fraction of wealth invested in the stock in the bear regime, as a

function of the expected return in the Bull regime for parameters: µb = 0.105,
σB = 0.144, σb = 0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10,
θB = αB = 0.01, , θb = αb = 0.01, k = 0, and δ = 0.
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Figure 11: The consumption to wealth ratio, as a function of the expected

return in the Bull regime for parameters: µb = 0.105, σB = 0.144, σb = 0.26,
λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB = 0.01, , θb = αb = 0.01,
k = 0, and δ = 0.
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Figure 12: The liquidity premium to transaction cost ratio, as a function of

the expected return in the Bull regime for parameters: µb = 0.105, σB = 0.144,
σb = 0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB = 0.01,
θb = αb = 0.01, k = 0, and δ = 0.

Figure 15 plots the steady-state average liquidity premia against the return volatility
in the Bull regime. This figure shows that when the return volatility increases, the liquid-
ity premium becomes smaller, but still a first-order effect. The decrease in the liquidity
premium is because the increase in the riskiness decreases the investment in the stock and
thus the transaction costs.

4.4 Changes in Other Parameters

Table 1 shows the comparative statics with respect to other parameters. It shows the
intuitive results that the liquidity premium ratio increases as risk aversion decreases, as
the probability of switching to the bear regime increases, or as the volatility in the bear
regime increases. It is also worth noting that the optimal trading strategy is insensitive to
the changes in the parameters in the bear regime.



��������������������
����
�
����
���
����
�
����
���

��

����
��� !"

#$%

&
'()�*+,-.

Figure 13: The fraction of wealth invested in the stock in the Bull regime, as

a function of the volatility in the Bull regime for parameters: µB = 0.105,
µb = 0.105, σb = 0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10,
θB = αB = 0.01, , θb = αb = 0.01, k = 0, and δ = 0.
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Figure 14: The consumption to wealth ratio, as a function of the volatility

in the Bull regime for parameters: µB = 0.105, µb = 0.105, σb = 0.26, λB = 0.6,
λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB = 0.01, , θb = αb = 0.01, k = 0, and

δ = 0.
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Figure 15: The liquidity premium to transaction cost ratio, as a function of the

volatility in the Bull regime for parameters: µB = 0.105, µb = 0.105, σb = 0.26,
λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.10, θB = αB = 0.01, , θb = αb = 0.01,
k = 0, and δ = 0.

5 Conclusion

Constantinides (1986) finds that although transaction cost alters trading strategy signifi-
cantly, it only has second-order effect on the liquidity premia implied by the equilibrium
asset returns. In this paper, we show that his conclusion depends crucially on his assump-
tion of constant investment opportunity set. In contrast, in a stochastic regime-switching
model with transaction cost, we find that transaction cost can have a first-order effect on
the liquidity premia for a wide range of parameters. This suggests that transaction costs
may be very important for asset pricing if investment opportunity set is stochastic.

In addition, our model also has important implications for the resolution of the Equity-
Premium Puzzle. We show that concerns over a potential liquidity crash, no matter how
unlikely it is, can dramatically reduce investment in stock even when the current market
is perfectly liquid and the expected excess return is high. This suggests that the existence
of liquidity risk may largely explain the Equity-Premium Puzzle.
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Parameters c∗
B

/W at c∗
b
/W at y∗

B
/W at y∗

b
/W at Average LPTC Ratio

z
B

z̄B z
b

z̄b z
B

z̄B z
b

z̄b ∆̄B/αB ∆̄b/αb ∆̄/α

Benchmark 0.113 0.114 0.112 0.112 1.594 1.068 0.324 0.030 1.017 1.139 1.047

γ ×1.05 0.113 0.114 0.112 0.112 1.512 1.018 0.310 0.029 1.012 1.134 1.043
×0.95 0.113 0.114 0.112 0.112 1.685 1.123 0.365 0.032 1.012 1.137 1.043

δ ×1.05 0.115 0.117 0.115 0.115 1.593 1.065 0.329 0.030 1.015 1.140 1.047
×0.95 0.110 0.112 0.110 0.110 1.594 1.071 0.323 0.030 1.016 1.135 1.046

λB ×1.05 0.112 0.114 0.112 0.112 1.594 1.061 0.303 0.030 1.060 1.181 1.092
×0.95 0.113 0.115 0.112 0.113 1.594 1.075 0.351 0.030 0.967 1.091 0.997

σb ×1.05 0.113 0.114 0.112 0.112 1.594 1.068 0.304 0.027 1.029 1.153 1.060
×0.95 0.113 0.114 0.112 0.113 1.594 1.068 0.381 0.034 0.994 1.119 1.025

θb ×1.02 0.113 0.114 0.112 0.112 1.590 1.066 0.414 0.028 1.028 1.143 1.058
×0.98 0.113 0.114 0.112 0.112 1.597 1.071 0.311 0.032 1.007 1.150 1.042

Table 1: The benchmark case is with parameters µB = 0.165, µb = 0.105, σB = 0.144, σb =
0.26, λB = 0.6, λb = 1.8, ρ = 0.1, γ = 2.0, rB = rb = 0.1, , θB = αB = θb = αb = 0.01,
k = 0, and δ = 0. Here, ∆̄i represents the average liquidity premium for the whole
inaction interval of regime i, ∆̄ is the average liquidity premium across both regimes and
α = (λbαB + λBαb)/(λB + λb) .
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Appendix

In this Appendix, we provide proofs for the results.

Proof of Lemma 2.1 We prove for the case with ηi < ηj. The other case can be
proved using a similar argument. (10) implies that

Mj = f(Mi) =
ηi + λi

λi

Mi −
γ

λi

(1 − k)1/γM
1−1/γ
i − kδ

λi

.

For i ∈ {B, b}, let M̄i > 0 be the unique solution of

−ηiMi + γ(1 − k)1/γ(Mi)
1−1/γ + kδ = 0

and let M i > 0 be the unique solution of

−(ηi + λi)Mi + γ(1 − k)1/γ(Mi)
1−1/γ + kδ = 0.

Define

g(Mi) = −(ηj + λj)f(Mi) + γ(1 − k)1/γf(Mi)
1−1/γ + λjMi + kδ.

After simplification, we have that

g(M̄i) = (ηi − ηj)M̄i < 0.

In addition, it can be easily verified that g(M i) = λjM i + kδ ≥ 0. By continuity, there
exists a Mi such that g(Mi) = 0. This implies that M̄i ≥ Mi ≥ M i. Finally, if γ < 1, it
is obvious that g′(x) > 0, ∀x > 0 and therefore the solution is unique. If γ > 1, direct
computation reveals that g′′(x) < 0, g′(0) > 0, and g(M i) > 0, which also implies that the
solution is unique.

Proof of Theorem 2.3. We first show state some properties of the candidate value
function that satisfies the conditions in Theorem 2.3.

Lemma 5.1 Suppose vi(x, y) and vj(x, y) are as in Theorem 2.3. Then we have

1. vi(x, y) ≥ vi(x + (1 − αi)y, 0)

2. There exist ki and Kj such that

ki(x + y)1−γ ≤ vi(x, y) ≤ Ki(x + y)1−γ (44)

3.
yviy

vi
is bounded for x

y
> αi − 1.

4.
v

γ−1
γ

ix

vi
is bounded for x

y
> αi − 1.
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Proof of Lemma 5.1. Part 1 follows from the well known inequality for concave functions
U

OU(z1) · (z1 − z2) ≤ U(z1) − U(z2). (45)

[vix(x, y) viy(x, y)][x − (x + (1 − αi)y) y]> ≤ vi(x, y) − vi(x + (1 − αi)y, 0). (46)

Using condition (20), we have

0 ≤ y(viy(x, y) − (1 − αi)vix(x, y)) ≤ vi(x, y) − vi(x + (1 − αi)y, 0), (47)

which proves 1.
Part 2 follows from the fact that vi(x, y) = (x + y)1−γvi(

x
x+y

, y
x+y

).

Part 3 follows from vi(x, y) = y1−γφ(x
y
), viy = (1 − γ)y−γφ(x

y
) − y−γ x

y
φ′(x

y
) so

yviy

vi
=

(1 − γ) −
x
y
φ′(x

y
)

φ(x
y
)

, which is bounded.

Part 4 follows from vix = y−γφ′(x
y
), v

1− 1
γ

ix = y1−γ(φ′(x
y
))1− 1

γ so
v

γ−1
γ

ix

vi
=

(φ′(x
y
))

1− 1
γ

φ(x
y
)

, which

is bounded. ¤

Now we are ready to prove Theorem 2.3.
The proof relies on results first proved in Davis and Norman(1990). We repeat many

of their arguments here adapting for our particular setting. Applying Itô’s lemma to
log[e−(ρ+δ+λi)t(1 − γ)vi(x(t), y(t))] leads to:

e−(ρ+δ+λi)tvi(xt, yt)

= vi(x, y) exp(

∫ t

0

1

vi

(Gv − (1 − k)
c1−γ
s

1 − γ
− kδ

(xs + (1 − αi)ys)
1−γ

1 − γ
− λivj)ds

+

∫ t

0

1

vi

[(viy − (1 + θi)vix)dIs + ((1 − αi)vix − viy)dDs]

+

∫ t

0

1

vi

viyyσdws −
1

2

∫ t

0

v2
iy

v2
i

σ2y2ds) (48)

where Gv ≡ 1
2
σ2y2vyy + rixvix − cvix + µiyviy − (ρ + δ)vi + λi(vj − vi) + (1 − k) c1−γ

1−γ
+

kδ (x+(1−αi)y)1−γ

1−γ
.

In particular, setting c = c∗ ≡
(

vix

1−k

)− 1
γ and following the candidate transaction policy,

we have Gv ≡ 0 in the no transaction cost region, the terms involving dI and dD are 0

and 1
vi

((1 − k) c1−γ

1−γ
+ kδ (x+(1−αi)y)1−γ

1−γ
+ λivj) is a positive bounded function bounded away

from 0. Moreover,
viyy

vi
is a bounded function for the candidate transaction policy. These

properties are proved in Lemma 5.1. Notice that using Itô’s Lemma we also have for a
sequence of stopping times τn → ∞

vi(x, y) = E[

∫ τn∧t

0

e−(ρ+δ+λi)s((1 − k)
c∗1−γ
s

1 − γ
+ kδ

(x∗
s + (1 − αi)y

∗
s)

1−γ

1 − γ
+ λivj(x

∗
s, y

∗
s))ds

+e−(ρ+δ+λi)τn∧tvi(x
∗
τn∧t, y

∗
τn∧t)]. (49)
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From (48) we see if γ > 1

0 ≥ vi(x
∗
τn∧t, y

∗
τn∧t) ≥ vi(x, y) exp(

∫ τn∧t

0

1

vi

viyy
∗
sσdws −

1

2

∫ τn∧t

0

v2
iy

v2
i

σ2y∗2
s ds)e(ρ+δ+λi)t (50)

while if 0 < γ < 1

0 ≤ vi(x
∗
τn∧t, y

∗
τn∧t) ≤ vi(x, y) exp(

∫ τn∧t

0

1

vi

viyy
∗
sσdws −

1

2

∫ τn∧t

0

v2
iy

v2
i

σ2y∗2
s ds)e(δ+λi)t (51)

We remind the reader that the exponential local martingales in Equations (50) and (51)
are in fact Class D martingales since 1

vi
viyy is bounded. Letting n → ∞ in Equation (49),

observe that random variables vi(x
∗
τn∧t, y

∗
τn∧t) are bounded by uniformly integrable random

variables and using the dominated convergence theorem (Ash)

vi(x, y) = E[

∫ t

0

e−(ρ+δ+λi)s((1 − k)
c∗1−γ
s

1 − γ
+ kδ

(x∗
s + (1 − αi)y

∗
s)

1−γ

1 − γ
+ λivj(x

∗
s, y

∗
s))ds

+e−(ρ+δ+λi)tvi(x
∗
t , y

∗
t )] (52)

We also have, using (48)

e−(ρ+δ+λi)tvi(xt, yt)

= vi(x, y) exp(

∫ t

0

1

vi

(−(1 − k)
c∗1−γ
s

1 − γ
− kδ

(x∗
s + (1 − αi)y

∗
s)

1−γ

1 − γ
− λivj)ds)

× exp(

∫ t

0

1

vi

viyyσdws −
1

2

∫ t

0

v2
iy

v2
i

σ2y2ds) (53)

Since 1
vi

(−(1 − k)−(1−k)c1−γ
s

1−γ
− kδ (xs+(1−αi)ys)1−γ

1−γ
− λivj) is a negative function bounded

away from 0, and the exponential local martingale is a Class D Martingale, we have
limt→∞ e(−δ+λi)tE[vi(x

∗(t), y∗(t))] = 0. As a result,

vi(x, y) = E[

∫ ∞

0

e−(ρ+δ+λi)s((1−k)
c∗1−γ
s

1 − γ
+kδ

(x∗
s + (1 − αi)y

∗
s)

1−γ

1 − γ
+λivj(x

∗
s, y

∗
s))ds] (54)

Next we show that given vj, vi is the value function and vice versa. We start by
considering the case γ > 1. Consider trading strategies which start with (x + ε, y), and
follow an admissible consumption and trading strategy for initial endowments (x, y), say
(c, x̂, ŷ) ∈ Θ(x, y) plus maintain εert in the risk-free account. For these strategies a simple
application of Itô’s lemma for a set of stopping times τn → ∞ lead to

vi(x + ε, y)

≥ E[

∫ τn∧t

0

e−(ρ+δ+λi)s((1 − k)
c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi)ys)
1−γ

1 − γ
+ λivj(x̂s + εers, ŷs))ds

+e−(ρ+δ+λi)τn∧tvi(x̂τn∧t + εerτn∧t, ŷτn∧t)] (55)
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From monotonicity and Part 1 of Lemma 5.1,

0 ≥ e−(ρ+δ+λi)τn∧tvi(x̂τn∧t + εerτn∧t, ŷτn∧t) ≥ e−(ρ+δ+λi)τn∧tvi(x̂τn∧t − (1 − αi)ŷτn∧t + εerτn∧t, 0)

≥ e−(ρ+δ+λi)τn∧tvi(ε, 0)

and so by the dominated convergence theorem, we can let n → ∞ to get

vi(x + ε, y) ≥ E[

∫ t

0

e−(ρ+δ+λi)s((1 − k)
c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi)ys)
1−γ

1 − γ
+ λivj(x̂s + εers, ŷs))ds

+e−(ρ+δ+λi)tvi(x̂t + εert, ŷt)]. (56)

Letting t → ∞ we have 0 ≥ e−(ρ+δ+λi)tvi(x̂t + εert, ŷt) ≥ e−(ρ+δ+λi)tvi(ε, 0) → 0. Using
the monotone convergence theorem, we then have

vi(x + ε, y) ≥ E[

∫ ∞

0

e−(ρ+δ+λi)s(
c1−γ
s

1 − γ
+ λivj(x̂s + εers, ŷs))ds]. (57)

Next, letting ε ↓ 0 using the continuity of vi and the monotone convergence theorem,
we have

vi(x, y) ≥ E[

∫ ∞

0

e−(ρ+δ+λi)s((1− k)
c1−γ
s

1 − γ
− kδ

(xs + (1 − αi)ys)
1−γ

1 − γ
+λivj(xs, ys))ds] (58)

for all feasible consumption trading strategies in Θ(x, y). This implies v is the value
function given vj.

In the case 0 < γ < 1, we have

vi(x, y) ≥ E[

∫ τn∧t

0

e−(ρ+δ+λi)s((1 − k)
c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi)ys)
1−γ

1 − γ
+ λivj(xs, ys))ds

+e−(ρ+δ+λi)τn∧tvi(xτn∧t, yτn∧t)] (59)

and vi(xt, yt) ≥ 0. This leads immediately to the conclusion

vi(x, y) ≥ E[

∫ ∞

0

e−(ρ+δ+λi)s((1− k)
c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi)ys)
1−γ

1 − γ
+ λivj(xs, ys))ds] (60)

for all feasible consumption trading strategies from initial position (x, y). This implies vi

is the value function given vj. Similar argument shows that vj is the value function given
vi.

Finally, we show that vi and vj are the values in Regimes i and j respectively. First,
we define

vi(x, y) = sup
(c,D,I)∈Θ(x,y)

E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt] (61)
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Let vn(x, y) = vj(x, y) if n is odd and vn(x, y) = vi(x, y) if n is even. Let τn be the time
of the nth regime change. The above proof implies

vi(x, y) = E[

∫ τ1

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt+e−(ρ+δ)τ1v1(x
∗
τ1

, y∗
τ1

)]

(62)
and for all feasible consumption-investment strategies

vi(x, y) ≥ E[

∫ τ1

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt+e−(ρ+δ)τ1v1(xτ1 , yτ1)]

(63)
Given time τ1 information, we also know

v1(xτ1 , yτ1) = Eτ1 [

∫ τ2

τ1

e−(ρ+δ)(t−τ1)e−(ρ+δ)t

(

(1 − k)
c∗1−γ
t

1 − γ
+ kδ

(x∗
t + (1 − αi)y

∗
t )

1−γ

1 − γ

)

dt

+e−(ρ+δ)(τ2−τ1)v2(x
∗
τ2

, y∗
τ2

)] (64)

and for all feasible consumption-investment strategies

v1(xτ1 , yτ1) ≥ E[

∫ τ2

τ1

e−(ρ+δ)(t−τ1)e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt

+e−(ρ+δ)(τ2−τ1)v2(xτ2 , yτ2)]. (65)

Inserting these expressions into Equations (62) and (63) yields

vi(x, y) = E[

∫ τ2

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt+e−(ρ+δ)τ2v2(x
∗
τ2

, y∗
τ2

)]

(66)
and

vi(x, y) ≥ E[

∫ τ2

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt+e−(ρ+δ)τ2v2(xτ2 , yτ2)]

(67)
Continuing in this manner we have

vi(x, y) = E[

∫ τn

0

e−(ρ+δ)t

(

(1 − k)
c∗1−γ
t

1 − γ
+ kδ

(x∗
t + (1 − αi)y

∗
t )

1−γ

1 − γ

)

dt+e−(ρ+δ)τnvn(x∗
τn

, y∗
τn

)]

(68)
and

vi(x, y) ≥ E[

∫ τn

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
s

1 − γ
+ kδ

(xs + (1 − αi)ys)
1−γ

1 − γ

)

ds+e−(ρ+δ)τnvn(xτn
, yτn

)].

(69)
We now consider the case γ > 1. As in the previous theorem consider strategies which

start with initial position (x+ ε, y), but follow a feasible consumption and trading strategy
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for initial position (x, y) and always maintain εert in the riskless account. Very similar
arguments to those in Theorem 2.1 of Davis and Norman (1990) lead to the conclusion

vi(x + ε, y) ≥ E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xs + (1 − αi)yt)
1−γ

1 − γ

)

dt] (70)

and letting ε → 0 we have

vi(x, y) ≥ E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt] (71)

for all feasible consumption and trading strategies.
Since vn < 0 from Equation (68) it follows

vi(x, y) ≤ E[

∫ τn

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt] (72)

and since τn → ∞ almost surely as n → ∞ we have from the monotone convergence
theorem,

vi(x, y) ≤ E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c∗1−γ
t

1 − γ
+ kδ

(x∗
t + (1 − αi)y

∗
t )

1−γ

1 − γ

)

dt] (73)

Thus from Equation (71) and Equation (73) we have

vi(x, y) = E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c∗1−γ
t

1 − γ
+ kδ

(x∗
t + (1 − αi)y

∗
t )

1−γ

1 − γ

)

dt] (74)

and

vi(x, y) ≥ E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt] (75)

for all feasible trading and consumption strategies. We have proved the result for γ > 1.
When 0 < γ < 1, vn > 0. From Equation (69) we have

vi(x, y) ≥ E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c1−γ
t

1 − γ
+ kδ

(xt + (1 − αi)yt)
1−γ

1 − γ

)

dt] (76)

for all feasible consumption and trading strategies. To conclude the proof, we need to show
that

lim
n→∞

E[e−(ρ+δ)τnvn(x∗
τn

, y∗
τn

)] = 0 (77)

since this and Equation (68) would imply

vi(x, y) = E[

∫ ∞

0

e−(ρ+δ)t

(

(1 − k)
c∗1−γ
t

1 − γ
+ kδ

(x∗
t + (1 − αi)y

∗
t )

1−γ

1 − γ

)

dt] (78)
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Equation (77) follows from the observation that

lim
τn→∞

E[

∫ ∞

τn

e−(ρ+δ)t

(

(1 − k)
c∗1−γ
t

1 − γ
+ kδ

(x∗
t + (1 − αi)y

∗
t )

1−γ

1 − γ

)

dt] → 0,

so

lim
n→∞

E[e−(ρ+δ)τn

(

(1 − k)
c∗1−γ
τn

1 − γ
+ kδ

(x∗
τn

+ (1 − αi)y
∗
τn

)1−γ

1 − γ

)

] = 0

and

0 ≤ vn(x, y) ≤ K

(

(1 − k)
c∗1−γ
τn

1 − γ
+ kδ

(x∗
τn

+ (1 − αi)y
∗
τn

)1−γ

1 − γ

)

(79)

for a suitable constant K which can be derived from the homotheticity properties of vi and
vj (implied by Parts 2 and 4 in Lemma 5.1).

Proof of Proposition 2.4 We split up the solvency region in these five(see Figure
2). (a) For αB ∧ αb − 1 < z < zB,

ψB(z) =
AB

1 − γ
(z + 1 − αB)1−γ, ψb(z) =

Ab

1 − γ
(z + 1 − αb)

1−γ.

(b) For zB ≤ z ≤ z̄B, ψB satisfies the HJB equation

βB
2 z2ψ′′

B(z) + βB
1 zψ′

B(z) + βB
0 ψB(z) +

δ(z + 1 − αB)1−γ

1 − γ
+ λBψb(z) = 0,

and

ψb(z) =
Ab

1 − γ
(z + 1 − αb)

1−γ.

Therefore, by using the method of variation of parameters we can obtain that,

ψB(z) = C1Bzξ1B + C2Bzξ2B + ψp
B(z).

(c) For z̄B < z < zb,

ψB(z) =
BB

1 − γ
(z + 1 + θB)1−γ, ψb(z) =

Ab

1 − γ
(z + 1 − αb)

1−γ .

(d) For zb ≤ z ≤ z̄b,

ψB(z) =
BB

1 − γ
(z + 1 + θB)1−γ,

and ψb satisfies the HJB equation

βb
2z

2ψ′′
b (z) + βb

1zψ
′
b(z) + βb

0ψb(z) +
δ(z + 1 − αb)

1−γ

1 − γ
+ λbψB(z) = 0.
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Using the method of variation of parameters yields that, for some constants C1b, C2b,

ψb(z) = C1bz
ξ1b + C2bz

ξ2b + ψp
b (z).

(e) Finally, for z̄b < z < ∞,

ψB(z) =
BB

1 − γ
(z + 1 + θB)1−γ, ψb(z) =

Bb

1 − γ
(z + 1 + θb)

1−γ .

The smooth pasting conditions(which are twelve) on zi and z̄i make twelve constants
zi, z̄i, C1i, C2i, Ai, and Bi (i ∈ {B, b}) determined uniquely.

Proof of Proposition 2.5 Using the argument similar to the proof Proposition 2.4,
we can prove the first two statements. Thus we assume zb ≤ z ≤ z̄B.

In this region, ψi (i ∈ {B, b}) satisfies

βi
2z

2ψ′′
i (z) + βi

1zψ
′
i(z) + βi

0ψi(z) + δ
(z + (1 − αi))

1−γ

1 − γ
+ λiψj(z) = 0. (80)

First we find the homogeneous solutions of (80) with the conjecture of the following ho-
mogeneous solutions

ψh
B(z) = zN for ψB(z), and ψh

b (z) = azN for ψb(z),

for some constants N and a. Then the the system (80) becomes















βB
2 N(N − 1)zN + βB

1 NzN + βB
0 zN + bλBzN + δ

(z + 1 − αB)1−γ

1 − γ
= 0

βb
2bN(N − 1)zN + βb

1bNzN + βb
0bz

N + λbz
N + δ

(z + 1 − αb)
1−γ

1 − γ
= 0.

(81)

If we consider only the homogeneous parts of the system (81), we can determine the
constants N and b from the following two equations:

βB
2 N2 + (βB

1 − βB
2 )N + βB

0 + aλB = 0 (82)

a(βb
2N

2 + (βb
1 − βb

2)N + βb
0) + λb = 0. (83)

After solving bλB from (82) and plugging into (83), we can obtain a 4th order polynomial
equation for N :

−(βB
2 N2 + (βB

1 − βB
2 )N + βB

0 )(βb
2N

2 + (βb
1 − βb

2)N + βb
0) + λbλB = 0. (84)

Let Nj (j = 1, 2, 3, 4) be the four solutions to (84) and accordingly

aj = − 1

λB

(βB
2 N2

j + (βB
1 − βB

2 )Nj + βB
0 ). (85)
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Then the homogeneous solution can be represented as

(

ψh
B(z)

ψh
b (z)

)

=
4

∑

j=1

Dj

(

1
aj

)

zNj , (86)

for some constants Dj’s (j = 1, 2, 3, 4).
In order to find the particular solution we use the method of variation of parameter.
From (80), we derive the matrix equation

X ′(z) = P (z)X(z) + G(z), (87)

where, for the particular solutions ψp
B for ψB and ψp

b for ψb,

X(z) =









ψp
B(z)

ψp
b (z)

ψp
B
′(z)

ψp
b
′(z)









, G(z) =











0
0

− λ
βB
2

(z+1−αB)1−γ

(1−γ)z2

− λ
βb
2

(z+1−αb)
1−γ

(1−γ)z2











(88)

and

P (z) =











0 0 −1 0
0 0 0 −1

βB
0

βB
2 z2

λB

βB
2 z2

βB
1

βB
2 z

0

pb

βb
2z2

βb
0

βb
2z2 0

βb
1

βb
2z











. (89)

Also set the fundamental solution Φ(x) to be

Φ(z) =









zN1 zN2 zN3 zN4

a1z
N1 a2z

N2 a3z
N3 a4z

N4

N1z
N1−1 N2z

N2−1 N3z
N3−1 N4z

N4−1

a1N1z
N1−1 a2N2z

N2−1 a3N3z
N3−1 a4N4z

N4−1









. (90)

Note that the fundamental solution satisfies the equation

Φ′(z) = P (z)Φ(z). (91)

Assume Φ(z) is invertible for all zb ≤ z ≤ z̄B.
The method of variation of parameter is started by letting

X(z) ≡ Φ(z)U(z) ≡ Φ(z)(u1(z), u2(z), u3(z), u4(z))> (92)

From (87) and (91), we obtain
Φ(z)U ′(z) = G(z), (93)

which implies that

U(z) =

∫ z

zB

Φ−1(t)G(t)dt. (94)
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Thus the particular solution is

(

ψp
B(z)

ψp
b (z)

)

=

(

∑4
j=1 uj(z)zNj

∑4
j=1 ajuj(z)zNj

)

. (95)

Consequently,

(

ψB(z)
ψb(z)

)

=

(

ψh
B(z)

ψh
b (z)

)

+

(

ψp
B(z)

ψp
b (z)

)

=

(

∑4
j=1(Dj + uj(z))zNj

∑4
j=1 aj(Dj + uj(z))zNj

)

. (96)

Proof of Proposition 2.6 Note that, in the liquid regime, ψL(z) must be of the
form

ψL(z) = AL
(z + 1)1−γ

1 − γ
,

for some constant AL. Thus in the NT region of the illiquid regime ψL(z) satisfies the HJB
equation

βI
2z

2ψ′′
I (z) + βI

1zψ
′
I(z) + βI

0ψI(z) + g(z) = 0

where g(z) = δ (z+1−αI)1−γ

1−γ
+ λIAL

(z+1)1−γ

1−γ
. By using the method of variation of parameters

we derive that ψI(z) is of the form

ψI(z) = C1z
m + C2z

ξ − 1

βI
2

∫ z̄I

z

tmzξ − tξzm

(m − ξ)tm+ξ+1
g(t)dt,

where m =
(βI

2−βI
1 )+

√
(βI

2−βI
1 )2−4βI

0βI
2

2βI
2

> 0 and ξ =
(βI

2−βI
1 )−

√
(βI

2−βI
1 )2−4βI

0βI
2

2βI
2

< 0. Since zI = 0

and ξ < 0, we must have

C2 =

∫ z̄I

0

g(t)

βI
2(m − ξ)tξ+1

dt. (97)

The smooth pasting conditions at z̄I yields

C1z̄
m
I + C2z̄

ξ
I =

BI

1 − γ
(z̄I + 1 + θI)

1−γ , (98)

C1mz̄m−1
I + C2ξz̄

ξ−1
I = BI(z̄I + 1 + θI)

−γ, (99)

and

C1m(m − 1)z̄m−2
I + C2ξ(ξ − 1)z̄ξ−2

I − g(z̄I)

βI
2 z̄

2
I

= −γBI(z̄I + 1 + θI)
−γ−1, (100)

Solving (98) and (99), we have

C1 = C2
(ξ − 1 + γ)z̄ξ

I + ξ(1 + θI)z̄
ξ−1
I

(1 − γ − m)z̄m
I − m(1 + θI)z̄

m−1
I

(101)
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BI = C2
(1 − γ)(m − ξ)z̄ξ

I

(z̄I + 1 + θI)−γ((m − 1 + γ)z̄I + m(1 + θI))
. (102)

Plugging (97), (101), and (102) into (100), we can solve AL in terms of z̄I :

AL =
δ[z̄ξ

Ih(z̄I)g1 − (m − ξ)(z̄I + 1 − α)1−γ ]

λI [(m − ξ)(z̄I + 1)1−γ − z̄ξ
Ih(z̄I)g2]

, (103)

where

g1 =

∫ z̄I

0

t−ξ−1(t + 1 − αI)
1−γdt, g2 =

∫ z̄I

0

t−ξ−1(t + 1)1−γdt

and

h(z) =
m(m − 1)[(ξ − 1 + γ)z + ξ(1 + θI)] − γ(1 − γ)(m − ξ)z2/(z + 1 + θI)

(1 − γ − m)z − m(1 + θI)
+ ξ(ξ − 1).

In the liquid regime, the HJB must hold at z∗L:

−ALγβL
2 z∗2L (z∗L+1)−γ−1+ALβL

1 z∗L(z∗L+1)−γ+(ALβL
0 +δ)

(z∗L + 1)1−γ

1 − γ
+λLψI(z

∗
L) = 0. (104)

The optimality of z∗L implies that

AL((µL − rL)(z∗L + 1)− γσ2
L) = λL(z∗L + 1)γ+2ψ′

I(z
∗
L)− λL(1− γ)(z∗L + 1)γ+1ψI(z

∗
L). (105)

We can reduce equations (97)-(105) to two equations in z̄I and z∗L, which can be solved
numerically.

Proof of Proposition 3.1 Given the optimal transaction policy, any steady-state
density function φ of zt must have the form of (34). In addition, for any C2 functions
f(z, B) and f(z, b) such that f ′(zB, B) = f ′(z̄B, B) = f ′(zb, b) = f ′(z̄b, b) = 0, we must
have,

∫ z̄B

zB

(
1

2
σ2

Bz2f ′′(z, B) + µzB(z)f ′(z, B) + λB(f(zb, b) − f(z, B)))φB(z)dz

+

∫ z̄b

zb

(
1

2
σ2

bz
2f ′′(z, b) + µzb(z)f ′(z, b) + λb(f(z̄B, B) − f(z, b)))φb(z)dz = 0.

By the property of the continuous time Markov chain, we must have

∫ z̄B

zB

φB(z)dz =
λb

λb + λB

and

∫ z̄b

zb

φb(z)dz =
λB

λb + λB

.

Then by integration by parts, we have

∫ z̄B

zB

[1

2
σ2

B(z2φB(z))′′ − (µzB(z)φB(z))′ − λBφB(z)
]

f(z, B)dz
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+

∫ z̄b

zb

[1

2
σ2

b (z
2φb(z))′′ − (µzb(z)φb(z))′ − λbφb(z)

]

f(z, b)dz

+ f(zB, B)
[1

2
σ2

B(z2
Bφ′

B(zB) + 2zBφB(zB)) − µzB(zB)φB(zB)
]

− f(z̄B, B)
[1

2
σ2

B(z̄2
Bφ′

B(z̄B) + 2z̄BφB(z̄B)) − µzB(z̄B)φB(z̄B) − λbλB

λb + λB

]

+ f(zb, b)
[1

2
σ2

b (z
2
bφ

′
b(zb) + 2zbφb(zb)) − µzb(zb)φb(zb) +

λbλB

λb + λB

]

− f(z̄b, b)
[1

2
σ2

b (z̄
2
bφ

′
b(z̄b) + 2z̄bφb(z̄b)) − µzb(z̄b)φb(z̄b)

]

= 0.

Since f(z, B) and f(z, b) are arbitrary C2 functions (only need to satisfy f ′(zB, B) =
f ′(z̄B, B) = f ′(zb, b) = f ′(z̄b, b) = 0), we must have that each bracketed term is equal to
zero, which implies that Proposition 1 holds after some simplification.

Proof of Proposition 3.3 Define Wt ≡ xt + yt and πt ≡ yt

xt+yt
. Direct application

of Itô’s lemma to e−(ν+λi)tCi(xt, yt) yields that

e−(ν+λi)sCi(xs, ys)) − Ci(x, y))

=

∫ s

0

e−(ν+λi)t

(

1

2
σ2z2g′′

i (z) −
(

(µi − ri)z +

(

ψ′(z)

1 − k

)−1/γ
)

g′
i(z) − (ν + λi − µi)gi(z)

)

ytdt

+

∫ s

0

e−(ν+λi)t(gi(zt) − (zt + 1 + θi)g
′
i(zt))dI∗

t +

∫ s

0

e−(ν+λi)t(gi(zt) − (zt + 1 − αi)g
′
i(zt))dD∗

t

+

∫ s

0

e−(ν+λi)t(gi(zt) − ztg
′
i(zt))σytdwt

= −
∫ s

0

e−(ν+λi)t[θidI∗
t + αidD∗

t + λiCj(xt, yt)dt] +

∫ s

0

e−(ν+λi)t(gi(zt) − ztg
′
i(zt))σπtWtdwt,

(106)

where the second equality follows from (39)-(41). Then we have

dWt = riWtdt + (µi − ri)πtWtdt + σπtWtdwt − αidD∗
t − θidI∗

t . (107)

We then have
Wt ≤ W0e

∫ t

0 (ri+(µi−ri)πs)dsNt, (108)

where
Nt ≡ e−

1
2

∫ t

0 (πsσ)2ds+
∫ t

0 πsσdws

is a martingale. Thus

0 ≤ E[e−(ν+λi)tCi(xt, yt)] = E[e−(ν+λi)tπtWtgi(xt/yt)]

≤ E[e−(ν+λi)tMWt]
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≤ ME[e−(ν+λi)te
∫ t

0 (ri+(µi−ri)πs−ν−λi)dsNt]

≤ Me−(ν+λi−ri−(µi−ri)/(zB+1))t → 0, as t → ∞, (109)

where M is a constant, the first inequality follows from the boundedness of the optimal πt

and g(.), the second inequality follows from (108), the third inequality holds because the
optimal πt is bounded below by 1/(zB + 1) and E[Nt] = 1, and the convergence follows
from the first assumption in the proposition.

In addition, (108) also implies that the last term in (106) is a martingale. Therefore,
taking expectation and limit as t → ∞ and using (106) and (109), we have that

ygi(x/y) = E

[∫ τi

0

e−νt(θidI∗
t + αidD∗

t ) + e−ντiCj(xτi
, yτi

)

]

.

The expressions in (42) and (42) follow from the fact that in these transaction regions
the investor immediately transacts to the corresponding boundary, incurring the costs
represented by the first terms. This completes the proof.
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