
1 

Forecasting Correlation and Covariance with a 

Range-Based Dynamic Conditional Correlation Model 
 
 

Ray Y Chou* 
Institute of Economics, Academia Sinica 

 
Nathan Liu 

Department of Management Science, National Chiao-Tung University 
 

Chun-Chou Wu 
Department of International Trade, Chung Yuan Christian University 

 
January 31, 2005 

 
 

                                                 
* Corresponding author. Contact address: Institute of Economics, Academia Sinica, #128, Sec 2, 
Yen-Jio-Yuan Road, Nankang, Taipei, Taiwan. Telephone: 886-2-27822791 ext.-321, fax: 27853946, 
email: rchou@econ.sinica.edu.tw 



2 

Abstract 
 
This paper proposes a range-based Dynamic Conditional Correlation (DCC) model, 
which is an extension of Engle’s (2002a) DCC model. The efficiency of the range data 
in volatility estimation is documented in Parkinson (1980), Alizadeh, Brandt, and 
Diebold (2002), Brandt and Jones (2002), and Chou (2004a, b), among others. It is 
hence natural to consider the implication of this result in the estimation of 
multivariate GARCH models. In the DCC model, the conditional correlation 
coefficients are estimated by a dynamic model for the product of the pair-wise return 
series with each normalized by their conditional standard deviations. The conditional 
standard deviation is calculated by using a univariate GARCH for the return series.  
 

We use the Conditional Autoregressive Range (CARR) model of Chou (2004a), 
as an alternative to the univariate GARCH in the DCC first-step estimation. We 
therefore construct a range-based DCC model. The substantial gain in efficiency in 
the volatility estimation can induce an efficiency gain in the estimation of the series of 
the time-varying correlation coefficient and covariance. For comparison we estimate 
the generalized return-based DCC model as a benchmark to gain insights into the 
difference of these methods. We use three data sets for empirical analyses: the stock 
indices of S&P500 and Nasdaq, and the 10-year Treasury bond yield. Both in-sample 
and out-of-sample results indicate that our argument is supported in terms of the 
precision in estimating and forecasting the correlation and covariance matrices. 
 
 
Keywords: DCC, CARR, range, dynamic correlation, covariance, volatility 
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I. Introduction 
 

It is of primary importance in the practice of portfolio management, asset 
allocation, and risk management to have an accurate estimate of the covariance 
matrices for asset prices. When valuing derivatives, forecasts of volatilities and 
correlations over the whole life of the derivative are usually required. The univariate 
ARCH/GARCH family of models provides effective tools to estimate the volatilities 
of individual asset prices. Tailored to the needs of different asset classes, these various 
models have achieved remarkable success. For a survey of this vast literature, see 
Bollerslev, Chou, and Kroner (1992), and Engle (2004). It is, however, still an active 
research issue in estimating the covariance or correlation matrices of multiple, 
especially large sets of asset prices. Early attempts include the VECH model1 of 
Bollerslev, Engle, and Wooldridge (1988), the BEKK model2 of Engle and Kroner 
(1995), and the constant correlation model of Bollerslev (1990), among others. The 
constant correlation model is too restrictive as it imposes the stringent constraint that 
the dynamic structure of covariance is completely determined by the individual 
volatilities. The VECH and the BEKK models are more flexible in allowing 
time-varying correlations. The BEKK parameterization for a bivariate model involves 
11 parameters, only two more than the VECH parameterization, but for     
higher-dimensional systems, the extra number of parameters in the BEKK model 
increases, and a completely free estimation becomes very difficult indeed.  
 

In a series of papers, Engle and Sheppard (2001), Engle (2002a), and Engle, 
Cappiello, and Sheppard (2003) provide a solution to this problem by using a model 
entitled the Dynamic Conditional Correlation Multivariate GARCH (henceforth DCC).  
The conditional covariance estimation problem is simplified by estimating univariate 
GARCH models for each asset’s variance process. Carrying on by using the 
transformed standardized residuals from the first stage, and estimating a time-varying 
conditional correlation estimator in the second stage, the DCC model is not linear, but 
can be estimated simply with the two-stage methods based on the maximum 
likelihood method. A meaningful and strong performance of this model is reported in 
these studies especially considering the ease of implementation of the estimator. Other 
methods for estimating the time-varying correlation are proposed by Tsay (2002) and 
                                                 
1 The n-dimensional VECH model is written as vech(Ht)=A+B vech( '

1 1t tξ ξ− − )+C vech(Ht-1), where Ht 
is the conditional covariance matrix at time t and vech(Ht) is the vector that stacks all the elements of 
the covariance matrix.  
2 A general parameterization that involves the minimum number of parameters while imposing no 
cross equation restrictions and ensuring positive definiteness for any parameter value is the BEKK 
model, named after Baba, Engle, Kraft, and Kroner who wrote the preliminary version of Engle and 
Kroner (1995).  
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by Tse and Tsui (2002).  
 

In this paper, we consider a refinement of the DCC model by utilizing the 
high/low range data of asset prices. In estimating the volatility of asset prices, there is 
a growing awareness of the fact that the range data of asset prices can provide sharper 
estimates and forecasts than the return data based on close-to-close prices. Studies of 
supporting evidence include Parkinson (1980), Garman and Klass (1980), Wiggins 
(1991), Rogers and Satchell (1991), Kunitomo (1992), and more recently Gallant, Hsu, 
and Tauchen (1999), Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2001), 
Brandt and Jones (2002), Chou (2004a, 2004b) and Chou, Wu, and Liu (2004). Chou 
(2004a) proposed the Conditional Autoregressive Range (henceforth CARR) model 
where can capture the dynamical volatility process and obtained some insightful 
evidence in real data. In other words, a range-based volatility model is an alternative 
manner out of the return-based volatility model. In light of the success of the 
range-based univariate volatility models, it is natural to inquire whether this 
estimation efficiency can be extended to a multivariate framework, in this case of the 
DCC model. 
 

The remainder of the study proceeds in the following manner. Section 2 
introduces the framework of the bivariate models to estimate the correlation and 
covariance process, especially for the return-based and the range-based DCC models. 
Section 3 describes the empirical data used and gives a discussion of the empirical 
results. The conclusion and directions for future studies are given in section 4. 
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II. Correlation/Covariance Estimation and the DCC Model  
 
    Our objective is to estimate the current level of covariance and correlation. 
Traditionally, the conditional covariance and correlation between two random 
variables 1r  and 2r  with zero means are defined by:   
 

)( ,2,11,12 tttt rrECOV −= ,                                                (1) 
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In this definition, the conditional covariance and correlation are decided by previous 
information. This method has two problems, namely, too early data are used and equal 
weights are assigned for every previous lag. To overcome the first problem, we 
introduce the moving average type with a 100-week window, MA(100):  
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It makes sense to give more weight to recent data. From this point of view, we 

introduce an exponentially-weighted moving average (EWMA) model where the 
weights decrease exponentially as we move back through time. The exponentially- 
weighted moving average model has the attractive feature that relatively little data 
need to be stored. Exponential averages assign the most weight to the most recent 
observation, with weights declining exponentially with time. Hence, the EWMA 
model for covariance and correlation can be illustrated as follows.  
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The value of λ  governs how responsive the estimate of the current volatility is 
to the most recent period’s percentage change. As to the coefficient λ  is usually 
called the exponential smoother3 in this model by RiskMetricsTM. The RiskMetricsTM 
approach uses exponential moving averages to estimate future volatility, because it 
believes the method responds rapidly to market shocks.  
 

Bollerslev (1990) proposes the Constant Correlation Coefficient (henceforth 
CCC) model, which specifies that 
 

ttt RDDH = ,                                                        (7) 
 

where R is the sample correlation matrix and Dt is the k×k diagonal matrix of 

time-varying standard deviations from univariate GARCH models with tih ,  on the 

ith diagonal, where tih ,  is the square root of the estimated variance. Under such a 

situation, we can obtain the estimate of conditional covariance by the information of 

the fixed correlation and the product of the two conditional standard deviations.  

 

Although the CCC model is meaningful, the setting of constant conditional 

correlations can be too restrictive. Engle (2002) extends the CCC model to the DCC 

model. The DCC model is a new form of the multivariate GARCH that is particularly 

convenient for complex systems and suitable for time-varying conditional correlations. 

The DCC model differs from the CCC model only in allowing R to be changed over 

time. Thus, the DCC model can be shown as follows. 
  

tttt DRDH = ,                                                       (8) 

2/12/1 }{}{ −−= tttt QdiagQQdiagR .                                       (9) 

 
Here, Dt is defined like equation (7) and  
 

111 ')'( −−− ++−−= tttt QBZZABASQ ooo ιι .                               (10) 
 

                                                 
3 The RiskMetricsTM database uses the exponentially-weighted moving average model with λ =0.94 

for updating daily volatility estimates. J.P. Morgan found that, across variant market variables, this 
value of λ  gives forecasts of the volatility that come closest to the realized volatility. Following J.P. 
Morgan’s suggestion, the variable λ  equals 0.94 for the time being in the latter empirical 
discussion. 
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In equation (10), A and B are parameters and o denotes the Hadamard matrix 
product operator, i.e., element-wise multiplication. The symbol ι  is a vector of ones 
and S is the unconditional covariance of the standardized residuals. Finally, 

ttt rDZ ×= −1  are the standardized but correlated residuals. The variable rt represents 

the returns of assets. The returns can be either mean zero or the residuals from a 
filtered time series, i.e. 
 

1 ~ (0, )t t tr I N H− .                                                   (11) 

 
The conditional variances of the components of Zt are, in other words, equal to 1, 

but the conditional correlation matrix is given by the variable of Rt. If A and B are 
zero, then we obtain the results of the CCC model. It is important to recognize that 
although the dynamic of the Dt matrix has usually been structured as a standard 
univariate GARCH model, it can extend to many other types. For instance, one could 
adopt the EGARCH model to capture the asymmetric effects in the volatility process 
or the FIGARCH model to allow for the long memory volatility processes. Later on, 
we shall propose to use the Conditional Autoregressive Range (CARR) model of 
Chou (2004a) as an alternative. The details will be given in the later part of the 
section. 
 
    As for parameters A and B, it is shown that if A, B, and ( ' )A Bιι − −  are positive 
semi-definite, then Qt will be positive semi-definite. If any one of the matrices is 
positive definite, then Qt will also be so. For the ijth element of Rt, the conditional 

correlation matrix is given by ,

, ,

ij t

ii t jj t

q
q q

. As to the conditional covariance, it can 

then be expressed using the product of conditional correlation between these two 
variables and their individual conditional standard deviations. Engle and Sheppard 
(2001) show results that simplify finding the necessary conditions for Rt to be positive 
definite and hence a correlation matrix with a real, symmetric positive semi-definite 
matrix, with ones on its diagonal line. The log-likelihood of this estimator can be 
written as: 
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Here, Zt ~ N(0,Rt) are the univariate GARCH standardized residuals. Based on Engle 
(2002a)’s argument, we can perform the estimation in two steps. This estimator will 
no longer be efficient, but still consistent (also see Hafner and Franses (2003)). Let 
the parameters in Dt be denoted θ  and the additional parameters in Rt will be 
denoted by φ . The log-likelihood function can be split into two respective parts: 
 
( ) ( ) ),(, φθθφθ CV LLL += .                                            (13) 

 
The former term expresses the volatility part: 
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The latter term is the correlation component: 
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   At the first step, equation (14) is maximized with respect to θ . At the second step, 
equation (15) is maximized with respect to θ  and φ . We use this two-step 
estimation procedure in our empirical study. 
 
   The volatility part of the likelihood is the sum of the individual GARCH 
likelihood if Dt is determined by a GARCH specification. 
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This can be jointly maximized by separately maximizing each term. If Dt is 
determined by a CARR specification, then the likelihood function of the volatility 
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term is 
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where *
,tiλ  is the conditional standard deviation as computed from a scaled expected 

range from the CARR model. 
 
The second part of the likelihood will be used to estimate the correlation 

parameters. As the squared residuals are not dependent on these parameters, they will 
not enter the first-order conditions and can be ignored. The two-step approach to 
maximizing the likelihood is to find 

( ){ }θθ VLmaxargˆ = ,                                                 (18) 

and then take this value as given in the second stage, 

( ){ }φθ
φ

,ˆmax CL .                                                      (19) 

It is shown in Engle and Sheppard (2001) that under reasonable regularity 
conditions, consistency of the first step will ensure consistency of the second step. 
The maximum of the second step will be a function of the first-step parameter 
estimates, and so if the first step is consistent, then the second step will be too as long 
as the function is continuous in a neighborhood of the true parameters. These 
conditions are similar to those given in White (1994) where the asymptotic normality 
and the consistency of the two-step QMLE estimator are established. 
 

Another theoretical justification of the above result is appeared in Engle (2002a).  
He referred to the work of Newey and McFadden (1994) whereby in Theorem 6.1, a 
formulated two-step GMM problem can be applied to this model. Consider the 
moment condition corresponding to the first step as ( ){ }θθ vL∇ =0. The moment 

condition corresponding to the second step is ( ){ }φθφ ,ˆCL∇ . Under standard regularity 

conditions which are given as conditions i) to v) in Theorem 3.4 of Newey and 
McFadden, the parameter estimates will be consistent, and asymptotically normal, 
with a covariance matrix of familiar form. This matrix is the product of two inverted 
Hessians around an outer product of scores. Details of this proof can be found in 
Engle and Sheppard (2001) 
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The DCC model is a new type of multivariate and can fit the GARCH or CARR 
model in the first stage, which is particularly convenient for complex systems. The 
DCC method first estimates volatilities for each asset and computes the standardized 
residuals. For bivariate cases, we use the following GARCH and CARR structures to 
perform the first step, respectively. The covariances are then estimated between these 
using a maximum likelihood criterion and one of several models for the correlations.   

 

For the GARCH volatility structure (return-based conditional volatility model): 

 

tktkr ,, ε=   ),0(~| ,1, tkttk hNI −ε , k=1,2                                

1,
2
,, −− ++= tkkitkkktk hh βεαω ,                                          (20) 

tktk
a

tk hrz ,,, /= . 
 

If the volatility model is CARR（range-based conditional volatility model）: 

 

tktk u ,, =ℜ   );1exp(~| 1, ⋅−ttk Iu , k=1,2 

1,1,, −− +ℜ+= tkktkkktk λβαωλ ,                                         (21) 
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tk rz λ= ，where tkktk adj ,
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k

kadj
λ

σ
ˆ
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where tk ,ℜ  is the high/low range in logarithm, of the kth asset during time interval t, 

σ  and kλ̂  are respectively the unconditional variance of the return series and the 

sample mean of the estimated conditional range of the series k. This is a special case 

of the multiplicative error model of Engle (2002b). The specification of the 

exponential distribution of the disturbance term provides a consistent although 

inefficient estimator for the parameters. For specific discussions also see Chou 

(2004a). 

 

    In the following analysis, we use two alternative versions of DCC. The first one 
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is the standard DCC with mean reversion (henceforth MR_DCC), discussed in Engle 

(2002). The second one is the integrated DCC (henceforth I_DCC). Both of these two 

models are simplified versions of the general expression in equation (8). 

 

For the bivariate case, the MR_DCC is constructed by the following equation. 

 
111 ')'( −−− ++−−= tttt QBZZABASQ ooo ιι , or                     

















+








−−−−
−−−−









=









−−−

−−−
2

1,21,21,1

1,21,1
2

1,1

23

31

2233

3311

12

12

,2,12

,12,1

11
11

1
1

ttt

ttt

tt

tt

zzz
zzz

aa
aa

baba
baba

q
q

qq
qq

oo

            















+

−−

−−

1,21,12

1,121,1

23

31

tt

tt

qq
qq

bb
bb

o ,                              (22) 

where ∑
=

=
T

t
tt zz

T
q

1
,2,112

1 . 

 

For I_DCC, the dynamic structure simplifies to: 
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Like the specific property of volatilities, the correlation and covariance matrices are 
also unobservable. We use daily data to construct the proxies for the weekly-realized 
covariance/correlation observations. The purpose of such doing is to extract these 
so-called “measured covariance/correlation”, denoted MCOV/MCORR respectively, 
as one kind of benchmark in determining the relative performance of the return-based 
DCC model and the range-based DCC model for the time being. On the other side, we 
perform the tailor-made regression framework proposed by Mincer and Zarnowitz 
(1969) for the in-sample comparison. We demonstrate the regression expression 
below:   

 

t
return
ttMCORR ,110 ˆ εργγ ++=  

t
range
ttMCORR ,220 ˆ εργγ ++=                                          (24) 
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t
range
t

return
ttMCORR ,3210 ˆˆ εργργγ +++= . 

 

The major focus here is to check the significance of coefficients 1γ  and 2γ . 

The statistical intuition here is similar to the conventional OLS framework. Similarly, 

we construct the system of covariance in (25): 

 

t
return

tt COVMCOV ,110 εφφ ++=  

t
range

tt COVMCOV ,220 εφφ ++=                                        (25) 

t
range

t
return

tt COVCOVMCOV ,3210 εφφφ +++= , 

 

where ttttCOV ,2,1 ˆˆˆ σσρ ××= ， tk ,σ̂  are standard deviations estimated from the 

return-based DCC model or the range-based DCC model. 

 

In constructing the comparison of in-sample data in our subsequent empirical 

analysis about correlation and covariance, several related models are included, such as 

MA(100), EWMA with 94.0=λ , and the CCC models. However, we exclude the 

correlation coefficient shown for the CCC model, due to the constant restriction in 

nature4. Here one just uses the estimated correlation regression on the realized 

correlation, and the correlation is similar in the same manner. For a simple regression, 

the R-squared can be used as a rough proxy for the model’s performance. 

 

For completeness, we also perform out-of-sample forecast comparisons. It is 

very straightforward to derive the formulation in computing the out-of-sample 

conditional correlation for a MR_DCC specification. Given T as the sample size, the 

                                                 
4 From expression (24), any one of the explanatory variables is significantly different from zero in 
statistics, which will reject the null hypothesis for the correlation being constant.   



13 

T+1st observation is obtained by: 
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where 1,21,11,121 / ++++ = TTTT qqqρ .  

For the period of t+h, with 2≥h , the correlation is: 
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Since the values for the out-of-sample correlation forecast derived from the I_DCC 

model are constants, we abridge the redundant explanation. In addition to the 

range-based and return-based DCC models, the MA(100) and the CCC models are 

introduced for an out-of-sample predictive comparison5. It is also worth noting that 

the correlation is constant for the out-of-sample forecast based on the CCC model, 

and so we focus on the performance of the models in forecasting the conditional 

covariance. Empirically speaking, we still take the value of R-squared as an indication 

for the comparison of preciseness. 

                                                 
5 It is also intuitively clear that the out-of-sample forecasts for the correlation and covariance are both 
constant in the EWMA model. Thus, we ignore the related discussion here.  
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III. Evaluation of Conditional Correlation and Covariance Forecasts 

 
The data employed in this study comprises 835 weekly observations on the 

S&P500 Composite (henceforth S&P500), the Nasdaq stock market index, and the 
yield for 10-year treasury bond (Tbond) spanning the period January 4, 1988 to 
January 2, 2004. In addition, daily observations are used to construct the series of 
measured or so-called the realized covariance and correlation in the related literature. 
We retrieve the ranges and returns data for the entire period from Yahoo’s database.  
 

It is worth taking a look at some descriptive statistics. Panels A, B, and C in 
Figure 1 demonstrate the weekly data patterns for the time-series of the S&P500 stock 
market index, the Nasdaq index and the yield to maturity for the 10-year Tbond over 
the sample period. Additionally, Table 1 provides summary statistics for weekly 
continuously compounded returns and weekly ranges for these indices.  
 

Let MCORRt and MCOVt represent the measured or realized correlation 
coefficient and measured covariance, respectively. The MCORRt is defined as  
 

∑
=

=
τ

ρ
τ 1

1
i

i
ttMCORR ,                                                (28) 

whereτ denotes the trading days during the week t and i
tρ  is the correlation 

coefficient at the ith  trading day of the week t. This series is obtained from using the 
daily returns data and fitting them with a MR_DCC model. By the same way, the 
measured covariance (MCOVt) can be expressed as follows. 
 

∑
=

×=
τ

1
21 )(

i

i
t

i
tt rrMCOV ,                                                                     (29) 

 

where i
ktr  represents the daily returns of index k at the ith trading day during week t. 

This expression is a direct extension of the concept of the realized volatility of 
Andersen, Bollerslev, Diebold, and Labys (2000). 
 
    Figure 2 shows the graphs of MCORRt and MCOVt for the S&P500 and Nasdaq 
indices. We allocate them at Panels A and B in Figure 2 separately. It is interesting to 
note that for the last two years, the two series were highly positively correlated, and 
moved more smoothly. Taking Tbond returns to be minus the changes in the 10-year 
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benchmark yield to maturity as in Engle (2002), the correlation and covariance 
between the Tbond market and stock market are traced. As to Panels A and B in 
Figure 3, we report the time series of MCORRt and MCOVt for S&P500 and Tbond 
yields. On the same picture we also show the MCORRt and MCOVt series between 
the Nasdaq index and S&P500 in Figure 4. Judging from Figures 3 and 4, we find that 
the correlation patterns between the bond market and stock markets appear to show a 
reverting phenomenon around approximately the year 2000. It can also be determined 
that the covariance processes are more volatile after the year 2000.      
 
A. In-sample forecast comparison 
  
    In this section we present the results of using the in-sample data; that is, the 
forecast performances are constructed and measured using the same database. Two 
variant DCC forms are discussed, namely, the mean reverting DCC form and the 
integrated DCC form (i.e., MR_DCC and I_DCC models for shorthand).  
 

Panel A in Table 2 describes the in-sample forecasting performance for MCORR. 
It is very consistent to recognize that the interactive regression model fitting to the 
relationship between different class markets is more suitable than the same class of 
stock markets judged from the R-squared index. With the exception of the correlation 
between the S&P500 and Nasdaq indices, all of the estimates of R-squared for the 
range DCC model are statistically preferred to the return DCC model. As to the 
in-sample forecast performance, there are not clear dominant advantages either for the 
MR_DCC or I_DCC model. Whatever DCC model is chosen and whether the 
return-based approach or range-based approach or the moving average model and 
exponential smoothing model are used, there are sufficient reasons to infer that the 
correlation is a time-varying variable from the significant coefficient in the t-value. 
Here, the t-value in our regression model is shown after adjustment of the White 
heteroskedasticity-consistent standard errors. Surprisingly, the exponential smoothing 
method for the correlation fitting under the in-sample forecasting scenario is better 
than the others, regardless of which two markets’ interaction is dissected, especially in 
the S&P500 and Nasdaq indices.  

 
The exponential smoothing model seems to perform well in the sample for 

correlation forecasting, but poorly for the out-of-sample forecasting. Technically, 
based on the exponential smoothing model, it obtains a constant value when we 
predict the out-of-sample correlation between any two variables. In other words, we 
cannot capture the term structure of correlation for the out-of-sample period. Finally, 
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no matter what market data is used, the MA100 is the worst model in our in-sample 
correlation forecast performance comparison. Each analysis and inference herein is 
consulted after the introduction of the realized correlation proxy in expression (28).As 
to other observations from Panel A in Table 2, the range-based parameter 2γ̂  under 
the MR_DCC model is not significantly different from zero in statistics when both of 

the two independent variables (i.e. ˆ return
tρ  and ˆ range

tρ ) are simultaneously fitted. 

 
From Panel B in Table 2, we find that the 1γ̂  coefficient appears negative under 

the MR_DCC model when the two correlation estimates are independent variables at 
the same time. However, the inference is indifferent from zero by the viewpoint of 
conventional statistics. Due to the value of R-squared almost staying at the same level, 
it seems that when the in-sample MCORR forecasting is evaluated, the return-based 
proxy derived by the GARCH type volatility is dominated by the range-based proxy 
derived by the CARR type volatility based on the S&P500 index and Tbond yield 
data. 

 
As to the in-sample forecasting of MCORR for the Nasdaq stock index and 

Tbond yield for Panel C in Table 2, we find that the ability to explain the realized 
correlation variable’s changes is better and can be shown when the significance of the 
return-based parameter estimate of 1γ̂  is reduced. Contrasting to both independent 
variables that are incorporated at the same time, we achieve the analogous result 
illustrated in Panel B. It is apparently that the range proxy fitting to the in-sample 
forecasts of correlation is again better on the setting of the DCC model. 

 
From Panel A in Table 3 we arrange the in-sample MCOV forecasting 

performance comparison for several useful models. Regardless of which DCC model 
is selected, the values of R-squared for the range-based models are all larger than 
those of the return-based models. Nonetheless, model fitting to the covariance pattern 
is a slightly poorer than to corresponding correlation pattern. Clues come from the 
overall information of R-squared adopted by Tables 2 and 3. It is interested that the 
value of R-squared drops by a significant amount when we discuss the covariance 
behavior. To our knowledge, the change for the covariance pattern might be more 
volatile than the corresponding correlation series and cannot easily capture the 
movement, and we can shown the R-squared value is lower than the corresponding 
correlation that evidence from Table 2.  

 
It is also worth seeing that when the two independent variables are incorporated 
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simultaneously in the regression model, then the return-based coefficient estimate 1̂φ  

is no more significantly different from zero under the MR_DCC or I_DCC model. 
Evidently, the proxy variable of the range-based model for volatility is more powerful 
than the return-based one in explaining the variant of the realized covariance variable 
once more.  

 
The focus on Panel B in Table 3 mentions about the covariance relationship 

between the S&P500 and Tbond yield series. Judging from the R-squared value and 
the significance of the coefficient, we can see the fact that the range-based proxy 
produces superior in-sample forecasts for MCOV relative to the return-based one 
when the two independent variables are fitted in the same regression equation. No 
matter if the MR_DCC model or the I_DCC model is extracted, the conclusion is 
consistent. 
 
    As to Panel C in Table 3 compares the in-sample covariance forecasting between 
the Nasdaq stock index and Tbond yield for alternative models. The inference is 
analogous to the Nasdaq stock index and Tbond yield when the issue of correlation 
behavior is explored. Namely, it is highly possible for the range-based variable for 
volatility to replace and dominate the return-based variable for volatility when the 
patterns of MCOV and MCORR are captured. 
 

From Table 3, we obtain other information for covariance when the lower part in 
each panel is checked. When using traditional and conventional manners to describe 
the covariance activities between variables, for instance, moving average approach, 
exponential smoothing approach, or constant conditional correlation model proposed 
by Bollerslev (1990), the forecasting ability for the in-sample covariance has no clear 
advantage direction among them. However, the only inference is that the DCC-based 
family is better than the traditional methodologies in the performance of the in-sample 
forecasting for the covariance variable. 

 
B. Out-of-sample forecast comparison 
 

To assess the relative performances for the out-of-sample correlation and 
covariance forecasting, we adopt the procedure of a rolling sample to estimate the 
out-of-sample forecasts using MR_DCC and I_DCC specifications for both the 
return-based and range-based models. For each individual model, we compute the 
out-of-sample forecasts for the horizons of 1, 2, 3, and 4 weeks. In all cases, we 
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re-estimated the estimates 100 times. We then use a simple regression to compare the 
explanatory power of these various forecasts on the realized covariances or 
correlations.    
 

Table 4 reports the value of R2 from a linear regression of MCORR on each of 
these out-of-sample forecast series. The overall result is consistent whatever 
out-of-sample horizon is chosen. We achieve a confirmation that the DCC-range 
model is more powerful then DCC-return model when the forecasting intervals of 
correlation are during one-month period. With the exception of the relationship 
between the Nasdaq index and the Tbond yield for the four weeks out of sample 
prediction, all of the estimates of R-squared for any other market data witness the 
inference. 
 

Table 5 shows the results for the comparison of out-of-sample forecasts for the 
covariance variable. A clear blueprint emerges immediately from the implication of 
this table. It is important to note that the DCC model with the range-based framework 
is significantly dominant than the return-based DCC model. Judging from the 
R-squared index, no matter what markets’ trading data are shown in this period. The 
range-based DCC model outperforms the others in all of the 12 cases for 
out-of-sample covariance forecasting, too. There are some differences from the 
correlation prediction we obtained from Table 4. We obtain that the return-based DCC 
model no longer significantly better than the conventional moving average approach 
in forecasting for the covariance variable. At the extreme, the returned-based DCC is 
worse than the moving average approach when the Nasdaq stock index and Tbond 
yield are discussed. As to the CCC model, it cannot deal with the property of the 
time-varying correlation naturally and its performance for the out-of-sample 
forecasting about the covariance variable is poor for one-month period. In fact, as to 
the performance for out-of-sample forecasting in correlation and covariance, the latter 
does not prevail against the former. With the exception of the one-week time horizon 
for covariance forecasting based on the range-DCC model, other substitute models 
hardly capture the outline for the out-of-sample covariance variance. It is possible to 
infer that the covariance pattern is not easily captured and the characteristic of the 
market trading data is another suitable reason. Due to the volatility of correlation 
being flatter than the covariance, the R-squared being higher than the corresponding 
covariance model is quite recognizable.     
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IV. Conclusions 

 
In this paper, a new estimator of the time-varying correlation/covariance matrices 

is proposed utilizing the range data by combining the CARR model proposed by Chou 
(2004a) and the framework of Engle (2002a)’s DCC model. The advantage of this 
range-based DCC model outperforming the standard return-based DCC model hinges 
on the relative efficiency of the range over the return data in estimating volatilities. 
Using weekly returns of S&P500, Nasdaq and 10-year treasury bond rates, we find 
consistent results that the range-based DCC model outperforms the return-based 
models in estimating and forecasting covariance and correlation matrices, both 
in-sample and out-of-sample.    

 Although we apply this estimator to the bivariate systems, it can be applied 
to larger systems in a manner similar to the application of the return-based DCC 
model structures that is demonstrated in Engle and Sheppard (2001). Future research 
will be useful in adopting more diagnostic statistics or tests based on value at risk 
calculations as is proposed by Engle and Manganelli (1999). Applications to the 
estimation of optimal portfolio weighting matrices and the calculation of the dynamic 
hedge ratio in the futures market will also be fruitful.   
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Figure 1: S&P500, Nasdaq Indices, and Tbond Yield Weekly Prices, 1/4/1988-1/2/2004 
Panel A: S&P500 Stock index weekly closing prices 
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Panel B: Nasdaq stock index weekly closing prices 
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Panel C: Yield to maturity for 10-year Tbond weekly closing yields 
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Figure 2: MCORR and MCOV for S&P500 and Nasdaq Indices, 1/4/1988-1/2/2004 

Panel A: Correlation series between S&P500 and Nasdaq Indices 
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Panel B: Covariance series between S&P500 and Nasdaq Indices 
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Figure 3: MCORR and MCOV for S&P500 Index and Tbond Yield, 

1/4/1988-1/2/2004 

Panel A: Correlation series between S&P500 index and Tbond yield 
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Panel B: Covariance series between S&P500 index and Tbond yield 
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Figure 4: MCORR and MCOV for Nasdaq Index and Tbond Yield, 1/4/1988-1/2/2004 

 
Panel A: Correlation series between Nasdaq index and Tbond yield 
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Panel B: Covariance series between Nasdaq index and Tbond yield 
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Table 1: Summary Statistics for the Returns and Ranges of Weekly S&P500, Nasdaq Indices, and 
Tbond Yield, 1/4/1988-1/2/2004 

 
Ranges and returns for stock indices are computed by )/log(100 lowhigh pp×  and  

1100 log( / )close close
t tp p −× , respectively.  Ranges and returns for the 10-year 

T(reasury)bond are inferred by )/log(100 lowhigh pp×  and - 1100 log( / )close close
t tp p −× , 

respectively. Jarque-Bera is the statistic for normality. There are 835 weekly sample 
observations.  All data are taken from Yahoo! Finance.  The computation of the 
returns of the bond yield follows Engle (2002a).     

 

Index S&P500 Nasdaq 10-year Tbond 

Type range return range return range return 

Mean 3.136 0.182 4.204 0.213 3.053 0.086 

Median 2.657 0.339 3.225 0.396 2.646 0.127 

Maximum 14.534 7.492 31.499 17.377 16.593 7.756 

Minimum 0.707 -12.330 0.514 -29.175 0.112 -12.625 

Std. Dev. 1.730 2.153 3.224 3.265 2.007 2.356 

Skewness 1.768 -0.458 2.411 -1.124 1.736 -0.694 

Kurtosis 8.025 5.733 12.782 13.112 8.222 5.437 

Jarque-Bera 1312.227 288.695 4132.758 3728.608 1366.220 273.344 
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Table 2: In-sample Forecasting for Correlations between the S&P500 and Nasdaq , S&P500 and 
Tbond, and Nasdaq and Tbond, 1/4/1988-1/2/2004 

t
return
ttMCORR ,110 ˆ εργγ ++=  

t
range
ttMCORR ,220 ˆ εργγ ++=  

t
range
t

return
ttMCORR ,3210 ˆˆ εργργγ +++=  

This table reports the R2 from a linear regression of the measured correlation (MCORR) 
on the correlation forecasts of the return-based DCC model, the range-based DCC model, 
models based on moving-average methods (MA100) and on exponential smoothing methods 
(Exp Smoothing). The t values with Heteroskedasticity-Autocorrelation-Consistent standard 
errors for the regression coefficients are in parentheses. There are 835 weekly sample 
observations. 
 

Panel A:  S&P500 and Nasdaq 
MCORR 0γ̂   1γ̂   2γ̂  R-squared 

Return 0.251 (10.425) 0.707 (24.691)   0.409 
Range 0.347 (16.937)   0.597 (24.539) 0.389 MR _DCC 
BOTH 0.257 (10.524) 0.445 (7.435) 0.258 (5.277) 0.425 
Return 0.250 (7.806) 0.705 (18.221)   0.316 
Range 0.280 (10.676)   0.672 (21.554) 0.350 I_DCC 
BOTH 0.171 (5.689) 0.363 (6.545) 0.440 (10.122) 0.392 

MA100 0.259 (9.421) 0.699 (21.22)   0.330 
Exp. Smoothing 0.375 (20.745) 0.555 (25.732)   0.489 

Panel B: S&P500 and Tbond
Return 0.030 (4.524) 0.848 (57.328)   0.777 
Range 0.023 (3.789)   0.860 (70.081) 0.800 MR _DCC 
BOTH 0.021 (3.621) -0.399 (-3.513) 1.256 (11.066) 0.803 
Return 0.023 (3.539) 0.965 (59.105)   0.794 
Range 0.007 (1.164)   0.945 (72.435) 0.811 I_DCC 
BOTH 0.008 (1.458) 0.128 (1.161) 0.822 (7.730) 0.811 

MA100 -0.017 (-1.704) 0.890 (36.625)   0.587 
Exp. Smoothing 0.025 (3.947) 0.846 (67.370)   0.792 

Panel C: Nasdaq and Tbond
Return 0.026 (5.551) 0.851 (57.019)   0.777 
Range 0.029 (6.574)   0.818 (67.500) 0.816 MR _DCC 
BOTH 0.031 (7.113) -0.437 (-5.573) 1.222 (16.445) 0.821 
Return 0.032 (6.888) 0.955 (57.549)   0.792 
Range 0.018 (3.987)   0.890 (60.008) 0.802 I_DCC 
BOTH 0.022 (4.970) 0.351 (3.944) 0.572 (6.777) 0.807 

MA100 -0.017 (-2.707) 0.871 (42.423)   0.658 
Exp. Smoothing 0.030 (6.283) 0.758 (62.599)   0.776 
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Table 3: In-Sample Forecasting for Covariances between S&P500 and Nasdaq , S&P500 and Tbond, and 
Nasdaq and Tbond, 1/4/1988-1/2/2004 

t
return

tt COVMCOV ,110 εφφ ++=  

0 2 2,
range

t t tMCOV COVφ φ ε= + +  

0 1 2 3,
return range

t t t tMCOV COV COVφ φ φ ε= + + +  
This table reports the R2 from a linear regression of the measured covariance (MCOV) 

on the covariance forecasts of the return-based DCC model, the range-based DCC model, 
models based on moving-average methods (MA100), on exponential smoothing methods 
(Exp Smoothing) and the constant conditional correlation (CCC) model. The t values with 
Heteroskedasticity-Autocorrelation-Consistent standard errors for the regression coefficients 
are in parentheses. There are 835 weekly sample observations. 

 
Panel A:  S&P500 and Nasdaq

MCOV 0φ   1φ   2φ  R-squared 

Return 0.753 (1.968) 0.939 (10.178) 0.223 
Range 0.339 (0.750)   0.867 (9.438) 0.354 MR _DCC 
BOTH 0.677 (1.829) -0.212 (-1.209) 0.998 (5.553) 0.357 
Return 1.148 (2.962) 0.863 (9.571) 0.202 
Range 0.384 (0.837)   0.848 (9.237) 0.351 I_DCC 
BOTH 0.693 (1.836) -0.186 (-1.206) 0.961 (5.782) 0.354 

MA100 0.788 (1.906) 1.011 (10.562) 0.210 
Exp. Smooth 1.303 (3.577) 0.862 (9.855) 0.200 

CCC 0.669 (1.690) 0.972 (9.994) 0.225 
Panel B: S&P500 and Tbond

Return -0.239 (-1.654) 0.960 (10.411) 0.230 
Range -0.086 (-0.676)   0.860 (10.212) 0.309 MR _DCC 
BOTH 0.007 (0.056) -0.559 (-2.025) 1.262 (4.864) 0.320 
Return -0.298 (-2.014) 1.102 (10.850) 0.231 
Range -0.199 (-1.489)   0.964 (10.312) 0.309 I_DCC 
BOTH -0.148 (-1.139) -0.428 (-1.517) 1.262 (4.775) 0.315 

MA100 -0.485 (-2.843) 1.070 (8.285) 0.177 
Exp. Smooth -0.203 (-1.431) 0.945 (10.040) 0.227 

CCC 2.527 (9.138) -3.982 (0.103) 0.103 
Panel C: Nasdaq and Tbond

Return -0.280 (-1.633) 0.934 (9.682) 0.163 
Range -0.025 (-0.149)   0.702 (9.749) 0.220 MR _DCC 
BOTH 0.007 (0.043) -0.301 (-1.157) 0.879 (4.418) 0.222 
Return -0.264 (-1.556) 1.064 (9.921) 0.168 
Range -0.171 (-1.004)   0.782 (9.847) 0.218 I_DCC 
BOTH -0.174 (-1.030) -0.107 (-0.412) 0.844 (4.259) 0.218 

MA100 -0.477 (-2.317) 0.955 (8.723) 0.152 
Exp. Smooth -0.280 (-1.661) 0.814 (9.338) 0.161 

CCC 1.696 (5.711) -14.546 (-5.789) 0.078 
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Table 4: Out-of-Sample Forecasting for the Correlations between S&P500 and Nasdaq , S&P500 

and Tbond, and Nasdaq and Tbond, 1/4/1988-1/2/2004 

tttMCORR εργγ ++= ˆ10  

This table reports the R2 from a linear regression of the measured correlation (MCORR) 
on the correlation forecasts of the return-based DCC model, the range-based DCC model, and 

the moving-average methods (MA100).  The regressions are conducted using 100 
observations based on the rolling sample method.  For each model, 700 observations 
are used for in-sample estimation and out-of-sample forecasts of horizons 1,2,3 and 4 
weeks are made.   

 
Panel A:  S&P500 and Nasdaq 

R-squared MR_DCC  
Forecast horizon return-based range-based MA100 

1 0.310  0.548  0.044  
2 0.279  0.474  0.076  
3 0.248  0.407  0.109  
4 0.199  0.325  0.153  

Panel B:  S&P500 and Tbond  
R-squared MR_DCC  

Forecast horizon return-based range-based MA100 
1 0.491  0.631  0.165  
2 0.441  0.547  0.134  
3 0.306  0.463  0.098  
4 0.229  0.388  0.065  

Panel C:  Nasdaq and Tbond  
R-squared MR_DCC  

Forecast horizon return-based range-based MA100 
1 0.593  0.786  0.443  
2 0.673  0.756  0.397  
3 0.705  0.706  0.348  
4 0.719  0.654  0.299  
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Table 5: Out-of-Sample Forecasting, for the MCOV between S&P500 and Nasdaq , S&P500 and 
Tbond, and Nasdaq and Tbond, 1/4/1988-1/2/2004 

0 1t t tMCOV COVφ φ ε= + +  

This table reports the R2 from a linear regression of the measured covariance (MCOV) on 
the covariance forecasts of the return-based DCC model, the range-based DCC model, the 

moving-average method (MA100), and constant conditional correlation (CCC) model.  The 
regressions are conducted using 100 observations based on the rolling sample method.  
For each model, 700 observations are used for in-sample estimation and 
out-of-sample forecasts of horizons 1,2,3 and 4 weeks are made.   

 
Panel A:  S&P500 and Nasdaq 

R-squared MR_DCC 
Forecast horizon return-based range-based

MA(100) CCC 

1 0.000  0.115  0.000  0.004  
2 0.003  0.081  0.004  0.000  
3 0.008  0.043  0.008  0.003  
4 0.018  0.015  0.018  0.011  

Panel B:  S&P500 and Tbond  
R-squared MR_DCC 

Forecast horizon return-based range-based
MA(100) CCC 

1 0.001  0.136  0.001  0.006  
2 0.000  0.070  0.000  0.010  
3 0.000  0.079  0.002  0.004  
4 0.007  0.046  0.006  0.006  

Panel C:  Nasdaq and Tbond  
R-squared MR_DCC 

Forecast horizon return-based range-based
MA(100) CCC 

1 0.009  0.114  0.053  0.003  
2 0.002  0.083  0.032  0.007  
3 0.004  0.066  0.032  0.000  
4 0.004  0.046  0.025  0.000  
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