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Abstract

This paper examines the daily time-series properties of aggregate corporate bond
credit spreads, using nine Merrill Lynch option-adjusted spread indices with ratings
from AAA to CCC for the period of January 1997 through August 2002. The paper
introduces an econometric model of credit spreads that incorporates autocorrelation,
conditional heteroscedasticity, time-varying jumps, Treasury bond and/or equity mar-
ket factors, and index rebalancing effects. The time-series of credit spread indices are
found to be mean-reverting in the long-run through the index rebalancing effect. We
also find that the lagged Russell 2000 index return and the lagged changes in the slope
of the Treasury yield curve are predictive in forecasting the conditional distribution of
credit spreads. Meanwhile, the lagged level of the CBOE VIX index is found to be
a good indicator of the probability of jumps in the logarithm of credit spreads. The
model diagnostic test shows that the jump specification is crucial in capturing the lep-
tokurtic behavior in the daily time-series of log-credit spreads. Finally, the paper finds
that the ARCH-jump specification outperforms the specification without jumps in the
out-of-sample, one-step-ahead forecast of credit spreads.
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1 Introduction

Assessing and managing the credit risk of risky corporate debt instruments has become a

major area of interest and concern to academics, practitioners and regulators in the past

decade, especially in the aftermath of a series of credit crises such as the Russian default

and the Enron and the WorldCom collapses. In the academic field, there has been a fast

growing literature on models of credit risk measurement and management.1 In the industry,

the market in credit risk transfer, especially the market of corporate credit derivatives, has

been expanding rapidly, and is becoming increasingly relevant in the business of commercial

banks, insurance companies, pension/investment funds and hedge funds. The market in

credit risk transfer is evolving into an important fragment of the global financial markets.

To help investors keep up with the latest information in the different segments of the

credit markets and assist client in trading and managing portfolios, major investment banks

and rating agencies have constructed various credit indices to serve as market indicators

and as references for structured credit products. These credit indices are either based on the

corporate-Treasury credit spread (such as the credit spread indices constructed by Lehman

Brothers, Salomon Smith Barney, Merrill Lynch) or the newly available credit default swap

spread data. For risk management purposes, investors holding a large corporate bond

portfolio may find it more convenient to hedge themselves against changes in credit risk at

the aggregate level instead of at individual issue level. For example, the group of banks

launching the iBoxx company in 2001 have integrated a variety of iBoxx indices, including

the credit default swap (CDS) indices, into their research products and used those indices

as a basis for research recommendation. Given the surging demand for portfolio credit risk

management, it would not surprising to see these credit index based products gaining more

popularity in the near future.

Given the rapid development of the credit risk product market, a thoughtful under-

standing of the time-series behavior of credit indices, especially under market turbulence,

would serve the interest of a variety of investors. The paper of Prigent, Renault and Scail-

let (2001) in Risk magazine demonstrates the increasing interest from practitioners on this

issue. Capturing the distributional characteristics of credit spreads and its interaction with

equity markets and Treasury markets over various market conditions would provide finan-

cial decision makers with the needed insights about the nature of the risk in this market and

the risk in the various newly developed credit risk products. In particular, as illustrated

by the daily credit spread indices from Merrill Lynch in Figure 1, similar to the dynamics
1See, for example, Caouette, Altman, and Narayanan (1998), Saunders and Allen (2002), Duffie and

Singleton (2003) and references therein.
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of exchange rates and interest rates, the systematic variation in U.S. corporate bond credit

spreads is very sensitive to financial turmoils around the world, and experiences fairly large

movements surrounding these events such as the outbreak of the Eastern Asian financial

crisis, the Russian bond default and the collapse of LTCM, and the Eron and WorldCom de-

faults. The leptokurtic behavior in financial time-series surmounts paramount importance

in the pricing and hedging of related derivatives products and managing the associated

risk. In the past decades, there has been substantial efforts by researchers to understand

and model the leptokurtic properties in the time-series of interest rates and exchange rates

through time varying volatility or/and jump models.2 By contrast, despite the increasing

interest in credit risk from practitioners, regulators and academics, little has been known

about the nature of the leptokurtosis in the credit index time-series and the role of jumps

and time varying volatility in characterizing the systematic variation in credit risk.

Existing studies on the time-series of credit indices are limited. Using daily investment-

grade option-adjusted spread indices from Bloomberg between October, 1995 and March,

1997, Pedrosa and Roll (1999) model the leptokurtic behavior in the unconditional distri-

bution of daily log-spread changes as a mixture of Gaussian distributions with constant

probabilities. They also find evidence of GARCH-type autocorrelation in the volatility of

log-spread changes. The Gaussian mixture and the GARCH model are estimated sepa-

rately as two alternative specifications. Prigent, Renault and Scaillet (2001) measure the

level of aggregate credit spreads in the market as the difference between yields on Moody’s

corporate indices (Aaa and Baa) and the 10 year (constant maturity) Treasury yield. This

data is used to estimate parameters in a CKLS type (Chan et al., 1992) CEV model and

a model of an Ornstein-Uhlenbeck process with jumps. Both studies have not investigated

whether GARCH model or jumps alone can fully describe the leptokurtic behavior in credit

spread indices, and have not considered the information contained in equity market and

Treasury markets in forecasting the conditional distribution of credit spread indices. Given

the intuition implied by the Merton (1974) type structural corporate bond pricing mod-

els, it is implausible to study the time-series behavior of aggregate credit spreads without

considering its relationship with the changing environment in equity markets and Treasury

markets. In summary, the limited existing studies on credit spreads have suffered from

serious data problems, and the role of time varying volatility, jumps, and the information

content of equity market and Treasury market variables have not been investigated yet.

In this paper, we investigate the daily time-series behavior of the option-adjusted cor-
2Examples of this type of empirical studies include Das (2002) on short-term interes rates, and Vlaar

and Palm (1993) and Bekaert and Gray (1996) on exchange rates.
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porate bond credit spread indices from Merrill Lynch3 for nine rating/maturity categories

over January 1997 through August 2002. This includes the AA-AAA rated corporate bond

indices with maturity of 1-10 years, 10-15 years, and 15+ years, the BBB-A rated corporate

bond indices with maturity of 1-10 years, 10-15 years, and 15 years, and the BB rated, B

rated and CCC-Lower rated high-yield bond indices. We propose an econometric model for

the time-series of aggregate credit spreads that incorporates autocorrelation, conditional

heteroscedasticity, time varying jumps, Treasury bond and/or equity market factors, and

index rebalancing effects. Our specification offers several advantages. First, the use of a

model with both time varying volatility and jumps allows a comparison of these two specifi-

cations in capturing the leptokurtic behavior in credit spread indices. For example, studies

on the time-series of equity index, interest rates and exchange rates all have shown that

both components are needed in describing the dynamics of those financial time series.

Second, the information contained in equity market variables and Treasury market

variables is used to forecast the movement in credit spread indices, including the probability

of jumps. The literature has documented close comovements between aggregate credit

spreads and changes in shape of the yield curve (e.g., Duffee, 1998), equity index return

and equity index return volatility (e.g., Huang and Kong, 2003) at monthly frequency.

Given this evidence, an interesting and important question to ask is whether the shape of

the Treasury yield curve and the equity index movement are predictive in forecasting the

distribution of aggregate credit spreads.

Finally, like equity indices, a corporate bond index is often rebalanced, usually at a

monthly frequency, to maintain the qualifying criteria for the index. Credit spreads on

index rebalancing days are implicitly bounded by some absorbing boundaries for rating

based corporate bond indices. We propose a bounded transformation of the log-normal

distribution for credit spreads on rebalancing days. The rebalancing day credit spreads are

dependent on the credit spread level right before the rebalancing and also on equity and

Treasury market variables. Under certain regularity conditions, this specification allows

for credit spreads to behavior like a random walk in between index rebalancing days while

maintain mean-reverting in the long-run through the rebalancing effect. This reconciles

the near unit-root property of log-spreads observed in the Merrill Lynch credit spread

data (also reported by Pedrosa and Roll, 1999), and the strong economic argument for

credit spreads to be mean-reverting. Beyond these improvements in model specification
3For a corporate bond with embedded options such as call provisions, the option-adjusted spread calcu-

lation begins by using statistical methods to generate a large number of possible interest rate paths that can

occur over the term of the bond and measures the resulting impact of the scenarios on the bond’s value. By

averaging the results of all the scenarios, the implied spread over the Treasury yield curve is determined.

4



over previous studies, we also use a variety of statistical measures to assess the in-sample

and out-of-sample performance of the model.

We use the Merrill Lynch credit spread indices for a few reasons. First, Merrill Lynch is a

major market maker in the corporate bond market and a reliable source of high quality bond

prices. Daily prices of corporate bonds used to calculate various Merrill Lynch corporate

bond indices and the associated option-adjusted credit spread indices are based on the bid

side of the market at 3:00 PM New York time, and obtained from the Merrill Lynch trading

desk. Yields on several Merrill Lynch corporate bond indices are in fact quoted in the Wall

Street Journal every day as market indicators. Accordingly we are confident about the

quality of the data that form all the Merrill Lynch credit spread indices.

Second, our objective is to examine the time-series properties of aggregate credit spreads

under different market conditions. Hence, we seek credit spread indices that are at high-

frequency and span both tranquil and volatile market conditions. The Merrill Lynch credit

spread indices are incepted on December 31 of 1996, and calculated daily since then. The

indices are classified based on ratings and maturity. By contrast, the option-adjusted

spread series in the Salomon Yield Book are only available at monthly frequency, and

there is no easily accessible option-adjusted spread data on the various Lehman Brothers

corporate bond indices. The Merrill Lynch data cover a horizon that is featured with several

major financial and credit crises such as the Eastern Asian financial crisis, Russian bond

default and the collapse of LTCM, and the Eron and WorldCom defaults. The behavior

of aggregate credit spreads under these extremely severe downside markets would provide

valuable insights on the risk embedded in those newly developed portfolio credit products,

such as those based on the iBoxx credit default swap indices. Moreover, as pointed out by

Black (1976), if we want to study changes in volatility, data at daily frequency are required

to provide accurate estimation of volatility within a short period of time so that significant

changes in volatility could be detected. The Merrill Lynch data stand out as the best

available data for studying the time-series properties of aggregate corporate bond credit

spreads.

Third, the Merrill Lynch index is a market-value weighted average of the option-adjusted

credit spread on each individual component bond. The option-adjusted spread for each

individual bond is calculated based on the bid price from the Merrill Lynch trading desk.

Accordingly, the Merrill Lynch credit spread indices offers a relatively clean measure of

the level of credit spreads within a given maturity, industry, and credit rating category.

Moreover, the ML high-yield indices each cover a substantial amount of high-yield issues (see

Appendix C). Existing studies on the time-series of aggregate credit spreads have only

focused on investment grade bonds because of data constraints. A study of high-yield
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indices may help understand the general dynamics of credit spreads in the high-yield bond

market.

The empirical findings reported in this paper can be summarized as follows. First, we

find ample support for time varying volatility and jumps in the time series of credit spread

indices. In particular, incorporating jumps greatly improves the model’s in sample fit.

When the model only incorporates the ARCH type time varying volatility, the model pro-

duces standardized residuals with large sample leptokurtosis in the range of 7 to 24. When

jumps are included in the specification, the sample leptokurtosis in the standardize residu-

als is less than one. Results from a one-step ahead point forecast of credit spreads using a

sub-sample of the data show evidence that on average incorporating jumps yields smaller

forecasting errors as measured by the root mean squared error and the mean absolute error.

Second, we find that the one-day lag of the level of equity index option-implied volatility,

as measured by the Chicago Board of Exchange (CBOE) VIX index, is a reliable indicator

of the time varying probability of jumps in log-spreads for both investment-grade and high-

yield corporate bonds. There are two reasons why the VIX index helps capture the variation

in the jump probability in credit spreads. First, there might be information spill-over effect

from the equity index option market to the credit market, as the equity index option market

is more liquid and the new information regarding the state of the economy might be first

revealed there. Meanwhile, large movements in log-spreads have the tendency to cluster

over time, especially after major financial crises. Although the GARCH type volatility per-

sistence model can partly capture this high volatility cluster surrounding market turmoils,

the estimated GARCH parameters reflect the degree of volatility persistence over the whole

sample period, and could not recognize the extra persistence in volatility after the crisis.

However, the equity index option-implied volatility typically increases enormously follow-

ing these crises. It improves the model’s fit by allowing the jump probability in aggregate

credit spreads depend on the one-day lagged level of the VIX index so that some of the

subsequent large movements are recognized as jumps. Evidence reported here suggest a

close relationship between equity index option-implied volatility and the volatility of ag-

gregate credit spreads. This is consistent with the implications from structural corporate

bond pricing models.

Third, the one-day lags of the Russell 2000 index return and the change in the slope

of the Treasury yield curve are found to be predicative in forecasting the movements of

aggregate credit spreads. There is a negative relationship between returns on the Russell

2000 index and the subsequent changes in log-spreads. This relationship is statistically

significant at the 5% level for the AA-AAA rated 15+ Years index, the BBB-A rated

indices, and all high-yield indices, and is both statistically and economically stronger for
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lower rated bonds. If, say, the Russell 2000 index dips by 1% on day t, credit spreads on BB

rated corporate bonds are expected to climb up by about 0.11% (both are using continuous

compound) on day t+1. If the credit spread on BB rated corporate bond is at 300 basis

points on day t, the expected increase on day t+1 is around 0.3 basis point. Again, this

negative relationship is consistent with the intuition from the structural corporate bond

pricing models. A steepening Treasury yield curve typically indicates an economic recovery

and is accompanied by lower level of credit spreads. Using the one-day lagged value of

changes in the Treasury yield curve as a predictor, we find some evidence that increases

in the slope of the Treasury yield curve on day t are followed by lower credit spreads on

day t+1. This negative relationship is significant at the 5% level for the AA-AAA rated

1-10 Years index and 10-15 Years index, and the BBB-A rated 1-10 years index and 15+

Years index. If the slope of the Treasury yield curve increases 10 basis points on day t, the

expected drop in credit spreads is about 0.3% for the AA-AAA rated indices and 0.15%

for the BBB-A rated indices. For high-yield bonds, however, the parameter estimate is all

positive and insignificant. This intriguing difference between investment-grade bonds and

high-yield bonds calls for more investigations. Changes in the level of interest rates are

found not predictive for log-spread changes.

Finally, the distribution of credit spreads on index rebalancing days is special and should

be modeled carefully. Treating the distribution of credit spreads on rebalancing days just

like any other non-rebalancing days is likely to significantly bias the parameter estimate of

some credit spread series, since part of the change in spreads is from the changes in the index

component that is not exactly homogenous.4 The results from our bounded distribution

model for rebalancing day spreads show that the distribution of credit spreads within the

bounds depends on the level of spread before rebalancing, but not on Russell 2000 index

returns or changes in the slope of the Treasury yield curve. Meanwhile, the estimates of the

autocorrelation coefficient all fall into the range that makes the credit spread indices mean-

reverting in the long-run. We also find that the estimation results for non-rebalancing days

are robust with respect to different assumptions about the degree of memory refreshing in

the autocorrelations after rebalancing days.

The remainder of the paper is organized as follows. Section 2 describes the Merrill Lynch

credit spread data set used in our empirical analysis. Section 3 outlines the econometric
4In an exercise not reported here, we estimate the econometric model using all observations, assuming

rebalancing day spreads are no difference from normal days, and compare the results with those from an

estimation using only non-rebalancing days. The estimates of jump volatility of the BBB-A 10-15 Years

index, the BB rated index and the C rated index drop from 5.45%, 6.83%, and 6.41% to 4.16%, 5.01% and

2.19% respectively. The estimates of the coefficient on the VIX index are also significantly different for most

indices.

7



framework we propose for modeling the time-series of aggregate credit spreads. Section 4

contains the estimation results and diagnostic tests. Section 5 discusses the out-of-sample

forecast issue and the implications for the credit spread risk measurement and management.

Section 6 concludes.

2 The Credit Spread Data

The credit spread data used in this study are the daily Merrill Lynch option-adjusted

spreads of corporate bond indices. Each index is a market value weighted average of in-

dividual credit spreads on component bonds within a given maturity, industry, and credit

rating category. Daily prices of corporate bonds used to calculate the credit spread are

based on the bid side of the market at 3:00 P.M. New York time, and obtained from the

Merrill Lynch trading desk. Each index is rebalanced on the last calendar day of each

month to maintain its qualifying criteria; see Appendix B for a detailed description of the

rebalancing procedure and for the number of issues included in each index on rebalanc-

ing days. Except for the AA-AAA rated 10-15 Years index, all the other indices typically

contain a large number of bond issues. Issues that no longer meet qualifying criteria for

a given index are dropped from the index and new issues that meet the qualifying criteria

are included for the following month. The dynamics of credit spreads of a given index

thus reflects the spread risk of a corporate bond portfolio that is regularly rebalanced to

maintain its characteristics on rating, maturity, and amount outstanding. We believe that

these ML data are of high quality since as mentioned earlier, yields on several Merrill Lynch

corporate bond indices are quoted in the Wall Street Journal.

For investment-grade corporate bonds, we obtain industrial corporate credit spread

indices for three maturities, 1-10 years, 10-15 years, and 15+ years and two rating groups,

AA-AAA and BBB-A, and as a result, have six indices in total. These indices track the

performance of US dollar-denominated investment-grade public debts of industrial sector

corporate issuers, issued in the US domestic bond market. For high-yield corporate bonds,

Merrill Lynch has credit spread indices for three credit ratings: BB, B and CCC-Lower.

The industry composition of these high-yield indices is not available. We have in total 9

series of credit spreads with different rating and maturity categories. The sample period

is from December 31, 1996 (the inception date of the Merrill Lynch option-adjusted credit

spread indices) through August 30, 2002.

The original credit spread series we obtained contain data on weekends or holidays. To

ensure that the credit spread data we use reflect market information, we restrict our analysis

to NYSE trading days. This is done by matching the credit spread data with the S&P 500
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index data over the sample period. When no match is found, we drop the corresponding

observation(s) from the credit spread series. This results in 1,425 daily observations for each

ML credit spread index. Figures 1-1, 1-2 and 1-3 plot credit spreads of the AA-AAA rated

indices, the BBB-B rated indices and the high-yield indices respectively. Figure 2 plots the

changes in log-credit spreads on non-rebalancing days (multiplied by 100). One can see

from the figure that spread changes exhibit volatility cluster and large spikes, especially

during the Asian financial crisis, the Russian and LTCM defaults and the September 11

event. The changes in investment-grade credit spreads are clearly more volatile during the

first two years of the sample period.

2.1 Summary Statistics

Before estimating the model, we look at the statistical properties of the credit spread series

first. Table 1 shows the basic statistical properties of the 9 credit spread series on non-

rebalancing days. Panels A through C contain respectively the summary statistics on the

credit spread level, the basis point changes and the changes in log-credit spreads. Credit

spreads are given in basis points.

The mean and standard deviation of each credit spread series reported here are com-

parable to those reported in other studies using monthly option-adjusted spreads (e.g.,

Caouette, Altman, and Narayanan, 1998; Kao, 2000). The mean and volatility of credit

spreads are generally higher for indices of lower quality and longer maturity. The sam-

ple mean of credit spread changes is all insignificantly different from zero. Credit spread

changes of all rating/maturity categories show large excess kurtosis.

Because of the index rebalancing, we calculate the first-order serial correlation coefficient

ρ(1) of credit spread changes as defined by

ρ (1) =
Tnr∑

t=2

(
∆st −∆s

) (
∆st−1 −∆s

)
(1− dt) /

T∑

t=1

(
∆st −∆s

)2
, (1)

where Tnr is the total number of non-rebalancing days, ∆s is the sample mean of credit

spread changes, and dt is a dummy variable that takes on the value one if t is the day

right after a rebalancing day, and zeros otherwise. The first order autocorrelation in credit

spread changes (both in basis point changes and in log spread changes) is significantly

negative for investment-grade credit spreads and significantly positive for high-yield credit

spreads at 95% significant level. The first-order serial correlation coefficient of squared

credit spread changes, which is defined in the same way as Eq. (1), is significantly positive

at 95% significant level for all investment-grade credit spread series and the CCC-Lower

rated spread series.
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2.2 On Mean-Reversion of Credit Spreads

There is strong economic argument for the aggregate credit spread time-series to be mean-

reverting in the long-run, as they fluctuate with the state of the economy. For credit

spread indices based on certain rating categories and rebalanced regularly, even though in

principle the logarithm of credit spreads could fluctuate randomly between positive and

negative infinity, they are repositioned to certain implicit bounds upon rebalancing. This

implies that the credit spread index time-series is intrinsically mean-reverting in the long-

run. However, the aggregate credit spread time-series might be very persistent and takes

many years to fully revert to its long-run mean, especially since rebalancing only happens

once each month. Using the Augmented Dickey-Fuller (ADF) test, Pedrosa and Roll (1998)

could not reject the unit root hypothesis for daily investment-grade option-adjusted credit

spread indices of Bloomberg over the period October 5, 1995 to March 26, 1997. Their

failure to reject could be due to the relatively short sample period in their study or the fact

that the ADF test is known to have a very low power against near unit root alternatives.

To detect the degree of persistence in the aggregate credit spreads, below, we perform a

comprehensive unit root analysis, using either unit root or stationarity as the null hypoth-

esis, and allowing for structural breaks in the time series. When doing so, we use the whole

sample period, including rebalancing day observations. If there is obvious mean-reverting

in credit spreads in between rebalancing days, together with the bounded credit spreads

distribution on rebalancing days, we would expect more evidence against unit root through

these tests.

2.2.1 Standard Unit Root Tests

We begin with two widely used unit root tests in the literature. Let st denote the logarithm

of the credit spread on day t. We use the log-credit spreads in all the tests so that the time

series under study is not bounded from below by zero.

The augmented Dickey-Fuller (ADF) test of unit root hypothesis against the stationarity

hypothesis is based on the following regression:

st − st−1 = α + βst−1 +
p∑

j=1

νj (st−j − st−j−1) + εt. (2)

where εt is white noise. The null hypothesis of unit root is that β = 0, while the alterna-

tive hypothesis of mean-reverting is β < 0. Following Said and Dickey (1984) the initial

autocorrelation lag p is selected as a function of the sample size: p = 5N1/4 where N is the

number of observation in the regression. Based on the regression with this p, the optimal p

is then selected under the null hypothesis using the Schwartz information criterion (SIC).
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Since the assumption made in the ADF test that εt is white noise may be violated

in the credit spread data, we consider another widely used unit root test, the Phillips-

Perron (1988) test. Consider

st = α + βst−1 + εt, (3)

where εt is a zero-mean stationary process. The null hypothesis of unit root corresponds

to β = 1 and the alternative hypothesis is β < 1. This test employs a Newey-West type

variance estimator of the long-run variance of εt and is robust to a wide variety of serial

correlation and heteroscedasticity.

The estimate of the β coefficient in the ADF test and the Phillips-Perron test are

reported respectively in Panels A and B of Table 2. One can see from the table that the

unit root hypothesis could not be rejected in any of the 9 credit spread series. The mean-

reversion coefficients β in the ADF test are all negative, but insignificantly different from

zero. The estimates of β in the Phillips-Perron test are all above 0.99 and the unit root

hypothesis is not rejected at the 95% significance level.

2.2.2 Stationarity Tests

It is a well-known empirical fact that the standard unit root tests such as the ADF and

Phillips-Perron tests fail to reject the null hypothesis of a unit root in a near unit root

economic time series. The null hypothesis is always accepted unless there is strong evidence

against it. To avoid this problem, tests have been designed under the null hypothesis that

the time series under test is stationary around a long-term mean, against the alternative

that the time series has a unit root. We employ two such stationarity tests as a robustness

check of the conclusion reached from the ADF and the Phillips-Perron tests.

The first stationarity test we use is developed by Kwiatkowski, Phillips, Schmidt and

Shin (1992) (KPSS hereafter). The KPSS test assumes that the time series under test can

be decomposed into a random walk and a stationary error term as follows:

st = rt + εt, (4)

rt = rt−1 + ut, (5)

where the ut’s are i.i.d
(
0, σ2

u

)
. Under the null hypothesis that σ2

u = 0, the process under

test is stationary around a long-term mean. A Lagrange multiplier test statistic is designed

under the null hypothesis of stationarity and a large value of this statistic leads to the

rejection of stationarity hypothesis.

Another stationarity test we use here is proposed by Bierens and Guo (1993). The test
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is designed with the null hypothesis

st = µ + εt, (6)

against the alternative

∆st = st − st−1 = εt (7)

where εt is a zero-mean stationary process and µ is the long-term mean. Bierens and

Guo (1993) design four types of Cauchy tests against unit root hypothesis, based on an

auxiliary linear time trend regression. Large values of these tests would lead to the rejection

of the stationarity null hypothesis.

The results of the two stationarity tests are contained in Panel C and Panel D of Table 2.

In the KPSS test, the null hypothesis of stationarity is rejected at the 95% significance level

for all credit spread series. The Bierens and Guo Cauchy tests exhibit similar pictures. The

only evidence of stationarity is from the type 3 and type 4 Cauchy tests on the credit spread

of the AA-AAA 10-15-year index.

2.2.3 Nonlinear Augmented Dickey-Fuller Test

One possible reason for the non-stationarity shown above could be the presence of struc-

tural breaks in the credit spread time series. Perron (1989, 1990) and Perron and Vogel-

sang (1992) have shown that when a time series has structural breaks in the mean, the unit

root hypothesis is often accepted before structure breaks are taken into account, while it is

rejected after structural breaks are considered. The fact that our sample includes extraor-

dinary financial and credit events as mentioned earlier makes it very likely to have some

structural breaks.

A few unit root tests have been developed for time series with structural breaks. We use

the Bierens (1997) nonlinear augmented Dickey-Fuller (NLADF) test here since it allows

the trend to be an almost arbitrary deterministic function of time. The test is based on an

ADF type auxiliary regression model where the deterministic trend is approximated by a

linear function of Chebishev polynomials:

∆st = βst−1 +
p∑

j=1

νj∆st−j + θT P
(m)
t,n + εt, (8)

where P
(m)
t,n =

(
P ∗

0,n (t) , P ∗
1,n (t) , ..., P ∗

m,n (t)
)T

is a vector of orthogonal Chebishev polyno-

mials. Under the null hypothesis of unit root, β = 0 and θT = 0. The unit root hypothesis

is tested based on the t-statistic of β, the test statistic Am = ((n− p− 1)β) /
∣∣∣1−∑p

j=1 νj

∣∣∣,
and the F−test of the joint hypothesis that β and the last m components of θT are zero.
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Panel E of Table 2 presents the results of NLADF tests and the associated critical values.

The results show that even after any nonlinear trend breaks are taken into consideration,

the unit root hypothesis still could not be rejected.

In summary, we can conclude that there is no empirical evidence of clear mean-reversion

in the 9 credit spread series over our sample period. The behavior of aggregate credit spreads

in between index rebalancing days is close to a random walk. And even though some type

of mean-reverting behavior happens on the index rebalancing days, it could not be picked

up by any of the unit root/stationarity test. Accordingly, we need a model specification

that recognizes both the empirically observed random walk property of credit spreads in

between rebalancing days and the intrinsically mean-reverting property of credit spreads

on rebalancing days.

3 An Econometric Model of Corporate Bond Credit Spreads

In this section we describe our model of the time-series of credit spreads on corporate bond

indices. We will discuss the models for spreads on rebalancing days and on non-rebalancing

days separately. The rebalancing day model recognizes the absorbing boundaries that exist

on the distribution of rebalancing day credit spreads and the mean-reverting properties of

rebalancing day credit spreads. While for credit spreads on non-rebalancing days, we focus

on the changes in the logarithm of credit spreads. (Non-negativity of credit spreads makes

it natural to focus the time series study of credit spreads on the logarithm.)

3.1 Model Specifications

The unconditional distribution of aggregate credit spread changes exhibits large leptokurto-

sis, as reported in Table 1 and in Pedrosa and Roll (1998). Empirical studies have provided

ample evidence that the GARCH type specification is generally insufficient to describe

the dynamics of financial time series that are featured by occasional large discontinuous

movements. Models that incorporate both GARCH feature and jumps have been shown

to result in significant model improvements in the studies of exchange rates (e.g., Vlaar

and Palm, 1993; Bekaert and Gray, 1996) and interest rates (e.g., Das ,2002). The credit

market is subject to substantial surprises that would induce significant jumps in the credit

spread movement. The default of the Russian government, Enron and WorldCom are just

typical examples of information surprises that would induce jumps in the systematic risk

of corporate bond credit spreads. This makes out a case for the time varying volatility and

jumps model. However, the monthly rebalancing leads to changes in the index components,

and potentially in the memory of the volatility process as well. It is not clear whether the
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GARCH model that assumes long memory dependence is the appropriate default specifi-

cation. For these reasons, we use a specification with jumps and ARCH type time varying

volatility for log-spread changes on non-rebalancing days.

Another aspect of our model specification is related to the information content of gen-

eral market conditions on the systematic variation of corporate bond credit spreads. The

BIS (1998) requirements for controlling “spread risk,” “downgrade risk” and “default risk”

call for credit risk models that fully integrate market risk and credit risk. Jarrow and

Turnbull (2000) are among the first to incorporate general market conditions, as reflected

in changes in the spot interest rate and equity market indices, into the reduced-form models

of corporate bond pricing (e.g., Duffie and Singleton, 1999; Jarrow and Turnbull, 1995).

Huang and Kong (2003) document that changes in the ML index credit spreads are closely

correlated with the concurrent changes in the interest rates and the equity market index.

A more interesting issue for credit risk measurement and management purposes is to look

at the information content of the lagged general market information on the movement of

credit spreads. Understanding the predictable component in the daily movement of cor-

porate bond credit spread would help credit risk measurement and management. In our

specification, we allow for the movement of credit spreads to depend on the lagged market

information.

As mentioned in the introduction, since large movements in credit spreads of an issuer

are often accompanied by changes in credit ratings, credit spreads on index rebalancing

days are implicitly bounded by some absorbing boundaries for rating based corporate bond

indices. Below we propose a specification of rebalancing day credit spreads that recognizes

this feature.

Let St be the credit spread of a given credit index/portfolio on day t, and Ωt denote

the information set available at t. Consider first the model specification of credit spreads

on rebalancing days. The credit spread St when t is a rebalancing day is assumed to be

given by:

St Ωt−1
=

β + α (β − α) exp (−γ ln(St−1)− ur,t − εr,t)
1 + (β − α) exp (−γ ln (St−1)− ur,t − εr,t)

, (9)

ur,t = µr +
K∑

k=1

κr,kxk,t−1, εr,t ∼ N
(
0, σ2

r

)

where α and β are the lower and upper bounds (0 ≤ α ≤ β), xk (k = 1, . . . ,K) are exogenous

variables representing market factors such as interest rates, and µr is a constant. (the

subscription r refers to rebalancing days). It is easy to see that α < St < β and

lim
ur,t↑−∞

St = α (10)
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lim
ur,t↑∞

St = β (11)

lim
α↓0,β↑∞

St = St−1 exp (γ + ur,t + εr,t) . (12)

It can be proved that (see Appendix A), under the specification given in Eq. (9), the

credit spread index time-series is mean-reverting in the long-run if | γ |<
√

β/α+1√
β/α−1

. This

specification recognizes the connection of the rebalancing day spread to the history of

spreads prior to the rebalancing date and to other state variables such as interest rates as

well.

Consider next the model specification of credit spreads on non-rebalancing days. Sup-

pose day t is the Jth (J ≥ 1) day after the last rebalancing day. We will often work

with the logarithm of credit spreads on non-rebalancing days because it guarantees the

non-negativity of predicted credit spreads from the model. We assume that the log-spread,

ln (St), conditional on the information set at t− 1, takes the following ARX-ARCH-Jump

specification:

ln(St) Ωt−1
= µ0 + γ ln (St−1) +

J∑

j=1

φj (1−D1,t−j) ln (St−j/St−j−1)

+
K∑

k=1

βkxk,t−1 + λtµJ + εt, (13)

where

εt ∼




N
(
(1− λt) µJ , h2

t + σ2
J

)
w.p. λt

N
(−λtµJ , h2

t

)
w.p. (1− λt)

(14)

h2
t = $0 +

P∑

p=1

bp (1−D1,t−p) ε2t−p. (15)

In the above specification, D1,t is a dummy variable that equals one when day t is a rebal-

ancing day and zero otherwise. This essentially assumes that index rebalancing completely

wipes out all memory in the volatility process. Admittedly, this assumption is rather strong,

as a considerable number of bonds will likely remain in the index upon rebalancing. How-

ever, given the difficulty in quantifying the degree of memory refreshing, this assumption

can be regarded a good benchmark for practical purposes. We will check the robustness of

our major empirical finds with respect to this assumption later. The exogenous variables

xk, k = 1, . . . ,K, represent market factors such as interest rates. h2
t is the conditional

variance of εt in the no-jump state and follows an ARCH(P ) process where P ≤ J . For

the jump intensity in log-credit spreads, we concentrate on the Bernoulli distribution, first

introduced in Ball and Torous (1983) and also used in Vlaar and Palm (1993), Bekaert and
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Gray (1996), and Das (2002). In this structure, the probability that a jump occurs on day

t is λt and the probability of no jumps on day t is 1− λt. Various studies have shown that

this structure is tenable for daily frequency data. Conditional on a jump occurrence, we

assume the jump size J to be i.i.d and normally distributed with J ∼ N
(
µJ , σ2

J

)
.5 We also

allow the jump probability to depend on lagged exogenous variables z1,...,zL such as the

volatility of interest rates and the volatility of equity market indices. Specifically, the jump

probability is assumed to be a logistic function augmented by lagged exogenous variables

z1,...,zL as follows

λt =
exp (p0 + p1z1,t−1 + p2z2,t−1 + ... + pLzL,t−1)

1 + exp (p0 + p1z1,t−1 + p2z2,t−1 + ... + pLzL,t−1)
(16)

where p`, ` = 0, . . . , L, are parameters to be estimated.

3.2 Estimation Method

Consider first the model of spreads on rebalancing days. We will show that the lower and

upper bounds are identified and can be estimated by maximum likelihood. It follows from

Eq. (9) that

εt = ln (St − α) + ln (β − α)− ln (β − St)− γ ln (St−1)− ur, (17)

and thus
dεt

dSt
=

(β − α)
(β − St) (St − α)

. (18)

Under the normality assumption of εt, the probability density function of credit spread on

rebalancing day t is given by

f (St)r =
(β − α)

(β − St) (St − α)
×

exp
[
− 1

2σ2
r
×

(
ln

(
(St−α)(β−α)

(β−St)

)
− γ ln (St−1)− ur

)2
]

√
2πσr

. (19)

The estimation of the parameter set θr = [α, β, γ, (κr,k), µr, σr] involves maximizing the

log-likelihood function as follows

max
θr=[α,β,γ,(κr,k),µr,σr]

L =
Tr∑

t=1

ln (f (St|θr)r) . (20)

where Tr is the number of rebalancing day observations in the sample. Of course, the

ML estimators of the lower (upper) bound α (β) should be strictly less (greater) than the

sample minimum (maximum) of spreads on rebalancing days for a given credit index. In
5In principle, the mean and variance of the jump size could be allowed to depend on lagged exogenous

variables. Our empirical analysis finds that this does not provide any model improvement.
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Appendix A we show that the parameters can be identified by the first-order condition

E (∂L/∂θr) = 0.

Consider next the model of spreads on non-rebalancing days. As can be seen from

Eq. (13), our model of credit spreads on non-rebalancing days is specified in terms of the

conditional distribution of the log-credit spreads. Estimation will be done by maximizing

the conditional likelihood function.

Let θnr = [µ0, γ, (φj), (βk), $0, (bp), (p`), µJ , σJ ] (the subscription nr refers to non-

rebalancing days). Let also I1,t be an indicator function that equals one in the event

of jump on day t and zero otherwise. It follows from Eq. (13) that the conditional density

of the credit spread St on non-rebalancing days can be written as the following:

f (St|Ωt−1, θnr)nr = (1− λt) f (St|Ωt−1, I1,t = 0) + λtf (St|Ωt−1, I1,t = 1)

= (1− λt) exp

(
− (ln (St)−Ψt−1 − µ0)

2

2h2
t

)
1√

2πh2
t St

(21)

+λt exp

(
− (ln (St)−Ψt−1 − µ0 − µJ)2

2
(
h2

t + σ2
J

)
)

1√
2π

(
h2

t + σ2
J

)
St

where

Ψt−1 ≡ γ ln (St−1) +
J∑

j=1

φj (1−D1,t−j) ln (St−j/St−j−1) +
K∑

k=1

βkxk,t−1

As a result, under our model specification the density function of credit spreads on day

t can be written as follows:

f (St|Ωt−1) =





f (St|Ωt−1, θr)r , if D1,t = 1

f (St|Ωt−1, θnr)nr , if D1,t = 0
(22)

Since the parameter sets θr and θnr do not intersect, the estimation of the model can be

done separately. Namely, the model in (9) can be estimated using only the rebalancing day

sub-sample and the model in (13) estimated using only the non-rebalancing day sub-sample.

4 Empirical Results

The model given in Eq. (13) is rather general. The summary statistics reported in Table 1

suggest that a particular specification of the general model may be adequate for our sample

of data. In particular, results of ρ(1)∆s and ρ(1)∆s2 shown in Table 1 indicate that a

specification with AR(1) and ARCH(1) in Eq. (13) may be a good first attempt to capture

the autocorrelation in spread changes and conditional variance. As a result, we will estimate

an ARX(1)-ARCH(1)-Jump model of log-credit spread changes in this section, and also

perform a number of diagnostic and robustness tests.
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4.1 Estimated Model

The econometric model introduced in section 3 allows the dynamics of credit spreads to

depend on lagged exogenous variables. It has been well recognized that changes in corporate

bond credit spreads are closely correlated with the contemporaneous changes in the general

market and economic conditions, as reflected by changes in the interest rate and stock

market indices. The exogenous variables we consider include lagged interest rate changes,

changes in the slope of the yield curve, the Russell 2000 index returns and the CBOE VIX

implied volatility index. Specifically, we allow the conditional mean of log -credit spread

changes to depend on lagged interest rate changes ∆r, the yield curve slope changes ∆slope

and the Russell 2000 index return retrus. We also allow for the conditional jump probability

to depend on the lagged level of the CBOE VIX index since we expect to observe more

extreme movements in credit spreads in a more volatile equity market.

Changes in credit spreads are generally considered to be negatively correlated with the

contemporaneous changes in interest rates and changes in the slope of the Treasury yield

curve, as has been shown in Duffee (1998). We use the change in the Merrill Lynch Treasury

Master Index yield (%) as a proxy for the change in the interest rate. The slope of the

Treasury yield curve is approximated by the difference between the ML 15+ year Treasury

Index yield (%) and the ML 1-3-year Treasury Index yield (%). Credit spreads also tend

to rise when returns on the stock market index are low. We choose the Russell 2000 index

return (retrus,t = ln (Prus,t/Prus,t−1)) here because it has been shown to be more closely

related to credit spread changes than a large-cap index such as the S&P 500 index (e.g.,

Kao, 2000; Huang and Kong, 2003).

Based on the above discussion, we estimate the following model with the sub-sample of

credit spreads on rebalancing days:

St =
β + α (β − α) exp (−γ ln(St−1)− ur,t − εr,t)
1 + (β − α) exp (−γ ln (St−1)− ur,t − εr,t)

, (23)

ur,t = µr + κ1 retrus,t−1 + κ2 slopet−1 + κ3∆rt−1, εr,t ∼ N
(
0, σ2

r

)

and the following ARX(1)-ARCH(1)-Jump model with the sub-sample of credit spreads on

non-rebalancing days:

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2) (24)

+ β1 retrus,t−1 + β2 slopet−1 + β3∆rt−1 + λtµJ + εt,

h2
t = $0 + b1 (1−D1,t−1) ε2t−1, (25)

λt = exp (p0 + p1 ∗ V IXt−1) / (1 + exp (p0 + p1 ∗ V IXt−1)) . (26)

To compare the relative importance of the ARCH specification and jumps in explaining
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the leptokurtic behavior of spread changes, we estimate both the ARX-ARCH-Jump model

and the nested ARX-ARCH model and report results separately. The estimation is done via

the (quasi) maximum likelihood method using the GAUSS MAXLIK and CML modules.

Both the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm, and the Berndt,

Hall, Hall, and Hausman (BHHH) algorithm are used in the estimation and give the same

results.

4.2 Results from the Model for Rebalancing Days

Table 3 contains the estimation results of the credit spread distribution on rebalancing days

for the nine Merrill Lynch credit spread series. The parameter estimates of the lower and

upper bounds, α and β, and the autoregression coefficient γ, show that credit spreads on

rebalancing days exhibit mean-reverting behavior for all the nine indices, as the estimated

γ are all positive but less than
√

β/α+1√
β/α−1

. The level of credit spreads on rebalancing days

depends on the level of credit spreads before the rebalancing action, but not on the lagged

value of other state variables such as Russell 2000 index returns, and changes in the term

structure of the yield curve. This evidence suggests that the aggregate credit spread time-

series can be described as a process that follows a random walk on regular days and is

reverted to a long-term mean slowly only through the rebalancing process.

4.3 Results from the Model in between Rebalancing Days

Estimation results from the nested ARX(1)-ARCH(1) model for log-credit spreads in be-

tween rebalancing days are reported in Table 4. Results from the complete ARX(1)-

ARCH(1)-Jump model are presented in Table 5.

As shown in the tables, the drift term µ0 and the mean of the jump size µJ are largely

insignificant. Even though in the model with jumps, the estimate of µJ is positive for

8 indices, it is only significant for the BBB-A 15+ year index. This implies that jumps

affect credit spreads mainly through the conditional volatility of log-credit spreads. There

is autocorrelation in the changes of log-credit spreads, as suggested by the estimate of the

AR(1) coefficient φ1. The positive autocorrelation in log-credit spread changes of high-yield

indices is clearly a result of the slightly upward trend exhibited by high-yield credit spread

indices over the sample period. The negative autocorrelation in log-credit spread changes of

investment-grade indices suggests the existence of short-run mean-reversion. The estimates

of the autocorrelation term are more significant when jumps are considered in the model.

The return on the equity market index provides useful information in forecasting the

changes of credit spread on the next trading day. The estimated coefficients of the lagged
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Russell 2000 index returns are significantly negative for all indices in the ARX-ARCH model.

In the ARX-ARCH-Jump model, the lagged Russell 2000 index returns lose significance for

the AA-AAA 1-10-year and 10-15-year indices, but are still significant at the 5% level for

all the other seven indices. This negative relationship is both statistically and economically

stronger for lower rated bonds. Based on the estimated parameter, if the Russell 2000 index

dips by 1% on day t, credit spreads on BB rated corporate bonds are expected to climb

up by about 0.11% (both are using continuous compound). If the credit spread on BB

rated corporate bond is at 300 basis points on day t, the expected increase on day t+1 is

around 0.3 basis point. This negative relationship is consistent with the intuition from the

structural corporate bond pricing models, which implies a negative relationship between

the return on a firm’s equity and the changes in the bond credit spread of the firm.

A steepening Treasury yield curve typically indicates an economic recovery and is ac-

companied by lower level of credit spreads. Using the one-day lagged value of changes in

the Treasury yield curve as a predictor, we find some evidence that increases in the slope

of the Treasury yield curve on day t are followed by lower credit spreads on day t+1. This

negative relationship is significant at the 5% level for the AA-AAA rated 1-10 Years index

and 10-15 Years index, and the BBB-A rated 1-10 years index and 15+ Years index. If the

slope of the Treasury yield curve increases 10 basis points on day t, the expected drop in

credit spreads for these four indices ranges is about 0.3% for the AA-AAA rated indices and

0.15% for the BBB-A rated indices. For high-yield bonds, however, the parameter estimate

is all positive and insignificant. This intriguing difference between investment-grade bonds

and high-yield bonds calls for more investigations.

We do not find any convincing evidence that changes in the interest rate provide any

useful information on the next day movement of credit spreads. The estimated coefficients

on lagged interest rate changes are all insignificant at the 5% level.

In summary, the conditional mean of log-credit spread changes depends on the lagged

log-credit spread changes, the lagged Russell 2000 index returns and the lagged changes in

the slope of the Treasury yield curve.

We now discuss results on jumps. The estimated mean of the jump size is not signif-

icantly different from zero for most indices. Jumps affect credit spreads mainly through

the conditional volatility. Consequently, including jumps in the movement of credit spreads

results in a sharp decrease in the constant term $0 and the persistent coefficient b1 in

the ARCH(1) specification. Clearly, jump models help explain the large spread movement

surrounding financial and economic crises. Otherwise, the model would result in ARCH

parameter estimates that imply implausibly high volatility persistence.

The conditional jump probability is clearly time-varying and can be measured through
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the lagged volatility in the equity market. The coefficient on the lagged CBOE VIX index

in the time-varying jump probability specification is significantly positive for all indices.

The sensitivity of conditional jump probability to the lagged equity market volatility tends

to increase as the credit quality gets lower. This is consistent with the implication of

structural models of corporate bond pricing that high-yield bonds behave more like equity.

The sample mean of the CBOE VIX index over the sample period is about 26%. When

evaluated at the sample mean of the VIX index, the daily jump probability in log-credit

spreads ranges from 11.2% for the AA-AAA 10-15-year index to 3.1% for the BB index.

Shown at the bottom of Table 5, results of the Schwartz and Akaike information criteria

indicate that the ARX-ARCH-Jump model outperforms the ARX-ARCH model in terms

of the overall goodness-of-fit. A potential problem might arise when using the likelihood

ratio test for the statistical significance of the jump behavior in log-credit spreads. This is

because the parameters associated with jumps cannot be identified under the null hypothesis

of no jumps. Hansen (1992) states that unless the likelihood surface is locally quadratic

with respect to the nuisance parameters, the LRT statistic is no longer distributed χ2

under the null hypothesis.6 A formal test on the null hypothesis would require a series

of optimizations over a grid of the nuisance parameters and the computation would be

extremely burdensome. In our case, the fact that the coefficient on the lagged equity

market volatility is highly significant does provide a certain amount of confidence in the

existence of jump behavior in credit spreads. In the next subsection, we present more model

diagnostic tests on the ARX-ARCH-Jump model and the nested ARX-ARCH model based

on in-sample residuals.

4.4 Model Diagnostic Tests

Several specification tests based on in-sample residuals are performed to test the conditional

normality of the innovation. We summarize the results in Table 6. Under the ARX-ARCH

specification, the standardized residual of the model is standard normally distributed. In

the specification involving jumps, the residual of the estimated model is actually a mixture

of two normal distributions. To compare the residual distribution from the estimation of the

ARX-ARCH-Jump model and the nested ARX-ARCH model, we use the method of Vlaar

and Palm (1993). We first calculate the probability of observing a value smaller than the

standardized residual. In the jump specifications, this would be a weighted average of the

normal cumulative distribution function under the jump state and the no-jump state. Under

the null hypothesis of normal mixtures, these probabilities should be identically uniformly
6The LRT statistic ranges from 256 for the B rated index to 1011 for the BBB-A 1-10-year index.
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distributed between 0 and 1. A Pearson chi-squared goodness-of-fit test is then performed

on these transformed residual series of each model by classifying the series into g groups

based on their magnitudes. Under the null hypothesis, this test statistic is chi-squared

distributed with g − 1 degree of freedom.

Column 4 of Table 6 presents the associated Pearson chi-squared goodness-of-fit test

statistic of each model when g equals 20. It is quite clear from the large χ2 (19) value that

the ARX-ARCH normal model is inappropriate for index credit spreads. The smallest value

of the χ2 (19) statistic in the ARX-ARCH model, that of the B credit spread index, is as

high as 74.88. The results improve significantly when the specification includes jumps. In

the ARX-ARCH-Jump model, the null hypothesis is not rejected at the 5% level for 4 out

of the 9 indices, and is not rejected at the 1% level for 7 out of the 9 indices.

We now conduct two diagnostic tests based on the autocorrelation in the standardized

residuals of the estimated models. In the specification with jumps, we again follow Vlaar

and Palm (1993). Specifically, the standardized residuals are obtained by inverting the

standard normal cumulative distribution function based on the probability series in cal-

culating the Pearson chi-squared test. We compute the first-order sample autocorrelation

coefficient of the standardized residuals ρε (1), and of the squared standardized residuals

ρε2 (1) based Eq. (1). The results are presented in columns 5 and 6 of Table 6. It turns out

that our specification has removed most of the first-order autocorrelation in spread innova-

tions as reported in Table 1. Although the first-order sample autocorrelation coefficient of

the standardized residuals is significant for the AA-AAA rated indices, they are typically

between 0 and -0.1. The ARCH(1) specification also seems successful in capturing the time

dependence of volatility. Except for the AA-AAA 1-10-year index and the BBB-A 10-15-

year index, the first-order sample autocorrelation coefficient of the squared standardized

residuals is insignificant. In the two cases where they are significant, the estimates are both

less than 0.06. Overall, correlation in the residuals and the squared residuals does not pose

any challenge to our model specification.

For five indices, the ARX-ARCH-Jump model passes the Pearson χ2 (19) goodness-of-

fit test marginally. We explore the possible misspecification by looking at the empirical

skewness and kurtosis of the standardized residuals from the model estimation. The first

four central moments of the standardized residuals are computed in a joint GMM-system.

The normality of the standardized residuals is then tested based on a Wald-test that both

the skewness and kurtosis coefficients are jointly equal to zero. The estimated sample

skewness, kurtosis and the GMM normality test statistic are reported in the last three

columns of Table 6. The results in Table 6 tell us that there is no significant skewness in the

standardized residuals from both specifications, and the two specifications differ primarily in
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modelling the fatness in the tails of the distribution. There is still substantial leptokurtosis

in the standardized residuals from the ARX-ARCH specification. The minimum is 7.2

for the C rated index and the maximum is 24.8 for the BBB-A 1-10-year index. The

leptokurtosis in the standardized residuals from the ARX-ARCH-Jump specification is also

significant for all indices, but the maximum is only 0.84. Again, the transformed residuals

from the ARX-ARCH-Jump specification pass the normality test marginally. Since the

existing leptokurtosis in the transformed residuals is at such a small magnitude, we are

comfortable to say that the ARCH-Jump specification well captures the fat tails in the

original distribution of credit spread changes.

Overall, there is clear evidence that both jumps and time-varying volatility exist in

the daily movement of credit spreads of different credit quality and maturity corporate

bond indices. Model diagnostic tests show that the ARX-ARCH-Jump model is strongly

preferred over the nested ARX-ARCH and performs rather well for the dynamics of both

investment-grade and high-yield indices.

4.5 Robustness Tests

In this section, we check the robustness of our major empirical results. First, as mentioned

earlier, for practical reasons, we have started with a specification assuming that index rebal-

ancing completely wipes out all memory in the volatility process. This may not always be

realistic, as a considerable number of bonds will likely remain in the index upon rebalanc-

ing. We now check the robustness of our estimation results with respect to this assumption.

Assuming that rebalancing will not affect the memory of the credit spread time-series on

non-rebalancing days at all, we estimate an AR(1)X-ARCH(1)-Jump model without the

rebalancing day dummy D1 and a AR(1)X-GARCH(1,1)-Jump model, and compare with

the previous estimated AR(1)X-ARCH(1)-Jump model with the rebalancing dummy.

Dropping the rebalancing day dummy D1 in the AR(1)X-ARCH(1)-Jump model has

little impact on the parameter estimates and results in small drop (less than 8) in the

log-likelihood function. To save space, the estimation results are not reported here. The

estimation results of the AR(1)X-GARCH(1,1)-Jump model are reported in Table 7. The

GARCH coefficient is significant at the 5% level for the AA-AAA rated 1-10 Years index,

the three BBB-A rated indices and all three high-yield indices. The VIX index is still a

significant indicator of the variation in jump probabilities for most indices, although it is not

significant any more for the AA-AAA rated 15+ Years index, the BBB-A rated 10-15 Years

index, and the BB rated index. However, using the GARCH(1,1) specification has little

impact on the estimated jump volatility, and the jump frequency. Meanwhile, we find that

the GARCH(1,1) type conditional volatility alone is not able to capture the leptokurtosis
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in the changes of log-spread changes. When the jump component is dropped from the

specification, the standardized residuals still exhibit large leptokurtosis. In summary, the

different assumptions of the memory refreshing impact of rebalancing has little impact on

the overall in-sample performance of the model. This is not particularly surprising given the

fact that rebalancing only happens once each month. However, the different assumptions

about the volatility persistence through rebalancing might have an impact on the forecast

of the credit spread right after the rebalancing. This aspect of the rebalancing impact is

checked when we conduct the out-of-sample forecast in the next section.

The aggregate corporate bond credit spreads experienced dramatic increase in the after-

math of the September 11 terrorist attack. To test the impact of this extreme event on the

robustness of the parameter estimates, especially the jump parameters, we re-estimate the

AR(1)X-ARCH(1)-Jump model in Eq. (26) without the observations on September 17 and

September 18 of 2001. Dropping these two observations has little impact on the parameter

estimates of the six investment-grade bond indices, although the exclusion of these two

observations has a significant impact on the estimated jump volatility of high-yield bond

indices. The estimated jump volatility for the three high-yield bond indices decreases from

about 5%, 4.16%, and 2.19% to 2.81%, 2.59% and 1.9% respectively.

On balance, our major empirical results are robust with respect to the different assump-

tions about the memory refreshing impact of rebalancing, and the exclusion of the extreme

event of the September 11 terrorist attack.

5 Out-of-Sample Forecast and Implications

In this section we seek to further explore the economic implication of allowing for lagged

exogenous variables, conditional heteroscedasticity, and jumps in the modeling of credit

spreads. We first derive the one-step-ahead prediction formula for the ARX-ARCH-Jump

model. We then demonstrate that the model with jumps performs well in forecasting out-

of-sample credit spreads. We also discuss the implication of our findings for the measuring

and pricing of credit risk.

5.1 Out-of-Sample Specification Tests

To avoid over-parameterization of the ARX-ARCH-Jump model, and to establish the eco-

nomic significance of allowing for jumps in the dynamics of credit spread, we compare the

out-of-sample forecast ability of the model with jumps and that of the model without jumps.

Given the model specification in Eqs. (24) and (26), we can form the following one-step-
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ahead forecast conditional on the information set Ωt−1 at time t− 1:

Et−1 (St) = Et−1

[
exp(ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+ β1retrus,t−1 + β2slopet−1 + β3∆rt−1 + λtµJ + εt)
]

(27)

= St−1 exp (φ1 (1−D1,t−1) ln (St−1/St−2)) exp (µ0 + λtµJ)

× exp (β1retrus,t−1 + β2slopet−1 + β3∆rt−1) Et−1 (exp (εt)) .

It follows from (14) that

Et−1 (exp (εt)) = (1− λt) exp
(
−λtµJ + 0.5h2

t

)

+λt exp
(
(1− λt) µJ + 0.5

(
h2

t + σ2
J

))
. (28)

The forecasting procedure for the model without jumps can be obtained from the above

equation by setting λt to zero, and re-estimating the model.

In performing the out-of-sample test, we first estimate the ARX-ARCH-Jump model

and the nested ARX-ARCH model using the data from January 1997 through December

1999. The estimated parameters are used in the one-step ahead out-of-sample prediction

for the non-rebalancing day credit spread in January 2000. The same procedure is repeated

each month over the subsequent period. That is, starting with January 2000, on the first

non-rebalancing day of each month, the parameters of the model are estimated using all

past observations, and the parameters are then used for the credit spread forecast within

this month without being updated. In principle, the parameter could be updated each day

using past observations. However, this practice will be computationally burdensome. The

approach we have adopted is a trade-off between computational convenience and timely

updating of new information. Because the estimates of the drift term µ0, the mean of the

jump size µJ , and the coefficient on the lagged interest rate changes are mostly insignificant,

we have dropped the lagged changes in interest rates, and allowed for both µ0 and µJ to

be zero in the model we used for forecast. For comparison, we also include the prediction

performance of a simple random walk model of credit spreads just using credit spreads of

previous day. The difference between the forecast and the actual credit spreads over the

out-of-sample period is summarized in the form of root mean squared error (RMSE) and

mean absolute errors (MAE).

The changes in log-credit spreads are much more volatile over the first three years than

the most recent three years of the sample. This makes it important to allow for a time-

varying jump probability. Results in Table 8 show that in the out-of-sample forecast race,

the model with time-varying jumps outperform the model without jumps in eight out of

the nine different indices. The complicated models outperform the simple random walk
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model in six (seven) indices in terms of MAE (RMSE).7 Given the fact that the parameter

estimates are only updated monthly for the complicated models, these results are quite

encouraging. However, the absolute difference in the prediction error is relatively small.

For investment-grade credit spreads, the difference of the three model in RMSE is less

than 0.1 basis point. To summarize, using out-of-sample prediction as a model evaluation

criterion, the complicated model with jumps also outperform the model without jumps. The

out-of-sample forecast results alleviate the fear of over-parameterization and demonstrate

the economic significance of allowing for jumps in the dynamics of credit spreads.

5.2 Practical Implications

Our empirical findings from the proposed ARX-ARCH-Jump model of credit spreads have

a number of practical implications. First, the econometric model we have proposed for

the systematic credit spread risk in corporate bond portfolios directly incorporates the

information on the general market condition into the forecasts of the conditional mean

and variance of the credit spread. Furthermore, rare extreme movements in credit spreads

have been captured by jumps with a time-varying jump probability that depends on equity

market volatility. These information could be incorporated into the calculation of the ‘value

at risk’ measure for the credit spread risk.

Second, our results shed some light on the effort of reaching superior investment per-

formance through exploring the information content of the equity market index returns

and volatility on general credit spread movements. Asset price predictability could arise

as a result of time-varying risk premium, and not necessarily from information inefficiency.

Whatever the reason is, our findings call for further studies on the interaction of the equity

markets and the corporate bond credit spread risk, and the corresponding strategies that

could make use of this information content.

Third, our model could be used for the valuation of credit derivatives written on credit

indices. For instance, the model could be potentially used in the valuation of corporate

bond credit spread options.

6 Conclusions

We propose an econometric model to describe the dynamic behavior of credit spreads of

corporate bond portfolios. In particular, we develop a method to capture the fact that such
7We also compared the forecast errors excluding the month of September 2001 in the sample. The relative

performance of the models under consideration is not affected by this although it reduces the RMSE and

MAE by 0.1-2 basis points.
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portfolios are subjected to rebalancing on a regular basis – an issue that has been ignored

in the literature. The proposed model integrates together portfolio rebalancing, changes

in general market conditions, conditional heteroscedasticity and jumps. We test the model

using daily option-adjusted credit spreads of the Merrill Lynch credit spread indices from

December 31, 1996 through August 30, 2002. Empirical results indicate that changes in

credit spreads of both investment-grade and high yield bond portfolios exhibit autoregres-

sion, conditional heteroscedasticity and jumps. Lagged equity market index returns and

changes in the slope of the Treasury yield curve are shown to help predict credit spread

changes. The time-varying jump probability is found to be related to the lagged option-

implied volatility in the equity market. The statistical and economic significance of jumps

and the information content of general market conditions are supported both by in-sample

and out-of-sample data.

Given the importance of credit risk management in practice, this study may serve the

needs of both investors in corporate bond markets and related regulatory agencies. The

estimation method developed here that takes into account the rebalancing of a corporate

bond portfolio may be extended to deal with similar issues in equity portfolios.
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A Mean-reverting of Credit Spreads

Let β and α denote the implicit upper and lower bound, respectively, of credit spreads of

a given index on re-balancing days. In our model, the distribution of credit spreads on

rebalancing days is

St =
β + α (β − α) exp (−ωr,t)
1 + (β − α) exp (−ωr,t)

, (29)

ωr,t = γ ln(St−1) + µr +
K∑

k=1

κr,kxk,t−1 + εr,t, εr,t ∼ N
(
0, σ2

r

)

where α and β are the lower and upper bounds (0 ≤ α ≤ β), xk, k = 1, . . . , K are exogenous

variables representing market factors such as interest rates, and µr is a constant. (the

subscription r refers to rebalancing days).

To simply the notations, let’s denote µr +
∑K

k=1 κr,kxk,t−1 as ur,t and γ ln (St−1) + µr +
∑K

k=1 κr,kxk,t−1 as νr,t. In the following, we will derive the regularity condition under which

the rebalancing day credit spreads are stationary. To check this condition, we start with the

first-order derivative of ln (St) with respect to ln (St−1). Given the specification in Eq. (29),

we have

ln (St) = ln (α) + ln (β/α + (β − α) exp (−γ ln (St−1)− ur,t − εt))

− ln (1 + (β − α) exp (−γ ln (St−1)− ur,t − εt)) . (30)

Without loss of generality, let’s ignore the ur,t and the εt terms for the time being. Accord-

ingly, the first-order derivative goes as
∂ ln(St)

∂ ln(St−1)
=

(−γ)(β − α) exp (−γ ln (St−1))
β/α + (β − α) exp (−γ ln (St−1))

+
γ(β + α) exp (−γ ln (St−1))

1 + (β + α) exp (−γ ln (St−1))

= γ(β − α) exp (−γ ln (St−1))
{

1
1 + (β − α) exp (−γ ln (St−1))

− 1
β/α + (β − α) exp (−γ ln (St−1))

}
(31)

Denote the expression (β − α) exp (−γ ln (St−1)) as ξ. The right-hand side of the above

equation can be written as γ
(

ξ
1+ξ − ξ

β/α+ξ

)
. Because β > α,

(
ξ

1+ξ − ξ
β/α+ξ

)
is strictly

positive, but less than 1. Denoting
(

ξ
1+ξ − ξ

β/α+ξ

)
as Y and using the FOC of Y with

respect to ξ yields the solution for the maximum of Y at ξ =
√

(β/α). Hence, we have

| ∂ ln(St)
∂ ln(St−1)

| ≤ | γ |
( √

β/α

1 +
√

β/α
− 1

1 +
√

β/α

)

= | γ |
√

β/α− 1√
β/α + 1

< 1 if | γ |<
√

β/α + 1√
β/α− 1

. (32)
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Now let’s assume log-spreads in-between rebalancing days follow a random walk, and

| γ |<
√

β/α+1√
β/α−1

. Then because | ∂ ln(St)
∂ ln(St−1) |< 1, ln (St) as a function of ln (St−1) is a

contraction mapping, which is a crucial conditional for mean-reverting of credit spreads, as

will be shown as follow. Assume St−1 is the level of credit spreads right before the next

rebalancing day t, t − J − 1 is the previous rebalancing day and ψt−j is the log-spread

change on day t− j. Then we have

ln (St−1) = ln (St−J−1) +
J∑

j=2

ψt−j . (33)

If 0 < γ <

√
β/α+1√
β/α−1

, we have 0 < ∂ ln(St)
∂ ln(St−1) ≤ ρ < 1. This implies that ln (St) ≤ ρ ln (St−1)+

C where C is a constant. Substituting the expression of ln (St−1) as in Eq. (33) into this

inequality, we get ln (St) ≤ ρ ln (St−J−1) + ρ
∑J

j=2 ψt−j + C. The same inequality holds for

ln (St−J−1). In general, assuming that t is the Kth (K ≥ 1) index rebalancing day and the

initial credit spread is S0, we have the following general expression for ln (St):

E | ln (St) |< ρKE | ln (S0) | +
K∑

`=1

ρK−`+1
J`−1,`∑

j=1

E | ψ`−1,`,j | +C∗, (34)

where J`−1,` is the number of days in between the (` − 1)th and the `th rebalancing days

and ψ`−1,`,j is the jth log-spread changes for the `− 1 to ` rebalancing period, and C∗ is a

constant. Because
∑J`−1,`

j=1 E | ψ`−1,`,j | +C∗ < M where M is a constant, and 0 < ρ < 1,

we have

lim
t→∞ supE | ln (St) |≤ M/(1− ρ). (35)

The same argument applies if −
√

β/α+1√
β/α−1

< γ < 0, so that −1 < −ρ ≤ ∂ ln(St)
∂ ln(St−1) ≤< 0.

B Identification of the Upper and Lower Bounds

Given the specification of rebalancing day credit spreads as in Eq. (29), it follows that

dεr,t

dSt
=

(β − α)
(β − St) (St − α)

. (36)

Under the assumption that εr,t is normally distributed with N
(
0, σ2

r

)
, the density function

of spreads on rebalancing days is,

h (St) =
(β − α)

(β − St) (St − α)
×

exp
[
− 1

2σ2
r
×

(
ln

(
(St−α)(β−α)

(β−St)

)
− νr,t

)2
]

√
2πσr

, (37)
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as follows from the well-known transformation formula for densities. The first-order condi-

tion for a maximum of the likelihood function of spread distribution is satisfied, as will be

shown as follows.

Taking the first order derivative of the log-density function with respect to β given the

true parameters α and β, we have:

∂ ln (h (St))
∂β

= −
(
ln

(
(St−α)(β−α)

(β−St)

)
− νr,t

)

σ2
r

×
(

1
β − α

− 1
β − St

)
+

1
β − α

− 1
β − St

. (38)

Because ln
(

(St−α)(β−α)
(β−St)

)
= ωr,t, the above equation could also be written as

∂ ln (h (St))
∂β

= −(ωr,t − νr,t)
σ2

r

×
(

1
β − α

− 1
β − St

)
+

1
β − α

− 1
β − St

. (39)

From Eq. (29), we have
1

β − St
=

exp (ωr,t) + (β − α)
(β − α)2

.

It then follows that

∂ ln (h (St))
∂β

=
1

(β − α)2
×

(
ωr,t − νr,t − σ2

r

)

σ2
r

exp (ωr,t) . (40)

Integrating ωr,t out then yields

(β − α)2 E

[
∂ ln (h (St))

∂β

]
=

∫ ∞

−∞

(
ωr,t − νr,t − σ2

r

)

σ2
r

× exp (ωr,t)
exp

(
− (ωr,t−νr,t)

2

2σ2
r

)

√
2πσr

dωr,t

=
exp

(
2νr,tσ2

r+σ4
r

2σ2
r

)

σr

∫ ∞

−∞
y
exp

(
−y2

2

)

√
2π

dy = 0. (41)

We can show in a similar fashion that

E

[
∂ ln (h (St))

∂α

]
= 0. (42)

The first-order conditions also have a unique solution, as will be shown as follows.

Assume there is another set of parameters where α∗ < α, β∗ > β and σ∗r 6= σr and the

corresponding log-likelihood function is lnh∗ (St). For α∗, β∗ and σ∗r to be a solution of the

first order condition, there should be lnh (St) = ln h∗ (St) for all St. However, as St ↑ β,

lnh (St) approaches infinity while lnh∗ (St) will be finite. This is also true as St ↓ α. Other

cases can be proved in a similar manner.
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C Rebalance of the Merrill Lynch Corporate Bond Credit

Spread Indices

In this appendix, we describe certain rules used in rebalance of the Merrill Lynch Corpo-

rate Bond Credit Spread Indices. The information is based on a publication from Merrill

Lynch (2000). The publication contains information on the Merrill Lynch High Grade U.S.

Industrial Corporate Index, the Merrill Lynch U.S. High Yield Master II Index, and a de-

tailed description about the general rebalancing rules used by Merrill Lynch to maintain

the qualifying criteria of each index. We believe that the same criteria should hold for the

sub-indices we use in this study.

To be included in an index, qualifying bonds must have a fixed coupon schedule and at

least one year to maturity. The amount of outstanding required for being on a high-grade

index is a minimum of $150 million, while that for being on a high-yield index is a minimum

of $100 million.

Rebalancing takes place on the last calendar day of each month. The adding or dropping

decision of any issue will be based on information that is available in the marketplace “up

to and including the third business day prior to the last business day of the month.” There

are 62 rebalancing days in total including the inception date of the indices, December 31,

1996, in our sample.

The table below contains the number of issues that were included in each index on

rebalancing days, which are supposed to be the last calendar day of each month since

December 31, 1996. If the last calendar day is not a business day of New York Stock

Exchange, we use the next available observation.
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Number of Issues Included in Each Merrill Lynch

Credit Spread Index on Rebalancing Days

This table contains the number of issues that were included in each Merrill Lynch index on rebalancing day.

Rebalancing is done on the last calendar day of each month since December 31, 1996 (the inception day

of the indexes). When the last calendar day is not a business day of New York Stock Exchange, the first

trading day of the next month is used.

Rebalance AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

days 1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

19961231 74 7 46 556 83 363 376 467 65

19970131 76 6 46 558 83 364 356 461 66

19970228 75 6 46 570 82 367 358 478 74

19970331 74 6 47 573 81 376 361 482 80

19970430 75 6 47 586 84 381 383 465 79

19970602 75 6 47 598 83 384 378 458 79

19970630 76 6 46 604 84 389 367 454 81

19970731 76 6 45 612 85 397 367 456 76

19970902 80 7 46 621 84 411 367 446 73

19970930 90 7 49 669 91 437 361 451 69

19971031 91 7 51 683 92 447 370 468 69

19971201 89 7 51 691 92 454 372 474 74

19971231 89 7 53 695 92 466 380 476 78

19980202 91 8 55 705 93 488 376 493 84

19980302 91 8 57 707 86 478 408 503 86

19980331 90 8 57 723 88 484 419 515 90

19980430 91 8 59 738 89 488 402 528 90

19980601 88 8 59 755 92 502 384 531 93

19980630 86 7 58 758 91 514 384 523 103

19980731 87 7 58 750 95 517 390 530 107

19980831 86 8 59 766 100 520 392 530 110

19980930 86 8 59 765 98 521 398 541 124

19981102 92 8 60 777 95 526 388 546 137

19981130 89 7 58 786 93 528 390 554 134

19981231 84 8 50 813 94 542 377 537 141

19990201 83 8 51 821 92 542 370 538 141

19990301 81 10 45 831 95 552 380 534 144

19990331 82 9 45 834 93 556 382 532 149

19990430 83 9 47 829 87 552 394 536 155
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Rebalance AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

days 1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

19990601 82 9 47 841 87 557 386 529 158

19990630 81 9 47 849 87 556 379 529 150

19990802 66 7 44 590 56 423 359 537 139

19990831 70 6 45 611 58 427 361 531 142

19990930 72 6 45 615 57 430 370 552 145

19991101 75 6 45 613 52 426 372 564 147

19991130 73 6 45 630 52 433 373 568 140

19991231 71 6 41 764 61 493 365 563 144

20000131 76 1 36 817 66 530 365 566 136

20000229 78 1 38 858 66 543 382 569 138

20000331 78 1 38 867 66 545 397 600 147

20000501 79 3 43 869 64 539 407 591 148

20000531 77 3 40 870 64 545 402 588 161

20000630 78 3 39 881 64 547 390 600 159

20000731 79 3 39 877 67 546 391 609 165

20000831 78 3 39 890 65 551 396 624 165

20001002 79 3 39 895 67 554 406 619 174

20001031 78 3 39 898 69 552 409 692 207

20001130 74 3 38 896 67 548 396 706 214

20010102 74 4 41 889 65 537 384 703 224

20010131 74 5 35 896 71 534 386 684 253

20010228 77 5 37 923 66 535 398 659 264

20010402 78 4 37 928 67 524 425 651 255

20010430 80 4 37 932 63 521 456 612 276

20010531 81 4 37 942 68 524 453 605 282

20010702 83 4 37 943 65 519 458 578 301

20010731 91 4 37 949 67 522 472 568 298

20010831 89 4 37 963 67 525 495 519 318

20011001 87 4 37 970 64 523 508 525 318

20011031 95 4 44 979 67 511 490 537 313

20011130 89 4 41 1005 68 513 489 523 331

20011231 89 5 44 1005 67 506 495 529 336

20020131 88 5 44 1004 64 508 509 529 328

20020228 82 4 44 1017 62 509 517 564 305

20020331 84 3 42 1028 63 512 523 546 309

20020430 85 2 42 1037 64 509 538 523 315

20020531 86 2 43 1037 62 494 603 520 297

20020630 84 2 44 1041 64 493 663 662 308

20020731 85 2 43 1026 61 480 656 698 303

20020831 85 2 41 1042 63 481 656 702 315

Average 81 6 46 791 77 494 401 547 162
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Table 1

Summary Statistics on Merrill Lynch Option-adjusted Credit Spreads

This table reports the summary statistics on the daily Merrill Lynch option-adjusted credit spread (OAS)

indices on non-rebalancing days. Panels A through C present respectively the summary statistics on credit

spread level, changes in credit spreads and changes in log-credit spreads. ρ (1) is the first order autocorre-

lation coefficient. The sample period of daily credit spreads is from 1/02/1997 through 8/30/2002. There

are 1358 observations on non-rebalancing days.

Statistics AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Panel A: Option-adjusted Spreads (Basis Points)
Mean 62.51 72.03 87.38 136.32 137.45 157.25 319.5 552.33 1317.7

Median 63.668 69.383 90.502 138.756 135.666 153.442 308.45 531.358 1262.645

Std Dev. 20.39 24.49 27.08 54.21 49.96 52.25 125.6 205.77 533.44

Max 103.248 133.32 138.088 239.189 279.223 258.472 725.166 1082.642 2358.557

Min 27.138 16.64 36.17 50.384 52.76 73.994 136.141 280.837 504.05

Panel B: Changes in Credit Spreads (∆St = St − St−1)
Mean -0.004 -0.056 0.001 0.127 0.038 0.037 0.34 0.549 1.06

Std Dev. 1.76 3.03 1.83 2.01 2.47 2.03 6.08 8.96 13.79

Skewness -0.62 -1.79 0.38 1.35 0.68 1.23 7.02 3.36 1.65

kurtosis 20.63 34.27 12.83 15.76 7.85 16.89 116.16 53.7 25.53

Max 10.859 20.23 14.267 18.81 14.77 20.93 106.67 145.81 182.47

Min -18.7 -41.37 -12.589 -12.43 -12.61 -12.86 -24.8 -48.84 -91.17

ρ (1)∆S -0.28 -0.17 -0.17 -0.02 -0.04 -0.01 0.15 0.17 0.17

ρ (1)∆S2 0.36 0.05 0.3 0.23 0.31 0.15 0.02 0.01 0.04

Panel C: Changes in Log-Credit Spreads (∆st = ln (St/St−1) ∗ 100))
Mean -0.014 -0.063 0.007 0.077 0.024 0.027 0.065 0.082 0.074

Std Dev. 3.74 5.19 2.51 2.03 2.22 1.52 1.54 1.47 1.01

Skewness -1.78 0.37 -0.31 0.001 0.49 -0.25 3.13 1.81 1.35

kurtosis 47.88 55.6 20.91 27.94 21.31 22.8 41.63 18.91 14.13

Max 29.83 74.91 18.99 15.41 22.88 11.79 22.75 17.47 10.24

Min -52.43 -60.75 -21.1 -18.36 -16.25 -14.59 -6.24 -5.89 -6.18

ρ (1)∆s -0.29 -0.29 -0.22 -0.16 -0.2 -0.14 0.1 0.14 0.2

ρ (1)∆s2 0.37 0.4 0.37 0.41 0.42 0.27 0.01 0.01 0.04
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Table 2

Unit Root/Stationarity Tests on the Merrill Lynch

Option-adjusted Credit Spread Series

This table presents the results of various unit root/stationarity tests on Merrill Lynch option-adjusted

credit spreads over the period of 12/31/1996 - 8/30/2002. The estimates and associated t-statistics from

the Augmented Dickey-Fuller test and the Phillips-Perron test are reported in Panels A and B. Panel C

contains the Lagrangian Multiplier (LM) test statistic from the stationarity test of Kwiatkowski, Phillips,

Schmidt and Shin (1992). Panel D reports the four types of Cauchy tests of Bierens and Guo (1993)

stationarity test. Panel E presents the results of Bierens (1997) non-linear Augmented Dickey-Fuller tests

for unit root.

Test AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

Statistics 1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Panel A: Augmented Dickey-Fuller Test
(Critical Value: (5%)=-2.89; (10%)=-2.58)

β -0.0042 -0.009 -0.003 -0.001 -0.001 -0.002 -0.005 -0.001 -0.0004

t− stat -1.51 -2.2 -1.53 -0.97 -0.63 -1.18 -0.39 -0.66 -0.33

Panel B: Phillips-Perron Test
(Critical Value: (5%)=-14.51; (10%)=-11.65)

β 0.9925 0.9842 0.996 0.9986 0.9985 0.9985 0.9996 0.9995 0.992

t− stat -5.41 -13.68 -3.6 -1.46 -1.37 -2.33 -1.17 -0.92 -12.04

Panel C: KPSS (1992) Stationarity Test
(Critical Value: (5%)=0.463; (10%)=0.347)

LM − Stat 3.23 1.9 2.87 4.12 3.99 3.87 4.14 3.79 4.18

Panel D: Bierens-Guo (1993) Stationarity Tests
(Critical Value: (5%)=12.706; (10%)=6.314)

Type 1 46.33 2.48 374.54 748.52 367.7 607.54 805.6 887 718.59

Type 2 49.61 2.5 541.15 1391.8 1386 1376 1424.7 1424 1425

Type 3 13.62 1.63 29.84 149.36 90.75 122.1 157.6 175.89 205.95

Type 4 30.01 2.82 44.14 189.17 128.28 111.26 118.9 73.88 121.6

Panel E: Bierens (1997) Nonlinear ADF test
(Critical Value of t-stat (5%)=-3.97; (10%)=-3.46)

(Critical Value of Am (5%)=-27.2; (10%)=-23)

(Critical Value of F-test (5%)=4.88; (10%)=5.68)

β -0.006 -0.009 -0.003 -0.004 -0.008 -0.003 -0.008 -0.005 -0.007

t− stat -1.32 -1.93 -1.03 -1.35 -2.1 -1.26 -2.36 -2.13 -2.37

Am -5.1 -9.04 -3.1 -4.84 -9.16 -4.74 -11.34 -9.64 -11.28

F-test 1.25 1.77 1.91 1.69 2.58 1.35 3.06 1.89 3.43
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Table 3
Maximum Likelihood Estimates of Credit Spread Distribution

on Rebalancing Days

This table presents results of the estimation of Merrill Lynch option-adjusted credit spread indices on index
rebalancing days. The distribution of credit spreads St for a given index on rebalancing day t takes the
following form:

St =
β + α (β − α) exp (−µr − γ ln(St−1)− κ1 retrus,t−1 − κ2 slopet−1 − κ3∆rt−1 − εr,t)

1 + (β − α) exp (−µr − γ ln (St−1)− κ1 retrus,t−1 − κ2 slopet−1 − κ3∆rt−1 − εr,t)
(43)

where α < St < β, µr is a constant, and εt is normally distributed with N
(
0, σ2

r

)
. Maximum likelihood es-

timates of the parameters for each index and the heterodscadesticity-consistent standard errors are reported

below. There are 66 observations on rebalancing days.

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

α 25.98 21.08 26.30 41.09 36.31 55.15 92.88 223.99 486.88

(3.85) (3.44) (6.18) (2.41) (5.74) (5.69) (15.70) (19.47) (17.49)

β 137.71 249.10 210.80 282.07 398.81 331.98 844.85 1369.07 2624.45

(29.58) (67.85) (46.51) (18.21) (62.75) (34.44) (103.96) (97.04) (79.23)

σr 0.22 0.20 0.13 0.13 0.10 0.11 0.14 2.61 3.04

(0.09) (0.05) (0.05) (0.04) (0.03) (0.04) (0.05) (0.30) (0.17)

µr -7.07 -3.74 -5.22 -7.26 -4.80 -8.08 -6.29 -10.41 -14.57

(2.81) (1.14) (2.24) (0.90) (1.13) (1.69) (1.60) (1.96) (1.22)

γ 2.68 1.86 2.19 2.52 1.99 2.61 2.09 2.62 3.04

(0.68) (0.27) (0.50) (0.19) (0.23) (0.34) (0.27) (0.30) (0.17)

retrus -0.06 -0.04 -0.04 -0.03 -0.02 -0.03 0.00 -0.01 0.00

(0.04) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02)

slope -0.15 0.32 -0.38 -0.36 -0.09 -0.25 -0.34 0.25 -0.39

(0.28) (0.28) (0.22) (0.23) (0.15) (0.17) (0.22) (0.29) (0.47)

∆r 0.09 0.23 -0.25 0.26 -0.09 -0.07 -0.04 -0.51 0.65

(0.64) (0.64) (0.38) (0.44) (0.30) (0.29) (0.34) (0.41) (0.80)

ln (L) -187.76 -225.52 -198.52 -209.99 -219.38 -214.08 -285.77 -297.99 -389.60
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Table 4

Maximum Likelihood Estimates of the ARX(1)-ARCH(1)

Model of Credit Spreads on Non-rebalancing Days

This table reports the maximum likelihood estimates of the ARX(1)-ARCH(1) model of log-credit spreads
for the period 01/02/1997 through 08/30/2002. The estimated model is

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+β1retrus,t−1 + β2slopet−1 + β3∆rt−1 + εt, (44)

where D1,t is a dummy variable that equals one when day t is a rebalancing day and zero otherwise, retrus,t−1

is the lagged Russell 2000 index return, ∆slopet−1 is the lagged changes in the slope of the yield curve,
and ∆rt−1 is the lagged changes in the interest rates. The disturbance εt has mean zero and conditional
variance h2

t , where h2
t is specified as an ARCH(1) process:

h2
t = $0 + b1 (1−D1,t−1) ε2t−1. (45)

The asymptotic heteroscedasticity-consistent standard errors are reported in parentheses. Bold numbers
indicate significance at the 10% level

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

µ0 0.121 -0.074 0.014 0.082 0.031 0.002 0.066 0.075 0.074

(0.133) (0.143) (0.061) (0.049) (0.057) (0.034) (0.083) (0.039) (0.037)

β1 -0.226 -0.287 -0.127 -0.175 -0.137 -0.106 -0.169 -0.165 -0.100

(0.075) (0.094) (0.040) (0.047) (0.040) (0.030) (0.053) (0.031) (0.037)

β2(∗102) -4.742 -4.113 -3.043 -2.150 -4.372 -2.035 2.707 0.413 1.396

(2.293) (3.012) (1.821) (1.371) (1.477) (1.051) (5.619) (1.200) (0.937)

β3(∗102) -0.805 5.267 -0.228 -0.395 0.964 -0.183 0.095 2.003 0.785

(3.513) (3.445) (1.460) (1.266) (1.288) (1.031) (1.129) (1.319) (0.768)

φ1 -0.261 -0.094 -0.126 -0.151 -0.096 0.047 0.137 0.196 0.265

(0.195) (0.067) (0.059) (0.068) (0.081) (0.044) (0.180) (0.055) (0.075)

$0 4.226 11.104 3.351 1.660 2.290 1.227 1.936 1.980 0.786

(0.892) (2.349) (0.684) (0.392) (0.368) (0.286) (0.370) (0.291) (0.093)

b1 0.961 0.790 0.602 0.743 0.571 0.579 0.233 0.041 0.236

(0.288) (0.355) (0.195) (0.246) (0.175) (0.194) (0.450) (0.038) (0.223)

ln(L) -3211.12 -3799.04 -2951.22 -2508.74 -2717.15 -2262.90 -2479.04 -2412.45 -1878.81

BIC 6472.750 7648.577 5952.934 5067.986 5484.810 4576.294 5008.570 4875.404 3808.112

AIC 6436.259 7612.086 5916.443 5031.495 5448.319 4539.803 4972.079 4838.913 3771.621
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Table 5

Maximum Likelihood Estimates of the ARX(1)-ARCH(1)-Jump

Model of Credit Spreads on Non-rebalancing Days

This table presents the maximum likelihood estimates of the ARX(1)-ARCH(1)-Jump model of log-credit
spreads for the period 01/02/1997 through 08/30/2002. The estimated model is

ln (St) = ln (St−1) + µ0 + φ1 (1−D1,t−1) ln (St−1/St−2)

+ β1 retrus,t−1 + β2 slopet−1 + β3∆rt−1 + λtµJ + εt, (46)

where D1,t is a dummy variable that equals one when day t is a rebalancing day and zero otherwise, retrus,t−1

is the lagged Russell 2000 index return, ∆slopet−1 is the lagged changes in the slope of the yield curve, and
∆rt−1 is the lagged changes in the interest rates. The disturbance εt has mean zero and is a mixture of two
normal distributions: one is N

(
−λtµJ , h2

t

)
with probability (1− λt) in the event of no jumps and the other

is N
(
(1− λt) µJ , h2

t + σ2
J

)
with probability λt. h2

t , the conditional variance of εt in the no-jump state, is

assumed to follow an ARCH(1) process:

h2
t = $0 + b1 (1−D1,t−1) ε2t−1. (47)

The jump probability λt = exp (p0 + p1 ∗ V IXt−1) / (1 + exp (p0 + p1 ∗ V IXt−1)). The asymptotic heteroscedasticity-
consistent standard errors are in parentheses. Bold numbers indicate significance at the 10% level.

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C
1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

µ0 -0.070 -0.001 -0.018 -0.016 -0.029 -0.027 0.006 0.039 0.025
(0.040) (0.057) (0.033) (0.024) (0.032) (0.019) (0.035) (0.034) (0.023)

β1 -0.049 -0.048 -0.063 -0.051 -0.074 -0.062 -0.108 -0.133 -0.076
(0.034) (0.042) (0.025) (0.020) (0.025) (0.016) (0.031) (0.030) (0.018)

β2(∗102) -3.054 -3.68 -1.567 -1.683 -1.524 -1.282 0.316 0.030 0.572
(1.277) (1.735) (0.978) (0.662) (0.988) (0.553) (1.026) (0.824) (0.614)

β3(∗102) -1.148 2.458 -1.268 -0.714 0.624 -0.529 0.072 1.670 0.989
(0.932) (1.386) (0.683) (0.522) (0.694) (0.447) (1.047) (1.341) (0.535)

φ1 -0.243 -0.133 -0.114 -0.133 -0.045 -0.015 0.092 0.168 0.215
(0.033) (0.04) (0.04) (0.047) (0.034) (0.068) (0.047) (0.052) (0.035)

$0 1.311 2.258 0.771 0.411 0.798 0.280 1.122 1.305 0.478
(0.136) (0.236) (0.076) (0.037) (0.082) (0.026) (0.119) (0.139) (0.05)

b1 0.380 0.324 0.369 0.365 0.373 0.383 0.140 0.047 0.073
(0.063) (0.06) (0.082) (0.07) (0.05) (0.079) (0.049) (0.02) (0.028)

p0 -4.634 -3.604 -3.345 -5.032 -4.132 -4.502 -5.679 -6.124 -5.471
(0.649) (0.588) (0.554) (0.658) (0.685) (0.565) (1.195) (1.383) (1.000)

p1 0.077 0.059 0.049 0.090 0.065 0.087 0.086 0.103 0.112
(0.023) (0.02) (0.02) (0.022) (0.024) (0.021) (0.03) (0.035) (0.027)

µJ 1.140 -0.09 0.216 0.557 0.386 0.769 1.207 1.070 0.443
(0.912) (0.827) (0.426) (0.584) (0.466) (0.329) (1.205) (1.203) (0.312)

σJ 8.708 10.146 5.283 5.027 4.667 3.346 5.015 4.152 2.189
(1.497) (1.286) (0.725) (0.762) (0.664) (0.533) (2.182) (1.586) (0.551)

ln(L) -2803.19 -3329.02 -2564.66 -2003.22 -2428.47 -1844.43 -2265.01 -2279.74 -1736.64
BIC 5685.738 6737.38 5208.669 4085.796 4936.287 3768.203 4609.365 4638.831 3552.626
AIC 5628.395 6680.03 5151.326 4028.453 4878.944 3710.860 4552.022 4581.487 3495.283
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Table 6
Model Diagnostic Tests

Table 6 presents various model diagnostic tests for the estimated ARX(1)-ARCH(1)-Jump model and the
nested ARX(1)-ARCH(1) model as reported in Table 5. The marginal significance level of the corresponding
test statistics are reported in square brakets.

Spread Index Model χ2 (19) ρε (1) ρε2 (1) Skewness Kurtosis Normality

Test

ARCH 403.1 -0.1 0.071 0.28 15.95 25.66

AA-AAA rated [0.00] [0.00] [0.005] [0.73] [0.00] [0.00]

1-10 Yrs Jump-ARCH 34.41 -0.096 0.059 -0.037 0.779 4.52

[0.02] [0.00] [0.015] [0.76] [0.06] [0.1]

ARCH 530.1 -0.072 0.035 0.00 11.29 31.18

AA-AAA rated [0.00] [0.004] [0.102] [0.99] [0.00] [0.00]

10-15 Yrs Jump-ARCH 60.61 -0.07 0.032 0.06 0.424 6.11

[0.00] [0.006] [0.117] [0.52] [0.024] [0.05]

ARCH 424.3 -0.038 0.004 0.24 13.32 24.36

AA-AAA rated [0.00] [0.08] [0.44] 0.72 [0.00] [0.00]

15+ Yrs Jump-ARCH 31.96 -0.048 0.028 0.059 0.484 6.24

[0.03] [0.038] [0.15] [0.52] [0.01] [0.04]

ARCH 489.6 -0.05 0.034 0.33 24.8 31.3

BBB-A rated [0.00] [0.029] [0.11] [0.77] [0.00] [0.00]

1-10 Yrs Jump-ARCH 40.24 -0.022 0.058 -0.024 0.618 7.55

[0.003] [0.21] [0.02] [0.8] [0.01] [0.02]

ARCH 242.1 -0.04 0.058 0.26 11.99 26.8

BBB-A rated [0.00] [0.06] [0.02] [0.67] [0.00] [0.00]

10-15 Yrs Jump-ARCH 26.48 -0.016 0.046 0.004 0.65 7.2

[0.12] [0.28] [0.04] [0.97] [0.014] [0.027]

ARCH 407.5 -0.074 0.024 0.17 20.93 19.16

BBB-A rated [0.00] [0.003] [0.188] [0.87] [0.00] [0.00]

15+ Yrs Jump-ARCH 31.05 -0.008 0.038 0.045 0.842 8.19

[0.04] [0.38] [0.08] [0.7] [0.01] [0.02]

ARCH 123.5 -0.058 -0.005 -0.035 21.55 7.63

BB rated [0.00] [0.02] [0.43] [0.98] [0.006] [0.02]

Jump-ARCH 21.56 -0.013 0.006 -0.047 0.417 4.65

[0.31] [0.32] [0.41] [0.6] [0.03] [0.098]

ARCH 74.88 -0.042 0.005 -0.302 11.72 6.62

B rated [0.00] [0.06] [0.43] [0.7] [0.01] [0.04]

Jump-ARCH 13.13 -0.009 0.003 -0.086 0.304 4.16

[0.83] [0.37] [0.45] [0.26] [0.05] [0.12]

ARCH 90.65 -0.079 -0.004 -0.01 7.2 9.57

C rated [0.00] [0.002] [0.43] [0.98] [0.002] [0.008]

Jump-ARCH 17.46 -0.034 0.024 0.022 0.314 2.2

[0.56] [0.1] [0.19] [0.8] [0.14] [0.33]
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Table 7
Maximum Likelihood Estimates of the AR(1)X-GARCH(1,1)-Jump

Model of Credit Spreads on Non-rebalancing Days

This table presents the maximum likelihood estimates of the AR(1)X-GARCH(1,1)-Jump model of log-credit
spreads for the period 01/02/1997 through 08/30/2002. The estimated model is

ln (St) = ln (St−1) + µ0 + φ1 ln (St−1/St−2)

+ β1 retrus,t−1 + β2 slopet−1 + β3 ∆rt−1 + λtµJ + εt,

where retrus,t−1 is the lagged Russell 2000 index return, ∆slopet−1 is the lagged changes in the slope of the
yield curve, and ∆rt−1 is the lagged changes in the interest rates. The disturbance εt has mean zero and
is a mixture of two normal distributions: one is N

(
−λtµJ , h2

t

)
with probability (1− λt) in the event of no

jumps and the other is N
(
(1− λt) µJ , h2

t + σ2
J

)
with probability λt. h2

t , the conditional variance of εt in

the no-jump state, is assumed to follow an GARCH(1) process:

h2
t = $0 + b1 ε2t−1 + b2 h2

t−1. (48)

The jump probability λ = exp (p0 + p1 ∗ V IXt−1) / (1 + exp (p0 + p1 ∗ V IXt−1)). The asymptotic heteroscedasticity-
consistent standard errors are in parentheses. Bold numbers indicate significance at the 5% level.

Parameter AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C
1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

µ0 -0.096 0.014 -0.013 -0.014 -0.011 -0.005 0.007 0.035 0.027
(0.040) (0.057) (0.034) (0.023) (0.032) (0.020) (0.035) (0.034) (0.023)

Rus -0.062 -0.049 -0.064 -0.051 -0.076 -0.069 -0.117 -0.134 -0.077
(0.030) (0.043) (0.025) (0.019) (0.025) (0.017) (0.030) (0.029) (0.018)

slope -3.354 -3.646 -1.597 -1.977 -2.494 -1.369 0.126 0.036 0.720
(1.202) (1.740) (1.008) (0.653) (0.950) (0.561) (1.062) (1.22) (0.617)

r -1.451 3.011 -1.527 -0.730 0.960 -0.701 0.456 1.202 0.677
(0.935) (1.343) (0.654) (0.504) (0.670) (0.443) (1.059) (1.332) (0.545)

AR(1) -0.269 -0.144 -0.132 -0.113 -0.058 -0.025 0.093 0.142 0.187
(0.027) (0.029) (0.029) (0.030) (0.032) (0.034) (0.046) (0.05) (0.034)

ω 0.696 2.018 0.416 0.151 0.245 0.148 0.336 0.458 0.109
(0.226) (0.263) (0.196) (0.037) (0.094) (0.036) (0.144) (0.142) (0.039)

ARCH(1) 0.296 0.288 0.234 0.225 0.220 0.346 0.099 0.037 0.077
(0.067) (0.053) (0.115) (0.047) (0.059) (0.081) (0.047) (0.015) (0.023)

GARCH(1) 0.331 0.051 0.344 0.472 0.561 0.271 0.625 0.621 0.688
(0.150) (0.031) (0.243) (0.082) (0.112) (0.118) (0.129) (0.108) (0.074)

P0 -4.666 -3.570 -3.009 -4.615 -3.745 -4.399 -4.862 -5.916 -4.974
(0.804) (0.598) (0.621) (0.734) (0.799) (0.654) (1.194) (1.421) (1.000)

V IX 0.069 0.058 0.033 0.070 0.031 0.080 0.052 0.094 0.092
(0.028) (0.020) (0.024) (0.025) (0.029) (0.023) (0.030) (0.035) (0.028)

µJ 1.506 -0.084 -0.044 0.742 0.456 0.721 1.030 1.134 0.436
(1.151) (0.767) (0.445) (0.587) (0.687) (0.399) (1.282) (1.329) (0.334)

σJ 9.049 10.044 5.285 4.869 5.226 3.039 5.362 4.275 2.171
(1.956) (1.319) (0.789) (0.879) (0.878) (0.502) (2.374) (1.739) (0.600)

ln(L) -2788.64 -3331.78 -2557.77 -1987.57 -2403.78 -1820.96 -2259.45 -2281.07 -1731.90
BIC 5663.847 6750.139 5202.105 4061.705 4894.138 3728.485 4605.48 4648.71 3550.376
AIC 5601.282 6687.574 5139.540 3999.140 4831.573 3665.920 4542.911 4586.15 3487.811
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Table 8
Out-of-Sample Forecast Comparison

This table presents the root mean squared error (RMSE) and the mean absolute error of the actual credit
spread and the one-step-ahead predicted credit spread from the ARX-ARCH-Jump model and the nested
ARX-ARCH model. Starting from January of 2000, on the first non-rebalancing trading day of each month,
the parameters of the model are estimated using all past observations. The parameters are held constant for
the one-step-ahead prediction within the month. The initial sample period runs from January, 1997 through
December, 1999 and the forecast period is from January, 2000 through August, 2002. The data used are
daily observations of Merrill Lynch credit spread indices on non-rebalancing days. RW indicates the simple
random walk model of credit spreads. Bold numbers indicate the smallest value.

Panel A: Root Mean Squared Error

Model AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Jump-ARCH 1.447 2.605 1.909 2.181 2.708 2.233 8.077 11.081 17.494

ARCH 1.465 2.634 1.919 2.204 2.769 2.24 8.021 11.101 17.815

RM 1.497 2.657 1.929 2.118 2.701 2.255 8.219 11.318 17.686

Panel B: Mean Absolute Error

Model AA-AAA AA-AAA AA-AAA BBB-A BBB-A BBB-A BB B C

1-10 Yrs 10-15 Yrs 15+ Yrs 1-10 Yrs 10-15 Yrs 15+ Yrs

Jump-ARCH 0.905 1.559 1.17 1.319 1.783 1.341 4.543 7.08 11.8

ARCH 0.949 1.618 1.185 1.389 1.844 1.357 4.525 7.092 12.011

RW 0.915 1.561 1.166 1.267 1.756 1.356 4.56 7.268 11.974
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