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Abstract

In this paper, we examine the importance of market volatility dynamics for asset pricing, focusing on
a decomposition of volatility into a short-run, quickly mean reverting component and a long-run, slowly
evolving component. Within an ICAPM model, we show that the stochastic discount factor is a function
of both the long- and short-run volatility components as well as the market return.

The major results of the paper concern the pricing of short- and long-run volatility components in the
25 size and book-to-market sorted portfolios. In monthly cross-sectional regressions for 1963-2003, we �nd
that both the long-run and short-run components of market volatility are highly signi�cant asset pricing
factors with a negative price of risk. As the long- and short-run volatility components are negatively
correlated with the market return, this �nding is consistent with the prediction of the ICAPM that
investors hedge innovations in volatility. The price of risk of the long-run volatility component is six
times higher than the price of risk of the short-run component. When we include the Hml and Smb
factors of Fama and French (1993) in the cross-sectional regression, the volatility components stay highly
signi�cant, whereas Hml and Smb are insigni�cant.

We also split our sample to study the period 1986-2003, which allows us to compare our three-factor
model to the one based on market implied volatility (VIX) as proposed by Ang, Hodrick, Xing, and Zhang
(2004). We �nd that our volatility estimates are highly correlated with implied volatility. However, in
cross-sectional pricing, our three-factor model generates a 22% lower J-statistic than the model with the
VIX and the market return as pricing factors. In addition, over the shorter sample period, our model
signi�cantly outperforms the Fama-French three-factor model, with a J-statistic that is 15% smaller.

The long-run volatility factor is highly correlated with macroeconomic measures such as the growth
rate of industrial production (-29%), changes in the unemployment rate (23%), and measures of macro-
economic uncertainty, showing that the long-run component is counter-cyclical. The short-run volatility
component is highly correlated with measures of market liquidity and interest rates.

Key words: asset pricing, stochastic volatility, ICAPM
JEL classi�cation: G10, G12
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1 Introduction

It is well documented that the volatility of the stock market is stochastic (see Bollerslev, Engle,

Nelson (1994) and Ghysels, Harvey, Renault (1996)). In equilibrium settings such as Merton�s

(1973) ICAPM or the CIR model by Cox, Ingersoll, Ross (1985), shocks to the volatility process

become pricing kernel state variables. The relationship between expected market returns and

market volatility is then determined by two forces. From a static point of view, there is the

risk-return trade-o¤: risk-averse investors demand a higher risk premium if volatility is higher.

However, from a dynamic point of view, investors price shocks to volatility that are correlated

with shocks to the market return.

Only few papers have closely examined volatility as a pricing factor in a cross-sectional pricing

context (see, in particular, Ang, Hodrick, Xing, and Zhang (2004)). We extend this analysis by

modeling log-volatility as the sum of a short-run and a long-run component, each of which may

have its own risk premium. Our equilibrium ICAPM setting predicts that investors hedge volatility

risk, and that asset expected returns depend on their covariance with innovations to the short-run

and the long-run volatility components as well as the market return. Intuitively, investors might

react di¤erently to volatility shocks that are expected to be short-lived (e.g. news announcements,

transitory liquidity events) compared to long-lived shocks (e.g. changes in the economic outlook,

structural changes). Our approach makes it possible to identify and analyze long-run volatility

shocks that are likely to be most relevant for expected returns.

Using a variety of estimation methods, Engle and Lee (1999), Alizadeh, Brandt and Diebold

(2002), Bollerslev and Zhou (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), and Chacko

and Viceira (2003) �nd that two-factor volatility speci�cations signi�cantly outperform one-factor

models. Two-factor models are designed to allow for shocks with di¤erent levels of persistence to

drive the volatility process. Hence, this feature is potentially important if underlying economic

forces that determine volatility operate at di¤erent frequencies. In a two-factor model, volatility

can exhibit persistent deviations from the unconditional average, while also allowing for fast mean

reversion to recent volatility levels.

Our focus on low-frequency movements is related to the recent literature examining the impact
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of permanent components of consumption growth and dividend growth on asset pricing (see, in

particular, Barsky and DeLong (1993), Bansal and Lundblad (2002), Bansal and Yaron (2004),

Bansal, Dittmar, Lundblad (2004), Bansal, Khatchatrian and Yaron (2004)). In comparison, an

advantage of our work is that we only use �nancial market data as asset pricing factors, which is

available at a high frequency for long time periods.

Previous papers have had di¢ culty empirically identifying the risk-return trade-o¤ in the time-

series. This does not come as a surprise from a theoretical point of view: Abel (1988) and Gennotte

and Marsh (1993) show in equilibrium settings with one-factor stochastic volatility processes that

the market return is not necessarily positively related to the market variance in the time-series.

In their theory, this is due to the dynamic optimization of rational investors who hedge changes

in the investment opportunity set. In particular, volatility is predictable and, in equilibrium, pro-

vides information about expected returns. Therefore, changes in volatility change the investment

opportunity set and should be priced. We extend this intuition to a two-factor ICAPM that we

discuss in section 2 and analyze in detail in the appendix.

When we estimate a two-factor volatility model over the period 1963-2003 in section 3, we do

�nd that the market return is positively related to its variance in time-series estimation, which is

the standard risk-return trade-o¤. We also �nd it is negatively related to the short- and long-run

volatility components, consistent with the prediction of the ICAPM that investors hedge changes

in volatility and price volatility risk. The half-life of a shock to the long-run component is 8.5

months, whereas the half-life of a shock to the short-run component is only 5.2 days.

Return innovations are found to be negatively correlated with both the short- and long-run

volatility components. This asymmetry (sometimes called the leverage e¤ect) has been documented

in one-factor contexts by French, Schwert and Stambaugh (1987), Campbell and Hentschel (1992),

Glosten, Jagannathan, and Runkle (1993), Zakoian (1994), Andersen, Benzoni, and Lund (2002),

Eraker, Johannes, and Polson (2003), and Brandt and Kang (2004) among others.

We also decompose daily squared returns into short- and long-run component using the Hodrick-

Prescott (1997) �lter. This provides a non-parametric measure of the volatility components that we

use for robustness checks of our results. A key insight from this exercise is that the non-parametric
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long-run component is very highly correlated with our model-based estimate. Thus, our empirical

results do not appear to be particularly sensitive to the volatility model speci�cation used for the

decomposition.

Our main empirical results concern the pricing of short and long-run volatility in the 25 size and

book-to-market sorted portfolios. The empirical model that emerges from our theory is a three-

factor model with the market excess return and the short- and long-run volatility components as

pricing factors.

In section 4, we discuss the �ndings from monthly cross-sectional regressions for 1963-2003.

We �nd that both the long- and short-run components of market volatility are highly signi�cant

asset pricing factors consistent with the prediction of the ICAPM that investors hedge innovations

in volatility. The ICAPM also predicts that factors that are negatively correlated with the market

(such as short- and long-run volatility) have a negative risk premium, which is what we �nd in our

estimation results.

The price of risk of the long-run volatility factor is orders of magnitudes higher than the price

of risk of the short-run component (as it is expected to last longer). The large price of risk of the

long-run component implies a large Sharpe ratio for investment strategies taking advantage of this

component�s low-frequency movements.

We also split our sample to study the period 1986-2003, which allows us to compare our three-

factor model to the one based on market implied volatility (VIX) as proposed by Ang, Hodrick,

Xing, and Zhang (2004). We �nd that our volatility estimates are highly correlated with implied

volatility. However, in cross-sectional pricing, our three-factor model generates 22% lower J-

statistic than the model with the VIX and the market return as pricing factors. We report the

�ndings of the split sample in section 5.

Our cross-sectional asset pricing results are closest to those reported by Ang, Hodrick, Xing, and

Zhang (2004). They use the VIX as a pricing factor in cross-sectional regressions (see our section 5

for a comparison). They also decompose volatility into systematic and idiosyncratic components,

while we decompose volatility into short- and long-run components. Other papers that focus on the

cross-sectional pricing implications of stochastic volatility include Engle, Bollerslev andWooldridge
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(1988), Harvey (1989) and Schwert and Seguin (1990). These authors estimate static CAPMs with

stochastic market return volatility. They specify time-variation in CAPM betas as a function of

aggregate volatility, but do not examine the pricing implications of the hedging demands that

result from stochastic volatility environments, which is the focus of our paper.

In section 6, we relate the volatility factors to macroeconomic and �nancial variables. It is

well known that the Fama-French Hml and Smb factors are not strongly related to macroeco-

nomic variables such as production growth, unemployment, in�ation, and measures of credit risk.

Furthermore, macroeconomic risk factors do not generally yield satisfactory cross-sectional asset

pricing results. We �nd that the long-run component of market volatility is highly negatively

correlated with the growth rate of industrial production (29%), highly negatively correlated with

changes in the unemployment rate (23%), and positively correlated with the credit spread (14%)

All of these correlations are signi�cant at the 1% level. The long-run volatility factor thus appears

to be countercyclical. The short-run volatility factor is more highly correlated with market liquid-

ity measures and the Hml and Smb factor. Section 7 concludes with a review of the main results

and suggestions for future research.

2 An ICAPM with two-factor volatility

In this section, we present an ICAPM with a two-factor stochastic volatility process that is devel-

oped in more detail in the appendix. We assume that the instantaneous market excess return dpMt

evolves according to the following di¤usion:

dpMt = �Mt dt+
p
vtdZ

M
t (1)

where ZMt is a standard Brownian motion, vt is the instantaneous, stochastic variance of the market

return, and �Mt is the drift. Log-volatility is the sum of two components s and q:

log
p
vt = st + qt (2)
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dst = ��sstdt+ �sdZst (3)

dqt = �
q (�q � qt) dt+ �qdZqt (4)

where Zq and Zs are Brownian motions that are correlated with each other and the market

innovation ZM . The two components of log-volatility have potentially di¤erent rates of mean

reversion. Without loss of generality, let q be the slowly mean-reverting component and s be

the quickly mean reverting component. Both s and q are Ornstein-Uhlenbeck processes and are

therefore conditionally normal. As a consequence, log-volatility is conditionally normal. The

persistence of the short-run component s is given by the parameter of mean-reversion, �s � 0.

Higher parameter values correspond to faster mean-reversion back to zero. The long-run component

q mean-reverts to a constant �q at rate �q. When �q = 0, qt is non-stationary.

By summing equations (3) and (4), we obtain an expression for the evolution of the log-volatility

of the market excess return:

d ln
p
vt = �

s (q�t � ln
p
vt) dt+ �

sdZst + �
qdZqt (5)

where q�t =
�q

�s
�q +

�
1� �q

�s

�
qt. The logarithm of the standard deviation of the market is a process

that is reverting around the stochastic mean q�t at rate �
s. Our model can be thought of as a

generalized one-factor volatility model with a (slowly evolving) stochastic mean.

The drift of the market return process �M is an endogenous variable. In order to show how it

depends on the state variables of the economy, additional assumptions have to be made.

Investors are assumed to have HARA preferences, so that the equilibrium arguments of Merton

(1973) can be directly applied. Adrian and Rosenberg (2004) show that the asset pricing impli-

cations that we derive apply up to a �rst-order approximation if investors have Epstein-Zin-Weil

preferences.

For simplicity, it is assumed that the goods market clears, i.e. investor consumption equals

dividends at any point in time, and that the risk-free asset is in zero net supply. This assumption

simpli�es the asset pricing implications somewhat relative to a model with positive supply of the

risk-free rate and no goods-market clearing, as Adrian and Rosenberg (2004) show.
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The key insight of Merton (1973) and Cox, Ingersoll, Ross (1984) is that state variables of

the return generating process become state variables of the pricing kernel. In the appendix, we

demonstrate that the equilibrium pricing kernel m is:

dmt

mt

= �
�

tdp

M
t + Fsdst + Fqdqt

�
(6)

where F (s; q) is a function that depends on preferences and 
 is the coe¢ cient of relative risk

aversion. The pricing kernel of our ICAPM economy consists therefore of three factors: the market

return as well as the long- and short-run components of market volatility. As we assumed that the

risk-free asset is in zero net supply, it follows that the risk-free rate is a function of the volatility

factors, justifying our implicit assumption that the risk-free rate is not a state variable.

In a static setting that involves only the absence of arbitrage, Ross (1976a) shows that state

variables of the payo¤ distribution become state variables of the return process. We emphasize

the equilibrium models proposed by Merton (1973) and Cox, Ingersoll, Ross (1985) as the APT is

inherently static, whereas our focus is the dynamic evolution of volatility risk premia.

For any asset i, expectation of the equilibrium excess return dpit is then:

Et
�
dpit
�
= 
tE

�
dpitdp

M
t

�
+ FsEt

�
dpitdst

�
+ FqEt

�
dpitdqt

�
(7)

The expected excess return of the market portfolio thus depends on the variance of equilibrium

excess returns (v) as well as the covariance of the market portfolio with the two volatility factors s

and q. In general, the dependence of Et
�
dpMt

�
on s and q can be non-linear. In one-factor stochastic

volatility setups, Abel (1988) and March and Genotte (1993) derive closed form solutions to the

equilibrium market return with stochastic volatility. In our two-component setup, we can solve

the model in closed form if we make the assumption that the two volatility components follow

Ornstein-Uhlenbeck processes. In that case, both Fs and Fq are constants. For more general

processes such as the ones speci�ed in equations (3) and (4), Fs and Fq are both functions of s

and q.

In work in progress, Tauchen (2004) derives the general equilibrium of an economy with a
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two-factor volatility process. The main di¤erence to our model is the speci�cation of the volatility

process. Furthermore, Tauchen (2004) relates the stochastic volatility process to the volatility of

the dividend process, whereas we take the evolution of the variance-covariance matrix of asset

excess returns as given.

For the market return, the pricing relationship (7) reduces to:

Et
�
dpMt

�
= 
tvt + FsEt

�
dpMt dst

�
+ FqEt

�
dpMt dqt

�
(8)

The covariance of the market return with the �rst pricing kernel factor is the variance of the market

return. Expected returns of the market thus depend of three elements: the static risk-return trade-

o¤, and the risk premium due to the pricing of the hedging components of the short-run and

long-run volatility factors. It will turn out that the market return is positively correlated with

innovations in both s and q, re�ecting the leverage e¤ect. The relationship between expected

returns and volatility is therefore ambiguous. From a static point of view, there is the risk-return

trade-o¤: risk-averse investors demand a higher risk premium if volatility is higher. However, from

a dynamic point of view, investors price shocks to volatility that are correlated with shocks to the

market return.

3 The time-series of market risk and its components

In order to estimate the stochastic volatility process and its short-run and long-run components,

we specify the following Egarch-components-in-mean model:

RMt+1 = �0 + �1vt + �2qt + �3st +
p
vt"t+1 (Egarch)

"t � N (0; 1)
p
vt = exp (st + qt)

st+1 = �4st + �5"t+1 + �6

�
j"t+1j �

p
2=�

�
qt+1 = �7 + �8qt + �9"t+1 + �10

�
j"t+1j �

p
2=�

�
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where RMt+1 denotes the market excess return. To our knowledge, estimates for this speci�cation

have not yet been reported in the literature. Brandt and Jones (2002) propose a range-based

two-component Egarch model that has two latent components similar to our s and q, but they do

not specify that either of the components appear independently of market variance in the mean

equation. The speci�cation LL2V of Chernov, Gallant, Ghysels and Tauchen (2003) is very similar

to the one that we are presenting here, but they only allow one of their volatility components

to appear in the mean equation. Compared to the Garch-components model proposed by Engle

and Lee (1999), our model allows for more skewness in the distribution of volatility as volatility

is conditionally log-normal. In addition, our speci�cation guarantees positive volatility estimates

without any parameter restrictions, which facilitates estimation.

In section A.4 of the appendix, we use a result of Nelson (1990) to show that the Egarch model

converges to the system of di¤usions (3) and (4) together with the mean equation

dpMt = �0 + �1vt + �2qt + �3st +
p
vtdZ

M
t (9)

In the continuous time model, there are three times-series shocks: ZM ; Zs; Zq. The beauty of

Nelson�s (1990) result is that this can be approximated by a discrete time �lter using a single

innovation. In the continuous time limit, the single shock of the Egarch approximation converges

to three imperfectly correlated shocks: one for the mean equation, and one for each of the volatility

equations, subject to a covariance restriction of equation (see equation (30) in the appendix).

In general, the hedging component of expected returns to the market depends on the preference

speci�cation of the economy (see equation (8)). The return equation of the continuous-time limit

(9) can be interpreted as a �rst-order Taylor approximation to the true relationship, i.e.


tvt + Fs�
Ms + Fq�

Mq ' �0 + �1vt + �2qt + �3st

Note that this approximation has a number of implications that are important for the inter-

pretation of the results. First, the coe¢ cient �1 cannot be directly interpreted as the coe¢ cient

of absolute risk-aversion. Second, the estimates of �2 and �3 are likely to be imprecise, as per
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de�nition, vt is highly correlated with st and qt. Nevertheless, the speci�cation makes clear that

in a world with stochastic volatility, the mean-equation of the ICAPM includes terms related to

the hedging demand in addition to the static-risk-return trade-o¤.

We estimate the model using daily market excess return data. We use the value-weighted

cum-dividend CRSP portfolio as our measure of the stock market return, and the three month

Treasury rate as the proxy for the risk-free rate. We estimate the Egarch-components model using

daily data in order to improve the estimation precision.

The results of estimating the stochastic volatility model using the Egarch-components speci�-

cation are presented in Table 1. Table 2 presents comparisons of the Egarch-components model

to other commonly used Garch speci�cations. Our speci�cation tests indicate that the model ad-

equately captures volatility dynamics with a p-value greater than 10% for the Ljung-Box test on

the standardized squared errors.

In the market excess return equation, the intercept �0 is insigni�cant. Excess returns are

positively related to the market return variance, with a coe¢ cient estimate of 0.049. Both the

coe¢ cient on the long-run volatility component �2 and the short-run volatility component �3 have

negative signs, but only the coe¢ cient of the short-run component is statistically signi�cantly

di¤erent from zero.

Consistent with previous papers, we �nd a signi�cant negative correlation between lagged

returns and volatility. In our model, we uncover this "leverage e¤ect" for both the short-run and

long-run volatility components (the coe¢ cients �5 and �9 respectively). It is the signi�cance of

the leverage e¤ect that ultimately gives rise to the negative correlation between market returns

and volatility innovations.

This asymmetry has been documented in one-factor contexts by French, Schwert and Stam-

baugh (1987), Campbell and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), Zakoian

(1994), Andersen, Benzoni, and Lund (2002), Eraker, Johannes, and Polson (2003), and Brandt

and Kang (2004) among others. Engle and Lee (1999) allow for an asymmetric relation between

returns and the short-run component of volatility, but not the long-run component. To our knowl-

edge, we are the �rst to document that both the short-run and long-run components of stock
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market volatility exhibit a leverage e¤ect.1

The short-run volatility component has a coe¢ cient on its own lag of 0:867, while the long-run

component has a coe¢ cient on its own lag of 0:996 (both are signi�cant at the 1% level). The

long-run component is therefore highly persistent, but not permanent (we reject the hypothesis

that �8 = 1 at the 1% level). These estimates imply a half life of the permanent component of 179

trading days (or 8.5 months), whereas the half life of the transitory component is only 5.2 trading

days.

Previous papers have had di¢ culty in empirically identifying the risk-return trade-o¤ in the

time-series of stock index returns. French, Schwert and Stambaugh (1987), Baillie and DeGennaro

(1990), Campbell and Hentschel (1992) and Brandt and Kang (2004) �nd a positive but insignif-

icant relationship between market risk and return; Glosten, Jagannathan and Runkle (1993),

Turner, Startz and Nelson (1989) and Harvey (2001) �nd both a positive and a negative rela-

tionship between market risk and return depending on the model speci�cation; whereas Campbell

(1987) and Nelson (1991) �nd a signi�cantly negative relationship. Ghysels, Santa-Clara, and

Valkanov (2004) do �nd a positive risk-return trade-o¤ by specifying the MIDAS estimator of

volatility, but they do not take the hedging demand due to the time-variation of volatility into

account. Scruggs (1998) �nds a positive trade-o¤ by introducing the risk-free rate as additional

risk-factor, which is similar to what we are doing as the risk-free rate is a function of the volatility

factors. Guo and Whitelaw (2004) �nd a positive relationship by estimating a structural model,

and Lundblad (2004) �nds a positive trade-o¤ in the very long-run. Merton (1980) �nds a positive

trade-o¤ by restricting estimation priors.

Our interpretation of these �ndings stems from equation (8). The expected market return

might depend positively or negatively on the market variance, depending on the relative impor-

tance of the risk-return trade-o¤ and the pricing of the hedging demand. All of the speci�cations

�nd a signi�cant leverage e¤ect, translating into a negative relationship between variance inno-

vations and market return innovations. Investors with a su¢ ciently large intertemporal elasticity

of substitution hedge innovations to volatility risk. Our Egarch-components speci�cation is able

1A recent paper focusing on the role of jumps in returns is Pan (2002), a paper studying jumps in both returns
and volatility is Eraker, Johannes and Polson (2003).

12



to (at least partially) separate out these two e¤ects as the volatility components are non-linear

transformations of the total variance.

In Table 2, we report our Egarch-components model together with three alternative speci�ca-

tions. For each speci�cation, we report the parameter estimates (together with the standard errors

in parenthesis), the log-likelihood function, the Akaike and Schwarz information criteria, and the

Ljung-Box Q-statistic of the standardized squared errors. In the Garch-GJR and the Egarch speci-

�cations, we include the market variance in the mean equation. In both models, the variance term

is negative and insigni�cant. Nelson (1991), Glosten, Jagannathan and Runkle (1993), Turner,

Startz and Nelson (1989), and Harvey (2001) all report a negative (but insigni�cant) risk-return

trade-o¤ in similar speci�cations. When we add a variance term in the mean equation of the Engle

and Lee (1999) model, we �nd that long-run volatility component estimates are negative for part

of the sample period. For this reason, we report the model without a variance term in the mean

equation. Our Egarch-components-in-mean speci�cation is the only one that detects a positive

and signi�cant risk-return trade-o¤.

Our Egarch-components speci�cation achieves the highest log-likelihood (-11,664), followed by

the Egarch (-11,761), the Garch-GJR (-11,806), and the Garch-components speci�cation (-11,824).

It is somewhat surprising that the Garch-components speci�cation achieves a lower log-likelihood

than the Garch-GJR model. The reason for that is that the inclusion of the market variance in the

mean equation of the Engle-Lee model gives negative estimates of the variance process, leading us

to report the speci�cation without the variance in the mean equation.

The four di¤erent Garch speci�cations are then non-nested, so that we cannot report model

comparisons based on the likelihood-ratio statistic. In order to compare the models nevertheless,

taking the number of parameters into account, we also report the Akaike and Schwarz information

criteria. For both criteria, our Egarch-components model achieves the lowest values, indicating that

it is preferable to the other three speci�cations. All four speci�cations easily pass the Ljung-Box

Q-test with p-values above 10% for 10 and 20 lags.

Table 3 reports summary statistics for the market excess return, its estimated variance, and the

short-run (s) and long-run volatility components (q). In our sample, the average annual market
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excess return is 5.29% and average annualized market volatility is 14.02%. Annualized volatility

ranges from a minimum of 3.8% to a maximum of 92.6% (the 1987 crash). In Figure 1, it appears

that since 1999 volatility has remained above average for a protracted period.

While our volatility model is estimated at the daily frequency, our cross-sectional analysis

uses monthly data. In order to construct monthly variance and volatility factor estimates, we

average v, s, and q each month and multiply the average by 21, which is the average number of

trading days in our sample. This time aggregation reduces the skewness and kurtosis of returns

and return volatility (e.g. panel A vs. B). In Panel A, we report the correlation matrix of daily

market excess returns with daily measures of v, s, and q. The excess market return is strongly

negatively correlated with its variance and the short-run factor, but only weakly correlated with

the low-frequency volatility factor q. Aggregation to the monthly frequency increases the return

correlation with the short-run volatility components, but does not a¤ect the correlation with the

long-run component. When we examine volatility innovations, we �nd that the long-run component

is strongly negatively correlated with returns (-.402, not reported). Our model predicts that the

innovation correlation is what determines pricing in the cross-section.

The long-run volatility factor q is plotted in Figure 2. Over the sample period 1963-2003, it

appears that the low-frequency component of stock market volatility has increased. This �nding is

in contrast to the fact that the volatility of macroeconomic variables such as GDP and consumption

has decreased since the mid-1980�s (a fact that is explored in an asset pricing context by Lettau,

Ludvigson, and Wachter (2004)). As we are not modelling fundamentals explicitly, we do not

address this recent divergence of �nancial and macroeconomic volatility, but it seems to be an area

worth exploring in future research.

The estimates of conditional variance v and the short- and long-run volatility factors s and q are

from the Egarch-components speci�cation. In order to ensure that our cross-sectional asset pricing

results reported in later sections do not rely on this particular model speci�cation, we construct

an alternative measure of variance. Following Andersen, Diebold, and Labys (2003), we compute

"realized" variance as daily squared returns. In order to decompose the realized volatility into a

short-run and long-run component, we apply the Hodrick-Prescott (1997) �lter to the square root
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of the logarithm of daily squared returns.2

Panel A of Table 3 reveals that, on average, daily squared returns are nearly the same as daily

conditional variance (0.80 versus 0.78). The annual volatility implied by the daily squared returns

is 14%, versus 14.2% for the conditional volatility. The standard deviation, skewness, and kurtosis

of daily squared returns are markedly higher than corresponding measures from the conditional

model, but these di¤erences in higher order moments become smaller in the monthly sample.

The standard deviation of realized variance is roughly twice as high as the standard deviation of

conditional variance, the skewness is 3.6 times as high, and the kurtosis is nearly 10 times as high.

This is likely due to the fact that daily squared returns are a noisy measure of variance, even when

they are aggregated to a monthly variance measure. In contrast, the volatility estimates from the

Egarch-components model are conditional expectations.

In Figure 1, the conditional variance is plotted together with the 252-day moving average of

realized volatility (to be precise, the square root of the 252-day moving average of daily squared

returns). Conditional volatility appears to be unbiased. As shown in Panels A and B of Table

3, the correlation between monthly conditional variance and realized variance is 82.5%, while the

correlation is only 28.9% for daily data.

We decompose daily squared returns into a short-run and a long-run volatility component.

Figure 2 plots the daily estimates of the long-run component from the Egarch-components model

and the HP-�ltered daily squared returns. The two series track each other very well, their cor-

relation is 93.3% for the monthly data, and 61.6% for daily data. This �nding suggests that the

decomposition of log-volatility of market excess returns into a short-run and a long-run component

from the Egarch-components model is not speci�c to our model speci�cation. Decomposing daily

squared returns with the HP-�lter provides an estimate of the long-run component that is very

similar. The HP-�ltered long-run component does appear to be slightly more volatile (7.94 versus

5.86 monthly, Table 3 Panel B) and more skewed (0.116 versus 0.113), but has lower kurtosis (2.52

versus 2.86).

2For a related application of frequency domain �ltering of realized variance to volatility forecasting, see Bollerslev
and Wright (2001)
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4 The cross section of expected returns 1963-2003

In Table 4, we report summary statistics for 25 value-weighted size and book-to-market sorted port-

folios from Fama and French (1992 and 1993). The monthly portfolio returns and the risk-free rate

can be downloaded fromKenneth French�s website at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.

The �rst two panels show the failure of the CAPM over the sample period: high average returns

are not generally associated with high betas. The last two panels report univariate factor loadings

with respect to the short- and long run volatility factors. For both the short-run and the long-

run factors, larger and lower book-to-market stocks are generally associated with more negative

loadings.

Equation (7) gives an expression for the vector of expected stock returns in equilibrium. Ex-

pected returns depend on the covariance matrix of individual stocks with the market portfolio,

and the covariance of each stock with the short- and long-run volatility components s and q. In

order to estimate the cross-section of expected returns, we derive a beta-representation in section

A.5 of the appendix. We show that the expected excess return of stock i at time t is given by:

Et
�
dpit
�
= �iMt �

M
t + �

is
t �

s
t + �

iq
t �

q
t (10)

where �ik denotes the conditional, partial regression coe¢ cient of asset i on the change of factor

k, and �k denotes the conditional price of risk of factor k. Note that the price of risk of the three

factors is potentially time-varying, as it depends on the variance-covariance matrix of the pricing

kernel.

The cross-sectional Fama-MacBeth regressions that we present in the next section allow for

time-variation of the prices of risk �. In our empirical implementation, we implicitly assume that

the volatility of each stock�s systematic risk is proportional to the variance of the market return,

and that the correlation of individual stocks with the market return and the volatility factors are

constant, so that betas are constant.

Table 5 reports the summary statistics of the cross-sectional regressions for the 25 size and

book-to-market sorted portfolios. The benchmark CAPM and Fama-French 3-factor models are
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presented in columns (i) and (ii), respectively. The J-statistic is 102.2 for the CAPM, and 89.1

for the Fama-French model. As reported by Fama and French (1992, 1993), we �nd that both the

CAPM and the Fama-French models are rejected in cross-sectional asset pricing tests. Furthermore,

the Smb factor has an insigni�cant risk premium, probably re�ecting the fact that the size premium

diminished in the 1980�s.

Column (iii) reports the results of cross-sectional regressions with the market return and volatil-

ity innovations as pricing factors. The total variance factor is signi�cant at the 4% level, and has

a negative price of risk. This �nding con�rms the result presented by Ang, Hodrick, Xing and

Zhang (2004) that the market variance is an important pricing factor with a negative price of risk.

The J-statistic of model (iii) improves relative to the CAPM, but is larger than the pricing errors

of the Fama-French model.

Our preferred model is reported in column (iv). In addition to the market return, the short-run

and long-run volatility innovations are included in the cross-sectional regressions. The long-run

volatility component is signi�cant at the 1% level, the short-run volatility component is signi�cant

at the 1.2% level, and both have a negative price of risk. The price of risk of the long-run volatility

factor is 6.5 times higher than the price of risk of the short-run volatility factor, re�ecting the

fact that long-run volatility risk is more permanent. The J-statistic is slightly lower than the

Fama-French model (89.1 for the Fama-French model versus 88.5 for the three-factor volatility),

and signi�cantly lower than the CAPM and the model with the market return and total market

variance as pricing factors (102.2 and 97.4, respectively). The price of risk of the market factor is

close to the average market excess return over the sample period.

Column (v) reports the results for a 4-factor model with the market return, the total market

variance, and the long- and short-run volatility components as pricing factors. Only the short-run

and long-run volatility factors are signi�cant. The J-test is marginally improved compared to our

preferred three factor model with only the short- and long-run volatility components.

In column (vi), we show estimates for our preferred model augmented with the Hml and Smb

factors. Hml and Smb are insigni�cant, whereas s and q stay highly signi�cant. The pricing errors

do decrease compared to model (iv), suggesting that Hml and Smb might capture some additional
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sources of priced risk.

We also analyze the characteristics of realized variance as a factor in column (vii) and realized

variance decomposed into short and long run components using an HP-�lter in column (viii). As

expected, realized variance has a negative price of risk. However, its pricing performance is inferior

to conditional variance with a 4% higher J-statistic. When realized variance is decomposed into

components, the long run component has a statistically signi�cant negative price of risk. The

components model using realized variance has a pricing error 5% lower than when total realized

variance is used. This, once again, suggests that the long and short run volatility components are

priced di¤erently in the cross-section.

5 The cross section of expected returns 1986-2003

In Table 6, we present summary statistics for the sub-sample 1986-2003, together with summary

statistics for option implied volatility using VIX. In order to make the implied volatility from the

VIX a comparable to our daily variance measure v, we report summary statistics for V IX2=365.

There are a number of important di¤erences between the implied volatility measure from the

VIX and our estimated volatility v. The implied volatility is derived from options on the S&P

100, whereas our stock market portfolio encompasses the whole universe of CRSP stocks. We are

measuring the volatility of the market excess return, whereas the VIX is a measure of the volatility

of the market return. Finally, the VIX is computed using the Black-Scholes option pricing formula,

which only provides unbiased estimates of expected volatility under fairly restrictive assumptions.

Despite all of these di¤erences, the correlation of our daily variance measure v and the V IX2=365

is 82.6% on a monthly basis. However, several signi�cant di¤erences are apparent based on their

moments. The mean of the V IX2=365 is slightly lower than the mean of v, and it is less volatile.

Stock market implied volatilities are known to be biased predictors of future volatility due, for ex-

ample, to a "volatility risk premium". This bias is documented in Fleming (1999) and Rosenberg

(2000).

There are also some notable di¤erences between the whole sample period 1963-2003 and 1986-

2003. In the second sub-sample, excess returns are 50% higher compared to the whole sample.
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Furthermore, the average estimated variance is 26% percent higher, excess returns are more skewed

and have fatter tails. These di¤erences between the second sub-sample and the �rst sub-sample

can be mainly attributed to the crash of 1987, and the high volatility starting in the late 1990�s.

Table 7 reports the summary statistics of the monthly cross-sectional regressions for the sub-

sample 1986-2003. The market return is insigni�cant in the CAPM speci�cation for this sample

(column (i)). None of the 3 factors in the Fama-French model are signi�cant (column (ii)). The

VIX is a highly signi�cant asset pricing factor with a negative price of risk, but including the

VIX in the regression does not reduce the J-statistic by much (column (ix)) compared to the

CAPM benchmark (column (i)). Our estimated measure of market variance (v) is insigni�cant,

but produces pricing errors that are marginally smaller than in the case of the VIX model (column

(iii) compared to column (xi)).

In our benchmark model reported in column (iv), the J-statistic is substantially reduced com-

pared to both the CAPM and the Fama-French model (by 22% and 15%, respectively). The

short-run volatility factor s is insigni�cant, but the long-run volatility factor q is signi�cant at the

1% level. When we include the Hml and Smb factors along with the market return and the s and

q factors in our cross-sectional regressions, we �nd that the q factor stays signi�cant at the 1%

level, and neither Hml nor Smb are signi�cant.

The estimated price of risk of the short- and long-run volatility components is quite di¤erent

in the whole sample compared to the second sub-sample (compare columns (iv) in Table 5 and

Table 7). In particular, the price of risk of s is -0.58 for 1963-2003 and -0.11 for 1986-2003, and

the price of risk of q is -3.8 for 1963-2003 and -1.86 for 1986-2003. This time-variation of the price

of risk is compatible with the predictions of the ICAPM. We can see from equation (10) that the

ICAPM does not predict that the price of risk is constant over time. We also �nd that the prices

of risk of Hml and Smb are changing over time, as is apparent by comparing columns (vi) in Table

4 and Table 6.

The conditional variance, realized variance, and implied variance factors (column (iii), (vii) and

(ix)) have negative prices of risk, although only the implied variance is statistically signi�cant. Of

these models, conditional variance has the smallest pricing errors.
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We decompose implied variance into a short- and long-run factor using the same HP-methodology

as for realized variance. Using short- and long-run realized or implied volatility as factors, neither

performs as well as short and long-run conditional variance. The HP-�ltered long-run realized

volatility component in column (viii) is statistically signi�cant and negative, while the HP-�ltered

short-run volatility component in column (x) is statistically signi�cant and negative.3

6 Macroeconomic and �nancial market measures

We next analyze the relationship of short- and long-run volatility with macroeconomic and �nan-

cial market variables. While previous papers have identi�ed relationships between macroeconomic

factors and �nancial market volatility (e.g., Schwert, 1989), we are able to use our volatility decom-

position to sharpen estimates of these relationships and in some cases draw di¤erent inferences.4

In Panel A of Table 8, we �nd that market volatility is signi�cantly correlated with business

cycle factors. The market variance is signi�cantly negatively correlated with the industrial pro-

duction growth rate (-19.2%), and signi�cantly positively with changes in the unemployment rate

(17.9%). Interestingly, these correlations are entirely due to the long-run volatility component,

the short-run component appears to be unrelated to either of these two measures. The long-run

component of market risk is thus countercyclical: uncertainty increases when industrial production

growth is low, and when the unemployment rate high.

Both the short- and long-run volatility factors are signi�cantly positively correlated with the

CPI. In results not reported here, we also used a number of other measures of in�ation such as

the producer price index and the core cpi, and they were all positively correlated with the various

variance measures.

When we examine volatility correlations with market variables, we see the importance of the

volatility decomposition. While total volatility is does not exhibit signi�cant correlation with any

of the Treasury yield variables, the short run component is signi�cantly positively correlated with

3Vanden (2004) demonstrates that the return the put- and call-options are signi�cant pricing factors for size-and
book-to-market sorted portfolios. How much cross-sectional pricing power of the two volatility components might
captured by the inclusion of options returns as risk factors is an open question.

4Estrella (2005) uses spectral �ltering to estimate relationships between macro and �nancial variables at the
business cycle frequency.
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three month and ten year yields at the 1% level. In contrast, the long run stock market volatility

is negatively correlated with ten year yields. Apparently, short run market volatility tends to

increase when yields rise, but long run market volatility either declines or is una¤ected.

Our �ndings using market variables also provide evidence that volatility is countercyclical. The

term spread (ten-year minus three-month Treasury yield) is signi�cantly negatively correlated with

the short run volatility component, so steeper (�atter) term structures are associated with lower

(higher) interest rate volatility. Estrella and Hardouvelis (1991) show that upward (downward)

sloping term structures are associated with expansion (recession). We also �nd that wider credit

spreads (Moody�s BAA yield minus ten year Treasury) are related to higher stock market volatility,

although in this case the long-run volatility component seems to be the driver.

All three measures of market risk are signi�cantly negatively correlated with the Pastor-

Stambaugh liquidity measure. The correlation between the short-run component and the Pastor-

Stambaugh measure is nearly 50%. For the Acharya-Pederson illiquidity measure, the correlation

is nearly 60%.

In Panel B of Table 8, we report correlations of market risk with estimated volatilities of the

macroeconomic and �nancial indicators. We estimate volatilities for each macroeconomic and

�nancial measure using an Arma(1,1)-Garch(1,1) model.

We �nd that market risk is not signi�cantly correlated with either the volatility of industrial

production growth or the volatility of the unemployment rate. However, the long run volatility

component is positively correlated with all of the other indicators at the 1% level. The volatility

of the in�ation rate is a source of fundamental uncertainty that is a natural driver of uncertainty

in the stock market. From a theoretical point of view, stock and bond market volatility should be

correlated, and �nding this strong relationship is not surprising. Previous studies such as Fleming,

Kirby, and Ostdiek (1998) report similar results. In addition, we �nd that the long-run component

of market risk is strongly correlated with the volatility of both liquidity measures. Highlighting

the importance of the volatility decomposition, in no case is the short-run volatility signi�cantly

correlated with an indicator variable at the 5% level.
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7 Conclusion

We model stock market return volatility in a setting where there are short- and long-run shocks to

the volatility process. We demonstrate within an ICAPM framework that both the short- and long-

run component of market volatility should be priced. Our main result comes from cross-sectional

regressions: both the short- and long-run volatility components are highly signi�cant pricing factors

after controlling for the market factor. By decomposing volatility into two components, we are able

to signi�cantly reduce the J-statistic compared to a model based on total volatility. Our estimate

of the price of risk of long-run volatility is over eight times higher than that of short-run volatility.

It is worth pointing out that our benchmark three-factor model with the market return and

the long- and short-run volatility components compares very favorably to the Fama-French (1993)

three-factor model and the Ang, Hodrick, Xing, and Zhang (2004) two-factor model, even though

our pricing factors are not returns as is the case in their papers. We conjecture that we can

improve our pricing results signi�cantly by forming factor mimicking portfolios for the two volatility

components along the lines of Ang, Hodrick, Xing, and Zhang (2004).

A decomposition of a nonparametric measure of market volatility produces a long-run volatility

component that is strikingly similar to the one obtained with the Egarch-components model. We

also relate our volatility components to macroeconomic and �nancial variables. We �nd that our

long-run volatility factor is closely linked to business cycle �uctuations such as the growth rate

of industrial production, changes in the unemployment rate, the credit spread, and measures of

macroeconomic uncertainty. The long-run volatility factor is shown to be countercyclical. The

short-run factor is more highly correlated with stock market liquidity measures and the Hml and

Smb factors. Correlations of market risk with these macroeconomic and �nancial market measures

can be driven by either the long-run or short-run component that sometimes have opposing ef-

fects. This is another con�rmation that it is important to study the short- and long-run volatility

components separately.
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A Appendix

This appendix develops the asset pricing implications of an economy with multiple stocks, multiple

investors, and a two-component stochastic volatility process. The set-up is similar to Merton�s

(1973) ICAPM or Cox, Ingersoll, and Ross�(1985) CIR model. We derive all the equations that

are discussed in the text and estimate them directly from the model, which allows us to interpret

the empirical �ndings in later sections within a theoretical context. Using results from Nelson

(1990), we derive the continuous time limit of our estimated Egarch-components model. We also

derive the beta representation of the cross-sectional pricing restrictions.

A.1 Structure of Financial Markets

The economy is assumed to have i = 1; :::; N stocks, and a riskless bond. Uncertainty is described

by a Brownian motion Zt for 0 � t � 1 withK > N dimensions, de�ned on a complete probability

space (
;z; P ), wherez is the augmented �ltration generated by Zt. K is �nite, and Zt is a column

vector of K one-dimensional Brownian motions. The probability space ful�lls the usual conditions

as described in Karatzas and Shreve (1991, chapter 1). Only processes appropriately adapted to

z are considered. Note that we assume K > N as we want to model the impact of stochastic

volatility on equilibrium expected returns. Financial markets are thus generically incomplete (but

the probability space is complete).

The price of each stock i is denoted P it . Securities pay an instantaneous dividend �
i
t. There is a

risk-free asset that pays an instantaneous rate rft . The cum-dividend instantaneous excess return

is de�ned as:

dpit =
dP it + �

i
tdt

P it
� rft dt (11)

The N -dimensional vector of excess returns is denoted by dpt and is assumed to be represented

by the following process:

dpt = �tdt+ �tdZ (12)

where �t denotes the N -dimensional vector of drifts of the return process, and �t is a N � K

dimensional matrix. Both �t and �t are time-varying and stochastic. The instantaneous variance-
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covariance matrix of excess returns is denoted by 	t:

	t = E [dptdp
0
tjzt] (13)

Each stock is in �xed supply Si. The price of the market portfolio is de�ned as PMt =
P

i S
iP it .

The vector of value weights are denoted by �t =
�
P 1t S

1=PMt ; P
2
t S

2=PMt ; :::; P
N
t S

N=PMt
�0
. The

drift of the market portfolio �Mt is de�ned as �Mt = �0t�t, and the value weighted innovations are

assumed to be
p
vtdZ

M
t = �0t�tdZt, where Z

M
t is a Brownian motion that is a weighted average of

the vector of K underlying shocks Zt. The market return is thus:

dpMt = �Mt dt+
p
vtdZ

M
t (14)

The instantaneous standard deviation of the market return is assumed to be a function of two

state variables st and qt:
p
vt = V (st; qt; t). The evolution of these state variables is:

dst = �s (st; qt) dt+ �
s (st; qt) dZ

s
t (15)

dqt = �q (st; qt) dt+ �
q (st; qt) dZ

q
t (16)

where Zst and Z
q
t are standard Brownian motions that are weighted averages of the K underlying

Brownian motions in Zt. Market volatility is therefore driven by a two-factor structure. The aim

of the model is to determine how �Mt depends on the state variables and the market portfolio pMt

in equilibrium, and to derive the pricing implications for the cross-section of returns (i.e. show

how �it depends on
�
pMt ; st; qt

�
in equilibrium).

A.2 Portfolio Choice

We assume that there are j = 1; :::; L investors who maximize utility from a �ow of consumption

Cj. Denote the N -dimensional vector of shares of investor j0s wealth invested in each of the N
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stocks by xjt . The wealth of investor j is denoted by W
j
t . Each investor�s budget constraint is:

dW j
t =

�
W j
t r
f
t � Cjt

�
dt+W j

t x
j0
t dpt 8j (17)

Investor j0s utility over consumption �ow at time t is denoted uj
�
Cjt ; t

�
.5 For simplicity, we assume

that uj (�) is HARA. The value function of investor j is then de�ned as:

J jt = max
Cj ;xj

Et

�Z 1

t

uj
�
Cj� ; �

�
d�

�
8j (18)

Merton (1973) shows that investor j�s value function J j is a function of (W; s; q). The stacked

system of �rst order conditions solves the following system of equations for investor j:


jt	tx
j
t = �t � F js �

ps
t � F jq �

pq
t 8j (19)

where 
j = �W jJ jWW=J
j
W and F

j
s = �W jJ jWs=J

j
W and F

j
q = �W jJ jWq=J

j
W and �

ps
t = E [dptdstjzt]

and �pqt = E [dptdqtjzt]. Merton(1973) shows that HARA preferences imply that F js and F jq only

depend on s and q, and not on W j.

Campbell and Viceira (1999) and Lynch (2001) compute the portfolio choice problem of a

dynamically optimizing investor in environments with changing investment opportunity set and

�nd that rational investors should time the market substantially. Chacko and Viceira (2004)

analyze the portfolio choice problem with a one-factor stochastic volatility process.

A.3 Equilibrium excess returns

We assume that the economy is an endowment economy, so that consumption equals the sum of

dividends in equilibrium. Furthermore, we assume that the risk-free asset is in zero net supply.6

5We could extend the model and specify stochastic di¤erential utility as presented by Du¢ e et al. (1992) in order
to allow for Epstein-Zin-Weil preferences and habit formation. In a companion note, we do just that and solve the
model by taking a �rst-order approximation to the Hamilton-Jacobi-Bellman equation (see Adrian and Rosenberg
(2004)). For the empirical �ndings presented in this paper, the theoretical predictions of the more complicated
model do not add signi�cant insights, which is why we opted to present the slightly simpler model with HARA
preferences.

6The assumptions that consumption equals dividends and that the risk-free rate is in zero net supply is for sim-
plicity only. In our companion paper Adrian and Rosenberg (2004), we do not make either one of these assumptions
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Then the aggregate budget constraint is solved if
P

jW
j
t = PMt . This implies the following

restriction for equilibrium expected returns:

� = 
	� + Fs�
ps + Fq�

pq (20)

where 
 denotes the aggregate (wealth weighted) coe¢ cient of relative risk aversion, and Fq and Fs

are the aggregate (wealth weighted) hedging demands. We have dropped subscripts t for notational

convenience. Pre-multiplying by the vector of value weights �, we obtain the equilibrium expected

market returns:

�M = 
v + Fs�
Ms + Fq�

Mq (21)

The expected excess return of the market portfolio thus depends on the variance of equilibrium

excess returns (v) as well as the covariance of the market portfolio with the two volatility factors

s and q. In general, the dependence of �M on s and q can be non-linear. In a one-factor stochastic

volatility setup, Abel (1988) and March and Genotte (1993) derive closed form solutions to the

equilibrium market return when volatility is stochastic. In our two-component setup, we can solve

the model in closed form if we make the assumption that the two volatility components follow

Ornstein-Uhlenbeck processes. In that case, both Fs and Fq are constants. For more general

processes, Fs and Fq are both functions of s and q.

From equations (20) and (21), we can see that the evolution of the equilibrium stochastic

discount factor m is:
dm

m
= �

�

dpM + Fsds+ Fqdq

�
(22)

The pricing kernel of our ICAPM economy consists therefore of three factors: the market return as

well as the long- and short-run components of market volatility. As we assumed that the risk-free

asset is in zero net supply, it follows that the risk-free rate is a function of the volatility factors,

justifying our implicit assumption that the risk-free rate is not an independent state variable.7

and derive asset pricing predictions.
7In empirical results not reported in this paper, we actually �nd that the risk-free rate is highly correlated with

both the long- and short-run volatility components.
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A.4 Di¤usion limit of the Egarch-components model

In this section, we show that the continuous time limit of the Egarch-components is the stochastic

volatility model de�ned by that from section (2) subject to a covariance constraint. Consider

the partition of time into k increments of length h such that hk = t. Then we can write the

Egarch-components model as follows:

RMt+h =
�
�0 + �1e

(st+qt) + �2qt + �3st
�
h+ e(st+qt)"t+h (23)

"t+h � N (0; h)

st+h = �4sth+ �5"t+h + �6

�
j"t+hj �

p
2h=�

�
qt+h = (�7 + �8qt)h+ �9"t+h + �10

�
j"t+hj �

p
2h=�

�

where RMt+h denotes the excess return to the market portfolio between time t and t+ h. Using the

results of Nelson (1991), we will show that as h! 0, the Egarch-components model (23) converges

weakly to the following system of di¤usions:

dpMt = (�0 + �1vt + �2qt + �3st) dt+
p
vtdZ

M
t (24)

dst = ��sstdt+ �sdZst

dqt = �q (�q � qt) dt+ �qdZqt

where ln (vt) = 2 (st + qt), �s = 1 � �4, �q = 1 � �8, and �q = �7=�q. In order to apply Theorem

3.1 of Nelson (1990), we need to show distributional uniqueness of the system of di¤usions (24).

We start by deriving moment conditions. De�ne excess returns from t to t+ h as:

RMt+h = p
M
t+h � pMt =

PMt+h � PMt + �Mt h

PMt
� rft h (25)
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The system of equations (23) can be rewritten as:

pMt+h =
�
pMt + �0 + �1 exp ((st + qt) =2) + �2qt + �3st

�
h+ exp ((st + qt) =2)Z

h
t+h (26)

st+h = (1� �s) sth+ �s
h
�sZht+h + '

s
���Zht+h���p2h=��i

qt+h = �q�qh+ (1� �q) qth+ �q
h
�qZht+h + '

q
���Zht+h���p2h=��i

where:

Zht � N (0; h) (27)

and �s; �q; 's; 'q are determined by matching moments:

�s = �Ms; 's = �s

s
1� (�Ms)2

1� 2=� (28)

�q = �Mq; 'q = �q

s
1� (�Mq)2

1� 2=� (29)

�qs = �Ms�Mqh+ �s�q
q
1� (�Ms)2

q
1� (�Mq)2 (30)

We now need to verify that condition B of the appendix A of Nelson (1990) is satis�ed. De�ne the

following auxiliary vectors:

b (y1; y2; y3) =

266664
y1 + �0 + �1 exp ((y2 + y3) =2) + �2y3 + �3y2

(1� �s) y2

�q�q + (1� �q) y3

377775 (31)

a (y1; y2; y3) =

266664
ey2+y3 �s�sMey2+y3 �q�qMey2+y3

�s�sMey2+y3 (�s)2 �q�s�qs

�q�qMey2+y3 �q�s�qs (�s)2

377775 (32)

Condition B of Appendix A of Nelson (1990) requires 1) that a and b are locally bounded

(which is clearly satis�ed) and 2) that 8R > 0 and 8T > 0 there exists a number �R;T > 0 such

that 8 (y1; y2; y3; t) satisfying 0 � t � T and ky1; y2; y3k � R, and a (y1; y2; y3)��R;T � I3 is positive
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de�nite. The second condition is satis�ed as a is a symmetric matrix, so that we can choose the

�rst eigenvalue as �R;T .

In order to show that the non-explosion condition holds, we de�ne:

� (y1; y2; y3) = K + f (y1) jy1j+ f (y2) exp (jy2j) + f (y3) exp (jy3j) (33)

where f (yi) =

8><>: exp (�1= jyij) if yi 6= 0

0 if yi = 0

Note that � (�) is nonnegative, arbitrarily di¤erentiable, and satis�es lim
kyk!1

inf
0�t�T

� (y1; y2; y3) =1.

Then, for any T > 0, we can choose K and �T such that

3X
i=1

bi (y)
@� (y)

@yi
+
1

2

3X
i=1

3X
j=1

aij (y)
@2� (y)

@yi@yj
� �T� (y) (34)

as the derivatives of � (�) are locally bounded.

All of the conditions for Theorem 3.1. of Nelson (1990) hold, and the system of equations (26)

converges weakly to the system of di¤usions:

dpMt = (�0 + �1 exp ((st + qt) =2) + �2qt + �3st) dt+ exp ((st + qt) =2) dZt (35)

dst = ��sstdt+ exp ((st + qt) =2)�sdZst

dqt = �q (�q � �qqt) dt+ exp ((st + qt) =2)�qdZqt

with Et [Z
q
tZ

s
t ] = �

Ms�Mq + �s�q
q
1� (�Ms)2

q
1� (�Mq)2. Finally, choosing h = 1 in (23) gives

the system of di¤usions (24).

A.5 Beta representation of the equilibrium expected returns

In this section, we derive the beta representation of (20). The equilibrium stock pricing condition

(20) can be written for individual assets as:

�it = 
tEt
�
dpitdp

M
t

�
+ Et

�
dpitdst

�
Fs + Et

�
dpitdqt

�
Fq (36)
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Introduce the following notation:

dSt =
�
dpMt ; dst; dqt

�0
�t = Et [dStdS

0
t] �t = [
t; Fs; Fq]

0 (37)

Then the pricing equation can be written as:

�it = �
0
tEt
�
dStdp

i
t

�
(38)

This is a pricing equation that has to hold for any asset. Denote the price of risk of factor k by

�kt and the vector of the prices of risk by �t. Then:

�t = �
0
tEt [dStdS

0
t] (39)

Solving for �0t = �
�1
t �t and replacing back into the pricing equation gives:

�i = ��1t Et
�
dStdp

i
t

�
�t (40)

The last step is to realize that ��1t Et [dStdp
i
t] denotes the population moment of a regression of

asset returns dpi on the vector of risk factors dS, we can write:

�i = �
iM
t �

M
t + �

is
t �

s
t + �

iq
t �

q
t (41)

where �i�t are partial regression coe¢ cients for � =M; s; q.
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Table 1:   

Stochastic Volatility Model 
Maximum Likelihood Estimation 

1963/5/1 – 2003/12/31 (daily) 
 

This table reports the maximum likelihood estimates of the stochastic volatility model. The market excess 
return is measured as the cum-dividend return of the value weighted CRSP portfolio in excess of the three-
month Treasury bill rate appropriately converted to a daily frequency. The standardized error term ε is 
assumed to be distributed normally with mean zero and variance one; however, our parameter estimates are 
consistent even when the distribution is non-normal (Bollerslev and Wooldridge, 1992). The variance of the 
market excess return v is defined as v=exp(2(s+q)), where q denotes the long-run component of the market 
variance and s denotes the short-run component of market variance.  
 

Market excess returns:   
1ttt3t2t10

M
1t vqsvR ++ ε+α+α+α+α=                

 
α0 α1 α2 α3 

Coef. -0.010 0.049 -0.116 -0.021 
Std. err. (0.027) (0.025) (0.055) (0.032) 
p-value [0.969] [0.045] [0.036] [0.506] 

     

Short-run component:   ( )π−εα+εα+α= +++ /2ss 1t61t5t41t   

 α4 α5 α6  
Coef. 0.867 -0.058 0.034  

Std. err. (0.014) (0.003) (0.005)  
p-value [0.000] [0.000] [0.000]  

     

Long-run component:   ( )π−εα+εα+α+α= +++ /2qq 1t101t9t871t   

 α7 α8 α9 α10 
Coef. 0.000 0.996 -0.011 0.039 

Std. err. (0.0003) (0.001) (0.002) (0.003) 
p-value [0.855] [0.000] [0.000] [0.000] 

 

p-value of test α8=1:    [0.000] 
  

 10 lags 20 lags  

Ljung-Box Q-statistic of ε2 8.372 11.779  
p-value [0.593] [0.923]  

 
  

 



 

 
 

 
Table 2:  

Comparison of Different Volatility Models 
Maximum Likelihood Estimation 

1963/5/1 – 2003/12/31 (daily) 
 
This table compares four different volatility model specifications. All models are estimated via maximum likelihood. The
market excess return is measured as the cum-dividend return of the value weighted CRSP portfolio in excess of the three-
month Treasury bill rate appropriately converted to a daily frequency. The standardized error term ε is assumed to be
distributed normally with mean zero and variance one; however, our parameter estimates are consistent even when the
distribution is non-normal (Bollerslev and Wooldridge, 1992). Standard errors are reported in parenthesis, p-values in
brackets. The indicator function is denoted by I(·). The Akaike criterion and Schwarz criterion are information criteria that
allow model comparison, taking the number of parameters into account.  
 

Ljung-Box Q of ε2

(i) Garch-GJR, Glosten, Jagannathan and Runkle (1993) 
Log 

likelihood
Akaike 

criterion 
Schwarz 
criterion 10 lags 20 lags

 

( ) 2
1tt1t

2
1ttt1t

1ttt

v
)004.0(

034.00Iv
)005.0(

091.0v
)003.0(

913.0
)001.0(

007.0v

vv
)016.0(

007.0
)009.0(

035.0

++++

++

ε+<εε++=

ε+−=M
1tR

 
 

-11,806 
 

2.26 
 

2.27 

 
6.21 

[0.80] 

 
12.11 
[0.91] 

(ii) Egarch, Nelson (1991) 
 

1t1tt1t
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)005.0(
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)003.0(
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-11,761 
 

2.25 
 

2.26 

 
7.54 

[0.67] 

 
12.34 
[0.90] 

(iii) Garch components, Engle and Lee (1999) 
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5.76 

[0.84] 

 
7.73 

[0.99] 

(iv) Egarch components in mean model 
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Table 3: 

Summary Statistics 
Market Excess Return and Variance Measures 

1963/5/1 – 2003/12/31 (daily and monthly) 
 

The market excess return is measured as the cum-dividend return of the value weighted CRSP portfolio in excess of the three-month 
Treasury bill rate appropriately converted to a daily frequency. The daily conditional variance of the market excess return (v), the 
short-run volatility component (s), and the long-run component (q) are taken from the maximum likelihood estimates reported in 
Table 1 with v=exp(2(s+q)). Monthly estimates of v, q, and s are obtained by averaging the daily estimates over each month and 
multiplying by 21 (the average number of trading days in the sample). The realized market variance is the squared daily excess return. 
The HP-filtered long-run component is the trend component of Hodrick-Prescott (1997) filtered realized log market variance (log 
daily squared excess returns) with smoothing parameter 6,812,100. The HP-filtered short-run component is the difference between the 
realized log market variance and the HP-filtered long-run component. Monthly estimates of the realized market variance and the HP-
filtered short-run and the HP-filtered long-run components are obtained by averaging the daily series within each month and 
multiplying by 21. 
 

Panel A: Daily (10,237 observations) 
 

 

Market 
excess 
return 

Conditional 
market 

variance v 

Realized 
market 

variance  

Short-run 
component s

Long-run 
component q 

HP-filtered 
short-run 

component 

HP-filtered 
long-run 

component 

 Mean 0.021 0.780 0.802 -0.001 -0.298 0.000 -1.013 
 Median 0.044 0.526 0.190 -0.017 -0.320 0.212 -1.064 

 Maximum 8.638 34.058 294.630 1.228 0.680 3.313 -0.065 
 Minimum -17.165 0.057 0.000 -0.366 -1.263 -9.781 -1.862 
 Std. Dev. 0.895 0.899 3.608 0.144 0.347 1.145 0.378 
 Skewness -0.761 9.796 55.495 0.726 0.117 -1.349 0.114 

 Kurtosis 21.334 252.411 4334.353 4.386 2.882 6.754 2.534 
 
 

Correlations 
 

 

Market 
excess 
return 

Conditional 
market 

variance v 

Realized 
market 

variance  

Short-run 
component s

Long-run 
component q 

HP-filtered 
short-run 

component 

HP-filtered 
long-run 

component 
Market excess return 1.000 0.017 -0.159 -0.061 0.008 0.004 -0.022 

Conditional market variance v  1.000 0.289 0.501 0.696 0.071 0.616 
Realized market variance   1.000 0.166 0.182 0.251 0.175 

Short-run component s    1.000 0.237 0.132 0.171 
Long-run component q     1.000 0.027 0.922 

HP-filtered short-run component      1.000 0.017 
HP-filtered long-run component       1.000 

 
 



 

 

 

 
Table 3 Panel B: Monthly (488 observations) 

 

 

Market 
excess 
return 

Conditional 
market 

variance v 

Realized 
market 

variance  

Short-run 
component s

Long-run 
component q 

HP-filtered 
short-run 

component 

HP-filtered 
long-run 

component 
 Mean 0.483 16.341 16.774 -0.026 -6.273 0.022 -21.269 

 Median 0.735 11.329 9.508 -0.020 -6.749 -0.138 -22.376 
 Maximum 16.010 157.485 511.090 8.748 12.900 23.792 -1.396 
 Minimum -23.000 1.686 0.747 -4.295 -24.613 -22.350 -39.027 
 Std. Dev. 4.489 15.558 28.471 2.083 7.212 5.860 7.941 
 Skewness -0.478 3.192 11.407 0.552 0.113 0.222 0.116 

 Kurtosis 4.912 19.897 188.858 3.566 2.858 3.881 2.530 
 

Correlations 
 

 

Market 
excess 
return 

Conditional 
market 

variance v 

Realized 
market 

variance 

Short-run 
component s

Long-run 
component q 

HP-filtered 
short-run 

component 

HP-filtered 
long-run 

component 
Market excess return 1.000 -0.294 -0.300 -0.735 -0.044 -0.191 -0.092 

Conditional market variance v  1.000 0.825 0.493 0.799 0.317 0.747 
Realized market variance   1.000 0.445 0.482 0.372 0.463 

Short-run component s    1.000 0.260 0.496 0.250 
Long-run component q     1.000 0.163 0.933 

HP-filtered short-run component      1.000 0.070 
HP-filtered long-run component       1.000 

 
 



 

 

 
Table 4: 

Summary Statistics of the 25 Size and Book-to-Market sorted Portfolios 
1963/7 – 2003/12 (monthly) 

 
This table reports summary statistics for the 25 size and book-to-market sorted value weighted portfolio excess returns 
of Fama and French (1992 and 1993), downloadable at the website of Kenneth French. We report Newey-West (1987) 
standard errors.  

 
Summary Statistics of Portfolio Excess Returns 

  Small Size 2 Size 3 Size 4 Large 
Mean 0.254 0.388 0.414 0.519 0.425 Growth Std. dev. (8.302) (7.520) (6.908 (6.136) (4.856) 
Mean 0.828 0.648 0.702 0.497 0.467 B/M 2 Std. dev. (7.103) (6.084) (5.502 (5.194) (4.609) 
Mean 0.871 0.897 0.713 0.722 0.496 B/M 3 Std. dev. (6.067) (5.399) (4.952 (4.892) (4.362) 
Mean 1.178 0.953 0.864 0.839 0.571 B/M 4 Std. dev. (5.956) (5.168) (4.782 (4.681) (4.292) 
Mean 1.092 1.034 1.013 0.884 0.564 Value Std. dev. (5.663) (5.750) (5.396 (5.388) (4.852) 

 
Loadings on the Market Factor 

  Small Size 2 Size 3 Size 4 Large 
Coeff. 1.437 1.429 1.356 1.251 1.013 Growth Std. Err. (0.056) (0.044) (0.036 (0.028) (0.023) 
Coeff. 1.218 1.161 1.102 1.068 0.954 B/M 2 Std. Err. (0.055) (0.045) (0.034 (0.033) (0.022) 
Coeff. 1.067 1.023 0.965 0.973 0.855 B/M 3 Std. Err. (0.051) (0.046) (0.040 (0.036) (0.029) 
Coeff. 1.008 0.962 0.905 0.907 0.789 B/M 4 Std. Err. (0.056) (0.044) (0.040 (0.037) (0.033) 
Coeff. 0.981 1.038 0.985 0.990 0.832 Value Std. Err. (0.051) (0.054) (0.052 (0.048) (0.043) 

 
Loadings on the Short-run Volatility Factor s 

  Small Size 2 Size 3 Size 4 Large 
Coeff. -2.809 -2.666 -2.467 -2.174 -1.603 Growth Std. Err. (0.149) (0.129) (0.117 (0.102) (0.087) 
Coeff. -2.452 -2.274 -2.058 -1.908 -1.597 B/M 2 Std. Err. (0.124) (0.116) (0.105 (0.103) (0.089) 
Coeff. -2.186 -2.053 -1.855 -1.775 -1.432 B/M 3 Std. Err. (0.111) (0.105) (0.094 (0.093) (0.084) 
Coeff. -2.142 -1.908 -1.744 -1.688 -1.352 B/M 4 Std. Err. (0.117) (0.101) (0.092 (0.081) (0.081) 
Coeff. -2.033 -2.102 -1.937 -1.814 -1.429 Value Std. Err. (0.112) (0.116) (0.115 (0.108) (0.099) 

 
Loadings on the Long-run Volatility Factor q 

  Small Size 2 Size 3 Size 4 Large 
Coeff. -1.332 -1.196 -1.094 -0.892 -0.621 Growth Std. Err. (0.193) (0.189) (0.170 (0.151) (0.127) 
Coeff. -1.243 -1.092 -0.916 -0.836 -0.657 B/M 2 Std. Err. (0.166) (0.157) (0.148 (0.143) (0.130) 
Coeff. -1.075 -1.052 -0.890 -0.810 -0.593 B/M 3 Std. Err. (0.147) (0.139) (0.133 (0.135) (0.119) 
Coeff. -1.129 -0.981 -0.833 -0.775 -0.577 B/M 4 Std. Err. (0.143) (0.133) (0.123 (0.116) (0.106) 
Coeff. -1.037 -1.082 -0.945 -0.808 -0.624 Value Std. Err. (0.140) (0.145) (0.140 (0.138) (0.127) 

 



 

 

 
Table 5:  

Pricing the Cross-Section of 25 Size and Book-to-Market sorted Portfolios 
1963/7 – 2003/12 (monthly) 

This table reports summary statistics of the cross-sectional Fama-MacBeth (1973) regressions for the 25 Size and Book-to-Market 
sorted portfolios of Fama and French (1993) for the time period 1963/7–2003/12. In the first stage, portfolio returns are regressed on 
the pricing factors to obtain factor loadings. In the second stage, for each month, portfolio returns are regressed on the loadings, 
giving an estimate of the price of risk for each factor. The standard errors (reported in parentheses) and p-values (reported in brackets) 
are adjusted for autocorrelation and heteroskedasticity using the Newey-West (1987) procedure, and adjusted for the estimation error 
using the Shanken (1992) correction. The regression coefficients and standard errors thus correspond to first stage GMM estimates 
with an identity weighting matrix (see Cochrane 2001). The J-statistic corresponds to the joint test that the pricing errors for all 25 
portfolios are zero (Hansen and Singleton 1982). The market excess return is measured as the cum-dividend return of the value 
weighted CRSP portfolio in excess of the three-month Treasury bill rate appropriately converted to a monthly frequency. The Hml 
and Smb factors are taken from Kenneth French’s website. The short-run component (s), the long-run component (q), and the variance 
of excess returns (v) are from the maximum likelihood estimation of the Egarch-components model reported in Table 1. The daily 
estimates of v, q, and s are aggregated to a monthly frequency by averaging daily observations and multiplying by 21. The pricing 
factors are residuals of a monthly AR(2) process for q and v, and a monthly AR(1) process for s. The realized variance is the daily 
squared excess market return averaged over each month and multiplied by 21, and the HP-filtered short-run and long-run components 
are obtained applying a Hodrick-Prescott (1997) filter to the log of daily squared returns, the pricing factors are the residuals of an 
AR(1) process. 

  (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 
    

coef. 0.676 0.413 0.522 0.549 0.439 0.432 0.514 0.401
std. err. (0.312) (0.292) (0.295) (0.292) (0.291) (0.292) (0.295) (0.293)Excess market return 
p-value [0.038] [0.158] [0.077] [0.060] [0.130] [0.139] [0.082] [0.172]

    
coef.  -0.584 -0.966 -1.586 

std. err.  (0.231) (0.261) (0.447) Short-run volatility 
component s p-value  [0.012] [0.000] [0.000] 

    
coef.  -3.785 -3.470 -2.218 

std. err.  (0.901) (0.802) (0.490) Long-run volatility 
component q p-value  [0.000] [0.000] [0.000] 

    
coef.  -3.453 -1.013  

std. err.  (1.646) (1.413)  
Conditional variance 

of excess market 
return v p-value  [0.036] [0.473]  

    
coef.   -12.781

std. err.   (5.818)Realized variance of 
excess market return p-value   [0.028]

    
coef.   2.212

std. err.   (1.583)HP-filtered short-run 
volatility component p-value   [0.162]

    
coef.   -1.104

std. err.   (0.310)HP-filtered long-run 
volatility component p-value   [0.000]

    
coef.  0.653 0.321 

std. err.  (0.259) (0.249) Hml 
p-value  [0.012] [0.197] 

    
coef.  0.290 0.313 

std. err.  (0.222) (0.223) Smb 
p-value  [0.192] [0.160] 

    
 J-statistic 102.2 89.1 97.4 88.5 88.3 79.3 101.3 92.9

 

 



 

 

 

 
Table 6: 

Summary Statistics  
Market Excess Returns and Variance Measures 

1986/1/2 – 2003/12/31 (daily and monthly) 
 

The VIX is a measure of the implied volatility for the S&P100 index. In order to compare it to the model variance v, the VIX is squared 
and divided by 365. The sample 1986/1/2 – 2003/10/31 corresponds to the availability of the VIX on the CBOE website. The market 
excess return is measured as the cum-dividend return of the value weighted CRSP portfolio in excess of the three-month Treasury bill 
rate appropriately converted to a daily frequency. The daily conditional variance of the market excess return (v), the short-run volatility 
component (s), and the long-run component (q) are taken from the maximum likelihood estimates reported in Table 1 with 
v=exp(2(s+q)). Monthly estimates of v, q, and s are obtained by averaging the daily estimates over each month and multiplying by 21
(the average number of trading days in the sample). The realized market variance is the squared daily excess return. The HP-filtered 
long-run component is the trend component of Hodrick-Prescott (1997) filtered realized log market variance (log daily squared excess 
returns) with smoothing parameter 6,812,100. The HP-filtered short-run component is the difference between the realized log market 
variance and the HP-filtered long-run component. Monthly estimates of the realized market variance and the HP-filtered short-run and 
the HP-filtered long-run components are obtained by averaging the daily series within each month and multiplying by 21. 

 
Panel A: Daily (4535 observations) 

 

 

Market 
excess 
return 

VIX2/365 
Conditional 

market 
variance v 

Realized 
market 

variance 

Short-run 
component 

s 

Long-run 
component 

q 

HP-filtered 
short-run 

component

HP-filtered 
long-run 

component
 Mean 0.032 0.980 1.076 1.475 0.000 -0.196 0.000 -0.909 

 Median 0.067 0.618 0.228 1.171 -0.017 -0.232 0.189 -0.974 
 Maximum 8.638 34.058 294.630 61.800 1.228 0.680 3.313 -0.065 
 Minimum -17.165 0.087 0.000 0.224 -0.366 -0.970 -9.502 -1.576 
 Std. Dev. 1.037 1.186 5.216 1.819 0.143 0.346 1.142 0.389 
 Skewness -1.196 8.949 41.211 17.246 1.037 0.286 -1.181 0.208 

 Kurtosis 24.699 181.265 2232.627 472.477 6.388 2.355 5.815 1.910 
 
 

Correlations 
 

 

Market 
excess 
return 

VIX2/365 
Conditional 

market 
variance v

Realized 
market 

variance 

Short-run 
component 

s 

Long-run 
component 

q 

HP-filtered 
short-run 

component

HP-filtered 
long-run 

component
Market excess return 1.000 0.035 -0.234 -0.215 -0.009 0.001 -0.001 -0.030 

VIX2/365  1.000 0.274 0.786 0.576 0.690 0.085 0.589 
Conditional market variance v   1.000 0.609 0.203 0.169 0.251 0.160 

Realized market variance    1.000 0.393 0.513 0.098 0.443 
Short-run component s     1.000 0.315 0.144 0.214 
Long-run component q      1.000 0.025 0.916 

HP-filtered short-run component       1.000 0.014 
HP-filtered long-run component        1.000 

 



 

 

 

 
Table 6 Panel B: Monthly (216 observations) 

 

 

Market 
excess 
return 

VIX2/365 
Conditional 

market 
variance v 

Realized 
market 

variance 

Short-run 
component 

s 

Long-run 
component 

q 

HP-filtered 
short-run 

component

HP-filtered 
long-run 

component

 Mean 0.670 20.602 22.538 30.966 -0.002 -4.104 0.036 -19.057 
 Median 1.225 13.178 12.672 25.420 -0.065 -5.022 0.034 -20.406 

 Maximum 12.500 157.485 511.090 293.355 8.748 12.900 17.679 -1.396 
 Minimum -23.000 3.154 1.662 6.476 -4.174 -18.340 -17.296 -33.020 
 Std. Dev. 4.668 19.752 39.859 27.320 2.011 7.181 5.430 8.182 
 Skewness -0.987 2.705 8.927 4.900 0.756 0.276 0.127 0.203 

 Kurtosis 5.859 14.206 106.221 42.331 4.379 2.305 3.360 1.904 
 
 

Correlations 
 

 

Market 
excess 
return 

VIX2/365 
Conditional 

market 
variance v

Realized 
market 

variance 

Short-run 
component 

s 

Long-run 
component 

q 

HP-filtered 
short-run 

component

HP-filtered 
long-run 

component
Market excess return 1.000 -0.375 -0.434 -0.348 -0.733 -0.116 -0.267 -0.144 

VIX2/365  1.000 0.826 0.901 0.604 0.809 0.394 0.742 
Conditional market variance v   1.000 0.869 0.560 0.457 0.438 0.437 

Realized market variance    1.000 0.511 0.675 0.361 0.617 
Short-run component s     1.000 0.361 0.542 0.323 
Long-run component q      1.000 0.172 0.929 

HP-filtered short-run component       1.000 0.063 
HP-filtered long-run component        1.000 

 
 



 

 
Table 7:  

Pricing the Cross-Section of 25 Size and Book-to-Market sorted Portfolios 
1986/3 – 2003/12 (monthly) 

 
This table reports summary statistics of the cross-sectional Fama-MacBeth (1973) regressions for the 25 Size and Book-to-Market 
sorted portfolios of Fama and French (1993) for the time period 1986/3–2003/12. In the first stage, portfolio returns are regressed on 
the pricing factors to obtain factor loadings. In the second stage, for each month, portfolio returns are regressed on the loadings, 
giving an estimate of the price of risk for each factor. The standard errors (reported in parentheses) and p-values (reported in brackets) 
are adjusted for autocorrelation and heteroskedasticity using the Newey-West (1987) procedure, and adjusted for the estimation error 
using the Shanken (1992) correction. The regression coefficients and standard errors thus correspond to first stage GMM estimates 
with an identity weighting matrix (see Cochrane 2001). The J-statistic corresponds to the joint test that the pricing errors for all 25 
portfolios are zero (Hansen and Singleton 1982). The market excess return is measured as the cum-dividend return of the value 
weighted CRSP portfolio in excess of the three-month Treasury bill rate appropriately converted to a monthly frequency. The Hml 
and Smb factors are taken from Kenneth French’s website. The short-run component (s), the long-run component (q), and the variance 
of excess returns (v) are from the maximum likelihood estimation of the Egarch-components model reported in Table 1. The daily 
estimates of v, q, and s are aggregated to a monthly frequency by summing the daily observations. The VIX is taken from the website 
of the CBOE, the squared VIX is divided by 365 and summed over each month to obtain a monthly measure of market variance. The 
pricing factors are residuals of a monthly AR(2) process for q, s, v, and VIX as it is the covariance with innovations of the factors that 
is priced (see proposition 2). The realized variance is the daily squared excess market return summed over each month, and the HP-
filtered short-run and long-run components are obtained applying a Hodrick-Prescott (1997) filter to the log of daily squared returns.  

realized implied 
  (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) 

      
coef. 0.723 0.560 0.627 0.633 0.736 0.619 0.570 0.598 0.491 .541 

std. err. (0.457) (0.419) (0.424) (0.419) (0.416) (0.419) (0.426) (0.419) (0.431) (.424) Excess market return 
p-value [0.114] [0.181] [0.140] [0.131] [0.077] [0.141] [0.181] [0.154] [0.254] [0.202] 

            
coef.    -0.106 0.949 -1.146     

std. err.    (0.378) (0.473) (0.403)     Short-run volatility 
component s p-value    [0.780] [0.045] [0.004]     

            
coef.    -1.864 -1.261 -2.016     

std. err.    (0.664) (0.060) (0.510)     Long-run volatility 
component q p-value    [0.005] [0.036] [0.000]     

            
coef.   -2.866  -9.043      

std. err.   (2.516)  (2.703)      
Conditional variance 

of excess market 
return v p-value   [0.255]  [0.001]      

            
coef.       -12.285  -8.801  

std. err.       (8.251)  (4.518)  
Realized variance / 

implied variance 
VIX2 p-value       [0.137]  [0.051]  

            
coef.        1.601  -1.098 

std. err.        (1.664)  (.675) HP-filtered short-run 
volatility component p-value        [0.336]  [0.005] 

            
coef.        -0.804  .298 

std. err.        (0.488)  (.234) HP-filtered long-run 
volatility component p-value        [0.100]  [0.203] 

            
coef.  0.664    0.108     

std. err.  0.517    (0.509)     Hml 
p-value  [0.200]    [0.831]     

            
coef.  0.142    0.069     

std. err.  0.238    (0.327)     Smb 
p-value  [0.664]    [0.831]     

            
 J-statistic 195.1 173.8 187.4 148.1 147.8 129.9 189.2 188.1 191.7 188.9 



 

 

 

 

 

 
Table 8: 

Correlation of Volatility Components with Macroeconomic and Financial Market Measures 
1963/7-2003/12 (monthly) 

 
Panel A reports the correlations of the conditional market excess return variance v, the short-run volatility component s, and 
the long-run volatility component q with macroeconomic and financial market measures at a monthly frequency. The 
conditional variance measure and short- and long-run volatility factors are from the estimated stochastic volatility model 
reported in Table 1. For the industrial production growth rate, changes in the unemployment rate, the CPI inflation rate, the 
three-month yield, the ten-year yield, the ten-year / three-month spread, the credit spread, the market variance v and the 
short- and long-run components s and q, Dickey-Fuller tests reject the null of a unit root (not reported). The liquidity 
measure from Pástor and Stambaugh (2003) is for 1963/09 – 1999/12 and the illiquidity measure from Acharya and 
Pedersen (2004) for 1964/03-1999/12. Both are calculated using residuals from AR(2) models. Panel B of this table reports 
correlations with estimated volatilities. For each of the variables from Panel A, we estimate an Arma(1,1)-Garch(1,1) model 
to obtain conditional volatilities. We then calculate the correlations of the model volatilities with v, s, and q. In both panels, 
three stars denote significance at the 1% level, two stars denote significance at the 5% level, and one star denotes 
significance at the 10% level. 
 
 

Panel A: Correlations  

 
Conditional market 

variance v 
Short-run 

component s 
Long-run 

component q 

Industrial production growth rate -0.192 *** 0.028   -0.290 *** 
Changes in unemployment rate 0.179 *** 0.047   0.228 *** 

CPI inflation rate 0.040   0.180 *** 0.090 * 
Three-month yield -0.037   0.236 *** -0.053   

Ten-year yield -0.056   0.130 *** -0.089 * 
Ten-year / three-month spread -0.037   -0.109 ** 0.011   

Credit spread 0.203 *** 0.023   0.139 *** 
Hml 0.114 ** 0.194 *** 0.022  
Smb -0.164  -0.451 *** -0.004  

Pástor-Stambaugh liquidity residuals -0.471 *** -0.497 *** -0.224 *** 
Acharya-Pedersen illiquidity residuals 0.321 *** 0.572 *** 0.108 ** 

Panel B: Correlations with Volatilities 

 
Conditional market 

variance v 
Short-run 

component s 
Long-run 

component q 

Industrial production growth volatility 0.004   -0.063   0.026   
Unemployment rate volatility -0.043   -0.056   0.038   

CPI inflation rate volatility 0.098 ** 0.045   0.207 *** 
Three-month yield volatility 0.126 *** -0.001   0.254 *** 

Ten-year yield volatility 0.077 * -0.007   0.189 *** 
Ten-year / three-month spread volatility 0.089 * 0.007   0.186 *** 

Credit spread volatility 0.137 *** -0.022   0.286 *** 
Hml volatility 0.357 *** 0.082 * 0.354 *** 
Smb volatility 0.391 *** 0.057  0.411 *** 

Pástor-Stambaugh liquidity volatility 0.335 *** 0.017   0.371 *** 
Acharya-Pedersen illiquidity volatility 0.268 *** 0.021   0.344 *** 

 



 

Figure 1: Market Volatility (Annualized)
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Implied Volatility Conditional Volatility Realized Volatility (252-Day Moving Average)

This figure plots three measures of the annualized standard deviation of the market return at a daily frequency for 1963/5/1-2003/12/31. The first measure is the implied 
volatility of the S&P100 stock index from the VIX. The second measure is the volatility estimated with our stochastic volatility model, presented in Table 1. The third 
measure is the 252-day moving average of realized volatility (daily squared returns). 

 



 

Figure 2: The Long-Run Volatility Component
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This figure plots the estimate of the long-run volatility component at a daily frequency for 1963/5/1 - 2003/12/31. The variance of the excess market return is defined as 
v=exp(2(s+q)) , where s is the short-run component of volatility (Figure 3). The estimate of q results from the stochastic volatility model that is reported in Table 1 (left 
scale). The HP-filtered long-run component are obtained by applying the Hodrick-Prescott (1997) filter to the log of daily squared returns (right scale). 

 



 

Figure 3: The Short-Run Volatility Component 
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This figure plots the estimate of the short-run volatility component s at a daily frequency for 1963/5/1 - 2003/12/31. The variance of the excess market return is defined 
as v=exp(2(s+q)) , where q is the long-run component of volatility (Figure 2). The estimate of s results from the stochastic volatility model that is reported in Table 1. 

 


