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Abstract

In a world with private information and learning on the part of the market
participants, the (positive) difference between the observed transaction price of an
asset and the corresponding unobserved full-information price (the price that re-
flects private and public information about the asset) represents an ideal measure
of market efficiency. We call this difference “Full-information transaction cost.” We
propose a simple and robust methodology to evaluate full-information transaction
costs. Its simplicity is due to reliance on sample moments of observed high-frequency
transaction price data. Its robustness hinges on the fact that the deviations of the
observed transaction prices from the unobserved full-information prices can be im-
puted to fairly unrestricted operating (order-processing and inventory keeping) costs,
adverse-selection costs, and learning in the marketplace.
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“...All estimates of value are noisy, so we can never know how far away price is from value.
However, we might define an efficient market as one in which price is within a factor of 2 of
value, i.e., the price is more than half of value and less than twice of value. The factor 2 is
arbitrary, of course. Intuitively, though, it seems reasonable to me, in the light of sources of
uncertainty about value and the strength of the forces tending to cause price to return to value.
... . Because value is not observable, it is possible for events that have no information content to
affect price. For example, the addition of a stock to the S&P 500 index will cause some investors
to buy it. Their buying will force the price up for a time. Information trading will force it back,
but only gradually...”

Fisher Black - “Noise” - 1986 Presidential Address to the American Finance Association.

1 Introduction

A fundamental question in economics is whether or not financial markets are efficient

(Fama (1970, 1991)). If not, how inefficient are they and what are the determinants of

the existing inefficiencies? Measuring stock market efficiency is of crucial importance to

a variety of market participants, such as individual investors and portfolio managers, as

well as regulators. In November 2000, the Security and Exchange Commission issued

Rule 11 Ac. 1-5 requiring market venues to widely distribute execution quality statistics

regarding their trades in electronic format.1 From a regulator’s perspective, learning about

market efficiency and its determinants can lead to more effective market designs. From an

investor’s perspective, less efficient markets translate into higher rebalancing costs, higher

risk, and, potentially, higher required and expected asset returns.2 This paper proposes

a new measure of market efficiency.

In a world with heterogeneous (informed and uninformed) agents, two equilibrium

prices can be defined: the price that would prevail in absence of market frictions given

publicly available information (the public information set) and the price that would pre-

vail in absence of market frictions given both public and private information (the full-

information set). The theoretical market microstructure literature has termed the for-

mer the “efficient price” and the latter the “full-information price.” Sequential and batch

trade models posit that uninformed agents learn about private information from order

flow (Kyle (1985) and Easley and O’Hara (1987), among others). Hence, in a rational ex-

1The corresponding SEC regulation can be accessed at http://www.sec.gov/rules/final/34-43590.htm.
2When interpreting market frictions as a being mainly determined by liquidity effects, as typically the

case in the asset pricing literature, this statement relates to a substantial recent work devoted to assessing
whether expected stock returns include a liquidity premium (Amihud and Mendelson (1986), Brennan
and Subrahmanyam (1996), Brennan, Chordia, and Subrahmanyam (1998), Datar, Naik, and Radcliffe
(1998), Fiori (2000), Hasbrouck (2003), and Pastor and Stambaugh (2003), among others)
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pectation setting with learning on the part of the market participants, the efficient price

converges to the full-information price. The eventual convergence of the efficient price to

the full-information price is implied by Walras’ tâtonnement process, namely the process

by which the order flow leads to the full-information equilibrium price (Walras (1889)).

Biais et al. (1995, 1999) offer empirical evidence of learning in the marketplace. Biais et

al. (1999) quantify the speed of learning empirically. Vives (1995) and Germain et al.

(1998) provide theoretical discussions of this issue.

In an asymmetric information setting, there are two sources of market inefficiency.

First, transaction prices differ from the efficient prices (the equilibrium prices given public

information) but tend to cluster around them. Deviations of transaction prices from

efficient prices are driven bymarket frictions,3 such as price discreteness. These deviations

are the focus of virtually all existing transaction cost measures.4 Second, efficient prices

can differ from full-information prices (the equilibrium prices given public and private

information).

This paper proposes a novel measure of market efficiency5 which accounts for both de-

partures of transaction prices from efficient prices, as in much existing work on execution

cost evaluation, and deviations of efficient prices from full-information prices. Specifically,

we measure the positive distance between observed transaction prices and full-information

prices. Our measure is termed “full-information transaction cost” or FITC. In the jar-

gon of general economic theory, we characterize the extent of deviations of asset prices

from strong-form market efficiency while more conventional measures using the efficient

price as the benchmark price can be interpreted as measuring deviations of asset prices

from semi-strong form market efficiency. In our framework, a nearly strong-form efficient

market can thus be characterized as one in which transaction prices occur close to the

full-information prices or, equivalently, have small FITC’s. Fama (1991) writes: “Since

there are surely positive information and trading costs, the extreme version of the market

3As in Stoll’s 2000 presidential address to the Americal Finance Association we use the word “frictions”
to define real as well as information-induced deviations of transaction prices from efficient prices. We
expand on the determinants of frictions in Sections 2 and 4.

4Among others, half-quoted spreads, effective spreads, realized half spreads, traded spreads, Roll’s
effective bid-ask measure. The interested reader is referred to a recent special issue of the Journal of
Financial Market (vol. 6, issue 3, pages 227 - 459) for a thorough discussion of developments on the
subject.

5We follow Black (1986) in calling both the difference between the transaction price and the efficient
price and the difference between the efficient price and the full-information price “sources” of market
inefficiency.
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efficiency hypothesis is surely false. Its advantage, however, is that it is a clean benchmark

that allows me to sidestep the messy problem of deciding what are reasonable information

and trading costs.” The objective of the present work is to quantify these costs through

FITC’s.

Since the difference between the transaction price and the efficient price is generally

estimated to evaluate “market quality” (see, for example, Hasbrouck (1993)) and the

FITC’s account for this difference, as well as for the difference between efficient price and

full-information price, one can also interpret the FITC’s as measures of market quality.

We view our approach as providing a bridge between the above mentioned literatures,

namely the literature that studies the extent of deviations of transaction prices from

“equilibrium prices” on the one hand and the literature devoted to assessing the rate

at which market participants learn about the full-information price on the other hand.

Differently from our approach, the former takes the efficient price, rather than the full-

information price, as the equilibrium price of interest while the latter is typically not

concerned with providing measurements of the distance between transaction prices and

their full-information levels. This is the first paper, to our knowledge, which provides

estimates of the magnitudes of both components.

Our identification procedure uses high-frequency data and relies on the different orders

of magnitude of the components of the observed return data at high-frequency. The full-

information price is expected to evolve rather “smoothly,” although with unpredictable

variations given full-information, over time. Differently from the full-information price, the

efficient price, as well as the market frictions, have the potential to be adjusted in response

to the arrival of each transaction. Classic asymmetric information theory predicts that

the uninformed agents learn about private information from order flow (O’Hara (1995)).

Hence, meaningful revisions in the efficient price can arise no matter how close in time the

transactions occur. Similarly, the random arrival of buyers and sellers combined with the

discreteness inherent in financial prices imply analogous discrete increments to the mi-

crostructure noise component. In this setting, the observed high-frequency continuously-

compounded return data are dominated by return components that are induced by the

efficient price and market frictions since the underlying full-information returns evolve

relatively more smoothly in the state space. Hence, our estimation procedure utilizes
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sample moments of the observed high-frequency return data to learn about moments of

the unobserved FITC’s.

Our method is simple and robust. It is simple because we only require the computation

of empirical moments of available high-frequency stock returns. It is robust because

weak assumptions are sufficient for the method to provide consistent measurements of

market efficiency through FITC’s. The traditional taxonomy in the literature imputes

deviations of the transaction price from the efficient price to operating (order-processing

and inventory-carrying) costs and asymmetric information (see Bagehot (1971)). The

deviations of the efficient price from the full-information price are due to learning. Our

assumptions permit the deviations of the transaction prices from the full-information price

to be determined by virtually unrestricted order-processing costs (Tinic (1972), among

others), inventory-holding costs (Amihud and Mendelson (1980) and Ho and Stoll (1981),

inter alia), and adverse-selection costs (Copeland and Galai (1983) and Glosten and

Milgrom (1985), among others), as well as learning in the marketplace.

Our empirical work provides measurements of the FITC’s for a cross-section of S&P100

stocks. We find that the asymmetric information or “learning” component in the esti-

mated FITC’s is substantial. Importantly, we show that the magnitude of the expected

distance between efficient prices and full-information prices can be as large as the distance

between transaction prices and efficient prices or larger. Therefore, traditional measures

of market quality which abstract from the difference between full-information prices and

efficient prices have the potential to severely overstate the extent of actual market effi-

ciency.

The paper proceeds as follows. Section 2 discusses the price formation mechanism. In

Section 3 we present our nonparametric measure of market efficiency, the FITC. Section

4 provides FITC estimates for a cross-section of S&P100 stocks and studies the determi-

nants of the cross-sectional variation of the FITC’s. Section 5 provides measurements of

the distances between unobserved efficient prices and unobserved full-information prices

for our sample of S&P100 stocks. Section 6 concludes. Technical details and proofs are

in the Appendix.
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2 The economics of high-frequency price formation

We start by assuming absence of market frictions. Deviations of the efficient price from

the full-information price are, thus, the only source of inefficiency. In a competitive

market with informed and uniformed (liquidity) traders, the informed agents’ trading

decisions carry information about the full-information value of the asset. Generally, it is

not possible to fully distinguish between informed and uninformed traders. A decision

to sell, for example, might signal that a trader is informed and aware of bad news about

the asset. Alternatively, a decision to sell might simply be the result of a liquidity need

on the part of an uninformed agent. Market participants cannot clearly infer which is

the case. However, the trades provide information. This information is used by the

market participants to update their beliefs about the asset’s value given publicly available

information and formulate equilibrium or “efficient” prices. The learning of the market

participants leads to efficient prices that eventually converge to full-information values.

As O’Hara emphasizes in her discussion of trading and asymmetric information, “the

eventual convergence of beliefs and thus of prices to full-information levels follows from

standard Bayesian learning results” (O’Hara, 1995, page 64). Hence, even in the absence

of market frictions, the efficient price differs from the full-information price in general.

In practise, market frictions do exists (see Stoll’s 2000 presidential address to the

American Finance Association for recent discussions). The actual transaction prices differ

from the efficient prices (the equilibrium prices given public information) but cluster

around them. The standard taxonomy in the literature postulates that two are the main

economic forces behind market frictions: operating (i.e., order-processing and inventory-

keeping) costs and adverse-selection costs. The order-processing component of frictions

largely pertains to the service of “predictive immediacy” (Demsetz (1968)) or liquidity

provision for which the market makers need to be compensated in equilibrium. Smidt

(1971) suggests that the market makers are not just providers of liquidity but actively

modify the spreads based on variation in their inventory levels (see, also, Garman (1976)).

The idea is that the market makers wish not to be excessively exposed on just one side of

the market and therefore adjust the spreads to offset positions that are overly long or short

with respect to some desired inventory target. Much attention has recently been placed
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on the asymmetric information component of frictions. The market makers are bound to

trade with investors that have superior information. Hence, the asymmetric information

component of frictions is the profit that the dealers extract from the uninformed traders

to obtain compensation for the expected losses to the informed traders (see Copeland and

Galai (1983) and Glosten and Milgrom (1985)).

We now formalize these ideas. We consider a certain time period h (a trading day, for

instance). Let ti denote the arrival time of the i
th transaction. The counting function

N(t), which is defined over t ∈ [0, h], denotes the number of transactions occurred over
the period [0, t]. The following prices are logarithmic prices. We write the unobserved

efficient price peti as a function of the unobserved full-information price pti , namely

peti = pti + ηasyi , (1)

where ηasyi is a purely information-based component capturing differences between the

efficient price and the full-information price. We write the observed price epi corresponding
to transaction i as

epi = peti + ηfrii , (2)

where peti denotes the efficient price in Eq. (1) and η
fri
i denotes standard market frictions.

Combining Eq. (1) and Eq. (2), we obtain that the observed transaction price can be

expressed as

epi = pti + ηi, (3)

where pti is the full-information price and ηi = ηasyi + ηfrii . We call the term ηi, i.e., the

combined effect of frictions and departures of the efficient price from the full-information

price, “market effect.”

Economic theory sheds light on the properties of the relevant components of the model,

namely pti and ηi. The full-information set, by definition, contains all information used by

the market participants in their decisions to transact. Hence, the full-information price pti

is unaffected by the present order flow. With the exception of infrequent and unexpected

news arrivals to the informed agents, the dynamic behavior of the full-information price is
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best modelled as being rather “smooth.” We capture these features of the full-information

price process by representing it as a discontinuous semi-martingale process with infrequent

jumps.

Assumption 1 (The full-information price.)

(1) The full-information logarithmic price process pt is a discontinuous semi-martingale.

Specifically,

pt = At +Mt +Kt. (4)

where At is a continuous finite variation component, Mt =
R t
0
σsdWs is a local martingale,

and Kt =
R t
0

¡
JsdZs − µjλsds

¢
is an independent, compensated, jump process with Zt

denoting a counting process with finite intensity λt and Jt denoting a random jump size

with mean µj and variance σ
2
j .

(2) The spot volatility process σt is càdlàg and bounded away from zero.

In asset-pricing models, the semimartingale property of the price process from Assump-

tion 1(2) is a necessary condition for the absence of arbitrage opportunities (Duffie (1990),

for example). In information-based models of price determination, the full-information

price is a martingale, i.e., At = 0. This case is a sub-case of our more general set-up.

We also allow for the presence of stochastic volatility. Specifically, under Assumption

1(2), the volatility process can display long-memory properties, diurnal effects, jumps,

and nonstationary dynamics. In addition, the innovations in returns can be correlated

with the innovations in volatility. Hence, our specification can feature leverage effects.

We now turn to the market effects η. A cornerstone of market microstructure theory is

that the uninformed agents learn about existing private information from observed order

flow (see O’Hara (1995)). Since each trade carries information, meaningful revisions to

the efficient price will be made regardless of the time interval between trade arrivals.

Hence, the efficient price process is naturally thought of as a process with non-negligible

revisions associated with each transaction arrival time, no matter how close in time the

transactions occur. This is what the presence of the term ηasy in Eq. (1) accomplishes.
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The term ηfri reflects conventional microstructure frictions. The presence of separate

prices for buyers and sellers and price discreteness, alone, suggest that the changes in the

frictions from trade to trade are discrete in nature.

Assumption 2 (The market effects.)

(1) The microstructure effects ηi’s are mean zero and covariance stationary with stan-

dard deviation ση.

(2) Their covariance structure is such that E(ηη−j) = θj 6= 0 for j = 1, ..., k <∞ and

E(ηη−j) = 0 for j > k.

(3)
P∞
s=0 |λs| < ∞ with λs = E [(εsεs−j −E (εε−j)) (εε−j −E (εε−j))] where ε = η −

η−1 for j = 0, 1, ..., k <∞

The market effects are stationary (Assumption 2(1)). Their dependence structure is

such that all covariances of order smaller than k can be different from zero while the

covariances of order higher than k are equal to zero. The value of k and the signs of the

covariances for values that are smaller than k is left unrestricted (Assumption 2(2)). This

property permits us to accommodate temporal dependence in order flows, limit orders,

and asymmetric information. As an example, transaction types sometimes repeat each

other, i.e., sales and purchases cluster over brief periods of time. It is well known (see, for

example, Garbade and Lieber (1977)) that a floor broker might split a large order into

smaller orders, thereby inducing successive recorded sales and purchases. Similarly, limit

orders might remain in the market maker’s book until there is a change in quotation.

When a favorable change occurs, many limit orders might be satisfied at the same time.

These transactions are typically recorded separately. As before, they induce several trades

on the same side of the market and, consequently, serial correlation in the transaction

prices. Finally, we allow the microstructure effects to be correlated with the unobservable

full-information price process as required by asymmetric information and learning on the

part of the market participants.

Our interest will be in measuring the standard deviation of η, i.e., ση, a natural

measure of distance between the actual transaction prices and the prices that would
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prevail given full-information. Hasbrouck (1993) was the first, to our knowledge, to focus

on the standard deviation as a measure of market quality as we do in this paper. His

work differs from ours, however, in that his reference price is the efficient price, not the

full-information price. His results provide a lower bound for his object of interest, namely

σfriη . We now turn to our identification procedure.

3 Measuring full-information transaction costs

Eq. (3) can be written in terms of returns as

eri = rti + εi, (5)

where eri = epi−epi−1 is the observed continuously-compounded return over the transaction
interval (ti−1, ti), rti = pti − pti−1 is the corresponding full-information continuously-
compounded return, and εi = ηi − ηi−1 denotes market effects in the observed return

process.

Lemma 1 expresses the square root of the second moment of the market effects in the

price process ση as a function of the cross moments of the market effects in returns. Our

estimator will be a consistent sample analogue of ση.

Lemma 1. Write ε = η − η−1. Then, under Assumptions 2(1) and 2(2),

ση =
p
E(η2) =

vuutµ1 + k
2

¶
E(ε2) +

k−1X
s=0

(s+ 1)E(εε−k+s). (6)

Proof. See Appendix.

For clarity, we illustrate two subcases of the general result in Lemma 1. Assume k = 1,

i.e., E(ηη−1) = θ1. Hence,

ση =
p
E(ε2) +E(εε−1). (7)

If k = 2, i.e., E(ηη−2) = θ2, then

ση =

r
3

2
E(ε2) + 2E(εε−1) +E(εε−2). (8)
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Provided the relevant moments of the market effects in returns can be consistently

estimated using observables, Eq. (6) constitutes an expression that can be readily used

to identify the second moment of the market effects in the price process. The availability

of high-frequency price data offers us a unique way to do so.

The intuition behind our identification procedure is as follows. The market effects in

the observed returns (ε) are Op(1) (see Assumption (2)). At high frequencies, the full-

information component of the observed returns is of order Op

Ãr
max

1≤i≤N(h)
|ti − ti−1|

!
(see Assumption (1)), where max

1≤i≤N(h)
|ti − ti−1| is the maximum duration between price

updates. Of course, the maximum duration is small when using data sampled at the

frequencies at which transactions arrive in practise (see Table I). In light of these obser-

vations, the market effects in the return process (ε) dominate the full-information return

component (r) at high frequencies. Hence, we can use sample moments of the observed

high-frequency return data to identify moments of the unobserved market effects (ε) by

employing the informational content of high-frequency return data.

Finally, we note that our asymptotic design, which hinges on an increasing number

of transactions (i.e., N(h) → ∞) over a fixed interval of time (h), is meant to represent
availability of a very large number of transactions over the time interval, not an endoge-

nous increase in the number of trades possibly due to the state of the market. In the

context of our asymptotic approximation, it is natural to regard the transaction arrival

times as being deterministic. Theorem 1 below lays out the estimator and its asymptotic

behavior.

Theorem 1. Assume Assumptions 1 and 2 are satisfied. Given a sequence of trade

arrival times such that max
©|ti+1 − ti| , i = 1, ..., N(h)ª→ 0 as N(h)→∞, we obtain

bση =
vuuutµk + 1

2

¶ÃPN(h)
i=1 er2i
N(h)

!
+
k−1X
s=0

(s+ 1)

PN(h)
i=k−s+1 erieri−k+s
N(h)− k + s

 p→
N(h)→∞

ση. (9)

Proof. See Appendix.

In what follows, we will use the convention of referring to estimates obtained by

employing the estimator in Eq. (9) (and Eq. (14) below) as FITC’s. The estimator
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is local in nature and defined over a single, generically-specified, period h. In this sense

we can readily allow for a time-varying second moment of the market effects possibly

induced by the convergence dynamics of the transaction price to the full-information

price. Under the assumption that the properties of the η0s extend to multiple periods (or

when interested in the unconditional expectation of the time-varying second moment of

the market effects), the simple summations over i (which is our index for transactions) in

the definition of the estimator in Eq. (9) can be replaced by double summations over j,

say, where j denotes the jth period in the sample and, again, over i, where i denotes the

ith transaction during the generic jth period. We use this procedure in what follows.

Recently, a growing literature has attempted to accommodate market microstructure

noise effects on realized volatility estimates. In the realized volatility literature, sums of

squared continuously-compounded returns over a period are used to estimate the quadratic

variation of the underlying efficient price (see the review paper by Andersen et al. (2003)

for discussions). The approaches that allow for general dependence in the microstruc-

ture noise and are closest to our approach are Bandi and Russell (2003a), Hansen and

Lunde (2003) and Oomen (2004). While both our current work and this realized volatility

literature require the modeling and estimation of features of the noise components, the

objects of econometric interest are different. With the exception of some aspects of the

analysis in Bandi and Russell (2003a), the identification techniques are also completely

different. Hansen and Lunde (2003) and, subsequently, Oomen (2004) (but in the context

of a pure jump process for the underlying efficient price) rely on a clever cancellation tech-

nique using a HAC type estimator to purge realized volatility estimates of their market

microstructure noise-induced bias component. The bias there is given by the sum of the

variance of the noise in return component and the covariance between the noise in return

and the underlying efficient price. Clearly, our measure requires estimation of the variance

of the noise (or, more precisely in our model, combined market effect) component con-

tained in the price process only. The techniques of Hansen and Lunde (2003) and Oomen

(2004) are not able to separately identify this variance under our assumptions. Here,

we rely on limiting arguments and show consistency of our estimator. Our identification

procedure hinges on the different orders of the full-information returns and market effects.

Our estimator is not a HAC type estimator in that the weights are derived specifically
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for estimating the variance of the market effects in the price process under our assumed

correlation structure for the market effects.

3.1 Measuring the positive difference between transaction prices
and full-information prices

The FITC measure is a standard deviation of departures of transaction prices from full-

information prices. Alternatively, one might want to quantify the expected (positive) de-

viation of transaction prices from full-information levels. In this subsection we show that

this expectation can be estimated from the FITC’s under further assumptions. Specifi-

cally, consider Assumptions 3 and 4 below.

Assumption 3. Assume η is normal.

Assumption 4. Assume

ηi = sQi ∀i = 1, ...,N(h), (10)

where Qi is a random variable representing the direction (i.e., higher or lower) of the

transaction price with respect to the full-information price and s is the full-information

transaction cost. Specifically, assume Qi can take on only two values, −1 and 1, with
equal probabilities.

Under Assumption 3, E (|ep− p|) = 0.7979ση. If Assumption 4 is satisfied, then

E (|ep− p|) = ση = s.

Corollary to Theorem 1. i) Assume Assumptions 1, 2, and 3 are satisfied. Given a

sequence of trade arrival times such that max
©|ti+1 − ti| , i = 1, ...,N(h)ª→ 0 as N(h)→

∞, we obtain

0.7979bση p→
N(h)→∞

E (|ep− p|) , (11)

where bση is defined in Eq. (9).
ii) Assume Assumptions 1, 2, and 4 are satisfied. Given a sequence of trade arrival

times such that max
©|ti+1 − ti| , i = 1, ..., N(h)ª→ 0 as N(h)→∞, we obtain
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bση p→
N(h)→∞

s = E (|ep− p|) , (12)

where bση is defined in Eq. (9).
Proof. Immediate given Lemma 1, Theorem 1, and Assumptions 3 and 4.

Assumption 4 is in the spirit of Roll’s fundamental approach to effective transaction

cost estimation (Roll (1984)). Choi et al. (1988) and Hasbrouck (1999, 2003), among

others, provide interesting extensions of Roll’s method. In Roll’s model, rti denotes

the efficient return rather than the full-information return, Qi = 1 corresponds to a

buyer-initiated trade, and Qi = −1 denotes a seller-initiated trade. Under (i) uncorre-
latedness of the efficient return process, (ii) uncorrelatedness between the efficient return

process and the order flows, and (iii) uncorrelatedness of the order flows, Roll shows that

Cov(er, er−1) = −2s2. Hence, a consistent estimate of s is given by 2qbE(er, er−1). While
our approach uses recorded asset returns to measure unobserved transaction costs as in

Roll’s approach, our definition of transaction costs is different from Roll’s in that Roll’s

benchmark price is the efficient price. Furthermore, Assumptions (i) through (iii) were

shown to be unnecessary in our framework.

3.2 A finite sample bias-correction

Estimation of the FITC’s requires the availability of high-frequency transaction price

data. When the arrival times are not very frequent, there could be residual contaminations

induced by the dynamics of the underlying full-information price process. Specifically, un-

der the assumption that At = 0, which implies, as in conventional market microstructure

theory, unpredictability of the full-information price process, we can write

E
³bσ2η´ = µk + 12

¶E(ε2) +E
ÃPN(h)

i=1 r2i
N(h)

!
| {z }

α

+
k−1X
s=0

(s+1)E(εε−k+s)+E

η

 kX
j=1

r−j


| {z }

β

.

(13)

The finite sample contaminations are α and β. While one can characterize α by using a

standardized (by 1
N(h)

) estimate of the variance of the full-information price process over
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h, the identification of β is much more allusive.

We propose bias-correcting bση by subtracting a model-free estimate of α obtained by
using realized variance as in Andersen et al. (2003) and Barndorff-Nielsen and Shephard

(2002). We estimate the h-period variance by summing intraperiod squared continuously-

compounded returns. The optimal number of intraperiod observations is chosen to min-

imize the conditional mean-squared error of the variance estimator in the presence of

market microstructure effects as suggested by Bandi and Russell (2003a,b). The resulting

estimator is:

ση =

vuuutµk + 1
2

¶ÃPN(h)
i=1 er2i
N(h)

− bα!+ k−1X
s=0

(s+ 1)

PN(h)
i=k−s+1 erieri−k+s
N(h)− k + s

 (14)

where

bα = 1

N(h)

M(h)X
j=1

er2j
 , (15)

and the optimal number M(h) of equispaced intraperiod returns erj is chosen on the basis
of the procedure proposed by Bandi and Russell (2003a,b). We use ση in what follows.

The estimated biases bα are very small for the S&P 100 stocks in our sample. Specif-
ically, the average and maximum bias are 7.5% and 10.5% of the corresponding FITC’s,

respectively.

Contrary to virtually all existing approaches to transaction cost estimation, our ap-

proach does not require independence between the full-information price process and the

market effects to provide consistent estimates of market quality measures, namely for ei-

ther bση or ση to consistently estimate ση in our framework. However, when independence
or uncorrelatedness between the full-information price process and η is not satisfied, our

estimates might contain a finite sample bias component, β, which cannot be characterized.

Even if β is non zero, this bias will be small for stocks with high trading rates. The stocks

in our sample are traded at very high frequencies and we therefore expect this bias, just

like the bias represented by α, to be small. Our asymptotic approximation is of course

bound to improve as stocks get traded more and more frequently in the future.
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4 The FITC’s of the S&P 100 stocks

The data analyzed consist of one month of high-frequency transaction prices for the stocks

in the S&P 100 index. The prices were obtained from the TAQ data set for the month of

February 2002. Our sample contains 93 NYSE stocks and 7 NASDAQ stocks. Transactions

from the primary exchanges only are used. The data are filtered to remove any zeros.

The FITC estimates require a choice for k, the number of non-zero autocorrelations.

In Fig. 1 we present the histograms of the t-ratios of several autocorrelations for the

100 stocks in our sample, i.e.,
√
nbρj , with j = 1, 2, 3, 5, 10, and 15. The autocorrelation

structure in the high-frequency transaction prices is significantly negative at lag one and

quite negative at lag two. It is generally positive at lags higher than two but largely

statistically insignificant at lags around 15 and higher. These features of the data, which

are likely to be induced by bid-ask bounce effects at small lags and clustering in order-

flows at higher lags, demonstrate the need to consider estimation procedures that are

robust to deviations from a model of price determination that only allows for a negative

first-order autocorrelation in the recorded stock return data (as in Roll’s approach, for

example). To accommodate non-zero high order autocorrelations, we set k in the FITC

estimator in Eq. (14) equal to 15 for all stocks.

We begin by comparing the FITC’s to a conventional measure of market quality which

is meant to quantify deviations of transaction prices from efficient prices, namely effective

spread. This measure is a natural benchmark to use since, like our measure, it uses

trade-by-trade data.

Ignoring private information, Perold (1988) suggested that an ideal measure of the

execution cost of a trade should be based on the comparison between the trade price for

an investor’s order and the efficient price prevailing at the time of the trading decision.

Although individual investors can plausibly construct this measure, researchers and regu-

lators do not have enough information to do so (see Bessembinder (2003) for a discussion).

Virtually all available estimates of the cost of trade utilizing high-frequency data hinge

on the basic logic behind Perold’s original suggestions. The effective spread is defined as

the (weighted) average of
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Qt(ept −mt), (16)

where Qt is an indicator equal to 1 (−1) for buyer (seller) initiated trades, ept is the
logarithm of the transaction price and mt is the midpoint of the bid and ask quotes. The

latter is used as a proxy for the unobserved efficient price prevailing at the time of the

trading decision.

The limitations of this measure have been pointed out in the literature. First, the

effective spread measure requires the trades to be signed as buyer or seller initiated.

Commonly used high-frequency data sets (the TAQ database that we use in the paper,

for instance) do not contain information about whether a trade is buyer or seller-initiated.

Lee and Ready (1991) and Ellis et al. (2000), among others, propose algorithms intended

to classify trades as buyer of seller-initiated simply on the basis of transaction prices

and quotes. While these algorithms perform reasonably well, they have the potential

to missclassify a large number of trades, thereby inducing biases in the final estimates.

Bessembinder (2003) and Peterson and Sirri (2003) contain a thorough discussion of these

issues. Second, the effective spreads require the relevant quotes and transaction prices to

be matched. Since the trade reports are often delayed, it is difficult to accurately match

trade prices to quotes when computing the effective spreads. However, it seems sensible

to compare the trade prices to quotes that occur before the trade report time. In our

work we compute the effective spreads by using the conventional Lee and Ready (1991)

algorithm and a standard 5 second time allowance.

Table I contains summary statistics for the stocks in our sample. Specifically, we report

the average durations, the average prices, the FITC’s as a percentage of the average prices,

the FITC’s in dollars, the effective spreads as a percentage of the average prices, and the

effective spreads in dollars. An asterisk is placed after NASDAQ stocks.

In Figs. 2 and 3 we report the histogram of the estimated FITC’s as a percentage of the

corresponding average prices as well as in dollar values. The cross-sectional distributions

of the FITC’s are considerably more left-skewed when reported in percentage values than

in absolute values, thereby suggesting that, on average, stocks with higher percentage

FITC’s tend to have lower average prices.

Any sensible measure of transaction cost should be highly correlated with the quoted
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spreads. We find that the correlation between the FITC’s and the quoted spreads is 0.94

and stronger than the correlation between the effective spreads and the quoted spreads

(0.88).

4.1 The cross-sectional determinants of the FITC’s, effective spreads,
and quoted spreads.

Traditional market microstructure literature suggests two main economic forces behind the

determination of the quoted spreads: operating (order-processing and inventory-keeping)

costs and adverse-selection costs. Liquidity and asymmetric information proxies are known

to explain the cross-sectional variation of the effective spreads and quoted spreads. Simi-

larly, if the FITC’s contain a component that can be imputed to standard frictions as well

as a component that can be imputed to learning on the part of the market participants,

the same proxies should explain the cross-sectional variation of the FITC’s. However, due

to the additional component capturing the difference between the efficient price and the

full information price, we expect the FITC’s to be more correlated with the asymmetric

information proxies than other measures are.

By performing a standard cross-sectional regression in the empirical microstructure

literature on friction determination (see Stoll (2000), for example), we show that (i) the

FITC’s are highly correlated with traditional measures of liquidity and private informa-

tion and (ii) the FITC’s are more correlated with the asymmetric information proxies

than other transaction cost measures.

We regress the logarithm of the percentage FITC’s (lfitc) on the logarithm of the

average dollar volume per trade (lsize), the logarithm of the average number of shares

transacted to shares outstanding (lturn), the logarithm of the average daily standard de-

viation of the true price process (lsdprice),6 the logarithm of the average price (lprice),

and an NYSE dummy (nyse). Table II, column 1, contains the results. The same regres-

sions with logarithmic half-quoted spreads and logarithmic effective spreads as regressors

are in Table II, columns 2 and 3.

The variable lsize proxies for liquidity and ease of inventory adjustment. The oper-

ating cost channel implies that higher lsize should translate into smaller spreads. When

6As in the previous section, we estimate the daily standard deviations by using daily realized volatilities.
The optimal number of intradaily observations is chosen to minimize the conditional mean-squared error
of the realized volatility estimator as proposed in Bandi and Russell (2003a,b).
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faced with high dollar volume, the market maker knows that imbalances in risky inven-

tories can easily be restored. Similarly, the market maker is exposed to a variety of fixed

operating costs which he recovers by setting transaction costs appropriately. The higher

lsize, the smaller the fixed cost per transacted share and, consequently, the smaller the

necessary transaction cost. The variable lturn proxies for the extent of informed trading.

The asymmetric information channel implies that higher lturn should determine larger

spreads. As Stoll (1989) points out, without informed trading, stocks would be traded in

proportion to their amount outstanding. Trading rates in excess of this proportion should

be associated with informed trading. The variable lsdprice proxies for both asymmetric

information and ease of inventory adjustment. In both cases, higher lsdprice should lead

to larger spreads. Higher uncertainty about the fundamental value of the asset increases

the risk of transacting with traders with superior information. The increased risk needs to

be compensated and the compensation should be proportional to the degree of asymmetry

in the market. Equivalently, higher uncertainty about the underlying stock’s value implies

higher potential for adverse price moves and hence higher inventory risk, mostly in the

presence of severe imbalances to be offset (Garber and Silber (1979) and Ho and Stoll

(1981)). The variable lprice is included to control for price discreteness. As suggested

by Stoll (2000), this variable can also be interpreted as an additional proxy for risk in

that low price stocks have a tendency to be riskier. Finally, the nyse dummy allows us to

account for potential exchange effects.

The adjusted R2 of the FITC regression is 0.95. The variable lsize has a significantly

negative impact on the FITC’s with an elasticity of −0.153 and a t-stat of −5.29 support-
ing the predictions of the operating-cost theory of friction determination. The variable

lturn is significantly positive with an elasticity of 0.16 and a t-stat of about 8.85 in agree-

ment with the predictions of the asymmetric information theory of friction determination.

Similarly, strong and positive is the cross-sectional relation between the FITC’s and the

volatility of the underlying full-information price. The corresponding coefficient is equal

to 0.55 with a t-stat of 12.44. As expected, the coefficient on lprice is negative (−0.15)
and highly statistically significant with a t-stat of −4.79. The (statistically significant)
positive sign of the estimated coefficient on nyse (0.86) is somewhat surprising at first. It

is widely believed that the decentralized nature of NASDAQ leaves the dealer more ex-
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posed to potential losses coming from trading with the informed agents (Heidle and Huang

(2002)). The higher risk of informed trading would have to be compensated through larger

transaction costs. The opposite result emerges from our sample but a simple observation

justifies this outcome. Our sample of NASDAQ stocks is very small (only 7 companies)

and characterized by large cap stocks that trade very frequently and have large average

volumes. The exchange dummy is likely to pick up an unaccounted for liquidity effect,

hence the negative sign. This outcome is not specific to our FITC measure. When re-

gressing the quoted and effective spreads on the same controls we also find a significantly

positive parameter estimate (Table II, columns 2 and 3). It therefore seems likely that the

NASDAQ stocks in our sample of S&P 100 stocks are not representative of the universe

of NASDAQ stocks. A thorough analysis of the efficiency properties of NASDAQ stocks

is of interest for future research but is beyond the scope of the present paper.

Interestingly, the main asymmetric information proxy in the regression, lturn, appears

to be considerably more correlated with the FITC’s than with the quoted and effective

spreads. In the effective spread regression the corresponding coefficient is equal to 0.058

with a t-stat of 3. In the half-quoted spread regression the corresponding coefficient is

equal to 0.08 with a t-stat of 3.67.

We provide two robustness checks. We run the same regression but replace lturn

with two alternative measures of asymmetric information that have been widely used

in the recent literature, namely the logarithm of the probability of informed trading or

PIN (lpin) (see, for example, Easley et al. (1996)) and the logarithm of the number of

analysts following the stock (lanalysts). We start with the former (see Table III). Our

sample of PIN estimates covers 70 NYSE stocks out of the 100 stocks in our original

sample. Specifically, we use annual PIN measures pertaining to the year 2001.7 We

expect more informed trading to take place in the presence of larger deviations between

the full-information prices and the efficient prices. Also, higher informed trading should

imply higher adverse selection costs for the market maker. Both effects should lead to

larger values of the two components of the FITC’s. The estimated lpin coefficient in the

FITC regression is equal to 0.184 with a t-stat of 2.3. The corresponding values for the

half-quoted spreads and the effective spreads are 0.166 and 0.118 with t-stats of 2.07 and

7We thank Soeren Hvidkjaer for making the PIN measures available to us.
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1.66, respectively. Hence, lpin is insignificant in the effective spread regression and barely

significant in the quoted spread regression.

We now turn to the number of analysts (Table IV). We use the (logarithm of the)

number of analysts following the stocks in our sample over the quarter that includes

February 2002 and the number of analysts following the stocks over the entire 2002 year.8

It is known that lanalysts is negatively correlated with lpin (Easley et al. (1998)). We

confirm this result in our sample (the correlation is −.2). We expect a larger number of
analysts to induce faster distribution and incorporation of information, resulting in lower

risk for the market maker (Brennan and Subrahmanyam (1995)), and hence smaller devi-

ations between transaction prices and efficient prices, as well as smaller deviations of the

efficient prices from the full-information prices. A higher lanalyst value, therefore, should

be associated with smaller FITC’s. The estimated coefficient in the FITC regression is

equal to −0.11 with a t-stat of −2.66. The corresponding values for quoted and effective
spreads are −0.026 and −0.045 with t-stats of −0.64 and −1.25, respectively. Hence,
lanalysts is insignificant in both the effective spread regression and the quoted spread

regression.

5 How big is the asymmetric information component
in the FITC’s?

This section provides a test of the importance of asymmetric information and quantifies

the asymmetric information component in the estimated FITC’s.

We start with the former. The price formation mechanism in Section 2 implies that

the market effects η are induced by standard market frictions and a pure asymmetric

information component, i.e., η = ηasy + ηfri. We recall that ηfri denotes the difference

between the transaction price and the efficient price whereas ηasy denotes the difference

between the efficient price and the full-information price. Hence, our model implies that

σ2η = σ2ηasy + σ2ηfri + 2σηasyηfri , (17)

where σηasyηfri is the covariance between ηasy and ηfri. Similarly, we can write

8The number of analysts is obtained from the Institutional Brokers Estimation System (I/B/E/S)
database.
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σ2η − σ2ηfri = σ2ηasy + 2σηasyηfri . (18)

Proposition. If the FITC’s contain a pure asymmetric information component, then

the cross-sectional variation of the difference σ2η − σ2ηfri should be explained by variables

that are correlated with private information.

Interestingly, this difference can be estimated from the data. The first term, σ2η, is the

square of the FITC measure. The second term is the variance of the difference between the

transaction price and the efficient price. Under a standard assumption in the literature,

we use the midpoint of the bid and ask prices as a proxy for the unobserved efficient price.

We test the prediction in the proposition by regressing the logarithm of FITC2− bσ2ηfri
on lturn (Table V). The variable lturn is expected to be positively related to σ2ηasy . The

relation between lturn and σηasyηfri is not obvious. The estimated coefficient on lturn is

positive (1.01) and very statistically significant with a t-stat of 10.72.

As in the previous section, we provide two robustness checks, namely we replace lturn

with lpin and lanalysts. Since we expect more informed trading to take place in the

presence of larger deviations between the full-information prices and the efficient prices, a

higher lpin value should be associated with a larger σ2ηasy . The effect on σηasyηfri is less

clear. When we regress the logarithm of FITC2− bσ2ηfri on lpin we find a positive estimate
of 1.33 with a t-stat of 2.6. Since we expect a larger number of analysts to induce faster

distribution and incorporation of information, a higher lanalyst value should be associated

with a smaller σ2ηasy . As earlier in the case of lturns and lpin, the effect on σηasyηfri is

not obvious. When we regress the logarithm of FITC2− bσ2ηfri on lanalysts we find a
negative coefficient of −1.29 with a t-stat of −4.31.
In sum, these results confirm the presence of a pure private information component in

the estimated FITC’s. It is now interesting to quantify the magnitude of this component.

Write

E |ep− p| ≤ E |ep− pe|+E |pe − p| (19)

where, as earlier, ep, p, and pe denote the transaction price, the full-information price
and the efficient price, respectively. We can now provide a lower bound for the expected
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difference between the unobserved efficient price and the unobserved full-information price,

namely

E |ep− p|−E |ep− pe| ≤ E |pe − p| . (20)

Under a log-normality assumption for the market effect η, the term E |ep− p| can be
estimated as in Section 3, Corollary to Theorem 1. Using the midpoint of the bid and the

ask price as a proxy for the efficient price as earlier, the term E |ep− pe| can be estimated
based on transaction prices and midpoints. Hence, the difference E |ep− p|−E |ep− pe| can
be easily evaluated using FITC’s. A formal test of the hypothesis that the mean bound

is zero is overwhelmingly rejected by our data with a t-stat of 15.

In Figure 4 we plot the histogram of the estimated lower bounds as a percentage of

the FITC estimates. The mean value is about 30%, the maximum value is about 50%.

Hence, the asymmetric information component in the FITC’s is substantial. In Figure

5 we plot the histogram of the estimated lower bounds as a percentage of the difference

between transaction prices and efficient prices. We notice that the mean value is about

70% but values as large as 140% are possible.

Hence, substantial deviations of the efficient price from the full-information price can

occur. These departures can be as large as the departures of the transaction prices from

the efficient prices. Measures of market quality that do not account for these deviations,

like the effective spreads and the half-quoted spreads, have the potential to overstate the

extent of market quality (or market efficiency) substantially.

6 Conclusions

In a world with private information and learning on the part of the market participants, the

(positive) differences between observed transaction prices and unobserved full-information

prices, i.e., the prices that reflect all public and private information about the assets,

constitute ideal measures of market efficiency. We call these differences “full-information

transaction costs.” While the current literature on market quality focuses on measuring

the differences between transaction prices and efficient prices, i.e., the prices that embed

all publicly available information about the assets, this paper proposes a methodology to

study full-information transaction costs.
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Our method relies on sample moments of high-frequency transaction return data. As

such, the method is easy to implement. Furthermore, the method is robust to a variety of

realistic price formation mechanisms in that it can accommodate (i) predictability in the

underlying full-information return process, (ii) correlation between the full-information

price process and the market effects (i.e., the combined effects of standard frictions and

deviations of the efficient price from the full-information price), (iii) nonlinearities in the

full-information price and market effects, as well as (iv) serial dependence in the market

effects. We argue that it is important to account for all of these assumptions if market

efficiency is believed to be affected by realistic operating and adverse-selection costs as

implied by accepted theories of market friction determination as well as by learning. To

our knowledge, no existing approach to measuring market quality allows for (i) through

(iv).

Using estimates of moments of full-information transaction costs for a sample of S&P

100 stocks, we provide further support for the existing theories of market friction de-

termination and show the importance of learning on the part of the market participants.

Importantly, we stress that the deviations of the efficient prices from their full-information

levels, as determined by the existence of private information in the market place, can be

as large as the departures of the transaction prices from the efficient prices, as induced

by standard frictions.

Much is left for future work. While the present paper focuses on unconditional, cross-

sectional, measures of market efficiency, our tools can be employed to learn about the

conditional properties of the full-information transaction costs. Such properties are ex-

pected to provide valuable information about the genuine market dynamics. Furthermore,

since individuals are likely to take into account the effective cost of acquiring and rebal-

ancing their portfolios, expected stock returns should embed effective execution costs in

equilibrium. This observation has given rise to a convergence between market microstruc-

ture work on price determination and asset pricing in recent years. The interested reader is

referred to the recent survey of Easley and O’Hara (2002). However, the current attempts

to characterize the cross-sectional relationship between expected returns and execution

costs either rely on liquidity-based theories of transaction cost determination (Amihud

and Mendelson (1986), among others) or they rely on information-based approaches to

24



the same issue (Easley et al. (2002)). Our methodology to measure full-information trans-

action costs provides a natural framework to bridge the two arguments in the study of the

cross-sectional dependence between expected stock returns and our more general notion

of transactions costs. Research on both subjects is being conducted by the authors and

will be reported in later work (Bandi and Russell (2004a,b)).
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7 Appendix

Proof of Lemma 1. The price formation mechanism in Section 2 implies that the generic
serial covariance of order j of the market effects in the observed returns can be expressed as

E(εε−j) = E
³¡

η − η−1
¢
(η−j − η−(j+1))

´
(21)

= E(ηη−j)−E(ηη−(j+1))−E(η−1η−j) +E(η−1η−(j+1)) (22)

= 2E(ηη−j)−E(η−1η−j)−E(ηη−(j+1)). (23)

Recall, k is the maximum lag for which the serial covariances of the market effects are different
from zero. Hence,

E(εε−j) = 2E(ηη−j)−E(η−1η−j) (24)

when j = k and

E(εε−j) = 2E(ηη−j)−E(η−1η−j)−E(ηη−(j+1)) (25)

for 1 ≤ j < k.We now plug Eq. (24) and Eq. (25) into the right-hand side of the squared version
of Eq. (6) and obtain

µ
1 + k

2

¶
E(ε2) +

k−1X
s=0

(s+ 1)E(εε−(k−s))

=

µ
1 + k

2

¶ £
2E(η2)− 2E(ηη−1)

¤
+
k−1X
s=1

(s+ 1)
h
2E(ηη−(k−s))−E(η−1η−(k−s))−E(ηη−((k−s)+1))

i
+2
£
E(ηη−k)−E(η−1η−k)

¤
(26)

= (1 + k)
¡
E(η2)−E(ηη−1)

¢
+k

£
2E(ηη−1)−E(η2)−E(ηη−2)

¤
+(k − 1) £2E(ηη−2)−E(ηη−1)−E(ηη−3)¤
+(k − 2) £2E(ηη−3)−E(ηη−2)−E(ηη−4)¤
+(k − 3) £2E(ηη−4)−E(ηη−3)−E(ηη−5)¤
+...

+3[2E(ηη−k+2)−E(ηη−k+3)−E(ηη−k+1)]
+2[2E(ηη−k+1)−E(ηη−k+2)−E(ηη−k)]
+[2E(ηη−k)−E(ηη−k+1)] (27)

Finally, we notice that Eq. (27) is equal to E(η2). This proves the stated result. ¥
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Proof of Theorem 1. Given a fixed j such that 1 ≤ j ≤ N(h)− 1, write

PN(h)
i=j+1 erieri−j
N(h)− j =

PN(h)
i=j+1 rtirti−j

N(h)− j| {z }
α

+

PN(h)
i=j+1 rtiεi−j

N(h)− j| {z }
β

+

PN(h)
i=j+1 εirti−j

N(h)− j| {z }
γ

+

PN(h)
i=j+1 εiεi−j

N(h)− j| {z }
ζ

. (28)

We start with term α. Define πN(h) as max
©|ti+1 − ti| , i = 1, ..., N(h)ª . Then,

α ≤
³PN(h)

i=j+1 r
2
ti

´1/2 ³PN(h)
i=j+1 r

2
ti−j

´1/2
N(h)− j (29)

=
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i=1 r2ti −

Pj
i=1 r

2
ti

´1/2 ³PN(h)
i=1 r2ti −

PN(h)

i=N(h)−j+1 r
2
ti

´1/2
N(h)− j (30)

≤
³
[p]h0 + op(1) + jOp

³
πN(h)

´´1/2 ³
[p]h0 + op(1) + jOp

³
πN(h)

´´1/2
N(h)− j (31)

p→
N(h)→∞

0, (32)

where [p]h0 = [M ]h0 +
P

0<s≤h (∆ps)
2 =

R h
0
σ2sds+

P
0<s≤h (∆ps)

2 is the quadratic variation of
the underlying logarithmic price process. It is noted that Eq. (29) derives from the Cauchy’s
inequality while Eq. (31) derives from a standard convergence result in semimartingale process
theory (see Protter, Theorem 22, page 59, 1995, for example). Specifically, under Assumptions
1(1)(2),

N(h)X
i=1

¡
pti − pti−1

¢2 p→
N(h)→∞

[p]h0 = [M ]
h
0 +

X
0<s≤h

(∆ps)
2 (33)

if limN(h)→∞πN(h) = 0. Now consider the term ζ and write,

1 {|ζ −E (εε−j)| > δ} ≤ |ζ −E (εε−j)|
δ

(34)

≤ (ζ −E (εε−j))2
δ2

, (35)

where 1 {A} is the indicator function of the generic set A and the first line follows from Markov’s
inequality for any positive and arbitrarily small δ. By the monotonicity property of the expecta-
tion operator, taking expectations of both sides of Eq. (35), we obtain

P {|ζ −E (εε−j)| > δ} ≤ E (ζ −E (εε−j))2
δ2

. (36)

By Assumption 2(1), we note that

E (ζ −E (εε−j))2

=
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where

λs = E [(εsεs−j −E (εε−j)) (εε−j −E (εε−j))] (40)

with 0 ≤ s ≤ N(h)− j. Hence,

P {|ζ −E (εε−j)| > ε} ≤ 1

δ2(N(h)− j)
³
2 |λ0|+ 2 |λ1|+ ...+ 2

¯̄̄
λN(h)−j

¯̄̄
− |λ0|

´
→

N(h)→∞
0

since
P∞

s=0 |λs| <∞ given Assumption 2(3). This proves convergence in probability of the term
ζ to E (εε−j) . Now we turn to β.
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where Eq. (41) follows from Cauchy’s inequality and the convergence in probability of
PN(h)
i=j+1 ε

2
i−j

N(h)−j
to E(ε2) derives from an argument that is similar to the argument used for term ζ. The quantity
γ can be examined in the same fashion. Write

γ ≤
³PN(h)

i=j+1 ε
2
i

´1/2 ³PN(h)
i=j+1 r

2
ti−j

´1/2
N(h)

(44)

=
1q
N(h)

Op(1)
¡
E(ε2) + op(1)

¢ p→
N(h)→∞

0. (45)

Finally, the statement in Theorem 1 readily derives from Slutsky’s theorem given the continuity
of ση as a function of the cross-moments of the market effects in returns.¥
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[61] Walras, L. (1889). Eléments d’economie politique pure, ou theorie de la richesse so-

ciale. Second Edition, Lausanne, Rouge.

33



 34

Table I  
Descriptive statistics for the S&P 100 stocks in our sample.  The table contains the average durations, the 
average prices, the estimated full-information transaction costs (in percentage values), the estimated full-
information transaction costs (in dollar values), the percentage effective spreads (computed using the Lee 
and Ready (1991) algorithm and a standard 5 second time allowance), the dollar effective spreads. 
 
 
Symbol Duration Avg Price FITC (%) FITC ($) ESpd. (%) Espd. ($)
AA 11.35 $36.09 0.112% $0.0405 0.055% $0.0199 
AEP 21.64 $41.77 0.105% $0.0438 0.043% $0.0182 
AES 15.79 $7.75 0.582% $0.0451 0.274% $0.0212 
AIG 10.63 $72.89 0.092% $0.0667 0.043% $0.0313 
ALL 15.42 $33.92 0.126% $0.0426 0.054% $0.0184 
AMGN* 1.32 $57.82 0.043% $0.0249 0.030% $0.0172 
AOL 6.45 $25.17 0.136% $0.0343 0.079% $0.0199 
ATI 64.87 $15.64 0.267% $0.0417 0.089% $0.0140 
AVP 21.81 $49.10 0.102% $0.0500 0.039% $0.0194 
AXP 8.80 $34.13 0.109% $0.0374 0.054% $0.0184 
BA 10.88 $43.52 0.103% $0.0450 0.050% $0.0219 
BAC 7.25 $61.20 0.081% $0.0496 0.042% $0.0256 
BAX 17.49 $55.33 0.099% $0.0547 0.043% $0.0239 
BCC 31.58 $34.98 0.157% $0.0549 0.058% $0.0202 
BDK 23.95 $43.50 0.123% $0.0536 0.043% $0.0189 
BHI 14.56 $34.53 0.149% $0.0514 0.061% $0.0211 
BMY 9.02 $45.08 0.092% $0.0413 0.044% $0.0197 
BNI 24.83 $27.95 0.145% $0.0404 0.063% $0.0175 
BUD 20.15 $48.69 0.092% $0.0448 0.042% $0.0207 
C 6.00 $44.43 0.096% $0.0427 0.053% $0.0234 
CCU 12.11 $47.06 0.131% $0.0618 0.055% $0.0259 
CI 20.13 $92.46 0.131% $0.1210 0.051% $0.0471 
CL 15.20 $55.64 0.086% $0.0480 0.037% $0.0207 
CPB 25.98 $27.02 0.158% $0.0427 0.072% $0.0195 
CSC 18.84 $47.07 0.163% $0.0766 0.063% $0.0296 
CSCO* 0.45 $16.69 0.052% $0.0086 0.051% $0.0086 
DAL 17.24 $32.76 0.154% $0.0504 0.060% $0.0197 
DD 10.83 $45.08 0.095% $0.0426 0.043% $0.0194 
DIS 8.59 $23.29 0.116% $0.0270 0.057% $0.0133 
DOW 17.33 $30.05 0.131% $0.0393 0.057% $0.0171 
EK 17.05 $29.24 0.139% $0.0406 0.058% $0.0170 
EMC 7.91 $13.42 0.181% $0.0243 0.121% $0.0163 
EP 15.48 $37.01 0.162% $0.0600 0.076% $0.0283 
ETR 26.96 $41.08 0.116% $0.0478 0.043% $0.0177 
EXC 22.35 $50.00 0.123% $0.0615 0.046% $0.0231 
F 12.29 $14.69 0.121% $0.0178 0.067% $0.0099 
FDX 14.68 $54.75 0.100% $0.0548 0.044% $0.0239 
G 18.77 $33.23 0.121% $0.0402 0.050% $0.0165 
GD 17.40 $89.13 0.100% $0.0889 0.047% $0.0416 
GE 4.73 $37.49 0.072% $0.0269 0.044% $0.0167 
GM 14.07 $51.65 0.085% $0.0437 0.031% $0.0163 
GS 8.73 $82.27 0.096% $0.0787 0.047% $0.0386 
HAL 11.38 $15.21 0.199% $0.0302 0.101% $0.0153 
HCA 16.62 $42.31 0.123% $0.0522 0.051% $0.0215 
HD 7.38 $50.40 0.078% $0.0394 0.038% $0.0194 
HET 29.73 $38.34 0.169% $0.0649 0.073% $0.0281 
HIG 17.86 $65.73 0.116% $0.0760 0.047% $0.0312 
HNZ 20.73 $40.98 0.098% $0.0401 0.040% $0.0165 
HON 12.73 $34.34 0.193% $0.0664 0.067% $0.0228 
HWP 9.97 $20.57 0.126% $0.0259 0.062% $0.0128 
IBM 6.58 $102.81 0.074% $0.0765 0.038% $0.0393 
INTC* 0.52 $31.74 0.040% $0.0126 0.037% $0.0116 
IP 11.46 $42.92 0.094% $0.0405 0.044% $0.0187 
JNJ 10.54 $57.89 0.076% $0.0438 0.041% $0.0237 
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Symbol Duration Avg Price FITC (%) FITC ($) ESpd. (%) Espd. ($)
JPM 7.91 $29.83 0.153% $0.0456 0.076% $0.0226 
KO 11.28 $46.32 0.086% $0.0400 0.039% $0.0181 
LEH 11.12 $58.99 0.128% $0.0757 0.050% $0.0297 
LTD 21.50 $17.60 0.168% $0.0295 0.067% $0.0118 
LU 10.86 $5.71 0.210% $0.0120 0.140% $0.0080 
MAY 24.32 $35.55 0.146% $0.0518 0.051% $0.0180 
MCD 12.42 $26.81 0.100% $0.0267 0.051% $0.0137 
MDT 10.84 $47.01 0.091% $0.0426 0.042% $0.0200 
MEDI* 3.73 $40.80 0.098% $0.0399 0.059% $0.0241 
MER 7.14 $47.63 0.115% $0.0550 0.061% $0.0288 
MMM 12.16 $114.96 0.095% $0.1088 0.039% $0.0444 
MO 10.07 $51.28 0.069% $0.0353 0.038% $0.0196 
MRK 10.23 $59.96 0.074% $0.0445 0.036% $0.0217 
MSFT* 0.55 $60.16 0.029% $0.0174 0.026% $0.0155 
MWD 6.97 $49.72 0.106% $0.0525 0.054% $0.0269 
NSC 20.77 $21.79 0.171% $0.0373 0.077% $0.0167 
NSM 13.73 $26.60 0.194% $0.0515 0.093% $0.0247 
NXTL* 1.09 $5.07 0.240% $0.0122 0.187% $0.0095 
ONE 13.28 $35.58 0.123% $0.0439 0.050% $0.0179 
ORCL* 0.77 $16.00 0.055% $0.0088 0.053% $0.0085 
PEP 9.88 $49.71 0.076% $0.0380 0.037% $0.0184 
PFE 6.38 $41.06 0.069% $0.0285 0.037% $0.0152 
PG 9.49 $83.99 0.070% $0.0586 0.031% $0.0261 
ROK 46.56 $18.71 0.274% $0.0512 0.098% $0.0184 
RSH 19.39 $27.70 0.192% $0.0532 0.077% $0.0214 
RTN 19.43 $37.90 0.121% $0.0460 0.050% $0.0188 
S 14.98 $52.76 0.096% $0.0505 0.045% $0.0235 
SBC 7.87 $36.56 0.090% $0.0327 0.047% $0.0171 
SLB 8.82 $55.86 0.099% $0.0551 0.049% $0.0273 
SLE 21.26 $21.36 0.126% $0.0270 0.060% $0.0127 
SO 22.79 $25.00 0.116% $0.0290 0.056% $0.0141 
T 11.04 $15.59 0.142% $0.0221 0.071% $0.0111 
TOY 26.90 $17.63 0.212% $0.0373 0.078% $0.0138 
TXN 7.12 $30.52 0.133% $0.0406 0.065% $0.0198 
TYC 5.30 $29.34 0.213% $0.0626 0.152% $0.0445 
UIS 32.61 $11.65 0.214% $0.0250 0.097% $0.0113 
USB 17.03 $19.93 0.142% $0.0283 0.066% $0.0131 
UTX 11.98 $69.41 0.084% $0.0584 0.039% $0.0269 
VIAB 11.56 $42.42 0.137% $0.0580 0.054% $0.0230 
VZ 8.54 $45.76 0.083% $0.0381 0.042% $0.0193 
WFC 9.17 $46.10 0.075% $0.0346 0.037% $0.0171 
WMB 11.44 $15.97 0.263% $0.0420 0.125% $0.0200 
WMT 8.37 $60.02 0.073% $0.0436 0.038% $0.0227 
WY 15.86 $59.75 0.107% $0.0640 0.045% $0.0267 
XOM 7.56 $39.41 0.071% $0.0280 0.040% $0.0157 
XRX 21.27 $10.12 0.222% $0.0224 0.107% $0.0108 
              
Average 14.30 $40.69 0.128% $0.0448 0.061% $0.0207 
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   Dependent Variable 
 Log FITC Log Half-Spread Log Eff. Spread 
    
Intercept -2.92 

(-10.38)* 
-3.62 
(-10.80)* 

-3.93 
(-13.14)* 

Log Turnover 
(lturn) 

0.161 
(8.85)* 

0.079 
(3.67)* 

0.058 
(3.00)* 

Log Size 
(lsize) 

-0.153 
(-5.29)* 

-0.145 
(-4.21)* 

-0.045 
(-1.47) 

Log SD Price 
(lsdprice) 

0.554 
(12.44)* 

0.419 
(7.88)* 

0.618 
(13.04)* 

Log Price 
(lprice) 

-0.15 
(-4.79)* 

-0.380 
(-10.14)* 

-0.273 
(-8.16)* 

NYSE Dummy 
(nyse) 

0.86 
(11.68)* 

0.727 
(8.20)* 
 

0.439 
(5.56)* 

    
 adjR2=94.9% adjR2=92.9% adjR2=93.0% 
 
Table II. Outcome of regressions of the logarithm of the FITC’s, logarithm of the Half-Spread, and the 
logarithm of the Effective Spread on the logarithm of the average number of daily shares transacted to 
shares outstanding, the logarithm of the average dollar volume per trade, the logarithm of the average daily 
standard deviation of the true price process, the logarithm of the average price and an NYSE dummy.   * 
denotes significance at the 5% level. 
 
 
 
    Dependent Variable 
 Log FITC Log Half-Spread Log Eff. Spread 
    
Intercept -0.379 

-1.14 
-1.95 
(-5.89)* 

-2.79 
(-9.48)* 

Log PIN 
(lpin) 

0.184 
(2.31)* 

0.166 
(2.07)* 

0.118 
(1.66)* 

Log Size 
(lsize) 

-0.247 
(-8.07)* 

-0.192 
(-6.25)* 

-0.099 
(-3.64) 

Log SD Price 
(lsdprice) 

0.709 
(13.89)* 

0.524 
(10.24)* 

0.646 
(14.24)* 

Log Price 
(lprice) 

-0.107 
(-2.48)* 

-0.313 
(-7.25)* 

-0.222 
(-5.79)* 

    
 adjR2=91.0% adjR2=91.3% adjR2=91.6% 
 
Table III. Outcome of regressions of the logarithm of the FITC’s, logarithm of the Half-Spread, and the 
logarithm of the Effective Spread on the logarithm of the PIN measures, the logarithm of the average dollar 
volume per trade, the logarithm of the average daily standard deviation of the true price process, the 
logarithm of the average price and an NYSE dummy.   * denotes significance at the 5% level. 
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    Dependent Variable 
 Log FITC Log Half-Spread Log Eff. Spread 
    
Intercept -1.36 

(-4.63)* 
-2.87 
(-10.01)* 

-3.36 
(-13.55)* 

Log # Analysts 
(lanalysts) 

-0.112 
(-2.66)* 

-0.0265 
(-.644) 

-0.0449 
(-1.25) 

Log Size 
(lsize) 

-0.290 
(-9.34)* 

-0.222 
(-7.33)* 

-0.0935 
(-3.56) 

Log SD Price 
(lsdprice) 

0.764 
(15.82)* 

0.527 
(11.18)* 

0.693 
(16.98)* 

Log Price 
(lprice) 

-0.046 
(-1.22) 

-0.324 
(-8.84)* 

-0.236 
(-7.44)* 

NYSE Dummy 
(nyse) 

1.29 
(18.81)* 

0.960 
(14.32)* 
 

0.590 
(10.14)* 

    
 adjR2=94.9

% 
adjR2=92.9% adjR2=92.4% 

 
Table IV. Outcome Outcome of regressions of the logarithm of the FITC’s, logarithm of the Half-Spread, 
and the logarithm of the Effective Spread on the logarithm of the number of analysts following the stock 
for the sample month, the logarithm of the average dollar volume per trade, the logarithm of the average 
daily standard deviation of the true price process, the logarithm of the average price and an NYSE dummy.   
* denotes significance at the 5% level. 
 
 
 
 Estimates Estimates Estimates 
    
Intercept -12.70 

(-73.57) 
-11.02 
(-8.93)* 

-10.82 
(-13.06)* 

Log Turnover 
(lturn) 

1.01 
(10.72)* 

  

Log PIN 
(lpin) 

 1.336 
(2.60)* 

 

Log # Analysts 
(lanalysts) 

  -1.29 
(-4.31)* 

    
 R2=55.8% R2=9% R2=17.0% 
 
Table V. Outcomes of regressions of the logarithm of the difference between the squared FITC’s and the 
average squared distance between the transaction prices and the quote midpoints on the logarithm of the 
average number of daily shares transacted to shares outstanding, the logarithm of the PIN measures, and the 
logarithm of the number of analysts following the stocks. 
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Figure 1. Histograms of the t-ratios of the estimated serial correlations of order 1,2,3,5,10 and 15 of the 
transaction prices of the S&P 100 stocks.  
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Figure 2. Histogram of the estimated FITC’s (in percentage values) of the S&P 100 stocks. 
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Figure 3. Histogram of the estimated FITC’s (in dollar values) of the S&P 100 stocks. 
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Figure 4, Estimated lower bound of the asymmetric information component expressed as a percentage of 
the FITC. 
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Figure 5, Estimated lower bound of the asymmetric information component expressed as a percentage of 
the effective spread. 
 


