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Abstract

I present a fully-rational symmetric-information model of an IPO, as well as a dy-
namic imperfectly competitive model of the aftermarket trading that follows. The
model helps explain why IPO share allocations favor large institutional investors. It
also helps to explain IPO underpricing, and underperformance, and the large fees
charged by underwriters. The critical assumption in the model is that underwriters
need to sell a fixed number of shares at the IPO or soon thereafter in the aftermarket,
but they want to avoid selling in the aftermarket because there are some aftermarket
investors who have market power and can affect the prices received by the underwriter.
To maximize revenue and avoid unnecessary aftermarket sales, the underwriter distorts
share allocations toward those those investors who have market power, and he sets the
offer price at the IPO below the aftermarket price that will prevail shortly after the
IPO. In the aftermarket model, I show that there are share allocations that can gener-
ate arbitrarily high levels of return underperformance for very long periods of time. In
some simulations, the distorted share allocations at the IPO generate return underper-
formance that persists for more than one year. The underwriter can dilute investor’s
market power by participating for longer periods of time in the aftermarket. By do-
ing so, he sometimes substantially increase the revenue that is raised by the IPO issuer.
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1 Introduction

Two of the principle functions of a well performing financial system are to facilitate risk
sharing among investors, and capital formation by firms. The initial public offering (IPO)
process serves both of these functions by allowing the initial owners of a firm to raise capital
while simultaneously transferring and sharing some of the firm’s risk with the wider investing
public.

IPOs are special events in capital markets because the amounts of risk that are transferred
during the share allocation process of an IPO dwarfs the amount of risk that is transferred
during the regular trading process for individual stocks. If the IPO risk transfer process
was fully efficient, then the investors who place the most value on the shares should receive
them, and they should pay a high price. Additionally, in the absence of firm specific news
or private information, there should be little trading volume after the shares are initially
allocated. Relative to this efficient benchmark, IPOs appear to be highly inefficient: share
trading is very heavy on the first day after a share has been allocated.1 Additionally, shares
are apparently allocated at too low a price: the closing share price on the first trading day
of U.S. IPO’s is on average about 17 percent higher than the price at which the shares were
allocated earlier in the day. This phenomen, known as IPO underpricing, represents a loss of
revenue to the issuer who could presumably do better by selling directly at the high prices
that occur in the aftermarket following the IPO.

In addition to underpricing and frequent trading, the returns on newly issued shares
underperform; that is, the returns on new issues underperform the market and underperform
the returns of shares of firms that have the same risk characteristics, but are not new issues
[Loughran and Ritter (1991), Ritter and Welch (2002)]. An additional source of inefficiency
is that underwriters charge and receive very high fees for their services; these fees are equal
to about 7% of the revenues raised in the new issue.

The goal of this paper is to present a single, fully-rational, symmetric information, the-
oretical model that helps to explain both IPO underpricing and underperformance. The
model is also used to attempt to rationalize the high fees charged by underwriters. The
results on underwriters are still highly preliminary, but encouraging. In particular, in some
circumstances the underwriters trading activities in the aftermarket were found to add 25%
to the total proceeds raised by the issue. The theory is also consistent with the stylized facts
that investors are often rationed at the IPO offer price, and institutional investors receive a
disproportionate proportion of the share allocation.

The principle insight in the paper is that inefficient risk sharing through the regular
trading process that follows the IPO can generate equilibrium underpricing and underper-
formance, as well as a tilt of initial asset holdings towards institutional investors. The model
has three principal features that generate these results. First, the underwriter in the IPO

1In Ellis, Michaely, and O’Hara’s (2000) study of NASDAQ IPO’s, they report that a stock’s daily
turnover (measured as a percentage of shares traded) on its first trading day following its IPO is equal to
about 1/3rd of the turnover that a typical NASDAQ stock experiences over an entire year.
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has a fixed number of shares that need to be sold either during the IPO, or shortly thereafter
in the IPO aftermarket. Second, I assume that participation in the IPO and aftermarket
trading is limited, that is, only a tiny fraction of the economy’s investors that could par-
ticipate in the IPO and trade in the aftermarket actually choose to do so. Third, I assume
that trading in the IPO aftermarket is imperfectly competitive—the imperfect competition
takes the form that some investors in the IPO aftermarket are large investors whose trades
move prices. Because the large investors trades move prices, they cannot buy and sell all
that they want at current prices and hence the market is not liquid. This illiquidity has
implications for equilibrium expected returns in the aftermarket. In addition, because large
investors trades move prices, they have market power in aftermarket trading; this market
power provides large investors with bargaining power vis-a-vis the underwriter during the
share allocation and price setting process. The bargaining power takes the form that if
underwriters set too high an offer price in the IPO, or if they offer large investors too few
shares, then the large investors will turn down the offered shares and force the underwriter to
instead sell his shares at low prices in the imperfectly competitive IPO aftermarket. To avoid
this outcome, the underwriter optimally distorts his initial asset allocations towards large
investors with market power in the aftermarket, and he offers shares at a price that is below
the price in the IPO aftermarket. Given that the price in the aftermarket will be higher than
the IPO offer price, it appears that the underwriter could benefit by offering fewer shares in
the initial allocation in order to immediately sell more shares in the aftermarket. However,
that would not be incentive compatible for the large investors — they would be better off
deviating and forcing the underwriter to dump shares in the aftermarket. In the end, the
underwriter would actually lose money by following such a strategy.

If the underwriter did not have to sell shortly after the IPO, but could instead sell
shares not allocated at the IPO over a much longer period following the IPO, then doing
so, as well as the threat of doing so, dilute the market power of the large investors. In
some circumstances these aftermarket “stabilization” activities were found to substantially
increase the revenues received by the issuer.

In the IPO aftermarket, investors trade multiple risky assets and a perfectly liquid proxy
for the market portfolio over T trading periods. The risky assets are assumed to represent
the assets of firms that belong to a particular market segment or group (for example firms
that produce semi-conductor parts); the investors in the model are assumed to be the only
investors that trade the assets of that market segment. Because the investors in the model
represent a small proportion of the investors in the economy, I assume their trades have
no impact on the price for the market proxy. As a result, the investors can hedge the
market component of their risky assets’ returns; and they trade among themselves to share
the nonmarket component of the assets returns. In the model I show that the nonmarket
component of the returns are priced; that is, they receive a reward for their risk. This reward
for risk is a result of the assumption that only a small set of investors trade the assets of
the segment; the reward is present even when asset markets are perfectly competitive. An
independent contribution of this paper is that it provides a model for why nonmarket risk
might be priced. I also that under some circumstances, this feature of the model is a channel
that can generate return underperformance following the IPO.
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A second channel through which the model generates underperformance is present be-
cause of imperfect competition. The most important feature of the IPO aftermarket is that
large investors trades have endogenous price impact; i.e. the more shares that a large in-
vestor buys or sells of assets in the segment, the more his trade moves their prices. I refer
to the large investors as having endogenous price impact because the price impact does not
depend on an exogenous transaction cost, instead it depends on his own and other investors
risk preferences. Because trades move prices, large investors will not immediately sell an
asset because its return underperforms; instead they sell the asset slowly through time to
minimize the price impact of their trades.2 Put differently, from an initial inefficient as-
set allocation, investors do not immediately trade back to efficient holdings; instead in the
adjustment process the imperfect competition model generates equilibrium trajectories of
trades and returns. Because of the slow adjustment process, by altering investors initial
asset allocations it is possible to generate arbitrarily large amounts of underpricing for all T
time periods of aftermarket trade. Whether underperformance actually results and persists
depends on how assets are allocated at the IPO. The preliminary results on underpricing
are encouraging. In some circumstances, the equilibrium allocations at the IPO generates
post-IPO underpricing relative to the return on the market portfolio that persists for longer
than one year.

It is important to stress that all of the results in the paper are generated by a model
in which all market participants are fully rational. In addition, there is no asymmetric
information of any kind.

There is a voluminous literature on IPO underpricing and a smaller literature on under-
performance.3 One strand of the underpricing literature is based on information-asymmetries
in asset markets. In Rock (1986), investors who are less well informed about IPO firms quality
face adverse selection in the share allocation portion of the IPO process — they are allocated
too many shares in bad IPO’s and too few shares in good IPOs. In Rock, underpricing is a
mechanism to entice these investors to participate in the IPO process. In the bookbuilding
literature that begins with Benveniste and Spindt (1989) and has since been refined by many
others, some investors have private information about the value of the IPO firm. The IPO
is a mechanism that is designed to raise money for the issuer while simultaneously eliciting
information from the informed investors in an incentive compatible way.4 Other rational
theories of underpricing are based on the underwriter deliberately underpricing in order to
generate trading revenue for himself in the IPO aftermarket (Boehmer and Fishe, 2000), or
the underwriter colluding with other investors against the issuer (Bias et. al. 2002).

At the present time I am aware of two theoretical papers on the relationship between
illiquidity and underpricing. In Booth and Chua (1996), IPO underpricing is used to en-

2Jenkinson and Jones (2004) report that share allocations in IPOs are tilted towards investors who hold
onto them instead of rapidly selling them after the IPO.

3Recent reviews of this literature are provided by Ritter and Welch (2002) and Ljungvist (2004).
4The mechanism involves tilting share allocations towards investors who indicate that they have favorable

information by increasing those investors share allocations in the IPO. The IPO offer price is also increasing
in favorable information, but it is kept below the expected aftermarket trading price to ensure that investors
receive rents from the underwriter in exchange for revealing their information.
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courage investors to obtain costly information about the IPO. It is assumed that investors
who gather such information become part of the base of investors that trade the IPO shares.
The added liquidity is assumed to enhance the value of the firm.5 A prediction of the Booth
and Chua model is that underpricing is positively correlated with liquidity.

In Ellul and Pagano (2003), some investors that participate in the IPO may need to sell
their share holdings soon thereafter into an illiquid IPO aftermarket. These investors require
a liquidity premium to participate in the IPO. The liquidity premium takes the form of IPO
underpricing. A prediction of the Ellul and Pagano model is that liquidity is negatively
correlated with underpricing: in a more liquid market less underpricing is required.

The Ellul and Pagano model is essentially a three period model, but it is very rich in
some dimensions. For example, it incorporates asymmetric information, illiquidity, and risk
averse investors within the same framework. Additionally, their paper contains a substantial
empirical section where they show that more illiquidity after the IPO is associated with more
IPO underpricing.

My model does not contain any of the information asymmetries or informational costs
that are captured by Ellul and Pagano and Booth and Chua. But, my model makes two
contributions to the theoretical liquidity literature in other dimensions. First, the Booth
and Chua and Ellul and Pagano models contain at most 1 period of aftermarket trade. This
is too short a number of trading periods to model underperformance of returns in the IPO
aftermarket. By contrast, my model of aftermarket trading is fully dynamic, which allows
me to study how illiquidity is related to underperformance. Second, the investors in Booth
and Chua and in Ellul and Pagano are competitive. By contrast the large investors in my
model are strategic at the IPO and afterwards. Therefore, I use my model to study how the
strategic situation between the underwriter and the large investors influences underpricing,
and underperformance. I also study how the underwriters actions in the aftermarket can
increase the IPO proceeds by altering the strategic environment.

There is a small theoretical literature on underperformance. Ritter and Welch (2002)
claim that there are no rational theoretical models of IPO underperformance. If so, then
a rational theory of underperformance is a unique contribution of this paper. In a very
interesting paper, Ljungqvist, Nanda, and Singh (2003) present a behavioral model of IPO
underpricing and underperformance. The key behavioral assumption in their model is that
there are irrationally exuberant sentiment investors in the IPO aftermarket; and the demand
of these investors may grow through time, or the sentiment might abruptly end and prices
would collapse. In the paper they show that if the underwriter is constrained from selling
in the IPO aftermarket above the IPO offer price because of legal constraints, then the first
best strategy for the underwriter is for the underwriter to sell to one group of regular rational
investors at the IPO, and then this group sells to the sentiment investors over time. The

5Westerfield (2003) is similar to Booth and Chua in that underpricing is used to change the base of
investors in the IPO aftermarket. In Westerfield, there are irrational noise traders, and their presence in
the investor base reduces the value of the IPO’d asset because a risk premium is required for noise-trader
risk. Underpricing is assumed to reduce the relative share of noise traders in the investor-base, and hence
enhances the value of the firm.
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presence of the sentiment investors causes underperformance in the IPO aftermarket and
it also raises the value of the IPO’d assets for regular investors and leads to a higher IPO
offer price. IPO underpricing results in this framework because the regular investors need
to break up their sales to the sentiment investors in the aftermarket through time, and in
breaking up their sales they run the risk that the sentiment will collapse before they can sell.
Underpricing at the IPO is required to compensate regular investors for this risk.

The underpricing and underperformance in my model resembles that in Ljungqvist,
Nanda, and Singh. In both models, the IPO underwriter sells to one group of investors,
and that group of investors turns around and sells their assets over time to a third group.
Another similarily is that Ljungqvist, Nanda, and Singh assume that that their regular in-
vestors behave strategically by coordinating their actions, while in my paper the amount
of underpricing and underperformance is related to the amount of competition in the after-
market. These strategic aspects of our aftermarket models are very similar. The important
difference between our models is that all of the investors in my framework are rational; their
demands are derived from first principals; and I make no behavioral assumptions. Neverthe-
less in my model, I too can generate both underpricing and underperformance, as well as a
potential explanation for large underwriter fees.

The rest of the paper proceeds in six parts. Section 2 provides a brief overview of the
entire model. Section 3 provides detail on the IPO aftermarket; the section also presents the
main results on asset pricing, and return underperformance. Section 4 provides detail on the
model of the IPO process and provides intuition for the results on underpricing; section 5
provides all of the simulation evidence including the results on underpricing and underper-
formance; section 6 reviews the empirical evidence on liquidity and IPO underpricing and
underperformance; a final section concludes.

2 Model Overview

Our basic model involves a stylized IPO in which a firm that wishes to raise money by selling
XIPO shares of stock through an IPO enlists a single underwriting firm to market the issue.
We will assume that any contractual arrangements between the underwriter and the issuer
incentivize the underwriter to maximize the revenues from selling the shares through the
IPO process or in the aftermarket that follows the IPO.6 In addition to the underwriter,
there is a finite set of M risk-averse investors who have an interest in absorbing the issue.
Investor 1 actually represents a continuum of small price-taking investors who can each
choose whether or not to participate in the IPO. I will sometimes refer to the small investors
as retail investors. Investors 2 through M are large investors whose desired trades in the
aftermarket are large enough to move asset prices. The large investors will sometimes be
referred to as institutional investors. I assume that the investors who participate in the
IPO are the same investors that trade in the aftermarket for shares following the IPO. The

6Some of the research in the IPO literature attributes underpricing to agency problems between the
underwriter and the issuer [Biais, Bossaerts, and Rochet (2002); Boehmer and Fishe (2000)].
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process for setting the IPO offer price and share allocations is modeled as a two-stage game.
The first stage closely resembles bookbuilding, which is a process for allocating shares and
setting an IPO offer price that is often used in the United States. In the bookbuilding
process here, the underwriter learns about demand conditions by learning about the risk
preferences, and asset holdings, of the investors in the segment. He also uses his knowledge
about the aftermarket to make inferences about investors market power. To rule out the
possibility that differences in investors information could drive the results in the model, I
assume that information on investors risk preferences, asset holdings, and the entire model
of aftermarket trading is publicly available at all points in time; and is common knowledge.
Given the demand information, the underwriter sets a uniform IPO price, and proposes
take-it or leave it share allocations to each of the investors that is potentially interested in
the share offering. In the second stage, investors decide whether to accept their allocations.
If some investors turn down their share allocations, then the underwriter sells the remaining
shares in the aftermarket. Investors incentives to turn down allocations depend on their
market power. The underwriter accounts for this when choosing the IPO offer price and
share allocations. The next section formally models the IPO aftermarket; and the following
section models the share allocation and price-setting process at the IPO.

3 The IPO aftermarket

The model of trading in the IPO aftermarket is a partial equilibrium extension of Pritsker’s
(2004) multiple-asset heterogeneous agent model of imperfect competition in asset markets.7

Investors trade two sets of risky assets and a risk-free asset. The first set of of N1 risky
assets are the shares of firms that belong to a particular market segment. The new issue is
one of the assets within the segment. The next N2 risky assets are perfectly liquid proxies
systematic risk factors that are priced in the economy. For symplicity, I assume that the
only systematic risk factor is the market portfolio; perfectly liquid proxies for this portfolio
could be the returns on the S&P 500 index or index futures.

I assume that only a tiny fraction of investors in the economy participate in the IPO
and trade in the IPO aftermarket. The partial equilibrium aspect of the model is that I
assume these investors are so small relative to the entire market that their collective trades
have no effect on interest rates or on the market return. In other words, interest rates, and
the market return are exogenous. However, the actions of the investors, collectively, and
sometimes individually do affect the returns of assets in the first segment. More specifically,
the model contains M infinitely lived investors that have potentially heterogeneous risk
preferences. As noted above investor 1 represents the trades of small investors that are
formally modelled as a continuum of infinitesimal investors who each take prices as given.
In addition, there are M − 1 large investors whose desired trades in the new issue are large
enough to move prices and who take their price impact into account when making their
trading decisions.

7Closely related models of imperfect competition in asset markets include Urosevic (2002a & b), DeMarzo
and Urosevic (2000), and Vayanos (2001).
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Although the investors and assets are infinitely lived, I assume that shares of assets in
the first segment can only be traded for a large but finite number of periods T . After period
T investors continue to hold their first segment shares; they continue to trade all other
assets; they continue to receive dividends; and they continue to consume. The assumption
that there is a final period of trade T facilitates solution of the model through the use of
backwards induction techniques from the last period of trade. That said, assuming there is
no trade after period T is tantamount to an assumption that market liquidity for assets in
the first segment eventually dries up. The time until the liquidity dries up influences the
dynamic behavior of the model.

The Assets

Investors trade in a risk-free asset and two sets of risky assets. Because the investors represent
a tiny fraction of the economy’s investors, I assume their actions cannot influence the return
on the risk-free asset. For simplicity, the gross per-period risk free rate of return is fixed at
r > 1. The time t prices of the first and second set of risky assets are denoted P 1(t) and
P 2(t) respectively. P (t) denotes the stacked vector of risky asset prices at time t. Similar
naming conventions will be followed throughout the rest of the paper. The risky assets pay
dividends D(t) in each period and dividends are distributed i.i.d. normally through time:

D(t) ∼ i.i.d. N (D̄,Ω) (1)

Because dividends are normally distributed, the risky assets are not limited liability
instruments; and hence their share price can drop below zero. Because of this possibility, the
returns in excess of the risk free rate are best expressed in units of return per share instead
of units of return per dollar invested. This means that assets excess return over the riskless
rate per share are given by the vector:

Z(t) = P (t) +D(t) − rP (t− 1) (2)

Because the model is partial equilbrium, I assume that P 2(t) is exogenous, and for sim-
plicity, fixed for all t = 1, . . .∞. This implies that excess returns on the market portfolio are
i.i.d. through time with mean Z̄2 and variance Var(Z)2.

It is useful to decompose the return on the in the first segment into a systematic compo-
nent that is perfectly correlated with the market and into a nonmarket component e(t):

Z1(t) = β12Z
2(t) + e(t) (3)

where β12 = Cov[Z1(t),Z2(t)]
Var[Z2(t)]

is asset 1’s beta coefficient in the CAPM.

The systematic component of the first set of assets’ return is hedgeable risk because its
risk can be offset by trading asset 2. The nonmarket component of returns is not hedgable,
but it can usually be diversified under the assumption that a very large number of investors
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can each take a very small piece of the nonmarket risk. In the current setting, my assumption
that the risk is shared across a set of M investors means that although e(t) is nonmarket
risk, it is not diversifiable. Therefore, the expected return for holding it will not necessarily
be equal to 0. The variance of e(t) is denoted Ωe; in equilibrium it turns out to be constant
through time; in equilibrium β12, the vector of CAPM betas, is constant through time as
well.

Investors

There areM investors in the model. With great loss of generality, each investor m is assumed
to have a per period utility of consumption that takes the CARA form with absolute risk
aversion parameter Am. Investors choose their consumption and asset holdings to maximize
their discounted expected CARA utility of consumption:

Um(Cm(1), ...Cm(∞)) =
∞∑
t=1

−δte−AmCm(t). (4)

Investor m′s holdings of risky assets at the beginning of time t is denoted by Qm(t) which
is the stacked vector of his holdings of both sets of risky assets. The change in his risky
asset holdings is denoted by ∆Qm(t) (= Qm(t + 1) − Qm(t)). In each period investors end
of period wealth that is not consumed or held as stock, is put in riskfree bonds. Under
this assumption, investors choose their consumption and risky asset holdings subject to the
standard set of intertemporal budget constraints:

Wm(t) = Qm(t− 1)′Z(t) + r[Wm(t− 1) − Cm(t− 1)] t = 1, . . . T, (5)

where Wm(t) denotes total wealth at the beginning of time t.

Although the budget constraint will be formally satisfied for all investors, the interpreta-
tion of Wm(t) is different for large and small investors. In particular because small investors
are infinitesimal, a small investor can liquidate his wealth at its pre-liquidation market value.
By contrast, if a large investor attempted to liquidated his holdings of asset 1, his trades
would move the price; therefore he would not be able to recover full value. Because large
investors cannot recover all of their wealth by immediately selling, in their portfolio choices
they make a distinction between perfectly liquid wealth which can be sold without any loss
in value, and illiquid wealth. Consequently, it is useful to express large investors set of
intertemporal budget constraints in terms of the evolution of liquid wealth. Investor m′s
liquid wealth at the beginning of time t, denoted by Wml(t), consists of dividends on their
beginning of time t share holdings plus the value of their bond portfolio plus the market
value of asset 2. The intertemporal budget constraints expressed in terms of liquid wealth
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have form:

Wml(t) = Q1
m(t)′D1(t) +Q2

m(t)′Z2(t)

+ r
[
Wml(t− 1) − ∆Q1

m(t− 1)′P 1(t− 1) − Cm(t− 1)
]

t = 1, . . . T.
(6)

It will turn out that when there is imperfect competition, the stacked vector of investors
holdings of assets in the first segment is a crucial state variable. This state variable is denoted
by denoted by Q1(t) = vech(Q1

1(t)
′, . . . , Q1

M(t)′)′.

Trading Dynamics

In each time period t ≤ T , investors enter the period with with their holdings Qm(t), m =
1, . . .M . They receive dividends on their risky asset holdings; their risky asset trades ∆Qm(t)
and risky asset prices P (t) are jointly determined; investors then make their consumption
choices, and then the period ends.

The process of trade for the first set of assets is modeled as a dynamic Cournot-Stackelberg
game of full information. In each period t ≤ T , the strategic environment is described by the
state variable (Q1(t), t). Given the strategic environment, the set of small investors individ-
ual asset demands form a price schedule that describes the set of market clearing prices for
the first set of assets at which the small investors are willing to absorb all possible quantities
of the large investors orderflow for those assets. Given this price schedule, large investors
play a Cournot game in period t in which they take the price schedule and other investors
trades as given. They then choose their own trades while accounting for the effect that their
trades have on prices. Large investors equilibrium trades in each period are a Cournot Nash
equilibrium within the period. The entire model of trading is solved by backwards induction
from period T ; therefore investors optimal trading strategies are subgame perfect. It im-
portant to emphasize that although small investors take prices as given, both the large and
small investors are perfectly rational and take the strategic environment into account when
forming their asset demands. It is also important to emphasize that although the discussion
focuses on investors demand for the first set of assets, implicit in their demands are their
optimal choices for their holdings of the market porfolio.

To illustrate the derivation of the price schedule at period t, without loss of generality
assume that an equilbrium price function has been derived for time t+1 that maps investors
holdings of the first set of assets at the beginning of period t + 1 into equilibrium prices
during time t+1.8 The presence of such a price function is necessary so that small investors
can compute their expected future wealth at time t + 1. Given the price function at time
t + 1, imagine that at the beginning of period t the state ariable carried over from the end
of the previous period is Q1(t). After the period begins, large investors submit risky-asset
orderflow ∆Q1

m(t), m = 2, . . .M . Based on this orderflow, there exists a market clearing

8This is without loss of generality because I derive equilibrium price functions for all trading periods
using dynamic programming from time infinity until the last period of trade, and then backwards induction
from the last period of trade.
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price P 1(., t), for which the risky asset trade vector ∆Qs(t), of each infinitesimal investor s,
s ∈ [0, 1] , solves the maximization problem:

max
Cs(t),∆Qs(t)

−e−AsCs(t) + δEt{Vs(Ws(t+ 1);Q1(t) + ∆Q1(t), t+ 1)}, (7)

subject to the budget constraint,

Ws(t+ 1) = Qs(t+ 1)′Z(t+ 1) + r[Ws(t) − Cs(t)]

where, Qs(t+ 1) = Qs(t) + ∆Qs(t).

Equation (7) represents the portfolio choice and consumption problem of each small
investor in its dynamic programming form. The arguments of small investors value function
are time, their future wealth, and the state variable Q1(t+1) = Qt +∆Q1(t). Note that the
state variable Q1(t + 1) affects the demand of each small investor, but because each small
invstor is infinitesimal, his asset demands do not affect the state variable.

For the price schedule P (., t) to be market clearing, each small investors net purchases
of the first set of risky assets, denoted by ∆Q1

s(t) must satisfy equation (7) and prices must
be set so that the net orderflow of the small and large investors sums to 0.

∫ 1

0

∆Q1
s(t) ds+

M∑
m=2

∆Q1
m(t) = 0 (8)

The price schedule must also be consistent with an additional internal consistency con-
dition for small investors orderflow. Recall that small investors are infinitesismal. This
means that they take the orderflow of the other small investors as given and treat it as a
state-variable. For small investors beliefs about the state variable to be internally consis-
tent, ∆Q1

1(t), their beliefs about the net trades of all small investors in equation (7), must
be consistent with the optimal behavior of small investors conditional on their beliefs; i.e.
internal consistency requires that9:

∆Q1
1(t) =

∫ 1

0

∆Q1
s(t)ds (9)

For any given set of trades by the large investors, I solve for equilibrium prices which
satisfy the market clearing and internal consistency conditions. Each such price P 1(., t) =
P 1(∆Q1(t), Q1(t), t) is one point on the price schedule which is faced by the large investors.
The full price schedule is found by solving the above problem for all possible Q1(t) and all
possible ∆Q1(t). The resulting price schedule turns out to a linear function of the elements
of Q1

m(t) and ∆Q1
m(t), m = 2, . . .M :

9∆Q1
1(t) corresponds to the first row of the Q1(t)+∆Q1(t) argument of the small investors value function

in equation (7).
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P 1(., t) =
1

r

(
β0(t) − βQ1(t)Q1(t) −

M∑
m=2

βm(t)∆Q1
m(t)

)
, (10)

where (1/r)βm(t) is the slope of the price schedule with respect to ∆Q1
m, large investor m’s

orderflow for asset 1 at time t.

Given the demand curve in equation (10), large investors solve the dynamic programming
problem:

max
Cm(t),
∆Qm(t)

−e−AmCm(t) − δEt Vm(Wml(t+ 1), Q1(t) + ∆Q1(t), t+ 1) (11)

subject to the budget constraint:

Wml(t+ 1) = Q1
m(t+ 1)′D1(t) +Q2

m(t+ 1)′Z2(t)

+ r
[
Wml(t) − ∆Q1

m(t)′P 1(., t) − Cm(t)
] (12)

where Qm(t+ 1) = Qm(t) + ∆Qm(t).

In equation (11), the arguments of large investors value function include time, liquid
wealth Wml(t + 1), and the state variable Q1(t + 1). Note that each large investors trades
affect the state variable and they account for their own effect on the state variable when
trading. Finally, P 1(., t), the price schedule faced by large investors from equation (10)
appears in the budget constraint and large investors account for the impact of their own
trades on prices when they trade.

The trade and consumption choices of large and small investors are an equilibrium, if
given those choices, small investors investors trades and consumption choices solve equation
(7), large investors trade and consumption choices satisfy equation (11), and investors choices
satisfy the market clearing and internal consistency conditions given in equations (8) and(9).
Finally, large and small investors value functions in every time period have to satisfy the
Bellman equation.

The form of investors value functions, and the form of the equilibrium price function in
each period is given in the following proposition:

Proposition 1 Each small investors value function for entering period t ≤ T with wealth
Ws, when the state vector of investors holdings of illiquid assets is Q1 is given by:

Vs(Ws, Q
1, t) = −K1(t) F (Q1, t) e−As(t)Ws ,

where F (Q1, t) = e−Q1(t)′v̄s(t)−Q1(t)′θs(t)Q1(t).
(13)
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Large investor m’s value function for entering period t ≤ T when the state vector of illiquid
asset holdings is Q1 and his liquid wealth is Wml is given by:

Vm(Wml, Q
1, t) = −Km(t)e−Am(t)Wml−Am(t)Q1 ′Λm(t)+.5Am(t)2Q1′Ξm(t)Q1

m = 2, . . .M, (14)

and the price function for illiquid assets has the functional form:

P 1(t) =
1

r
(α(t) − Γ(t)Q1) (15)

In the small investors value function, the parameters As(t), v̄s(t) and θs(t) are a scalar,
an N1M×1 vector, and an N1M×N1M matrix respectively. The parameters Am(t), Λm(t),
and Ξm(t) from large investors value functions are similarly dimensioned. The parameters
of the value functions in each time period are the solution of a system of nonlinear Riccati
difference equations that are solved backwards from date T. The details are in the appendix.

The main purpose of presenting the imperfect competition model is to study how imper-
fect competition affects asset pricing. This is done in the next section.

3.1 Asset Pricing

The main results on asset pricing can best be interpreted when compared against a com-
petitive benchmark in which the setup of the model is essentially the same except that all
investors in the model are price-takers.

Asset Pricing with Perfect Competition

The results on asset pricing in a competitive framework are provided in the next proposition:

Proposition 2 If the first set of risky assets is traded in a perfectly competitive environment
in which all investors take asset prices as given, then the equilibrium expected excess return
for the assets has a 2-factor structure:

Z̄1(t) = β12Z̄
2(t) + λ[X1]ΩeX

1, (16)

with market price of risk

λ[X1] =
1 − (1/r)∑M

m=1 1/Am

. (17)

Additionally, investors equilibrium holdings of asset 1 in each period are constant. The
equilibrium asset holdings of investor m are denoted Q1W

m and given by

Q1W
m =

(1/Am)X1∑M
m=1(1/Am)

(18)
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Proof: See section D.1 of the appendix.

Equation (16) shows that the excess return for asset 1 consists of a reward for the com-
ponent of its return that is correlated with the market plus an additional reward for its
nonmarket return. The main focus of the analysis is on the reward for non-market risk. To
interpret this reward, note the investors can hedge the market component of the return of
each in the segment. Therefore, one can view the investors as trading in a submarket in
which they share the nonmarket risk of the N1 assets, where the nonmarket risk component
is e(t) = Z1(t) − β12Z

2(t). e(t) is not referred to as idiosyncratic risk because e(t) could
be correlated across firms within the segment (for example if they are in same industry).
Recall X1 is the N1 × 1 vector that represents the total supply of shares outstanding for the
first set of risky assets. The quantity X1′e(t) can be interpreted as the “market portfolio” of
nonmarket risk that is shared by the investors. The expression ΩeX

1 denotes the covariance
of each assets nonmarket return with the “market portfolio” of nonmarket risk. Because the
nonmarket risks turn out to be normally distributed (because dividends are normally dis-
tributed) and because the nonmarkets risks are exclusively traded within a single submarket
by investors who have CARA utility, intuition suggests that the expected nonmarket compo-
nent of returns should satisfy a CAPM-like pricing relationship in which the nonmarket risks
are priced based on their covariances with the “market portfolio” of nonmarket risk.10 This
intuition is precisely what the second term on the right hand side of equation (16) confirms.
In the equation, the price for nonmarket risk, Λ[X1], depends on the sum-total of investors
risk tolerances (1/Am). I refer to this quantity as the risk bearing capacity in the submarket.

Because the submarket is perfectly competitive, risk sharing among market participants is
efficient; and investors efficient risky asset holdings are intuitive: the proportion of the asset
supply that each investor holds is equal to his risk bearing capacity (1/Am) as a proportion
of the sum total of all investors risk bearing capacity. It might be more appropriate to label
the risk sharing among investor as constrained efficient. The reason that the efficiency is
constrained is because the risks of the assets in the market segment are only shared by a
tiny fraction of the economy’s investors. If instead, investors could freely enter the market,
they would drive the price of nonmarket risk to 0. It is the limited participation assumption
is what causes the non-market risk to be priced.

If there is imperfect competition in asset markets, then if large investors asset holdings
are not efficient, then they will only slowly trade towards efficient asset holdings in order to
minimize the price impact of their trades. As a result, the deviation of each large investors
asset holdings from his efficient asset holdings behaves as if it is a factor that is priced in
financial markets. The pattern of expected returns when there is imperfect competition is
presented below.

10Stapleton and Subrahmanyam (1978) derive circumstances in which the CAPM holds dynamically
through time when investors have CARA utility and trade risky assets whose dividend payments are normally
distributed.
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Asset Pricing with Imperfect Competition

The main results on asset pricing when there is imperfect competition are provided in the
next proposition:

Proposition 3 When investors holdings of the first set of risky assets are not efficient,
then equilibrium excess expected returns for the first set of assets satisfy a linear factor
model in which first factor is the market portfolio, the second factor is the “market portfolio”
of nonmarket risk, and the remaining factors correspond to the deviation of large investors
asset holdings from those associated with efficient sharing of the nonmarket risk:

Z̄1(t) = β12Z̄
2(t) + λ[X1]ΩeX

1 +
M∑

m=2

λ(m, t)Ωe(Q
1
m(t) −Q1W

m ) (19)

Proof: See section D of the appendix.

The proposition shows that if investors asset holdings are the same as in the competi-
tive version of the model, then assets returns will also be the same as in the competitive
model. However, if a large investors asset holdings deviate, then the deviation in sharing
of nonmarket risk, measured as [Q1

m(t) − Q1W
m (t)]′e(t) for large investor m, behaves like a

priced factor, and assets expected returns depend on their covariances with these factors. In
equation (19), λ(m, t) represents prices of risk for these additional factors at time t. These
prices of risk are negative because if a large investor holds more than his efficient amount
of risky assets, then because he will only sell it slowly through time, the marginal investor,
in this case the small investors, expect to hold less and hence require a smaller premium for
holding the nonmarket risk.

The theoretical results on asset pricing generate potential explanations for why IPO’s
underperform the market. The results can also be used to predict which IPO’s will not
underperform, and might overperform. These topics are further elaborated on below.

Potential Explanations for Underperformance

An assets return underperforms the market when its expected excess return is less than
its market beta times the expected return on the market. Examination of equation (19)
shows that an assets excess return can underperform the market when the sum of the second
and third terms on the right hand side of the equation is less than zero. This suggests that
the imperfect competition model provides two potential channnels that could cause excess
returns on the new issue to underperform the market. To begin, note that even if there
is efficient sharing of nonmarket risk (which makes the third term 0), if the new issue’s
nonmarket returns are negatively correlated with the portfolio of nonmarket returns in its
segment, then this negative covariance will cause the new issue to underperform the market.
This channel for underperformance is not as far-fetched as it might seem to be. For example,
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if the firm that does the IPO competes with other firms in its segment, then good news for
it might mean bad news for its competitors.11

The second channel in the model that can generate underperformance comes from the
third term in equation (19), which represents inefficient risk sharing among the investors. I
want to study whether there are initial inefficient asset holdings that then casue the returns
of the IPO asset to underperform.To analyze this question, pretend for a moment that
all investors holdings of all assets in the segment are efficient. Without loss of generality,
assume the first asset in the segment is the new issue. If I perturb asset holdings away from
efficiency by increasing investor 2’s holdings of the new issue, while holding the supply of
the risky assets constant, I need to change the asset holdings of another investor; because
the holdings of the other large investors are constant, it is the holdings of the small investors
that are being changed. The change in small investors asset holdings is implicit in equation
(19). Because λm,t is nonzero, it is clear from the equation that for any target amount of
return underperformance at time t, there is a perturbation of investor 2’s holdings of the
IPO firm away from efficient asset holdings such that the model generates that amount of
underperformance. In other words, in theory the imperfect competitition model makes very
large amounts of underperformance theoretically possible over the next period. A corollary
of proposition 3 shows that inefficient risk sharing at period t affects equilibrium excess
returns at future time periods as well:

Corollary 1 When asset holdings at time t are not efficient, then the expected value of τ
periods ahead 1-period excess returns follow a factor model in which the market portfolio, the
portfolio of nonmarket risk, and the deviation of large investors time t asset holdings from
efficient asset holdings are factors:

Et[P
1(t+ τ + 1) +D1 − rP 1(t+ τ)] = β12Z̄

2 + λ[X1]ΩeX
1 +

M∑
m=2

λm(t, τ)Ωe(Q
1
m(t) −Q1W

m )

Proof: See section D of the appendix.

Provided that the risk prices λm(t, τ) are nonzero for all τ , then using the same reasoning
as for 1-period returns, the corollary shows that there are initial asset allocations in the im-
perfect competition model that can generate arbitrary amounts of return underperformance
over the time horizon from periods 1 to T .

To provide intuition for the result in the proposition, pretend for a moment that there
is only 1 large investor and a continuum of small investors and that the large investor
has a very large long position and the small investors have a very large short position.
In the appendix I show that because all risky assets are liquid from the perspective of

11More specifically, good news about the nonmarket component of the IPO firm’s business might be
associated with bad news for the nonmarket component of its competitors businesses.
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each small investor, small investors demand for risky assets only depend on the assets 1
period return and variance-covariance matrix. As a result, when small investors take a
short position on assets in a segment, they require the expected return on the assets to
underperform the market. Standard intuition suggests that return underperformance cannot
represent an equilibrium because the large investor who has a long position should sell and
this will cause returns to equilibrate. This intuition is largely correct; with one addendum:
because of imperfect competition the large investor sells slowly to reduce his price impact,
and thus the equilibration takes time. As a result, asset holdings and trades follow an
equilibrium adjustment path; and along large portions of the adjustment path, asset returns
can underperform the market return.

Although I have shown that in theory the model of asset returns can generate amounts of
underpricing of arbitrary magnitude, whether such returns are actually generated following
an IPO depends on the competitiveness of the aftermarket.12 If the aftermarket is sufficiently
competitive, then large investors trades will not have much price impact, and they will be able
to trade more quickly towards efficient risk sharing. Therefore, when the aftermarket is very
competitive, the asset allocations that are needed to generate large amounts of underpricing
will be very extreme. If the market is sufficiently competitive, the asset allocations are not
extreme, and the asset is the only one traded in its segment, then the assets return will be
dominated by the second term on the right hand side of equation (19). Because this term
must be positive if there is only a single asset in the segment, the model predicts that such
an asset will outperform the market. Therefore, the model can be used to predict both
overperformance and underperformance.

Conversely, if the aftermarket is not very competitive, whether there is underpricing due
to imperfect risk sharing will also depend on which investors receive the assets at the IPO, and
it will depend on the quantities they receive. To see why it matters which investors receive
the assets, note that the λm(t, τ) coefficients that determine how imperfect risk sharing
today affects future excess returns varies by large investor. In particular, λm(t, τ) is greater
in magnitude for those large investors who have more market power, where market power
measures an investors ability to influence asset prices. In the model, large investors have more
market power the greater is their risk tolerance as a share of all investors risk tolerances.13

Therefore, the question that needs to be answered is whether the asset allocations at the IPO
are sufficiently distorted away from efficient risk sharing and towards those investors that
have market power, that the result is market underperformance. This question is discussed

12There are many possible methods to measure the competitiveness of the aftermarket. In the empirical
analysis I use the Herfindahl index, which is a measure of the concentration of risk bearing capacity among
the investors.

13As intuition for why large investors who are more risk tolerant have more market power suppose that
a syndicate of M investors with CARA utility who differ in their absolute risk aversion bid the syndicate’s
reservation price for a pool of assets that have a 1-period nonmarket risky expected payoff D̄ with variance
σ2. If all syndicate members participate the reservation price is D̄/r

σ2
�M

m=1(1/Am)
and if investor j does not

participate the reservation price is D̄/r

σ2[
�M

m=1(1/Am)−(1/Aj)]
. It is straightforward to show that syndicate

members with greater risk tolerance have more ability to influence the syndicate’s reservation price by not
participating.
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in the next section, when I describe how the IPO offer price is set, and how the assets are
allocated.

4 The IPO Problem and IPO Underpricing

The motivation for the analysis in this section is based on Pritsker (2004). Pritsker studies a
situation in which a distressed seller has a given number of shares to sell into an imperfectly
competitive market. Because the seller is essentially selling to the equivalent of an oligopoly
in financial markets, it is not surprising that the seller receives a price that is worse than
the competitive price. The size of the price discount depends on the intensity of competition
for the distressed sellers orderflow; and it depends on the amount of impatience that the
distressed seller has when selling his shares. Regarding the intensity of competition, it
turns out that it depends on cross-sectional dispersion of large investors risk tolerances. If
one large investor is far more risk tolerant than the others, then that large investor has
significant market power because if he purchases a smaller amount in the distressed sale,
then the asset sales will have to be absorbed by investors with greater risk aversion who will
require a large price discount in order to hold the assets. By contrast, if the risk tolerances
are spread more evenly among large investors, then the competition for the distressed sales
is more intense and the drop in price due to the distressed sales is consequently smaller.14

The distressed seller may be able to sell at better prices if he is more patient and breaks
up his trades through time instead of selling all at once. This forces the large investors to
compete for the distressed sales through time and dilutes their market power.

Pritsker’s distressed seller analysis is applicable to the IPO setting. In the IPO, the
distressed seller is the issuing firm. For simplicity, in this version of the paper I abstract
away from how the size of the issue is chosen, and simply assume the issuer needs to sell
XIPO shares. The underwriter acts on his behalf by lining up investors to buy the issue,
and by supporting the issue in the aftermarket, as described above. For his efforts, the
underwriter receives a fee. I assume that the investors that seek shares in the IPO are
the same investors that are modeled as trading in the IPO aftermarket. The IPO process
resembles bookbuilding as practiced in the United States. The underwriter gathers demand
information on the issue; in the model this consists of gathering information on the other
risky assets that are traded in the market segment; the investors holdings of these assets; the
investors risk preferences; and he learns about the market power of the investors that trade
in the aftermarket. Based on this information, the underwriter proposes an IPO offer price

14In Pritsker (2004) large investors can be interpreted as trading on behalf of identical small investors.
Under this interpretation, large investors are agents who purchase risk and then spread it to their base of
small investors. The large investors absolute risk tolerance is equal to the small investors risk tolerance
multiplied by the mass of small investors that the large investor represents. This result is intuitive because
the large investor should be more risk tolerant if he can spread a given amount of risk that he purchases
among a larger base of investors.
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P IPO and take it or leave it share allocations XIPO
m , m = 2, . . .M to the large investors, and

he proposes identical share allocations XIPO
1 ds to a fraction φ of the small investors.

The relevance of the distressed seller analysis is that if a large or small investor turns
down the share allocation that he is offered, then I assume that the unallocated shares are
sold immediately by the underwriter in the IPO aftermarket. The possibility that a large
investor can force distressed sales in the IPO aftermarket serves as a threat that constrains
how the issuer allocates shares and chooses the IPO offer price.15 In particular, for any
large investors that receive shares, the allocation must be set so that it cannot be in the
interest of any of the investors to dump their shares and instead force them to be sold by the
underwriter in the IPO aftermarket. Of course, it is possible in theory that the underwriter
might find it optimal to sell some shares in the IPO secondary market; denote these shares
as XIPO

U and the aftermarket price on the first day of trading as P IPO
A .16 This suggests that

the underwriter chooses share allocations to maximize:

P IPO × (φXIPO
1 +

M∑
m=2

XIPO
m ) + P IPO

A XIPO
U , (20)

where the first term measures revenues raised at the IPO, and the second represents revenues
raised by distressed sales in the IPO aftermarket.

This maximization takes place subject to the constraints that the total issue is allocated:

φXIPO
1 +

M∑
m=2

XIPO
m +XIPO

U = XIPO, (21)

that there are no short-sales17:

XIPO
U ≥ 0, and XIPO

m ≥ 0, m = 1, . . .M, (22)

and subject to incentive compatibility constraints that those who receive allocations in the
IPO will accept the allocations. For small investors who receive allocations this condition
takes the form that the value associated with participating in the IPO is greater than the
value from not participating:

Vs[Q
IPO
s ;QIPO, tIPO + 1] ≥ Vs[Qs;Q

IPO, tIPO + 1], (23)

where the IPO occurs at time tIPO and investors decide whether or not to participate based
on the effect that the IPO has on their time tIPO + 1 value functions. The value functions
that large and small investors use to evaluate whether to participate in the IPO are value

15There are many other possible ways to model the threats that available to the large investors and the
threats that are available to the underwriter.

16The aftermarket price on the first day of trading is equal to the equilibrium price function for time
period 1 in the aftermarket.

17This constraint will be eventually relaxed to examine how underwriter short-selling affects the results.
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functions that were derived for time 1 post-IPO trading in the aftermarket. For convenience,
I have suppressed most, but not all, of the notation in the value functions. Specifically, small
investors that participate have post IPO risky asset holdings QIPO

s . The post-IPO risky asset
holdings of all investors is denoted QIPO. If a small investor chooses not to participate in
the IPO, his post IPO risky asset holdings are Qs. Note: that the above expression is for a
multiple-asset context in which I assume that the shares of one of the assets is an IPO and
the others are not. Note also that whether or not a small investor participates in the IPO
has no effect on the state vector QIPO because each small investor is infinitesimal.

For large investors who receive share allocations, the incentive compatibility constraints
take the form:

For every m > 1 such that QIPO
m > 0

Vm[QIPO, tIPO + 1] ≥ Vm[QIPO
−m , tIPO + 1] (24)

where large investor m’s share allocation in the IPO is QIPO
m and QIPO

−m is the post-IPO share
allocation if large investor m chooses not to accept his allocation.18

The assumption that the distressed sales occur immediately following the IPO is very
strong. A more reasonable assumption is that any shares that the underwriter fails to sell at
the IPO will instead be sold over τS periods following the IPO. This modeling assumption
is consistent with empirical evidence, reported in Ellis et. al. (2000), that IPO underwriters
engage in price support activities in the IPO aftermarket, and with evidence reprted by Ellis
et. al. (2002) which shows that underwriters are active participants in the IPO aftermarket
for long periods of time.19.

I assume that when the underwriter sells shares over τs time periods he will sell them
optimally. By optimality I mean that the underwriter buys shares at the IPO offer price,
and then trades his shares over the following τS time periods in order to maximize his own
utility subject to the constraint that by time τS the underwriter holds no shares of the
issue. It is assumed that the certainty equivalent value of the underwriters utility from
buying and trading the shares is turned over to the issuing firm at the time of the IPO. For
tractability I assume that the underwriter has CARA utility like the other large investors. Let
CEU(QIPO, τs) denote the underwriters certainty equivalent. Then, under the less restrictive
assumption, the underwriter maximizes:

P IPO × (φXIPO
1 +

M∑
m=2

XIPO
m ) + CEU(QIPO, τs), (25)

18When there is the possibility of distressed sales, as there is here, the equilibrium value functions and
equilibrium price that that is associated with entering period t + 1 have a similar form to those given in
equations (13), (14), and (15), but with the state vector supplemented by an additional argument, which is
the amount of distressed sales.

19In Ellis et. al.́s (2002) sample of 313 NASDAQ IPOs, the lead underwriter participated in an average
of more than 90 percent of post IPO NASDAQ trades during the first day of the IPO; this amount tapers
down over the next 140 days, but remained above 40 percent on average on the 140th day
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subject to the constraints that the total issue is allocated [equation (21)], that there are no
short sales [equation (22)], and subject to a new set of participation constraints that account
for the new behavior of the underwriter:

Vs[Q
IPO
s ;QIPO, U(τs), t

IPO + 1] ≥ Vs[Qs;Q
IPO, U(τs), t

IPO + 1], (26)

and

Vm[QIPO, U(τs), t
IPO + 1] ≥ Vm[QIPO

−m , , U(τs), t
IPO + 1]. (27)

The addition of the argument U(τs), which denotes the possibility that an underwriter
optimally liquidates over τs periods differentiates the incentive compatibility constraints in
equations (26) and (27) from those when the underwriter must sell his holdings immediately
after the IPO (equations (23) and (24)). Because the underwriter is modeled as selling any
unallocated shares over a longer amount of time, it alters large investors market power after
the IPO. I expect that this will raise the IPO offer price and revenues raised through the
IPO. Below I investigate whether it actually does so in the simulations that follow.20

5 Simulation Analysis

To study whether imperfect competition in the aftermarket can help explain underpricing
and underperformance, I studied the behavior of the model when only a single risky asset, the
new issue, is traded in the aftermarket. Liquidity in the aftermarket depends on two state-
variables. The first is the distribution of risk tolerances across investors, which was alluded
to above, and the second is the number of post-IPO trading periods. When the number of
post IPO trading periods is small, there is little opportunity to spread risks across investors
through time. Consequently, investors who take on positions require more compensation for
doing so and the market becomes more illiquid. The market is most illiquid when no trading
periods remain. Conversely, as the number of remaining time periods gets large, the market
becomes increasingly liquid and in the limit becomes perfectly competitive.21 I believe that
in reality financial markets are not perfectly competitive; the only way to accomodate this

20The solution for the model with distressed sales is closely based on Pritsker (2004). To save space, it is
not presented in the appendix.

21Recall that in my model, the concepts of illiquidity is that trades move prices, which is the same as the
concept of market power. Additional intuition for the relationship between illiquidity and the number of
post-IPO trading periods is based on Coasian analysis of the market power of a durable goods monopolist.
Coase argues that the monopolist can get a higher price if he can commit to selling over a single time
period; the possibility that he will sell over several periods erodes his market power. Kihlstrom argues that
the Coasian analysis applies to stocks because stocks are durable goods; and he too shows that additional
periods of retrade erode the monopolists market power. In the model of aftermarket trading, I suspect that
the Coasian argument also holds; and that a larger number of periods of retrade erodes the oligopolists (large
investors) market power.
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within the present model is through a finite number of trading periods. I study the behavior
of the model when the number of trading periods after the IPO ranges from a high of 2000
trading periods, to a low of 200. Each trading period is interpreted as 1-business day. To
date, I have solved the model for 4 configurations of investors. I am also currently working
on calibrating the model, but have not done so yet. In all configurations, large investors are
labelled as “Institutional Investors” and the small investors as “Retail Investors”. Results
are presented when there is a continuum of small investors and 5 large investors who differ
in their risk aversion. Recall that when risk-sharing is efficient, the proportion of each risky
asset’s supply that should be held by each large investor is equal to his risk tolerance as
a fraction of the sum total of all investor’s risk tolerances. I refer to this quantity as the
investor’s share of risk bearing capacity. Intuitively, an investor with a higher share of risk
bearing capacity has more market power. One gauge of the competitiveness of trading in this
segment is the concentration of risk bearing capacity among the investors. The concentration
of risk bearing is measured by using the Herfindahl index from the Industrial Organization
literature. The Herfindahl index is equal to 10,000 times the sum of the squares of each
investors share of risk bearing capacity.22 The maximum size of the index is 10,000 which
corresponds to all of the risk bearing capacity held by one investor; the minimum size of the
index is 0 which corresponds to perfect competition which formally requires that all investors
are infinitesimal.23

Before presenting the simulation results, it is important to note that the parameters of
investors value functions are solved backwards for thousands of periods using a system of
nonlinear Riccati difference equations; and each step backward in the solution involves a
matrix inversion. The parameters of investors value functions are then used as inputs to
solve the pricing and allocation problem in the IPO. The constraints in the IPO allocation
and pricing problem are themselves nonlinear; and it is not certain that my optimization
routines are finding global maxima. Given the numerical difficulties, the simulation results
should be treated as preliminary.

The results from the simulations are provided in Tables 1 through 4; and are sorted
by Herfindahl indices with the results for the least competitive cases presented first. The
simulations shed light on five questions. First, how does imperfect competition in the IPO
aftermarket affect asset allocations at the IPO.

Asset Allocations

The distorting influence of imperfect competition on allocations at the IPO is measured in
terms percentage deviations from each investors efficient asset holdings. For example, Table
1, Panel B, shows that under retail investors should receive 10 percent of shares in the IPO
if the assets at the IPO are allocated to ensure efficient risk-sharing. Panel C, shows that
retail investors were distorted by -100 percent from their optimal holdings; which means

22Each small investors ideal percentage share of the market is 0.
23When each investor is infinitesimal, and indexed on s ∈ [0, 1] then his risk bearing capacity is 1/As ds;

and the Herfindahl index is 0 because the integral of the investors squared risk bearing capacities is 0.
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that in the optimal IPO allocations in the simulations, retail investors receive nothing and
institutional investors receive everything. This pattern of allocations that are distortion
away from retail investors is repeated in all of the results ( Tables 1 - 4, panel C) and is
consistent with stylized empirical evidence that retail investors perceive that they are cut
out of IPO allocations, and that institutional investors benefit at their expense.

The fact that retail investors are cut out and institutional investors receive more allo-
cations raises the question of which institutional investors receive the allocations, and how
does this depend on the institutions’ risk bearing capacities. The simulations suggest that
the relationship is complicated. Intuition suggests that asset holdings should be distorted
towards those investors with the greatest risk bearing capacity because risk bearing capacity
is a proxy for market power. The results are partially consistent with this intuition: for a
given Herfindahl index, when the number of Post-IPO trading periods is small enough, then
asset holdings are distorted towards those institutional investors with the greatest amounts
of risk bearing capacity (Tables 1-3, panel C). However, the simulations show that the in-
tuition is incomplete because when there are a large enough number of post-IPO trading
periods, asset holdings can be distorted away from large investors with the most risk bearing
capacity and towards large investors that have less risk bearing capacity (Table 2 and 3,
panel C).

Aftermarket trading

The second question is can the model rationalize the large amounts of trading volume after
the IPO? The results on asset allocation distortions provide one potential explanation. Re-
call, that if the assets were allocated to those investors who valued them most, and if there
was no private information, then there should be no trade. However, if asset allocations
at the IPO are distorted away from efficient allocations and towards investors with market
power, then trading volume will be generated the aftermarket as investors adjust their asset
holdings towards those assoicated with optimal risk sharing. I plan to present more detailed
results on whether the model matches the time series pattern of post-IPO trading volume in
future revisions.

Underperformance

The third question is can imperfect competition lead to return underperformance after the
IPO. The intuition that was provided earlier suggested that when asset allocations after the
IPO are sufficiently distorted toward large investors, the returns would underperform. There
are 2 notions of return underperformance: the first is relative to the market porfolio, and
the second is short-term underperformance, which occurs if he returns on the asset following
the IPO are lower than the returns will be in the long run. The tables report results on the
expected component of nonmarket returns. Therefore, return undeperformance relative to
the market portfolio occurs if the expected return on the nonmarket component of returns is
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negative. Examination of Tables 1 through 3 shows that return underperformance relative
to the market occurs when the Herfindahl index is high, or the number of trading periods
following the IPO is sufficiently small. This result confirms that the model can generate un-
derperformance relative to the market. Additionally, the second type of underperformance
is present in all market configurations (Tables 1 - 4, panel C). An important question that
is not answered by these simulation results is how long does the underperformance per-
sist. Unfortunately, for these configurations, I did not compute the answer to this question.
However, although I have not yet computed a full set of results, experiments with other
market configurations have generated underperformance relative to the market that persists
for periods of more than one year. I view these results on underperformance as encouraging.

Underpricing

The fourth question is whether imperfect competition generates underpricing in the IPO.
The answer is a qualified yes: when the Herfindahl index is high enough, and the number of
remaining trading periods is small enough, then underpricing does result (Panel A of Tables
1 - 3); and the amount of underpricing increases when the number of post-IPO trading
periods is small. As the market becomes more competitive, the underpricing vanishes, but
overpricing does not result. Hence, when averaging across different market configurations,
it is clear that the model produces underpricing on average.

Can the underwriters fees be rationalized?

Finally, the fifth question is whether the fees that are received by underwriters can be
rationalized. I have attempted to provide an answer by simulating equilibrium offer prices
when the underwriter can trade over many periods in the aftermarket, but I have encountered
some numerical difficulties. Nevertheless, I but do have some very preliminary results. The
first set of results were computed for the configurations in tables 1 through 4. In Table 1,
results were computed for the case of 1000 Post-IPO trading periods. For this case, the
presence of an underwriter who sells over 200 trading periods has essentially no effect on
the revenues of the issuer; and little effect on the allocations or underpricing in the IPO.
For the results in Table 2, the underwriter generates more revenue, but the allocations are
little changed. By contrast, for the results in Tables 3 and 4, the optimum involves the
underwriter allocating none of the issue in the IPO; instead he sells it over 200 periods in
the aftermarket — and this increases the revenues received by the issuer. Although these
preliminary findings are discouraging, in a set of additional recent simulations that are not
fully reported here, I sometimes found circumstances when the underwriter keeps a large (33
percent) but not 100 percent stake in the issue and then sells it through time. By doing so,
he increases the proceeds that the issuer receives by 25%. This suggests that the underwriter
can sometimes provide very significant value to the seller by trading in the aftermarket. It
is important to reiterate that this finding is a result of a purely strategic setting that does
not contain any informational asymmetries. Although some of the most recent results on
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the underwriter are very encouraging, it is important to stress again that the results on the
underwriter are preliminary and the numerical optimizations need to be carefully checked.

Cautions in Interpretation and Calibration

The results presented in this section are qualitatively very useful because they show that the
channels identified by the theory can generate underpricing and underperformance. Caution
should be exercised in attempting to interpret the results quantitatively. The main issue is
difficulties with the scale of the results. More specifically, the empirical literature reports
percentage returns and percentage underpricing; but they are not reported this way in the
model. Moreover, the results in this model probably should not be reported in percentage
terms because altering the level of expected dividends would allow the model to match nearly
any level of percentage underpricing, and nearly any level of percentage underperformance.
Nevertheless, I am currently working on calibrating the parameters in the model so that I
can study percentage returns and underpricing. But, it remains an open question whether
such a calibration exercise is feasible or meaningful.

This completes all of the simulation results. In sum, I think the results are encouraging
because the model qualitatively matches many of the puzzling stylized facts about the inef-
ficiency of IPOs. The next section discusses some of the empirical literature in light of the
theoretical results.

6 Is After Market Illiquidity Empirically Relevant

What is the state of the empirical evidence on whether after-market liquidity is a determi-
nant of underpricing and underperformance? These questions have only been addressed by
a few papers; and the answers remain unsettled. The relationship between IPO underpricing
and illiquidity has been empirically studied by Booth and Chua (1996), Hahn and Ligon
(2004), and Ellul and Pagano (2003).24 Although the Booth and Chua model makes predic-
tions about the relationship between underpricing and aftermarket liquidity, they don’t test
this implication of their model; instead their tests focus on underpricing as compensation for
costs of information gathering. Because such costs could generate underpricing irrespective
of illiquidity, the implications of their tests for the relationship between underpricing and
aftermarket liquidity are unclear. Hahn and Ligon attempt to directly test the Booth and
Chua hypothesis that underpricing is used to increase liquidity by running OLS regressions of
market microstructure measures of aftermarket liquidity on IPO underpricing. In regressions
that account for other determinants of illiquidity, their results are mixed; with coefficients

24In related research that does address asset pricing per se, Corwin, etȧlṡtudy the evolution of market
microstructure measures of liquidity through time follwing an IPO. A special aspect of their research is that
they observe the limit order book, and hence can study the evolution of liquidity measures such as the depth
of the limit order book, and the depth of the book relative to trading volume.
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on underpricing sometimes statistically significant and positive, sometimes statistically sig-
nifcant and negative, and sometimes not statistically significant at all. A potential difficulty
with the Hahn and Ligon regressions is that causality may run from underpricing to illiquidity
(as in Booth and Chua) as well as from illiquidity to underpricing (as in Ellul and Pagano).
The possibility that causality runs in both directions suggests that an instrumental variable
approach is needed. In Ellul and Pagano, they regress underpricing on a set of determinants
for underpricing, including measures of aftermarket liquidity. Additionally, they recognize
the potential for simultaneity bias and instrument for it in some of their regressions.25 In
all of Ellul and Pagano’s regressions they find that more aftermarket illiquidity increases
the amount of IPO underpricing. This finding is consistent with both their theory and my
theory of IPO underpricing.

Although Ellul and Pagano’s findings are favorable for liquidity-based theories of IPO
underpricing, there is reason for caution in interpreting their results. One reason for caution
is if underpricing is a risk premium for aftermarket illiquidity, then the logical extension
of Ellul and Pagano’s theory would suggest that in the aftermarket, IPO’s should earn a
positive and significant risk premium for aftermarket liquidity. The fact that IPO returns
underperform in the aftermarket, suggests that the mechanism driving aftermarket returns
is more complicated than the theory of illiquidity considered by Ellul and Pagano.26 Eckbo
and Norli (2002) take this argument one step further; they claim that newly issued stocks are
more liquid than other stocks with similar risk characteristics; and thus their returns should
underperform. To establish this point empirically, Eckbo and Norli compare the returns of a
rolling portfolio of newly issued stocks that are held for up to five years against the returns
a portfolio of more seasoned issues that are matched on size and book to market. They find
that after adjusting for these factors, and controlling for differences in liquidity, new issues
do not underperform.

The Eckbo and Norli analysis highlights an important issue: what is the appropriate
risk-adjustment to apply when determining whether the returns on new issues underperform.
The theory in this paper suggests that adjusting returns for book-to-market is problematic.
The reason is that the theory shows that when share allocations at the IPO are biased
towards large investors; this creates an allocation effect in aftermarket prices that makes
them higher in the short-run, just after the IPO, than they will be in the long-run. The
temporarily high stock price will cause new issues to initially have a low book to market. At
the same time the theory also predicts there will be return underperformance following the
IPO. Because the theory’s predictions of low returns and low book-to-market are consistent
with the empirical evidence on how the Fama-French“book-to-market” factor affects returns,
tests that adjust for book-to-market will remove the predictions of my liquidity/imperfect
competition theory from the data being analyzed. Such tests will then have low power to
detect underperformance due to illiquidity even when such underperformance is present.
Therefore, I believe it remains an open empirical question whether imperfect competition

25They do not report any results on tests for the strength of the instruments, nor do they report any
results of tests for instrument validity.

26This critique does not rule out my theory that underperformance is caused by how imperfect competition
in the aftermarket distorts share allocations at the IPO.
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and illiquidity play a significant role in explaining IPO underpricing and underperformance.

7 Conclusions

In this paper I have presented a fully-rational symmetric information model of IPO book-
building that is followed by imperfect competition and illiquidity in a dynamic post-IPO
trading environment. For some parameter values the model generates IPO allocations and
offer prices that are consistent with underpricing at the IPO, return underperformance fol-
lowing the IPO, and a tilt in share allocations toward institutional investors and away from
retail investors. I have also begun a highly preliminary analysis of the behavior of the un-
derwriter in the IPO aftermarket; and have found that for some model parameterizations
the underwriter, by trading in the IPO aftermarket, can dilute other investors market power
and substantially increase the revenues raised by the issuer.

An important question going forward is determining the percentages of underpricing,
underperformance, and underwriter fees, that can plausibly be attributed to imperfect com-
petition and illiquidity in aftermarket trading. A partial answer to this question can be
provided through model calibration; I am currently involved in a calibration effort. A bet-
ter way to answer the question is through empirical analysis that studies the relationship
between aftermarket competitiveness and the inefficiencies that are associated with the IPO
process. Hopefully the results in this paper will stimulate these types of empirical research.
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Appendix

A Notation

There are M investors and N = N1 +N2 risky assets. The first N1 assets are illiquid. The
next N2 assets are perfectly liquid. The risky asset holdings of investor m at time t are
denoted by

Qm(t) =

(
Q1

m(t)
Q2

m(t)

)
where Q1

m(t) and Q2
m(t) are investor m′s holdings of illiquid and liquid risky assets respec-

tively. Q1(t) denote the N1M × 1 vector of all investors illiquid asset holdings at time t
where

Q1(t) =




Q1
1(t)
...

Q1
M(t)


 .

Q1
1(t) represents the net asset holdings of a continuum of infinitesimal small investors

indexed by s:

Q1
1(t) =

∫ 1

0

Q1
s(t)µ(s)ds.

The small investors are often collectively referred to as the competitive fringe. Q1
2(t) through

Q1
M(t) denotes the net illiquid risky asset holdings of large investors, and is denoted by the

N1 × (M − 1) vector Q1
B(t). The change in investors illiquid risky asset holdings from the

beginning of time period t to the beginning of time period t+ 1 is denoted by the N1M × 1
vector ∆Q1(t). Similarly, ∆Q1

1(t) and ∆Q1
B(t) denote the change in the competitive fringe’s

illiquid asset holdings, and the change in the illiquid asset holdings of the large investors.

The algebra which follows requires many matrix summations and the use of selection
matrices. Rather than write summations explicitly, I use the matrix S = ι′M ⊗IN to perform
summations where ιM is an M by 1 vector of ones, and IN is the N ×N identity matrix.27

In some cases, the matrix S may have different dimensions to conform to the vector whose
elements are being added. In all such cases, S will always have N , or N1 rows. The matrix
Si is used for selecting submatrices of a larger matrix. Si has form

Si = ι′i,M ⊗ IN ,

where ιi,M is an M vector has a 1 in its i’th element, and has zeros elsewhere.28 As above Si

will sometimes have different dimensions to conform with the matrices being summed, but
it will always have N or N1 rows.

In the rest of the exposition, I will occasionally suppress time subscripts to save space.

27For example, SQ(t) =
∑M

m=1 Qm(t)
28To illustrate the use of the selection matrix, Qm(t) = SmQ(t).
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B Proof of Proposition 1

Proposition 1: Small investors value functions for entering period t with liquid wealth Ws,
when investors’ state vector of illiquid asset holdings is given by Q1 is given by:

Vs(Ws, Q
1, t) = −K1(t) F (Q1, t) e−As(t)Ws ,

where F (Q1, t) = e−Q1(t)′v̄s(t)−Q1(t)′θs(t)Q1(t).
(13)

Large investor m’s value function for entering period t when the state vector of illiquid asset
holdings is Q and his holdings of liquid wealth is Wm is given by:

Vm(Wm, Q
1, t) = −Km(t)e−Am(t)Wm−Am(t)Q1 ′Λm(t)+.5Am(t)2Q1′Ξm(t)Q1

m = 2, . . .M, (14)

and the price function for illiquid assets has the functional form:

P 1(t) =
1

r
(α(t) − Γ(t)Q1) (A1)

Proof: The proof is by induction. Part I of the proof establishes that if the value
function has this form at time t, then it has the same form at time t−1. Part II of the proof
establishes the result for time T , the first period in which trade cannot occur.

B.1 Part I:

Suppose the form of the value function is correct for time t. Then, to establish the form
of the value function at time t − 1, I first solve for the competitive fringe’s demand curve
for absorbing the net order flow of the large investors. I then solve the large investors and
competitive fringe’s equilbrium portfolio and consumption choices, and then solve for the
value function at time t− 1.

The competitive fringe’s demand curve

The competitive fringe represents a continuum of infinitesimal investors that are distributed
uniformly on the unit interval with total measure 1, i.e. µ(s) = 1 for s ∈ [0, 1]. At time
t− 1, each participant s of the competitive fringe solves:
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max
Cs(t− 1),

Qs,
qs

−e−AsCs(t−1) − δ E[Ks(t)F (Q1, t)e−As(t)Ws(t)] (A2)

where, Qs is the stacked vector of small investor s’s holdings of illiquid (Q1
s) and perfectly

liquid (Q2
s) risky assets:

Qs =

(
Q1

s

Q2
s

)
;

Z(t) is the stacked vector of excess returns for the illiquid and liquid assets:

Z(t) =

(
Z1(t)
Z2(t)

)
=

(
P 1(t) +D1(t) − rP 1(t)
P 2(t) +D2(t) − rP 2(t)

)
; (A3)

and small investors liquid wealth is given by

Ws(t) = Q′
sZ(t) + r[Ws(t− 1) − Cs(t− 1)].

Note: Although I refer to the first set of assets as illiquid, they are only illiquid for large
investors whose trades have price impact. Because each small investor is infinitesimal, their
trades do not have price impact and hence both assets are perfectly liquid from their per-
spective.

In equation (A3),

EZ(t) ≡ Z̄(t) ≡
(
Z̄1(t)
Z̄2(t)

)
,

and

VarZ(t) ≡ Ω ≡
(

Ω11 Ω12

Ω21 Ω22

)
.

Substituting the expression for Ws in (A2) and taking expectations shows that small
investors maximization becomes:

max
Cs(t− 1),

Qs

−e−AsCs(t−1) − δF (Q1, t)e−As(t)r[Ws(t−1)−Cs(t−1)]−As(t)Q′
sZ̄(t)+.5As(t)2Q′

sΩQs (A4)

In solving the model, it is useful to break small investors maximization into pieces by
first solving for optimal Q2

s as a function of Q1
s, and then solving for optimal Q1

s. For given

29



Q1
s, the first order condition for optimal Q2

s shows that optimal Q2
s is given by

Q2
s =

1

As(t)
Ω−1

22 Z̄2(t) − β ′
12Q

1
s, (A5)

where β12 = Ω12Ω
−1
22 .

Plugging the solution for Q2
s into the small investors value function and simplifying then

shows that the small investors maximization problem reduces to:

max
Cs(t− 1),

Q1
s

−e−AsCs(t−1)−δF (Q1, t)Ks(t) Exp
{−.5Z̄ ′

2Ω
−1
22 Z̄2 − As(t)r[Ws(t− 1) − Cs(t− 1)]

}

× Exp
{−As(t)Q

1
s
′[Z̄1(t) − β12Z̄2(t)] + .5As(t)

2Q1
s
′ΩeQ

1
s

}
(A6)

where Ωe is given by
Ωe = Ω11 − Ω12Ω

−1
22 Ω21.

To gain intuition for the above expression, note that the excess return on each illiquid
asset can be decomposed into a component that is correlated with the liquid assets and into
a second idiosyncratic component.

Z1(t) = β12Z2(t) + ε1(t)

Z̄1 −β12Z̄2(t) is the vector of expected returns on the idiosyncratic components at time t
and Ωe is the variance covariance matrix of the idiosyncratic returns. The expression shows
that small investors portfolio maximization problem can equivalently be written in terms of
choosing an exposure to the returns of the liquid assets, and to the idiosyncratic component
of returns of the illiquid assets.

Solving for optimal Q1
s(t) then shows

Q1
s(t) =

1

As(t)
Ω−1

e [Z̄1(t) − β12Z̄2(t)] (A7)

The aggregate demand for Q1 at time t by all small investors can be found by integrating
both sides of equation (A7) with respect to µs, the density of small investors, yielding:

Q1
1(t) =

∫ 1

0
Q1

s(t)µsds

=
[∫ 1

0
1

As(t)
µsds

]
Ω−1

e [Z̄1(t) − β12Z̄2(t)]

= 1
A1(t)

Ω−1
e [Z̄1(t) − β12Z̄2(t)]

(A8)
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The Price Schedule Faced by Large Investors

The price schedule faced by large investors at time t−1 maps large investors desired orderflow
of the illiquid assets into the time t − 1 prices at which the competitive fringe is willing to
absorb the net orderflow. To solve for the price schedule, I solve for prices P (., t − 1) in
equation (A8) such that when the large investors choose trade ∆Q1

B(t− 1) at time t-1, then
the competitive fringe chooses trade −S∆Q1

B(t− 1).

Rearranging, equation (A8) while making the substitutions

Q1(t) = Q1(t− 1) + ∆Q1(t− 1),

Q1
1(t) = S1[Q

1(t− 1) + ∆Q1(t− 1)],

∆Q1(t− 1) =

( −S∆Q1
B(t− 1)

I∆Q1
B(t− 1)

)

and

Z̄1(t) = P 1(t) + D̄1 − rP 1(t− 1, .)

P 1(t) =
1

r

(
α(t) − Γ(t)[Q1(t− 1) + ∆Q1(t− 1)]

)
then produces the price schedule faced by large investors at time t− 1:

P 1(., t− 1) =
1

r

(
β0(t− 1) − βQ1(t− 1)Q1(t− 1) − βQ1

B
(t− 1)∆Q1

B(t− 1)
)
, (A9)

where,

β0(t− 1) = D̄1 + (1/r)α(t) − β12Z̄
2 (A10)

βQ1(t− 1) = (1/r)(Γ(t) + rA1(t)ΩeS1) (A11)

βQ1
B
(t− 1) = (1/r)Γ(t)

( −S
I

)
− A1(t)ΩeS (A12)

Given the price schedule in equation (A9), large investors at time t − 1 solve the maxi-
mization problem:

Large Investors Maximization Problem

max
Cm(t− 1),

Qm

−e−AmCm(t−1) − E
{
δKm(t) Exp

(−Am(t)Wm − Am(t)Q1′Λm(t) + .5Am(t)2Q1′Ξm(t)Q1
)}

(A13)
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where, substituting in the budget constraint, liquid wealth at the beginning of time t is
given by

Wm(t) =Q1
m(t)′D1(t) +Q2

m(t)′Z2(t)

+ r(Wm(t− 1) − ∆Q1
m(t− 1)′P 1(t− 1, .) − Cm(t− 1))

(A14)

Note: Because dividends are paid in cash, the dividend payments received for holdings of
illiquid asset are counted as part of liquid wealth even though the illiquid assets themselves
are not counted.

Note that in equation (A13), Λm(t) and Ξm(t) are deterministic functions of time that are
parameters of the value function. Keeping this in mind, large investors holdings of the liquid
assets are solved in the same way as for small investors. Taking expectations in equation
(A13), solving for optimal Q2

m given Q1, and substituting the optimal choice back into the
large investor’s value function, transforms the large investors maximization problem so that
it has the following form:

max
Cm(t− 1),

Q1
m

− e−AmCm(t−1)

− δKm(t)
{
Exp(−.5Z̄2′Ω−1

22 Z̄2 − Am(t)r[Wm(t− 1) − ∆Qm(t− 1)′P 1(t− 1, .) − Cm(t− 1)]

×Exp(−Am(t)Q1′v̄m(t) + .5Am(t)2Q1′θm(t)Q1)
}

(A15)

where,

v̄m(t) = S ′
m(D̄1 − β12Z̄2) + Λm(t) (A16)

θm(t) = S ′
mΩeSm + Ξm(t) (A17)

The large investors play a Cournot game in which each choose his time t − 1 trade
∆Qm(t − 1) in the illiquid assets to solve the maximization problem in (A15) while taking
the trades of the other large investors as given, but while taking into account the effect that
his own trades have on the prices of the illiquid assets. Recall the price impact function for
the illiquid assets at time t− 1 is given by equation (A9).

The first order condition for large investors illiquid asset choices is given by:

0 = −Am(t)[(−S1+Sm)v̄m(t)] + Am(t)2(−S1 + Sm)[(θm(t) + θm(t)′)/2](Q1 + ∆Q1)

+ Am(t)
[
rP 1(., t− 1) − SmβQ1

B
(t− 1)′Sm∆Q1

B

]
,

(A18)

After substituting for P 1(., t−1) from equation (A9), writingQ1+∆Q1 asQ1+

( −S∆Q1
B

∆Q1
B

)
and simplifying, this produces the following reaction function for large investor m:
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πm(t− 1)∆Q1
B = χm(t− 1) + ξm(t− 1)Q1, (A19)

where,

πm(t− 1) =Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2]

( −S
I

)
− βQ1

B
(t− 1) − SmβQ1

B
(t− 1)′Sm

(A20)

χm(t− 1) = (−S1 + Sm)v̄m(t) − β0(t− 1) (A21)

ξm(t− 1) = βQ1(t− 1) −Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2] (A22)

Stacking the (M-1) reaction functions produces a system of (M − 1)N linear equations
in (M − 1)N unknowns:

Π(t− 1)∆Q1
B(t− 1) = χ(t− 1) + ξ(t− 1)Q1(t− 1) (A23)

Assume that Π(t−1) is invertible. Then the solution for ∆Q1
B(t−1) is unique, and given

by

∆Q1
B(t− 1) = Π(t− 1)−1χ(t− 1) + Π(t− 1)−1ξ(t− 1)Q1(t− 1) (A24)

Equilibrium Asset Holdings

The solution for ∆Q1
1(t − 1) is −S∆Q1

B(t − 1). Therefore, the solution for ∆Q1(t − 1) =
(∆Q1

1(t− 1)′,∆Q1
B(t− 1)′)′ can be written as:

∆Q1(t− 1) = H0(t− 1) +H1(t− 1)Q1(t− 1). (A25)

where,

H0(t− 1) =

( −SΠ(t− 1)−1χ(t− 1)
Π(t− 1)−1χ(t− 1)

)
, and H1(t− 1) =

( −SΠ(t− 1)−1ξ(t− 1)
Π(t− 1)−1ξ(t− 1)

)
.

(A26)

With the above notation, the equilibrium purchases by large participant m in period t−1
are given by

∆Q1
m(t− 1) = Sm[H0(t− 1) +H1(t− 1)Q1(t− 1)] (A27)

Additionally, the equilibrium transition dynamics for beginning of period illiquid risky
asset holdings are given by:

Q1(t) = G0(t− 1) +G1(t− 1)Q1(t− 1) (A28)

where G0(t− 1) = H0(t− 1) and G1(t− 1) = H1(t− 1) + I.
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Equilibrium Price Function

Recall that the equilibrium price function in each time period maps investors beginning of
period holdings of risky assets to an equilibrium price after trade. The equilibrium price
function for period t − 1 is found by plugging the solution for large investors equilibrium
trades from equation (A24) into the price schedule faced by large investors (equation (A9)).
The resulting price function for illiquid asset in period t− 1 has form:

P 1(t− 1, Q1) =
1

r

(
α(t− 1) − Γ(t− 1)Q1

)
(A29)

where,

α(t− 1) = β0(t− 1) − βQ1
B
(t− 1)π(t− 1)−1χ(t− 1) (A30)

Γ(t− 1) = βQ(t− 1) + βQ1
B
(t− 1)π(t− 1)−1ξ(t− 1) (A31)

Large Investors Consumption

Large investors optimal time t− 1 consumption depends on optimal time t− 1 trades. After
plugging the expressions for equilibrium prices, and equilibrium trades [equations (A28),
(A29), and (A25)] into equation (A15), large investors consumption choice problem has
form:

max
Cm(t−1)

−e−AmCm(t−1) − δkm(t)erAm(t)Cm(t−1) × ψm(Q1(t− 1),Wm(t− 1), D(t− 1), t− 1),

(A32)

where

ψm(Q1,Wm(t− 1), t− 1) =e−.5Z̄2′Ω−1
22 Z̄2−Am(t)rWm(t−1)

× e+Am(t)r[Sm(H0(t−1)+H1(t−1)Q1(t−1)]′(α(t−1)−Γ(t−1)Q1(t−1))/r

× e−Am(t)(G0(t−1)+G1(t−1)Q1(t−1))′ v̄m(t)

× e.5Am(t)2[G0(t−1)+G1(t−1)Q1(t−1)]′θm(t)[G0(t−1)+G1(t−1)Q1(t−1)]

(A33)

The first order condition for choice of consumption implies that optimal consumption is
given by:

Cm(t− 1) =
−1

Am(t)r + Am
ln

(
δkm(t)Am(t)rψm(Q1(t− 1),Wm(t− 1), t− 1)

Am

)
(A34)
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Large investors value function at time t− 1

Define Vm(t−1, Q1,Wm(t−1)) as the value function to large investor m from entering period
t− 1 when the vector of illiquid risky asset holdings is Q1, and his liquid asset holdings are
Wm(t−1). After substituting the optimal consumption choice in (A34) into equation (A32),
this value function is given by:

Vm(Wm(t− 1), Q1, t− 1) = −
[
1 + r∗m(t)

r∗m(t)

] [
δkm(t)r∗m(t)ψm(Q1,Wm(t− 1), t− 1)

] 1
1+r∗m(t)

(A35)

where,

r∗m(t) = Am(t)r/Am (A36)

Tedious algebra then shows that large investor m’s value function at time t−1 has form:

Vm(t− 1, Q1,Wm(t− 1)) = −km(t− 1) × e−Am(t−1)Wm(t−1)−Am(t−1)Q1 ′Λm(t−1)+.5Am(t−1)2Q1′Ξm(t−1)Q1

(A37)

where the parameters of the value function at time t−1 are given by the following Riccati
difference equations.

Am(t− 1) = Am(t)r/(1 + r∗m(t)) (A38)

km(t− 1) =

[
r∗m(t) + 1

r∗m(t)

]
[δkm(t)r∗m(t)]

1
1+r∗m(t)

× e
−.5Z̄2 ′Ω−1

22
Z̄2

1+r∗m(t)

× eAm(t−1)H0(t−1)′S′
mα(t−1)/r−Am(t−1)G0(t−1)′ v̄m(t)/r+.5Am(t−1)2((1+r∗m(t))/r2)(G0(t−1)′θm(t)G0(t−1))

(A39)

Λm(t− 1) = −H1(t− 1)′S ′
mα(t− 1)/r + Γ(t− 1)′SmH0(t− 1)/r +G1(t− 1)′v̄m(t)/r

− Am(t− 1)(1 + r∗m(t))G1(t− 1)′
(
θm(t) + θm(t)′

2

)
G0(t− 1)/r2

(A40)

Ξm(t− 1) =
−2H1(t− 1)′S ′

mΓ(t− 1)

rAm(t− 1)
+ (1 + r∗m(t))G1(t− 1)′θm(t)G1(t− 1)/r2 (A41)
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Small investors optimal consumption

The solution for each small investors consumption depends on small investors optimal trades.
To solve for optimal consumptions, I first use equation (A7) to substitute out for Q1

s in
equation (A6). I then substitute out for Z̄1(t) − β12Z̄

2(t) with the expression:

Z̄1(t) − β12Z̄
2(t) = a0(t− 1) + a1(t− 1)Q1(t− 1), (A42)

where,

a0(t− 1) =
α(t)

r
− α(t− 1) + D̄1 − β12Z̄

2(t) − Γ(t)G0(t− 1)

r
(A43)

a1(t− 1) = Γ(t− 1) − Γ(t)G1(t− 1)

r
. (A44)

Finally I substitute out Q1(t) with [G0(t−1)+G1(t−1)Q(t−1)]. With these substitutions,
small investors choice of optimal consumptions simplifies to:

max
Cs(t−1)

−e−AsCs(t−1) − δks(t)e
rAs(t)Cs(t−1) × ψs(Q

1(t− 1),Ws(t− 1), t− 1), (A45)

where,

ψs(Q
1(t− 1),Ws(t− 1),t− 1) = e−As(t)rWs(t−1)−.5Z̄′

2Ω−1
22 Z̄2

×e−.5[a0(t−1)+a1(t−1)Q1(t−1)]′Ω−1
e [a0(t−1)+a1(t−1)Q1(t−1)]

×e−[G0(t−1)+G1(t−1)Q1(t−1)]′ v̄s(t)

×e−[G0(t−1)+G1(t−1)Q1(t−1)]′θs(t)[G0(t−1)+G1(t−1)Q1(t−1)]

(A46)

The first order condition for choice of optimal consumption implies that optimal con-
sumption is given by:

Cs(t− 1) =
−1

As(t)r + As
ln

(
δks(t)As(t)rψs(Q

1(t− 1),Ws(t− 1), t− 1)

As

)
(A47)

Small investors value function at time t− 1

Define Vs(Ws(t− 1), Q1(t− 1), t− 1) as the value function to small investor s from entering
period t−1 when the vector of illiquid risky asset holdings is Q1(t−1), and his liquid wealth
is Ws(t − 1). After substituting the optimal consumption choice in (A47) into equation
(A45), this value function is given by:

Vs(Ws(t− 1), Q1(t− 1), t− 1) =

−
[
1 + r∗s(t)
r∗s(t)

] [
δks(t)r

∗
s(t)ψs(Q

1(t− 1),Ws(t− 1), t− 1)
] 1

1+r∗s (t)

(A48)
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where,

r∗s(t) = As(t)r/As (A49)

Simplification then shows that the value function has form:

Vs(Ws(t− 1), Q1(t− 1), t− 1) = −Ks(t− 1) F (Q1, t− 1) e−As(t−1)Ws(t−1),

where F (Q1(t− 1), t− 1) = e−Q1(t−1)′ v̄s(t−1)−Q1(t−1)′θs(t−1)Q1(t−1)
(A50)

The parameters in the small investors value functions at time t−1 are a function of time
t parameters as expressed in the following Riccati equations:

As(t− 1) =
rAs(t)

1 + r∗s(t)
(A51)

ks(t− 1) =

[
r∗s(t) + 1

r∗s(t)

] [
δks(t− 1)r∗s(t)e

−.5Z̄2′Ω−1
22 Z̄2

] 1
1+r∗s (t)

× Exp

{−a0(t− 1)′Ω−1
e a0(t− 1) −G0(t− 1)′v̄s(t) −G0(t− 1)′θs(t)G0(t− 1)

1 + r∗s(t)

}
,

(A52)

v̄s(t− 1) =
a1(t− 1)′Ω−1

e a0(t− 1) +G1(t− 1)′v̄s(t) +G1(t− 1)′(θs(t) + θs(t)
′)G0(t− 1)

1 + r∗s(t)
,

(A53)

θs(t− 1) =
.5a1(t− 1)′Ω−1

e a1(t− 1) +G1(t− 1)′θs(t)G1(t− 1)

1 + r∗s(t)
(A54)

This completes part I of the proof because equations (A37) and (A50) verify that the
value functions at time t− 1 have the same form as at time t.

B.2 Part II

To establish part II of the proof, I need to show that investors value functions for entering
entering period T , the last period of trade, has the same functional form as given in the
proposition. To establish this result, I first need to solve for investors value function at
time T + 1, the first period when investors cannot trade the illiquid assets (recall they can
continue to trade the riskless asset and the liquid assets indefinitely). Then, given this value
function, I use backwards induction to solve for investors value function at time T .
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Investors Value Functions at Time T+1

Recall that investors are infinitely lived but that from time T onwards they cannot alter
their holdings of illiquid assets, but they can continue to alter their consumption, and their
holdings of liquid and riskless assets. Because investors cannot trade in period T + 1 and
after, the distinction between small and large investors after this period is irrelevant. Hence,
the index m used below could be for either a large or small investor. Using the Bellman
principle, the value function Vm(.) of entering period t+1 (t ≥ T ) with illiquid asset holdings
Q1

m and liquid wealth Wm satisfies the functional equation:

Vm(Wm(t+ 1), Q1
m) = max

Cm(t+ 1)
Q2

m(t+ 2)

− exp−AmCm(t+1) +δ E{Vm(Wm(t+ 2), Q1
m)}, t ≥ T,

(A55)

where,

Wm(t+ 2) = Q1
m

′D1(t+ 2) +Q2
m

′Z2(t+ 2) + r[Wm(t+ 1) − Cm(t+ 1)], (A56)

and,
Z2(t+ 2) = P 2(t+ 2) +D2(t+ 2) − rP 2(t+ 1).

Inspection shows that the function

Vm(Wm, Q
1
m) = −Kmexp−Am[1−(1/r)]Wm−Am[1−(1/r)]Q1

m
′ (1/r)[D̄1−β12Z̄2]

1−(1/r)
+ 1

2
A2

m[1−(1/r)]2Q1
m

′ (1/r)Ωe
1−(1/r)

Q1
m

(A57)

with

Km =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22

Z̄2

r−1 ,

satisfies the Bellman equation (A55) for all time periods ≥ T + 1.

Given the value function at time T +1, to solve for investors value functions at time T , I
follow the same steps as in equations (A2) through equation (A54). Therefore, substituting
in from equation (A57), small investors maximization problem at time T has form:

max
Cs(T ),
Qs

−e−AsCs(T ) − δE
{
Ks(T + 1)e−As(T+1)Ws(T+1)−As(T+1)Q1

s
′Λs(T+1)+ 1

2
As(T+1)2Q1

s
′Ξse(T+1)Q1

s

}

(A58)

such that,

Ws(T + 1) = Q1
s
′Z1(T + 1) +Q2

s
′Z2(T + 1) + r[Ws(T ) − Cs(T )], (A59)
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where,

Ks(T + 1) =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22 Z̄2

r−1 , (A60)

As(T + 1) = As[1 − (1/r)], (A61)

Λs(T + 1) =
(1/r)[D̄1 − β12Z̄

2]

1 − (1/r)
, (A62)

Ξse(T + 1) =
(1/r)Ωe

1 − (1/r)
, (A63)

Z1(T + 1) = D1(T + 1) − rP 1(T ), (A64)

Z2(T + 1) = P 2(T + 1) +D2(T + 1) − rP 2(T ). (A65)

Substituting the expression for Ws(T + 1) into the value function, taking expectations,
and then solving for optimal Q2

s given Q1
s, and substituting that into the value function

shows that small investors optimal choice of Q1
s and Cs(T ) problem has form:

max
Cs(T ),
Q1

s

−e−AsCs(T )−δKs(T + 1) Exp
{−.5Z̄ ′

2Ω
−1
22 Z̄2 − As(T )r[Ws(T ) − Cs(T )]

}

× Exp
{−As(T + 1)Q1

s
′[v̄s(T + 1) − rP 1(T )] + .5As(T + 1)2Q1

s
′Ωe(T + 1)Q1

s

}
(A66)

where

v̄s(T + 1) =

[
D̄1(T + 1) − β12Z̄2(T + 1)

1 − (1/r)

]
(A67)

Ωe(T + 1) =

[
Ωe

1 − (1/r)

]
(A68)

Integrating the solution for optimal Q1
s over the set of small investors then reveals that

the net demand for the illiquid assets by the competitive fringe is:

Q1
1(T + 1) =

1

A1(T + 1)
[Ωe(t+ 1)]−1[v̄s(T + 1) − rP (t)] (A69)

Following the approach that was used earlier to solve for the price schedule faced by large
investors in equation (A9), inverting the small investors demand schedule for the illiquid
assets reveals that the price schedule faced by large investors has the form:

P 1(., T ) =
1

r

(
β0(T ) − βQ1(T )Q1(T ) − βQ1

B
(T )∆Q1

B(T )
)
, (A70)
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β0(T ) = v̄s(T + 1) (A71)

βQ1(T ) = A1(T + 1)Ωe(T + 1)S1) (A72)

βQ1
B
(T ) = −A1(T + 1)Ωe(T + 1)S (A73)

Given the price schedule at time T , and the value function in equation (A57), large
investors maximization problem at time T can be written in the form:

max
Cm(T ),
Qm

− e−AmCm(T )

− E
{
δKm(T + 1)e−Am(T+1)Wm(T+1)−Am(T+1)Q1′Λm(T+1)+.5Am(t)2Q1′Ξm(T+1)Q1

}
(A74)

where,

Am(T + 1) = Am[1 − (1/r)] (A75)

Λm(T + 1) = S ′
m

[
(1/r)[D̄1 − β12Z̄

2]

1 − (1/r)

]
, (A76)

Ξm(T + 1) = S ′
m

(
(1/r)Ωe

1 − (1/r)

)
Sm. (A77)

Km(T + 1) =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22 Z̄2

r−1 (A78)

Substituting in the budget constraint, liquid wealth at the beginning of time T + 1 is
given by

Wm(T + 1) =Q1
m(T + 1)′D1(T + 1) +Q2

m(T + 1)′Z2(T + 1)

+ r(Wm(T ) − ∆Q1
m(T )′P 1(T, .) − Cm(T ))

(A79)

Large investors maximization problem at time T has exactly the same form as given in
equation (A13). Therefore, the optimal trades and consumption of large investors follow
precisely the same equations as given in Part I of the proof. Large investors value function
at time T also has the same functional form as in part I. The equilibrium price function at
time T also has the same functional form as in part I. Therefore, to complete the proof, it
sufficies to solve for small investors consumption and then value function and verify that the
value function has the appropriate functional form.

To do so, note that from equation (A66), it is straightforward to show that the optimal
choice of Q1

s(T + 1) is

Q1
s(T + 1) =

1

As(T + 1)
[Ωe(T + 1)]−1 × [v̄s(T + 1) − rP 1(T )],
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and that after substituting this expression back in the value function, and making the sub-
stitution P 1(T ) = 1

r
(α(t) − Γ(t)Q1(t)), then the maximization in equation (A66) simplifies

to have the form:

max
Cs(T )

−e−AsCs(T ) − δKs(T + 1) Exp{As(T )rCs(T )} × Ψs(T,Q
1) (A80)

where,

Ψs(T,Q
1) = Exp

{−.5Z̄ ′
2Ω

−1
22 Z̄2 − As(T )rWs(T )

}
× Exp

{−.5[v̄s(T + 1) − α(T )]′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]
}

× Exp
{−Q1(T )′Γ(T )′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

}
× Exp

{−.5Q1(T )′Γ(T )′[Ωe(T + 1)]−1Γ(T )Q1(T )
} (A81)

Using the same approach that was used to solve for large investors optimal consumption
and then value function in part I of the proof, tedious algebra shows that small investors
value function at time T has form

−F (Q1, T )Ks(T ) Exp(−As(T )Ws(T ))

where, F (Q1, T ) = e−Q1(T )′v̄s(T )−Q1(T )′θs(T )Q1(T ),

r∗s(T + 1) = As(T + 1)r/As, (A82)

As(T ) = As(T + 1)r/(1 + r∗s(T + 1)), (A83)

Ks(T ) =

[
r∗s(T + 1) + 1

r∗s(T + 1)

]
[δKs(T + 1)r∗s(T + 1)]

1
1+r∗s (T+1)

× Exp

(−.5Z̄2′Ω−1
22 Z̄

2 − .5[v̄s(T + 1) − α(T )]′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

1 + r∗s(T + 1)

)
,

(A84)

v̄s(T ) =
Γ(T )′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

1 + r∗s(T + 1)
, (A85)

θs(T ) =
Γ(T )′[Ωe(T + 1)]−1Γ(T )

1 + r∗s(T + 1)
. (A86)

This completes the proof by establishing that large and small investors value functions
take the hypothesized form in all periods that involve trade. �
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C Solutions for Value Function Parameters

Proposition 4 For all time periods t = 1, . . . , T , and for large investors m = 2, . . .M :

v̄m(t) =
S ′

m(D̄1 − β12Z̄
2)

1 − (1/r)
(A87)

α(t) = (D̄1 − β12Z̄
2) (A88)

Am(t) = Am[1 − (1/r)] (A89)

r∗(t) = r − 1 (A90)

km(t) =

(
r

r − 1

)
× (δr)

1
r−1e−.5

Z̄2′Ω−1
22

Z̄2

r−1 (A91)

Proof:

For v̄m(t) and α(t):

The proof is by induction. First, suppose that the results for v̄m(t) and α(t) are true
at time t. Then, from equation (A10), β0(t − 1) = α(t). This implies that from equation
(A21) that(−S1 + Sm)v̄m(t) − β0(t − 1) = 0. As a result χ(t − 1) = 0, which implies
from equation (A30) that α(t − 1) = β0(t − 1) and from equations (A26) and (A28) that
H0(t− 1) = G0(t− 1) = 0. Substituting for H0(t− 1) and G0(t− 1) in equation (A40) and
simplifying then shows:

Λm(t− 1) = S ′
mα(t)/r. (A92)

Finally, substituting this result in equation (A16) proves the result for v̄m(t−1). To complete
the induction, I use equations (A76) and (A16) to solve for v̄m(T + 1); I then substitute the
resulting expression as well as the one for β0(T ) (equation (A71)) in equation (A21) and use
it to show that χ(T ) = 0, which implies G0(T ) = H0(T ) = 0. Substituting into equation
(A30), then shows that α(T ) = β0(T ) = S ′

m(D̄1 − β12Z̄
2)/[1 − (1/r)], which confirms the

result for α(T ). Finally, given the solutions for α(T ) and v̄m(T+1), substitution in equations
(A76) and (A16) confirms the result for v̄m(T ) and completes the induction.

For Am(t) and r∗(t):

The proof is by backwards induction. We know Am(T +1) = Am[1−(1/r)] from equation
(A75). Using this expression, and iterating on equations (A38) and (A36) proves the result
for all times t = 1, . . . T.

For km(t):

The proof is by backwards induction. Equation (A78) establishes that it is true at time
T + 1. Plugging the solution for Km(T + 1) into equation (A39) while using the solutions
for r∗m(t) and the result H0(t− 1) = G0(t− 1) = 0 confirms the result for periods 1, . . . T . �

The next proposition provides information on the value functions of the small investors:
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Proposition 5 For all time periods t = 1, . . . , T , and for each small investor s

a0(t) = 0 (A93)

v̄s(t) = 0 (A94)

As(t) = As[1 − (1/r)] (A95)

r∗s(t) = r − 1 (A96)

ks(t) =

(
r

r − 1

)
× (δr)

1
r−1e−.5

Z̄2′Ω−1
22

Z̄2

r−1 (A97)

Proof:

For a0(t) and v̄s(t): Plugging the solutions for α(t) and G0(t− 1) from proposition 4 into
equation (A43) shows that a0(t) = 0 for all times t. Since G0(t − 1) = 0 for all times t,
it then follows from equation (A53) that if v̄s(t) = 0, then so does v̄s(t − 1). To complete
the induction, note that substituting the solutions for v̄s(T + 1) (equation (A67)) and α(T )
(proposition 4) into equation (A85) confirms the result.

For As(t), r
∗
s(t), and ks(t):

The form of the proof is identical to that given in proposition 4.�

Proposition 6 Assume that for t ≤ T , conditional on state variable Q1(t) the Nash Equi-
librium trades of the large investors exists and is unique. Then for all m = 2, . . . ,M and
t = 1, . . . , T , θm(t) has form:

ϑm(t) ⊗ Ωe, (A98)

where, ϑm(t) is M ×M ; and

Γ(t) = γ(t) ⊗ Ωe, (A99)

where, γ(t) is 1 ×M .

Proof: The proof is by induction. First, assume that the theorem is true at time t. Then,
from equations (A12) and (A11) βQB

(t−1) = BQB
(t−1)⊗Ωe, and βQ(t−1) = BQ(t−1)⊗Ωe,

where BQB
(t− 1) is 1×M − 1 and βQ(t− 1) is 1×M . Applying these substitutions in large

investors reaction functions and then stacking the results reveals that in equation (A23),
π(t − 1) = P(t − 1) ⊗ Ωe and ξ(t − 1) = Z(t − 1) ⊗ Ωe. The assumption that the Nash
Equilibrium trades in each period are unique implies that P(t− 1) is invertible. Solving for
H0(t− 1) and H1(t− 1) then shows that H0(t− 1) = 0 and

H1(t− 1) =

( −S[P (t− 1)−1Z(t− 1)] ⊗ IN1

(P (t− 1)−1Z(t− 1)) ⊗ IN1

)
(A100)

=

(
[−ι′MP(t− 1)−1Z(t− 1)] ⊗ IN1

(P(t− 1)−1Z(t− 1)) ⊗ IN1

)
(A101)

= H1(t− 1) ⊗ IN1 (A102)
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where ιM is a 1×M vector of ones, and H1(t−1) isM×M . Since G1(t−1) = H1(t−1)+IN1M ,
it follows thatG1(t−1) = G1(t−1)⊗IN1 for G1(t−1) = H1(t−1)+IM . From here, substitution
in equation (A31) shows that Γ(t−1) = γ(t−1)⊗Ω and substitution in equation (A41) and
(A17) shows that θm(t − 1) = ϑm(t − 1) ⊗ Ω. To complete the induction, I substitute the
expression for ξm(T + 1) (equation (A77)) into equation (A17) and show that the result is
true for θm(T + 1). Then, following steps similar to those in the first part of the induction,
it is straightfoward to show that the result holds for Γ(T ) and θm(T ), which completes the
induction. �.

Corollary 2 For each small investors, and for each time period t = 1, . . . T ,

θs(t) = ϑs ⊗ Ωe,

where ϑs is M ×M .

Proof: Straightforward induction involving application of the results from proposition 6.

D Proofs of Asset Pricing Propositions

Proposition 7 When asset markets are imperfectly competitive as specified in section 2 of
the text, then if market participants initial asset holdings are Q1W , then investors will hold
Q1W forever, and asset prices and expected returns will be the same as when there is perfect
competition.

Proof: When investors risky asset holdings are Q1W , then investors asset holdings are identi-
cal to those associated with a competitive equilibrium and complete markets in which trading
is restricted to the set of market participants that has been modelled. Hence, when trade in
the first set of assets is restricted to be among the market participants, asset holdings are
pareto optimal in all time periods; and investors asset holdings will remain at Q1W because
investors have no basis to trade away from asset holdings that are associated with perfect
risk sharing. Because Q1W is the vector of asset holdings from a competitive equilibrium, the
resulting prices and expected returns which support QW are the same as in the competitive
equilibrium. �

Corollary 3 For all t ≥ T ,

[Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

1W = λ[X1]ΩeX
1.

Proof: Algebra shows that when asset holdings of asset 1 at time t are Q1W , then excess
returns of asset 1 are equal to:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + [Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

1W .
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Proposition 7 shows that when asset holdings are Q1W then the excess returns of asset 1 are
β12Z̄

2 + λ[X1]ΩeX
1. Equating the two expressions confirms the claim in the corollary. �.

Proposition 3: When investors asset holdings of the first asset are not Q1W , then equilib-
rium expected asset returns satisfy a linear factor model in which one factor is the returns
on asset 2, another factor corresponds to perfect risk-sharing, but imperfect diversification
of the idiosyncratic risk of asset 1, and the remaining factors correspond to the deviation of
large investors asset holdings from those associated with the large investors perfectly sharing
the idiosyncratic risk of asset 1.

Proof: Let Q1W denote the vector of asset holdings of asset 1 that is associated with perfect
risk sharing among the investors that trade in asset 1. Manipulation of the equation for
equilibrium prices given in proposition 1, and substitution of G0(t) +G(t)Q(t) for Q(t+ 1)
shows:

P 1(t+1)+D̄1−rP 1(t) = [
1

r
α(t+1)+D̄1−α(t)]−[

1

r
Γ(t+1)G0(t)]+[Γ(t)−1

r
Γ(t+1)G1(t)]Q

1(t)

Plugging in the solution for α(t) = α(t − 1) = [D̄1 − β12Z̄
2]/[1 − (1/r)] shows the first

term in braces on the right hand side of the equation is equal to β12Z̄
2. The second term

in braces is zero since proposition 4 shows that G0(t) = 0. Adding and subtracting Q1W to
Q1(t), the above equation can be rewritten as:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + [Γ(t) − 1

r
Γ(t+ 1)G1(t)](Q(t) −QW ) + [Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

1W

(A103)

Using the fact that Q1
1 = X1 − SQ1

B, the vector Q1(t) − Q1W can be expressed in terms of
the deviations of large investors asset holdings from pareto optimal asset holdings:

Q1(t) −Q1W =

[
(X1 − SQ1

B) − (X1 − SQ1W
B )

Q1
B −Q1W

B

]

=

[ −S
I

]
(Q1

B −Q1W
B )

Applying the substitution for Q1(t) − Q1W , and the result of corollary 3 in equation
(A103) shows

P 1(t+1)+D̄1−rP 1(t) = β12Z̄
2+λ[X1]ΩeX

1+[Γ(t)− 1

r
Γ(t+1)G1(t)]

( −S
I

)
(Q1

B(t)−Q1W
B )

Finally, applying the algebra used in the derivation of proposition 6 shows

[Γ(t) − 1

r
Γ(t+ 1)G1(t)]

( −S
I

)
= λ(t) ⊗ Ωe (A104)
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where λ(t) is 1 ×M − 1. Making this substitution then shows:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + λ[X1]ΩeX

1 + [λ(t) ⊗ Ωe](Q
1
B(t) −Q1W

B )

= β12Z̄
2 + λ[X1]ΩeX

1 +
∑M

m=2 λ(m, t)Ωe(Q
1
m(t) −Q1W

m )

(A105)

where λ(m, t) = λ(t)s′m−1. �.

Corollary 1: When asset holdings at time t are not efficient, then asset returns at time t+τ
follow a factor model in which the market portfolio, the portfolio of nonmarket risk, and the
deviation of large investors time t asset holdings from efficient asset holdings are factors.

Proof: Iterating equation (A103), by τ periods shows:

P 1(t+ τ + 1) + D̄1 − rP 1(t+ τ) = β12Z̄
2 + [Γ(t+ τ) − 1

r
Γ(t+ 1 + τ)G1(t+ τ)](Q1(t+ τ) −Q1W )

+ [Γ(t+ τ) − 1

r
Γ(t+ τ + 1)G1(t+ τ)]Q1W .

(A106)

Iterating the equation for equilibrium trades in each period shows

Q1(t+ τ) = [

τ−1∏
j=0

G1(t+ j)]Q1(t).

Additionally, because the investors will not trade away from efficient asset holdings, it also
follows that

[
τ−1∏
j=0

G1(t+ j)]Q1W = Q1W .

Making both of these substitutions in equation (A106) shows that:

P 1(t+ τ + 1) + D̄1 − rP 1(t+ τ) = β12Z̄
2 + λ[X1]ΩeX

1 + [λ(t, τ) ⊗ Ωe](Q
1(t) −Q1W )

= β12Z̄
2 + λ[X1]ΩeX

1 +
M∑

m=2

λm(t, τ)Ωe(Q
1
m(t) −Q1W

m )

where,

λ(t, τ) ⊗ Ωe = [Γ(t+ τ) − 1

r
Γ(t+ 1 + τ)G1(t+ τ)]

τ−1∏
j=0

G1(t+ j),

and λm(t, τ) = λ(t, τ)S ′
m−1 �.

D.1 Competitive Benchmark Model

It is useful to contrast the behavior in the multi-market model with large investors with the
behavior of asset prices and trades in the same model when all investors are price takers and
can trade forever.
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In this infinite period set-up with competitive markets, the equilibrium risk-premium
should be time invariant. Denote this risk premium by ρ, where,

ρ =

(
ρ1

ρ2

)
=

(
Z̄1

Z̄2

)
=

(
P 1(t+ 1) + D̄1 − rP 1(t)
P 2(t+ 1) + D̄2 − rP 2(t)

)
(A107)

Note that Z̄2 is taken as exogenous. The goal is to solve for Z̄1 and P 1 that makes the
prices of the first group of assets (the ones that are illiquid in the imperfect competition
model) consistent with equilibrium in all time periods.

Solving the equation for P 1(t) forward while imposing the transversality condition limt→∞ r−tP 1(t) =
0, shows that

P 1(t) =
D̄1 − ρ1

r − 1

for all time periods t.

Given the hypothesized behavior of prices, it remains to solve for ρ1 and then to show
that the hypothesized behavior of prices is consistent with equilibrium.

The function,

Vm(W, t) = − r

r − 1
(r δ)

−1
r−1 exp−Am(1−(1/r))W− .5Z̄2 ′Ω−1

22 Z̄2

r−1
− .5ρ1′Ω−1

e ρ1

r−1

and the risk premium solution

ρ1 = Z̄1 = β12Z̄
2 + λ[X1]ΩeX

1, (A108)

where,

λ[X1] =
(1 − (1/r))∑M

m=1(1/Am)
(A109)

satisfies the Bellman equation,

Vm(W, t) = max
Cm(t),
Q1

m(t),
Q2

m(t)

−e−AmCm(t) + Et{δVm(W (t+ 1), t+ 1)},

such that,
W (t+ 1) = Q1

m(t)′Z1(t) +Q2
m(t)′Z2(t) + r[W (t) − Cm(t)].

In addition, in the competitive equilibrium, investors optimal choices of Q1
m are constant

through time, and are market clearing for the hypothesized ρ1. Investor m′s competitive
equilibrium holdings of Q1

m is denoted by Q1W
m and is equal to
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Q1W
m =

(1/Am)X1∑M
m=1(1/Am)

, m = 1, . . .M. (A110)

Substituting the hypothesized ρ1 into the expression for equilibrium P 1, it follows that
in a competitive equilibrium, the equilibrium price is given by

P 1(t) =
D̄1 − β12Z̄

2

r − 1
− ΩeX

1

r
∑M

m=1
1

Am

, t = 1, . . .∞ (A111)
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Table 1: IPO Under-Pricing and Under-Performance by Competitiveness: I.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

3543.26 2000 43.94 44.61 -0.67 -0.01 0.13
3543.26 1800 43.93 44.70 -0.78 -0.01 0.13
3543.26 1600 43.92 44.80 -0.88 -0.01 0.13
3543.26 1400 43.91 44.90 -0.99 -0.01 0.13
3543.26 1200 43.90 45.00 -1.10 -0.01 0.13
3543.26 1000 43.89 45.10 -1.21 -0.01 0.13
3543.26 800 43.88 45.20 -1.33 -0.01 0.13
3543.26 600 43.87 45.31 -1.45 -0.01 0.13
3543.26 400 43.85 45.42 -1.56 -0.01 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 54.56
3 Institutional 21.82
4 Institutional 8.73
5 Institutional 3.49
6 Institutional 1.40

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1800 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1600 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1400 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1200 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1000 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
800 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
600 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
400 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
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Table 2: IPO Under-Pricing and Under-Performance by Competitiveness II.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

2225.00 2000 44.00 44.00 0.00 0.12 0.13
2225.00 1800 44.00 44.00 0.00 0.12 0.13
2225.00 1600 44.00 44.03 -0.03 0.00 0.13
2225.00 1400 44.03 44.18 -0.16 -0.01 0.13
2225.00 1200 44.05 44.34 -0.29 -0.01 0.13
2225.00 1000 44.08 44.50 -0.42 -0.01 0.13
2225.00 800 44.11 44.67 -0.56 -0.01 0.13
2225.00 600 44.14 44.83 -0.70 -0.01 0.13
2225.00 400 44.16 45.00 -0.84 -0.01 0.13
2225.00 200 44.19 45.17 -0.98 -0.01 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 40.00
3 Institutional 12.50
4 Institutional 12.50
5 Institutional 12.50
6 Institutional 12.50

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 -19.50 35.60 35.60 35.60 35.60
1800 -100.00 -19.44 35.55 35.55 35.55 35.55
1600 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
1400 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
1200 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
1000 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
800 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
600 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
400 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
200 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
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Table 3: IPO Under-Pricing and Under-Performance by Market Competitiveness III.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

2100.00 2000 44.00 44.00 0.00 0.11 0.13
2100.00 1800 44.00 44.00 0.00 0.11 0.13
2100.00 1600 44.00 44.00 0.00 0.11 0.13
2100.00 1400 44.00 44.00 0.00 0.11 0.13
2100.00 1200 44.00 44.00 0.00 0.11 0.13
2100.00 1000 44.00 44.00 0.00 0.11 0.13
2100.00 800 44.00 44.00 0.00 0.11 0.13
2100.00 600 44.00 44.00 0.00 0.11 0.13
2100.00 400 44.00 44.00 0.00 0.04 0.13
2100.00 200 44.13 44.36 -0.23 -0.01 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 30.00
3 Institutional 30.00
4 Institutional 10.00
5 Institutional 10.00
6 Institutional 10.00

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000.00 -100.00 0.46 0.46 32.42 32.42 32.42
1800.00 -100.00 0.46 0.46 32.42 32.42 32.42
1600.00 -100.00 -0.13 -0.13 33.58 33.58 33.58
1400.00 -100.00 0.46 0.46 32.42 32.42 32.42
1200.00 -100.00 0.46 0.46 32.42 32.42 32.42
1000.00 -99.99 0.46 0.46 32.42 32.42 32.42
800.00 -100.00 0.46 0.46 32.42 32.42 32.42
600.00 -100.00 0.46 0.46 32.42 32.42 32.42
400.00 -100.00 66.67 66.67 -100.00 -100.00 -100.00
200.00 -100.00 66.67 66.67 -100.00 -100.00 -100.00
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Table 4: IPO Under-Pricing and Under-Performance by Market Competitiveness IV.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

1620.00 2000 44.00 44.00 0.00 0.11 0.13
1620.00 1800 44.00 44.00 0.00 0.11 0.13
1620.00 1600 44.00 44.00 0.00 0.11 0.13
1620.00 1400 44.00 44.00 0.00 0.11 0.13
1620.00 1200 44.00 44.00 0.00 0.11 0.13
1620.00 1000 44.00 44.00 0.00 0.11 0.13
1620.00 800 44.00 44.00 0.00 0.11 0.13
1620.00 600 44.00 44.00 0.00 0.11 0.13
1620.00 400 44.00 44.00 0.00 0.11 0.13
1620.00 200 44.00 44.00 0.00 0.11 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 18.00
3 Institutional 18.00
4 Institutional 18.00
5 Institutional 18.00
6 Institutional 18.00

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 11.11 11.11 11.11 11.11 11.11
1800 -100.00 11.11 11.11 11.11 11.11 11.11
1600 -100.00 11.11 11.11 11.11 11.11 11.11
1400 -100.00 11.11 11.11 11.11 11.11 11.11
1200 -100.00 11.11 11.11 11.11 11.11 11.11
1000 -100.00 11.11 11.11 11.11 11.11 11.11
800 -100.00 11.11 11.11 11.11 11.11 11.11
600 -100.00 11.11 11.11 11.11 11.11 11.11
400 -100.00 11.11 11.11 11.11 11.11 11.11
200 -100.00 11.11 11.11 11.11 11.11 11.11
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