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Abstract

The ratio of gold to platinum prices (GP) reveals persistent variation in risk and

proxies for an important economic state variable. GP predicts future stock returns in

the time-series, explains stock return variation in the cross-section, and is significantly

correlated with option-implied tail risk measures. Contrary to conventional wisdom,

gold prices fall in recessions, albeit by less than platinum prices. A model featuring

recursive preferences, time-varying tail risk, and preference shocks for gold and plat-

inum can account for asset pricing dynamics of equity, gold, and platinum, rationalize

the return predictability, and explain why gold prices fall in bad times.
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1 Introduction

“As gold’s unquenchable beauty shines like the sun, people have turned

to it to protect themselves against the darkness ahead.”

— Bernstein (2012), The Power of Gold: The History of an Obsession

Gold is one of the most important assets in financial markets and the global economy. As the

author Peter Bernstein summarizes above, gold is viewed as two things: it is a consumption

good (mostly jewelry) and it is also seen as something valuable in times of severe distress.

Platinum, on the other hand, is a precious metal with similar uses as gold in consumption.

Therefore, the ratio of gold to platinum prices should be largely insulated from shocks to

consumption and jewelry demand, and should instead reveal variation in risk and proxy for an

important economic state variable. In this paper, I examine this hypothesis by investigating

three main questions.

First, I ask whether the ratio of gold to platinum prices (GP) predicts future stock returns

in the time-series and explains variation in average stock returns in the cross-section. I

show empirically that GP is a strong predictor of future stock returns. A one standard

deviation increase in GP predicts a 6.4% increase in U.S. stock market excess returns over

the following year. GP outperforms nearly all existing return predictors, and is robust to

various econometric inference concerns highlighted in the literature. Gold and platinum are

actively traded around the world, and similar patterns of stock return predictability are

found in international markets. GP risk is priced in the cross-section of stock returns and

commands a negative market price of risk.

After discussing the main empirical results, examining the mechanism which drives the

results leads to my second question: Is gold a hedge? More specifically, do gold prices go

up in bad times?1 The answer, contrary to conventional wisdom, is no. Figure 1 plots real

gold (top panel) and platinum (bottom panel) prices alongside stock market valuations and

NBER recession indicators from 1975 - 2013.2 We see in the data that gold prices fall in

recessions, albeit by less than platinum prices. For example, in the 1981 - 1982 recession,

real gold prices fell 32% peak to trough, and in the recent 2008 - 2009 financial crisis real

1See e.g., Erb and Harvey (2013), Barro and Misra (2013).
2I focus exclusively on the post-gold standard era, where gold prices vary freely by a market mechanism.

While the “Nixon shock” of 1971 temporarily suspended convertibility of U.S. dollars into gold at $35 per
oz, a new peg was later put in place at $38 per troy oz, followed by $42.22. Gold convertibility was only
completely abolished by November 1973 (Lannoye (2011)). Executive Order 6102, put in place by President
Franklin Roosevelt in 1933, banned gold trading within the United States. This act was repealed by President
Gerald Ford in 1974 and took effect on December 31st, 1974. See Public Law 93-373.
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gold prices fell 22%. Unlike index put options or VIX futures, gold futures would not have

helped investors hedge downside risks during the crises. Not by coincidence, the real price

of platinum fell even more than gold, by 39% and 59% over the same periods, respectively.

To the extent that some investors view shocks to gold prices as short-lived, flight-to-liquidity

phenomena, I find that this is not the case. Shocks to GP do not correlate with shocks

to transient measures of liquidity risk such as the Pastor and Stambaugh (2003) factor,

and instead have a much longer half-life. Furthermore, GP is strongly associated with

option-implied measures of tail risk (crash insurance premium) including the slope of the

implied volatility curve for S&P 500 index options, and the Bakshi, Kapadia, and Madan

(2003) model-free risk-neutral skewness.3 These findings lead to my final question, which

is whether an extension of the time-varying disaster risk model (Wachter (2013)), which

features recursive preferences and stochastic disaster probabilities, can quantitatively explain

the time variation and return predictability of GP while simultaneously accounting for the

asset pricing dynamics of equity, gold, and platinum markets. The model is motivated by

the fact that, under no arbitrage, investors are indifferent between buying gold or leasing

gold in perpetuity (Barro and Misra (2013)).

I adopt a three-good model where agents derive utility from nondurable consumption as

well as service flows from gold and platinum, which are non-depreciating durable goods with

negligible outlays relative to nondurable consumption. In normal times, service flows from

gold and platinum (which can be thought of as jewelry) complement nondurable consumption

and are highly procyclical. However, when the probability of a consumption disaster is high,

agents display an increased preference for gold relative to platinum. This is motivated by

both historical and institutional reasons, since gold is viewed as financial collateral and is

formally recognized as such by the Basel Accords.4

The countercyclical benefits to physical ownership of gold and platinum are modeled in

reduced-form, using a pair of stochastic processes which are proportional to the probability

of a consumption disaster; no additional state variables are introduced. Gold is calibrated

to have greater countercyclical benefits than platinum, which is both consistent with the

historical and institutional facts and also allows the model to generate the low gold lease

rate and risk premium observed in the data.5 In the model, GP is insulated from shocks

3Tail risk is also known as jump risk, crash risk, or disaster risk depending on the literature.
4See e.g., Basel I (1988), Basel II (2004), and Basel III (2012). Gold is also accepted as collateral by

major derivatives exchanges and clearinghouses such as the CME and ICE Clear Europe, as well as large
broker dealers such as JP Morgan.

5Platinum is not eligible collateral under the Basel Accords, central banks are not known to hold platinum
reserves, and major financial institutions do not accept platinum as collateral.
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to consumption since they affect gold and platinum prices equally. Increases in disaster

probabilities raise risk premia, leading to higher discount rates and lower stock prices. Gold

and platinum prices fall as well because of strong discount rate effects, although gold prices

fall by less than platinum prices due to the higher countercyclical component of its service

flow. As a result, GP is high when stock prices are low and the equity risk premium is high,

giving GP the power to predict future stock returns. The model quantitatively captures

the key moments of gold and platinum returns, while remaining consistent with standard

asset pricing moments such as the equity premium and risk-free rate. This is achieved by

linking gold and platinum valuations to state variables in the time-varying disaster risk

model, which suggests that gold and platinum prices can largely be explained by the same

risk factors affecting stocks and bonds.

Barro and Misra (2013) study gold returns in a Lucas (1978) endowment economy with rare

consumption disasters. The authors match the low gold risk premium using a high elasticity

of substitution between gold service flow and nondurable consumption. This assumption

is can be refined for two reasons. First, viewing gold as jewelry suggests a complementary

rather than substitutable relationship: one cannot wear jewelry in place of consuming food,

but jewelry is highly valued when food is plentiful. Second, optimality conditions reveal that

the elasticity of substitution is inversely proportional to the degree of consumption leverage.

Following analysis similar to Wachter (2013), substitutability results in the counterfactual

prediction that gold lease rates fall (gold prices rise) when disaster probabilities increase.

This paper contributes to the literature on return predictability by demonstrating that GP,

a model-free measure available in real-time, is robust to, and in most cases outperforms,

existing forecasting variables including equity valuation ratios (in various forms), the de-

fault spread, term spread, inflation, implied cost of capital, consumption-wealth ratio, and

variance premium.6 The predictive power of GP is stable both out-of-sample and over sub-

samples, which alleviates concerns raised by studies such as Goyal and Welch (2008), who

show that many predictors such as valuation ratios have low forecasting performance out-of-

sample and unstable forecasting ability over sub-samples.

This paper also extends the growing literature on gold and gold lease rates. To my knowledge,

6Valuation ratios include the price-dividend ratio, price-earnings ratio, and net payout yield. References
include Campbell and Shiller (1988), Hodrick (1992), and Boudoukh, Michaely, Richardson, and Roberts
(2007). References for predictability using business cycle variables include Lintner (1975), Campbell (1987),
and Fama and French (1989). The implied cost of capital is studied by Pastor, Sinha, and Swaminathan
(2008) and Li, Ng, and Swaminathan (2013). The consumption-wealth ratio (CAY) is from Lettau and
Ludvigson (2001). References for variance premium predictability include Bollerslev, Tauchen, and Zhou
(2009) and Drechsler and Yaron (2011).
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Barro and Misra (2013) is the only other paper to value gold in an equilibrium model. Fama

and French (1988) analyze the behavior of metals prices over the business cycle based on the

Brennan (1958) theory of storage. While base metals such as aluminum and copper behave

as the theory of storage predicts, precious metals such as gold seem unresponsive; Fama

and French hypothesize that this is due to low storage costs for precious metals. Tufano

(1996) studies risk management practices in the gold mining industry. Schwartz (1997),

Casassus and Collin-Dufresne (2005), and Le and Zhu (2013) study gold lease rates (known

as “convenience yields” in the commodities literature) using dynamic term structure models.

Erb and Harvey (2013) examine various theories regarding gold returns, including whether

gold prices appreciate when stock prices fall. The authors find that, contrary to conventional

views of gold as a hedge, many of the largest S&P 500 declines were in fact associated with

falling gold prices.

Finally, this paper draws on the literature examining the impact of heavy-tailed shocks

to economic state variables on asset prices. Examples from the option pricing literature

include Bates (2000), Duffie, Pan, and Singleton (2000), Pan (2002), and Broadie, Chernov,

and Johannes (2007). Jurek (2014) discusses the impact of crash risk on currency carry

trade returns. Examples from the general equilibrium literature include the rare disasters

framework (Rietz (1988), Barro (2006), Gabaix (2012), Gourio (2012), Wachter (2013), Seo

and Wachter (2014)), as well as extensions of the Bansal and Yaron (2004) long-run risks

framework incorporating jumps in economic fundamentals (Eraker and Shaliastovich (2008),

Bansal and Shaliastovich (2011), Benzoni, Collin-Dufresne, and Goldstein (2011), Drechsler

and Yaron (2011)).

The paper proceeds as follows; data sources are discussed as the relevant sections are pre-

sented. Section 2 presents the empirical results on stock return predictability, the cross-

sectional evidence, and the relationship between GP and tail risk measures. Section 3 dis-

cusses key aspects of gold and platinum markets, focusing on sources of demand for each

metal, the leasing markets, and return dynamics. Section 4 presents the model. Section 5

discusses the model calibration and simulation results. Section 6 concludes.
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2 Empirical Results

2.1 Data Description

Gold and platinum prices are the monthly average of daily fixing prices from the London

Bullion Market Association (LBMA) and London Platinum and Palladium Market (LPPM),

respectively, from 1975 to 2013.7 Platinum fixing prices are available from April 1990; prior

to this, I use dealer prices from the U.S. Geological Survey.8 The log GP ratio is calculated

as the natural logarithm of the ratio of gold to platinum prices.9 My measure of U.S.

stock returns is the CRSP value-weighted index. The risk-free rate is the 1-month U.S.

Treasury bill rate. Figure 2 plots the time-series of GP (solid line) along with the price-

dividend ratio (dashed line). The average level of GP is below zero; gold trades at a 20%

discount to platinum on average, consistent with platinum being a much scarcer metal. GP is

strongly countercyclical and peaks during times of economic and financial distress including

all NBER recessions between 1975 - 2013, as well as the October 1987 stock market crash,

1998 Russian default and LTCM crisis, and 2011 U.S. debt ceiling crisis. Table 1 presents

summary statistics for all the predictors. With the exception of the variance premium and

inflation, all other predictors are quite persistent. The AR(1) coefficient for GP is 0.98,

which is inside the unit circle. Formally, a Dickey and Fuller (1979) stationarity test rejects

the null of a unit root for logGP at the 5% level. The high persistence of GP is in contrast

to the view that shocks to gold prices reflect transient phenomena. Innovations in GP are

uncorrelated with the Pastor and Stambaugh (2003) liquidity factor and also uncorrelated

with the Baker and Wurgler (2006) investor sentiment factor.

I compare the behavior of GP with various forecasting variables proposed in the literature,

which are described in Table 1. GP is countercyclical and strongly negatively correlated

with equity valuation ratios; GP is high when stock prices are low. The strong positive

correlation between GP and the default spread suggests that GP is high when firms with

low credit ratings are more likely to default. GP is positively correlated with the implied cost

of capital (ICC) since the cost of capital for firms is high in adverse economic conditions.

High values of CAY are associated with high risk premia, and accordingly we see a positive

correlation between GP and CAY . GP is not correlated with inflation (INFL); this is

7I use prices from the a.m. fixing, which is conducted at 9:45 a.m. GMT (for platinum) and 10:30 a.m.
GMT (for gold).

8The results are nearly unchanged using platinum prices directly obtained from Platts, which is a large
data vendor for the metals markets.

9I use the terms “GP” and “log GP” interchangeably unless otherwise noted.
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expected, since inflation equally affects both the numerator and denominator of the GP

ratio and cancels out.

2.2 Stock Return Predictability

Table 2 shows the main predictability result of the paper. I run the regression:

12

h

h∑
i=1

logRt+i − logRf
t+i = β0 + β1 logGPt + εt+h. (1)

Long-horizon returns are constructed from overlapping monthly returns. The top panel

uses ordinary least squares regression with Newey and West (1987) HAC robust standard

errors.10 At the 1 month horizon, the degree of predictability is fairly low with an R2 just

above 1%; however, the estimated slope is statistically significant with a 2.82 t-statistic.

We see similar patterns of predictability up to the 1 year horizon, which has an R2 of

16.57%. The bottom panel uses the vector autoregression (VAR) framework as in Hodrick

(1992), which is potentially more conservative for overlapping returns, although it imposes

parametric assumptions. The point estimates are very similar, although the R2 is lower (yet

still very large at 10.89% for the 1 year horizon) using the VAR. For longer horizons of 2 to

5 years, the estimated coefficients are still significant although the magnitude is decreasing.

The estimated coefficient on logGP for the one year horizon is 0.243, the standard deviation

of logGP is 0.266, so a one standard deviation increase in logGP is associated with a 6.4%

increase in U.S. stock market excess returns over the following year. For all horizons from 1

month to 5 years, the estimated slopes are statistically significant.

Table 3 shows the results of univariate predictability regressions for each of the predictors.

For short horizon returns (1 and 3 months), only GP, and the variance risk premium (V RP )

are statistically significant at conventional levels, with ICC significant at the 10% level.

At the intermediate 1 year horizon, GP, ICC, and V RP are strongly significant, while the

term spread (TMSP ) and INFL are marginally significant. At this frequency, GP has the

highest R2 of all predictors. For long horizon (e.g. 5 year) returns, GP is still significant,

while valuation ratios, CAY , and TMSP are also significant.

10I also conduct a robust check using Hodrick (1992) standard errors and confirm that the results are not
sensitive to the choice of standard errors.
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How does GP stack up against the other predictors in a horse race? The regression is:

12

h

h∑
i=1

logRt+i − logRf
t+i = β0 + β1 logGPt + β2Xt + εt+h (2)

where Xt is another predictor. Table 4 shows the results for 1 and 3 month horizons.11 At

short horizons, V RP is known to be a strong predictor, as seen in Table 3. This supports

the findings of Bollerslev et al. (2009) and Drechsler and Yaron (2011) on more recent data.

However, in Table 4 we see that GP is still significant, even after controlling for V RP .

Similar results hold for the 3 month horizon. Table 5 shows the results for long horizon

returns. In most cases, GP drives out the significance of the other predictor, with the

exception of INFL at the 1 year horizon and ICC, TMSP , and CAY (marginally) at

the 5 year horizon. Including alternative predictors leaves the magnitude of the coefficient

on GP largely unchanged. The evidence suggests that GP is robust to and in most cases

outperforms other forecasting variables proposed in the literature.

Goyal and Welch (2008) argue that predictors such as the price-dividend ratio do not perform

well out-of-sample. I test out-of-sample robustness using Out-of-Sample R2. If GP is a

robust predictor, Out-of-Sample R2 should be significantly greater than zero and similar to

its in-sample counterparts. The statistic is given by:

R2
OS = 1−

T−m∑
k=1

(rem+k − r̂em+k)
2

T−m∑
k=1

(rem+k − rem+k)2

. (3)

I calculate R2
OS using both an expanding window and a rolling window. In both cases, I

estimate equation (1) in the estimation period, compute the squared prediction error over

the next period and increment my time step. An expanding window uses more available

data, while a rolling window better accounts for potential time variation in the predictive

relationship. I consider standard window lengths of 120 months and 180 months to estimate

betas, and predict the return in the next period. The p-values are from the Clark and West

(2007) adjusted-MSPE statistic:

ft+1 = (rt+1 − rt+1)2 −
[
(rt+1 − r̂t+1)2 − (rt+1 − r̂t+1)2

]
which is regressed against a constant and the test is a one-sided test of whether R2

OS > 0.

11For bivariate regressions as well, the results using the Hodrick (1992) VAR methodology are similar.
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Table 6 shows the results from the out-of-sample analysis. With the exception of the 1 month

horizon rolling 10 year window regressions, all other combinations of forecast horizons and

methods give large, positive, and significant out-of-sample R2 values. The pattern of R2 as

we increase the forecast horizon are similar between rolling and expanding methods. Goyal

and Welch (2008) find that for predictors such as the price-dividend ratio, the predictive

ability is diminished in out-of-sample tests. For GP, the out-of-sample R2 are significantly

greater than zero and similar to the in-sample R2. Figure 3 shows the estimated slopes

and 95% error bands for both rolling and expanding methods with either 120 or 180 month

windows for 2 year-ahead predictive regressions. We see that the estimates are stable, never

change signs, and are statistically significant in nearly all sub-samples, which suggests that

the return predictability by GP is robust both out-of-sample and over sub-samples. In

Appendix A1, I show that GP is robust to finite-sample bias (Stambaugh (1999)) and test

size distortions (Torous, Valkanov, and Yan (2004)).

Gold and platinum are globally traded assets, which suggests that GP should also predict

future stock returns in international markets. I run the same predictive regressions as in

equation (1) using the MSCI World Index, which is a U.S. dollar denominated index com-

posed of stocks from 23 Developed Markets countries covering approximately 85% of the free

float-adjusted market capitalization in each country. Since the index is dollar denominated,

I use the U.S. Treasury bill rate as the risk-free rate. Table 7 shows that the patterns of pre-

dictability are very similar to the U.S. results: high GP predicts high future excess returns,

although the coefficients are somewhat smaller in magnitude than for U.S. returns. Since

there may be some concern that the world portfolio consists of a large proportion of U.S.

stocks, I also run the same predictability regressions for other developed countries. Panel

B of Table 7 reports the results for the U.K., Switzerland, Japan, and Sweden. I use the

MSCI country indices for each of these countries, denominated in the local currency. The

risk-free rate is the local currency treasury bill rate. The results for the U.K., Switzerland,

and Sweden are nearly the same as for the U.S., while Japan shows significant predictability

in terms of the magnitude of estimated slopes, albeit smaller t-statistics (significant at the

10% level) and somewhat lower R2. The results suggest that GP predicts future excess stock

market returns for the U.S. market as well as international markets, which also mitigates

potential concerns about data snooping (Ang and Bekaert (2007)).
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2.3 Dividend Growth Predictability

I have argued that stock return predictability by GP is driven by time variation in risk premia

and not from news about future dividend growth rates. Some may argue that platinum has

a characteristic not shared by gold: it is demanded by the automotive industry for catalytic

converters.12 Is it possible that it is actually bad news about the future cash flows of car

makers (GP is low when platinum is expensive, which is bad news for future cash flows of car

makers) that drives the predictability through a cash-flow channel? I run standard dividend

growth predictive regressions similar to Cochrane (2008) on real dividend growth rates (∆dt)

and real earnings growth rates (∆et):

12

h

h∑
i=1

∆dt+i = β0 + β1 logGPt + εt+h

12

h

h∑
i=1

∆et+i = β0 + β1 logGPt + εt+h.

(4)

The results in Table 8 show no evidence of dividend growth predictability by GP.13 For

dividend growth, none of the estimated slopes from 1 year to 5 year horizons are statistically

different from 0, and the R2 are all nearly zero. For earnings growth, the R2 are slightly

higher but the t-statistics suggest the slopes are not significantly different from zero. This is

evidence that the predictability I document arises because of variation in risk premia rather

than dividend growth.

2.4 GP and the Cross-Section of Stock Returns

I examine the implications of GP risk for the cross-section of stock returns. As seen earlier,

GP is countercylical and increases in times of economic distress. Stocks with high, positive

covariation with GP innovations are therefore a good hedge against adverse states of high

economic risk and low asset valuations, which suggests that GP should command a negative

market price of risk in the cross-section. I estimate the risk exposures (betas) for each asset

i = 1, ..., N from time-series regressions

Re
i,t+1 = ci + βi,∆gp∆ logGPt+1 + εi,t+1 (5)

12I discuss autocatalyst demand of platinum in Section 3.
13The earnings data is from Robert Shiller’s website.
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where Re
i,t+1 is the excess return for portfolio i and ∆ logGPt+1 = logGPt+1 − Et [logGPt]

is the innovation in GP from an AR(1) model.14 The slope coefficient βi,∆gp represents the

portfolio exposure of asset i to GP risk. In order to estimate the cross-sectional market price

of risk associated with GP, I run a cross-sectional regression of time-series average excess

returns on the risk exposures

E
[
Re
i,t+1

]
= cons + βi,∆gpλ∆gp + υi (6)

which yields estimates of the market price of risk λ∆gp. I use the standard cross-section of

ten portfolios sorted on the book-to-market ratio and ten portfolios sorted on size as my test

assets. The data is monthly from 1975 - 2013. Recall that GP is constructed without any

information from equity markets, which rules out any mechanical relationship between GP

risk and the cross-section of stock returns. Furthermore, the parsimonious one-factor model

avoids many statistical issues present in asset pricing tests that can mechanically produce

high explanatory power. Panel A of the Table 9 shows that the market price of GP risk

is significantly negative. Panel B of the Table further shows that the portfolio returns are

all significantly and negatively exposed to GP risk; equity prices fall contemporaneously

when GP increases. The one-factor model featuring only GP risk can explain over 60%

of the cross-sectional variation in average returns. Figure 4 graphically depicts the strong

negative relationship between average excess returns and risk exposures (Panel A), and

correspondingly the fit between realized and model-predicted excess returns (Panel B). The

cross-sectional results suggest that investors are willing to pay a premium for assets which

hedge against increases in GP; in other words, the high-risk states which investors dislike

are those associated with high GP.

2.5 GP and Tail Risk

The evidence so far shows that 1) GP is countercyclical and increases in times of economic

distress, 2) GP positively predicts future stock market excess returns, 3) GP risk is negatively

priced in the cross-section, and 4) GP is high when the default spread is high, which is when

firms with low credit ratings have higher probability of default. A plausible interpretation

consistent with these results is that GP captures tail risk in the economy. This is broadly

consistent with the findings of Manela and Moreira (2014), who use machine learning tech-

niques to quantify tail risk (disaster concerns) from newspaper headlines: “gold” is one of the

top words which explains variation in investors’ tail risk concerns. GP is persistent, which is

14The results using first differences are nearly identical.
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consistent with the evidence of persistent tail risk in Kelly and Jiang (2014). Options are an

ideal way to measure tail risk because their convex payoff structures contain rich information

about the tail distribution of returns. I extract tail risk measures from options markets and

investigate the association between GP and tail risk.

Out-of-the-money (OTM) index put options protect against stock market crashes. The slope

of the implied volatility curve, defined as the implied volatility of an OTM put minus the

implied volatility of an at-the-money (ATM) put with the same maturity, is a measure of tail

risk in the economy (Pan (2002)). In the data, the implied volatility curve slopes upward

to the left since OTM puts are relatively more expensive (Rubinstein (1994)). I take the

implied volatility curve from OptionMetrics and define SLOPE∆
t as the implied volatility

for an OTM put option between 20∆ to 40∆, which I subtract from the implied volatility of

an ATM put (50∆).15 The encompassing regression is:

SLOPE∆
t︸ ︷︷ ︸

σOTM,∆t,IV −σATMt,IV

= β0 + β1 logGPt + β2σ
ATM
t,IV + εt.

(7)

To control for potential dependence of the slope on the level of implied volatility, I also

control for σATMt,IV on the right hand side of (7). Panel A of Table 10 shows the results. We

see that GP is significant for all definitions of the implied volatility slope, both by itself and

after controlling for the level of ATM implied volatility. The magnitude of the coefficients as

well as the t-statistics and R2 increase as the OTM put is further out-of-the-money (more

tail risk). An alternative measure of tail risk is the Bakshi et al. (2003) model-free risk-

neutral skewness. Bakshi and Kapadia (2003) and Jurek (2014) use this measure as a proxy

for crash risk; more negative skewness is associated with more crash risk. The results in

Panel B of Table 10 are similar to the results in Panel A: high GP is associated with more

negative risk-neutral skewness and GP is significant even after controlling for the risk-neutral

variance.

3 Gold and Platinum Markets

I examine key aspects of gold and platinum markets, including sources of demand for each

metal, the leasing markets, and return dynamics. Understanding the leasing markets is

important because no-arbitrage implies that investors are indifferent between buying gold

15∆ can be interpreted as the risk-neutral probability of expiring in-the-money. Lower ∆ options are
further out of the money.
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(platinum) or leasing gold (platinum) in perpetuity. Understanding the variation in rental

income will be important for the economic model and to compute gold and platinum returns.

3.1 Sources of Demand

Figure 5 shows the annual percentage demand for gold (top panel) and platinum (bottom

panel) for each of its major uses.16 From 1990 - 2013, approximately 70% of gold demand was

for jewelry, 15% for uses in technology (semiconductors, electronics), and 15% for investments

(coins, bars, ETF inventory building). Over the same period, approximately 40% of platinum

demand was for jewelry, 15% for technology, while only a small fraction (less than 5%) was

demanded for investment purposes. Quite conspicuously, the biggest difference between

the two metals comes from the 40% of platinum demand used by the automotive industry

as catalytic converters to reduce emissions in automobiles (autocatalysts).17 Demand for

platinum as autocatalysts was spurred by clean air legislation in the 1970s - securing sufficient

supplies of platinum at stable prices became essential for car makers. Black (2000) (Chapter

6) describes the long-term arrangements made between platinum producers and car makers:

“With the introduction of autocatalysts...producers entered into long term sup-

ply contracts with the auto manufacturers. Prices were negotiated on contracts

lasting up to five years”.

The private sale of platinum directly from producers to car makers means the amount of

platinum used in auto production does not enter the market. Therefore, net autocatalyst

demand acts as a negative platinum supply shock since it reduces the supply of platinum

available for other uses.18 Under this view, the major source of demand for gold and platinum

comes from the jewelry industry.19

16The data for gold is from Thomson-Reuters GFMS, and the data for platinum is from Johnson Matthey.
17While beyond the scope of this paper, Black (2000) (Chapter 5) provides an overview of the process by

which platinum group metals catalyse the oxidation of hydrocarbons and carbon monoxide from internal
combustion engines.

18This is not to say platinum prices are not affected by autocatalyst demand. The question is whether
autocatalyst demand shocks represent a priced source of risk and affect aggregate stock market risk premia.
I find that autocatalyst demand measures do not predict future stock market excess returns.

19I use the term “jeweler” to refer to gold and platinum fabricators.
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3.2 Lease Rates

Not surprisingly, jewelers are among the most active borrowers of gold and platinum. The

LBMA and LPPM describe the leasing market:

“The inventory loan is the basic financial tool of the precious metals fabricat-

ing [industry]. For example, jewellery manufacturers can finance the raw material

in their production process by leasing gold...The same kind of strategy would, for

example, be adopted in platinum”.

Leasing is a form of inventory financing widely practiced in both gold and platinum fabrica-

tion industries (LBMA and LPPM (2008)). Le and Zhu (2013) find that over the 1991 - 2007

sample, which purposely excludes the 2008 financial crisis to focus on normal time dynamics,

gold lease rates are increasing in stock market returns. This is consistent with Aı̈t-Sahalia,

Parker, and Yogo (2004) who document strong positive covariation between stock returns

and demand for luxury goods (jewelery is generally considered a luxury good). In normal

times, gold lease rates are procyclical: as stock returns go up, jewelers have increased need for

raw materials to meet high demand for finished products and increase their gold borrowing,

which drives up gold lease rates.

The picture is different in times of economic distress. Figure 6 plots annualized gold lease

rates from 2007 - 2009. While gold lease rates are about 1% on average, the cost of borrowing

gold during the financial crisis jumped up threefold and high gold lease rates persisted

throughout the crisis. This is much greater than the observed decline in gold prices during

this period, which implies the rental income (economic value of holding gold) must have been

very high during the crisis. Several factors lead to countercyclical behavior of lease rates in

bad times. In severe economic conditions, lenders fear default by borrowers and decrease

the supply of loans, which increases the cost of leasing precious metals (LBMA (2009)).

Furthermore, to the extent that there are greater benefits to service flows from holding gold

relative to platinum in bad times (for historical and institutional reasons discussed in the

introduction), gold lease rates will increase by more than platinum. In bad times, risk premia

are high, which raises discount rates and lowers stock market valuations. Gold and platinum

prices both fall due to strong discount rate effects, although gold prices fall by less than

platinum prices since the fall in gold prices is cushioned by higher expected rental income.

This reinforces why I use GP as a measure of risk in the economy, since it isolates the hedging

demand for gold as a safe asset away from the consumption demand for gold as jewelry.
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3.3 Gold and Platinum Returns

Previous studies of gold returns (see e.g., Erb and Harvey (2013), Barro and Misra (2013))

focus only on the price appreciation of gold and do not include the rental income over the

ownership period. While Barro and Misra (2013) are correct in stating that gold dividends

(rental income) are not directly observable given spot prices alone, we can compute and

monetize rental income through the futures market.

Gold and platinum futures data comes from the commodities division (COMEX) of the CME

(formerly NYMEX).20 Following the literature, I ignore mark-to-market of futures, and also

the delivery options embedded in futures with physical settlement. I assume that futures

contracts will roll in the first week of the expiration month; it is estimated that only 1% to 2%

of commodities futures contracts are actually delivered, so this approach should not result

in too much measurement error (Hirschey and Nofsinger (2008), Chapter 19). I examine

the resulting contract maturities and verify that the maturities are relatively constant. The

lease rate is given by:

Lease rate = Libor rate - Futures premium. (8)

For my analysis, I use futures contracts closest to 3 months to maturity, and match it with

the 3 month Libor rate to calculate the lease rate, which I then annualize.21 I choose 3 month

maturities to get a contract with high liquidity, short time-to-maturity, yet not too short so

that the physical delivery option does not affect prices too much. I use average daily futures

prices as the monthly futures price, to be consistent with my measure of spot prices. Real

gold and platinum returns (inclusive of rental income) are calculated in the standard way:

Rreal, gold
t+1 =

(
P gt+1

CPIt+1
+

Dgt+1

CPIt+1

)
(

P gt
CPIt

)
Rreal, platinum
t+1 =

(
Pxt+1

CPIt+1
+

Dxt+1

CPIt+1

)
(

Pxt
CPIt

)
(9)

where P g
t is the gold price, P x

t is the platinum price, Dg
t is the gold rental income at time

t, and Dx
t is the platinum rental income at time t, and CPIt is the consumer price index.22

20The data is obtained from the Commodities Research Bureau (CRB) and are daily settlement prices
direct from the exchange.

21Prior to 1986, I use Eurodollar deposit rates.
22I use superscript g to refer to gold, and superscript x to refer to platinum.
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The returns to gold and platinum can be interpreted from the perspective of an investor who

owns gold or platinum, and continuously leases the metal out, earning the rental income

and any price appreciation. The results are summarized in Table 11. Average gold excess

returns are 2.40% per year, real gold return volatility is 16.76%, implying a Sharpe ratio of

0.14. Average platinum excess returns are 6.51% per year, real platinum return volatility is

22.18%, implying a Sharpe ratio of 0.29. For comparison, over the same period, the average

excess return for U.S. equities is 7.53% per year, real equity return volatility is 15.11%. The

gold risk premium is substantially lower than the equity risk premium. The risk premium

for platinum is slightly lower than equities as well, although the volatility is higher. Gold

lease rates are 1% per year on average. For comparison, Casassus and Collin-Dufresne (2005)

estimate the gold lease rate to be 0.9% per year, while Le and Zhu (2013) find an average

lease rate of about 1%. My estimate of the average platinum lease rate is 3.47% per year.

The economic model must match the low risk premium, high volatility, and low lease rate

of gold. At the same time, the model must also capture the relatively high risk premium,

high volatility, and high lease rate of platinum, while fitting the asset pricing dynamics of

equity markets, the risk-free rate, and quantitatively accounting for the time variation and

stock return predictability of GP observed in the data.

4 Economic Model

4.1 Economic Environment

I analyze whether a general equilibrium model featuring time-varying disaster risk (Wachter

(2013)) and shocks to preferences for gold and platinum can jointly explain the empirical facts

documented in the previous sections. I assume an endowment economy with complete mar-

kets and an infinitely-lived representative investor with Duffie and Epstein (1992) stochastic

differential utility, which is the continuous-time analog of Kreps and Porteus (1978) and

Epstein and Zin (1989) recursive preferences. Recursive preferences allow for a separation

between risk aversion and the intertemporal elasticity of substitution (IES).23 I focus on

the case of unit IES, which is done both for tractability, and consistent with evidence in

Vissing-Jørgensen (2002) and Hansen, Heaton, Lee, and Roussanov (2007).

23A number of studies such as Bansal and Yaron (2004) argue that the IES should be greater than one.
Others, such as Hall (1988) estimate IES to be significantly less than one, although time-varying consumption
volatility can lead to large downward biases in the estimates of IES using the methodology employed in Hall
(1988).
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Aggregate consumption growth is given by

d logCt = ḡcdt+ σcdW
c
t + J ct dN

c
t (10)

where W c
t is a standard Brownian motion and N c

t is a Poisson process whose intensity λt is

given by a Cox, Ingersoll, and Ross (1985) square root process

dλt = κλ(ξt − λt)dt+ σλ
√
λtdW

λ
t + Jλt dN

λ
t (11)

where W λ
t is a standard Brownian motion and Nλ

t is a Poisson process whose intensity is

given by λλt = λt.
24 Drechsler and Yaron (2011) use a similar framework to model jumps in

expected consumption growth and volatility.25 Allowing λt to jump allows stock prices and

volatility in the model to jump as well.26 I solve for the stationary mean of λt in Appendix

A2. λt can be approximately interpreted as the probability of a consumption disaster.27 In

the model, market volatility is endogenously determined, and evidence from the volatility

estimation literature argues in favor of multiple time scales in volatility allowing for both

long and short run components.28 Also, as Seo and Wachter (2014) demonstrate, a one-

factor model without time-variation in the long-run mean of λt generates the counterfactual

prediction that the slope of the implied volatility curve decreases as the disaster intensity

increases. This arises because stock return volatility is endogenously determined and is

driven by λt itself. To relieve this tension, and consistent with the evidence from the volatility

estimation literature, I follow Seo and Wachter and allow the long-run mean of λt to be a

stochastic process ξt, which itself follows a square root process

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdW

ξ
t (12)

where W ξ
t is a standard Brownian motion. All Brownian motions and Poisson processes are

assumed to be independent.

The size of the consumption jump, J ct is drawn from the multinomial disaster distribution

of Barro and Ursua (2008), using data obtained from Robert Barro’s website. The size of

24Nowotny (2011) considers the implications of self-exciting intensity processes to model persistent disaster
states. My setup differs since realized jumps in consumption do not trigger increases in λt.

25For parsimony, I do not distinguish explicitly between Xt− and Xt in my notation, as it should be clear
from the context.

26This is consistent with the evidence in Duffie et al. (2000), Broadie et al. (2007), Eraker and Shaliastovich
(2008), and Tauchen and Todorov (2011).

27The probability of k jumps over an interval of time ∆t ≈ eλt∆t (λt∆t)
k

k! .
28See e.g., Chernov, Gallant, Ghysels, and Tauchen (2003).
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the jump in λt is given by Jλt , which follows an exponential distribution with mean µλ.

Equity is modeled as a leveraged claim on aggregate consumption following Abel (1999).

The aggregate dividend at time t is Dt = Cφ
t , for leverage parameter φ, which implies that

dividend growth dynamics are given by

d logDt = φḡcdt+ φσcdW
c
t + φJ ct dN

c
t . (13)

4.2 Gold and Platinum Supply

Gold and platinum do not depreciate, and consumption of the service flow from the stock of

gold and platinum today does not render it less capable of providing the same service flow

tomorrow. I model gold and platinum as non-depreciating durable goods. This means that

the time t aggregate stock of gold and platinum increase one-to-one with the time t increment

(accumulation) to the stock (Cuoco and Liu (2000)). In Appendix A3, I use data from world

gold and platinum mine production to establish the properties of the gold and platinum

endowment processes. The key stylized facts are: 1) the log growth rates of the aggregate

per-capita gold and platinum stocks are smooth with no evidence of disasters, and 2) the

aggregate per-capita gold and platinum stocks are cointegrated.29 Given these facts, I model

logGt (the aggregate stock of gold) using a simple geometric Brownian motion which is not

subject to disasters. Consistent with the empirical evidence, logGt and logXt (the aggregate

stock of platinum) are modeled as cointegrated processes so that logXt − logGt = logZt is

a stationary process which itself follows an Ornstein-Uhlenbeck process with long-run mean

µz and reversion parameter θz:

d logGt = µgdt+ σgdW
g
t

d logZt = θz (µz − logZt) dt+ σzdW
z
t

logXt = logGt + logZt.

(14)

All parameters for the gold and platinum supply dynamics are directly estimated from the

data.

29Barro and Misra (2013) also find no evidence of disasters in the per-capita gold stock, using data since
1836.
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4.3 Preferences

The representative investor’s utility function is defined recursively as

Vt = Et
[∫ ∞

t

f(Ωs, Vs)ds

]
for f(Ω, V ) = δ(1− γ)V

[
log Ω− 1

1− γ
log (1− γ)V

]
and Ωt =

[
C

1− 1
ε

t + αtG
1− 1

ε
t + βtX

1− 1
ε

t

] 1

1− 1
ε

(15)

where f(Ω, V ) describes the trade-off between current consumption Ωt and the continuation

utility Vt. The subjective time preference parameter is δ, and γ is commonly interpreted as

the coefficient of relative risk aversion.

The consumption aggregator Ωt is a constant elasticity of substitution (CES) aggregator

over nondurable consumption Ct, the gold stock Gt, and the platinum stock Xt.
30 The

intratemporal elasticity of substitution is ε.31

The processes αt and βt capture in reduced-form time-varying preferences for gold and plat-

inum:

αt = exp(a1 + a2λt)

βt = exp(b1 + b2λt).
(16)

Specifically, αt and βt represent the relative importance of gold and platinum service flows

in the intratemporal consumption aggregator. Preference for precious metals responds to

changes in λt but not directly to ξt, since λt is the probability of a consumption disaster.

While the processes αt and βt gives me some additional flexibility, they depend completely

on existing state variables and no new state variables are being added. The parameter a2

(and b2) cannot be arbitrarily set. We want a relatively high value of a2 to generate enough

countercyclical dynamics to match the low observed gold risk premium. However, when a2

is too high, gold return volatility becomes too low, and gold lease rates will also be too

low. Additionally, existence of solutions for gold and platinum price-dividend ratios places

restrictions on the maximum a2 and b2 allowed, and this bound jointly depends on model

30The agent derives utility from gold and platinum service flows in direct proportion to its stock. This is
a standard way to model preference for multiple types of goods, which has been used in the durable goods
literature by Ogaki and Reinhart (1998) and Yogo (2006).

31I use a CES aggregator with the same elasticity of substitution across all pairs of goods for parsimony
and tractability relative to a specification with nested CES aggregators and separate elasticities.
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parameters such as the volatility and persistence of state variables, the severity of jumps,

and risk aversion. Changing these parameters to allow for high a2 will affect equity market

and risk-free rate dynamics as well.

4.4 Asset Pricing

Duffie and Skiadas (1994) show that

πt = exp

(∫ ∞
0

fV (Ωs, Vs)d

)
fΩ(Ωt, Vt)

can serve as the state-price density in this economy. Following Barro and Misra (2013), I

assume that outlays on gold and platinum are negligible relative to nondurable consumption,

which implies that Ωt ≈ Ct. Under this assumption, the equilibrium relationship between Vt

and the state variables is given by

Vt =
C1−γ
t

1− γ
ea+bλλt+bξξt .

where η = −δ(a + 1) and a, bλ, bξ are the solutions to a system of equations given in

Appendix A4. The state price density is then given by

πt ≈ exp(ηt− δbλ
∫ t

0

λsds− δbξ
∫ t

0

ξsds) δ C
−γ
t ea+bλλt+bξξt . (17)

I make the assumption of negligible outlays both for tractability and for economic reasons.

The levels of αt and βt are small because per-capita expenditures on gold and platinum

are small compared to expenditures on nondurable goods and services. When the CES

aggregator is over multiple sources of consumption with large expenditure shares, such as

nondurable and durable consumption or housing, this approximation will become wildly

inaccurate; for example, Gomes, Kogan, and Yogo (2009) estimate the expenditure share

of durable goods to be 50%, in which case this assumption would not be innocuous. In

economic terms, the assumption implies that shocks to the supply of gold and platinum are

unpriced. A mine shutdown in South Africa, for example, would affect gold and platinum

prices, but would conceivably not affect aggregate stock market risk premia, which seems

economically plausible. Going forward, I will assume that the approximation is accurate and

describe the dynamics of the stochastic discount factor in (17) with an equality sign.
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The instantaneous risk-free rate is given by

rft = δ + (ḡc +
1

2
σ2
c )− γσ2

c + λtEv
[
e(1−γ)Jct − e−γJct

]
.

I follow Barro (2006) and Wachter (2013) and suppose that if a disaster occurs, the gov-

ernment will default on debt obligations with probability q, leading to a loss in the same

proportion as the consumption loss in the disaster.

The user costs (rental income) of gold and platinum are determined in equilibrium by the

intratemporal optimality conditions:

Qg,t =
ΩG

ΩC

= αt ×
(
Ct
Gt

) 1
ε

︸ ︷︷ ︸
countercyclical × procyclical

Qx,t =
ΩX

ΩC

= βt ×
(
Ct
Xt

) 1
ε

︸ ︷︷ ︸
countercyclical × procyclical

(18)

where Qg,t is the user cost of gold and Qx,t is the user cost of platinum. Notice from equation

(18) that the intratemporal elasticity of substitution ε behaves like the inverse of the leverage

parameter φ, since shocks to gold and platinum supply are small and unpriced. When 1
ε
< φ,

gold and platinum will be safer than levered equity and command a lower risk premium, while

the opposite will be true if 1
ε
> φ. Lower values of ε lead to higher risk premia and volatility

for gold and platinum returns, and also imply greater complementarity between nondurable

consumption, gold, and platinum. Barro and Misra (2013) set ε > 1, which makes gold less

risky than unlevered equity. The authors use this mechanism to generate a low gold risk

premium. However, as Wachter (2013) points out, under recursive preferences, when φ < 1

(in this case, ε > 1) the price-dividend ratio is increasing λt. The same result holds in my

model since gold and platinum supply shocks are unpriced. This means that under the Barro

and Misra (2013) assumption that ε > 1, the model would predict that gold lease rates fall

(gold prices rise) when the probability of a disaster increases, which is counterfactual in light

of Figures 1 and 6. Intuition suggests ε < 1 is more reasonable if we view gold and platinum

as jewelry, since jewelry complements nondurable consumption but does not substitute for

it. Furthermore, ε > 1 results in gold return volatility being too low because in this case

gold becomes a deleveraged consumption claim. In my calibration, I fix ε = 1
φ

so that all the

countercyclical properties of gold and platinum arise through αt and βt.

Let Pt be the price of a claim to the stream of dividends Dt, and P t+τ
t be the price of the
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asset which pays the single risky dividend Dt+τ and nothing else. No arbitrage implies that

πtP
t+τ
t is a martingale, which implies that the equity price-dividend ratio is given by

Pt
Dt

=

∫ ∞
0

eaφ(τ)+bφ(τ)λt+cφ(τ)ξtdτ = G(λt, ξt). (19)

Similar arguments hold for Pg,t and Px,t, which are the claims to gold and platinum, respec-

tively:

Pg,t
Qg,t

=

∫ ∞
0

eag(τ)+bg(τ)λt+cg(τ)ξtdτ = Gg(λt, ξt)

Px,t
Qx,t

=

∫ ∞
0

eax(τ)+bx(τ)λt+cx(τ)ξt+dx(τ) logZtdτ = Gx(λt, ξt, logZt).

(20)

The equity functions aφ(τ), bφ(τ), cφ(τ), gold functions ag(τ), bg(τ), cg(τ), and platinum

functions ax(τ), bx(τ), cx(τ), dx(τ) are given by the solution to systems of ordinary differ-

ential equations described in Appendix A4.

4.5 GP in the Model

While I use the exact log GP ratio in my model simulations, a log-linearization conveys the

economic intuition more clearly.32

In Appendix A5, I show that we can write log-linearized gold (Pg,t) and platinum (Px,t)

prices as

logPg,t = Ag +
1

ε
logCt −

1

ε
logGt + (a2 + b∗g,λ)︸ ︷︷ ︸

<0

λt + b∗g,ξ︸︷︷︸
<0

ξt

logPx,t = Ax +
1

ε
logCt −

1

ε
logGt + (b2 + b∗x,λ)︸ ︷︷ ︸

<0

λt + b∗x,ξ︸︷︷︸
<0

ξt + (b∗x,Z −
1

ε
)︸ ︷︷ ︸

<0

logZt
(21)

where Ag, Ax, b
∗
g,λ, b

∗
g,ξ, b

∗
x,λ, b

∗
x,ξ, b

∗
x,Z are constants described in Appendix A5. Positive shocks

to logCt imply higher service flows and raise gold and platinum prices. The increase is greater

32The exact log GP ratio is given by

logGPt = log
Pg,t
Px,t

= log
Gg(λt, ξt)

Gx(λt, ξt, logZt)

Qg,t
Qx,t

= (a1 − b1) + log
Gg(λt, ξt)

Gx(λt, ξt, logZt)
+ (a2 − b2)λt +

1

ε
logZt.
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than the increase in consumption itself because of complementarity between nondurable

consumption and gold and platinum service flows (1
ε
> 1). High logGt lowers gold prices since

the quantity of gold becomes less scarce, and also lowers platinum prices due to cointegration.

Higher logZt means that (all else equal) the quantity of platinum is less scarce, which also

lowers platinum prices. Under my model calibration, strong discount rate effects imply that,

despite a2, b2 > 0, the overall response of gold and platinum to increases in λt and ξt are

negative, so that gold and platinum prices fall as disaster risks increase.

The log GP ratio is the difference between the log gold and platinum prices and is given by

logGPt = log
Pg,t
Px,t

= cons + (
1

ε
− b∗x,Z)︸ ︷︷ ︸
>0

logZt + (a2 − b2 + b∗g,λ − b∗x,λ)︸ ︷︷ ︸
>0

λt + (b∗g,ξ − b∗x,ξ)︸ ︷︷ ︸
>0

ξt.
(22)

Shocks to logCt (which can be thought of as shocks to jewelry demand) affect gold and

platinum prices equally, leaving GP insulated from consumption shocks. Likewise, shocks

to logGt alone also cancel out and only the relative difference in supply logZt matters for

GP. Platinum is more expensive than gold on average because logXt < logGt on average

(platinum is more scarce). When logZt goes up, gold becomes scarce relative to platinum,

which increases GP. In the model, GP is increasing in both λt and ξt.
33 High disaster

probabilities imply high risk premia, which leads to high discount rates and low equity

prices. Since a2 and b2 are positive, the service flows from gold and platinum increase when

disaster probabilities increase, which partially offsets the higher discount rates and cushions

the fall in prices. This works similar to a cash flow effect, where the cash flow represents

gold and platinum rental income. Furthermore, a2 > b2 implies that the higher service flow

is greater for gold relative to platinum, which not only affects the immediate service flow but

also expected future service flow (rental income) through persistence in disaster probabilities.

This means that gold and platinum prices both fall as disaster probabilities increase, but

gold prices fall by less relative to platinum and GP is increasing in the disaster probabilities.

The fact that GP increases in λt and ξt allows the model to generate the observed return

predictability at both long and short horizons.

The logZt term is not priced by the stochastic discount factor but does affect the volatility

and persistence of GP. Stationarity of GP in the model is assured because logZt is stationary,

or in other words, because logGt and logXt are cointegrated. Interestingly, while shocks to

33That the GP ratio increases in both λt and ξt is dependent on the calibration. This holds under the
model parameters I use for this model.
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logZt affect GP, they do not affect return predictability, which suggests that controlling for

logZt in the data can potentially lead to even stronger return predictability by GP. I verify

that this indeed holds in the data and discuss the results in the following section.

5 Calibration and Model Simulation Results

My parameter choices are given in Table 12. I have opted for smaller average jump sizes

with an average disaster size of 15%. Barro (2006) uses the dataset of Madison (2003) and

found the average disaster size to be 29%. Barro and Ursua (2008) update Madison (2003)

and find that the average disaster size is about 22%; this disaster distribution is also used

in Wachter (2013).34 I opt for smaller average disaster sizes in line with evidence from

Nakamura, Steinsson, Barro, and Ursua (2013), who estimate the average permanent impact

of disasters to be about 15%. While the actual probability of these smaller disasters is 5.85%,

I opt for a more conservative calibration of 4%, which is achieved using a ξ̄ = 0.0355 as in

Wachter (2013) along with an average jump size of µλ = 0.03 in the event of a jump in λt.

An important challenge in calibrating representative investor models is to match the high

observed volatility of the price-dividend ratio. The model places an upper bound on the

amount of volatility in the state variables that can be allowed for solutions to exist (this is

clearly seen in the equations for the Epstein-Zin discount factor in Appendix A4). I fix σξ

such that the discriminant in the solution to bξ is zero, which helps match the high volatility

of the price-dividend ratio and also reduces the number of free parameters. The λt process

is calibrated to be less persistent than ξt.

Table 13 describes the fit of the model to the data. State variables are simulated at a

monthly frequency and aggregated to an annual frequency. The data moments are from 1975-

2013. The model matches the low gold risk premium, relatively high gold return volatility,

low Sharpe ratio, and low lease rate. The model-implied gold lease rate is 0.93%, which

compares well to the 1% lease rate in the data. Lease rates in the model are the convenience

yield, which corresponds to the dividend yield. For comparison, I also present the model

90% confidence intervals for simulation paths in which no disaster occurred. While these

no-disaster intervals are more appropriate to compare against stock and bond moments

(since no disasters have occurred in the recent U.S. data, on which the stock and bond

returns are based), for gold and platinum returns it is more natural to compare against

population moments, since there have been numerous economic disasters from 1975 - 2006

34The cutoff in Barro (2006) for a disaster was a 15% peak-to-trough decline in GDP per capita, while
Barro and Ursua (2008) used a cut-off of 10%. To achieve an average disaster size of 15%, my cutoff is 6%.
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in international markets (using my disaster cutoff) based on the Barro and Ursua (2008)

dataset (including several OECD countries), which can conceivably affect gold and platinum

returns and volatilities. The model explains the expected returns, volatilities and lease

rates for platinum as well, including the high lease rate and high volatility. The model also

accounts for time variation in GP, with the volatility and persistence of GP falling inside

the 90% confidence intervals. The median persistence for all simulations matches the data

estimate nearly perfectly. Following this, I run the below return predictability regressions

using model excess stock returns and GP:

1

h

h∑
i=1

log(Re
t+i)− log(Rb

t+i) = β0 + β1 log(GPt) + εt+h.

The left hand side is the annualized excess return for one year up through five years ahead,

while the right hand side is the model GP. The results are shown in the top panel of Table 14.

The data estimates fall right in the model confidence intervals, with the data R2 estimates

very close to the median values.35 Thus, the model can explain the observed predictability

of returns by GP. Similar to the data, the model delivers very low to negligible dividend

growth predictability, similar to (Wachter (2013)).

How well have I captured the effect of gold and platinum supply dynamics on GP? Is there

predictability coming from the supply effects (including autocatalyst demand)? The second

panel of Table 14 investigates this issue. I regress GP on logZt inside the model, and we

see that the data estimate falls right inside the 90% interval.36 Since the leading coefficient

on logZt in the model depends on 1
ε
, this serves as a further check on the assumed com-

plementarity (ε < 1) between jewelry (gold and platinum) and nondurable consumption.

Under a calibration where ε > 1 as in Barro and Misra (2013), this regression in the data

results in a coefficient smaller than 1. The second regression in this panel investigates return

predictability by logZt in both the model and the data. In the model, logZt does not predict

returns by construction, although in small samples it is occasionally possible to spuriously

find weak evidence of predictability. Both the population and median values, however, show

that there is no predictability coming from the supply channels. I run the same regression

in the data and find no evidence of predictability through logZt, which is evidence that the

predictability does not come from gold and platinum supply dynamics.

35It is difficult to decide which, all simulations or no disasters, is most appropriate for the predictability
exercise, since U.S. stock returns were not affected by domestic disasters, while the GP ratio is potentially
affected by international disasters. For completeness, I include both sets of results.

36For the data logZt, I interpolate annual values to monthly values.
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These results for repeated samples of 39 years lead to an interesting finding. Time-variation

in GP over finite samples is affected by logZt, which is not a priced variable in this economy.

The third panel shows return predictability regressions where I control for the effect of logZt,

which adds volatility and persistence to GP without adding predictive power. We see in this

case that the point estimates increase at all horizons, and now the 90% interval for return

predictability by GP does not contain 0. The R2 increase over all horizons quite dramatically.

In the data, we can separately identify logZt and logAt, the aggregate per-capita stock of

platinum used as autocatalysts. Empirically, a regression of GP on logZt gives a significant,

positive coefficient while a regression of GP on logAt gives a significant, negative coefficient.

When logZt is high, platinum is relatively more plentiful (gold more scarce) so gold is

relatively more expensive than platinum. High values of logAt correspond to high demand

for platinum as autocatalysts, which is associated with higher platinum prices (lower GP).

Neither logZt nor logAt predict returns in the data. Controlling for persistent supply effects,

the persistence of GP is lower; the monthy AR(1) coefficient is 0.96, which implies a half-life

of about 1.5 years.

6 Conclusion

The risk and return tradeoff is one of the central tenets of asset pricing theory. However,

empirically identifying a viable proxy for risk, manifest through robust return predictability,

cross-sectional pricing, and economic intuition, has been largely elusive in the literature. In

this paper, I show that the ratio of gold to platinum prices (GP) proxies for an important

aggregate source of risk in the economy. GP predicts future stock returns in the time-series,

outperforms other predictors in the literature, and GP risk is priced in the cross-section of

stock returns. GP is persistent and strongly associated with tail risk measures implied by

options markets. An equilibrium model with time-varying tail risk and shocks to preferences

for gold and platinum can quantitatively account for the asset pricing dynamics of equity,

gold, and platinum markets, as well as the time variation and return predictability of GP.

In the model, higher aggregate risk lowers gold and platinum prices through strong discount

rate effects, although gold prices fall by less due to higher expected rental income, which is

consistent with the empirical evidence. I achieve these results by modeling the countercyclical

component of gold and platinum service flows in reduced-form. The micro-foundations of

this mechanism are an important open question, which I leave for fruitful future research.
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Appendix

A1. Econometric Inference for Predictive Regressions

Stambaugh (1999) shows that predictive regressions using persistent predictors are biased in

finite samples. The standard return predictability regression is:

ret+1 = α + βxt + εt+1

where ret+1 = log
(
Pt+1+Dt+1

Pt

)
− rft is the log excess return from time t to time t + 1, and xt

is some predictor known at time t such as the log price-dividend ratio or the log GP ratio.

If xt is a persistent predictor, we can model it as an AR(1) process:

xt+1 = µ+ ρxt + ut+1

For predictors such as the price-dividend ratio, cov(ε, u) 6= 0, since a positive return shock

typically means prices increased, which also increases the price-dividend ratio. Letting γ =
cov(εt+1,ut+1)
var(ut+1)

, the bias in the estimate of the predictive beta can be written as:

E[β̂ − β] = γ E[ρ̂− ρ]︸ ︷︷ ︸
≈− (1+3ρ)

T
<0

(23)

The degree of bias is proportional to γ, which can be estimated as the slope of the regression

of residuals from the predictive regression on the residuals from the AR(1) regression of

the predictor variable. For the price-dividend ratio, the correlation between ε and u in the

data is 0.94, while it is only -0.17 for the GP ratio. Also note that there is no mechanical

correlation between the residuals as is the case for the PD ratio. More formally, I project ε̂t

on ût and estimate γ̂ to be 10.55 for the PD ratio, whereas for the GP ratio γ̂ is only -1.78.

Evaluating at the maximum bias (ρ = 1) estimates an upper bound of -0.090 for PD ratio

bias, which is enough to change the sign, whereas it is only 0.015 for the GP ratio, which

is small compared to the predictive beta of 0.237. The evidence suggests that the GP ratio

predictability is not driven by finite sample bias.

Predictor persistence also potentially affects the size of tests (see e.g., Torous et al., 2004).

For δ = corr(ε, u), the test statistic for β has a non-standard limiting distribution:

tβ =⇒ δτρ +
√

(1− δ2) z
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where τρ is non-normal and z is normal. I follow Elliot and Stock (1994) and use Monte

Carlo simulations to asses the magnitude of these size distortions. I run 100,000 simulations

of length equal to my sample size at a monthly frequency by simulating the above dynamics,

evaluating all parameters using their sample values. When δ = 0.94 (which is the case for the

PD ratio), a 5% test has a true rejection rate of 17%. For the GP ratio, where δ = −0.167,

a 5% test has a true rejection rate of 6%, which is very close to the true size. Since the

absolute value of δ is small in the case of the GP ratio, the significance of the predictability

tests is not affected by potential size distortions due to predictor persistence.

A2. Stationary Mean of λt

I compute the stationary mean of the λt process. The process is given by:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdW

λ
t + Jλt dN

λ
t

which implies that

E [λt]

dt
= κλ(n(t)−m(t)) + µλρ0 + µλρ1m(t)

E [ξt]

dt
= κξ ξ̄ − κξn(t)

(24)

where m(t) = E [λt] and n(t) = E [ξt], with n(t) → ξ̄. Solving the ordinary differential

equation for m(t) implied by (24) results in the stationary mean of λt:

E [λ∞] = lim
t→∞

m(t) =
κλξ̄ + µλρ0

κλ − µλρ1

(25)

with necessary conditions κλ > µλρ1 and κλξ̄+µλρ0 > 0, which are satisfied under the model

calibration.

A3. Gold and Platinum Mine Production

The data for world gold mine production is from the U.S. Geological Survey (USGS) Annual

Mineral Yearbook reports. The data for world platinum mine production is from Johnson

Matthey. The data is annual from 1975 to 2013. The Johnson Matthey data details both

annual platinum mine production as well as autocatalyst demand and salvage. I use as

my measure of the increment to the platinum stock the total quantity mined in a given
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year minus the autocatalyst demand net of salvage. Thomas and Boyle (1986) estimate the

initial world above-ground stock of gold at the end of 1974 to be 84,000 tonnes (2,700 million

troy oz). There is not a consensus estimate of world above-ground platinum stock (net of

autocatalysts) that I am aware of, although during the 1975 to 2013 period in the data, annual

platinum production (net of autocatalyst demand) is consistently approximately 4.5% of gold

production with very little variation each year. Annual gold production is approximately

2,000 tonnes and platinum production is approximately 90 tonnes. Therefore, I estimate

the initial stock of platinum to be 3,780 tonnes.37 Using market prices at the end of 2013,

this puts the total dollar value of all gold in the world at $6.4 trillion, and the value of all

platinum in the world (not found in autocatalysts) at just over $300 billion. I proxy for

population growth using U.S. annual population growth data provided by the U.S. Census

Bureau.38

Panel A of Table 15 describes the log growth rate of the aggregate per-capita stock of gold

and platinum. Gt is the per-capita stock of gold, and Xt is the per-capita stock of platinum.

The mean per-capita log growth rate of the aggregate gold stock is 0.72% per year, and

the growth rate is very smooth: the standard deviation is only 0.21%. The platinum stock

displays similar dynamics, with an average growth rate of 0.71% and a standard deviation

of 0.29%. Furthermore, the means are close to the medians.

Given the stable relationship between gold and platinum production each year, I look for

evidence of cointegration between the log per-capita stock of gold and platinum. Two pro-

cesses logXt and logGt are cointegrated if there exists a vector β such that β′

[
logXt

logGt

]
is a

stationary process. Panel B shows that logGt and logXt are unit root processes: an aug-

mented Dickey and Fuller (1979) test fails to reject the null of a unit root at all lags 1 through

5. However, the process logZt = logXt − logGt appears to be stationary. I estimate the

cointegration vector using Dynamic Least Squares (DLS) as suggested by Stock and Watson

(1993)in Panel C of Table 15:

logXt = β0 + βG logGt +
k∑

i=−k

γi∆ logGt−i + εt (26)

37Is this a reasonable estimate? While the discovery of platinum is often credited to Antonio de Ulloa in
1735, it was not until Hans Merensky identified large economic deposits of platinum in the Bushveld Igneous
Complex of South Africa in 1924 that large scale platinum mining took place (Cawthorn (1999)). My results
are robust to reasonable perturbations of the initial estimate.

38I use U.S. population growth as opposed to world population growth to be consistent with the consump-
tion data in the calibration, which uses U.S. per-capita consumption data.
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for k = 1, 2, 3. The estimates of βG are significant, ranging from 0.99 to 1.04, and in all

cases a 95% confidence interval includes 1, which suggests that the cointegration vector is

not statistically different from [1,−1].

As further evidence of cointegration, I estimate the joint system Yt =
[
logXt logGt

]′
in a

Engle and Granger (1987) Vector Error-Correction Model (VECM):

∆Yt = µ+ ΠYt−1 +

p−1∑
j=1

Γj∆Yt−j + εt (27)

and conduct Johansen (1988) rank tests for cointegration based on the rank of the matrix

Π. The null hypothesis for the rank test is that there are no more than r cointegrating

relationships, which implies that the remaining K − r eigenvalues of Π must be zero where

K is the dimension of Yt. I follow Johansen (1995) and apply an iterative procedure which

starts testing at r = 0 and accepts as r̂ (number of cointegrating relationships) the first

value of r for which the test fails to reject the null. Table 15 Panel D shows the results for

the VECM with 1 through 4 lags. We see that for the estimation with 3 lags (which is the

optimal lag length as chosen by the Akaike Information Criterion), we reject the null of zero

cointegrating relationships, but fail to reject the null of 1 cointegrating relationship. Figure

7 plots the demeaned logXt and logGt processes, where we can clearly see that gold and

platinum supply seem to track each other over time.

A4. Model Solution

The equations for the Epstein-Zin discount factor coefficients are given by:

a =
(1− γ)(1

2
(1− γ)σ2

c )

δ
+
bξκξ ξ̄ + ρ0Eη

[
ebλJ

λ
t − 1

]
δ

0 =
1

2
σ2
λbλ

2 − (κλ + δ)bλ + ρ1Eη
[
ebλJ

λ
t − 1

]
+ Ev

[
e(1−γ)Jct − 1

]
bξ =

kξ + δ

σξ2
−

√(
kξ + δ

σξ2

)2

− 2bλκλ
σξ2

.

In general, I can allow λλt = ρ0 + ρ1λt. Equity price-dividend ratio is given by:

Pt
Dt

=

∫ ∞
0

exp(aφ(τ) + bφ(τ)λt + cφ(τ)ξt)dτ
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with aφ(τ), bφ(τ), cφ(τ) given by the ODEs:

a′φ(τ) = cφ(τ)κξ ξ̄ + φḡc +
1

2
φ2σ2

c − δ − (ḡc +
1

2
σ2
c )

+ γ(1− φ)σ2
c + ρ0Eη

[
e(bλ+bφ(τ))Jλt − ebλJλt

]
b′φ(τ) =

1

2
σ2
λbφ(τ)2 + (bλσ

2
λ − κλ)bφ(τ) + Ev

[
e(φ−γ)Jct − e(1−γ)Jct

]
+ ρ1Eη

[
e(bλ+bφ(τ))λt − ebλJλt

]
c′φ(τ) =

1

2
σ2
ξcφ(τ)2 + (bξσ

2
ξ − κξ)cφ(τ) + bφ(τ)κλ

with initial conditions aφ(0) = bφ(0) = cφ(0) = 0.

Let P t+τ
g,t be the price of zero-coupon gold which pays Qg,t+τ and nothing else, and let P t+τ

x,t

be the analogous claim for platinum. Gold and platinum price-dividend ratios are solved by

noting that πtP
t+τ
g,t and πtP

t+τ
x,t are martingales, so the sum of the drift and jump compensator

must equal zero.

The gold price-dividend ratio is given by:

Pg,t
Qg,t

=

∫ ∞
0

exp(ag(τ) + bg(τ)λt + cg(τ)ξt)dτ

with ag(τ), bg(τ), cg(τ) given by the ODEs:

a′g(τ) = cg(τ)κξ ξ̄ +
1

ε

[
ḡc − µg +

1

2ε
(σ2

c + σ2
g)

]
− δ − (ḡc +

1

2
σ2
c )

+ γ(1− 1

ε
)σ2

c + ρ0Eη
[
e(a2+bλ+bg(τ))Jλt − ebλJλt

]
b′g(τ) =

1

2
σ2
λbg(τ)2 +

[
(a2 + bλ)σ

2
λ − κλ

]
bg(τ)

+
1

2
σ2
λa

2
2 + a2(bλσ

2
λ − κλ) + Ev

[
e( 1

ε
−γ)Jct − e(1−γ)Jct

]
+ ρ1Eη

[
e(a2+bλ+bg(τ))λt − ebλJλt

]
c′g(τ) =

1

2
σ2
ξcg(τ)2 + (bξσ

2
ξ − κξ)cg(τ) + (a2 + bg(τ))κλ

with initial conditions ag(0) = bg(0) = cg(0) = 0.

The platinum price-dividend ratio is given by:

Px,t
Qx,t

=

∫ ∞
0

exp(ax(τ) + bx(τ)λt + cx(τ)ξt + dx(τ) logZt)dτ
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with ax(τ), bx(τ), cx(τ), dx(τ) given by the ODEs:

a′x(τ) = cx(τ)κξ ξ̄ +
1

ε

[
ḡc − µg +

1

2ε
(σ2

c + σ2
g + σ2

z)

]
− δ − (ḡc +

1

2
σ2
c )

+ γ(1− 1

ε
)σ2

c +
1

2
σ2
zdx(τ)2 + dx(τ)(θzµz −

1

ε
σ2
z)

− 1

ε
θzµz + ρ0Eη

[
e(b2+bλ+bx(τ))Jλt − ebλJλt

]
b′x(τ) =

1

2
σ2
λbx(τ)2 +

[
(b2 + bλ)σ

2
λ − κλ

]
bx(τ)

+
1

2
σ2
λb

2
2 + b2(bλσ

2
λ − κλ) + Ev

[
e( 1

ε
−γ)Jct − e(1−γ)Jct

]
+ ρ1Eη

[
e(b2+bλ+bx(τ))λt − ebλJλt

]
c′x(τ) =

1

2
σ2
ξcx(τ)2 + (bξσ

2
ξ − κξ)cx(τ) + (b2 + bx(τ))κλ

d′x(τ) = −θzdx(τ) + θz
1

ε

with initial conditions ax(0) = bx(0) = cx(0) = dx(0) = 0.

A5. Log-Linearized Gold and Platinum Prices

Gold price-dividend ratios are given by

Pg,t
Qg,t

= Gg(λt, ξt) =

∫ ∞
0

eag(τ)+bg(τ)λt+cg(τ)ξtdτ

Let g(λt, ξt) = logGg(λt, ξt). Given fixed λ∗, ξ∗, Taylor expansion implies that

g(λ, ξ) ≈ g(λ∗, ξ∗) +
∂g

∂λ

∣∣∣∣
(λ∗,ξ∗)

(λt − λ∗) +
∂g

∂ξ

∣∣∣∣
(λ∗,ξ∗)

(ξt − ξ∗)

where we have that

∂g

∂λ

∣∣∣∣
(λ∗,ξ∗)

=
1

G(λ∗, ξ∗)

∫ ∞
0

bg(τ)eag(τ)+bg(τ)λt+cg(τ)ξtdτ = b∗g,λ

∂g

∂ξ

∣∣∣∣
(λ∗,ξ∗)

=
1

G(λ∗, ξ∗)

∫ ∞
0

cg(τ)eag(τ)+bg(τ)λt+cg(τ)ξtdτ = b∗g,ξ.

This implies that Gg(λt, ξt) ≈ Gg(λ∗, ξ∗)eb
∗
g,λ(λt−λ∗)+b∗g,ξ(ξt−ξ

∗), and I set λ∗ and ξ∗ equal to the

stationary means of λt and ξt, respectively. Since Qg,t = ea1+a2λte
1
ε

logCt− 1
ε

logGt , This implies
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that log-linearized gold prices are given by

logPg,t = Ag +
1

ε
logCt −

1

ε
logGt + (a2 + b∗g,λ)λt + b∗g,ξξt.

Similarly, log-linearized platinum prices are given by

logPx,t = Ax +
1

ε
logCt −

1

ε
logGt + (b2 + b∗x,λ)λt + b∗x,ξξt + (b∗x,Z −

1

ε
) logZt.

The constants Ag and Ax only affect the level of GP and are mainly determined by the

scaling term a1 − b1.
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Tables

Table 1: Summary Statistics for Predictors
Table 1 gives descriptive statistics for the log GP ratio and other known stock return predictors. Monthly data from 1975 -
2013. logGPt is the log GP ratio, computed as the log of the ratio of monthly gold to platinum fixing prices. Monthly prices
are the average of daily prices. Prior to April 1990, I use monthly average dealer prices for platinum. Gold fixing prices are
from the LBMA, and platinum fixing prices are from the LPPM. Platinum dealer prices are from the USGS. logPDt is the
log price-dividend ratio for the CRSP value-weighted index. logPEt is the cyclically adjusted price-earnings ratio from Robert
Shiller’s website. logPNYt is the net payout yield from Michael Roberts’ website, available until December 2010. ICCt is
the implied cost of capital from Li et al. (2013), available from January 1977. DFSPt is the default spread, calculated as the
difference between the yield of Baa and Aaa corporate bonds; the data is from FRED. TMSPt is the term spread, calculated
as the difference in yield between a 10 year constant maturity U.S. government bond and a 3 month constant maturity U.S.
treasury bill. The data is from FRED. INFLt is the growth rate of the consumer price index from the FRED. CAYt is the
consumption-wealth ratio from Lettau and Ludvigson (2001) and the data is from Martin Lettau’s website, available until
March 2013. The data is quarterly, interpolated to a monthly frequency. V RPt is the variance premium, calculated as the
difference between the squared VIX index and annualized realized volatility over the past month. The VIX data is from the
CBOE website, and the high-frequency realized variance is from Hao Zhou’s website, available from January 1990. ADF is the
augmented Dickey and Fuller (1979) test statistic, and p-val is its p-value. The number of lags in the ADF test is selected
based on the Ng and Perron (1995) sequential t-test.

Variable Mean Std. Dev. AR(1) ADF p-val. Min. Max. Corr. GPt Start End

logGPt -0.233 0.266 0.981 -2.872 0.049 -0.850 0.299 1.000 1975.1 2013.12

logPDt 3.608 0.447 0.994 -1.238 0.657 2.764 4.510 -0.588 1975.1 2013.12

logPEt 2.878 0.474 0.995 -1.227 0.662 1.893 3.789 -0.539 1975.1 2013.12

logPNYt 2.247 0.249 0.979 -2.276 0.180 1.700 3.235 -0.461 1975.1 2010.12

ICCt 7.445 2.694 0.949 -2.759 0.064 -0.040 13.850 0.339 1977.1 2013.12

DFSPt 1.126 0.474 0.961 -4.252 0.001 0.550 3.380 0.336 1975.1 2013.12

TMSPt 1.819 1.261 0.952 -3.458 0.009 -2.650 4.420 0.232 1975.1 2013.12

INFLt 0.322 0.323 0.643 -4.574 0.000 -1.787 1.420 0.027 1975.1 2013.12

CAYt 0.003 0.018 0.995 -1.798 0.381 -0.035 0.034 0.258 1975.1 2013.03

V RPt* 0.022 0.024 0.258 -5.700 0.000 -0.217 0.140 0.051 1990.1 2013.12
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Table 2: U.S. Stock Return Predictability

Table 2 shows return predictability regressions for the U.S. equity market, January 1975 to December 2013, 468 monthly
observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + εt+h

The left hand variable is the excess log return of the CRSP value-weighted index, annualized by the horizon h. The right hand
predictor is logGP . Returns are calculated from overlapping monthly data, and t-statistics are based on Newey and West
(1987) HAC robust standard errors. The bottom panel estimates a VAR following Hodrick (1992).

VW Excess Returns 1m 3m 6m 1y 2y 3y 4y 5y

OLS Regression

logGPt 0.237 0.246 0.260 0.243 0.202 0.161 0.145 0.129

t-stat. (2.82) (3.14) (2.94) (2.76) (2.67) (3.12) (4.11) (4.77)

Radj
2 (%) 1.21 4.23 9.55 16.57 23.60 23.57 27.80 31.66

VAR Estimation

logGPt 0.236 0.234 0.228 0.215 0.192 0.172 0.155 0.140

t-stat. (2.75) (2.89) (2.82) (2.66) (2.69) (2.62) (2.61) (2.60)

RV AR
2 (%) 1.27 3.46 6.34 10.89 16.43 18.99 19.84 19.73

Table 3: Univariate Return Predictability

Table 3 shows univariate return predictability regressions for the U.S. equity market, controlling for other known predictors.
January 1975 to December 2013, 468 monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1Xt + εt+h

The left hand variable is the excess log return of the CRSP value-weighted index return, annualized by the horizon h. The
right hand predictor is logGP . Returns are calculated from overlapping monthly data, and t-statistics use Newey and West
(1987) HAC robust standard errors. Radj

2 is the adjusted R2 statistic. Xt is a return predictor, including logGP .

1 month horizon 3 month horizon 1 year horizon 5 year horizon

Coef. t-stat. R2
adj Coef. t-stat. R2

adj Coef. t-stat. R2
adj Coef. t-stat. R2

adj

logGPt 0.237 2.82 1.21 0.246 3.14 4.23 0.243 2.76 16.57 0.129 4.77 31.66

logPDt -0.067 -1.19 0.10 -0.066 -1.39 0.68 -0.065 -1.30 3.15 -0.064 -2.94 22.12

logPEt -0.045 -0.86 -0.05 -0.045 -1.00 0.24 -0.050 -1.04 2.01 -0.049 -1.99 14.70

logPNYt -0.096 -0.84 -0.03 -0.084 -0.86 0.21 -0.122 -1.29 3.35 -0.095 -3.52 14.31

ICCt 0.019 1.98 0.74 0.014 1.75 1.22 0.015 2.33 6.08 0.013 2.86 22.35

DFSPt 0.013 0.18 -0.20 0.016 0.25 -0.16 0.035 0.88 0.90 0.032 1.07 5.23

TMSPt 0.015 0.77 -0.08 0.013 0.77 0.04 0.025 1.80 3.77 0.017 2.15 12.41

INFLt -0.071 -0.87 -0.02 -0.008 -0.10 -0.21 -0.081 -1.93 2.48 -0.013 -0.68 0.18

CAYt 0.566 0.46 -0.18 0.743 0.66 -0.03 1.158 1.10 1.49 1.970 3.43 23.03

V RPt* 5.011 4.32 5.12 4.370 6.27 11.12 1.265 2.60 2.95 -0.487 0.99 1.90
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Table 4: Bivariate Return Predictability: Short Horizon

Table 4 shows bivariate return predictability regressions for the U.S. equity market for 1 and 3 month horizons, controlling for
other known predictors. January 1975 to December 2013, 468 monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + β2Xt + εt+h

For the monthly frequency, h = 1. The left hand variable is the excess logarithmic return of the CRSP value-weighted index
return annualized by the horizon h. The right hand predictors are logGP and another return predictor Xt. Returns are
calculated from overlapping monthly data, and t-statistics use Newey and West (1987) HAC robust standard errors. Radj

2 is
the adjusted R2 statistic.

1 month horizon 3 month horizon

GP GP GP GP
Coef. t-stat. Coef. t-stat. R2

adj Coef. t-stat. Coef. t-stat. R2
adj

logPDt 0.262 2.71 0.026 0.40 1.03 0.278 3.25 0.032 0.66 4.16

logPEt 0.274 2.94 0.038 0.68 1.09 0.288 3.45 0.043 0.98 4.33

logPNYt 0.232 2.44 0.019 0.16 0.80 0.250 2.65 0.040 0.39 3.54

ICCt 0.180 1.91 0.013 1.24 1.25 0.220 2.37 0.007 0.72 4.12

DFSPt 0.258 2.81 -0.036 -0.47 1.09 0.267 3.00 -0.035 -0.52 4.28

TMSPt 0.233 2.60 0.004 0.18 1.01 0.245 2.82 0.001 0.03 4.02

INFLt 0.239 2.88 -0.077 -0.91 1.22 0.246 3.17 -0.014 -0.17 4.04

CAYt 0.241 2.64 -0.345 -0.26 0.99 0.250 3.03 -0.201 -0.18 4.03

V RPt* 0.265 2.79 4.850 4.25 6.91 0.304 3.54 4.177 6.96 18.49

Table 5: Bivariate Return Predictability: Long Horizon

Table 4 shows bivariate return predictability regressions for the U.S. equity market for 1 and 5 year horizons, controlling for
other known predictors. January 1975 to December 2013, 468 monthly observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + β2Xt + εt+h

For the monthly frequency, h = 1. The left hand variable is the excess logarithmic return of the CRSP value-weighted index
return annualized by the horizon h. The right hand predictors are logGP and another return predictor Xt. Returns are
calculated from overlapping monthly data, and t-statistics use Newey and West (1987) HAC robust standard errors. Radj

2 is
the adjusted R2 statistic.

1 year horizon 5 year horizon

GP GP GP GP
Coef. t-stat. Coef. t-stat. R2

adj Coef. t-stat. Coef. t-stat. R2
adj

logPDt 0.279 3.06 0.036 0.85 17.03 0.102 1.98 -0.024 -0.69 33.27

logPEt 0.280 3.05 0.037 0.95 17.26 0.118 2.26 -0.010 -0.29 31.92

logPNYt 0.231 2.11 -0.008 -0.08 14.76 0.113 2.92 -0.038 -0.91 33.35

ICCt 0.219 2.15 0.008 1.02 17.79 0.116 5.04 0.009 2.02 44.49

DFSPt 0.252 2.72 -0.014 -0.32 16.54 0.127 3.07 0.004 0.15 31.57

TMSPt 0.228 2.47 0.014 0.84 17.57 0.116 4.96 0.011 1.96 36.51

INFLt 0.248 2.92 -0.089 -1.94 19.65 0.131 4.97 -0.020 -1.40 32.57

CAYt 0.241 2.71 0.131 0.16 16.40 0.100 4.11 1.172 1.89 38.09

V RPt* 0.319 3.13 1.028 2.31 30.93 0.174 4.66 -0.579 -1.31 44.12
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Table 6: Out-of-Sample Tests

Table 6 shows results for out-of-sample testing, using the out-of-sample R2 statistic. Let T be the sample length, and m equal
to the size of the initial training window (for expanding regressions) or the size of the training window (for rolling regressions).
The Out-of-Sample R2 is given by:

R2
OS = 1−

T−m∑
k=1

(rem+k − r̂em+k)2

T−m∑
k=1

(rem+k − rem+k)2

For expanding window regressions, the first out-of-sample forecast r̂em+1 is based on parameters estimated using observations
from 1 to m, the second out-of-sample forecast r̂em+2 is based on parameters estimated using observations 1 to m + 1, and
so on. For expanding window regressions, the historical average excess return ret+1 is calculated as the average excess return
from time 1 to time t. For rolling window regressions, the first out-of-sample forecast r̂em+1 is based on parameters estimated
using observations from 1 to m, the second out-of-sample forecast r̂em+2 is based on parameters estimated using observations
2 to m + 1, and so on. For rolling window regressions, the historical average excess return is calculated as the average excess
return from over the last m periods, where m is the window length. I consider windows of length 120 months or 180 months to
estimate betas, and predict the return in the next month. The In-Sample R2 is the adjusted R2. The p-values are calculated
using the adjusted-MSPE statistic of Clark and West (2007) given by:

ft+1 = (rt+1 − rt+1)2 −
[
(rt+1 − r̂t+1)2 − (rt+1 − r̂t+1)2

]
which is regressed against a constant and the test is a one-sided test.

In-Sample (%) Out-of-Sample (%)

Rolling Expanding

Horizon 120m p-val 180m p-val 120m p-val 180m p-val

1m 1.21 -1.46 0.315 1.44 0.018 0.88 0.033 1.35 0.028

3m 4.23 3.95 0.010 8.28 0.002 4.59 0.009 6.18 0.008

6m 9.55 14.39 0.002 18.29 0.001 10.89 0.010 13.39 0.010

1y 16.57 23.02 0.009 29.37 0.007 19.31 0.021 21.35 0.024

2y 23.60 30.98 0.044 37.28 0.030 25.64 0.041 26.02 0.045

3y 23.57 22.08 0.069 29.30 0.027 23.56 0.033 24.51 0.029

4y 27.80 24.03 0.047 31.39 0.010 29.36 0.008 29.69 0.004

5y 31.66 21.09 0.057 31.88 0.010 33.60 0.010 34.37 0.003
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Table 7: International Markets Return Predictability

Table 7 shows return predictability regressions for international equity markets, January 1975 to December 2013, 468 monthly
observations. The regression is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + β1 logGPt + εt+h

In Panel A, the left hand variable is the excess log capital gain on the MSCI World Index, annualized by the horizon h. The
index is calculated in U.S. dollars and the risk-free rate is the U.S. treasury bill rate. Panel B presents the regression results for
individual countries, using the respective MSCI country indices denominated in local currency. The risk-free rate for the U.K is
the 3-month U.K Treasury rate from FRED. The risk-free rate for Switzerland is the 3-month Swiss franc interbank rate. The
risk-free rate for Japan is the interest rate on Japanese Government Treasury bills from FRED. The risk-free rate for Sweden
is the 3-month Swedish Treasury rate from FRED from 1982 onwards. Prior to 1982, I use the historical short-term Swedish
interest rates from the Sveriges Riksbank website. Newey and West (1987) HAC robust standard errors.

World Excess Returns 1m 3m 6m 1y 3y 5y

Panel A - World Portfolio

logGPt 0.183 0.200 0.214 0.202 0.140 0.111

t-stat. (2.15) (2.22) (2.02) (1.88) (1.94) (2.52)

Radj
2 (%) 0.67 2.62 5.88 9.97 14.91 21.50

Panel B - Individual Countries

United Kingdom

logGPt 0.266 0.239 0.232 0.213 0.156 0.105

t-stat. (3.05) (3.30) (3.02) (2.70) (2.90) (4.41)

Radj
2 (%) 1.19 3.46 7.34 14.15 26.00 25.52

Switzerland

logGPt 0.196 0.216 0.240 0.236 0.166 0.129

t-stat. (2.29) (2.50) (2.45) (2.23) (2.01) (2.61)

Radj
2 (%) 0.71 2.56 6.24 11.28 16.61 19.73

Japan

logGPt 0.186 0.207 0.221 0.212 0.163 0.148

t-stat. (1.74) (1.78) (1.75) (1.67) (1.44) (1.70)

Radj
2 (%) 0.39 1.72 3.74 6.57 10.34 15.36

Sweden

logGPt 0.391 0.427 0.427 0.367 0.190 0.132

t-stat. (2.72) (3.00) (2.69) (2.34) (1.82) (2.70)

Radj
2 (%) 1.54 5.08 8.88 11.51 10.62 11.96
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Table 8: Predicting Dividend Growth

Table 8 shows dividend growth predictability regressions, January 1975 to December 2013, 468 monthly observations. The
regression in Panel A is:

12

h

h∑
i=1

∆dt+i = β0 + β1 logGPt + εt+h

The regression in Panel B is:

12

h

h∑
i=1

∆et+i = β0 + β1 logGPt + εt+h

∆dt is the annualized log dividend growth rate calculated from the CRSP value-weighted index, annualized by the horizon h.
∆et is the annualized log earnings growth rate calculated from the earnings data on Robert Shiller’s website. The CPI used to
deflate dividends is from FRED. Annual dividend growths are calculated from overlapping monthly data, and t-statistics use
Newey and West (1987) HAC robust standard errors.

Panel A - Real Dividend Growth 1y 2y 3y 4y 5y

logGPt 0.018 0.027 0.028 0.023 0.014

t-stat. (0.39) (0.63) (0.74) (0.62) (0.51)

R2 (%) 0.08 0.41 0.77 0.89 0.57

Panel B - Real Earnings Growth 1y 2y 3y 4y 5y

logGPt 0.371 0.199 0.121 0.100 0.057

t-stat. (1.31) (1.06) (0.93) (1.12) (1.04)

R2 (%) 5.08 3.61 2.79 3.48 2.78
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Table 9: Cross-Sectional Implications

Table 9 shows the implications of GP risk for the cross-section of stock returns. I first run time-series regressions to estimate
betas:

Rei,t+1 = ci + βi,∆gp∆ logGPt+1 + εi,t+1

where Rei,t+1 is the excess return for portfolio i and ∆ logGPt + 1 = logGPt+1 − Et [logGPt] is the innovation in GP. The
slope coefficient βi,∆gp represents the portfolio exposure of asset i to GP risk. To estimate the cross-sectional market price of
risk associated with GP, I run a cross-sectional regression of time-series average excess returns on the risk exposures:

E
[
Rei,t+1

]
= cons + βi,∆gpλ∆gp + υi.

Panel A reports the market price of risk λ with Shanken (1992) t-statistic. Panel B shows the results for βi,∆gp with Newey
and West (1987) HAC robust standard errors. The book-to-market and size portfolio returns are from Kenneth French’s
website. The data is monthly from 1975 - 2013.

Panel A: Price of Risk λ∆gp t-stat

Cross-Section -0.0217 -6.45

R2(%) 60.64

Panel B: Risk Exposures β∆gp t-stat

BM1 -0.163 -2.83

BM2 -0.150 -2.46

BM3 -0.137 -2.93

BM4 -0.165 -2.62

BM5 -0.128 -2.67

BM6 -0.170 -2.79

BM7 -0.149 -2.56

BM8 -0.150 -2.59

BM9 -0.177 -3.12

BM10 -0.262 -3.05

SIZE1 -0.277 -4.42

SIZE2 -0.254 -4.05

SIZE3 -0.247 -4.17

SIZE4 -0.233 -4.01

SIZE5 -0.234 -3.85

SIZE6 -0.201 -3.42

SIZE7 -0.213 -3.10

SIZE8 -0.198 -2.97

SIZE9 -0.181 -2.67

SIZE10 -0.132 -2.60
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Table 10: GP and Tail Risk

In Panel A, SLOPEn∆
t = σOTM,∆t − σATMt , where σOTM,∆t is the implied volatility of an out-of-the-money put option

with n∆, where n = 40, 30, 20, and σATMt is at-the-money implied volatility. Option prices and implied volatilities are from
OptionMetrics, January 1996 to August 2013. The regression of the slope of the implied volatility curve for index options
against the log GP ratio is

σOTM,∆t − σATMt = β0 + β1 logGPt + β2σ
ATM
t + εt.

The OTM option ranges from deep out-of-the-money (20∆) to slightly out of the money (40∆), and the ATM option is defined
as a put option with 50∆. The options have just under one month until expiration, and are taken on the last trading day of
the month.
In Panel B, the encompassing regression is:

SKEWQ
t = β0 + β1 logGPt + β2

(
V ARQ

t × 100
)

+ εt

where SKEWQ
t is as defined in Bakshi et al. (2003) and equal to:

SKEWQ
t =

EQ
t

{(
Rt,t+τ − EQ

t [Rt,t+τ ]
)3
}

EQ
t

{(
Rt,t+τ − EQ

t [Rt,t+τ ]
)2
}3/2

.

For both panels, t-statistics use Newey and West (1987) HAC robust standard errors.

logGPt σIV,ATMt

Panel A: IV Slope Coef. t-stat. Coef. t-stat. Radj
2

SLOPE40∆
t 0.585 (2.74) 9.35

0.056 (12.54) 59.26

0.332 (2.97) 0.053 (12.91) 62.13

SLOPE30∆
t 1.402 (3.10) 11.29

0.123 (12.84) 60.24

0.846 (3.85) 0.117 (13.06) 64.22

SLOPE20∆
t 2.578 (3.29) 13.05

0.209 (11.55) 59.21

1.640 (4.12) 0.197 (11.66) 64.33

logGPt V ARQ
t × 100

Panel B: BKM Coef. t-stat. Coef. t-stat. Radj
2

SKEWQ
t -0.479 (-2.84) 5.65

-0.06

0.500 (3.09) 5.50

-0.514 (-2.71) 5.36

-0.587 (-3.58) 0.615 (3.62) 13.97

-0.560 (-3.07) 0.633 (3.58) 13.67
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Table 11: Gold and Platinum Returns

Table 11 estimates gold and platinum returns. All estimates are annualized real percentage terms, except for the Sharpe
ratios. The data is monthly from 1975 - 2013. The spot prices are calculated from the LBMA fixing price (gold), LPPM
fixing price (platinum). Before April 1990, I use USGS dealer prices for platinum. Futures prices are based on the futures
contracts with closest to 3 months to maturity from the COMEX division of the CME (formery NYMEX). The interest
rate is the U.S. dollar Libor rate (before 1986, the Eurodollar deposit rate). CPI data is from FRED, and the risk-free rate
is the 1 month U.S. Treasury bill rate. δ is the dividend yield (for stocks) or lease rate (convenience yield, for gold and platinum).

Equity, Gold, and Platinum Returns

Equity Gold Platinum

Variable Data Variable Data Variable Data

E[Rm −Rb] 7.53 E[Rg −Rb] 2.40 E[Rx −Rb] 6.51

σ(Rm) 15.11 σ(Rg) 16.76 σ(Rx) 22.18

Sharpe Ratio 0.50 Sharpe Ratio 0.14 Sharpe Ratio 0.29

E[δm] 2.71 E[δg ] 1.00 E[δx] 3.47

Table 12: Model Parameters

Parameter values below are in annual terms. The third column gives the reference source for the parameter. “Standard” means
that the parameter value is in a standard range of values commonly used in the literature. “Data” means that this parameter
choice is disciplined by the data. Citations mean this parameter is from the cited paper. “Bounded Parameter” means this
parameter is free to be set within bounds imposed by either existence of solutions (for a2 and b2) or by data estimates (for
µλ). “Fixed” is for the intratemporal elasticity of substitution and volatility of ξt, as discussed in the main text. NSBU (2013)
refers to Nakamura et al. (2013) and BU (2008) refers to Barro and Ursua (2008).

Parameter Value Reference

Relative risk aversion γ 3 Standard

Subject time preference δ 0.012 Standard

Mean log consumption growth (normal times) ḡc 0.025 Data

Volatility of log consumption growth (normal times) σc 0.020 Data

Leverage φ 2.6 Wachter (2013)

Mean-reverting target of ξt process ξ̄ 0.0355 Wachter (2013)

Rate of mean reversion κλ 0.25 Target AR1(logGP )

Rate of mean reversion κξ 0.095 Target AR1(p− d)

Volatility of λt process σλ 0.183 Target σ(logGP )

Volatility of ξt process σξ 0.0861 Fixed

Probability of default given disaster q 0.40 Barro (2006), Wachter (2013)

Average disaster size Eν [1− exp Jct ] 0.15 BU (2008), Nakamura et al (2013)

Intratemporal elasticity of substitution ε 1/φ Fixed

Log growth rate in gold and platinum stock µg 0.0072 Data

Volatility of log gold stock growth σg 0.0021 Data

Mean-reverting target of logZt process µz -3.114 Data

Rate of logZt mean reversion θz 0.022 Data

Volatility of logZt process σz 0.003 Data

Scaling term a1 − b1 6.34 Match E [logGP ]

Intensity jump mean µλ 0.03 Bounded Parameter

Gold preference loading a2 5.73 Bounded Parameter

Platinum preference loading b2 1.25 Bounded Parameter
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Table 13: Simulation Results: Asset Pricing Moments

Table 13 shows results from model simulations for stocks, bonds, gold, and platinum. State variables are simulated at a
monthly frequency and aggregated to an annual frequency. The population moments are computed from a 1,000,000 year
simulation. The model confidence intervals are computed from 100,000 simulations of length equal to the length of the data.
Data moments are calculated using monthly observations, from 1975 to 2013 and annualized. Expected returns, yields, and
volatilities are given in real percentage terms. δ represents the dividend yield (for stocks) or lease rate (for gold and platinum).
p− d is the log price-dividend ratio.

Data All Simulations No Disaster Simulations

Est. 5% 50% 95% Pop. 5% 50% 95%

Stocks and Bonds
E[Rm −Rf ] 7.53 3.30 6.77 12.69 7.23 3.63 6.38 10.68

σ(Rm) 15.18 11.77 20.27 31.99 21.53 10.35 16.32 24.99

E[δm] 2.71 1.34 1.81 3.76 2.08 1.29 1.56 2.40

E[Rf ] 1.11 -1.06 2.46 3.50 2.00 1.93 3.16 3.57

σ(Rf ) 1.07 0.29 1.71 6.96 3.51 0.17 0.73 2.06

σ(p− d) 0.45 0.12 0.28 0.58 0.44 0.10 0.21 0.44

AR1(p− d) 0.92 0.56 0.82 0.94 0.92 0.50 0.78 0.92

Gold
E[Rg −Rf ] 2.40 0.23 2.62 5.74 2.78 0.88 2.67 4.96

σ(Rg) 16.76 6.19 10.38 20.64 12.48 5.67 7.60 11.15

E[δg ] 1.00 0.59 0.77 1.79 0.93 0.58 0.66 0.96

Gold Sharpe 0.14 0.02 0.26 0.52 0.22 0.13 0.35 0.57

Platinum
E[Rx −Rf ] 6.51 2.37 5.34 10.22 5.70 2.70 5.05 8.55

σ(Rx) 22.18 9.37 15.28 23.98 16.27 8.40 12.30 17.49

E[δx] 3.47 2.33 3.01 5.45 3.34 2.26 2.63 3.67

Platinum Sharpe 0.29 0.15 0.37 0.60 0.35 0.24 0.42 0.62

GP Ratio
E[logGP ] -0.23 -0.37 -0.25 0.15 -0.23 -0.38 -0.31 -0.09

σ(logGP ) 0.26 0.05 0.14 0.42 0.28 0.04 0.10 0.29

AR1(logGP ) 0.79 0.50 0.78 0.92 0.91 0.46 0.74 0.90
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Table 14: Simulation Results: Return Predictability

Table 14 shows results from model simulations for return predictability. State variables are simulated at a monthly frequency
and aggregated to an annual frequency. The population moments are computed from a 1,000,000 year simulation. The model
confidence intervals are computed from 100,000 simulations of length equal to the length of the data. I run the regression in
the first panel is:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + βh,gp logGPt + εt+h

and the period is annual. Excess returns are log equity returns over the log return on the government bond, as in Barro (2006)
and Wachter (2013). The regressions I run in the second panel are:

logGPt = β0 + βZ logZt + εt

and predicting returns using logZt

12

h

h∑
i=1

logRt+i − logRft+i = β0 + βh,Z logZt + εt+h.

In the third panel, I run the return predictability regression controlling for supply effects:

12

h

h∑
i=1

logRt+i − logRft+i = β0 + βh,gp⊥Z logGPt + γh,Z logZt + εt+h.

Data All Simulations No Disaster Simulations

Est. 5% 50% 95% Pop. 5% 50% 95%

Excess Returns
β1y,gp 0.243 -0.007 0.334 1.023 0.132 0.095 0.444 1.148

β3y,gp 0.161 -0.006 0.303 0.753 0.127 0.100 0.390 0.818

β5y,gp 0.129 -0.010 0.270 0.598 0.121 0.090 0.333 0.635

R2
1y,gp 16.57 0.28 7.69 23.01 3.07 1.22 10.36 25.94

R2
3y,gp 23.57 0.76 20.63 49.42 8.85 3.31 26.50 53.13

R2
5y,gp 31.66 1.08 30.06 63.78 13.98 3.92 37.04 66.72

Supply Regressions
βZ 7.86 -23.20 1.60 26.80 1.69 -14.64 1.59 18.57

R2
Z 11.35 0.09 9.10 49.09 0.77 0.07 8.41 46.15

β1y,Z -0.55 -10.19 0.01 10.26 0.00 -7.49 0.03 7.63

R2
1y,Z 0.16 0.00 1.12 9.27 0.00 0.00 1.03 8.80

Excess Returns
Controlling for Supply
β1y,gp⊥Z 0.283 0.004 0.392 1.154 0.132 0.111 0.512 1.286

β3y,gp⊥Z 0.188 0.005 0.343 0.817 0.127 0.115 0.432 0.884

β5y,gp⊥Z 0.145 0.002 0.293 0.634 0.121 0.105 0.358 0.668

R2
1y,gp⊥Z 19.99 1.65 11.25 28.00 3.07 3.34 13.88 30.58

R2
3y,gp⊥Z 28.84 4.58 28.55 56.53 8.85 9.28 33.81 59.51

R2
5y,gp⊥Z 35.65 6.88 40.28 70.68 13.98 12.80 45.87 72.80
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Table 15: Gold and Platinum Supply Dynamics

Table 15 shows the per-capita growth rate of the world gold and platinum stock, annual data from 1975 to 2013. The data
is calculated from annual world production data. The data for platinum production is from Johnson Matthey. The data for
gold production is from the U.S. Geological Survey Minerals Yearbook. The estimate of the initial gold stock is 84,000 tonnes
(Thomas and Boyle (1986)), and the estimate of the initial platinum stock (net of autocatalysts) is set to be 4.5% of the initial
gold stock. Population growth is proxied by the U.S. annual population growth from the U.S. census. Gt is the per-capita gold
stock and Xt is the per-capita platinum stock. Panel A gives descriptive statistics for the log growth rates of per-capita gold and
platinum stock. Panel B shows results from augmented Dickey-Fuller tests. Panel C reports the estimate of the cointegrating
coefficient βG from a Stock and Watson (1993) Dynamic Least Squares (DLS) regression:

logXt = β0 + βG logGt +

k∑
i=−k

γi∆ logGt−i + εt

using Newey and West (1987) HAC robust standard errors. Panel D results of the Johansen (1988) rank test for the VECM:

∆Yt = µ+ ΠYt−1 +

p−1∑
j=1

Γj∆Yt−j + εt

where Yt =
[
logXt logGt

]′
. The null hypothesis is H0 : rank(Π) = r against the alternative Ha : rank(Π) > r.

Panel A - Growth Rates Mean (%) Median (%) Std. Dev. (%) Min. (%) Max. (%)

∆ logGt 0.72 0.76 0.21 0.21 1.00

∆ logXt 0.71 0.68 0.29 0.24 1.28

Panel B - ADF 1 lag 2 lags 3 lags 4 lags 5 lags

logGt 1.046 1.645 1.326 1.464 1.580

p-val 0.995 0.998 0.997 0.997 0.998

logXt 2.592 1.954 1.879 1.259 1.319

p-val 0.999 0.999 0.999 0.996 0.997

logZt -1.776 -3.085 -3.032 -2.781 -3.024

p-val 0.392 0.028 0.032 0.061 0.033

Panel C - DLS Estimate Std. Err. t-stat [95% confidence interval]

βG (k=1) 0.990 0.034 29.39 0.92 1.06

βG (k=2) 1.006 0.035 29.02 0.94 1.08

βG (k=3) 1.038 0.044 23.38 0.95 1.13

Panel D - Rank Test Statistic 90% CV 95% CV p-val H0 = r

1 lag in VAR 11.61 13.43 15.50 0.177 0
0.99 2.71 3.84 0.448 1

2 lags in VAR 23.28 13.43 15.50 0.004 0

3.10 2.71 3.84 0.078 1

3 lags in VAR 26.01 13.43 15.50 0.001 0

2.53 2.71 3.84 0.112 1

4 lags in VAR 21.76 13.43 15.50 0.005 0

0.84 2.71 3.84 0.504 1
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Figures

Figure 1: Gold and Platinum Prices

The top panel shows the behavior of real gold prices (solid line) and the log price-dividend ratio on the

CRSP value-weighted portfolio (dashed line) from 1975 - 2013. The bottom panel shows real platinum prices

(solid line) and the log price-dividend ratio on the CRSP value-weighted portfolio (dashed line) from 1975 -

2013. The shaded grey bars are NBER recessions.
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Figure 2: Log GP Ratio

The figure above shows the natural logarithm of the ratio of gold to platinum prices (log GP ratio) from

1975 to 2013. The data is monthly frequency. Gold data is from LBMA, and platinum data is from LPPM

and the U.S. Geological Survey. Shaded bars represent NBER recessions.
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Figure 3: Rolling Regressions - GP ratio

The figure above shows estimated betas and 95% confidence intervals for 2-year ahead predictive regressions

of future U.S. stock market excess returns by the log GP ratio. The top left is for the rolling window method

with a 120 month window. The top right is for the rolling window method with a 180 month window. The

bottom left is for the expanding window method with a 120 month window. The bottom right is for the

expanding window method with a 180 month window.
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Figure 4: Cross-Sectional Pricing

Panel A in the figure above shows the realized average excess returns for book-to-market and size portfolios

against the risk exposures (betas). Panel B shows the realized average excess returns against the predicted

excess returns. Results are based on the one-factor model with only GP risk. Monthly data 1975 - 2013,

annualized percentage excess returns.
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Figure 5: Gold and Platinum Demand

The figure above shows gold and platinum demand for jewelry and investment as a percentage of total

demand in a given year, from 1990 - 2013. Gold data is from Thomson Reuters Gold Fields Mineral Services

(GFMS) and platinum data is from Johnson Matthey.

Figure 6: Gold Lease Rates 2007 - 2009

The figure plots the annualized gold lease rates in percentages from 2007 - 2009. The data is computed as

the Libor rate minus the Gold Forward Offered Rate (GOFO) as published by the LBMA.
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Figure 7: Per-Capita Gold and Platinum Stock Growth

The figure shows the log per-capita gold and platinum stock (de-meaned) from 1975 to 2013. The data is

annual frequency. Gold stock is calculated from world supply data from the U.S. Geological Survey, and

platinum stock is calculated from world supply data from Johnson Matthey.
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