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Correlation Uncertainty, Heterogeneous

Beliefs and Asset Prices

Abstract

We construct an equilibrium model in the presence of correlation uncertainty and

heterogeneous ambiguity-averse investors. Our model explains a number of well docu-

mented empirical puzzles on correlation, including asymmetric correlation, underdiver-

sification and limited participation, diversification premium, comovement and correlated

trading patterns in the market. When both agents have high correlation uncertainty

or when uncertainty dispersion is small, each agent chooses the highest possible cor-

relation endogenously, resulting in a full market participation. When the uncertainty

dispersion among agents is large, the naive agent chooses not to participate due to

a portfolio inertia feature, thus a limited participation equilibrium prevails. In this

uniform framework, we demonstrate that asymmetric correlation occurs robustly and

limited participation arises endogenously; the sophisticated (naive) agent always holds

a well-diversified (under-diversified) portfolio compared with the market portfolio. In

addition, the sophisticated agent achieves a better performance following a correlated-

trading strategy. Moreover, we characterize the dispersion of assets’ endogenous Sharpe

ratios, and demonstrate that this dispersion decreases therefore assets move together

more closely with the increase of correlation uncertainty.
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A principle purpose of research on financial market is to study its correlated structure

among all financial assets. Correlated structure is pervasive in financial market and plays

a central role in finance since Markowitz (1952)’s seminal work on the portfolio choice,

arbitrage pricing theory (Ross, 1976) and derivative pricing (Duffie et al, 2012), among

many others. A voluminous number of studies also document significant empirical correlated

structure-relevant phenomenons including asymmetric correlation (Ang and Chen, 2002;

Longin and Solnik, 2001; Goetzmann, Li and Rouwenhorst, 2005), time-varying correlation

structure (Bollerslev, Engle and Woolridge, 1988; Moskowitz, 2003, Ehling and Hererdahl-

Larsen, 2013), underdiversification ( Mankiw and Zeldes, 1991; Vissing-Jorgensen, 2002);

limited participation (Goetzmann, Li and Rouwenhorst, 2005; Mankiw and Zeldes, 1991;

Gomes and Livdan 2004), diversification discount and diversification premium (Campa and

Kedia, 2002; Hoechel et. al., 2012), comovement (Barberis, Shleifer and Wurgler, 2005;

Vedlhamp, 2006) and complicated correlation patterns among asset classes1. This paper

develops a uniform framework underpinning these correlation-related puzzles and offer novel

predictions for optimal portfolio choice and asset pricing related to the correlated structure

in a financial market.

It is well known that the correlation estimation is more difficult than the estimation

of the expected mean or volatility from both statistical perspective and econometric per-

spective (Chan, Karceski and Lakonishok, 1999; Ledoit, Santa-Clara and Wolf, 2003). The

challenge of the correlation or covariance process stems from several reasons, for example,

lack of enough market data source, limitation in estimation methodology, correlation process

being unstable or very complicated,2 not to mention the increasingly interconnected market

pattern, making the whole correlation analysis much more demanding than the estimation

of the marginal distribution.3 Given its estimation challenge, the fragile sensitivity to many

economic factors and investors’ little knowledge about the future realization of asset cor-

relation or its occurring probabilities under many circumstances, it is natural to study the

1See Forbes and Rigobon (2002) about the unconditional correlation coefficients during and after several
financial crisis time periods. Wall Street Journal, August 21, 2011 also reports that “S & P-500-index stocks
have a correlation of 80%, even higher than 73% peak reached during the crisis in late 2008 ”.

2See the Wald process in Bursaschi, Porchia and Trojani (2010); a stochastic matrix process in Tola et
al (2006); and a dynamic multivariate GARCH model in Engle (2002).

3Alternatively, the correlation structure can be estimated from the option market. See Buss and Vilkov
(2012); Kitiwiwattanachai and Pearson (2015). However, the complexity of the correlation process still
preserves in spite of this implied estimation methodology.

3



correlation uncertainty in the financial market and investigate its implications to the market

endogenous correlation in equilibrium.

This paper develops a correlation uncertainty framework to gauge a number of corre-

lated phenomenons simultaneously by employing a multiple-priors4 setting in Gilboa and

Schmeidler (1989) on uncertainty. Specifically, agents’ concern on the correlated structure

is interpreted by ambiguity-aversion on the correlated structure, or virtually the correlation

coefficient estimation. Each agent is both risk and ambiguity averse, and agents are het-

erogenous in terms of ambiguity aversion, reflecting their various levels of sophistication to

deal with statistical data and estimation methodology.

To highlight the role of correlation ambiguity, we assume that agents have perfect knowl-

edge of the marginal distributions for all assets; thus, they merely have concerns about the

correlation structure. In this manner, our discussion on the correlation uncertainty signifi-

cantly departs from previous literature in model uncertainty, where either expected return

or the variance estimation is a concern. For instance, Garlappi, Uppal and Wang (2001),

Boyle et al (2012), Easley and O’Hara (2009) investigate the expected return parameter

uncertainty. Easley and O’Hara (2012), Epstein and Ji (2014) discuss volatility parameter

uncertainty under recent high volatile market movement. In an information ambiguity set-

ting, Illeditsch (2011) addresses the conditional distribution ambiguity of the signals. In

those previous studies the correlation structure is always given exogenously. This paper

develops an equilibrium model of heterogeneous correlation uncertainty and investigate its

implications to the financial market.

We characterize the unique equilibrium at the presence of correlation uncertainty and

demonstrate that the heterogeneous beliefs in correlation uncertainty, among others, play a

fundamental role in the equilibrium. Specifically, when the dispersion of correlation uncer-

tainty among agents is small, each agent chooses the highest available correlation in a full

participation equilibrium. When the uncertainty dispersion is large, while the sophisticated

agent still chooses her highest possible correlation coefficient, the naive agent’s choice of

correlation coefficient is no longer relevant in the equilibrium. The naive agent does not

4The multiple-priors framework has been applied in asset pricing theories by many authors. See, for
instance, Easley and O’Hara (2009, 2012); Garlappi, Uppal and Wang (2007); Cao, Wang and Zhang (2005);
Uppal and Wang (2003). For other approaches to address the ambiguity and its implication to asset pricing,
see Bossarts et al (2010); Routledge and Zin (2014) and Illeditsch (2011).
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participate in the market thus a partial participation equilibrium emerges. We show that

this limited participation equilibrium follows from a remarkable portfolio inertia due to the

correlation uncertainty.

In the portfolio inertia situation, the naive agent is irrelevant to the choice of the en-

dogenous correlation coefficient, even though his optimal portfolio is unique. Cao, Wang

and Zhang (2005) demonstrate a limited participation equilibrium model under expected

return uncertainty without portfolio inertia. Our paper substantially differ from previous

model uncertainty studies on expected mean and variance5. We show that the portfolio

inertia can be obtained in the context of both portfolio choice and equilibrium under model

uncertainty. Moreover, naive agents can be squeezed out from market by massive sophis-

ticated investors, who mainly determine the equilibrium and stabilize the financial market.

Hence, by introducing more institutional investors into the market and through enhancing

investors’ education/training and information transparency can reduce uncertainty on assets’

correlated structure.6

Our equilibrium analysis has several key implications in understanding the empirical

correlation-related puzzles. First, we demonstrate that correlation asymmetry occurs en-

dogenously. While the benchmark/reference correlation coefficient is somewhat stable, an

agent’s correlation ambiguity is often larger in the weak market than in the strong market,

yielding a higher correlation in a downside market movement. This correlation asymmetry

phenomenon is shown to be persistent in spite of the heterogeneity in correlation estimation.

Second, we show that limited participation indeed occurs endogenously due to the agents’

ambiguity dispersion on the correlated structure. By comparing with the market portfolio, we

also show that the sophisticated agent always holds a more diversified (well-diversification)

portfolio while the naive agent holds an underdiversification portfolio. Specifically, we pro-

pose a dispersion measure to quantify the dispersion among economical variables, inspired

by the portfolio selection literature7. Previous studies such as Cao, Wang and Zhang (2005),

Wang and Uppal (2003), Easley and O’Hara (2009) and Vissing-Jorgensen (2003), show that

5See Easley and O’Hara (2009, 2012); Garlappi, Uppal and Wang (2007); Cao, Wang and Zhang (2005);
and Epstein and Ji (2014).

6Easley and O’Hara (2009) and Easley, O’Hara and Yang (2015) present similar insights from other
perspectives.

7See Solnik and Roulet (2000); Hennessy and Lapan (2003); Ibragimov, Jaffee and Walden (2011).
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underdiversification and limited participation occur when there is ambiguity on the distribu-

tion estimation. Nevertheless, we examine this issue for a large number of assets in a precise

manner. We further demonstrate that when the risk dispersion is high enough, a limited

participation equilibrium prevails regardless of the uncertainty degree.

Third, we analyze agents’ trading activities when the level of correlation uncertainty

varies. We show that each agent holds “long” position on high risk assets, but the naive

agent might “sell” some endogenous low risk assets. We confirm that the naive agent’s

portfolio is less risky because his higher correlation uncertainty yields a higher implicit risk

aversion.8 We also show that the sophisticated agent achieves a better performance optimal

portfolio.

Fourth, we identify circumstances in which the diversification premium is generated in

a heterogeneous setting of correlation uncertainty. It is a debated topic whether diversifi-

cation premium or diversification discount occurs.9 Cao and Wang and Zhang (2005) find

diversification discount in a heterogeneous setting of the expected return uncertainty. By

contrast, we show that diversification premium can be generated in a heterogeneous corre-

lation uncertainty framework.

Last, we conduct a comprehensive analysis of the sophisticated agent as well as the

correlation uncertainty on asset prices, risk premiums and in particular, the dispersion of

endogenous Sharpe ratios. Despite the dispersion of correlation uncertainty, we find that

the dispersion of Sharpe ratios decreases endogenously as correlation uncertainty increases.

Not only prices substantially drop in a downside market with larger correlation uncertainty,

but also all risky assets are enforced to comove more since they offer similar investment

opportunities. This analysis sheds light to further understand asset comovements from a

correlation ambiguity perspective, given that assets moves closely together in a downside

market and moves apart in an upside market.

The rest of the paper is organized as follows. Section 1 presents a model setting of

correlation uncertainty. In Section 2, we study the portfolio choice problem under correlation

uncertainty and demonstrate the persistent portfolio inertia feature. We also characterize the

8See Garlappi, Uppal and Wang (2007); Gollier (2011); Wang and Uppal (2003) for the discussion that
ambiguity leads to risk aversion implicitly.

9See Campa and Kedia (2002), Rajan, Servases and Zingales (2000), Villalonga (2004), Hoechel et. al.
(2012).
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equilibrium in a homogeneous environment as a baseline model. In Section 3 we present the

market equilibrium under heterogeneous correlation uncertainty and its effect on asset prices

and risk premium. We also present the conditions of diversification premium in equilibrium.

Section 4 concerns on the optimal portfolios. We demonstrate that the sophisticated agent

has a well diversified, higher risk and better performance optimal portfolio than the naive

agent. Section 5 investigates the effect of the sophisticated agent as well as the dispersion of

risks to the financial market. Section 6 extends the model to multiple correlated structures.

Section 7 concludes. Proofs and technical arguments are collected in Appendices.

1 A Model of Correlation Uncertainty

In this section we present a model of correlation uncertainty with heterogeneous beliefs

among agents.

We consider a two-period economy with N risky assets and one risk-free asset which

serves as a numeraire. The payoffs of these N risky assets are ã1, ã2, · · · , ãN , respectively

at time t = 1. The risk-free asset is in zero net supply, and the per capita endowment of

risky asset i is xi, i = 1, · · · , N . Each risky asset can be viewed as an investment asset,

an investment fund, an asset class, or a market portfolio in a single-factor economy in an

international market.

To focus entirely on the correlated risk and its effect on asset pricing, we investigate

the correlation structure instead of the joint distribution of (ã1, · · · , ãN).10 For simplicity,

we assume that (ã1, · · · , ãN) has a multivariate Gaussian distribution as in Cao, Wang and

Zhang (2005), Easley and O’Hara (2009, 2012); and each agent is confident in the estimation

of expected mean ai and variance σ2
i for each risky asset i = 1, · · · , N . However, they are

seriously concerned about the correlated structure estimation.

10By a copula theory (see McNeil, Frey and Embrechts, 2015), the joint distribution of ã = (ã1, · · · , ãN ) is
characterized by the marginal distribution of each ãi, and a copula function which determines the correlation
structure. In other words, the correlation structure can be independent of the marginal distributions. We
consider a single-factor Gaussian copula correlation structure, but our setting itself is general enough to
include an arbitrary copula correlation structure.
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We confine ourselves on a positive correlated financial market11. That is, these risky

assets have nonnegative correlation coefficients. Moreover, the correlation coefficient matrix

R among risky assets has a simple structure that these risky assets have a same correlation

coefficient ρ, i.e., corr(ãi, ãj) = ρ for each i 6= j.This assumption on the correlation structure

will be relaxed in Section 6 and it is well known that such as matrix is a correlation matrix

of a multivariate Gaussian variable as long as ρ 6= − 1
N−1

.12 Every agent encounters some

correlation uncertainty; therefore,we assume that each agent has a plausible region for the

correlation coefficient instead of one particular number.

There is a group of agents in this economy. Each agent has the CARA-type risk prefer-

ence to maximize the worst-case diversification benefit

min
ρ

Eρ [u(W )] , u(W ) = −e−γW , (1)

where ρ runs through a plausible correlation coefficient region, Eρ[·] represents the expec-

tation operator under corresponding correlation coefficient ρ, and γ is the agent’s absolute

risk aversion parameter and we assume that each agent has the same absolute risk aversion.

Since each agent is able to accurately estimate the marginal distribution of each ãi, the corre-

lation coefficient ρ is the only one parameter with uncertainty that affects the diversification

benefit in (1).

We assume that agents are heterogeneous in their estimations of the correlation coefficient

matrix. Specifically, there are two types of agent, sophisticated (“she”) and naive (“he”). For

the sophisticated agent, her available correlation coefficient region is [α1, β1]; while for the

naive agent, his correlation coefficient region is [α2, β2].13 We assume that [α1, β1] ⊆ [α2, β2],

which reflects the fact that the estimation on correlation coefficient for the sophisticated

agent is more accurate than the naive agent. The percentage of sophisticated agents in the

market is ν and naive agents’ percentage is 1− ν.

11Technically speaking, our results hold when all correlation coefficients are strictly larger than − 1
N−1 .

A positive correlated structure is driven by common shocks, or some factors in a financial market. Both
the diversification benefits and synchronization are more critical in a positive correlated economy than in a
negative correlated environment. For a positive correlated environment in terms of affiliated theory we refer
to Milgrom and Weber (1982).

12It is well known that fat-tailed asset distribution can be generated while a correlation structure is simply
preserved through normal mixture approach (McNeil, Frey and Embrechts, 2015). Therefore, our result
virtually hold for a mean-variance setting to encounter tailed marginal distributions of asset prices.

13It is well known that the plausible linear correlation coefficient between any two variables X and Y is
an interval, [ρmin, ρmax]. See NcNeil, Frey and Embrechts (2015).
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The plausible correlation coefficient region [α, β] represents the correlation magnitude as

well as uncertainty. An agent has in mind a benchmark or reference in an economy that

represents his best estimate on the correlation, and the benchmark/reference correlation

is implied by α+β
2

; however, and the level of correlation uncertainty is measured by β−α
2

.

Precisely, the benchmark correlation coefficient signifies the market trend over all, and the

level of correlation uncertainty indicates how far away plausible correlation coefficients move

upon and below the benchmark. In most situations, econometricians are able to find the

benchmark correlation coefficient through the calibration to a stochastic matrix process, and

treat it as a market reference with some estimation errors (See Engle, 2002; Buraschi and

Porchia and Trojani, 2010). In this case, we use ρ to denote the benchmark and ε the level

of uncertainty.

As a special case to notice, both types of agents can agree on the same benchmark

correlation coefficient, but have different ambiguities with respect to the correlation coef-

ficient estimation. If so, the available correlation coefficient for the sophisticated agent is

[ρ − ε1, ρ + ε1], and the naive agent’s plausible correlation coefficient is [ρ − ε2, ρ + ε2] and

ε1 < ε2. An extreme situation is ε1 = 0, where the sophisticated agent has the perfect

knowledge about the correlation structure.14 We illustrate our results with these special

cases later.

2 Equilibrium in a homogeneous environment

In this section we first solve the portfolio choice problem under correlation uncertainty, then

we present the equilibrium in a homogeneous environment.

14Alternatively, by adopting Cao et al. (2005), we can assume that there is a continuum of agents, say
[ρ − ε, ρ + ε], each type of investor’s correlation uncertainty is captured by different parameter ε while ε is
uniformly distributed among agents on [ε − δ, ε + δ] with density 1/(2δ). The main insights of this setting
are fairly similar to ours whereas the impact of sophisticated agents in our current setting has a clearer
expression. Our setting is in a manner reminiscent of Easley and O’Hara (2009, 2012) on the heterogeneity
of agents’ ambiguity aversion.
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2.1 Portfolio Choices

Let xi be the number of shares on the risky asset i, i = 1, · · · , N , and W0 is the initial wealth

of the agent, then the investor’s final wealth at time 1 is

W = W0 +
N∑
i=1

xi(ãi − Pi)

where Pi is the initial price of the risky asset i. Assuming the plausible range of the asset

correlation coefficient ρ is [α, β] and there is no any trading constraint, the optimal portfolio

choice problem for the agent is

max
x∈RN

min
ρ∈[α,β]

Eρ
[
−e−γW

]
. (2)

Under the CARA preference and the multivariate Gaussian distribution assumption of the

asset returns, the above problem is reduced to be u(A) and

A ≡ max
x

min
ρ∈[α,β]

CE(x, ρ) (3)

where CE(x, ρ) = (a − p)x − γ
2
xTσTR(ρ)σx is the mean-variance utility of the agent when

the demand vector on the risk assets is x = (x1, · · · , xN)T , where σ is a diagonal N × N

matrix with diagonal vector (σ1, · · · , σN) and R(ρ) is a correlation matrix with a common

correlation coefficient ρ. We use ·T to denote the transpose operator of a matrix. The

certainty-equivalent of the uncertainty-averse agent is

CE(x) = min
ρ∈[α,β]

CE(x, ρ) (4)

and it is straightforward to see that

CE(x) =


CE(β, x), if

∑
i 6=j(σixi)(σjxj) > 0,

CE(α, x), if
∑

i 6=j(σixi)(σjxj) < 0,∑N
i=1

(
(ai − pi)xi − γ

2
σ2
i x

2
i

)
, if

∑
i 6=j(σixi)(σjxj) = 0,

(5)

The insight of Equation (5) is straightforward. When the demand vector x has approxi-

mately same signs such that
∑

i 6=j(σixi)(σjxj) > 0, the agent will choose the highest pos-

sible correlation coefficient to compute the certainty-equivalent in the worst case scenario
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under correlation uncertainty. On the other hand, if the holding positions on the risky

assets are opposite such that
∑

i 6=j(σixi)(σjxj) < 0, the correlation coefficient to compute

the certainty-equivalent in the worse case scenario must be the smallest possible correlation

coefficient. Finally, if limited participation occurs in the sense that
∑

i 6=j(σixi)(σjxj) = 0,15

then choice of the correlation coefficient is irrelevant to compute the certainty-uncertainty

as CE(ρ, x) =
∑N

i=1

(
(ai − pi)xi − γ

2
σ2
i x

2
i

)
for each ρ ∈ [α, β].

To elaborate the certainty-equivalent and solve the portfolio choice problem, we introduce

a dispersion measure, Ω(w), of a vector w = (w1, · · · , wN) with
∑N

i=1wi 6= 0 by

Ω(w) ≡

√√√√ 1

N − 1

(
N

∑N
i=1 w

2
i

(
∑N

i=1 wi)
2
− 1

)
. (6)

If further
∑N

i=1wi = 1, then Ω(w)2 = 1
N−1

(∑N
i=1w

2
i − 1

)
is up to a linear transformation

the Herfindahl index
∑N

i=1 w
2
i . In Appendix B we present a formal justification of Ω(·) being

a dispersion measures of individual assets’ risk.16 This dispersion measure plays a crucial

role in our equilibrium analysis for the endogenous correlation structure and its asset pricing

implications in Section 2- Section 6.

By using the dispersion measure, we reformulate the certainty-equivalent utility of the

uncertainty-averse agent as

CE(x) =


CE(β, x), if Ω(σx) < 1,
CE(α, x), if Ω(σx) > 1,∑N

i=1

(
(ai − pi)xi − γ

2
σ2
i x

2
i

)
, if Ω(σx) = 1,

(7)

Therefore, the optimal portfolio choice problem for the uncertainty-averse agent becomes

A = max
{
maxΩ(σx)<1CE(β, x),maxΩ(σx)>1CE(α, x),maxΩ(σx)=1CE(ρ, x)

}
. (8)

The solution of the optimal portfolio choice problem (2) is given by the next result.

15It is evident for N = 2. When x1x2 = 0, then either x1 = 0 or x2 = 0, thus at most one component of x
is non-zero. For an arbitrage N , if each xi ≥ 0, it is easy to show that

∑
i 6=j xixj = 0 ensures that at most

one component of x is non-zero; thus only invested in one risky asset. Similarly, when N = 2 and x1x2 < 0,
it is a pair trading or a market-neutral strategy, and N = 2, x1x2 > 0, the portfolio yields synchronization
strategy.

16The dispersion measure has been applied in the portfolio selection context. See Ibragimov, Jaffee and
Walden (2011); Hennessy and Lapan (2003).
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Proposition 1 Let Ω(s) be the dispersion measure of Sharpe ratios (si) of all risky assets

and assume that S =
∑N

i=1 si 6= 0, si = (ai − pi)/σi.

1. If α > τ (Ω(s)), then the agent chooses the optimal correlation coefficient ρ∗ = α, and

the optimal demand is x∗ = xα in Problem (2).

2. If β < τ (Ω(s)), then the agent chooses the optimal correlation coefficient ρ∗ = β, and

the optimal demand is x∗ = xβ in Problem (2).

3. If α ≤ τ (Ω(s)) ≤ β, then the agent is irrelevant to choose any correlation coefficient

ρ∗ ∈ [α, β], and the optimal demand is xτ(Ω(s)) in Problem (2).

For each ρ ∈ [α, β], xρ ≡ 1
γ
σ−1R(ρ)−1s is the optimal portfolio at the absence of uncertainty

when the correlation coefficient is ρ. τ is a linear fractional transformation: τ(t) ≡ 1−t
1+(N−1)t

for any real number t 6= − 1
N−1

.

The intuition of Proposition 1, (1), is as follows. When all available correlation coef-

ficients are large enough such that α > τ (Ω(s)), the dispersion of Sharpe ratios Ω(σxα)

is strictly larger than 1 (by Appendix A, Lemma 2). Therefore, (α, xα) solves the optimal

portfolio choice problem CE(α, x) under the demand constraint Ω(σx) > 1. By analyzing

the dual-problem of Problem (2) (see its proof in Appendix A), we show that α is the best

possible correlation coefficient for the uncertainty-averse agent in this situation; thus, (α, xα)

is the unique solution of the problem (2).

By the same reason, if all available correlation coefficients are small enough such that

β < τ (Ω(s)), by Appendix A, Lemma 2 again, Ω(σxβ) < 1. Therefore, (β, xβ) maximizes

CE(β, x) for x satisfying the constraint that Ω(σx) < 1. Again, a dual-type analysis ensures

that the highest correlation coefficient, β, is the best possible correlation coefficient. Hence,

(β, xβ) is the unique solution for the uncertainty-averse agent’s portfolio choice problem (2).

Proposition 1 is remarkable when the agent’s available correlation coefficient region is

large such that α ≤ τ (Ω(s)) ≤ β from several perspectives. First, the agent holds a limited

participation portfolio to resolve the correlation uncertainty concern since the dispersion of

12



xτ(Ω(s)) is one. Second, the optimal demand is unique and any other demand vector leads

to a smaller maxmin expected utility in Problem (2). Third, while the optimal demand

vector is unique, the choice of the correlation coefficient for the agent is irrelevant, that is,

the portfolio inertia occurred if the correlation uncertainty is large. It is well documented

that a high ambiguity might ensure portfolio inertia since Dow-Werlang (1992), Epstein-

Schneider (2008) and Illeditsch (2011). However, this feature does not emerged in the Chiboa-

Schmeidler maxmin expected utility setting where either mean or volatility is unknown and

the worst case scenario corresponds to the extreme parameters.17 If the agent has a full

correlation ambiguity, say [α, β] = [−1, 1], Liu and Zeng (2015) show a strong version of

limited participation under correlation uncertainty if one risky asset’s Sharpe ratio dominates

all other risky assets’ Sharpe ratios.

According to Proposition 1, the dispersion of Sharpe ratios Ω(s) is fundamental in the

characterization of the optimal portfolio choice problem and it deserves some comments.

First, Ω(s) captures the market investment capacity. The higher Ω(s), the more diversified

all risky assets’ investment profile; thus, the higher expected utility for all agents. To see it,

consider an economy in the presence of correlation uncertainty and the correlation coefficient

is ρ. Then the maximum expected utility for a CRRA-type agent is u
(

1
2γ
G(ρ)

)
, where

G(ρ) ≡ s′R(ρ)−1s =
S2

1− ρ

(
(N − 1)Ω(s)2 + 1

N
− ρ

1 + (N − 1)ρ

)
. (9)

It is evident to see that the maximum expected utility is monotonically increasing with

respect to Ω(s).

Second, the level of Ω(s) determines the optimal strategy under correlation uncertainty.

We take an example of N = 2 to explain the unusual portfolio inertia feature under correla-

tion uncertainty. In an economy with two risky assets, we have

Ω(s) = |s1 − s2

s1 + s2

|, τ(Ω(s)) =


min

{
s1
s2
, s2
s1

}
, if s1s2 > 0,

max
{
s1
s2
, s2
s1

}
, if s1s2 < 0,

0, if s1s2 = 0.

17See Garlappi, Uppal, Wang (2007), Easley and O’Hara (2009) and Epstein and Ji (2014).
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τ(Ω(s)) measure the “similarity” of the two Sharpe ratios, or the investment opportunity

offered from each risky asset. In an extreme situation that one asset (say, the first risky

asset) has a very small Sharpe ratio, τ(Ω(s)) is close to zero. Since the expected return of

holding the first risky asset is almost the same as holding the risk-free rate, the only reason

to hold it in an optimal portfolio is for the diversification purpose. In order to take advantage

of the diversification benefit, the optimal strategy in a mean-variance analysis for these two

positively correlated assets must be one long and one short, the smallest possible correlation

is thus chosen. Now assume another extreme case that s1 = s2 and τ(Ω(s)) = 1. These two

risky assets have the same Sharpe ratios, so the unknown correlation coefficient becomes

a major concern for diversification. Therefore, to hedge the correlation uncertainty in the

worst-case scenario, the agent chooses naturally the highest possible correlation coefficient.

In a general case with arbitrarily s1 > 0, s2 > 0, the diversification benefit can be written as

(with a specific correlation coefficient ρ)

u

(
1

2γ

(
s2

1 + s2
2 − 2ρs1s2

1− ρ2

))
.

Hence, the optimal correlation coefficient under correlation uncertainty depends on the level

of τ(Ω(s)) with respect to the plausible region [α, β] of the correlation coefficient. In particu-

lar, when τ(Ω(s)) ∈ [α, β], the agent can choose any correlation coefficient while the optimal

demand is chosen by pretending to choose τ(Ω(s)) as the “right” correlation coefficient. The

intuition of Proposition 1 for N ≥ 3 is similar.

2.2 Equilibrium in a homogeneous environment

The equilibrium in a homogeneous environment is characterized as follows.

Proposition 2 Assume the plausible correlation coefficient is [α, β] in a homogeneous en-

vironment. There exists a unique uncertainty equilibrium in which the agent’s endogenous

correlation coefficient is the highest plausible correlation coefficient β.

The price of the risky asset i is

pi = ai − γσi(1− β)σixi − γσiβ(
N∑
n=1

σnxn). (10)
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The intuition of Proposition 2 is simple. The optimal portfolio must be the market

portfolio
∑N

i=1 xiãi in equilibrium, thus, Ω(σx∗) = Ω(σx) = 1. By Proposition 1, the repre-

sentative agent chooses the highest possible correlation coefficient.

There are several important asset pricing implications of Proposition 2. To highlight the

effect of correlation uncertainty, we use α = ρ − ε, β = ρ + ε. Therefore, the risk premium

ai − pi can be written as a sum of two components:

ai − pi = γ(1− ρ)σ2
i xi + γσiρ

N∑
n=1

σnxn

+εγ

(
σi
∑
j 6=i

σjxj

)
(11)

where the first component represents the premium at the absence of correlation uncertainty,

and the second one is the correlation-uncertainty premium.

First of all, Proposition 2 is useful to explain the equity premium puzzle in the presence of

the correlation uncertainty due to the positive uncertainty premium. As an illustrative exam-

ple, we report the percentage of the correlation-uncertainty premium to the reference Sharpe

ratio, (1 − ρ)σixi + ρ
∑N

n=1 σnxn, in a homogenous situation, in Table 1. Given parameters

σ1 = 9%, x1 = 1, σ2 = 10%, x2 = 5, σ3 = 12%, x3 = 10.5 and γ = 1. Then Ω(σx) = 0.5558.

We assume that ρ = 40%. Without correlation uncertainty, (s1, s2, s3) = (0.79, 1.49, 2.70).

Let the level of uncertainty, ε, move between 0 to 0.2, we see that the correlation-uncertainty

premium increases in a reasonable amount. For instance, when ε = 0.08, the percentage of the

correlation-uncertainty premium adds about 17 percent, 16 percent and 12 percent to each

asset respectively. With a high level of uncertainty, say, ε = 0.2, the correlation-uncertainty

premium can be very significant, adding 40 percent to the reference Sharpe ratio.

When we further compare the influence of correlation ambiguity on the excess equity

premium with the mean and volatility ambiguity, a richer impact can be observed. For

simplicity, we consider two independent risky assets and one risk-free asset with zero return.

To be consistent with our setting, the joint distribution of asset returns is assumed to be a

bivariate Gaussian distribution and the representative agent has a CARA-type preference.

In economy A, the representative agent has no ambiguity on the variance of each asset, but
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the expected return ai ∈ [ai − εi, ai + εi] for each risky asset i = 1, 2. In economy B, the

representative agent has no ambiguity concern on the expected return of each asset, but the

plausible volatility σi ∈ [σi − εi, σi + εi] for each asset i. These two economies have been

applied in Garlappi, Uppal and Wang (2007), Cao, Wang and Zhang (2005) and Easley and

O’Hara (2009) to study the asset price implication of ambiguity. It can be shown that 18 the

Sharpe ratios in economy A and economy B are

sAi = si +
εi
σi

; sBi = si
σi + εi
σi

(12)

where si is the Sharpe ratios in the absence of ambiguity (with expected mean ai and

volatility σi for each risky asset). In Equation (12), the uncertainty premium of each risky

asset depends only on the ambiguity of the marginal distribution estimation. By contrast, the

correlation-uncertainty premium of each risky asset i depends on the entire market structure,

in particular, σj, xj, j 6= i.

Secondly, Proposition 2 can be used to explain the asymmetric correlation phenomenon.

A plausible correlation coefficient region, [ρ− ε, ρ+ ε], relies on the benchmark correlation

coefficient ρ and the level of the correlation uncertainty ε. It is clear that in the absence

of correlation uncertainty, the risk premium increases as the market correlation coefficient ρ

goes high. In addition, the level of uncertainty displays a counter-cyclical feature (see Krish-

nan, Petkova and Ritchken, 2009) hence ρ and ε have compound effects on the correlation

asymmetric phenomenon as observed in Ang and Chen (2002) and Longin and Solnik (2002),

where the market endogenous correlation coefficient is often larger in a weak market than in

a strong economy.

Thirdly, according to Proposition 2,

∂pi
∂ε

= −γσi
∑
j 6=i

σjxj < 0;
∂si
∂ε

= γ
∑
j 6=i

σjxj > 0, (13)

Then, each risky asset’s price drops with respect to ε; and the variance of the market portfolio,∑
xiâi, increases because of increasing correlation coefficient.Therefore, Proposition 2 gives

18The type of portfolio choice problem has been studied in Garlappi, Uppal and Wang (2007) and Easley
and O’Hara (2009). We can employ the same method in proving Proposition 1 in two economies and also
derive the unique equilibrium in a homogeneous environment. The details are available upon request from
the authors.
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an intuitive illustration about the 2007-2009 financial crisis in which a representative agent

has high ambiguity on the correlation structure, so the agent chooses the highest possible

correlation coefficient in equilibrium. As a consequence, the risky assets are more correlated

in equilibrium. A high level of correlation uncertainty leads to significant increase in total

market risk, excess covariance risk, or comovement in the equity market.19

Finally, the dispersion of Sharpe ratio in equilibrium is

Ω(s) = Ω(σx)τ(β)

and the market capacity Ω(s) depends negatively on ε. The intuition is also straightforward.

The higher the uncertainty ε, the smaller the market capacity since all agent’s expected utility

under correlation uncertainty is reduced. Moreover, a smaller market capacity implies that

all risky assets offer similar investment opportunities (Sharpe ratios).

3 Equilibrium in heterogeneous environment

This section characterizes the equilibrium under heterogeneous correlation uncertainty. We

first demonstrate a unique equilibrium by characterizing the endogenous correlation coeffi-

cient for each agent, then we present the correlation uncertainty effect on the asset price

as well as on the risk premiums. As an application, we show that diversification premium

puzzle can be explained in the presented correlation uncertainty setting.

3.1 A characterization of the equilibrium

In characterizing the equilibrium, it is vital to determine the optimal correlation coefficient

for each agent. The agent can choose either the highest, the lowest one, or even any possible

correlation coefficient in a portfolio choice setting; the market clearing condition enforces

the representative agent, in a homogeneous environment, to choose the correlated structure

with the highest possible correlation coefficient under the diversification concern. In a het-

erogeneous environment, however, the diverse choices among agents and the dispersion of

correlation uncertainty lead to strikingly different features in equilibrium.

19The excess covariance risk is closely linked to the comovement and it can not be explained entirely by
economic fundamentals. See Barberis, Shleifer and Wurgler (2005), Pindyck and Rotemberg (1993) and
Vedlhamp (2006). Our result provides an alternative explanation of the excess covariance due to correlation.
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We define several auxiliary functions to capture the parameters {ν, β1, β2} in a hetero-

geneous economy. Put

K(β1) ≡
1

1−β1 −
Ω(σx)

1+(N−1)β1
+ (1−ν)(1−Ω(σx))

ν

1
1−β1 + (N−1)Ω(σx)

1+(N−1)β1

. (14)

and for each real number x, y 6= 1,− 1
N−1

,

m(x, y) ≡ ν

1− x
+

1− ν
1− y

, n(x, y) ≡ νx

(1− x)(1 + (N − 1)x)
+

(1− ν)y

(1− y)(1 + (N − 1)y)
. (15)

Proposition 3 The market equilibrium is presented in two separable cases.

1. (Full Participation Equilibrium) If β1 is large enough such that

β1 ≥
1

N − 1

{
ν

1− ν
Ω(σx)

1− Ω(σx)
N − 1

}
, (16)

or if β2 is strictly smaller than K(β1), there exists a unique equilibrium in which each

agent chooses the corresponding highest correlation coefficient, respectively.

2. (Limited Participation Equilibrium) If Equation (16) fails and β2 is larger than K(β1),

there exists a unique equilibrium in which the sophisticated agent chooses her highest

possible correlation coefficient β1 while the choice of the naive agent is irrelevant. How-

ever, the naive agent’s optimal demand x(n), is uniquely determined by the endogenous

Sharpe ratios in the equilibrium.

3. In either equilibrium, the market price for asset i is, for each i = 1, · · · , N ,

pi = ai −
γσi

m(β1, ρ2)

(
σixi +

n(β1, ρ2)

m(β1, ρ2)−Nn(β1, ρ2)

N∑
j=1

σjxj

)
. (17)

where ρ2 = β2 in the full participation equilibrium and ρ2 = K(β1) in the limited partic-

ipation equilibrium. Furthermore, each risky asset is priced at discount in equilibrium.

That is, pi < ai and si > 0 for each i = 1, · · · , N .
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The full participation equilibrium prevails when all agents participate in the market. If

agents are relatively homogeneous, i.e. both β1 and β2 are large under condition (16) or both

β1 and β2 are small in the sense that β2 < K(β1), both agents participate in the market

by choosing the corresponding highest possible correlation coefficient under the diversifica-

tion concern. This full participation condition indicates that whether agents participate in

the market really depends on both the heterogeneity of agents as well as the dispersion of

correlation uncertainty.

There are two useful situations for which Equation (16) holds. The first situation relates

to a high reference correlation coefficient, say ρ ≥ 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)
N − 1

}
. For instance,

ρ = 0.8,Ω(σx) = 0.5, N = 10, ν ≤ 40%. In this case, each agent chooses the highest possi-

ble correlation coefficient regardless of the uncertainty degree. In the second situation, the

benchmark correlation coefficient is small, say ρ = 0.3, but each agent has high correlation

uncertainty in the sense that ρ + ε1 ≥ 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)
N − 1

}
. Each agent chooses the

highest possible correlation coefficient in equilibrium in order to hedge the worst-case cor-

relation uncertainty, regardless of the uncertainty dispersion among agents. In general, the

heterogeneity among agents and the dispersion of risk jointly affect the correlation bound in

Equation (16). This correlation bound is positively related to ν and Ω(σx). We discuss in

detail how ν and Ω(σx) affects the asset pricing implications in Section 5.

In the limited participation equilibrium of Proposition 3, the naive agent will not par-

ticipate in the market if there is a large amount of heterogeneity of correlation estimation

among agents. Cao, Wang and Zhang (2005) demonstrate an endogenous limited participa-

tion equilibrium when investors are heterogeneous in terms of expected return uncertainty.

Proposition 3(2), demonstrates precisely an endogenous limited participation equilibrium

under correlation uncertainty. Moreover, both the prices and the risk premiums depend only

on the sophisticated agent when the naive agent’s correlation uncertainty meets a thresh-

old. Even though the naive agent is irrelevant in the choice of the correlation coefficient,

his optimal demand, x(n), is uniquely determined by the endogenous Sharpe ratios in the

equilibrium such that

x
(n)
i =

1

γσi

S(1 + (N − 1)Ω)

NΩ

(
si
S
− 1− Ω

N

)
(18)
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where Ω = τ(K(β1)) is the dispersion of Sharpe ratios.

Both the heterogeneity of agents and the dispersion of risk are involved in the limited

participation equilibrium as well. When the sum of sophisticated agents and the risk dis-

persion, ν + Ω(σx), is greater than 1, condition (16) fails. Further if the naive agent is

very uncertain about the correlation coefficient such that ε2 > K(ρ + ε1) − ρ, he decides

not to participate in the market, or equivalently, any choice of the correlation coefficient in

his plausible range is irrelevant in equilibrium. This indicates that when there are many

sophisticated agents in the market, naive agents are squeezed out of the market. As a result,

sophisticated agents dominate the trading in the market. It is also the case that when the

naive agent has a big uncertainty issue, no-diversification becomes his optimal strategy. As

explained in the portfolio choice context, if his plausible correlation coefficient range is large

enough to include τ(Ω(s)) and since τ(Ω(s)) = K(β) in equilibrium, his optimal demand

is given as xK(β), which is determined by the sophisticated agent’s endogenous correlation

coefficient β1.

Figure 1 illustrates the property of the function K(β1) with respect to β1 and how this

correlation boundary determines different equilibrium cases accordingly. As shown, the dark

curve line representing K(β1) is strictly above the straight line of β1. The limited partici-

pation equilibrium occurs only in the yellow region whereas a full participation equilibrium

happens elsewhere. As the correlation uncertainty of sophisticated investors increases, the

endogenous correlation of naive investors rises consequently.

Figure 2 illustrates the Sharpe ratios of all assets in a full participation equilibrium. The

parameters are N = 3, ā1 = 50, σ1 = 9%, x̄1 = 5; ā2 = 60, σ2 = 10%, x̄2 = 3.7; ā3 = 15,

σ3 = 12%, x̄3 = 10.5. Hence Ω(σx) = 0.41. As seen in Figure 3, the plot displays similar

magnitude of the correlation-uncertainty premium as in a homogeneous environment (Table

1). The correlation-uncertainty premium can also be identified in Table 2 for a limited

participation equilibrium.
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3.2 Diversification Premium

In this section we demonstrate that the correlation uncertainty could lead to diversification

premium under certain circumstances due to the heterogeneity among the agents and the

correlation uncertainty.

We assume each risky asset presents a common stock of a company with the same number

of shares x and consider a situation where these companies merge into one conglomerate

firm, and the cash flow of the conglomerate firm is ã = ã1 + · · · + ãN . Under the same

assumption as in Section 2, (ã1, · · · , ãN) has a multivariate Gaussian distribution and each

agent has a precise estimation on the marginal distribution of (ã1, · · · , ãN); the piecewise-

correlation coefficient ρ = corr(ãi, ãj) belongs to an interval [α, β]. Therefore, ã has a

normal distribution with mean a =
∑N

i=1 ai, but the variance is unknown.20 Let PM be the

equilibrium of the conglomerate firm’s stock price (if exists).

Proposition 4 There exists a unique conglomerate equilibrium in both the homogeneous and

the heterogeneous environment.

1. In a homogeneous environment, PM =
∑N

i=1 Pi.

2. In a heterogeneous environment, assume the benchmark correlation coefficient is large

enough such that Equation (16) holds. Let m = m(β1, β2), n = n(β1, β2).

• (Diversification premium) PM >
∑N

i=1 Pi if, and only if

(
N∑
i=1

σ2
i )(m− 2)(m−Nn) < (

N∑
i=1

σi)
2[(N + 1)n−m)]. (19)

• If further each σi is the same, then diversification premium always exists as long

as N is large. If N = 2 and each σi is the same, diversification premium exists if

m2 < 2n(m+ 1).

20See Easley and O’Hara, 2009; Epstein and Ji, 2014 for the unknown variance setting. Precisely, V ar(ã) =∑N
i=1 σ

2
i + 2

∑
i6=j σiσjρ runs through an interval [

∑N
i=1 σ

2
i + 2

∑
i 6=j σiσjα,

∑N
i=1 σ

2
i + 2

∑
i6=j σiσjβ].

21



Proposition 4 shows that the heterogeneous beliefs on correlation uncertainty plays a

crucial role in the diversification premium puzzle. While the diversification discount can

be explained in a heterogeneous mean uncertainty setting in Cao, Wang and Zhang (2005),

and well documented in Janan, Servaes and Zingales (2000), recent literature also identify

diversification premium in many situations. For example, Villalonga (2004), and Hoechle, et.

al (2012), etc. Proposition 4 demonstrates that there is diversification premium when two

identical firms are merged and m2 < 2n(m+ 1) is satisfied. For instance, when Ω(σx) = 0.5

and the benchmark correlation coefficient ρ = 0.7, ν = 0.8 and the sophisticated agent has a

perfect knowledge about the correlation coefficient. Then m < 2 as long as ε ≤ 0.06 for the

naive agent. Hence, m2 < 2n(m+ 1) holds naturally and there is a diversification premium.

We also observe the diversification premium feature when the number of identical firms is

large.

3.3 Sharpe ratio and the market capacity

In this section we describe properties of the endogenous risk premium, Sharpe ratios and the

market capacity in the setting. These properties are presented by the following proposition.

Proposition 5 For each asset i 6= j,

1. si ≥ sj if, and only if σixi ≥ σjxj; It is also equivalent to σix
(s)
i ≥ σjx

(s)
j as well as

σix
(n)
i ≥ σjx

(n)
j , where x(j) is the optimal demand vector for the agent j ∈ {s, n}.

2. si is larger than the average Sharpe ratio, S
N

, if and only if σixi ≥ L
N

;

3. If σxi
L
≤ 1

N
for asset i, then the higher the level of uncertainty for the agents the smaller

the Sharpe ratio for the asset i; the effect of correlation uncertainty on the Sharpe ratio

of asset with higher risk, σxi
L
> 1

N
is ambiguous.

4. Ω(s) depends negatively on the level of correlation uncertainty, but it increases with

respect to the number of sophisticated agents.
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Proposition 5 first demonstrates the symmetric property between the Sharpe ratio with

the associated risk among all assets. Proposition 5(1) states that the a higher Sharpe ratio

always corresponds to a higher risk among all risky assets, and each agent invests more on

the assets with higher Sharpe ratios. Specially, if we re-order the risky assets i = 1, · · · , N

in the decreasing order by σixi, i = 1, · · · , N , both the sequence σix
(s)
i and σix

(n)
i depict a

similar decreasing feature. We discuss in details about these two optimal portfolios in the

next section.

To understand Proposition 5(2) and (3), we decompose the Sharpe ratio of risky asset i

into two components:

si =
S

N
+
γ

m

(
σixi −

L

N

)
(20)

where the first component is the average Sharpe ratio, and the second one represents how

much it differs from the average Sharpe ratio. We call the second component as a specific

Sharpe ratio. According to this decomposition, the specific Sharpe ratio of asset i is propor-

tional to the difference between the individual risk and the average risk, σixi − L
N

, and the

endogenous Sharpe ratio is determined jointly by the average Sharpe ratio and the specific

Sharpe ratio.

Proposition 5(2) follows from Equation (20) immediately that a risky asset’s Sharpe ratio

is above the average Sharpe ratio only when its risk is above the average level. Proposition

5(3) displays the crucial difference between asset with high risk and low risk. We first

note that both the average Sharpe ratio and m(β1, ρ2) depend negatively on the level of

uncertainty,21 For an asset with low risk, σixi ≤ L
N

, the specific Sharpe ratio also inversely

depends on the level of uncertainty. Therefore, when the correlation uncertainty increases,

the Sharpe ratio decreases.

However, for high risk assets, the effect of correlation uncertainty is ambiguous since

it depends on two opposing effects of the average Sharpe ratio and the specific Sharpe

ratio. With increasing uncertainty, the average Sharpe ratio decreases, and the Sharpe ratio

21It can be seen easily by the expression of m(x, y), n(x, y) and the fact that S = γL
m(x,y)−Nn(x,y) and

β1 < ρ∗2 in Proposition 3.
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decreases only when the specific Sharpe ratio is very large such that

− ∂

∂β

(
1

m

)(
σixi −

L

N

)
>

∂

∂β

(
1

m−Nn

)
.

Otherwise, if σixi− L
N

is fairly small, the positive effect of the specific Sharpe ratio dominates

the negative effect of the average Sharpe ratio, thus reaching a positive impact in total.

The intuition of Proposition 5(4) also follows in essence from the above decomposition of

the Sharpe ratio. Reformulate Equation (20) as a multiplication version of the decomposition

of the Sharpe ratio in terms of the average Sharpe Ratio.

si
S
− 1

N
=
m−Nn

m

(
σixi
L
− 1

N

)
. (21)

Since m−Nn
m

is negatively related to the correlation uncertainty22, the sensitivity of the relative

Sharpe ratio si
S

relies on σixi
L
− 1

N
: it decreases for assets with σixi

L
> 1

N
, and increases for

assets with σixi
L

< 1
N

. By Proposition 5, (2), σixi
L

> 1
N

is associated with si
S
> 1

N
. Therefore,

with increasing correlation uncertainty, si
S

decreases if si
S
> 1

N
and increases if si

S
< 1

N
. Put

it together, all si
S

are closer with higher correlation uncertainty, so the dispersion of Sharpe

ratio decreases, as presented in Proposition 5, (4).

4 Optimal portfolios

In this section we discuss and compare the optimal portfolio, x(s) and x(n). Our comparison

between these two optimal portfolios is summarized by the next proposition.

Proposition 6 1. (Underdiversification and well-diversification). Comparing with the

market portfolio
∑N

i=1 xiãi, the naive agent has an underdiversified portfolio while the

sophisticated agent has a more diversified (well-diversification) portfolio.

22By the proof of Proposition 3, m−Nnm = k(β1, ρ2) in Appendix, Equation (A-17), and it is easy to check
its property as desired.
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2. (Portfolio Risk) The sophisticated agent holds a riskier portfolio than the naive agent.

Specifically, the variance of
∑

i ãix
(s)
i is strictly larger than the variance of

∑
i ãix

(n)
i .

3. (Portfolio Position) The sophisticated agent holds long position on all risky assets; the

naive agent hold long positions only on the high risk assets and short positions on the

low risk positions.

4. (Portfolio Performance) The sophisticated agent has a better portfolio performance than

the naive agent in the sense that the Sharpe ratio of her optimal portfolio is strictly

larger than the Sharpe ratio of the naive agent’s optimal portfolio.

5. (Maxmin Expected Utility) The sophisticated agent has a higher maxmin expected utility

than the naive agent.

6. (Comovement) From both the sophisticated agent and the naive agent’s perspective, the

optimal portfolios have a comovement feature. Specifically, the covariance of these two

optimal portfolios are greater than ( S
N

)2, which is always positive.

Proposition 6, (1), demonstrates that, in a precise manner, the sophisticated agent al-

ways chooses a more diversified optimal portfolio than the naive agent, and it sheds some

lights on the underdiversification puzzle. Compared with the market portfolio, the naive

agent’s portfolio is always under-diversified according to the dispersion measure while the

sophisticated agent has a more diversified portfolio.

It is well documented that underdiversification can happen due to model misspecifica-

tion (Uppal and Wang, 2003; Easley and O’Hara, 2009), heterogeneous beliefs (Milton and

Vorkink, 2008). For instance, Easley and O’Hara (2009) demonstrates limited participation

happens at the presence of the marginal distribution ambiguity while assets are assumed

to be independent. Uppal and Wang (2003) considers the ambiguity for both the joint dis-

tribution and the marginal distributions from a portfolio choice setting. Uppal and Wang

(2003) shows that numerically, when the overall ambiguity about the joint distribution is

high, a small difference in ambiguity for the marginal return distribution will result in an

under-diversified portfolio. By contrast, our result shows that underdiversification can be

generated endogenously from the dispersion of correlation uncertainty, even without ambi-

guity on any marginal distribution. In a particular case, the naive agent could even hold
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a limited participation portfolio when his ambiguity on the correlated structure is large

enough.23 Furthermore, we demonstrate a well-diversified portfolio is associated with a so-

phisticated agent given her sophistication on the correlated structure estimation.

We draw numerically the dispersion of the sophisticated agent’s and the naive agent’s

optimal portfolio in Figure 8. Figure 8 is concerned with a full participation equilibrium in a

heterogeneous setting. Clearly, the dispersion of the sophisticated agent’s optimal portfolio,

as drawn in the upper plot, is smaller than the corresponding dispersion of the naive agent’s

optimal portfolio in the lower plot.

To show further the application of the dispersion measure to the limited participation, we

consider a limited participation equilibrium and compute the optimal portfolio’s dispersion

for each agent, in Table 3. As shown, the naive agent’s dispersion is fairly close to one,

which reflects to his extremely under-diversified portfolio. By contrast, the dispersion of

the sophisticated agent’s optimal portfolio is between 0.625 and 0.629, indicating a more

diversified holding.

Proposition 6, (2) concerns with the portfolio risk, which states that the sophisticated

agent is willing to take a riskier portfolio than the naive agent due to the dispersion of

correlation uncertainty among agents. The intuition is simple. Since ambiguity-aversion

leads to risk-aversion, the naive agent behaves more risk-averse; hence, he has a smaller

risk in his optimal portfolio. Proposition 6, (2), demonstrates that ambiguity-aversion leads

to risk-aversion in the correlated structure,24 and a higher level of correlation uncertainty

yields a higher level of risk-aversion; thus the corresponding optimal portfolio is less risky.

The comparison of portfolio risk can be also derived by Proposition 6, (3) which gives the

position on each risky asset. Actually, by the explicit expression of x(s), x(n) in Proposition

3 and Proposition 1, the sophisticated agent holds all long positions on all risky assets but

the naive agents might hold short positions on some risky asset. Therefore, the sophisticated

agent’s portfolio risk is higher.

Proposition 6, (4)-(5) further compare the performance between these two optimal port-

folios. As expected, the sophisticated agent has a higher Sharpe ratio portfolio than the

23See Mankiw and Zeldes (1991) and Vissing-Jorgensen (2003).
24It is well known that uncertainty aversion yields risk aversion in the ambiguity literature. See Easley

and O’Hara (2008, 2012); Cao, Wang and Zhang (2005); Gollier (2011); Garlappi, Uppal and Wang (2012).
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naive agent. By the same token, the sophisticated agent also has a higher maxmin expected

utility.

At last, Proposition 6, (6), investigates the comovement between the agents from their

own perspectives and we observe a robust comovement pattern among the agents (See Simsek,

2013 and Towensend, 1994 for a comovement among householders’ optimal equity portfolios).

5 Sophisticated agents and risk dispersion

In this section we examine the implication of sophisticated agents and risk dispersion. ν

represents the percentage of sophisticated agent or institutional investor. σixi represents

the total risk of the firm to the market. It is different from the volatility σi or the market

capitalization pixi that are often used as proxies of stock characteristics. We use Ω(σx) to

represent the risk dispersion in the economy. We derive several testable hypothesis in this

regard. To emphasize the impact of ν,Ω(σx) we highlight on these two variables as extra

components in this section.

5.1 Sophisticated agents

We first discuss the effect to the equilibrium. For this purpose, we let

L(β1) = lim
ν→1

K(β1, ν) =
1− Ω(σx) + β1(Ω(σx) +N − 1)

1 + (N − 1)Ω(σx) + (N − 1)β1(1− Ω(σx))

If both agents have fairly close correlation uncertainty that β2 is smaller than L(β1), then

β2 ≤ K(β1, ν) regardless of the amount of sophisticated agents and therefore, by Proposition

3, there is a full participation equilibrium. The number of sophisticated agent has significant

effect on equilibrium if the level of correlation uncertainty differs from each, say, β2 > L(β1).

For a small number of sophisticated agents, β2 ≤ K(β1, ν). However, if there are so many

sophisticated agents that β2 > K(β1, ν), a limited participation equilibrium prevails. In

an extreme case, ν → 1, the limited participation equilibrium becomes the homogeneous

equilibrium as in Proposition 2.
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Proposition 7 1. (Equilibrium) If β2 ≤ L(β1), there exists no limited participation.

However, if β2 > L(β1), there is only limited participation equilibrium as long as there

are many sophisticated agents.

2. (Price) If σixi
L
≤ 1

N
for asset i, then ∂

∂ν
(si) < 0, ∂

∂ν
(pi) > 0. The effect of ν on the price

is ambiguous for asset i with σixi
L

> 1
N

.

3. (Volume) If σixi
L
≤ 1

N
for asset i, then x

(s)
i > x

(n)
i , and ∂

∂ν
x

(s)
i < 0, ∂

∂ν
x

(n)
i < 0. On the

other hand, if σixi
L
≥ 1

N
, then ∂

∂ν

(
νx

(s)
i

)
> 0.

Proposition 7, (1) follows directly from the above discussion. Proposition 7, (2) follows

from the decomposition of the Sharpe ratio, Equation (A-31) and its intuition is similar to

Proposition 5, (2). Proposition 7 further justifies the impact of institutional investors on the

price from the demand perspective. The sophisticated agent has higher demand on the low

risk assets than the naive agent, leading to a price increase of the low risk asset. It is also

interesting to see that with increasing sophisticated agent, the total volume increases on the

high risk asset. However, regarding the individual demand for each agent, the impact of ν on

the high risk asset is not as clear as it is on the low risk asset. Furthermore, the demand of

the sophisticated agent on the low risk asset depends on two opposite effects of the average

Sharpe ratio and the specific Sharpe ratio; thus the effect of ν is ambiguous.

5.2 The risk dispersion Ω(σx)

The market risk distribution Ω(σx) performs another vital role in the heterogeneous equi-

librium and displays important asset pricing implications from several aspects.

First, the level of Ω(σx) affects the market equilibrium. When each firm (risky assets)

contributes the similar risk to the market, it generates a full participation equilibrium. In

one extreme case, if each risky asset contributes the same risk, Ω(σx) = 0, then Ω(s) = 0. On

the other hand, when the risky assets contribute very different contribution, or alternatively,

they offers a skewed risk distribution and Ω(σx) is close to one, a limited participation
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equilibrium is generated. To understand it, we observe that

lim
Ω(σx)→1

K(β1,Ω(σx)) = β1. (22)

Therefore, any naive agent with β2 > β1 must hold a limited portfolio for a skewed enough

risk distribution, that is, Ω(σx) is close enough to one.

Our analysis regarding the risk dispersion demonstrates another channel for the limited

participation phenomena, which can be generated due to a large risk dispersion. For instance,

if the equity market and the bond market contributes a far different risk, naive agents or

households (retail investors) want to optimally hold a limited participation portfolio. As

another example, if one country (say, U.S. equity market) dominates other equity markets

in an international setting, households want to focus on the investment on the U.S equity

market and there is no much incentive to participate in the international market.

Second, the Sharpe ratios and the dispersion of Sharpe ratios (the market capacity)

depend on the risk distribution. Equation (A-15) presents this fundamental relationship. In

both the full participation and the limited participation equilibrium (by Equation A-32) ,

we have

∂Ω(s)

∂Ω(σxi)
> 0. (23)

Due to this positive relation, the higher the risk dispersion the higher the market capacity.

6 Extension

So far, we assume that any two risky assets have the same, or very close, correlation coeffi-

cient. In this section, we justify this assumption first and then present its extensions.

We consider a two-period economy with N risky assets and one zero supply risk-free

asset, and these N risky assets follow a one factor model such as ãi = βim̃ + ε where

m represents one fundamental factor and each εi is the specific risk for the asset i. The

correlation coefficient between the asset i and asset j is

corr(ã,ãj) =
(βiσm)(βjσm)√

(βiσ2
m + σ2

i )(βjσ
2
m + σ2

j ).
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Thus, this correlated structure is one special case of a correlated structure in which corr(ãi, ãj) =

bibj,∀i 6= j for a sequence of positive numbers b1, · · · , bN . If in particular, b1 = · · · = bN ,

the correlation matrix becomes R(ρ) in Section 2. The general situation can be studied in a

portfolio choice setting as in proposition 1.

As another example and without relying the factor-model, we decompose these risky

assets are decomposed into K sectors based on their firm characterizes, business and so

on. Therefore, the risky assets in each factor have relatively close correlation coefficient.

Specifically, we group assets into several classes, A1, A2, · · · , Ak, such that the piece-wise

correlation coefficients among assets in each class Ai is very close to each other and the

common correlation coefficient is denoted by ρi. We assume that ρ1 >> ρ2 >> · · · >> ρk.

25 In this way, ρ1 represents the largest possible correlation coefficient among all assets

and any pair of assets in class A1 has a correlation coefficient (or very close to) ρ1. The

correlation coefficient ρ2 denotes the second largest possible correlation coefficient, to some

contexts, among all assets in the market. For this reason we assume that ρ1 dominates ρ2,

written as ρ1 >> ρ2.

Under the above hierarchical correlation structure, we are able to extend the model set-

ting in Section 2 to each asset class A1, A2, · · · , Ak separably, since the piece-wise correlation

coefficient in each asset class Ai is fairly close to each other. In fact, this result can be applied

to any asset class in which the piece-wise correlation coefficient is close to each other, when

the correlation uncertainty within this asset class is a concern. For instance, because of the

too big to fail issue and the substantial systemic risk, it is essential to understand the cor-

relation structure among these big financial institutions as a group and how it changes with

respect to macro-economic shocks26. Therefore, to investigate the correlation uncertainty

among those big financial institutions is important and our previous results can be applied

virtually in this setting.

To demonstrate our extended setting, we consider two different correlated structures

among asset classes in the hierarchical structure. In the first one, we assume that each asset

25We use a >> b to represent that the number a is way larger than b. This decomposition of the correlation
structure is similar to the principal component analysis in which the eigenvalues of the covariance matrix
has a decreasing order in terms of “>>”.

26For instance, for big financial institutions such as Bank of America, Citi, AIG, Wells Fargo, JP Morgan,
our computation shows that any pair of two big financial institutions in this group stays between 70% to
80% from 2001 to 2014, including pre-crises and post-crisis time period.
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class is independent to each other, or have extremely small correlation coefficients at the

least. For simplicity we use two asset classes to illustrate, the correlation matrix can be

written as

R1 =

[
R(ρ1) 0

0 R(ρ2)

]
.

with ρ1 >> ρ2 and each R(ρi) is a correlation matrix with element ρi off the diagonal and

the component being one along the diagonal.

For the second correlated structure, we consider two asset classes while the first asset

class contains asset i ∈ I and the second asset class contains all other assets j ∈ J . Given the

hierarchical structure, we assume that for each pair i1 6= i2 ∈ I, corr(ãi1 , ãi2) = ρ1, and for

each pair j1 6= j2 in J , corr(ãj1 , ãj2) = ρ2. We assume that ρ1 >> ρ2. Since the correlation

between asset class I and asset class J is not substantial, we assume that corr(ãi, ãj) = ρ1ρ2

for i ∈ I, j ∈ J . Precisely, the correlation matrix is written as27

RII =

[
R(ρ1) ρ1ρ2B
ρ1ρ2B

′ R(ρ2)

]
.

with ρ1 >> ρ2 and R(ρ1) is a M ×M matrix, R(ρ2) is a J × J matrix and B is a M × J
matrix with components one. Since we are interested in the positive correlated environment,

we assume that ρi > 0 for each i = 1, · · · , K in each correlated structure.

Proposition 8 In a homogeneous environment the representative agent has a correlation

uncertainty [ρk − εk, ρk + εk] on the correlation coefficient ρk in the asset class Ak for k =

1, 2. We assume that the correlation uncertainty is also consistent with the correlated struc-

ture in the sense that ρ1−ε1 > ρ2+ε2 for the first hierarchical structure, and ρ1−ε1 >> ρ2+ε2.

The agent chooses the highest possible correlation coefficients in equilibrium in the above two

correlation structures with correlation uncertainty.

According to Proposition 8, the representative agent chooses the highest plausible cor-

relation coefficients in a relatively straightforward hierarchical correlated structure. Similar

27We can check that R2 is a positive definite matrix largely, thus, R2 is a correlation matrix for a multi-
variate Gaussian variable.
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to our previous discussion in Section 1, ρk + εk relies on both the benchmark and the level of

correlation uncertainty for each asset class Ak. In an extremely weak market situation where

the level of correlation uncertainty is high, the endogenous correlation coefficients between

assets will be high, and the endogenous risk premiums will increase and prices will drop

enormously. Therefore, our previous arguments can be applied to the general correlation

structure.

The endogenous correlation pattern in hierarchical correlated structure is richer than

the one exhibited in Section 6, attributable to the heterogeneous uncertainty levels among

agents. The endogenous market correlation is time-varying, depending on the benchmark

of the correlation coefficients in each asset class and the level of uncertainty. Besides, the

endogenous correlation inside each asset class or between asset classes increase with the

number of sophisticated agents.

7 Conclusion

To investigate the on-going complicated correlation structure among asset classes and the

nature of well-documented empirical correlated-related facts, this paper develops an equi-

librium model at the presence of correlation uncertainty where two types of agents have

heterogeneous beliefs in their correlation estimation. We find that those correlation-related

phenomena can be essentially connected through the disagreement among agents in the corre-

lation structure, the dispersion of the agents and assets’ risk, when the marginal distribution

of each risky asset is a perfect knowledge.

Specifically, when the disagreement on correlation estimation is large, the naive agent

does not participate in the market, thus a limited participation equilibrium. This is also

true when more sophisticated agents emerge in the market or when the dispersion of assets’

risk is high. The naive agent is irrelevant to choose his correlation coefficient even though

his optimal portfolio is uniquely determined in equilibrium. Our portfolio analysis demon-

strates that the sophisticated agent always holds a diversified portfolio in contrary to the

naive agent who is underdiversified. Our equilibrium model is helpful to explain asymmetric

correlation, correlation trading, comovement and diversification premium (discount). This

paper contributes further to the literature on the asset pricing implication of Knightian

uncertainty.
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Appendix A: Proof

The following Sherman-Morrison formula in linear algebra is useful in the subsequent deriva-

tions.

Lemma 1 Suppose A is an invertible s×s matrix and u, v are s×1 vectors. Suppose further

that 1 + vTA−1u 6= 0. Then the matrix A+ uvT is invertible and

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (A-1)

The next lemma computes the dispersion of optimal demand in terms of the dispersion

of the Sharpe ratios.

Lemma 2 Let ρ 6= 1, ρ 6= − 1
N−1

. Then

Ω(σxρ) = Ω(s)
1 + (N − 1)ρ

1− ρ
; Ω(s) = Ω(σxρ)

1− ρ
1 + (N − 1)ρ

(A-2)

Proof. Note that σxρ = 1
γ
R(ρ)−1s. By Lemma 1,

R(ρ)−1 =
1

1− ρ
IN −

1

1 + (N − 1)ρ

ρ

1− ρ
eeT . (A-3)

Then Ω(σxρ) = Ω(t), where ti = si − ρ
1+(N−1)ρ

S. We obtain
∑N

i=1 ti = 1−ρ
1+(N−1)ρ

S, and

N∑
i=1

t2i =
N∑
i=1

(
s2
i − 2siS

ρ

1 + (N − 1)S
+

(
ρ

1 + (N − 1)ρ

)2

S2

)

=
N∑
i=1

s2
i −

(N − 2)ρ2 + 2ρ

(1 + (N − 1)ρ)2
S2.

By straightforward computation, we obtain

Ω(t) = Ω(s)
1 + (N − 1)ρ

1− ρ
. (A-4)
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�

Proof of Proposition 1.

By Sion’s theorem (1958),

A = max
x∈RN

min
ρ∈[α,β]

{
(ai − pi)xi −

1

2

N∑
i,j=1

xixjσiσjRij

}

= B ≡ min
ρ∈[α,β]

max
x∈RN

{
(ai − pi)xi −

1

2

N∑
i,j=1

xixjσiσjRij

}

and both A and B are equal to minρ∈[α,β]
1

2γ
G(ρ), where

G(ρ) ≡ sTR−1s =
N
∑N

n=1 s
2
n − (

∑N
n=1 sn)2

N(1− ρ)
+

(
∑N

n=1 sn)2

N(1 + (N − 1)ρ)
. (A-5)

G(ρ) can be rewritten in term of the dispersion measure as follows.

G(ρ) =
S2

N

(
(N − 1)Ω(s)2

1− ρ
+

1

1 + (N − 1)ρ

)
.

Lemma 3 Notations as above. The solution of minρ∈[α,β] G(ρ) is given by

ρ∗ =


α, if α > τ(Ω(s)),
β, if β < τ(Ω(s)),
τ(Ω(s)) if τ(Ω(s)) ∈ [α, β].

(A-6)

Proof of Lemma 3. For simplicity we assume that Ω(s) 6= 1
N−1

and let τ̂(Ω(s)) ≡
1+Ω(s)

1−(N−1)Ω(s)
. Then,

G′(ρ) =
(N − 1)S2

N(1− ρ)2[1 + (N − 1)ρ]2
[Ω(s)2(N − 1)2 − 1][ρ− τ(Ω(s))][ρ− τ̂(Ω(s))]. (A-7)

Thus, ρ∗ = argminρ∈[α,β]G(ρ) is determined in the following three cases, respectively.
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• If Ω(s) ≥ 2
N−2

, then |τ(Ω(s))| ≤ 1, |τ̂(Ω(s))| ≤ 1 and τ̂(Ω(s)) < τ(Ω(s)). Moreover

τ̂(Ω(s)) ≤ 0 ≤ α.

• If 2
N−2

> Ω(s) > 1
N−1

, then τ̂(Ω(s)) < −1, and 0 < τ(Ω(s)) < 1.

• If Ω(s) < 1
N−1

, then |τ(Ω(s))| ≤ 1, τ̂(Ω(s)) > 1; but Ω(s)2(N − 1)− 1 < 0 so G′(ρ) =

(−)× (ρ− τ(Ω(s)))× (ρ− τ̂(Ω(s))).

Then the proof of Lemma 3 is finished. �

Proof of Proposition 1, Continue.

By the above argument, we have shown that

A = B =
1

2γ
G(ρ∗) = CE(ρ∗, xρ∗). (A-8)

(1). If α > τ(Ω(s)), then by Lemma 2, Ω(σxα) > 1 and maxΩ(σx)>1CE(α, x) =

CE(α, xα) = A. By equation (A-8) and the property of G(ρ) stated in Lemma 3, we know

that maxΩ(σx)<1CE(β, x) ≤ maxxCE(β, x) < CE(α, xα). Similarly, maxΩ(σx)=1 CE(ρ, x) <

CE(α, xα) for each ρ ∈ [α, β]. Then the unique solution of the problem (2) is ρ∗ = α, and

x∗ = xα.

(2). If β < τ(Ω), by Lemma 2, maxΩ(σx)<1CE(β, x) = CE(β, xβ) = A. Moreover, by

equation (A-8) and Lemma 3, we have maxΩ(σx)>1CE(α, x) ≤ CE(α, xα) < CE(β, xβ) and

maxΩ(σx)=1 CE(ρ, x) < CE(β, xβ) for each ρ ∈ [α, β]. Therefore, ρ∗ = β, x∗ = xβ is the

unique solution of the portfolio choice problem (2).

(3). Assume that α ≤ τ(Ω) ≤ β. By equation (A-8), A = B = CE
(
τ(Ω(s)), xτ(Ω(s))

)
.

Moreover, by Lemma 2, Ω
(
xτ(Ω(s))

)
= 1. By straightforward calculation, we have

A = B = CE
(
τ(Ω(s)), xτ(Ω(s))

)
=

(
∑

i si)
2

2γ

(
1 + (N − 1)Ω(s)

N

)2

.

For any x with Ω(σx) < 1, by Lemma 3 and the last equation, we have

CE(β, x) ≤ CE(β, xβ) < A = CE
(
τ(Ω(s)), xτ(Ω(s))

)
.
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By the same reason, for any x with Ω(σx) > 1, we see that CE(α, x) < CE
(
τ(Ω(s)), xτ(Ω(s))

)
.

Finally, for each x∗ with Ω(σx∗) = 1 and CE(τ(Ω(s)), x∗) = maxΩ(σx)=1 CE(τ(Ω(s)), x∗), we

have CE(τ(Ω(s)), x∗) = CE(τ(Ω(s)), xτ(Ω(s))), and because of the uniqueness xρ for max-

imizing CE(ρ, x), x∗ = xτ(Ω(s)). Therefore, we have shown that the unique demand for

the uncertainty-averse agent is xτ(Ω(s)), but the agent is irrelevant to choose any correlation

coefficient ρ ∈ [α, β] since CE(ρ, xτ(Ω(s))) = A for each ρ ∈ [α, β].

The proof of Proposition 1 is completed. �

Proof of Proposition 2.

The optimal demand x∗ is presented by Proposition 1. By the market clearing condition,

x∗ = x in equilibrium. Then Ω(σx∗) = Ω(σx). Since Ω(σx) < 1. Therefore, the optimal

demand in equilibrium satisfies Ω(σx∗) < 1. Then, by Proposition 1 again, the optimal

correlation coefficient is ρ∗ = β, the highest possible correlation coefficient. �

In what follows we do not distinguish agent j = 1, 2 or j = s, n for sophisticated agent

and naive agent, respectively.

Proof of Proposition 3.

The unique optimal demand of type j = 1, 2 agent is xj = 1
γ
σ−1R−1

j s and Rj corresponds

to an endogenous correlation coefficient ρj ∈ [αj, βj]. Note that xj is unique regardless of

the optimal correlation coefficient in Proposition 1, (3) and in this case let ρ = τ(Ω(s)). In

equilibrium, we have νx1 + (1− ν)x2 = x. Then

1

γ
(νR−1

1 + (1− ν)R−1
2 ) · s = σx. (A-9)

The coefficient matrix of the last equation, X = νR−1
1 + (1− ν)R−1

2 , is written as

X ≡
(

ν

1− ρ1

+
1− ν
1− ρ2

)
IN −

(
νρ1

(1− ρ1)(1 + (N − 1)ρ1)
+

(1− ν)ρ2

(1− ρ2)(1 + (N − 1)ρ2)

)
eeT

(A-10)

Let m ≡ ν
1−ρ1 + 1−ν

1−ρ2 , n ≡
νρ1

(1−ρ1)(1+(N−1)ρ1)
+ (1−ν)ρ2

(1−ρ2)(1+(N−1)ρ2)
and notice that m−Nn =

ν
1+(N−1)ρ1

+ 1−ν
1+(N−1)ρ2

> 0. Then by Lemma 1, X is invertible and its inverse matrix is (with
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κ ≡ m−Nn
m

)

X−1 =
1

m

(
IN +

n

κm
eeT
)
. (A-11)

Therefore, s = γX−1 · (σx). Precisely,

si =
γ

m

(
yi +

n

κm
L
)
, L ≡

N∑
i=1

σixi. (A-12)

Hence ∑
si =

γ

m

(
1 +

Nn

κm

)
L =

γL

m− nN
(A-13)

and

∑(
si
γ

)2

=
C2

m2
+
L2

m2

(
Nn2

κ2m2
+ 2

n

κm

)

=
C2

m2
+
L2

m2

(
2n

m−Nn
+

Nn2

(m−Nn)2

)

=
C2

m2
+
L2

m2

2mn−Nn2

(m−Nn)2

where C2 =
∑N

i=1(σixi)
2. Then

∑
s2
i

(
∑
si)2

=
C2

L2

(m−Nn)2

m2
+

2mn−Nn2

m2

=
C2

L2
κ2 +

1

N
(1− κ2).

Therefore,

Ω(s)2 =
1

N − 1

(
N

∑
s2
i

(
∑
si)2
− 1

)
= κ2Ω(σx)2, (A-14)

and then a fundamental relationship between the dispersion of Sharpe ratios and the disper-

sion of risks as follows

Ω(s) = κΩ(σx). (A-15)
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Assume first that Ω(σx) = 0, then each σixi = c and Equation (A-15) ensures that

Ω(s) = 0 and τ(Ω(s)) = 1. Therefore, each agent chooses her highest correlation coefficient

in equilibrium by Proposition 1. Moreover, all Sharpe ratios are the same and equal to

si =
c

m

(
1 +

nN

m− nN

)
=

c

m− nN
. (A-16)

We next assume that Ω(σx) ∈ (0, 1) and characterize the equilibrium in general. By

using Proposition 1, there are five different cases regarding the equilibrium.

Case 1: τ(Ω(s)) ≤ α2. Each agent chooses the smallest possible correlation coefficient, respec-

tively.

Case 2: α2 < τ(Ω(s)) < α1. The sophisticated agent chooses the smallest possible correlation

coefficient; the naive agent is irrelevant of the correlation coefficient and his optimal

holding is xτ(Ω(s)).

Case 3: τ(Ω(s)) ∈ [α1, β1]. Each agent is irrelevant of the correlation coefficient and the corre-

sponding optimal holding is xτ(Ω(s)).

Case 4: β1 < τ(Ω(s)) ≤ β2. The sophisticated agent chooses the highest possible correlation

coefficient; the naive agent is irrelevant of the correlation coefficient and his optimal

holding is xτ(Ω(s)).

Case 5: β2 < τ(Ω(s)), each agent chooses her highest possible correlation coefficient.

We prove next that Case 1 - Case 3 is impossible in equilibrium and characterize the

equilibrium condition in both Case 4 and Case 5.

To proceed we state a simple lemma below and investigate each case respectively. Recall

κ = κ(ρ1, ρ2) ≡
ν

1+(N−1)ρ1
+ 1−ν

1+(N−1)ρ2
ν

1−ρ1 + 1−ν
1−ρ2

. (A-17)

Lemma 4 Assume that κ = νa+(1−ν)b
νc+(1−ν)d

with a, b, c, d > 0 and ν ∈ (0, 1). Then

min

{
a

c
,
b

d

}
≤ κ ≤ max

{
a

c
,
b

d

}
. (A-18)
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The inequalities are strictly if a
c
6= b

d
.

Case 1. We show that this situation is impossible in equilibrium. Since τ(Ω(s)) ≤ α2 <

α1 ensures that Ω(s) ≥ τ(α2) > τ(α1). Then, by Equation (A-15),

κ = κ(α1, α2) =
Ω(s)

Ω(σx)
> Ω(s) > τ(α1), τ(α2), (A-19)

which is impossible by Lemma 4.

Case 2. We prove that it is impossible in equilibrium in this situation that α2 <

τ(Ω(s)) ≤ α1.

In this case, τ(α2) > Ω(s) ≥ τ(α1). But

κ = κ(α1, τ(Ω(s))) > κΩ(σx) = Ω(s) ≥ 1− α1

1 + α1(N − 1)
, κ > Ω(s) =

1− τ(Ω(s))

1 + (N − 1)τ(Ω(s))
.

(A-20)

Hence, it is impossible by using Lemma 4 again.

Case 3. We prove that it is impossible that τ(Ω(s)) ∈ [α1, β1] in equilibrium.

Otherwise, the optimal holding of each agent is xτ(Ω(s)) by Proposition 1. Then the

market clearing condition yields that xτ(Ω(s)) = x. However, by Lemma 2, Ω(σxτ(Ω(s))) = 1

but Ω(σx) < 1. Therefore, Case 3 is not possible in equilibrium.

Case 4. We characterize the equilibrium in which β1 < τ(Ω(s)) ≤ β2. In equilibrium,

ρ1 = β1, the optimal holding for the naive agent is xτ(Ω(s)), and

τ(β2) ≤ Ω(s) < τ(β1). (A-21)

By definition of κ, we have

κ = κ(β1, τ(Ω(s))) =
Ω(s)

Ω(σx)
=

ν
1+(N−1)β1

+ 1−ν
N

(1 + (N − 1)Ω(s))
ν

1−β1 + 1−ν
Ω(s)N

(1 + (N − 1)Ω(s))
. (A-22)

By solving the last equation in Ω(s), we obtain

Ω(s) =

ν
1+(N−1)β1

Ω(σx)− 1−ν
N

(1− Ω(σx))

ν
1−β1 + (1−ν)(N−1)

N
(1− Ω(σx))

. (A-23)
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In particular, Ω(s) ≥ 0 ensures that

β1 ≤
1

N − 1

{
ν

1− ν
Ω(σx)

1− Ω(σx)
N − 1

}
. (A-24)

Moreover, the left side of Equation (A-21) is translated as β2 ≥ τ(Ω(s)) = K(β1), and the

right side of Equation (A-21) is K(β1) ≥ β1 which holds always. Then there exists a unique

equilibrium in Case 4, a limited participation equilibrium, under conditions presented in

Proposition 3.

Case 5. We characterize the equilibrium in which τ(Ω(s)) > β2.

In equilibrium, ρ1 = β1, ρ2 = β2, and Ω(s) < τ(β2) < τ(β1), which is equivalent to

κ(β1, β2)Ω(s) < 1−β2
1+(N−1)β2

. By straightforward computation, this condition equals to

{
ν

1− β1

+
Ω(σx)ν(N − 1)

1 + (N − 1)β1

}
β2 <

ν

1− β1

− Ω(σx)ν

1 + (N − 1)β1

+ (1− ν)(1− Ω(σx)) (A-25)

or equivalently, β2 < K(β1).

To the end, we note that when β1 is large enough such that

Ω(σx)νN

(1− ν)(1− Ω(σx))
≤ 1 + (N − 1)β1, (A-26)

or equivalently,

β1 ≥
1

N − 1

{
ν

1− ν
Ω(σx)

1− Ω(σx)
N − 1

}
,

then β2 < K(β1) holds by natural since β2 < 1. Then we have characterized the equilibrium

in Proposition 3.

Finally, by using this characterization, we see that each si > 0, thus, each risky asset is

priced at discount in equilibrium. �

Proof of Proposition 4.

We first solve the portfolio choice problem under correlation uncertainty in a conglomer-

ate economy. which is virtually one economy with one risky asset in the presence of variance
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ambiguity. It is easy to see that the optimal variance must be the largest possible vari-

ance to hedge the ambiguity concern, which in turn leads to the highest possible correlation

coefficient. Therefore, the optimal demand on the conglomerate firm is

x∗M =
a− pM∑N

i=1 σ
2
i + 2

∑
i 6=j σiσjβ

. (A-27)

(1) We first consider the homogeneous environment, x∗M = x. Then it follows from

Equation (A-27) that

pM = a− γx

{
N∑
i=1

σ2
i + 2

∑
i 6=j

σiσjβ

}
.

By using Proposition 2, we see that PM =
∑N

i=1 Pi holds,thus neither diversification discount

nor diversification premium.

(2) We consider the heterogeneous environment, the optimal demand x∗i,M for each agent

i = 1, 2 satisfies

a− pM = γx∗i,M

{
N∑
i=1

σ2
i + 2

∑
i 6=j

σiσjβj

}

since each agent chooses the corresponding highest correlation coefficient. Since νx∗1,M +(1−

ν)x∗2,M = x, we obtain, for m = m(β1, β2), n = n(β1, β2),

a− pM =
γx

m

{
m

N∑
i=1

σ2
i + 2

∑
i 6=j

σiσj

}
. (A-28)

On the other hand, by Proposition 3, each stock’s market price, if traded separably, is

pi = ai −
γx

m

{
σ2
i + σi

n

m−Nn

N∑
j=1

σj

}
.

Then,

N∑
i=1

pi =
N∑
i=1

ai −
γx

m

{
N∑
i=1

σ2
i +

n

m−Nn
(
N∑
i=1

σi)
2

}
.
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Then,

a−
N∑
i=1

pi =
γx

m

{
N∑
i=1

σ2
i +

n

m−Nn
(
N∑
i=1

σi)
2

}
. (A-29)

Therefore, pM >
∑N

i=1 pi if, and only if

(
N∑
i=1

σi)
2[(N + 1)n−m] >

N∑
i=1

σ2
i (m− 2)(m− nN).

In particular, if each σi is the same, the last formula is equivalent to

N [(N + 1)n−m] > (m− 2)(m−Nn)

which obviously holds when N is large enough. The proof of Proposition 4 is completed. �

Proof of Proposition 5.

The first part of (1) follows from the characterization of the Sharpe ratio in Proposition

3. The statement for the sophisticated agent follows from the expression of σix
(s)
i :

γσix
(s)
i =

1

1− β1

{
si −

β1

1 + (N − 1)β1

S

}
. (A-30)

Then, σix
(s)
i ≥ σjx

(s)
j if and only if si ≥ sj. The proof for the naive agent is the same.

As explained in the text, both (2) and (3) follows from the following decomposition of

the Sharpe ratio

si =
S

N
+
γ

m

(
σixi −

L

N

)
. (A-31)

For (4), according to Equation (A-15), Ω(s) = κΩ(σx). In the limited participation

equilibrium, we have

Ω(s) =

Ω(σx)νN
1+(N−1)β1

− (1− ν)(1− Ω(σx))
νN

1−β1 + (1− ν)(1− Ω(σx))(N − 1)
. (A-32)

Clearly, ∂Ω(σx)
∂β1

< 0 and ∂Ω(σx)
∂ν

> 0. The proof for the full participation equilibrium follows

from the fact that κ(ρ1,ρ2)
∂ρ1

< 0, κ(ρ1,ρ2)
∂ρ2

< 0, and κ(ρ1,ρ2)
∂ν

> 0.
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(3). We have

∂

∂β

(si
S

)
=

∂

∂β

( n
m

)(
1−N σixi

L

)
. (A-33)

By formula (A-15), ∂
∂β

(
n
m

)
= −Ω(s)

N
∂Ω(s)
∂β

. By Proposition 5, (4), ∂Ω(s)
∂β

< 0 in equilibrium and

equilibrium B where β is the corresponding endogenous correlation coefficient(s). Therefore,

∂
∂β

(
n
m

)
> 0. By the same argument we can show that ∂Ω(s)

∂ν
> 0. The proof of Proposition 5

is finished. �

Proof of Proposition 6.

(1). We compare the agents’ optimal portfolios with the market portfolio in term of

the market capacity Ω(s). First, Equation (A-15) states that Ω(s) = κΩ(σx). In the full

participation equilibrium, Lemma 2 implies that Ω(s) = Ω(σx(j))
1−ρj

1+(N−1)ρj
. Then, by Lemma

4 we have

Ω(σx(1)) < Ω(σx) < Ω(σx(2)). (A-34)

The proof in the limited participation equilibrium is the same. Since ρ1 ≤ τ(Ω(s)),

Lemma 2 and Lemma 4 together imply that Ω(σx(1)) < Ω(σx). Moreover Ω(σx) < 1 =

Ω(σx(2)).

(2). Let X(1) =
∑

i ãix
(1)
i be the optimal portfolio of the sophisticated agent and X(2)

is the optimal portfolio of the naive agent. We have V ar(X(1)) = 1
γ2
s′R(ρ1)−1s where the

correlation coefficient is ρ1, and V ar(X(2)) = s′R(ρ2)−1s with the correlation coefficient ρ2.

By using the same notation as above, we have

V ar(X(1))− V ar(X(2)) =
1

γ2
{G(ρ1)−G(ρ2)} . (A-35)

Applying Proposition 3, since the portfolio choice is under the worst-case correlation uncer-

tainty, G(ρ1) > G(ρ2) holds. Therefore, V ar(X(1)) > V ar(X(2)).

(3). For the sophisticated agent, it suffices to show that

si >
β1

1 + (N − 1)β1

S. (A-36)
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In fact, we have,

si =
γ

m
σixi + S

n

m
> S

n

m

and Lemma 4 implies that n
m
> β1

1+(N−1)β1
. We can easily formula a lower bound for si/S or

σi/L for which x
(n)
i > 0.

(4). E[X(1)] =
∑N

i=1 x
(1)
i (ai− pi) = (σx(1))′s = 1

γ
s′R(ρ1)s. By (2), the variance of X(1) is

1
γ2
s′R(ρ1)−1s. Then the Sharpe ratio of the portfolio X(1) is

SR(X(1)) =
√
s′R(ρ1)−1s.

Therefore, SR(X(s)) > SR(X(n)) follows from G(ρ1) > G(ρ2).

(5). By the proof of Proposition 6, the sophisticated agent’s maxmin expected utility is

CH(ρ1, xρ1) = 1
2
G(ρ1). Again, the fact that G(ρ1) > G(ρ2) ensures that the sophisticated

agent has a higher maxmin expected utility than the naive agent.

(6). For agent 1, the covariance between two portfolios X(1) and X(2) can be calculated

as (σx(1))′R(ρ1)(σx2)′, which is the same as s′R(ρ2)−1s. Similarly, the covariance of agent 2

is s′R(ρ1)−1s. By the proof in Proposition 1, both covariances are bounded from below by

s′R(τ(Ω(s)))−1s. It suffices to show that s′R(τ(Ω(s)))−1s > 0. By simple calculation, we

have

s′R(τ(Ω(s)))−1s = S2

(
1 + (N − 1)Ω(s)

N

)2

(A-37)

which is always greater than
(
S
N

)2
. When N = 2, it reduces to m2 < 2n(m+ 1). The proof

of Proposition 6 is completed. �

Proof of Proposition 7.

The first part, Proposition 7, (1) follows from the discussion in the text.

(2). By Equation (A-31) and using the fact that ∂
∂ν

(
S
N

)
< 0 and ∂

∂ν
(m) < 0.
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(3). If σxi
L
≤ 1

N
, then by Proposition 5, (1), si ≤ S/N . By the expression of x

(s)
i and

x
(n)
i , it suffices to show that

1

1− β1

(
si −

β1

1 + (N − 1)β1

S

)
>

1

1− ρ2

(
si −

ρ2

1 + (N − 1)ρ2

S

)
.

The last equation is equivalent to

si
S

ρ2 − β1

(1− β1)(1− ρ2)
<

ρ2

(1− ρ2)(1 + (N − 1)ρ2)
− β1

(1− β1)(1 + (N − 1)β1)

which follows from the fact that (for any β1 < ρ2)

1

N

ρ2 − β1

(1− β1)(1− ρ2)
<

ρ2

(1− ρ2)(1 + (N − 1)ρ2)
− β1

(1− β1)(1 + (N − 1)β1)
.

At last, we write the following decomposition

γσix
(s)
i =

1

1− β1

(
si −

S

N
+

1− β1

N [1 + (N − 1)β1]
S

)
.

Then we have ∂
∂ν
x

(s)
i < 0 as long as σixi

L
≤ 1/N . By the same proof, we have ∂

∂ν
x

(n)
i < 0.

In the end, by using the last equation and Equation (A-31), we have

γσi(νx
s
i ) =

γ

1− β1

(
σixi −

L

N

)
ν

m

+
1

1 + (N − 1)β1

(νS).

It is straightforward to check that ∂
∂ν

(νS) > 0, ∂
∂ν

(
ν
m

)
> 0. Therefore, σixi ≥ L

N
yields

∂
∂ν

(νx
(s)
i ) > 0.

�

Proof of Proposition 8.

45



For the first correlated structure with K classes, the inverse matrix of the correlation

matrix is

(R1)−1 =


R(ρ1)−1 · · · · 0
· R(ρ2)−1 · · · 0
· · · · · · · ·
0 · · · · R(ρK)−1

 .
Moreover, from the portfolio choice perspective, the optimal correlation coefficient is, for

each k = 1, · · · , K, determined by Proposition 1.

For the second correlated structure, it is straightforward to derive (for J = 1)

(R2)−1 =

[
X −ρ2Xe

−ρ2e
′X 1 + ρ2

2e
′Xe

]
.

where X is the inverse matrix of the M ×M matrix R(ρ1)− ρ2
2ee
′. By using the Sherman-

Morrison formula, we have

X =
1

1− ρ1

(
IM −

ρ1 − ρ2
2

1 + (M − 1)ρ1 −Mρ2
2

ee′
)
. (A-38)

Therefore, the diversification benefits, G(ρ1, ρ2) ≡ (s1, · · · , sM , sM+1)·(RII)−1·(s1, · · · , sM , sM+1)′,

with the correlation coefficient ρ1 and ρ2 in the second correlated structure, can be written

as

G(ρ1, ρ2) = s′Xs+ 2αt
M∑
i=1

si + t2β (A-39)

where

s = (s1, · · · , sM)′, t = sM+1, α = − ρ2

1 + (M − 1)ρ1 −Mρ2
2

, β = 1 +
Mρ2

2

1 + (M − 1)ρ1

.

By simple algebra, we have

∂G(ρ1, ρ2)

∂ρ2

=
2Mρ2

1 + (M − 1)ρ1

t2 − 2(1 + (M − 1)ρ1 +Mρ2
2

(1 + (M − 1)ρ1 −Mρ2
2)2
t

M∑
i=1

si. (A-40)

Therefore, for a region of ρ2 with small values compared with ρ1, G(ρ1, ρ2) is decreasing

with respect to ρ2. For the discussion on ρ1, the proof is similar to the proof in Proposition
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2. Therefore, the representative agent always chooses the highest possible correlations ρ1 +

ε1, ρ2 + ε2 in equilibrium. �

47



Appendix B: A Dispersion Measure

Given a time series of economic variables X1(t), · · · , XN(t), t = 1, 2, · · · , there are many

approaches to estimate how these economic variables are correlated, interconnected and

co-dependent. The literature is largely concerned with common factors in these economic

variables. On the other hand, if these economic variables are fairly dispersed, it is not likely

to have significant common factor. Therefore, a dispersion measure to some extent also

measures the correlated information as we explain below.

A function f : (X1, · · · , XN) ∈ RN → [0, 1] is a dispersion measure if it satisfies the

following three properties:

1. (Positively homogeneous property) Given any λ > 0, f(λX1, · · · , λXN) = f(X1, · · · , XN);

2. (Symmetric property) Given any translation σ : {1, · · · , N} → {1, · · · , N}, f(X1, · · · , XN) =

f(Xσ(1), · · · , Xσ(N));

3. (Majorization property) Assuming (X1, · · · , XN) weakly dominates (Y1, · · · , YN), then

f(X1, · · · , XN) ≥ g(X1, · · · , XN).

By a vector a = (a1, · · · , aN) weakly dominates b = (b1, · · · , bN) we mean that

k∑
i=1

a∗i ≥
k∑
i=1

b∗i , k = 1, · · · , N (B-1)

where a∗i is the element of a stored in decreasing order. When f(Y ) ≤ f(X) for a dispersion

measure we call Y is more dispersed than X under the measure f . One example is the

portfolio weight in a financial market so the dispersion measure captures how one portfolio

is more dispersed than another. Samuelson’s famous theorem states that equally-weighted

portfolio is always the optimal one for a risk-averse agent when the risky assets have IID

return. Boyle et al (2012) also find that equally-weight portfolio beats many optimal asset

allocation under parameter uncertainty. As another example, the dispersion measure can be

used to investigate the diversification of optimal portfolio in a general setting. See Ibragimov,

Jaffee and Walden (2011) and Hennessy and Lapan (2003).

This paper concerns with one example of dispersion measure.
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Lemma 5 Given a non-zero vector X = (X1, · · · , XN),

f(X1, · · · , XN) =

√
1

N − 1

(
N

∑
X2
i

(
∑

iXi)2
− 1

)

is a dispersion measure.

Proof: Both the positive homogeneous property and the symmetric property are obviously

satisfied. To prove the majorization property, we first assume that, because of the positively

homogeneous property,
∑
Xi =

∑
Yi = 1. Let g(x1, · · · , xN) = N(

∑
i x

2
i )−(

∑
i xi)

2. Notice

that g(·) is a Schur convex function in the sense that

(xi − xj)
(
∂g

∂xi
− ∂g

∂xj

)
≥ 0,∀i, j = 1, · · · , N.

Then by the majorization theorem, see Marshall and Olkin (1979), g(X) ≥ g(Y ). Then

f(X) ≥ f(Y ). �

To illustrate the relation between the dispersion measure with comovement measures,

we consider a CAPM model with assets i = 1, · · · , N , µi − rf = βi(µM − rf ), then

µi − rf
σi

=
βi
σi

(µM − rf ).

Therefore, the dispersion measure of Sharpe ratios s1, · · · , sN is the same dispersion measure

of risk-adjusted betas, β1
σ1
, · · · , βN

σN
, while the traditional approach is to compare those betas,

β1, · · · , βN . �

49



References

[1] Ang, A., and J. Chen (2002): “Asymmetric Correlations of Equity Portfolios,” Journal

of Financial Economics 63, 443-494.

[2] Aydemir, A (2008): “Risk Sharing and Counter-Cyclical Variation in Market Correla-

tions”, Journal of Economic Dynamics and Control 32, 3084-3112.

[3] Barberis, N., A. Shleifer., and J. Wurgler (2005): “Comovement,” Journal of Financal

Economics 75, 283-317.

[4] Boyle, P., L. Garlappi., R. Uppal and T. Wang (2012): “Keynes Meets Markowitz: The

Trade-Off Between Familiarity and Diversification,” Management Science 58, 253-272.

[5] Buraschi, A., P. Porchia., and F. Trojani (2010): “Correlation Risk and Optimal Port-

folio Choice”, Journal of Finance 65, 393-420.

[6] Buss, A., and G. Vilkov (2012): “Measuring Equity Risk with Option-implied Correla-

tions”, Review of Financial Studies 25, 3113-3140.

[7] Caballero, R., and A. Krishnamurthy (2008): “Collective Risk Management in a Flight

to Quality Episode,” Journal of Finance 63, 2195-2230.

[8] Campa, J., and S. Kedia (2002): “Explaining the Diversificaiton Discount,” Journal of

Finance 57, 1731-1762.

[9] Campbell, R., C. Forbes., K. Koedijk., and P. Kofman (2008): “Increasing Correlations

of Just Fat Tails?” Journal of Empirical Finance 15, 287-309.

[10] Cao, H., T. Wang., and H. Zhang (2005): “Model Uncertainty, Limited Market Partic-

ipation, and Asset Prices”, Review of Financial Studies 18(4), 1219-1251.

[11] Chan, L., J. Karceski., and J. Lakonishok (1999): “On Portfolio Optimization: Fore-

casting Covariances and Choosing the Risk Model”, Review of Financial Studies 12 (5),

937-974.

[12] Clarkson, P., and R. Thompson (1990): “Empirical Estimates of Beta When Investors

Face Estimation Risk”, Journal of Finance 45(2), 431-453.

50



[13] Uncertainty aversion, risk aversion, and the optimalportfolio, Econometrica 60, 197-204.

[14] Driessen, J., P. Maenhout., and G. Vilkov (2009): “The Price of Correlation Risk:

Evidence from Equity Options”, Journal of Finance 64 (3),

[15] Duffie, D., A. Eckner., G. Horel., and L. Saita (2009): “Fraily Correlated Default,”

Journal of Finance 64 (5), 2089-2123.

[16] Easley, D., and M. O’Hara (2009): “Ambiguity and Nonparticipation: The Role of

regulation”, Review of Financial Studies 22, 1817-1843.

[17] Easley, D., and M. O’Hara (2012): “Microstructure and Ambiguity”, Journal of Finance

65, 1817-1846.

[18] Easley, D., M. O’Hara., and L. Yang (2015): “Opaque Trading, Disclosure and Asset

Prices: Implications for Hedge Fund Regulations,” Review of Financial Studies 27,

1190-1237.

[19] Ehling, P., and C. Hererdahl-Larsen (2013): “Correlations,” working paper.

[20] Engle, R (2002): “Dynamic Conditional Correlation: A Simple Class of Multivariate

Generalized Autoregressive Conditional Heteroskedasticity Models,” Journal of Busi-

ness and Economic Statistic 20 (3), 339-350.

[21] Engle, R., and B. Kelly (2012): “Dynamic Equicorrelation,” Journal of Business and

Economic Statistic 30 (2), 212-228.

[22] Epstein, L., and S. Ji (2014): “Ambiguity Volatility and Asset Pricing in Continuous

Time,” Review of Financial Studies 26, 1740-1786.

[23] Epstein, L., and M. Schneider (2008): “Ambiguity, information quality, and asset pric-

ing,” Journal of Finance 63, 197-228.

[24] Forbes, K., and R. Rigobon (2002): “No Contagion, Only Interdependence: Measuring

Stock Market Comovements”, Journal of Finance 57, 2223-2261.

[25] Garlappi, L., R. Uppal and T. Wang (2007): “Portfolio Selection with Paranmeter and

Model Uncertainty: A Multi-Prior Approach”, Review of Financial Studies 20, 41-81.

51



[26] Gilboa, I., and D. Schmeidler (1989): “Maximin Expected Utility with Non-unique

Prior”, Journal of Mathematical Economics 18, 141-153.

[27] Goetzmann, W., N. Li., and K. Rouwenhorst (2005): “Long-Term Global Market Cor-

rections,” Journal of Business 78, 1-38.

[28] Gollier, C (2011): “Portfolio Choices and Asset Pricies: The Comparative Statics of

Ambiguity Aversion.” Review of Economic Studies 78, 1329-1344.

[29] Gomes, L.,and D. Livdan (2004): “Optimal Diversification: Reconciling Theory and

Evidence”, Journal of Finance 59, 507-535.

[30] Gompers, P., and A. Metrick (2000): “Institutional Investors and Equity Prices”, Quar-

terly Journal of Economics, 116, 229-259.

[31] Hansen, P., A. Lunde., and J. Nason (2011): “The Model Confidence Set”, Economet-

rica, 79, 454-497.

[32] Hennessy, D., and H. Lapan (2003): “An Algebraic Theory of Portfolio Allocation,”

Economic Theory 22, 193-210.

[33] Hoechle, D., M. Schmid., I. Walter., and D. Yermack (2012): “How much of the diversi-

fication discount can be explained by poor corporate governance?” Journal of Financial

Economics 103, 41-60.

[34] Ibragimov, R., D. Jaffee., and J. Walden (2011): “Diversification Disasters,” Journal of

Financial Economics 99, 333-348.

[35] Illeditsch, P (2011): “Ambiguous Information, Portfolio Inertia, and Excess Volatility”,

Journal of Finance 66, 2213-2247.

[36] Kitwiwattanachai, C., and N. Pearson (2015): “Inferring Correlations of Asset Values

and Distances-to-Default from CDS Spreads: A Structural Model Approach”, Review

of Asset Pricing Studies 5, 112-154.

[37] Krishnan, C., R. Petkova., and P. Ritchken (2009): “Correlation Risk”, Journal of

Empirical Finance 16, 353-367.

52



[38] Ledoit, O., P. Santa-Clara., and M. Wolf (2003): “Flexible Multivariate GARCH Mod-

eling with an Application to International Stock Markets,” Review of Economics and

Statistics 85, 735-747.

[39] Longin, F., and B. Solnik (2001): “Extreme Correlation of International Equity Mar-

kets,” Journal of Finance 56, 649-676.

[40] Markowitz, H (1952): “Portfolio Selection,” Journal of Finance 7, 77-91.

[41] Mankiw, G., and S. Zeldes (1991): “The Consumption of Stockholders and Non-

stockholders,” Journal of Financial Economics 29, 97-111.

[42] Marshall, A., and I. Olkin (1979): Inequalities: Theory of Majorization and its Appli-

cations, Academic Press, New York.

[43] McNeil, A., R. Frey., and P. Embrechts (2015): Quantitative Risk Management: Con-

cepts, Techniques and Tools, Princeton University Press.

[44] Milgrom, P., and R. Weber (1982): “A Theory of Auction and Competitive Bidding,”

Econometrica 50, 1089-1122.

[45] Mitton, T., and K. Vorkink (2007): “Equilibrium Underdiversification and the Prefer-

ence for Skewness”, Review of Financial Studies 20, 1255-1288.

[46] Moskowitz, T (2003): “An Analysis of Covariance Risk and Pricing Anomalies,” Review

of Financial Studies 16, 417-457.

[47] Pindyck, R., and J. Rotemberg (1993): “The Comovement of Stock Prices,” Quarterly

Journal of Economics 108, 1073-1104.

[48] Rajan, R., Servases, H., and L. Zingales (2000): “The cost of diversity: The diversifi-

cation discount and inefficient investment,” Journal of Finance 60, 35-80.

[49] Routledge, B., and S. Zin (2014): “Generalized Disappointment Aversion and Asset

Prices,” Journal of Finance 65, 1303-1332.

[50] Samuelson, P (1967): “General Proof that Diversification Pays,” Journal of Financial

and Quantitative Analysis 2, 1-13.

53



[51] Simsek, A (2013): “Speculation and Risk Sharing with New Financial Assets,” Quarterly

Journal of Econimics, 1365-1396.

[52] Sion, M (1958): “On General Minimax Theorems,” Pacific Journal of Mathematics 8,

171-176.

[53] Solnik, B., and J. Roulet (2000): “Dispersion as Cross-Sectional Collelation”, Financial

Analyst Journal 56, 54-61.

[54] Strassen, V (1965): “The Existence of Probability Measures with Given Marginals,”

Annals of Mathematical Statistics, 36 (2), 423-439.

[55] Tola, V., F. Lillo., M. Gallegati., and R. Mantegna (2008): “Cluster Analysis for Port-

folio Optimization,” Journal of Dynamic and Control 32, 235-258.

[56] Towensend, R (1994): “Risk and Insurance in Village India,” Econometrica 62, 539-591.

[57] Uppal, R., and T. Wang (2003): “Model Misspecification and Underdiversification”,

Journal of Finance 58, 2465-2486.

[58] Van Nieuwerburgh, S., L. Veldkamp (2010): “Information Acquisition and Portfolio

Under-Diversification,” Review of Economic Studies 77, 779-805.

[59] Veklkamp, L (2006) : “Information Markets and the Comovement of Asset Prices,”

Review of Economic Studies 73, 823-845.

[60] Villalonga, B (2004): “Diversification Discount or Premium? Evidence from the Busi-

ness Information Tracking Series,” Journal of Finance 59, 479-506.

[61] Vissing-Jorgensen, A (2002): “Limited Asset Market Participation and the Elasticity

of Intertemporal Substitution,” Journal of Political Economy 110, 825-853.

[62] Whitt, W (1976): “Bivariate Distributions with Given Marginals,” Annals of Statistics,

4 (6), 1280-1289.

54



Figure 1: K(β) with respect to β

This graph displays the property of the correlation boundary, K(β), over the region

0 ≤ β ≤ 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

, As shown, K(β) is always strictly larger than β,

and K(β) increases when β increases. The parameters are N = 3, ν = 0.6, ā1 = 50,
σ1 = 9%, x̄1 = 5; ā2 = 60, σ2 = 10%, x̄2 = 3.7; ā3 = 15, σ3 = 12%, x̄3 = 10.5.

Notice that Ω(σx) = 0.41 and 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

= 1.06.
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Figure 2: Sharpe ratios in a full participation equilibrium

This three dimensional figure shows the sensitivity of Sharpe ratios with respect
to the highest plausible correlation coefficient β1 and β2 in a full participation
equilibrium. The parameters are N = 3, ν = 0.3, σ1 = 9%, x̄1 = 1; σ2 = 10%, x̄2 =

5; σ3 = 12%, x̄3 = 10.5. Notice that Ω(σx) = 0.56 and 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

=

0.3.
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Figure 3: Dispersion of Sharpe Ratios

This three dimensional figure plots the dispersion, Ω(s), of Sharpe ratios in equi-
librium A. As shown the dispersion decreases with increasing of β1 and β2, of so-
phisticated and naive respectively. The same decreasing property of the disper-
sion in the homogeneous environment and in Equilibrium B are reported in Table
3 and Table 4. The parameters in this figure are N = 3, ν = 0.3, σ1 = 9%,
x̄1 = 1; σ2 = 10%, x̄2 = 5; σ3 = 12%, x̄3 = 10.5. Notice that Ω(σs) = 0.56 and

1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

= 0.3.
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Figure 4: Optimal Holdings of Agents

This figure reports the optimal holdings of the sophisticated and naive agent on
high quality and low quality asset respectively. The parameters in this figure are
N = 3, ν = 0.3, σ1 = 9%, x̄1 = 1; σ2 = 10%, x̄2 = 5; σ3 = 12%, x̄3 = 10.5. Notice

that Ω(σx) = 0.56 and 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

= 0.3. σ1x̄1
L = 0.048 < 1

N ,
σ1x̄1
L =

0.8582 > 1
N .
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Figure 5: Optimal Portfolio Risks of Agents

This figure demonstrates that the variance (risk) of the optimal portfolio the sophis-
ticated agent is always larger than the variance (risk) of the naive agent’s optimal
portfolio in a full participation equilibrium. It shows that a higher correlation un-
certainty leads to a higher risk averse behavior. The same pattern is reported in
Table 5 in equilibrium B. The parameters in this figure are N = 3, ν = 0.3, σ1 = 9%,
x̄1 = 1; σ2 = 10%, x̄2 = 5; σ3 = 12%, x̄3 = 10.5. In this situation Ω(σx) = 0.56 and

1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

= 0.3.
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Figure 6: Dispersion of Optimal Portfolios of Agents

This figure demonstrates the dispersion of the optimal portfolio the sophisticated
and naive agent respectively in a full participation equilibrium. Clearly, the disper-
sion of the sophisticated agent’s optimal portfolio is smaller than the dispersion of
the naive agent’s optimal portfolio for all possible values of β1 and β2. The same
pattern is reported in Table 3 in a limited participation equilibrium. The parameters
in this figure are N = 3, ν = 0.3, σ1 = 9%, x̄1 = 1; σ2 = 10%, x̄2 = 5; σ3 = 12%,

x̄3 = 10.5. Note that Ω(σx) = 0.56 and 1
N−1

{
ν

1−ν
Ω(σx)

1−Ω(σx)N − 1
}

= 0.3.
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Table 1: Sharpe Ratios and Correlation Uncertainty Premium in a Homogeneous Model

This table reports the Sharpe ratios, the dispersion of all Sharpe ratios and the
correlation uncertainty premium in homogeneous environment. The parameters
are: N = 3, ν = 0.3, σ1 = 9%, x1 = 1, σ2 = 10%, x2 = 5, σ3 = 12%, x3 = 10.5.
Notice that the dispersion of the risks is Ω(σx) = 0.5558. The reference correlation
coefficient is ρ = 40%. By the “premium column” we mean the percentage of
the correlation uncertainty premium over the Sharpe ratio without the correlation
correlation uncertainty, that is, for the reference correlation coefficient.

ε s1 s2 s3 Ω(s) Premium Premium Premium
Asset 1 Asset 2 Asset 3

0 0.79 1.49 2.70 0.54 NA NA NA
0.02 0.83 1.55 2.80 0.51 4.43% 4.14% 3.95%
0.04 0.86 1.61 2.91 0.48 8.87% 8.27% 7.90%
0.06 0.90 1.67 3.02 0.46 13.30% 12.41% 11.85%
0.08 0.93 1.74 3.12 0.43 17.73% 16.54% 11.85%
0.1 0.97 1.80 3.23 0.40 22.17% 20.68% 19.76%
0.12 1.01 1.86 3.34 0.38 26.60% 24.81% 23.71 %
0.14 1.04 1.92 3.44 0.38 31.03% 28.95% 27.66%
0.16 1.08 1.98 3.55 0.34 35.47% 33.08% 31.61%
0.18 1.11 2.04 3.66 0.31 39.90% 37.22% 35.56%
0.2 1.15 2.11 3.76 0.29 44.33% 41.36% 39.52%
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Table 2: Sharpe ratios in a limited participation equilibrium

This table reports all Sharpe ratios in a limited participation equilibrium including
the Sharpe ratios, the dispersion of all Sharpe ratios, the agent’s optimal position
and the corresponding dispersion of the optimal portfolio. The parameters are:
N = 3, ν = 0.6, σ1 = 2%, x1 = 0.5, σ = 8%, x2 = 3, σ3 = 12%, x3 = 10.5. Notice that
the dispersion of the risks is Ω(σx) = 0.7631. The reference correlation coefficient
is ρ = 40%.

β1 K(β1) s1 s2 s3 S s1/S s2/S s3/S Ω(s)
0.400 0.557 0.70 0.82 1.36 2.89 0.244 0.285 0.471 0.210
0.405 0.561 0.71 0.83 1.36 2.90 0.245 0.286 0.469 0.207
0.410 0.566 0.72 0.84 1.36 2.92 0.246 0.287 0.467 0.204
0.415 0.570 0.73 0.84 1.36 2.93 0.247 0.287 0.465 0.201
0.420 0.575 0.73 0.85 1.37 2.95 0.249 0.288 0.463 0.198
0.425 0.579 0.74 0.86 1.37 2.96 0.250 0.289 0.461 0.195
0.430 0.583 0.75 0.86 1.37 2.98 0.251 0.289 0.460 0.192
0.435 0.588 0.75 0.87 1.37 2.99 0.252 0.290 0.458 0.190
0.440 0.592 0.76 0.87 1.37 3.01 0.253 0.291 0.456 0.187
0.445 0.596 0.77 0.88 1.37 3.02 0.255 0.291 0.454 0.184
0.450 0.601 0.78 0.89 1.37 3.04 0.256 0.292 0.452 0.181
0.455 0.605 0.78 0.89 1.37 3.05 0.257 0.292 0.452 0.179
0.460 0.609 0.79 0.90 1.38 3.06 0.258 0.293 0.449 0.176
0.465 0.613 0.80 0.90 1.38 3.08 0.259 0.294 0.447 0.174
0.470 0.618 0.80 0.91 1.38 3.09 0.260 0.294 0.446 0.171
0.475 0.622 0.81 0.92 1.38 3.11 0.261 0.295 0.444 0.169
0.480 0.626 0.82 0.92 1.38 3.12 0.262 0.295 0.442 0.166
0.485 0.630 0.83 0.93 1.38 3.14 0.263 0.296 0.441 0.164
0.490 0.635 0.83 0.93 1.38 3.15 0.264 0.297 0.439 0.161
0.495 0.639 0.84 0.94 1.38 3.16 0.265 0.297 0.438 0.159
0.500 0.643 0.85 0.95 1.39 3.18 0.266 0.298 0.436 0.156
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Table 3: Optimal portfolios in a limited participation equilibrium

This table reports a limited participation equilibrium including the agent’s optimal
position and the corresponding dispersion of the optimal portfolio. The parameters
are: N = 3, ν = 0.6, σ1 = 2%, x1 = 0.5, σ2 = 8%, x2 = 3, σ3 = 12%, x3 = 10.5.
Notice that the dispersion of the risks is Ω = 0.7631. The reference correlation

coefficient is ρ = 40%. For each i = 1, 2, 3, x
(n)
i and x

(s)
i denote the optimal hold-

ing of the naive agent and the sophisticated agent on asset i. Ω(n) represents the
dispersion of the naive agent’s optimal portfolio while Ω(s) is the dispersion of the
sophisticated agent’s optimal portfolio.

β1 K(β1) (x
(n)
1 , x

(s)
1 ) (x

(n)
2 , x

(s)
2 ) (x

(n)
3 , x

(s)
3 ) Ω(n) Ω(s)

0.400 0.557 (-6.478, 5.152) (11.277, 9.982) (1.791, 3.806) 1.000 0.629
0.405 0.561 (-6.484, 5.156) (11.287, 9.976) (1.792, 3.805) 1.000 0.629
0.410 0.566 (-6.489, 5.159) (11.297, 9.969) (1.794, 3.804) 1.000 0.628
0.415 0.570 (-6.495, 5.163) (11.306, 9.962) (1.796, 3.803) 1.000 0.628
0.420 0.575 (-6.500, 5.167) (11.316, 9.956) (1.797, 3.802) 1.000 0.628
0.425 0.579 (-6.506, 5.171) (11.326, 9.949) (1.799, 3.801) 1.000 0.628
0.430 0.583 (-6.512, 5.175) (11.336, 9.943) (1.800, 3.800) 1.000 0.628
0.435 0.588 (-6.517, 5.178) (11.346, 9.936) (1.802, 3.799) 1.000 0.627
0.440 0.592 (-6.523, 5.182) (11.356, 9.930) (1.803, 3.798) 1.000 0.627
0.445 0.596 (-6.529, 5.186) (11.365, 9.923) (1.805, 3.797) 1.000 0.627
0.450 0.601 (-6.534, 5.190) (11.375, 9.917) (1.807, 3.796) 1.000 0.627
0.455 0.605 (-6.540, 5.193) (11.385, 9.910) (1.808, 3.795) 1.000 0.627
0.460 0.609 (-6.546, 5.197) (11.395, 9.903) (1.810, 3.794) 1.000 0.626
0.465 0.613 (-6.551, 5.201) (11.405, 9.897) (1.811, 3.793) 1.000 0.626
0.470 0.618 (-6.557,5.205) (11.415, 9.890) (1.813, 3.791) 1.000 0.626
0.475 0.622 (-6.563, 5.208) (11.424,9.884) (1.814, 3.790) 1.000 0.626
0.480 0.626 (-6.568. 5.212) (11.434, 9.877) (1.816, 3.789) 1.000 0.626
0.485 0.630 (-6.574, 5.216) (11.444,9.871) (1.817, 3.788) 1.000 0.626
0.490 0.635 (-6.580, 5.220) (11.454, 9.864) (1.819, 3.787) 1.000 0.626
0.495 0.639 (-6.585, 5.223) (11.464, 9.858) (1.821, 3.786) 1.000 0.625
0.500 0.643 (-6.591, 5.227) (11.474,9.851) (1.822, 3.785) 1.000 0.625
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