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ABSTRACT

Using data on insurance contracts from one of China’s largest insurance companies, we
find that air pollution has a significant effect on the decision to purchase or cancel health
insurance. A one standard deviation increase in daily air pollution leads to a 9 percent
increase in the number of insurance contracts sold that day. Conditional on purchase, a
one standard deviation decrease in air pollution during the cooling-off (i.e., cost-free can-
cellation) period relative to the order-date level increases the return probability by 4.1%
These results are strongly consistent with projection bias and suggest the importance of
projection bias in understanding the demand for insurance.
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1 Introduction

By definition the important decisions people make have lasting consequences, and as such

require them to predict their utility in future states. While standard economic theory

assumes that individuals can accurately do so, evidence from psychology and behavioral

economics suggests that people exhibit systematic biases in predicting future utility (see

DellaVigna (2009) for a review). One such bias, captured in such cliches as “sleep on it,” or

“never go grocery shopping on an empty stomach,” is the idea that current conditions have

an oversized influence on intertemporal decision making. Empathy gaps (Lowenstein (2005);

Ariely and Loewensteing (2006), projection bias (Loewenstein, O’Donoghue, and Rabin

(2003)), salience (Bordalo, Gennaioli, and Shleifer (2013); Koszegi and Szeidl (2013)), and

present bias (Laibson (1997); O’Donoghue and Rabin (1999)) are examples of mechanisms

for why such might be the case.

In this paper, we use transaction-level data from one of the largest insurance companies

in China to examine the role of air pollution in determining an individual’s decision to

purchase and cancel health insurance . The insurance policies do not cover pre-existing

conditions and have a 180 waiting period before coverage begins, so the value of the policy

is a function of the premiums and the probability of illness in future periods. Given the

high variability in day-to-day air pollution levels, daily air pollution levels should essentially

be a non-factor in a fully rational person’s decision to purchase or cancel health insurance.

We find that both the purchase and cancellation of insurance contracts are signifi-

cantly influenced by idiosyncratic variation in the daily levels of particulate matter (PM2.5).

Specifically we find that when air pollution is high individuals are more likely to purchase

insurance contracts, and that insurance contracts purchased on high pollution days are also

more likely to be canceled during the government mandated 10-day “regret period” during

which individuals can costlessly cancel their insurance contracts. This cancellation effect is

negatively related to air pollution during the cooling-off period, and is driven by the change

in air pollution relative to the level at the time of purchase. That is, individuals are more
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likely to buy insurance when pollution is high, and more likely to cancel it if air pollution

levels improve during the cooling-off period relative to the day of purchase.

Controlling for seasonal and regional variation in sales patterns, we find that a one

standard deviation increase in the daily level of PM2.5 as measured by Air Quality Index

(AQI) leads to a 7% increase in the number of insurance contracts sold that day. This

effect of pollution on sales is non-linear, with measurable effects occurring at AQI levels

associated with adverse acute health effects. We also find that a one standard deviation

decrease in AQI during the cooling-off period relative to the order-date leads to a 4.1%

increase in the rate of insurance contracts that are canceled. In contrast, AQI levels have

no impact on either sales or cancellations of other insurance products the company sells.

In addition, the results of a distributed lag model show that pollution affects the aggregate

level of insurance contracts sold as opposed to causing temporal substitution across days.

We hypothesize that these results are driven by projection bias as formalized in Loewen-

stein, O’Donoghue and Rabin (2003). Projection bias posits that individuals exaggerate

the degree to which their future tastes will resemble their current tastes. In this context,

the poor health brought on by high levels of air pollution causes individuals to overesti-

mate the probability of poor health in the future. If such is the case, projection bias would

predict that when air pollution is high individuals will be more likely to purchase insurance

contracts. In addition, since projection bias affects individuals both when the purchase

and cancellation decisions are made, lower air pollution levels during the cooling-off period

should lead to higher cancellation rates. Our results are consistent with both predictions.

Our results are important for several reasons. First, insurance is one of the world’s

largest industries, eclipsed only by real estate, finance and the public sector. In 2014 in-

surance premiums in the U.S. exceeded $2 trillion, with health insurance premiums in the

private insurance market alone amounting to $839 billion. Health care spending is also

a huge part of the economy, accounting for 5.7% of China’s GDP and 9% of GDP for all

O.E.C.D countries (OECD 2015). And given the ongoing debate regarding health insurance

coverage, understanding how individuals make insurance decisions has important implica-
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tions for generating effective policy in this domain. Our results provide strong empirical

evidence of the importance role of projection bias in the market for health insurance in

China, and potentially insurance markets more widely.

Second, while projection bias has received significant attention in both the economics

and psychology literature, there is only recently some evidence that projection bias influ-

ences demand for real goods and services. The most convincing prior evidence of projection

bias in a real-world market remains the first paper to document projection bias in a real-

world market: Colin, O’Donoghue and Volgelsang (2007). Their paper convincingly shows

that catalog orders for weather-related clothing items are overinfluenced by the weather.

They find that lower order-date temperature leads to an increase in the return probability

for cold weather items, but finds only mixed evidence regarding the impact of return-date

temperature on returns. Simonsohn (2009) and Busse, Pope, Pope and Silva-Risso (2014)

show that weather also affects college enrollment and the type of automobile purchased re-

spectively. Busse et al. (2014) conclude that their results are incompatible with standard,

rational agents but consistent with both projection bias and salience. To our knowledge,

these are the only other papers to show evidence that projection bias affects the demand

for real goods and services.

Our results also document an unanticipated consequence of rising air pollution levels

in the developing world. This finding contributes to a small but rapidly growing literature

documenting the impact of air pollution on non-health outcomes: labor productivity (Graff

Zivin and Neidell (2012), Chang, Graff Zivin, Gross, and Neidell (2014, 2016), Li, Liu

and Salvo (2015)), student test scores (Lavy, Ebenstein, and Roth (2014)), and crime

(Herrnstadt and Muehlegger (2015)).

Finally our results also provides direct evidence in support of the hypothesis put forth

in Loewenstein, O’Donoghue and Rabin (2003) that “cooling-off laws” might be effective

“as devices for combating the effects of projection bias.” Moreover, they suggest that the

efficacy of cooling-off periods in combating projection bias is determined in part by the

correlation in the driving state variable (i.e., projection bias due to slowly moving state
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variables could potentially benefit from longer cooling-off periods.)

The paper proceeds as follows. The subsequent section presents a simple model of

insurance orders and cancellations in the presence of projection bias. In Section 3, we

present some basic information on the impact of air pollution on health. Section 4 describes

the data used in the paper along with our empirical strategy. Section 5 presents our main

results on the effect of PM2.5 on the decision to purchase and cancel insurance contracts.

Section 6 concludes.

2 Projection Bias

Projection bias is the tendency for individuals to exaggerate the degree to which their

future tastes will resemble their current tastes. Lowenstein, O’Donoghue and Rabin for-

malize this idea with a model in which an agent’s utility is given by

ũ(c, s|s′) = (1− α)u(c, s) + αu(c, s′), (1)

where s is a state variable that affects the utility of good c, s′ is a person’s current state,

and α ∈ [0, 1] is a measure of the projection bias exhibited by the agent. In this case, if an

agent has α = 0, she accurately predicts her future utility. In contrast if α > 0, then she

mis-predicts her future utility as a convex combination of her true future utility from c and

the utility she would receive from c given her current state s′.

As a simple, illustrative case of the influence s0 can have on the demand for health

insurance, we assume a particularly simple utility function of the form

ũ(ct, st|st) = (1− α)B(st) + αB(s0)− p, (2)

where st is a measure of how sick an individual is at time t, B is non-zero, increasing

function that represent the per period benefit provided by the insurance policy, and p is

the per period insurance premium.
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Mapping this utility function to the case of health insurance choice is straightforward.

Consider an individual who purchases a health insurance I at time t with a policy period

equal to T , and let sτ represent her expected future health. Conditional on purchase, she

can costlessly cancel her policy at time t=1 (e.g., the cooling off period), with premiums

and coverage to begin at time t=2 (i.e. a one period “waiting period”). Her perceived

utility from purchasing health insurance is then given by

Ũ t(ũt+2, ..., ũt+T |st) =
T+t∑
τ=2+t

δ(τ−t)[(1− α)B(sτ ) + αB(st)− p]. (3)

This simple framework illustrates the influence st can have on the demand for insurance.

While the current state st will have no effect on the perceived utility of rational agents

(α = 0), individuals who suffer from projection bias will value insurance more the sicker

they are today. So for a given price p, demand will be higher when individuals are more

unwell.

Next, consider the behavior of an individual who has purchased insurance during the

cooling off period (t = 1). Again, if she is rational, her predictions are not affected by her

current health s1, but if she is affected by projection bias, her predictions regarding the

utility from insurance will be biased by her current health. She will then choose to cancel

her insurance if δŨ0(ct+2, ..., ct+T |s1) < 0. So for a high enough p, there will be an s < s0

such that if s1 < s, she will cancel her insurance in period 1. That is an individual with

projection bias will cancel her insurance if her health level during the time she is making

the decision to cancel her policy is sufficiently high relative to her purchase day health.

These results generate a pair of testable predictions:

(1) Order-date health shocks (s0) will increase sales of health insurance.

(2) If individuals feel healthier during the cooling off period relative to the

order-date (i.e., s1 < s0), they are (weakly) more likely to cancel their insurance

policy.
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3 Air pollution and You

Particulate matter (PM) consists of solid and liquid particles in the air that can range

considerably in size. In response to a growing body of toxicological and epidemiological

evidence suggests that exposure to PM2.5 significantly harms health (see EPA (2004) for a

review) public awareness and regulation has evolved to focus on this form of air pollution.

PM2.5 consists of particles less than 2.5 micrometers across, small enough to ether the

bloodstream through the lungs. In addition, its diminutive size allows it to easily enter

buildings, with penetrating rates of over 70% (Tahtcher and Layton (1995)). Thus unlike

most other forms of air pollution, which either remain outdoors or rapidly break down

indoors, PM2.5 cannot be avoided by remaining indoors.

A large body of toxicological and epidemiological evidence suggests that exposure to

PM2.5 harms health (see EPA, 2004 for a comprehensive review). The health risks effects

arising from exposure to PM2.5 arise primarily from changes in pulmonary and cardio-

vascular functioning (Seaton et al., 1995). They may manifest themselves in respiratory

episodes, such as asthma attacks, and cardiovascular events, such as heart attacks, that lead

to hospitalizations and mortality (Dockery and Pope, 1994; Pope, 2000). They also lead to

more subtle effects, such as changes in blood pressure, irritation in the ear, nose, throat,

and lungs, and mild headaches (Pope, 2000; Ghio et al., 2000; Auchincloss et al, 2008).

Importantly for our empirical design, some response to high level of PM2.5 is immediate

(e.g., watery eyes, scratchy throat, shortness of breath) and more symptoms can arise in

as little as a few hours after exposure. Figure 1 describes the PM2.5 levels as expressed in

Air Quality Index (AQI) levels and the relevant heath effects as per the U.S. EPA.

Our empirical strategy for testing the predictions of projection bias described in the

previous section is to use the daily level of PM2.5 in a city as a health shock to the

city’s population. Specifically we assume that PM2.5 levels are negatively related to the

contemporaneous aggregate health of the population of that city (e.g., the higher the air

pollution level, the sicker the population), such that a city’s daily PM2.5 level serves as a
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proxy for the average contemporaneous health it’s citizens (i.e., AQI ∼ st).

While day-to-day variation in PM2.5 levels is quite high,1 PM2.5 levels generally follow a

cyclical pattern correlated with other environmental factors more generally (e.g., weather).

In Beijing, for example, PM2.5 tends to be lower during the rainy season when precipitation

serves to wash away airborn pollutants and higher in winter months when people burn more

fossil fuels for warmth (see Figure 2). Similar to temperature, while the current AQI level

provides some additional information regarding the AQI levels one can expect in the near

future, it provides essentially zero additional information about the AQI levels one should

expect 180 days from now. For a rational agent, this would mean that the current AQI will

not effect how much she values of health insurance. In contrast an agent with projection bias

will, all else equal, value insurance more when AQI is high leading to a positive relationship

between AQI and demand as described in the previous section.

4 Data

The data were obtained from three sources: a large Chinese company that sells a variety

of insurance products, U.S. State Department, and 15 Tianqi. From the insurance company

we have detailed information on over one million insurance contracts. These contracts

represent the universe of health insurance policies, along with a subset of other insurance

products, sold by the firm to residents in a small number (n<5) of large Chinese cities

from 2012 through 2015. Due to the sensitive nature of the sales data, and to ensure the

anonymity of the firm providing the data, we cannot reveal the identities of the cities in

our sample or sales patterns for the various insurance products in our sample. For each

insurance policy sold, the firm provided us with the date of purchase, city of residence,

contract length, whether the insurance is both for oneself or for someone else (e.g., a family

member), and some basic demographic information for the person covered by the insurance

policy. The firm also provided cancellation information for these policies through the end

of 2014.

1The within-city day-to-day correlation in AQI levels is less than 0.5.
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Providing near-universal health insurance coverage has been a major goal of the Chinese

government, and recent reforms have brought them close to this goal. As of 2009, around

90 percent of the population has health insurance through the government. This coverage

is accomplished through three insurance programs, the Urban Employee Basic Medical In-

surance (UEBMI), the Urban Resident Basic Medical Insurance (URBMI), and the New

Rural Cooperative Medical System (NRCMS). The benefit level of the insurance provided

through these programs is though quite low both in terms of the share of expenses covered

and the cap on total lifetime covered expenses. As such the market for secondary private

health insurance to help cover this gap is a rapidly growing market in China, especially

among China’s growing middle class. This form of insurance is considered especially impor-

tant to cover expenses due to significant adverse health events like cancer. The insurance

contracts in our data consist of this types of private health insurance.

For policies provided by the firm, there is a 180 day waiting period between the date

of purchase and the effective start date of insurance coverage. In addition, there is a pre-

existing condition clause that prevent the covered individual from receiving benefits if their

illness is the result of a condition that existed before the date of purchase. Finally these

insurance contracts are subject to a law that requires a 10-day “regret period” during which

consumers can cancel their insurance contracts without any penalty.

From the U.S. State Department, we have hourly measures of PM2.5 as collected by air

quality monitors located on U.S. Embassy compounds in the relevant cities. The PM2.5

level is expressed in terms of an air quality index (AQI) following the U.S. EPA formula

(EPA (2006)). The AQI values are designed to help inform health-related decisions by

mapping pollution levels to round number breakpoints corresponding to categories of health

impact (see Figure 1).2. While we cannot provide full details regarding the pollution levels

in our sample as they could be used to determine the identity of the cities in our sample,

the mean daily AQI in our composite sample is 125.6 with a standard deviation of 98.4.

While this level of air pollution is typical for a large Chinese city, it would be considered

2See, for example, http://beijing.usembassy-china.org.cn/aqirecent3.html for more details on the U.S.
State Department’s air quality monitoring program in China.

8



quite high in the U.S.3

Finally we retrieved weather information from each city from 15 Tianqi, a Chinese

weather website. This data included daily low and high temperatures, precipitation, and a

dummy for snowfall. After merging the weather data with the AQI and order information

by city and date, we dropped observations for city and date combinations for which AQI

information was unavailable or appeared unreliable.4 As shown in Table I, this left us

with a sample of 579,303 insurance contracts sold across 2,577 city*days, with an average

of 224.8 sold in each city each day. The mean contract in our sample is for a period of

31.6 years.5 Approximately half the time, an individual is purchasing insurance for him

or herself. In the other half, an individual is purchasing insurance for a family member

(generally a spouse or child). The average age of the covered individual is 25.4 years, and

just over half of covered individuals are female. The cancellation rate during the 10-day

government mandated cooling-off period is 2.8%.

5 Empirical Results

5.1 Effect of Air Pollution on Purchases

Our base specification for estimating the impact of air pollution on the sales of insurance

contracts is then given by

Log(Insurancejt) = βAQIjt +Xjtγ +Djt + εjt, (4)

where Insurancejt is the number of insurance contracts sold by the firm to residents of

city j on date t, AQIjt is the high hourly AQI in city j on the over a two-day window

3While not exactly comparable since different technologies are used to measure air pollution at different
temporal resolutions, as an illustrative example the EPA reports that the median AQI in Cambridge, MA
and Los Angeles, CA in 2015 was 46 and 77 respectively.

4One date observation with an AQI of zero and two date observations with AQI > 800 were dropped
from the sample.

5For the 25.3% of health insurance policies sold with what the firm refers to as “lifetime” contracts (i.e.,
policy period is for the life of the covered individual), the contract length was set to 85 years, the maximum
length allowed for non-lifetime contracts.
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consisting of date t and t− 1. This allows for the purchase decision to have been made the

day before purchase, which is possible since pollution tends to peak in the evening when

the firm is closed unable to take customer orders.6 The vector Xjt consists of a quadratic

function of high temperature and dummies for precipitation and snowfall. Djt are day-of-

week, month-of-year by city, and year by city fixed effects included to account for trends

within the week and over time respectively.

Our main coefficient of interest is β, which captures the effect of air pollution on the

demand for health insurance. The coefficient can be interpreted as the percent change in

total number of insurance contract sold on a given day by a one unit increase in AQI.

The results of estimating Equation 4 is presented in Table II. Column 1 indicates that

an one unit increase in daily AQI generates with a 0.072% increase in daily sales, or that

a one standard deviation increase in daily AQI leads to a 9.0% increase in daily sales. For

column 2 we allow AQI to have a non-linear effect on sales by re-estimating Equation 4

with indicator variables corresponding to the different EPA categories for pollution levels in

place of a linear measure of AQI (see Figure 1). The withheld category is AQI of between

0 and 50, corresponding to “Good” air quality. The results indicate that the effect of AQI

on sales only become significant once AQI is higher than 150, corresponding to the level

deemed “Unhealthy” by the EPA; the coefficient for “Moderate” levels of PM2.5 is small

and statistically, while the coefficient for the “Unhealthy for Sensitive Groups” level of

PM2.5 is around 2/3rds as large as the coefficient for “Unhealthy” but not statistically

significant at conventional levels. AQIs of between 150-200 (“Unhealthy”), 200-250 (“Very

Unhealty”), and greater than 300 (“Hazardous”) are associated with increases in daily sales

of 16.8%, 16.8% and 23.4% respectively compared to days with ab AQI of less than 50.

In column 3, we re-run the regression in column with an additional term that captures

the pollution in the other cities in our sample. To do this, we first match each city to its

closest neighbor, then regress that city’s daily sales against both that city’s pollution, and

the pollution of the matched city. We see that controlling for the AQI of the nearest city

6Using either the one day AQI for date t or t− 1 produces similar results.
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slightly reduces the size of the coefficient from 0.00072 to 0.00066, and that the coefficient

for other city AQI is both small and statistically insignificant. Together the results in these

first three columns indicate that the air pollution in ones immediate vicinity increases

demand for health insurance, and that this increased demand effect occurs at the pollution

levels associated with noticeable health effects.

Finally in column 4 we repeat the regression shown in column 1, but with the dependent

variable the number of other insurance contracts sold by the company. This category consist

primarily of term life and personal accident insurance. Here the coefficient of interest is

small and statistically insignificant, indicating that air pollution is not a significant driver

of demand for other insurance products sold by the firm.

5.2 Air Pollution and Temporal Substitution

While the results in the previous section demonstrate that pollution affects the demand

for insurance, it does not answer the question of whether the increase represents a true

increase in aggregate demand or reflects pollution’s effect on intertemporal substitutions.

That is pollution may not generate additional demand for insurance, but simply shift when

a person purchases insurance.

To assess whether our results are driven by intertemporal substitution with respect to

daily pollution, we estimate a distributed lag model. Specifically we re-run Equation 4 with

N daily lags of AQI and weather added to the estimating equation:

Log(Insurancejt) = βAQIjt +

N∑
τ=1

βτAQIj,t−τ +

N∑
τ=0

Xj,t−τγτ +Dj, + εjt. (5)

Including lagged pollution variables in our regression allows us to test whether pollution

in the days leading up (or following) to the day of purchase affects the impact of contem-

poraneous pollution on purchase decisions. For example, a negative coefficient on the 5th

day lagged pollution measure would indicate both that high pollution 5 days ago leads to

lower sales today and that high pollution today leads to lower sales 5 days in the future.
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Thus the sum of the lagged coefficients are a measure of the extent to which the current

period effect is due to intertemporal substitution and how much is an increase in aggregate

total demand for insurance. 7 To test whether the increase in demand we measured in the

previous section is due to displacement, we can test the null hypothesis that the sum of

k ≤ N coefficients for the lagged pollution variable is equal to the negative of the current

period coefficient β.

Figure 2 present the results of this analysis by plotting the estimated coefficients and

95% confidence intervals from estimating Equation 5 for a period of 6 weeks (N = 42). As

shown in the figure, while current period pollution has a large, positive and statistically

significant impact on the demand for health insurance contracts, the coefficients for the

lagged pollution are smaller and never statistically significant. Moreover the fact that most

coefficients tend to be positive, even if not statistically significantly so, suggest that high

pollution in the recent past leads to higher insurance sales today. The current day pollution

coefficient β in this regression equals 0.00081 with a standard error of 0.00024, a value which

is slightly larger than the coefficient of 0.00072 from Table II. Testing the null hypothesis

that the sum the coefficients for first k lags is equal to the negative of the current day

coefficient β, we find we can reject the null hypothesis with a p-value < 0.001 for k equal

to 7,14,21,28,35 or 42 days. These results indicate that the increase in daily sales generate

by air pollution can be interpreted as an increase in the aggregate demand for insurance,

and due to changes in the timing of insurance purchases.

5.3 Effect of PM2.5 on Cancellations

In addition to total demand for insurance, we also examine insurance cancellation rates.

For this analysis, we start with the base regression specification

Cancelijt = β0AQIp,ijt + f(AQIij,1, ..., AQIij,11) + Cib+Xjtγ +Djt + εjt, (6)

7See Jacob, Lefgren and Moretti (2007), Deschenes and Moretti (2009) and Busse, Pope, Pope and
Silva-Risso (2014) for more detailed discussion on the methdology used here.
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where Cancelijt is a dummy that equals 1 if the contract is canceled by the purchaser within

11 days of purchase.8 We drop observations if the policy was canceled within 24 hours of

purchase (212 same day cancellations, 466 next day cancellations) as in such cases there is

considerable overlap in the AQI level during when the purchase and cancellation decisions

are made.9 AQIijt is the previously used measure air pollution on the date of purchase

and f(AQIijt+1,...,ijt+11) is a function of the 11 daily leads of the pollution variable. Ci

includes controls for policy characteristics: the age and gender of the policy holder, whether

the insurance was purchased for oneself or another family member, and the length of the

insurance contract period in years. As before Xjt is a vector of weather variables and Djt

are fixed effects designed to capture trends both within week and over time.

We use four different specifications to capture the effect of pollution during the cooling

off period (CoP) on cancellation rates. Our first specification directly tests the prediction

that projection bias’s effect on cancellations operates via differences in AQI during the

times when the purchase and cancellation decisions are made. Specifically we replace AQI

with a measure of the change in AQI during the cooling off period relative to order-date

AQI (Relative AQI). That is we run the regression

Cancelijt = β(Relative AQIijt) + Cib+Xjtγ +Djt + εjt, (7)

where

Relative AQIijt = (
11∑
τ=1

1

11
AQIij,t+τ −AQIp,ijt). (8)

That is we measure the effect of the average AQI during the CoP normalizing the order-date

AQI to zero.

The second specification includes controls for both the level of the order-date AQI and

8Although the legally mandated cooling-off period is 10 days, the firm is not strict in enforcing the 10
day rule. Consequently a significant number of cancellations 11 days after purchase. Limiting the analysis
to a 10 day post-purchase period generates similar results.

9Including these observations does not materially affect the regression results.
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the average AQI during the cooling off period (CoP AQI ). This specification is essentially

identical to that used in Conlin, O’Donoghue and Vogelsang (2007) as a direct test of

projection bias. In cases where one or more of the daily pollution measures during the CoP

was not available, the CoP AQI was calculated excluding the missing value.

The third specification is a variant on the second specification, but replaces the CoP

AQI with the 11 leads of pollution as separate regressors and then sum the 11 resulting

coefficients. That is we set f(AQIijt+1,...,ijt+11) =
11∑
τ=1

βτAQIij,t+τ , and report
11∑
τ=1

βτ as

the effect of pollution during the cooling off period on insurance cancellations. In ap-

proximately 30 thousand cases, one of the lead pollution measures were missing and the

insurance contract was not included in the regression. 10 Subject to the linear functional

form assumption, this provides us with a measure of the cumulative effect of daily pol-

lution during the cooling off period on cancellations. For our second specification, we

first calculate the average pollution levels for the 11 days post purchase. We then include

this average pollution measure as our control for pollution during the cooling off period:

f(AQIijt+1,...,ijt+11) = βCoP
11∑
τ=1

1
11AQIij,t+τ .

For our final specification, we utilize a dummy variable to indicate whether air pollution

during the time when an individual makes her decision to cancel an insurance policy is lower

then the air pollution level during the time when she makers her decision to purchase said

insurance policy. Specifically f(AQIijt+1,...,ijt+11) is an indicator variable equal to one if

Cop AQIij,0 < Order− dateAQI. As with our measure of average AQI, in cases when one

of the lead pollution measures was not available, the comparison was done to the exclusion

of the the missing value.

Table IV reports the marginal effects at the sample mean associated with estimating

Equation 6. Column 1 presents the results of regressing Relative AQI on cancellations so

that the coefficient of interest represents the effect AQI during the CoP normalized such

that order-date AQI=0. Here we find a negative and statistically significant relationship

between Relative AQI and cancellations, indicating that decreases in AQI relative to order-

10Replacing missing observations with a value interpolated from the nearest two observations leads to
essentially identical results.
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date AQI leads to increases in the probability of cancellation. Specifically for ever one

unit (standard deviation) decrease in AQI relative to order-date AQI, the probability of

cancellation increases by 0.001% (0.10%).

In column 2, we include both order-date AQI and the average AQI during the cooling

off period (CoP AQI) as regressors. We find that higher order-date AQI lead to a positive

and statistically significant increases cancellations. Specifically we find that a one unit

(standard deviation) increase in order-date AQI leads to a 0.0087% (0.087%) increase in

the probability of cancellation. In contrast, the coefficient for our measure of air pollution

levels during the cooling off period is negative and statistically significant, with a one unit

CoP AQI decreasing the probability of cancellation by 0.024%, indicating that individuals

are less likely to cancel if pollution is high in the window during which they can choose to

cancel their policy.

Column 3 repeats this analysis, but replaces the average CoP AQI with disaggregated

daily measure of daily AQI, and finds essentially the same pattern of results as column 2:

higher order-date AQI lead to a positive and statistically significant increases cancellations,

while the aggregate effect of daily air pollution levels during the cooling off period is negative

and statistically significant.11

Finally in column 4, we repeat the analysis shown in column 2 but with a dummy for

whether the average of daily AQI is lower during the cooling off period relative to purchase-

date AQI. Unlike the columns 2 and 3, here we find that order-date AQI no longer predicts

increased probability of cancellation. Instead we find that the effect of air pollution on

cancellations depends solely on whether or not air pollution is lower during the period in

which the purchaser can decide to cancel her policy relative purchase day air pollution.

Specifically if Cop AQIij,0 < Order− dateAQI, the probability that a contract is canceled

increases by 0.19%, or a 7.25% increase in the cancellation rate. This suggest that the

impact of air pollution on cancellation rates is driven by relative differences. That is the

AQI during the time the decision to cancel is made matters only in how it differs from the

11We reject at a p-value < 0.01 that the sum of the individual lead coefficients are equal to zero.
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AQI the decision maker faced when decision to purchase insurance in the first place.

We next examine whether pollution has an effect on the cancellation of non-health

insurance policies. To the extent that health shocks do not affect the valuation of other

forms of insurance, our model would predict that air pollution should not influence whether

an individual cancel other types of insurance policies. We test for such differential effect

by re-estimating column 1 in Table III for all insurance contracts, interacting Relative AQI

with a dummy for non-health insurance policies. The results of this regression are presented

in Table IV.

Column 1 includes the same controls as the regressions in Table III, while column 2

includes interaction terms between the weather controls, contract characteristics and a

dummy for non-health insurance policies to allow those characteristics to have differential

effects for the health vs. other insurance policies. For both specifications, the main effect

of the difference in AQI between the order-date and the CoP remains negative and sta-

tistically significant. The interaction term though is positive, statistically significant, and

only slightly smaller in magnitude than the main effect. Thus the marginal effect of the

for other insurance types has a magnitude close to zero and statistically insignificant with

p-values of 0.54 and 0.46 for columns 1 and 2 respectively.

5.4 Effect of Air Pollution on Insurance Contract Characteristics

We next examine the effect on pollution on the characteristics of the insurance contracts

purchased. The price of insurance contracts are not individually negotiated, but instead is

set by the firm and change infrequently. Prices therefore should be unaffected by idiosyn-

cratic variation in both daily air pollution levels and the demand for insurance. As any

such changes in insurance characteristics would indicate either changes in the composition

of who purchases insurance, or what kinds of insurance features pollution causes individuals

to value more.

To determine whether pollution affects the characteristics of insurance policies sold, we
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estimate the following equation:

Cijt = βAQIjt +Xjtγ +Djt + εjt. (9)

Here the dependent variable Cijt is a characteristic of insurance plan i sold in city j on date

t. As in Equation 4, AQIjt is a measure of the high AQI in city j on date t, Xjt consists of

a quadratic function of high temperature and dummies for precipitation and snowfall, and

Djt are day-of-week, month-of-year*city, and year*city fixed effects.12 All standard errors

are clustered at the city*date level.

The results of estimating Equation 9 is presented in Table III. Columns 1 and 2 present

the results from an OLS regression where the dependent variable is the log of the term

length of the insurance contract or the log of the age of the covered individual respectively.

Columns 3-5 present the estimated marginal effects at the sample means from a probit re-

gression where Cijt is an indicator variable equal to one if purchaser and covered individuals

are the same (3), if the covered individual is female (4), and if the purchaser is female (5).

For column (5) the sample is limited to those insurance contracts for which the purchaser is

the same as the covered, as those are the only cases for which we can determine the gender

of the purchaser.

In all cases, β is small and with the exception of column 4 (the covered individual’s

gender), statistically insignificant . For columns 1, 2, 3, and 5, given that the standard

errors are at least an order or magnitude smaller than the effect sizes shown in Table II, we

can rule out AQI having an economically meaning effect on these contract characteristics.

And while the coefficient for column 4 is statistically significant, the effect size itself is

quite small with a one unit (standard deviation) increase in AQI leads to a 0.007% (0.88%)

increase in the share of contracts that insure females off a baseline of 55%. Overall these

results suggest that while air pollution significantly increases the demand for insurance, it

does not appear to change the type of insurance product purchased.

12Adding additional controls for contract characteristics other than the dependent variable generates
effectively identical results.
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6 Conclusion

Our two main empirical findings are that 1) higher air pollution leads to greater demand

for health insurance, and 2) cancellation rates are higher if air pollution levels during the

cooling off period are lower than that on the order-date. We also find that the increase

in daily demand for health insurance engendered by daily air pollution levels represents

an increase in total demand for insurance, and not the result of temporal displacement of

purchases. These results not only provide strong empirical evidence for projection bias, but

suggests that projection bias may be an important factor in understanding the demand for

insurance more generally.
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Figure 1. U.S. EPA Guide to AQI



Figure 2. Daily PM2.5 levels as measured by the U.S. Embassy in Beijing.
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Figure 3. Coefficient values and 95% confidence intervals for the effect of
contemporaneous and lagged AQI/100 on daily insurance sales.



Table I
Summary Statistics

Mean Std. Dev. Min Max Obs.

Date Characteristics
AQI PM2.5 125.6 98.4 0.04 731 2,577
Temperature 19.4 9.4 -6 39 2,577
Rain 0.049 0.215 0 1 2,577
Snow 0.014 0.119 0 1 2,577
Sales per Day 224.8 509.1 0 9313 2,577

Contract Characteristics
Contract Length (Years) 54.7 31.6 1 85.0 579,303
Purchased for Oneself 0.47 0.50 0 1 579,303
Age (Years) 25.4 15.5 0.79 66.1 579,303
Female 0.55 0.50 0 1 579,303
Canceled 0.028 0.17 0 1 414,064

Notes: The demographic variables associated with the health insurance contracts
are for the insured, and not the purchaser of insurance. Information on cancel-
lations was not provided for contracts sold in the most recent year of the data
(2015).



Table II
The Effect of Pollution on Insurance Sales

Dependent Variable: Log(Number of Contracts Sold)

Insurance Type Health Other

AQIPM2.5 0.00072** 0.00066** -0.00013
(0.00019) (0.00020) (0.00023)

AQIPM2.5 50-100 0.0116
(0.0715)

AQIPM2.5 100-150 0.1147
(0.0759)

AQIPM2.5 150-200 0.1681*
(0.0825)

AQIPM2.5 200-300 0.1680*
(0.0849)

AQIPM2.5 300+ 0.2340*
(0.0996)

Other City AQIPM2.5 0.00007
(0.00023)

Temperature -0.0191 -0.0189+ -0.0196+ 0.0221*
(0.0111) (0.0111) (0.0119) (0.0224)

Temperature2 0.0008** 0.0008** 0.0009** -0.0006*
(0.0072) (0.0003) (0.0003) (0.0003)

Rain -0.0391 -0.0355 -0.0363 0.1006
(0.0755) (0.0756) (0.0763) (0.0658)

Snow -0.2059 -0.1943 -0.2078 -0.2639
(0.1700) (0.1707) (0.2242) (0.1677)

Adjusted R-squared 0.481 0.481 0.478 0.483
Observations 2,573 2,573 2,453 2,573

Notes: All columns present the results from ordinary least square regressions. For city
j, “Other City AQIPM2.5” is the AQIPM2.5 of its nearest neighbor. Insurance type
“Other” consists of personal accident and term-life insurance policies. All regressions
included dummy variables for day of week, city*month and city*year. Standard errors
are clustered on date.
+ significant at 10%, * significant at 5%, ** significant at 1%.



Table III
The Effect of Pollution on Cancellations

Dependent Variable: Indicator equal to 1 if contract is cancelled

% of Contracts Cancelled 2.62% 2.62% 2.55% 2.62%

Relative AQI -0.00110**
(0.00041)

Order-date AQI 0.00087* 0.00100* 0.00003
(0.00044) (0.00048) (0.00053)

CoP AQI -0.00243**
(0.0092)∑11

τ=1 βAQI,τ -0.00236**
(see notes)

1(CoP AQI<Order-date AQI) 0.1929*
(0.0866)

Log(Term Length) -0.487** -0.486** -0.482** -0.487**
(0.175) (0.018) (0.018) (0.0325 )

Log(Age) 0.365** 0.365** 0.337** 0.366**
(0.032) (0.033) (0.033) (0.032)

Self 1.060** 0.058** 1.026** 1.059**
(0.076) (0.076) (0.078) (0.076)

Female 0.125** 0.125* 0.106+ 0.123*
(0.057) (0.057) (0.058) (0.056)

Adj. R-squared 0.050 0.050 0.052 0.050
Observations 405,599 405,599 375,841 405,599

Notes: For each column, the dependent variable is whether an insurance contract is canceled during
the cooling-off period. All coefficients represent the marginal effects from a probit regression.
Relative AQI is the average AQI during the cooling off period minus the order date AQI. CoP AQI
is the mean value of AQI PM2.5 during the cooling off period ( 1

11

∑11
τ=1AQIτ ).

∑11
τ=1 βAQI,τ is the

sum of the coefficients for the 11 daily leads of the pollution variable AQI0 PM2.5. We can reject at
p-value=0.003 that the sum of these coefficients is greater than zero. For legibility, all coefficients
and standard errors have been multiplied by 100. All regressions included controls for temperature,
temperature squared, rain, snow, and dummy variables for day of week, city*month and city*year.
Column 3 includes additional controls for the 11 daily leads of temperature, temperature squared,
rain and snow. Standard errors are clustered on city*date.
+ significant at 10%, * significant at 5%, ** significant at 1%.



Table IV
Cancellations Including Non-Health Insurance

Dependent Variable: Indicator equal to 1 if contract is cancelled

% of Contracts Cancelled 5.36% 5.36%

Relative AQI -0.00286** -0.00264**
(0.00082) (0.00079)

(Relative AQI)*(Other) 0.00257** 0.00229**
(0.00078) (0.00076)

Other 0.02618** -0.00856**
(0.00078) (0.00320)

Log(Term Length) -0.742** -0.943**
(0.034) (0.031)

Log(Term Length)*Other 0.348**
(0.056)

Log(Age) 0.514** 0.583**
(0.041) (0.057)

Log(Age)*Other -0.102+
(0.058)

Self 2.148** 1.829**
(0.098) (0.119)

Self*Other 0.632**
(0.161)

Female 0.282** 0.198*
(0.063) (0.095)

Female*Other 0.119
(0.101)

Adj. R-squared 0.059 0.060
Observations 890,247 890,247

Notes: For each column, the dependent variable is whether an insurance contract is canceled during
the cooling-off period. All coefficients represent the marginal effects from a probit regression.
Relative AQI is the average AQI during the cooling off period minus the order date AQI. For
legibility, all coefficients and standard errors have been multiplied by 100. All regressions included
controls for temperature, temperature squared, rain, snow, and dummy variables for day of week,
city*month and city*year. Column 2 includes interactions of the Other dummy with the controls
for temperature, temperature squared, rain, and snow. Standard errors are clustered on city*date.
+ significant at 10%, * significant at 5%, ** significant at 1%.



Table V
Pollution and Insurance Contract Characteristics

Term Length Age Self Purchase Female Female & Self

AQI PM2.5 0.00001 0.00004 0.00007 0.00007* 0.00002
(0.00006) (0.00007) (0.00006) (0.00003) (0.00005)

Temperature -0.0024 -0.0102 -0.0015 -0.0038+ -0.0072*
(0.0036) (0.0044) (0.0034) (0.0020) (0.0032)

Temperature2 0.0002* 0.0002* -0.0000 0.0001* 0.0002*
(0.0001) (0.0001) (0.0001) (0.0000) (0.0001)

Rain -0.0230 -0.0050 0.0253 0.0099 -0.0011
(0.0214) (0.0253) (0.0185) (0.0122) (0.0186)

Snow -0.0785 -0.0210 0.0484 0.0526* 0.0308
(0.0511) (0.0594) (0.0407) (0.0262) (0.0400)

Adj. R-squared 0.052 0.009 0.010 0.000 0.004
Observations 579,303 579,303 579,303 579,303 274,102

Notes: Columns 1 and 2 present the results from ordinary least square regressions, and columns 3
through 5 present marginal effects based on a probit model. The dependent variable for columns 1 and
2 are the log of the contract term and the log of the age of the person covered by the health insurance
contract. For columns 3 through 5, the dependent variable is a dummy equal to 1 if (3) the insurance was
purchased for oneself, (4) the insurance was purchased for a female, and (5) the insurance was purchase
by a female. The sample size is smaller for column (5) because the sample was limited to insurance
purchased for oneself as those are the only cases for which we can identify the gender of the purchaser.
All regressions included dummy variables for day of week, city*month and city*year. Standard errors
are clustered on city*date.
+ significant at 10%, * significant at 5%, ** significant at 1%.


