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Implied Volatility Smirk

Abstract

This paper studies implied volatility smirk quantitatively. We first propose a new con-

cept of smirkness, which is defined as a triplet of at-the-money implied volatility, skewness

(slope at the money) and smileness (curvature at the money) of implied volatility – money-

ness curve. Empirical evidence from S&P 500 (SPX) index options shows that a quadratic

function with both skewness and smileness fits the market implied volatility smirk very

well. The risk-neutral probability density function can be recovered analytically from a

“smirked” implied volatility. A new maturity- and liquidity-based procedure is proposed

to calibrate option pricing models.
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1 Introduction

Option market has been growing rapidly in the last decade. It becomes one of the most

important financial markets worldwide. Based on a report of the Chicago Board Options

Exchange (CBOE), the total global market value of cash market was 39.75 trillion US

dollars in 2000, that of exchange-traded index options was 17.28 trillion US dollars, and

that of exchange-traded stock options was 4.93 trillion US dollars.

The market price of an option is observable, and it reflects investor’s expectation of

underlying stock return. Somehow the study on the information content of option prices

is very limited, partially because of our lack of appropriate quantities to describe the

information. So far there is only one index, i.e., VIX volatility index reported by the

CBOE, that is generated from the S&P index option prices.

There are two versions of volatility index, an old one and a new one. The old VIX,

renamed to be VXO in 2003, was introduced by the CBOE in 1993. It represents the implied

volatility of a hypothetical at-the-money S&P 100 index (OEX) option with 30 calendar

days to maturity. In September 2003, the CBOE began disseminating a new VIX index,

which is computed based on the prices of a portfolio of one-month out-of-the-money S&P

500 index (SPX) options with weights being inversely proportional to the squared strike

price. Since 1993, the VIX (VXO) has quickly become the benchmark for stock market

volatility and is often referred to as the “investor fear gauge”. New financial products, VIX

futures and options, were proposed by the CBOE to provide retail investors a vehicle to

trade market volatility. They were starting to be listed in the CBOE on March 26, 2004.

The new VIX is a fair expectation of volatility one month in the future. It is certainly

a very important quantity, but it is only one piece of information distilled from the S&P

index option market.

In this paper, we propose additional quantities that can be and should be extracted

from the option market. We first propose a new concept of smirkness, which is defined as

a triplet of at-the-money implied volatility, skewness (slope at the money) and smileness

(curvature at the money) of implied volatility – moneyness curve. The moneyness is the
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logarithm of the strike price over the forward price, normalized by the standard deviation

of expected return on maturity. With these new quantities well-defined, we are able to

study the implied volatility smirk quantitatively.

Empirical evidence from S&P 500 index options shows that a quadratic function with

both skewness and smileness fits the market implied volatility smirk very well. The volume

weighted error can be smaller than the smallest bid-ask spread of traded options. Theoret-

ical analysis shows that the smirkness triplet is related to the cumulants of the risk-neutral

probability of the underlying asset return.

The term structure of at-the-money implied volatility (ATM-IV) of November S&P 500

index options is upward sloping on November 4, 2003. The value of implied volatility ranges

from 14% for two-week short term options to 18% for long term options with an observable

horizon of two-years. The term structure of skewness is almost flat especially for long

term options. The value of skewness is about −0.17, very stable for options with maturity

ranging from two months up to two years. The negative value of implied volatility skewness

implies the negative skewness of the risk-neutral distribution of S&P 500 index return. The

implied volatility smirk does not flatten out as maturity increases up to almost two years.

This pattern has been documented and explained with a finite moment log stable process

by Carr and Wu (2003). The term structure of smileness is oscillating between 0 and 0.04.

We also observe that the term structure of the ATM-IV does not change much on a daily

basis. It has a more regular pattern than the other two. It indicates that investors have

a better understanding about the ATM-IV than the skewness and smileness. Empirical

result also shows that the time series of the smirkness for options with a fixed maturity

date is quite stationary.

Our method of documenting the shapes and evolution of the term structures, and the

dynamics of the smirkness triplet seems to be new and has not been proposed before in

the literature2. Based on the information of the three term structures distilled from option

2Foresi and Wu (2002) document the phenomenon of implied volatility smirk for the major equity
indexes in twelve countries. Dennis and Mayhew (2002) empirically study the cross-sectional behavior of
implied volatility smirk, in particular the relation between implied volatility skewness of individual stocks
and their betas. Our proposal of quantifying and documenting implied volatility smirk can be applied to
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market, we propose an effective and efficient way of calibrating option pricing models.

The paper is organized as follows. Section 2 uses the market prices of out-of-money op-

tions to illustrate the concept of the smirkness triplet, i.e., ATM-IV, skewness and smileness,

and study the price impact of the smirkness. Section 3 recovers the risk-neutral probability

distribution of underlying index return and links the smirkness with the variance, skewness

and kurtosis of the risk-neutral probability. Section 4 documents the term structure of the

smirkness and its evolution in three days. Section 5 documents the time-change dynamics

of the smirkness from September 25, 1998 to September 5, 1999 for SPX options with a

fixed maturity on September 16, 1999. Section 6 proposes a new way of calibrating option

pricing models by using the term structure of the smirkness. Section 7 concludes.

2 Quantify Implied Volatility Smirk

Most of the existing research on implied volatility smirk are qualitative in nature, partially

because we lack appropriate quantities to describe the implied volatility – strike price

curve. For the convenience of quantifying an implied volatility smirk, we need to define a

few concepts: implied forward price, moneyness, skewness, smileness and smirkness.

Following Duffie, Pan and Singleton (2000), Ait-Sahalia, Wang and Yared (2001), and

Eraker (2004), we are using daily CBOE closing option prices to study the phenomenon

of implied volatility smirk and the performance of different option-pricing models. The

data of November 4, 2003, used here to demonstrate the definition of a few quantities,

are downloaded from the CBOE website. The data of the treasury yield curve rates are

downloaded from the website of U.S. Department of Treasury.

2.1 Implied Forward Price and Put-call Parity

We introduce implied forward price and study put-call parity by using S&P 500 index

(SPX) options.

Table 1 is the market data of the option prices on November 4, 2003. The closing

any options, including index, stock and exchange rate options. Bollen and Whaley (2004) study the source
of implied volatility smirk, in particular the effect of net buying pressure.
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index on the day was S0 = 1053.25. All the options are sorted in ascending order by strike

price ranging between 850 and 1125. The lowest strike price is selected from the first out-

of-the-money put with a non-zero bid price. The highest strike is selected from the first

out-of-the-money call with a non-zero bid price.3 There is a notable difference between the

last sale price and mid-value of bid and ask. Some of the last sale prices even fall outside of

the range between bid and ask. This is because the last sale happened sometime before the

market was closed. Since it is difficult to determine the time instance of the last sale, we

do not use the last sale price to compute implied volatility, we use the mid-value of closing

bid and ask instead.

The implied forward price, F0, is determined based on at-the-money option prices. The

at-the-money strike is the strike price at which the difference between the call and put

prices is smallest. As shown in Table 1, the difference between the call and put prices is

smallest at the 1055 strike on November 4, 2003. The forward index level is calculated by

following formula

F0 = Strike price + erτ × (Call price− Put price)

= 1055 + e0.9743%×17/365(11.9− 14.2) = 1052.70,

where the risk-free rate, r, is determined by the U.S. treasury yield curve rates on November

4, 2003, provided in Table 2. Since the yield curve starts from 1 month rate and the term

of the options is only 17 days, an extrapolation technique is used to compute the rate for

17 days, i.e.,

r = r1mth − (r3mth − r1mth)× 30− 17

61
= 0.97%− (0.95%− 0.97%)× 30− 17

61
= 0.9743%.

The forward index level, F0 = 1052.70, is slightly smaller than the closing index, S0 =

1053.25. This means that the expected dividend yield, q, is slightly larger than the risk-

free rate, r.

With the implied forward index, we define the time value of an option (call or put) to

be the difference between the option price and its intrinsic value. For a given maturity,

3We follow the practice set up by the CBOE (2003) in computing the new volatility index, VIX.
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the time value of an option is a function of strike. For example, the time value of a call is

defined as

ctv(K) = c0(K)− e−rτ max(F0 −K, 0), (1)

and the time value of a put is defined as

ptv(K) = p0(K)− e−rτ max(K − F0, 0). (2)

If put-call parity is true for a call and a put with time to maturity, τ , and strike, K, i.e.,

c0(K)− p0(K) = (F0 −K)e−rτ , (3)

then the time values of the call and the put will be the same,

ctv(K) = ptv(K). (4)

This can be easily verified by a simple algebra with equations (1), (2) and (3).

Figure 1 shows the time values of SPX index options on November 4, 2003 for both calls

and puts that mature on November 17, 2003. The time values are computed by using the

formula (1) and (2) from the market prices of options listed in Table 1. The two time value

functions from calls and puts almost collapse each other. This means that the put-call

parity is valid for the market prices of options with different strikes on the day.

Since put-call parity holds, the market data of either call or put gives the same value of

the implied volatility. Following Carr and Wu (2003) and the practice set up by the CBOE

(2003) in computing the new VIX index, we use out-of-the-money options to compute

the implied volatilities for different strikes. We choose put option for strike that is below

forward index, K < F0, choose call option for strike that is above forward index, K > F0.

The exclusive use of out-of-the-money options is an industry convention that arises from

their greater liquidity and model sensitivity than their in-the-money counterparts.

2.2 Implied Volatility Smirk

We now study the phenomenon of implied volatility smirk, i.e., implied volatility as a

function of moneyness.
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The moneyness is defined as the logarithm of the strike price over the forward price,

normalized by the standard deviation of expected return on maturity, i.e.,

ξ ≡ ln(K/F0)

σ̄
√

τ
, (5)

where σ̄ denotes some measure of the average volatility of the index. We use the volatility

index VIX reported by the CBOE as a proxy of the average volatility. This definition of

moneyness follows Carr and Wu (2003). It has been widely used in financial industry.

The implied volatility, σI, is computed by equating the Black-Scholes formula to the

market price of an option. For example, on a particular day, the implied forward price, F0

can be computed. For a call option, given time to maturity, τ , the discount rate over the

period, r, can be determined by using yield curve. We solve the following equation

F0e
−rτN

(
ln(F0/K) + 1

2
σ2

I τ

σI

√
τ

)
−Ke−rτN

(
ln(F0/K)− 1

2
σ2

I τ

σI

√
τ

)
= cmkt

for each strike, K, and obtain an implied volatility, σI, as a function of strike. Since a strike

has a one-to-one mapping with a moneyness, ξ, we are able to obtain an implied volatility

as function of moneyness, σI(ξ), which is regarded as implied volatility smirk.

Table 3 shows a sample implied volatility smirk on November 4, 2003 for SPX options

that mature on November 21, 2003. We list all available strikes for options with non-zero

bid, choose put options for strike that is below the forward index, and choose call options

for strike that is above the forward index. In other words, we pick all the out-of-the-money

calls and puts with non-zero bid. We collect the information of market prices and trading

volumes of these options, and compute moneyness and implied volatility. We then use a

quadratic function to fit the implied volatility data by minimizing the volume weighted

mean squared error ∑
ξ Volume× [σImarket − σI(ξ)]

2

∑
ξ Volume

and obtain

σI(ξ) = 0.1447− 0.0189ξ + 0.00595ξ2 = 0.1447(1− 0.1308ξ + 0.0411ξ2).

When we do the fitting, we force the curve passing through the point at the money. In

other words, the point (ξ, σI) = (0, 0.1447) is given by the market data. Therefore the
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fitted implied volatility smirk gives exact the same price as the market price for an option

at the money. There is no-arbitrage between the model price and the market price for an

option at the money.

The implied volatility smirk is shown graphically in Figure 2. The dots are the implied

volatilities from market prices of out-of-the-money calls and puts with different strikes.

The solid line is a fitted quadratic curve. One may observe that the quadratic function

approximates the market implied volatility smirk very well. This is confirmed by the fitted

error provided in Table 3. The root of volume weighted mean squared error is only 0.0023,

which is about 1.5% of the average volatility, VIX = 0.1655, on the day.

Based on this observation and for the convenience of describing a smirk quantitatively,

we introduce a few concepts:

1. At-the-money implied volatility (ATM-IV) is defined as

σI0 ≡ σI(ξ)|ξ=0. (6)

From the result of Figure 2, we know that on November 4, 2003, the 17 days ATM-

IV of SPX option is 0.1447, or 14.47%. ATM-IV measures the level of an implied

volatility smirk. The ratio between implied volatility and the ATM-IV, σI(ξ)/σI0, is

regarded as a normalized implied volatility.

2. The skewness of implied volatility at-the-money is defined as the first order sensitivity

of the normalized implied volatility with respect to the moneyness, i.e.,

γ1 ≡ ∂

∂ξ

[
σI(ξ)

σI0

]∣∣∣∣
ξ=0

. (7)

On November 4, 2003, the skewness of implied volatility for November SPX options is

−0.1308. Skewness measures the slope at the money of a normalized implied volatility

smirk.

3. The smileness of implied volatility at-the-money is defined as half of the second order

sensitivity of the normalized implied volatility with respect to the moneyness, i.e.,

γ2 ≡ 1

2

∂2

∂ξ2

[
σI(ξ)

σI0

]∣∣∣∣
ξ=0

. (8)
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On November 4, 2003, the smileness of implied volatility for November SPX options

is 0.0411. Smileness measures the curvature at the money of a normalized implied

volatility smirk.

The first quantity, the ATM-IV is well-known, but the second one and the third one are

new concepts that have never been proposed before. They are referred as smirk slope and

smirk curvature qualitatively in Carr and Wu (2003). With these new concepts well-defined

quantitatively, an implied volatility smirk for each maturity can be fully described by using

the following quadratic function

σI(ξ) = σI0(1 + γ1ξ + γ2ξ
2), (9)

where the ATM-IV, σI0, the skewness, γ1, and the smileness, γ2, depend on the time to

maturity, τ . The set of three parameters, (σI0, γ1, γ2) is regarded as smirkness or smirkness

triplet for the convenience of describing the implied volatility smirk.

One should not be confused with the two concepts: implied volatility smirk and smirk-

ness. The former one describes the phenomenon or picture of implied volatility – moneyness

curve, while the latter one is a set of three numbers, ATM-IV, skewness and smileness.

2.3 The Impact of Skewness and Smileness on Option Price

For one set of options with the same maturity, one may use three different functions of

moneyness to describe implied volatility,

flat σI = σI0,

skewed σI = σI0(1 + γ1ξ), (10)

smirked σI = σI0(1 + γ1ξ + γ2ξ
2).

The “flat” implied volatility function is a constant, which corresponds to the Black-Scholes

model with a volatility being the ATM-IV. The “skewed” one is a linear function that

passes through the point at the money and incorporates the skewness. The “smirked” one

is a quadratic function with both the skewness and smileness. It becomes a pure smile if
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the skewness, γ1, is zero. Therefore the last case is the most general one. Figure 3 shows

the difference between three implied volatility functions with the market implied volatility

as a reference. The market implied volatility, shown as dots in the figure, is the data on

November 4, 2003 for November SPX options.

We now study the price impact of the skewness and the smileness. Again we use

the market data on November 4, 2003 for options that mature on November 21, 2003 to

illustrate our basic idea. Table 4 shows the option prices computed by using the Black-

Scholes formula with “flat”, “skewed”, and “smirked” volatility functions. The root of

volume weighted mean squared error is 78 cents for “flat” implied volatility function (or

the Black-Scholes constant volatility case), 31 cents for “skewed” one, and 12 cents for

“smirked” one. The skewness reduces the error by more than 60%, and the smileness

reduces the remaining error by another 60%. With both skewness and smileness, the final

error is only 12 cents, which is smaller than the smallest bid-ask spread. Within all the

traded options listed in Table 1, the SPX call with strike 1125 has the smallest bid-ask

spread that is 15 cents. Therefore smirked implied volatility function is good enough to

capture the trend of implied volatility – moneyness curve.

Figure 4 shows the option price and price error as functions of strike for different implied

volatility functions, together with the trading volumes. It is quite impressive that the price

given by the Black-Scholes formula with a smirked implied volatility function is so close to

the market prices of the traded options.

3 Recover risk-neutral probability distribution from

“smirked” implied volatility

In this section, we present an analytical method to recover the risk-neutral probability dis-

tribution from a “smirked” implied volatility. We then identify the analytical relationships

between smirkness triplet and the cumulants of risk-neutral probability of the underlying

stock4 return.

4The underlying stock, the underlying asset and the underlying index have the same meaning. They
are used interchangeably in this paper.
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Suppose the price of a European call option is given by the Black-Scholes formula in

terms of a “smirked” implied volatility, σI,

c0 = F0e
−rτN(d + σI

√
τ)−Ke−rτN(d), d =

ln(F0/K)− 1
2
σ2

I τ

σI

√
τ

, (11)

F0 = S0e
(r−q)τ , σI = σI0(1 + γ1ξ + γ2ξ

2), ξ =
ln(K/F0)

σ̄
√

τ
,

then the risk-neutral probability can be recovered from the option pricing formula.

From the risk-neutral valuation formula, the call option price can be written in an

integration form

c0 = e−rτ

∫ +∞

K

(ST −K)f(ST , T ; S0, 0)dST , (12)

where f(ST , T ; S0, 0) is the risk-neutral probability density function of final stock price, ST ,

conditional on information up to time t = 0. Taking partial derivative on c0 with respect

to K, with some algebra, we have

1 + erτ ∂c0

∂K
= 1−

∫ +∞

K

f(ST , T ; S0, 0)dST =

∫ K

−∞
f(ST , T ; S0, 0)dST ≡ F (K,T ; S0, 0), (13)

where F (K,T ; S0, 0) is the cumulative probability function evaluated at ST = K. The

equation can be written in another way

F (ST , T ; S0, 0) = 1 + erτ ∂c0

∂K

∣∣∣∣
K=ST

. (14)

Taking partial derivative on equation (13) with respect to K once more gives Breeden and

Litzenberger’s (1978) formula for the probability density function

erτ ∂2c0

∂K2
= f(K, T ; S0, 0), or f(ST , T ; S0, 0) = erτ ∂2c0

∂K2

∣∣∣∣
K=ST

. (15)

Applying general formulas (14, 15) to equation (11) gives following result.

Theorem 1. The cumulative probability function recovered from the Black-Scholes option

pricing formula (11) with a “smirked” implied volatility is

F (ST , T ; S0, 0) = N(−d∗) + n(d∗)
σI0

σ̄
(γ1 + 2γ2ξ

∗), (16)
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where n(·) is the standard normal density function, given by

n(y) =
1√
2π

e−y2/2, (17)

and

d∗ = − ln(ST /F0) + 1
2
σ∗2I τ

σ∗I
√

τ
= −1

2
σ∗I
√

τ − σ̄

σ∗I
ξ∗, ξ∗ =

ln(ST /F0)

σ̄
√

τ
.

The recovered probability density function is

f(ST , T ; S0, 0) =
n(d∗)

ST σ∗I
√

τ

[
1 + d∗

σI0

σ̄
(γ1 + 2γ2ξ

∗)
] [

1 +
(
d∗ + σ∗I

√
τ
) σI0

σ̄
(γ1 + 2γ2ξ

∗)
]

+
n(d∗)
ST

2σI0

σ̄2
√

τ
γ2, (18)

where σ∗I = σI0(1 + γ1ξ
∗ + γ2ξ

∗2).

Remark 1. The idea of fitting a smooth curve to an implied volatility smirk was first

reported by Shimko (1993). He also recovers the risk-neutral probability from the implied

volatility function by using Breeden and Litzenberger’s formula. Our contribution is to

simplify the implied volatility function by a quadratic function and derive explicit and

intuitive formulas for risk-neutral probability.

Remark 2. The method of Rubinstein (1994) and Jackwerth and Rubinstein (1996) to

recover risk-neutral probability is a numerical optimization technique. Implementing their

method requires a considerable effort in nonlinear programming. In contrast, our approach

here is an analytical-driven method. We only need to fit the implied volatility curve by a

quadratic function, which can be done easily by standard software, such as Mathematica.

Once the fitting is done, one may directly apply the analytical formulas in Theorem 1 to

describe risk-neutral distribution. It seems to us that our approach is much simpler and

more intuitive.

Figure 5 shows the risk-neutral probability density function recovered from a “flat”,

“skewed”, “smiled” and “smirked” implied volatility. In general, the implied volatility
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skewness, γ1, generates risk-neutral skewness, and the implied volatility smileness, γ2, gen-

erates risk-neutral kurtosis.

We now derive analytical relationships between the implied volatility smirkness and

risk-neutral cumulants.

Suppose in a risk-neutral world, the underlying stock price at maturity, Sτ , is modelled

by

Sτ = S0e
(r−q− 1

2
σ2
0+µ)τ+σ0

√
τy, (19)

where µ is the convexity adjustment, y is a random number with mean zero, variance 1,

skewness,5 λ1 and kurtosis, λ2. If y is normally distributed, then µ = 0. The probability

density of y is given by the Edgeworth series expansion6

f(y) = n(y)− λ1

3!

d3n(y)

dy3
+

λ2

4!

d4n(y)

dy4
, (20)

where n(y) is the standard normal density function given by (17). The martingale condition

in the risk-neutral probability measure requires

S0e
(r−q)τ = EQ

0 [Sτ ] = EQ
0 [S0e

(r−q− 1
2
σ2
0+µ)τ+σ0

√
τy], or EQ

0 [e(− 1
2
σ2
0+µ)τ+σ0

√
τy] = 1,

which determines the convexity adjustment term

µ = −1

τ
ln

[
1 +

λ1

3!
(σ0

√
τ)3 +

λ2

4!
(σ0

√
τ)4

]
. (21)

The price of a European call option can be priced with the risk-neutral valuation formula

c∗0 = e−rτEQ
0 [max(Sτ −K, 0)] = e−rτ

∫ +∞

−d2

(S0e
(r−q− 1

2
σ2
0+µ)τ+σ0

√
τy −K)f(y)dy,

5The skewness, λ1, and kurtosis, λ2, of a random number, x, are defined by λ1 = κ3/κ
3/2
2 , λ2 = κ4/κ2

2,
where κi, i = 1, 2, 3, 4 are first four cumulants, given by κ1 = E(x), κ2 = E(x − κ1)2 = V ar(x), κ3 =
E(x− κ1)3, κ4 = E(x− κ1)4 − 3κ2

2.
6Here we use Edgeworth series expansion to expand the unknown return distribution near a normal

distribution. Jarrow and Rudd (1982) expand the unknown price distribution near a lognormal distribution
and result a different option-pricing formula, see e.g., Corrado and Su (1997) for an empirical test of Jarrow
and Rudd’s (1982) model with SPX options. It seems to us that expanding return distribution is more
natural and consistent with the later advanced option-pricing models that model stock returns with a Lévy
process or time-changed Lévy process, see e.g., Carr and Wu (2004).
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where

d2 =
ln(S0/K) + (r − q − 1

2
σ2

0 + µ)τ

σ0

√
τ

.

With integration by parts, we have following formula7

c∗0 = [S0e
−qτN(d1)−Ke−rτN(d2)]

[
1 +

λ1

3!
(σ0

√
τ)3 +

λ2

4!
(σ0

√
τ)4

]

+Ke−rτ

(
λ1

3!
A +

λ2

4!
B

)
σ0

√
τ , (22)

where d1 = d2 + σ0

√
τ , and

A = −n′(−d2) + σ0

√
τ n(−d2) + σ2

0τN(d2) = −(d2 − σ0

√
τ)n(d2) + σ2

0τN(d2), (23)

B = n′′(−d2)− σ0

√
τ n′(−d2) + σ2

0τ n(−d2) + (σ0

√
τ)3N(d2)

= −(1− d2
2 + σ0

√
τ d2 − σ2

0τ) n(d2) + (σ0

√
τ)3N(d2). (24)

This call option pricing formula is exact under the assumption that the risk-neutral prob-

ability density is given by equation (20).

We now match the two option pricing formulas given by equations (11) and (22). Ap-

plying the three conditions at the money

(c0 − c∗0)|K=F0 = 0,
∂(c0 − c∗0)

∂K

∣∣∣∣
K=F0

= 0,
∂2(c0 − c∗0)

∂K2

∣∣∣∣
K=F0

= 0

gives following result.

Theorem 2. The implied volatility smirkness, (σI0, γ1, γ2), and the risk-neutral standard

deviation, skewness and kurtosis, (σ0, λ1, λ2) are related by following equations

1− 2N(d∗) = [N(d1)−N(d2)]

[
1 +

λ1

3!
(σ0

√
τ)3 +

λ2

4!
(σ0

√
τ)4

]
+

(
λ1

3!
A +

λ2

4!
B

)
σ0

√
τ ,

N(−d∗) + n(d∗)
σI0

σ̄
γ1 = N(−d2)−

[
λ1

3!
(d2

2 − 1)− λ2

4!
(d3

2 − 3d2)

]
n(d2), (25)

1

σI0

√
τ

(
1− d∗2

σ2
I0

σ̄2
γ2

1 +
2σ2

I0

σ̄2
γ2

)
n(d∗) =

1

σ0

√
τ

[
1− λ1

3!
(d3

2 − 3d2) +
λ2

4!
(d4

2 − 6d2
2 + 3)

]
n(d2),

where

d∗ = −1

2
σI0

√
τ , d2 = −1

2
σ0

√
τ +

µ
√

τ

σ0

, d1 = d2 + σ0

√
τ ,

7The formula has been presented by Backus et al (1997) in the context of currency options.
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A and B are given by (23, 24), µ is given by (21).

In the three equations in (25), the terms at the left-hand-side are only related to the

smirkness, the terms at the right-hand-side are only related with the risk-neutral cumulants.

Given one set of values, one may solve the three equations for another set.

Asymptotic analysis on three equations in (25) yields following approximate relation-

ships.

Corollary 1. The implied volatility smirkness, (σI0, γ1, γ2), and the risk-neutral standard

deviation, skewness and kurtosis, (σ0, λ1, λ2) are related by following approximate equations

σI0 =

(
1− λ2

24

)
σ0 +

λ1

4
σ2

0

√
τ + O(σ3

0τ),

γ1 =
λ1

6
(
1− λ2

24

) σ̄

σ0

+
λ2

12
(
1− λ2

24

) σ̄
√

τ + O(σ0σ̄
√

τ), (26)

γ2 =
λ2

24

σ̄2

σ2
0

1− λ2

16(
1− λ2

24

)2 +
λ1λ2

96

σ̄2
√

τ

σ0

1− λ2

48(
1− λ2

24

)3 + O(σ̄2
√

τ).

Ignoring higher order terms, one may have following leading order result

σI0 = σ0, γ1 =
1

6
λ1, γ2 =

1

24
λ2 (27)

as a rule of thumb.

For example, on November 4, 2003, the smirkness triplet for November SPX options is

(σI0, γ1, γ2) = (0.1447, -0.1308, 0.0411), the VIX level is σ̄ = 0.1655. Solving the three equa-

tions in (25) numerically gives following numerical values of standard deviation, skewness

and kurtosis of the risk-neutral probability distribution of underlying index return

σ0 = 0.1506, λ1 = −0.6992, λ2 = 0.8065. (28)

Substituting these risk-neutral cumulants into three equations in (26), by taking the first

terms in each equation we have the approximate values of the smirkness (0.1455, -0.1325,

0.04126). By taking the first two terms in each equation, we have the smirkness (0.1447,
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-0.1300, 0.0410), which is indeed quite accurate compared with the given values (0.1447,

-0.1308, 0.0411).

Comparing with the market data provided in Table 4, the volume weighted error of the

call option price given by formula (22) with the parameters in equation (28) is 22.7 cents,

which is somewhere between those (31 and 12 cents) given by the Black-Scholes formula

with the “skewed” and the “smirked” volatility functions.

4 The Term Structure of Smirkness

Previously, we introduced a new concept of smirkness, which is a triplet of at-the-money

implied volatility, σI0, skewness (slope at the money), γ1, and smileness (curvature at

the money), γ2, of normalized implied volatility – moneyness curve. We observe that a

“smirked” volatility function

σI = σI0(1 + γ1ξ + γ2ξ
2)

with both skewness and smileness is able to capture the trend of the market implied volatil-

ity. The root of volume weighted mean squared error is smaller than the smallest bid-ask

spread of the traded options. The empirical exercise, demonstrated in the last section, is

for the options with the shortest maturities (17 days). The same study can be done for all

other maturities.

Figure 6 shows the implied volatility smirks on November 4, 2003 for options with all

available maturities, such as Nov-21-03, Dec-19-03, Jan-16-04, Mar-19-04, Jun-18-04, Sep-

17-04, Dec-17-04, and Jun-17-05. The times to maturity are 17, 45, 73, 136, 227, 318, 409,

and 591 days respectively. For each maturity, the discount rate is determined by using the

yield curve provided in Table 2 with an linear interpolation technique. The market implied

volatilities, shown as dots in the figures, are computed by finding the root that equates

the Black-Scholes formula with the market price. The moneyness is defined by equation

(5). We fit the market implied volatilities with a quadratic function for each maturity and

obtain its smirkness triplet. The fitted curves are shown as solid lines. They are presented

together with the trading volumes shown as bars.
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The numerical values of the term structure of the smirkness are listed in Table 5 together

with the term structures of interest rate and trading volume. The first and the second

nearest options are heavily traded. They occupy 80% of the total trading volume. The

term structure of the interest rate is upward-sloping. The term structure of the ATM-IV

is slightly upward-sloping, ranging from 14% to 18%. The skewness is quite stable with a

value near −0.17. The implied volatility smirk does not flatten out as maturity increases up

to almost two years. This pattern has been documented qualitatively and explained with a

finite moment log stable process by Carr and Wu (2003). The term structure of smileness

is oscillating between 0 and 0.04. Our approach of documenting the term structure of

smirkness seems to be new in the literature.

In order to gain intuition on the evolution of the term structure of the smirkness, we have

processed the market data for three different days, Oct-30-03, Nov-04-03 and Nov-12-038.

The final numerical values of the term structures are listed in Table 7. They are presented

graphically in Figure 7. In general, the term structures are stable for longer maturity.

The term structure of the ATM-IV has a more regular pattern than the other two. It

indicates that investors have a better understanding about the ATM-IV than the skewness

and smileness, probably because the latter two quantities have never been explicitly defined

and documented in the literature.

5 The dynamics of Smirkness

In order to have some idea about the time-change dynamics of the implied volatility smirk,

we need a longer time series of option prices. The market prices of SPX options from

September 25, 1998 to September 3, 1999 are used. We study the options with the same

maturity date, September 16, 1999. The daily option price data are provided by a com-

mercial data supplier. The data are cleaned by using the screening procedures described

in Bakshi, Cao and Chen (1997).

On each day, we determine the forward index level, F0. For each option, we compute

8As explained in §2, the data of the SPX option prices on the three days are downloaded from the
CBOE website.
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the moneyness, ξ, by using the formula

ξ =
ln(F0/K)

VIX
√

τ

with the VIX on the day. The implied volatility, σI(ξ), is determined by inverting the

Black-Scholes formula. We then fit the market implied volatility with a quadratic function,

σI(ξ) = σI0(1 + γ1ξ + γ2ξ
2), and obtain the smirkness triplet, (σI0, γ1, γ2).

The time series of the smirkness for options with the same maturity date, T , is shown

in Figure 8. All of the three series look quite stationary.

6 The Applications of Smirkness

Option pricing models are developed with certain number of embedded parameters, which

are usually determined from market information with one of two different approaches. The

first one is to estimate the parameters by using historical data of underlying stock price.

The problem of this approach is that the historical data may not reflect the information of

stock return in future. Practitioners often uses a second approach, that is to calibrate the

parameters from the current market prices of liquidly-traded options.

Calibrating an option pricing model is a difficult task. It is commonly recognized that

one should calibrate a model at least on daily basis to include the latest information of

financial markets. At the end of a trading day, we have a closing price for each option with

different strikes and maturities. Their trading volumes are different. Some of them, for

example, the ones with the first and the second nearest maturities, are liquid. Others are

not. The price of illiquid options does not tell us much information of the financial market.

One way to calibrate option pricing model is to minimize the sum of the squared errors

of all available options with different strikes and maturities. The procedure, initiated by

Bakshi, Cao and Chen (1997), has become a standard in the empirical study of model

performance, see e.g., Carr et al (2001), Huang and Wu (2003). But this method suffers

from two problems. First, the nonlinear least square is well-known to be unstable, especially

for a large set of parameters, such as the ten parameters in a time-changed Lévy process in

Huang and Wu (2003). The solution obtained with some standard commercial package may
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not be unique. For the case that the solution is not unique, the values of the parameters are

not meaningful. Second, the procedure does not take into account of the liquidity effect.

In principle, the option price with higher trading volume should have more weight in the

target function of the numerical optimization problem.

Now we propose a new maturity-based and liquidity-based calibration. The idea is to

use the distilled information of the term structure of smirkness. Since we have already

considered the liquidity issue in fitting the value of smirkness, all we need to do right now

is to force the term structure of smirkness implied from an option pricing model to pass

through the points of the market term structures, from the first nearest term9, to the second

nearest one and so on.

For example, the Black-Scholes model

dSt = (r − q)Stdt + σStdBt

has only one parameter, i.e., volatility, σ. One may simply calibrate the model by using

ATM-IV, σI0, for the volatility, σ. In fact, this is a classical way of using the Black-Scholes

model.

We now present the calibration of two parsimonious models and study the term structure

of smirkness implied in the calibrated option pricing models.

6.1 The Constant Elasticity of Variance (CEV) Model

In a risk-neutral world, the price of a stock, St, is assumed to follow a diffusion process

dSt = (r − q)Stdt + σSα
t dBt, (29)

where r is risk-free rate, q is the continuous dividend yield, σ and α are constants, Bt is

the standard Brownian motion. The variance of stock return is given by vt = σ2S2α−2
t , and

the elasticity of variance, defined by St

vt

∂vt

∂St
, is therefore a constant, 2α− 2.

9Following the convention set up by CBOE (2003) in computing the new VIX index, with 8 days left to
expiration, we roll to the second contract months in order to minimize pricing anomalies that might occur
close to expiration.
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Cox (1975) identifies that with a power transformation, Xt = S
2(1−α)
t , the CEV process

can be transformed into a square root process

dXt = [(1− α)(1− 2α)σ2 + 2(1− α)(r − q)Xt]dt + 2(1− α)σ
√

XtdBt. (30)

Feller (1951) studies the transition probability of the square root process with a Laplace

transformation approach and provides an analytical formula for the density function. There-

fore the price of a European call option can be determined with risk-neutral valuation

formula. We summarize some relevant results as follows.

Lemma 1. For 0 < α < 1, the conditional risk-neutral transition probability density

function f(ST , T ; St, t) is given by (Cox 1975)

f(ST , T ; St, t) = 2(1− α)k
1

2(1−α)
(
xw1−4α

) 1
4(1−α) e−x−wI− 1

2(1−α)
(2
√

xw),

= 4(1− α)k
1

2(1−α) w
1−2α

2(1−α) p

(
2w; 2− 1

1− α
, 2x

)
, (31)

where

k =
r − q

(1− α)σ2 [e2(1−α)(r−q)τ − 1]
, x = kS

2(1−α)
t e2(1−α)(r−q)τ , w = kS

2(1−α)
T ,

and Iν(z) is the modified Bessel function10 of the first kind of order ν, p(z; n, λ) is the

probability density function of non-central chi-square distribution11 with n degrees of freedom

and non-centrality parameter λ.

10The modified Bessel function of the first kind of order ν is a solution of the ordinary differential equation

W ′′ +
1
z
W ′ −

(
1 +

ν2

z2

)
W = 0.

The function can be written in a series form as follows

Iν =
+∞∑

k=0

1
k! Γ(ν + k + 1)

(z

2

)2k+ν

.

11The probability density function of non-central chi-square distribution can be written in terms of the
modified Bessel function as follows (Johnson and Kotz 1970)

p(z; n, λ) =
1
2
(z/λ)

1
4 (n−2)e−

1
2 (z+λ)I

n−2
2 (
√

λz).
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The price of a European call option is given by 12 (Cox 1975, Cox and Ross 1976,

Schroder 1989)

ct = Ste
−qτQ

(
2y; 2 +

1

1− α
, 2x

)
−Ke−rτQ

(
2y; 2− 1

1− α
, 2x

)

= Ste
−qτQ

(
2y; 2 +

1

1− α
, 2x

)
−Ke−rτ

[
1−Q

(
2x;

1

1− α
, 2y

)]
, (32)

where y = kK2(1−α), and Q(z; n, λ) is the complementary non-central chi-square distribution

function, defined by Q(z; n, λ) =
∫ +∞

z
p(u; n, λ)du.

For α > 1, the transition probability density function f(ST , T ; St, t) is given by

f(ST , T ; St, t) = 2(α− 1)k
1

2(1−α)
(
xw1−4α

) 1
4(1−α) e−x−wI 1

2(α−1)
(2
√

xw), (33)

and the European call option pricing formula is

ct = Ste
−qτQ

(
2x;

1

α− 1
, 2y

)
−Ke−rτ

[
1−Q

(
2y; 2 +

1

α− 1
, 2x

)]
. (34)

(Emanuel and MacBeth 1982)

Matching the two option pricing formulas in (32) and (11) yields smirkness implied in

the CEV model as follows.

Theorem 3. For 0 < α < 1, the smirkness triplet, (σI0, γ1, γ2), implied in the CEV model

can be determined by

1− 2N (d∗) = Q

(
2x; 2 +

1

1− α
, 2x

)
+ Q

(
2x;

1

1− α
, 2x

)
− 1, (35)

N(−d∗) + n(d∗)
σI0

σ̄
γ1 = Q

(
2x;

1

1− α
, 2x

)
, (36)

1

σI0

√
τ

(
1− d∗2

σ2
I0

σ̄2
γ2

1 +
2σ2

I0

σ̄2
γ2

)
n(d∗) = 4(1− α)x p

(
2x; 2− 1

1− α
, 2x

)
, (37)

12The complementary non-central chi-square distribution function, Q(z; n, λ), satisfies following identity

Q(z;n, λ) + Q(λ; 2− n, z) = 1.
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where n(·) is the standard normal density function, and

d∗ = −1

2
σI0

√
τ , x =

(r − q)S
2(1−α)
t e2(1−α)(r−q)τ

(1− α)σ2 [e2(1−α)(r−q)τ − 1]
.

The CEV model has two parameters, volatility, σ, and the elasticity constant, α. One

should use the ATM-IV, σI0, and skewness, γ1, of the nearest term (the most liquid ones)

of the implied volatility smirk to determine these two constants.

Now we perform a calibration exercise on November 4, 2003. The S&P 500 index level

is St = 1053.25 and the VIX index is σ̄ = 0.1655. We consider options that mature on

November 21, 2003. Therefore time to maturity is τ = 17/365. The corresponding risk-

free rate is r = 0.009743. The dividend yield, computed from implied forward index level

Ft = 1052.70, is q = 0.02098. The smirkness triplet for November options is (σI0, γ1, γ2) =

(0.1447,−0.1308, 0.0411). The task of calibrating the CEV model becomes solving equations

(35) and (36) for the two parameters σ and α by using the information of at-the-money

implied volatility, σI0, and skewness, γ1.

With a given α, we can solve equation (35) for a value of σ. Substituting the values

of α and σ into equation (36), we can compute γ1. After some numerical experiments, we

find that the skewness, γ1, is positive for α > 1, zero for α = 1 (the Black-Scholes case)

and negative for 0 ≤ α < 1. The smaller the value of α between 0 and 1, the larger the

absolute value of the skewness. For the extreme case of α = 0, with σI0 = 0.1447 and values

of r, q, τ and St given above, we obtain from equation (35) σ = 152.36, from equation (36)

γ1 = −0.0179, which is much smaller than the skewness, γ1 = −0.1308, from the market

date. Therefore we have following observation.

Observation: On November 4, 2003, We cannot find a set of values (σ, α) for the CEV

model to match the at-the-money implied volatility, σI0, and skewness, γ1, for options that

mature on November 21, 2003.

The best set of parameters would be (σ, α) = (152.36, 0). With this set of calibrated

parameters, we can compute the term structure of the smirkness implied in the CEV model
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from theorem 3. The results are shown in Table 7 numerically and in Figure 9 graphically

together with that from the market data.

6.2 The Finite Moment Log Stable (FMLS) process

Recently Carr and Wu (2003) propose a Finite Moment Log α−Stable (FMLS) process for

stock price

dSt = (r − q)Stdt + σStdLα,−1
t , (38)

where dLα,−1
t has an α−stable distribution with zero drift, dispersion of dt1/α, and a skew

parameter −1: Lα(0, dt1/α,−1). The α−stable process is a pure jump Lévy process when

0 < α < 2. When α = 2, the α−stable process is degenerated to a standard Brownian

motion multiplied by
√

2, i.e., L2,β
t =

√
2 Bt.

The stock price at a future time, T , is then written explicitly as

ST = Ste
(r−q+µ)τ+σLα,−1

τ , τ = T − t,

or

ln(ST /St) ∼ Lα((r − q + µ)τ, στ 1/α,−1) (39)

where the convexity adjustment term is given by µ = σα sec πα
2

to ensure the martingale

condition, EQ
t [ST ] = Ste

(r−q)τ . The characteristic function of ln(ST /St) is given by (Carr

and Wu 2003)

f(τ ; φ) = EQ
t

[
eiφ ln(ST /St)

]
= eiφ(r−q)τ+(iφ−(iφ)α)µτ . (40)

We recall following general option pricing formula.

Lemma 2. If the characteristic function of ln(ST /St) is denoted as f(τ ; φ) = EQ
t

[
eiφ ln(ST /St)

]
,

then the price of a European call option can be written as (Bakshi and Madan 2000)

ct = Ste
−qτΠ1(t, τ)−Ke−rτΠ2(t, τ),
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where

Π1(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/St) × f(τ ; φ− i)

iφ f(τ ;−i)

]
dφ,

Π2(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/St) × f(τ ; φ)

iφ

]
dφ.

Applying the general formula to the FMLS process yields following result.

Lemma 3. If the underlying stock price is modelled by the FMLS process in equation (38),

then the price of a European call option is given by

ct = Ste
−qτΠ1(t, τ)−Ke−rτΠ2(t, τ), (41)

where

Π1(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/Ft)+(iφ+1−(iφ+1)α)µτ

iφ

]
dφ,

Π2(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/Ft)+(iφ−(iφ)α)µτ

iφ

]
dφ,

where Ft = Ste
(r−q)τ is the current froward price, and µ = σα sec πα

2
is the convexity

adjustment.

Matching the two option pricing formulas in (41) and (11) yields smirkness implied in

the FMLS process option pricing model as follows.

Theorem 4. For 1 < α < 2, the smirkness triplet, (σI0, γ1, γ2), implied in the FMLS

process option pricing model can be determined by

1− 2N (d∗) =
1

π

∫ ∞

0

Re

[
e(iφ+1−(iφ+1)α)µτ − e(iφ−(iφ)α)µτ

iφ

]
dφ, (42)

N(−d∗) + n(d∗)
σI0

σ̄
γ1 =

1

2
− 1

π

∫ ∞

0

Re

[
e(iφ−(iφ)α)µτ

iφ

]
dφ, (43)

1

σI0

√
τ

(
1− d∗2

σ2
I0

σ̄2
γ2

1 +
2σ2

I0

σ̄2
γ2

)
n(d∗) =

1

π

∫ ∞

0

Re[e(iφ−(iφ)α)µτ ]dφ, (44)
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where n(·) is the standard normal density function, and d∗ = −1
2
σI0

√
τ .

The model has only two parameters, (σ, α), as well. Similar to the CEV model, one

should use the ATM-IV, σI0, and skewness, γ1, of the implied volatility smirk of the nearest

term to calibrate the model.

On November 4, 2003, VIX index level is σ̄ = 0.1655. The ATM-IV is σI0 = 0.1447. The

skewness is γ1 = −0.1308. The time to maturity of the nearest term is τ = 17/365. Then

d∗ = −1
2
σI0

√
τ = −0.0156141. The task of calibrating the FMLS process option pricing

model becomes solving following two equations

1

π

∫ ∞

0

Re

[
e(iφ+1−(iφ+1)α)τσα sec πα

2 − e(iφ−(iφ)α)τσα sec πα
2

iφ

]
dφ = 1− 2N (d∗) = 0.0124577,

1

2
− 1

π

∫ ∞

0

Re

[
e(iφ−(iφ)α)τσα sec πα

2

iφ

]
dφ = N(−d∗) + n(d∗)

σI0

σ̄
γ1 = 0.460611

for two unknowns, volatility parameter, σ, and the tail index, α. This task can be accom-

plished within a few seconds by using three lines of Mathematica code. The result is

σ = 0.1086, α = 1.8141.

With this set of calibrated parameters, we can compute the term structure of the smirk-

ness implied in the FMLS process option pricing model from theorem 4. The results are

shown in Table 7 numerically and in Figure 9 graphically together with that from the CEV

model and the market data. A direct comparison shows that the FMLS model is much bet-

ter than the CEV model in terms of capturing the skewness of the implied volatility smirk.

This observation, which agrees with Carr and Wu (2003), indicates that the underlying

process indeed has jumps rather than a simple pure diffusion.

Other models, such as the jump-diffusion model of Merton (1976), the stochastic volatil-

ity model of Heston (1993), the variance Gamma process of Madan, Carr and Chang (1998),

the affine jump diffusion model of Duffie, Pan and Singleton (2000), the time-changed Lévy

process of Carr and Wu (2003), have more parameters. More points from the term struc-

ture of smirkness are needed in calibration. The details of implementing our calibration
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procedure will be presented in a subsequent research.

7 Conclusions

In this paper, we propose a new concept of smirkness, which is defined as a triplet of at-

the-money implied volatility, skewness (slope at the money) and smileness (curvature at

the money) of implied volatility – moneyness curve. The moneyness is the logarithm of

the strike price over the forward price, normalized by the standard deviation of expected

return on maturity.

Empirical evidence from S&P 500 index options shows that a quadratic function with

both skewness and smileness fits the market implied volatility smirk very well. The volume

weighted error can be smaller than the smallest bid-ask spread of traded options. Theoret-

ical analysis shows that the smirkness triplet is related to the cumulants of the risk-neutral

probability of the underlying asset return. With these new quantities well-defined, we are

able to study the term structure, its evolution and time-change dynamics of an implied

volatility smirk.

Our research suggests that the three term structures of the at-the-money implied volatil-

ity, skewness and smileness should be constructed on a daily basis. These term structures

distilled from the current prices of options with different strikes and maturities provide a

lot of information about investor’s fair expectation on the index return distribution over

different terms in the future. Therefore they should be used to calibrate option pricing

models.
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Table 1: The market data of SPX options on November 4, 2003. The maturity date is
November 21 2003, therefore time to maturity is τ = 17 days, or 17/365 year. The S&P
500 index level is S0 = 1053.25. The risk-free rate is r = 0.9743%. The implied forward
index level, computed by using formula F0 = K + erτ (c0(K) − p0(K)) with K = 1055 to
minimize |c0(K) − p0(K)|, is F0 = 1052.70. The fact of F0 < S0 implies that expected
dividend yield, q, is larger than the risk-free rate, r.

Call Put
Strike Last Sale Bid Ask Mid-value Vol Last Sale Bid Ask Mid-value Vol
850 204.6 201.6 203.6 202.6 0 0.1 0.05 0.15 0.1 0
875 160.4 176.7 178.7 177.7 0 0.15 0.1 0.3 0.2 0
900 150 151.8 153.8 152.8 0 0.2 0.15 0.25 0.2 0
925 135 126.9 128.9 127.9 0 0.3 0.3 0.5 0.4 307
935 124 116.9 118.9 117.9 0 0.55 0.25 0.55 0.4 26
945 0 107 109 108 0 1.3 0.35 0.65 0.5 0
950 102.5 102.1 104.1 103.1 10 0.55 0.45 0.6 0.525 832
960 0 92.2 94.2 93.2 0 0.65 0.35 0.8 0.575 0
970 0 82.4 84.4 83.4 0 0 0.5 1 0.75 0
975 82 77.6 79.6 78.6 0 1 0.8 1.1 0.95 1362
980 72.5 72.7 74.7 73.7 1 1.05 0.8 1.3 1.05 34
985 63 67.9 69.9 68.9 0 1.3 1 1.45 1.225 347
990 70.5 63.1 65.1 64.1 0 1.4 1.2 1.65 1.425 188
995 58.6 58.3 60.3 59.3 13 1.7 1.6 1.9 1.75 1109
1005 49 49 51 50 45 2.3 2.25 2.6 2.425 493
1010 44.6 44.5 46.5 45.5 146 2.9 2.4 3.2 2.8 190
1015 40 40 42 41 29 3.7 2.9 3.7 3.3 965
1020 39.7 35.7 37.7 36.7 6 3.6 3.6 4.3 3.95 1118
1025 31.9 31.5 33.5 32.5 1952 4.6 4.5 5.1 4.8 2005
1030 28.5 27.4 29.4 28.4 9 5.5 5.1 6 5.55 373
1035 23.7 24 25.6 24.8 187 7.2 6.3 7.5 6.9 2525
1040 20.3 20 22 21 107 8.2 7.7 8.5 8.1 1190
1045 17 17 18.5 17.75 14 10.1 9.4 10.6 10 94
1050 14.5 14.5 15.4 14.95 3033 11.9 11.6 12.2 11.9 3478
1055 11.5 11.1 12.7 11.9 1823 14.5 13.4 15 14.2 627
1060 9.8 9.5 10 9.75 2603 17 16 17.2 16.6 188
1065 7.1 7.2 8.1 7.65 243 20 19 20.6 19.8 24
1070 5.5 5.4 6.4 5.9 2623 23.7 22.1 24.1 23.1 204
1075 4.1 4.1 4.7 4.4 1759 26.8 25.7 27.2 26.45 1704
1080 3.2 3.1 3.7 3.4 303 30 29.6 31.6 30.6 6
1085 2.4 2 2.8 2.4 79 0 33.7 35.7 34.7 0
1090 1.9 1.5 2 1.75 362 40 38 40 39 2
1095 1.1 1 1.5 1.25 10 0 42.5 44.5 43.5 0
1100 0.95 0.85 1.1 0.975 149 49 47.2 49.2 48.2 42
1115 0.45 0.3 0.5 0.4 32 0 61.6 63.6 62.6 0
1125 0.25 0.15 0.3 0.225 39 72 71.4 73.4 72.4 13
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Table 2: The U.S. daily treasury yield curve rates between October 30, 2003 and November
12, 2003.

Maturity
Date

1 mo 3 mo 6 mo 1 yr 2 yr 3 yr 5 yr 7 yr 10 yr 20 yr

10/30/03 0.97 0.96 1.04 1.32 1.86 2.39 3.29 3.83 4.36 5.25
10/31/03 0.96 0.96 1.04 1.31 1.85 2.36 3.27 3.80 4.33 5.20
11/03/03 0.97 0.96 1.05 1.33 1.90 2.44 3.34 3.88 4.40 5.25
11/04/03 0.97 0.95 1.03 1.31 1.86 2.40 3.28 3.81 4.33 5.19
11/05/03 0.96 0.96 1.05 1.35 1.94 2.46 3.35 3.88 4.38 5.24
11/06/03 0.95 0.96 1.06 1.38 2.01 2.55 3.43 3.96 4.45 5.32
11/07/03 0.95 0.96 1.07 1.40 2.04 2.60 3.47 3.99 4.48 5.33
11/10/03 0.92 0.97 1.07 1.39 2.06 2.63 3.49 4.00 4.49 5.34
11/12/03 0.92 0.95 1.06 1.39 2.05 2.59 3.45 3.95 4.44 5.29
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Table 3: The price and implied volatility on November 4, 2003 for out-of-the-money SPX
options that mature on November 21, 2003. Puts are chosen for strikes below the forward
index level, F0 = 1052.70. Calls are chosen for strike above the forward index level. The
implied volatility is the root that equates the Black-Scholes formula with the market price,
and the moneyness is defined as ln(K/F0)/(σ

√
τ), where τ = 17/365 year, and σ = 16.55%

is the VIX closing index on the day. It is taken to be a proxy of the average volatility. The
fitted implied volatility, given by σI = 0.1447(1−0.1308ξ +0.0411ξ2), is obtained by fitting
the market implied volatility with a quadratic function that passes through the point at
the money and minimizes the volume weighted mean squared error. RMSE, root of mean
squared error. RVWMSE, root of volume weighted mean squared error.

Strike Market Volume Moneyness ImV. Fitted ImV. FitEr
850 0.1 0 -5.9881 0.3760 0.4713 0.0953
875 0.2 0 -5.1765 0.3568 0.4020 0.0452
900 0.2 0 -4.3878 0.3081 0.3422 0.0341
925 0.4 307 -3.6206 0.2861 0.2911 0.0050
935 0.4 26 -3.3196 0.2655 0.2730 0.0075
945 0.5 0 -3.0217 0.2537 0.2561 0.0025
950 0.525 832 -2.8740 0.2451 0.2482 0.0031
960 0.575 0 -2.5808 0.2273 0.2331 0.0058
970 0.75 0 -2.2907 0.2159 0.2192 0.0033
975 0.95 1362 -2.1467 0.2144 0.2127 -0.0022
980 1.05 34 -2.0035 0.2070 0.2064 -0.0006
985 1.225 347 -1.8610 0.2019 0.2005 -0.0014
990 1.425 188 -1.7193 0.1965 0.1948 -0.0017

Put 995 1.75 1109 -1.5782 0.1936 0.1893 -0.0043
1005 2.425 493 -1.2983 0.1835 0.1792 -0.0043
1010 2.8 190 -1.1593 0.1773 0.1746 -0.0027
1015 3.3 965 -1.0210 0.1719 0.1702 -0.0018
1020 3.95 1118 -0.8835 0.1675 0.1660 -0.0015
1025 4.8 2005 -0.7466 0.1641 0.1621 -0.0020
1030 5.55 373 -0.6103 0.1571 0.1584 0.0013
1035 6.9 2525 -0.4747 0.1559 0.1550 -0.0009
1040 8.1 1190 -0.3398 0.150 0.1518 0.0017
1045 10 94 -0.2055 0.1498 0.1488 -0.0008
1050 11.9 3478 -0.0719 0.1460 0.1460 0.0001

ATM 1052.70 -0.0001 0.1447 0.1447 0.0000
1055 11.9 1823 0.0611 0.1435 0.1435 -0.00003
1060 9.75 2603 0.1935 0.1439 0.1412 -0.0026
1065 7.65 243 0.3253 0.1413 0.1391 -0.0022
1070 5.9 2623 0.4564 0.1393 0.1373 -0.0020
1075 4.4 1759 0.5869 0.1367 0.1356 -0.0011

Call 1080 3.4 303 0.7169 0.1375 0.1342 -0.0034
1085 2.4 79 0.8462 0.1348 0.1329 -0.0018
1090 1.75 362 0.9749 0.1346 0.1319 -0.0028
1095 1.25 10 1.1030 0.1344 0.1310 -0.0034
1100 0.975 149 1.2306 0.1375 0.1304 -0.0071
1115 0.4 32 1.6098 0.1426 0.1296 -0.0130
1125 0.225 39 1.8598 0.1468 0.1301 -0.0168

RMSE 0.0190
RVWMSE 0.0023
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Table 4: The prices and price errors computed by the Black-Scholes formula with flat,
skewed and smirked volatility functions for out-of-the-money SPX options. The set of
options used is the same as that in Table 3. The flat volatility function, σI = 0.1447, is
a constant given by at-the-money implied volatility. The skewed one, σI = 0.1447(1 −
0.1308ξ), is a linear function passing through the point at the money. The smirked one,
σI = 0.1447(1− 0.1308ξ + 0.0411ξ2), is a quadratic function obtained by fitting the market
implied volatility. The errors are the difference between the computed prices and the
market prices. RMSE, root of mean squared error. RVWMSE, root of volume weighted
mean squared error.

Strike Market Volume Flat FlatEr Skew SkewEr Smirk SmirkEr
850 0.1 0 0 -0.1 0.0008 -0.0993 0.6163 0.5163
875 0.2 0 0 -0.2 0.0026 -0.1974 0.4933 0.2933
900 0.2 0 0 -0.2 0.0092 -0.1908 0.4368 0.2368
925 0.4 307 0.0001 -0.3999 0.0332 -0.3668 0.4493 0.0493
935 0.4 26 0.0005 -0.3995 0.0556 -0.3444 0.4797 0.0797
945 0.5 0 0.0022 -0.4979 0.0931 -0.4069 0.5307 0.0307
950 0.525 832 0.0042 -0.5209 0.1203 -0.4047 0.5664 0.0414
960 0.575 0 0.0142 -0.5609 0.2005 -0.3745 0.6646 0.0896
970 0.75 0 0.0432 -0.7068 0.3325 -0.4175 0.8127 0.0627
975 0.95 1362 0.0725 -0.8775 0.4272 -0.5228 0.9127 -0.0373
980 1.05 34 0.1187 -0.9313 0.5477 -0.5023 1.0355 -0.0145
985 1.225 347 0.1895 -1.0355 0.7006 -0.5244 1.1866 -0.0384
990 1.425 188 0.2953 -1.1298 0.8939 -0.5312 1.3727 -0.0523
995 1.75 1109 0.4494 -1.3007 1.1371 -0.6129 1.6024 -0.1476
1005 2.425 493 0.9723 -1.4527 1.8217 -0.6033 2.2365 -0.1886
1010 2.8 190 1.3844 -1.4156 2.2925 -0.5075 2.6693 -0.1307
1015 3.3 965 1.9306 -1.3694 2.8723 -0.4277 3.2030 -0.0970
1020 3.95 1118 2.6388 -1.3112 3.5816 -0.3684 3.8595 -0.0906
1025 4.8 2005 3.5377 -1.2623 4.4431 -0.3569 4.6634 -0.1366
1030 5.55 373 4.6557 -0.8943 5.4810 -0.0690 5.6425 0.0925
1035 6.9 2525 6.0190 -0.8811 6.7208 -0.1792 6.8266 -0.0734
1040 8.1 1190 7.6503 -0.4497 8.1885 0.0885 8.2462 0.1462
1045 10 94 9.5675 -0.4325 9.9090 -0.0910 9.9311 -0.0689
1050 11.9 3478 11.7824 -0.1178 11.9050 0.0050 11.9078 0.0078

1052.70 0.0000 0.0000 0.0000
1055 11.9 1823 12.0003 0.1103 11.8957 -0.0043 11.8977 -0.0023
1060 9.75 2603 9.8214 0.0714 9.4970 -0.2530 9.5167 -0.2333
1065 7.65 243 7.9350 0.2849 7.4135 -0.2365 7.4667 -0.1833
1070 5.9 2623 6.3262 0.4262 5.6442 -0.2558 5.7414 -0.1586
1075 4.4 1759 4.9754 0.5754 4.1794 -0.2207 4.3239 -0.0761
1080 3.4 303 3.8590 0.4590 3.0005 -0.3995 3.1885 -0.2115
1085 2.4 79 2.9510 0.5510 2.0815 -0.3186 2.3023 -0.0978
1090 1.75 362 2.2244 0.4744 1.3900 -0.3600 1.6285 -0.1215
1095 1.25 10 1.6525 0.4025 0.8898 -0.3602 1.1294 -0.1206
1100 0.975 149 1.2097 0.2347 0.5436 -0.4314 0.7689 -0.2061
1115 0.4 32 0.4341 0.0341 0.0887 -0.3113 0.2215 -0.1785
1125 0.225 39 0.2033 -0.0217 0.0188 -0.2062 0.0918 -0.1332

RMSE 0.7504 0.3591 0.1566
RVWMSE 0.7758 0.3127 0.1229
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Table 5: The term structure of smirkness on November 4, 2003. The trading volume is the
number of the out-of-the-money options with different strikes for the same maturity. The
discount rate is computed by using linear interpolation with the yield curve on November
4, 2003 provided in Table 2. The smirkness triplet (σI0, γ1, γ2) is obtained by fitting the
implied volatility smirk with a quadratic function, σ(ξ) = σI0(1 + γ1ξ + γ2ξ

2), where ξ is
the moneyness.

Maturity Trading Discount rate ATM-IV Skewness Smileness
τ (days) volume r (%) σI0 γ1 γ2

17 26,661 0.9743 0.1447 -0.1308 0.0411
45 37,983 0.9651 0.1473 -0.1894 0.0158
73 4,066 0.9559 0.1509 -0.2141 0.0103
136 6,825 0.9896 0.1608 -0.2063 0.0049
227 4,848 1.0989 0.1683 -0.1623 0.0230
318 4,050 1.2381 0.1727 -0.1905 0.0425
409 3,987 1.3763 0.1759 -0.1688 0.0086
591 1,401 1.6506 0.1786 -0.1574 0.0309
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Table 6: The evolution of the term structure of smirkness from Oct-30-03 to Nov-04-03
and then to Nov-12-03. The discount rate is computed by using linear interpolation with
the yield curve on the corresponding dates provided in Table 2. The smirkness triplet
(σI0, γ1, γ2) is obtained by fitting the implied volatility smirk with a quadratic function,
σ(ξ) = σI0(1 + γ1ξ + γ2ξ

2), where ξ is the moneyness.

Observed on Oct-30-03

Maturity (days) 22 50 78 141 232 323 414 596
Discount rate 0.9713 0.9667 0.9621 1.0040 1.1165 1.2557 1.3925 1.6618
ATM-IV σI0 0.1474 0.1528 0.1568 0.1661 0.1729 0.1776 0.1805 0.1833
Skewness γ1 -0.1599 -0.1820 -0.1648 -0.1606 -0.1765 -0.1856 -0.1988 -0.2096
Smileness γ2 0.0220 0.0103 0.0190 0.0250 0.0109 0.0108 -0.0055 -0.0103

Observed on Nov-04-03

Maturity (days) 17 45 73 136 227 318 409 591
Discount rate 0.9743 0.9651 0.9559 0.9896 1.0989 1.2381 1.3763 1.6506
ATM-IV σI0 0.1447 0.1473 0.1509 0.1608 0.1683 0.1727 0.1759 0.1786
Skewness γ1 -0.1308 -0.1894 -0.2141 -0.2063 -0.1623 -0.1905 -0.1688 -0.1574
Smileness γ2 0.0411 0.0158 0.0103 0.0049 0.0230 0.0425 0.0086 0.0309

Observed on Nov-12-03

Maturity (days) 9 37 65 128 219 310 401 583
Discount rate 0.9097 0.9234 0.9372 0.9947 1.1267 1.2908 1.4551 1.7842
ATM-IV σI0 0.1632 0.1553 0.1575 0.1658 0.1712 0.1743 0.1776 0.1798
Skewness γ1 -0.1357 -0.1723 -0.1719 -0.2062 -0.2117 -0.2052 -0.1867 -0.1838
Smileness γ2 0.0256 0.0168 0.0291 0.0063 0.0049 0.0031 -0.0006 0.0188
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Table 7: The term structure of smirkness observed from the market data on Nov-04-03,
and implied in calibrated option pricing models: the Constant Elasticity of Variance (CEV)
model and the Finite Moment Log Stable (FMLS) process.

The term structure of smirkness observed from the market data on Nov-04-03

Maturity (days) 17 45 73 136 227 318 409 591
Discount rate (%) 0.9743 0.9651 0.9559 0.9896 1.0989 1.2381 1.3763 1.6506

Dividend (%) 2.098 1.656 1.548 1.704 1.565 1.615 1.609 1.474
Forward price 1052.70 1052.35 1052.00 1050.45 1050.20 1049.80 1050.51 1056.27

ATM-IV σI0 0.1447 0.1473 0.1509 0.1608 0.1683 0.1727 0.1759 0.1786
Skewness γ1 -0.1308 -0.1894 -0.2141 -0.2063 -0.1623 -0.1905 -0.1688 -0.1574
Smileness γ2 0.0411 0.0158 0.0103 0.0049 0.0230 0.0425 0.0086 0.0309

The term structure of smirkness implied in the CEV model, dSt = (r − q)Stdt + σSα
t dBt, with

calibrated parameters: (σ, α) = (152.36, 0)

Maturity (days) 17 45 73 136 227 318 409 591
ATM-IV σI0 0.1447 0.1447 0.1448 0.1449 0.1449 0.1450 0.1450 0.1447
Skewness γ1 -0.0179 -0.0291 -0.0370 -0.0506 -0.0653 -0.0774 -0.0878 -0.1056
Smileness γ2 0.00011 0.00028 0.00046 0.00085 0.00143 0.00201 0.00259 0.00375

The term structure of smirkness implied in the FMLS process, dSt = (r − q)Stdt + σStdLα,−1
t ,

with calibrated parameters: (σ, α) = (0.1086, 1.8141)

Maturity (days) 17 45 73 136 227 318 409 591
ATM-IV σI0 0.1447 0.1508 0.1537 0.1574 0.1603 0.1621 0.1634 0.1652
Skewness γ1 -0.1308 -0.1195 -0.1137 -0.1059 -0.0992 -0.0947 -0.0913 -0.0863
Smileness γ2 0.0486 0.0416 0.0383 0.0341 0.0307 0.0285 0.0269 0.0246
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Figure 1: The time value of SPX options as a function of strike price, K, on November 4,
2003 for both calls and puts that mature on November 21, 2003.
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The time to maturity is τ = 17 days = 17/365 year. The discount rate over the period,
derived from the U.S. treasury yield curve on November 4, 2003, is r = 0.9743%. The
implied forward price, derived from put-call parity for the strike that minimizes the absolute
difference between a call and a put prices, is F0 = 1052.70. The time value of an option is
defined as the difference between option price and its intrinsic value. Therefore the time
value of a call is

ctv(K) = c0(K)− e−rτ max(F0 −K, 0),

and the time value of a put is

ptv(K) = p0(K)− e−rτ max(K − F0, 0).

The fact that the two functions, ctv(K) and ptv(K), almost collapse each other indicates
that the put-call parity holds for any strike price, K.
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Figure 2: The implied volatility smirk on November 4, 2003 for out-of-the-money SPX
options that mature on November 21, 2003. The implied volatility, σI, as a function of
moneyness, ξ, is regarded as an implied volatility smirk.
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The implied volatility, σI, is defined as the root that equates the Black-Scholes formula
with the market price,
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and the moneyness, ξ, is defined by

ξ ≡ ln(K/F0)

σ̄
√

τ
.

Here the time to maturity is τ = 17 days = 17/365 year. The discount rate over the
period, derived from the U.S. treasury yield curve on November 4, 2003, is r = 0.9743%.
The implied forward price, derived from put-call parity for the strike that minimizes the
absolute difference between a call and a put prices, is F0 = 1052.70. The benchmark
volatility, σ̄, is taken to be the VIX index reported by the CBOE on the day, σ̄ = 16.55%.
In the diagram, the dots are computed from the market prices of the out-of-the-money
calls and puts. The solid line is generated by fitting the market implied volatility with a
quadratic function that passes through the point at the money and minimizes the volume
weighted mean squared errors of the implied volatility. The bar chart is the trading volume
normalized by 20,000 contracts for the corresponding options traded on November 4, 2003.
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Figure 3: The flat, skewed and smirked implied volatility functions together with market
implied volatilities (shown as dots) on November 4, 2003 for SPX options that mature on
November 21, 2003.
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The “flat” volatility function is σI = 0.1447, which is the ATM-IV. The “skewed” one is
a linear volatility function, σI = 0.1447(1 − 0.1308ξ). The “smirked” one is a quadratic
function, σI = 0.1447(1− 0.1308ξ + 0.0411ξ2).
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Figure 4: The computed option price and its error as functions of strike on November 4,
2003 for out-of-the-money SPX options that mature on November 21, 2003.
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The computed option price is determined by using the Black-Scholes formula with flat,
skewed and smirked volatility functions. The “flat” one is σI = 0.1447, which is the ATM-
IV. The “skewed” one is a linear volatility function, σI = 0.1447(1 − 0.1308ξ). And the
“smirked” one is a quadratic function, σI = 0.1447(1 − 0.1308ξ + 0.0411ξ2). The price
error is the difference between the computed price and the market price. At the money,
K = F0 = 1052.70, three computed option prices are the same as the market price, therefore
errors are zero. The option price error is shown together with the trading volume normalized
by 5,000 contracts.
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Figure 5: The risk-neutral probability density functions recovered from “flat”, “skewed”,
“smiled” and “smirked” implied volatility functions on November 4, 2003 for options that
mature on November 21, 2003.
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The solid line is the probability density function recovered from a “flat” implied volatility,
σI = σI0 = 0.1447. It is a lognormal distribution density function. The dashed line is
recovered from a “skewed” implied volatility, σI = σI0(1 + γ1ξ) = 0.1447(1 − 0.1308ξ).
The dash-doted line is recovered from a “smiled” implied volatility, σI = σI0(1 + γ2ξ

2) =
0.1447(1 + 0.0411ξ2). The doted line is recovered from a “smirked” implied volatility,
σI = σI0(1 + γ1ξ + γ2ξ

2) = 0.1447(1− 0.1308ξ + 0.0411ξ2).
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Figure 6: The implied volatility smirks on November 4, 2003 for options with all available
maturities, including Nov-21-03, Dec-19-03, Jan-16-04, Mar-19-04, Jun-18-04, Sep-17-04,
Dec-17-04, and Jun-17-05. The times to maturity are 17, 45, 73, 136, 227, 318, 409, and
591 days respectively.
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The dots are computed from the market prices of the out-of-the-money calls and puts. The
solid line is generated by fitting the market implied volatility with a quadratic function that
passes through the point at the money and minimizes the volume weighted mean squared
errors of the implied volatility. The bar chart is the trading volume normalized by 20,000
contracts for the corresponding options traded on November 4, 2003.
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Figure 7: The evolution of the term structure of smirkness from Oct-30-03 to Nov-04-03
and then to Nov-12-03. The smirkness triplet (σI0, γ1, γ2) is obtained by fitting the implied
volatility smirks with a quadratic function, σ(ξ) = σI0(1 + γ1ξ + γ2ξ

2), where σI0 is the
ATM-IV, γ1 is the skewness, γ2 is the smileness, and ξ is the moneyness.
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Figure 8: The time-change dynamics of the smirkness triplet, (σI0, γ1, γ2) for options with
the maturity date, September 16, 1999. The time series is from September 25, 1998 to
September 3, 1999. The horizontal axis is calendar time t (year). The maturity date is at
t = 1.
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Figure 9: The term structure of smirkness implied in two calibrated option pricing models,
and observed from the market data on November 4, 2003. The two models are the Constant
Elasticity of Variance (CEV) model, dSt = (r−q)Stdt+σSα

t dBt, with calibrated parameters:
(σ, α) = (152.36, 0), and the Finite Moment Log α-Stable (FMLS) process, dSt = (r −
q)Stdt + σStdLα,−1

t , with calibrated parameters: (σ, α) = (0.1086, 1.8141).
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