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1 Introduction

After maturing into standard tools for risk measurement, especially for setting capital

requirements, Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are increasingly

adopted as decision tools for active risk management in financial institutions. Focusing on

the latter, this paper aims to develop static futures hedging policies that minimize tail risk

measured by VaR or CVaR.1 This approach is of special interest for agents facing risk limits

or capital requirements set with these measures. In addition, it is of general interest if avoid-

ing large losses2 is given preference over minimizing the overall variance of the position,

which is the standard paradigm for futures hedging following Johnson (1960) and Edering-

ton (1979). Hence, tail-risk-minimal hedging is useful for investors who are particularly con-

cerned about the performance under extreme market circumstances such as financial crises.

Implementing VaR or CVaR as objectives in portfolio optimization is technically more de-

manding than solving variance-based problems because these risk measures – in general –

depend on the full distribution of the portfolio return and not just on the first two moments.

In addition, as compared to pure risk measurement applications, portfolio and hedging deci-

sions require a multivariate model, which narrows down the range of applicable techniques

for the calculation of VaR or CVaR. A popular approach is to assume jointly elliptically dis-

tributed returns, which implies that the loss distribution – as opposed to the general case – is

fully characterized by the first two moments and the distribution type.3 Within this frame-

work, influential portfolio selection studies incorporating (C)VaR objectives or restrictions

are Alexander and Baptista (2002, 2004) as well as Bertsimas et al. (2004).4 From a pure hedg-

ing perspective, this approach is less promising because for elliptical distributions, (C)VaR-

minimal hedging strategies deviate from minimum-variance hedges only due to the impact

1 Both VaR and CVaR quantify the extent of losses in the upper tail of the loss distribution. VaR has often been
criticized for not considering the severity of the highest losses. Therefore, CVaR, which is also coherent,
might be the better measure of tail risk. However, due to the importance of VaR, we include both measures
in our analysis.

2 Thereby, this approach relates to the traditional literature on safety-first and lower partial moment hedging
and portfolio optimization (Telser, 1955; Fishburn, 1977; Arzac and Bawa, 1977).

3 Technically this means the density generator, which may contain additional parameters like the degrees of
freedom in case of the t-distribution. However, these additional parameters are a property of the multivari-
ate model which is invariant under different portfolio compositions.

4 The authors argue that a mean-variance-based approach to VaR risk management can be justified as ap-
proximation by Tschebycheff’s inequality. Bertsimas et al. (2004) provides a similar variance-based bound
for CVaR.
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of expected returns. This is attributable to the following properties of elliptical models: they

cannot capture i) univariate asymmetries, ii) differing tail behaviors of their margins and

iii) nonlinear dependence, in particular dependence asymmetries. We therefore believe that

going beyond the elliptical setup is crucial for hedging tail risk.

Avoiding restrictive modeling assumptions, a number of studies work with nonparametric

methods for the derivation of VaR- or CVaR-optimal portfolios or hedging rules (Rockafel-

lar and Uryasev, 2000, 2002; Campbell et al., 2001; Agarwal and Naik, 2004; Gaivoronski

and Pflug, 2005; Harris and Shen, 2006). In addition, semiparametric (Cao et al., 2010; Hilal

et al., 2011; Barbi and Romagnoli, 2014) and very flexible multivariate parametric models

based on copulas are applied in the risk and portfolio management literature, focusing on

non-normalities (Patton, 2004).5 However, such models do usually not allow for a tractable

analytic characterization of the resulting aggregated return distribution and therefore rely on

a combination of simulation and numerical optimization methods to derive tail-risk-optimal

policies.

Against this background, we propose to use regime-switching (RS) models based on elliptical

distributions for tail risk management decisions. Regime switching models were first intro-

duced by Hamilton (1989) in a univariate setting and then applied to portfolio choice by Ang

and Bekaert (2002). Assuming normally or t-distributed components, multivariate RS mod-

els allow for the analytic derivation of the aggregate return distribution but can at the same

time reproduce flexible univariate distribution shapes (Timmermann, 2000) and asymmetric

dependence structures (Ang and Chen, 2002). Their capability for tail risk measurement has

been emphasized by Billio and Pelizzon (2000) as well as Guidolin and Timmermann (2006).

The flexible shape of RS models has also been utilized to solve portfolio selection problems

with skewness and kurtosis preferences (Guidolin and Timmermann, 2008). Moreover, vari-

ous studies exploit the temporal dependencies implied by the models to construct dynamic

strategies within a variance-based setup (Tu, 2010; Alizadeh et al., 2008). Chang (2010) ana-

lyzes univariate VaR-minimal hedging, however using a numerical search algorithm to de-

termine the optimal policy. Related to our work is in particular Buckley et al. (2008), who

5 A further alternative, recently proposed in a number of studies, is the use of robust optimization techniques
with VaR and CVaR. See Fabozzi et al. (2010) for a comprehensive overview.
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demonstrate the usefulness of multivariate normal mixture distributions for lower-partial-

moment-based portfolio optimization.

To the best of our knowledge, we are the first to present an analytical characterization of VaR-

and CVaR-minimal hedging rules that applies to RS models. Our theoretical contribution is

as follows: First, we use results on quantile derivatives from Hong (2009) and Hong and

Liu (2009) to derive first-order conditions for tail-risk-minimal hedging rules which cover

general multivariate density models under relatively weak continuity and differentiability

assumptions. Second, we provide the specific form of these conditions for finite mixture dis-

tributions with elliptical components. Third, we discuss the implementation of our strategies

for mixtures6 and RS processes with normally and t-distributed components.

In the empirical part of our paper, we present cross-hedging examples demonstrating the

advantage of tail-risk-minimal hedging over minimum-variance hedging when the mixture

approach is used. In particular, futures hedging for multi-asset investment portfolios with

returns exhibiting nonelliptical features is investigated. We consider a monthly hedging hori-

zon, which allows us to focus on distributional aspects and keep the time series structure of

our models relatively simple. We estimate multivariate RS models with Gaussian condi-

tional distributions, and find that they produce reliable tail risk estimates. The stationary

distribution of these models is then used to derive CVaR-minimal hedging rules for the se-

lected portfolios. In all cases, we find an increase in the hedging demand compared to the

traditional minimum-variance approach, which can be attributed to a joint (low-probability)

crash state identified by the RS models. We show that the reduction in tail risk obtained

by switching from minimum-variance to tail-risk-minimal hedging can reach 20%. This re-

sult is confirmed – independent from our model – by univariate empirical and EVT-based

estimators, which is especially important if such standard procedures are used to set the

capital requirements or risk limits for the optimized positions. We confirm our findings in

out-of-sample backtests and perform a simulation experiment that allows for a more reliable

risk estimation than within the relatively small samples available for the backtests. We fi-

nally give evidence for a superior performance of our approach in dynamic and composite

hedging setups.

6 A technically similar result has recently been derived by Litzenberger and Modest (2010), who analyze a
mixture-based stress testing framework for portfolio selection with hedge funds.
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The remainder of our paper is structured as follows: In Section 2, we give a formal problem

statement and derive our most general characterization of tail-risk-minimal hedging rules.

Section 3 contains the derivation of first-order conditions for hedging with mixtures and the

application of these results to RS models. In Section 4, we document our empirical findings

and robustness checks. Section 5 concludes. We provide omitted proofs in the Appendix.

2 Tail Risk Hedging with Quantile Derivatives

2.1 Problem Statement

We analyze a multivariate static hedging problem over a fixed investment horizon [t, t + 1].

The portfolio we want to hedge consists of N positions – typically in the spot market. The

discrete returns of these positions over [t, t + 1] are denoted by RS,i, i = 1, . . . , N . The

corresponding portfolio weights are given by wi =
vS,i
vP

, i = 1, . . . , N , where vS,i is the value

of the ith position in t and vP =
∑N

i=1 vS,i.

Furthermore, we assume that M futures instruments are available to temporarily reduce

the risk of the spot positions. The relative price changes of these instruments will also be

described by their discrete returns RF,j , j = 1, . . . ,M .7 Abstracting from initial margins,

futures positions will have no effect on the portfolio value in t. We therefore define hedging

weights hj relative to vP , i.e., hj =
vF,j
vP

, j = 1, . . . ,M , where vF,j is the nominal value of a

short position in the jth futures contract. Collecting the returns and the weights in column

vectors RS = (RS,i), RF = (RF,j), w = (wi) and h = (hj), we obtain for the return of the

hedged (net) position RH(h) := RH = w′ · RS − h′ · RF . Thus, the percentage loss of the

hedged position is given by

LH(h) := LH := −w′ ·RS + h′ ·RF .(1)

The standard approach following Johnson (1960) and Ederington (1979) to determine opti-

mal hedging weights is to minimize the variance of this loss variable or, equivalently, the

variance of the return, i.e., to solve minh∈RM var[LH(h)] = minh∈RM var[RH(h)], which re-

7 Denoting the price of the jth futures by Ft,j , we use the usual return definitionRF,j =
Ft+1,j−Ft,j

Ft,j
, although

futures do not require an initial investment of their nominal value.
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quires that RS,i ∈ L2 and RF,j ∈ L2 for i = 1, . . . , N and j = 1, . . . ,M . It is easy to show that

the hedging policy h∗var solving this problem is given by

h∗var = (cov[RF ])−1 · cov[RF ,RS ] ·w.(2)

Large parts of the literature on futures hedging are centered around implementing dynamic

specifications for the covariance terms in (2), conditioning these on the filtrationFt generated

by the return process. In fact, many studies investigate the performance of time-varying

conditional hedging strategies based on multivariate GARCH models following Baillie and

Myers (1991), Kroner and Sultan (1993) and Brooks et al. (2002).

In contrast, our focus lies on hedging strategies that minimize the tail risk or the correspond-

ing capital requirement. This is usually measured in terms of VaRα or CVaRα, which for

α ∈ (0, 1) and the confidence level 1− α are defined as8

VaRα[LH ] = inf {l ∈ R|P(LH ≤ l) ≥ 1− α}(3)

and

CVaRα[LH ] =
P(LH > VaRα[LH ])

α
· E[LH | LH > VaRα[LH ]](4)

+

(
α− P(LH > VaRα[LH ])

α

)
VaRα[LH ].

Accordingly, VaRα can be understood as the smallest loss value, which is not exceeded with

a probability of at least 1 − α. Formally, VaRα simply corresponds to the lower (1 − α)-

quantile q1−α[LH ] of the loss distribution. CVaRα is the expected loss in the worst 100 ·

α% of the cases. In general, it is thus defined as a convex combination of VaRα, which

has a positive weight for P(LH > VaRα[LH ]) < α, and the conditional expectation of losses

exceeding VaRα. Comparing both measures, VaRα is still dominant in industry applications,

although CVaRα is preferable from an axiomatic point of view as a coherent risk measure in

the sense of Artzner et al. (1999). Moreover, VaRα might be questionable if the aim is to avoid

large losses since it does not consider the extent of losses in the very tail of the distribution.

8 See Rockafellar and Uryasev (2002) for definitions of this type. If P(LH > VaRα[LH ]) = 0, which is possible
for discrete loss distributions, we set CVaRα[LH ] = VaRα[LH ].
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The choice between VaRα and CVaRα, however, remains a matter of practical and academic

debate (Embrechts and Hofert, 2014). We, therefore, consider both measures in our analysis.

Writing these risk measures as functions of the hedging weights, i.e., vα(h) := VaRα[LH(h)]

and cα(h) := CVaRα[LH(h)], we analyze

min
h∈RM

vα(h) = min
h∈RM

VaRα[LH(h)],(5)

min
h∈RM

cα(h) = min
h∈RM

CVaRα[LH(h)].(6)

Univariate versions of these problems have recently been analyzed by Harris and Shen (2006)

and Cao et al. (2010) in a non- and semiparametric framework. Furthermore, Barbi and Ro-

magnoli (2014) analyzed tail-risk-minimal hedging strategies with copula models. More of-

ten similar problems have been studied in a portfolio selection context. In particular, the

sample-based approach of Rockafellar and Uryasev (2000, 2002), which allows to solve prob-

lems of the second type using LP techniques, has gained a lot of attention. Although these

studies focus on the unconditional distribution, we emphasize that (5) and (6) can of course

also be applied conditionally on Ft. For a general discussion of conditional quantile risk

measurement, we refer to McNeil and Frey (2000). Hilal et al. (2011) present an application

to CVaRα hedging using an elaborate combination of time series modeling and multivariate

extreme value theory. Although we do not systematically assess conditional versus uncon-

ditional risk modeling here, some of the results presented in our empirical section might be

of relevance for this issue.

2.2 A General Solution

Complementing the mentioned results on non- and semiparametric VaRα and CVaRα hedg-

ing, we are interested in analytic characterizations of the solutions to (5) and (6). These can be

derived under the following regularity conditions on the distribution of (R′S ,R
′
F )′, adapted

from Hong (2009) and Hong and Liu (2009).9

(A1) RS,i ∈ L1 and RF,j ∈ L1 for i = 1, . . . , N and j = 1, . . . ,M .

9 See the proof of Proposition 1 for the relation between the assumptions given here and the original state-
ments made in Hong (2009) and Hong and Liu (2009).
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(A2) For all h ∈ RM , LH(h) has a continuous and strictly positive density. Moreover, for all

hj , j = 1, . . . ,M , the partial derivative of FLH (l;h) = P(LH(h) ≤ l) with respect to hj

exists and is continuous in l and hj .

(A3) For all j = 1, . . . ,M , the conditional expectations E[RF,j | LH = l] are continuous as

functions of l.

(A1) is obviously weaker than the corresponding integrability requirements needed for

the variance-based approach. However, (A2) and (A3) define some additional continuity

and differentiability conditions. Note that (A2) implies the following simplified VaRα and

CVaRα representations10

P(LH ≤ VaRα[LH ]) = 1− α and CVaRα[LH ] = E[LH | LH ≥ VaRα[LH ]] .(7)

We are now ready to state a first analytic characterization of tail-risk-based hedging strate-

gies.

Proposition 1 Under (A1) - (A3) VaRα- and CVaRα-minimal hedging policies h∗VaR and h∗CVaR,

i.e., solutions to (5) and (6), satisfy

E[RF | LH(h∗VaR) = vα(h∗VaR)] = 0M ,(8)

E[RF | LH(h∗CVaR) ≥ vα(h∗CVaR)] = 0M .(9)

This characterization is an application of results on quantile derivatives to the hedging prob-

lem. In particular, (8) and (9) follow as FOCs of (5) and (6) from Theorem 2 in Hong (2009)

and Theorem 3.1 in Hong and Liu (2009).11 Some technical details of this reasoning can be

found in the Appendix.12

Note that Proposition 1 makes no statement on the existence of optimal strategies. As already

pointed out in Alexander and Baptista (2004) portfolio selection strategies, it is possible that

10 While we work with these simplified versions throughout the theoretical sections, (3) and (4) will be used
in the empirical analysis in Section 4.

11 Gourieroux et al. (2000) and Hong (2009) demonstrate that quantile derivatives could also be used to imple-
ment gradient-based search algorithms for the solution of portfolio optimization problems involving VaRα
and CVaRα.

12 Earlier results on quantile derivatives, e.g., Gourieroux et al. (2000), Tasche (2002) or Scaillet (2004) could
also be applied to obtain (8) and (9).
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VaRα and CVaRα minimizations have no solutions even with normally distributed returns.13

Moreover, there is an important difference between using vα and cα as objective functions.

Whereas the cα-FOC (9) is only fulfilled by the global minimizer of (6), the vα-FOC (8) might

also be satisfied by other stationary points. This is due to the fact that CVaRα is in general

a coherent risk measure, which implies that (6) always is a convex optimization problem.

VaRα will, however, only be subadditive and convex under specific combinations of distri-

butional assumptions on (R′S ,R
′
F )′ and confidence levels.14 In such cases, (8) will uniquely

characterize the global VaRα-minimal hedging vector (if such a strategy exists).

We note that it might be interesting to apply tail risk measures to the demeaned loss variables

instead of the losses themselves. In contrast to the variance, both VaRα and CVaRα depend

on the expected value of the underlying loss random variable. They contain an implicit trade-

off between the location and the dispersion of the loss distribution. In order to improve the

comparability between minimum (C)VaRα and minimum-variance strategies, we consider

the following demeaned modifications15 of these tail risk measures

MVaRα[LH ] := VaRα[LH − E[LH ]] = VaRα[LH ]− E[LH ] ,(10)

MCVaRα[LH ] := CVaRα[LH − E[LH ]] = CVaRα[LH ]− E[LH ] .(11)

By construction, MVaRα and MCVaRα do not allow to reduce the risk of the position by

increasing its expected return. The corresponding optimization problems are

min
h∈RM

MVaRα[LH(h)] and min
h∈RM

MCVaRα[LH(h)].(12)

Under (A1) - (A3), FOCs for the solutions to (12) follow from Proposition 1 by noting that

∂
∂hE[LH(h)] = E[RF ]. Therefore, such strategies must satisfy

E[RF | LH(h∗MVaR) = vα(h∗MVaR)]− E[RF ] = 0M ,(13)

E[RF | LH(h∗MCVaR) ≥ vα(h∗MCVaR)]− E[RF ] = 0M .(14)

13 In our online appendix, we provide conditions that guarantee the existence of solutions to (5) and (6) under
stronger distributional assumptions.

14 We refer to Daníelsson et al. (2013) for an overview on recent findings concerning this issue.
15 See Rockafellar et al. (2006) for a general treatment of the so-called deviation measures.
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Since the conditions in (A1) - (A3) are rather weak, Proposition 1 applies to a wide range

of continuous return distributions. However, at this level of generality, we cannot provide

explicit representations for the conditional expectations in equations (8), (9) and (13), (14).

We therefore analyze more specific distributional assumptions in the following section.

3 Tail Hedging with Mixture Distributions

3.1 Mixtures of Elliptical Distributions

The main idea in this section is to combine the econometric flexibility of mixture modeling

with the analytic tractability of elliptical distributions. We will derive explicit forms of the

FOCs in Proposition 1 under the assumption that the joint distribution of R = (R′S ,R
′
F )′ is

a multivariate finite mixture with elliptical components.

First, we briefly recall a density-based definition of elliptical distributions, which largely

corresponds to definition c) in Owen and Rabinovitch (1983). Let µ be a real-valued P × 1

vector and let Σ denote a symmetric, positive definite P × P matrix for P ∈ N. A P × 1

random vector Y with a density fµ,Σ,g follows an elliptical distribution if this density is of

the form

(15) fµ,Σ,g(y) = det(Σ)−
1
2 gP

(
(y − µ)′ ·Σ−1 · (y − µ)

)
,

where gP is a non negative scalar function on R. This function is referred to as density

generator. Since gP is parameterized by the dimension of Y , we need a collection of gen-

erators g = (gP )P∈N to define a distribution over several dimensions. We use the notation

Y ∼ EP (µ,Σ, g) if Y has an elliptical distribution with parameters µ, Σ and the generator

(family) g. The widespread use of this model is partly explained by its favorable distribu-

tional properties, in a portfolio context especially the behavior under linear transformations

(Owen and Rabinovitch, 1983, P.1).16

16 For a full account of elliptical distributions, we refer to Kelker (1970), Fang et al. (1990) or McNeil et al.
(2005).
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Second, we build on the following definition of finite mixture models. Y has a mixture

distribution with component densities fk, k = 1, . . . ,K, and component weights πk, k =

1, . . . ,K,
∑K

k=1 πk = 1 if its density is of the form

fY (y) =
K∑
k=1

πkfk(y).(16)

As we will detail later, this structure allows for very flexible univariate and multivariate

distribution shapes even if relatively simple components like normal distributions are com-

bined.17 Let us for the moment just note that the mixture framework can be motivated by in-

troducing an unobserved state variable S with values in {1, . . . ,K}, which is often assumed

to describe the state of the relevant market. If the distribution of S is given by P(S = k) = πk

and the component densities of the mixture correspond to the conditional distributions of Y

given S = k, the structure in (16) is obtained from the law of total probability.

Combining (15) with (16), and adding the requirement that the density is strictly positive,

we obtain the following assumption:

(M1) The vector R = (R′S ,R
′
F )′ follows a multivariate K state mixture of elliptical distribu-

tions with continuous and strictly positive density generators gN+M,k, i.e., its density

is of the form

fR(r) =

K∑
k=1

πk det(Σk)
− 1

2 gN+M,k

(
(r − µk)′ ·Σ−1

k · (r − µk)
)

(17)

for πk ∈ (0, 1),
∑K

k=1 πk = 1, µk ∈ RN+M and positive definite (N + M) × (N + M)

covariance matrices Σk.

Using the state variable approach described above, we can give the following equivalent

formulation of (M1):

(M1’) R|S = k ∼ EN+M (µk,Σk, gk) for k = 1, . . . ,K with continuous, strictly positive den-

sity generators gN+M,k and P(S = k) = πk.

17 For extensive discussions of the properties of this modeling approach and for illustrations of its flexibility,
we refer to McLachlan and Peel (2000) or Frühwirth-Schnatter (2006).
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This setting obviously includes popular modeling choices like mixtures of multivariate nor-

mals or multivariate t-distributions.18

We first provide the solution to the minimum-variance hedging problem for (M1) with

the additional assumption that all elements of R are in L2. Therefore, note that for Y ∼

EN (µ,Σ, g), it holds that E[Y ] = µ and cov[Y ] = cg ·Σ, which under (M1) implies

E[R] =

K∑
k=1

πk µk and cov[R] =

K∑
k=1

πk
[
cgk Σk + µk · µ′k

]
− E[R] · E

[
R′
]
.(18)

Using µk =

µS,k
µF,k

 and Σk =

 ΣS,k ΣSF,k

Σ′SF,k ΣF,k

, we obtain from (2) and (18) for the tradi-

tional minimum-variance hedging weights19

(19) h∗var =

[
K∑
k=1

πk
[
cgkΣF,k + µF,k · µ′F,k

]
−

K∑
k=1

πk µF,k ·
K∑
k=1

πk µ
′
F,k

]−1

·

[
K∑
k=1

πk ·
[
cgkΣ

′
SF,k + µF,k · µ′S,k

]
−

K∑
k=1

πk µF,k ·
K∑
k=1

πk µ
′
S,k

]
·w.

For the analysis of tail risk hedging under (M1), we first observe that the distribution of the

portfolio loss is also a mixture with elliptical components, i.e.,

LH(h) | S = k ∼ E1(µL,k, σ
2
L,k, gk),(20)

where

µL,k := µL,k(h) = −w′ · µS,k + h′ · µF,k,(21)

σ2
L,k := σ2

L,k(h) = w′ ·ΣS,k ·w − 2 w′ ·ΣSF,k · h+ h′ ·ΣF,k · h,(22)

which follows from the behavior of elliptical distributions under linear transformations. We

write fL,k := fLH |S=k and FL,k := FLH |S=k for the corresponding component pdfs and cdfs.

According to (15) and (16), the component densities and the unconditional density fL := fLH

18 See Kamdem (2009) for a general discussion of mixtures of elliptical distributions in a risk measurement
context.

19 This corresponds to the strategy analyzed in Alizadeh et al. (2008) in a univariate, two-state setting.
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satisfy

fL,k(l) = σ−1
L,k · g1,k

(
(l − µL,k)2

σ2
L,k

)
and fL(l) =

K∑
k=1

πk fL,k(l).(23)

The tail risk measures that we analyze are given by

1− α =
K∑
k=1

πkFL,k(vα(h)),(24)

cα(h) =
1

α

K∑
k=1

πk E[LH 1(LH ≥ vα(h)) | S = k] .(25)

The simple VaRα characterization in (24) is sufficient due to the positivity of the density

generators. Note that by introducing Zk ∼ E1(0, 1, gk) for k = 1, . . . ,K, and setting

zk(h) :=
vα(h)− µL,k(h)

σL,k(h)
, λk(h) := E[Zk | Zk ≥ zk(h)] ,(26)

we can rewrite (25) in terms of the location and scale parameters of the mixture as

cα(h) =
1

α

K∑
k=1

πk (1− FL,k(vα(h))) [µL,k(h) + σL,k(h) λk(h)] .(27)

Given vα(h), (27) can usually be evaluated explicitly for specific density generators k =

1, . . . ,K. In contrast, the implicit VaRα definition in (24) can, even in basic cases like nor-

mally distributed components, not be written explicitly. Therefore, the derivation of FOCs

that characterize minimum VaRα and minimum CVaRα hedging vectors, is not straightfor-

ward.20 However, applying Proposition 1, we are able to obtain such conditions, which we

present in the following Theorem.

Theorem 1 If (A1) and (M1) hold, the VaRα-minimal hedging strategy h∗VaR solves

K∑
k=1

πkfL,k(vα(h∗VaR))

fL(vα(h∗VaR))

[
µF,k +

ΣFL,k(h
∗
VaR)

σL,k(h
∗
VaR)

zk(h
∗
VaR)

]
= 0M ,(28)

20 Litzenberger and Modest (2010) present an alternative reasoning for mixtures of normal distributions that
relies on differentiating the implicit VaRα definition in (24).
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where ΣFL,k(h) = −Σ′SF,k ·w+ΣF,k ·h. Under the same conditions, the CVaRα-minimal hedging

strategy h∗CVaRα satisfies

K∑
k=1

πk(1− FL,k(vα(h∗CVaR)))

α

[
µF,k +

ΣFL,k(h
∗
CVaRα)

σL,k(h
∗
CVaRα)

λk(h
∗
CVaRα)

]
= 0M .(29)

See the Appendix for a proof of Theorem 1. Note that the conditions in (28) and (29) could be

multiplied by fL(vα(h∗VaR)) and α, respectively. We omitted this simplification to underline

that the weights of the summands correspond to modified state probabilities implied by

Bayes’ Theorem. For the case of the VaRα-minimal strategy it, e.g., holds that

P(S = k|LH = vα(h∗VaR)) =
P(S = k) fL,k(vα(h∗VaR))∑K
j=1 P(S = j) fL,j(vα(h∗VaR))

=
πk fL,k(vα(h∗VaR))

fL(vα(h∗VaR))
.(30)

Using (13) and (14), the corresponding MVaRα- and MCVaRα-minimal strategies are ob-

tained by subtracting E[RF ] =
∑K

k=1 πk µF,k.

Of course Theorem 1 can also be used to derive VaRα- and CVaRα-minimal hedging strate-

gies for the special case K = 1, i. e. for simple multivariate elliptical distributions. We

provide a Corollary with the corresponding FOCs in the online appendix.21 In particular,

these results imply that tail-risk-minimal strategies are identical to the minimum-variance

approach if either E[RF ] = 0M or the demeaned risk measures MVaRα and MCVaRα are

used as objective functions. This parallels a well known result from portfolio selection

(Embrechts et al., 2002, Theorem 1) and emphasizes that tail-risk-minimal and minimum-

variance strategies only differ due to the impact of expected returns in the elliptical case.

We, moreover, provide a formal analysis of K = N = M = 1, for which tail-risk-minimal

hedging strategies and the resulting tail risk values can be characterized fully explicitly. For

this case, we show that VaRα(h∗var)−VaRα(h∗VaR) ≤ b and CVaRα(h∗var)−CVaRα(h∗CVaR) ≤ b

with22

b = |E[RF ]| ·

√
var [RS ]

var [RF ]
· (1− corr[RF , RS ]2).(31)

21 In contrast to the mixture case, these results could also be derived from the explicit VaRα and CVaRα
expressions available in this case, without relying on Proposition 1.

22 In contrast to this upper bound, the exact differences, which are provided in the online appendix, addition-
ally depend on the significance level and the choice of the tail risk measure.
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This confirms the importance of the mean return for tail risk hedging to be beneficial in

an elliptical framework and furthermore shows that a non-negligible level of basis risk is

required.23

These results are not surprising because elliptical return models cannot capture asymmetries,

which might be important sources of differences between tail-risk-minimal and variance-

based hedging. Equally important is that – although elliptical models allow for heavy tailed

marginals – the heaviness of tails is determined by the density generator, e.g., the degree of

freedom parameter, and is therefore not influenced by the hedging weights. At this point,

there is a very crucial difference between this simple, restricted model on the one hand and

the full mixture approach on the other hand.

3.2 Regime Switching Models

In this subsection, we discuss the application of Theorem 1 for the regime switching ap-

proach introduced by Hamilton (1989). Therefore, we extend the setting provided at the

beginning of Section 2 to a time series context by introducing a discrete time return pro-

cess (Rt)t∈N and a state process (St)t∈N. The latter is assumed to be a time homogeneous

Markov chain with state space {1, . . . ,K} and transition matrix Q = (qij)i,j=1,...,K , i. e.

P(St+1 = j|St = i) = qij for i, j = 1, . . . ,K and t ∈ N. Under the additional assumptions

that the Markov chain is aperiodic and irreducible, it has a unique invariant (ergodic) distri-

bution πe = (πek)k=1,...,K . Finally assuming that (St)t∈N starts from this distribution implies

that the model is stationary with P(St = k) = πek for all t ∈ N. The (conditional) distribution

of the return vector Rt+1 is assumed to be given by (M1), replacing the state variable S by

St+1, i.e.,Rt+1|St+1 = k ∼ EN+M (µk, Σk, gk).

Maintaining the assumption that (St)t∈N is unobservable, our hedging decisions must rely

on the (marginal) distribution ofRt+1, which according to (M1) exhibits a mixture structure.

Due to the temporal dependence introduced by (St)t∈N, we have to distinguish two impor-

tant cases for the component weights. An unconditional hedging strategy would rely on

the stationary distribution of (St)t∈N. It would thus use πe to weight the distribution com-

23 We eventually provide a numerical example in the online appendix, which shows that the differences in the
hedging amount and in the corresponding tail risk values are small for typical parameter constellations.
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ponents. A conditional approach would infer predictive weights P(St+1 = k|Rt, . . . ,R1)

from the history of the return process, which can be recursively obtained using the Hamil-

ton filter (Hamilton, 1994). In both cases, Theorem 1 can be applied to obtain VaRα- and

CVaRα-minimal strategies.

A standard approach in mixture and RS modeling is to assume Gaussian component densi-

ties. Then all components have the same density generator g(s) = (2π)−P/2 exp(−1/2 s) and

the Zk in (26) are all standard normally distributed. This comparatively simple setup already

allows for very flexible univariate distribution shapes (Timmermann, 2000) and as shown by

Ang and Chen (2002) it can reproduce asymmetric Longin and Solnik (2001) exceedance cor-

relations.24 For this setup, tail risk measures and the corresponding FOCs from Theorem 1

can be implemented with FL,k(vα(h)) = Φ(zk(h)) and

(32) λk(h) = E[Z | Z ≥ zk] =
ϕ(zk(h))

1− Φ(zk(h))
,

where ϕ and Φ are the pdf and cdf, respectively, of a standard normally distributed random

variable Z.

Although the mixture of normals approach already allows for a high level of economet-

ric flexibility, it might have two weaknesses in the scope of tail risk modeling. First, the

marginal distributions show exponentially decaying tails. Second, the dependence structure

implied by a finite mixture of multivariate normals is not capable of describing asymptotic

tail dependence (Garcia and Tsafack, 2011). To overcome these problems, we now provide

additional results for tail risk hedging with mixtures of multivariate t-distributions.25 We

use a standardized version of the t-distribution, which is defined by the density generators

gP,k(s; νk) =
Γ( (P+νk)

2 )

((νk − 2) π)
P
2 Γ(νk2 )

(
1 +

s

νk − 2

)−P+νk
2

for νk > 2.(33)

The degrees of freedom parameter νk determines the heaviness of the tails of the mixture

components. It corresponds to the tail index of the distribution26, so that we need νk > 2 for

24 We refer to Ang and Timmermann (2012) for a comprehensive review of its properties and a wide selection
of applications.

25 See, e.g., McLachlan and Peel (2000); Haas (2009) who use this model specification.
26 See McNeil et al. (2005, Example 7.29).
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the standardized version of the distribution to be well defined. Denoting the resulting pdf

and cdf by f∗t and F ∗t respectively, we obtain FL,k(vα(h)) = F ∗t (zk(h); νk) and

λk(h) =
f∗t (zk(h); νk)

1− F ∗t (zk(h); νk)

νk − 2 + (zk(h))2

νk − 1
(34)

for the implementation of VaRα and CVaRα and the corresponding FOCs. This model can be

calibrated with equal degrees of freedom parameters for all components or with individual

νk, k = 1, . . . ,K.27

Although basic regime-switching models, as defined above, can already capture persistence

in (all) conditional moments of (Rt)t∈N, in particular autocorrelation of the returns and

volatility clustering (Rydén et al., 1998), the temporal dependence introduced by the Markov

chain is often augmented with traditional time series filters (Alizadeh et al., 2008). Since our

focus is on the distributional and tail characteristics of the return model, we will not consider

such extensions. We, however, note that Theorem 1 also applies to such models by replac-

ing µk and Σk with the conditional moments predicted by the time series filters for state

k. Moreover, there are also a number of finance applications which work within the simpler

setting of mixture distributions, where (St)t∈N is an i. i. d. sequence (Kon, 1984; Buckley et al.,

2008).

4 Empirical Results

We demonstrate our approach using three cross-hedging examples.28 In particular, we com-

pare futures-based hedging strategies that are used to temporarily minimize the tail risk of

investment portfolios on an asset allocation level. Such hedging problems may be caused by

risk limits, capital requirements or tactical considerations. In line with an investment per-

spective, we use a monthly hedging horizon, which in addition allows us to keep the time

series structure of the models relatively simple and to focus on unconditional hedging.29

27 Since Haas (2009) provides evidence for a limited advantage of the more flexible approach, we will consider
the equal degrees of freedom setting in the empirical section.

28 This setup can be motivated by the importance of basis risk found under the assumption of elliptical distri-
butions. Moreover, a non-negligible amount of basis risk was shown to be important for the advantage of
model-based hedging over naive strategies in general (Alexander and Barbosa, 2007).

29 See Section 4.5 for a conditional version of our approach.
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Figure 1: Spot and Futures Prices

4.1 Data

We consider portfolios representing the risky part of a broad asset allocation using the total

return indices of the MSCI World, the Bank of America Merrill Lynch U.S. High Yield 100,

the S&P GSCI and the FTSE/NAREIT U.S. All REITs. We form three equally-weighted multi-

asset portfolios from these indices. Portfolio (P1) is invested into the MSCI and the HY index.

For portfolios (P2) and (P3), we include the GSCI and the REIT index respectively. The S&P

500 Index futures traded on Chicago Mercantile Exchange and the NYMEX Light Crude Oil

futures are considered as hedging instruments. The choice of these futures is motivated by

liquidity, data availability and of course a relatively high correlation with the spot indices

used.30 Price data were obtained from Datastream.31

Our sample spans from March 1983 to June 2014, which corresponds to 376 monthly price

observations. We plot the spot indices and futures series in Figure 1. Following common

practice in the literature on RS models, we use continuously compounded returns.32 De-

scriptive statistics of the return series are presented in Table 1.

The returns on all individual assets as well as on our portfolios exhibit pronounced skew-

ness and excess kurtosis so that the normality assumption is formally rejected by Jarque-Bera

30 We also considered using US Treasury Bond futures to improve the hedging quality for the bond component,
but we found that these have a very low or even negative correlation with our high yield bond index.

31 We use a perpetual price index for the futures, which is computed from returns of the nearest futures with
switch over following the last trading day. For days when contracts are rolled forward, calculating spurious
returns with prices of different futures is avoided by considering the prices of two successive securities.

32 The usage of log-returns is a standard approximation for the exact approach based on discrete returns
discussed in Section 2. In Section 4.5, we present an example for hedging with discrete returns, obtaining
very similar results.



19

Table 1: Descriptive Statistics

Spot Indices Futures Portfolios

MSCI HY GSCI REITs S&P Fut Oil Fut (P1) (P2) (P3)

mean [%] 0.83 0.75 0.53 0.77 0.50 0.62 0.80 0.75 0.81
(0.23) (0.11) (0.29) (0.26) (0.23) (0.53) (0.15) (0.16) (0.17)

median [%] 1.33 0.96 0.73 1.14 0.88 1.45 1.17 0.92 1.06
std [%] 4.44 2.23 5.67 4.95 4.42 10.19 2.99 3.05 3.26
min [%] -20.99 -15.42 -33.13 -35.99 -22.83 -42.29 -18.17 -22.91 -23.76
max [%] 11.13 7.15 20.65 24.67 12.41 40.68 8.43 9.81 14.14
skewness -0.91 -1.41 -0.62 -1.71 -0.97 -0.36 -1.35 -1.76 -1.72
kurtosis 5.49 11.71 6.67 15.00 6.01 5.54 8.38 13.39 13.31
JB 148.76 1310.77 235.17 2433.56 200.15 109.33 565.53 1880.77 1848.11
pJB [%] 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
corr(·, F1) 0.88 0.58 0.17 0.57 1.00 0.06 0.87 0.67 0.81
corr(·, F2) 0.09 0.04 0.82 0.05 0.06 1.00 0.08 0.56 0.07
ex-corr(·, F1; q0.2) 0.86 0.57 0.66 0.62 1.00 0.58 0.83 0.63 0.77
ex-corr(·, F1; q0.8) 0.70 0.16 -0.06 0.26 1.00 0.08 0.50 0.41 0.47

Note: Descriptive statistics of spot and futures instruments. Monthly log-returns from April 1983 to June 2014, T = 375
return observations. JB refers to the Jarque-Bera test statistic for normality and pJB denotes the corresponding p-value. ex-
corr(·, F1; qα) measures the correlation of spot and S&P futures returns, given that both returns fall below (α = 0.2) or exceed
(α = 0.8) their α-quantile. MSCI: MSCI World Total Return Index, HY: BofA Merrill Lynch US High Yield 100 Total Return
Index, GSCI: S&P GSCI Commodity Total Return, REIT: FTSE/NAREIT All REITs Total Return Index, S&P Fut: Chicago
Mercantile Exchange S&P 500 Index futures, Oil Fut: NYMEX Light Crude Oil futures. Equally-weighted multi-asset spot
portfolios: (P1): MSCI/HY, (P2): MSCI/HY/GSCI, (P3): MSCI/HY/REITs.

tests for all series. Comparing the spot portfolios, the returns of (P2) and (P3) exhibit stronger

asymmetries and fatter tails than those of (P1). The kurtosis of the former is twice as high

as that of the futures returns. According to empirical exceedance correlations, we find evi-

dence for asymmetric dependencies as shown for the bivariate distributions of spot and S&P

futures returns.

4.2 Parameter Estimates and Model Fit

For our baseline analysis, we hedge long positions in (P1) - (P3) with the futures on the S&P

500 Index. We first fit RS models with two and three normal components to the bivariate

distributions of portfolio and futures returns.33 The parameters that attained the highest

likelihood in repeated maximum-likelihood estimations from randomly chosen initial values

are displayed in Table 2.34 In order to ensure the irreducibility and aperiodicity of the state

process, we restrict the elements of the transition matrix to be positive. Label switching is

applied to obtain a state ordering according to q11 < q22 < q33. The structure of the three

33 Although our approach allows for a full asset-level description of the joint distribution of spot and futures
returns, we prefer aggregating the spot returns into portfolio returns first, in order to keep the dimension of
the model as low as possible.

34 As described in Section 3.2, we assume that the state process starts from its stationary distribution, which
excludes the use of the standard analytic EM algorithm (Hamilton, 1990). Results obtained with this algo-
rithm are however similar, as documented in the online appendix.
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Table 2: In-Sample Parameter Estimates

(P1) (P2) (P3)

K = 2 K = 3 K = 2 K = 3 K = 2 K = 3

par s.e. par s.e. par s.e. par s.e. par s.e. par s.e.

State 1
µS,1 -0.57 (0.85) -3.79 (4.34) -0.74 (1.64) -10.34 (2.37) -2.61 (1.57) -4.00 (2.46)
µF,1 -1.61 (1.18) -6.33 (6.95) -2.27 (2.29) -8.88 (1.99) -4.19 (1.75) -6.13 (2.50)
σS,1 4.9 (0.58) 4.85 (1.02) 5.14 (1.37) 5.59 (1.87) 6.61 (1.63) 7.86 (2.02)
σF,1 6.96 (0.67) 6.24 (2.89) 6.90 (1.07) 4.56 (1.48) 7.44 (1.19) 8.12 (1.60)
ρSF,1 87.31 (2.64) 82.44 (16.62) 73.47 (4.73) 99.35 (0.55) 83.12 (4.24) 82.27 (5.74)

State 2
µS,2 1.18 (0.14) 1.46 (0.32) 1.12 (0.13) 0.78 (0.40) 1.24 (0.17) 1.05 (0.36)
µF,2 1.08 (0.20) 1.37 (0.44) 1.19 (0.22) -0.20 (0.90) 1.10 (0.26) 0.69 (0.45)
σS,2 2.03 (0.12) 2.49 (0.36) 2.09 (0.19) 3.33 (0.38) 2.18 (0.16) 3.13 (0.31)
σF,2 3.17 (0.17) 4.02 (0.39) 3.20 (0.33) 5.92 (0.75) 3.43 (0.25) 3.57 (0.38)
ρSF,2 83.50 (2.18) 81.04 (3.25) 52.38 (5.45) 67.69 (5.96) 76.33 (2.60) 92.11 (2.10)

State 3
µS,3 0.97 (0.20) 1.07 (0.16) 1.14 (0.17)
µF,3 0.92 (0.29) 1.13 (0.23) 1.01 (0.29)
σS,3 1.80 (0.15) 1.98 (0.13) 2.08 (0.21)
σF,3 2.54 (0.26) 2.92 (0.20) 3.73 (0.30)
ρSF,3 88.36 (2.23) 52.20 (5.99) 73.99 (4.74)

Transition matrix
q11 83.0 (7.6) 61.2 (30.4) 80.8 (13.6) 29.2 (18.0) 63.0 (11.7) 61.1 (14.2)
q21 4.5 (1.7) 4.6 (4.0) 4.6 (1.7) 2.6 (1.9) 4.7 (2.3) 1.5 (2.1)
q31 2.8 (2.6) 0.8 (0.9) 2.8 (1.6)
q12 38.7 (48.4) 54.3 (25.7) 10.2 (25.1)
q22 92.8 (3.0) 88.7 (7.3) 97.2 (8.5)
q32 0.8 (1.2) 3.8 (2.1) 0.0 (15.6)

Stationary distribution
π1 21.1 9.1 19.5 1.9 11.2 5.9
π2 78.9 53.2 80.5 31.6 88.8 22.8
π3 37.7 66.5 71.2

Note: Parameter estimates for bivariate two-state and three-state RS models with normal components. The parameters are
obtained by MLE using the Hamilton filter, assuming that the state process started from its stationary distribution. For each
model the estimation was repeated several times from randomly chosen initial values in order to avoid local maxima. We
report robust standard errors derived from the Hessian of the log-likelihood and the outer product of the scores. For (P3) and
K = 3 a boundary solution was found due to the low value of q32.

two-state models is very similar: For all bivariate distributions, there is a joint bearish state

with a low probability of occurrence, negative means35, high standard deviations and high

correlations. Allowing for a third component, the first state becomes a severe crash scenario

in all cases. In particular, (P2) shows a very high correlation in this state, which is almost

twice the correlation in state three.

In Panel A of Table 3, we provide some evidence on the fit of these models and simple ellipti-

cal distributions for the bivariate return samples.36 According to information criteria, at least

one of the RS models is always favored over nonswitching specifications. While AIC prefers

35 The mean estimates exhibit substantial standard errors because of the low unconditional state probabilities.
36 The degrees of freedom parameters estimated for the three multivariate distributions correspond to 4.5, 5.3

and 4.1 for (P1) - (P3), respectively. The other model parameters can be found in the online appendix.
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Table 3: Model Fit and Backtesting

Panel A Panel B

Statistical fit Risk spot long Risk futures short

LL AIC BIC pberk puc pcc pCVaR puc pcc pCVaR

(P1)
emp - - - - 69.0 90.2 33.5 69.0 90.2 22.0
pot - - - - 89.4 8.6 53.5 89.4 94.9 49.1
mv-n 1681.9 -3353.7 -3334.1 0.1 0.2 0.0 1.1 9.1 23.8 8.4
mv-tstd 1726.1 -3440.2 -3416.7 5.2 5.5 0.0 29.0 - - 0.0
RS K = 2 stat 1749.2 -3474.4 -3427.3 9.7 89.4 8.6 16.4 9.1 23.8 92.5
RS K = 2 pred - - - - 28.0 11.5 44.0 69.0 90.2 99.1
RS K = 3 stat 1769.4 -3496.8 -3414.3 50.0 69.0 90.2 27.5 69.0 90.2 66.4
RS K = 3 pred - - - - 69.0 90.2 34.9 32.1 60.5 64.8

(P2)
emp - - - - 69.0 0.0 39.0 69.0 90.2 22.2
pot - - - - 89.4 0.1 98.1 89.4 94.9 49.8
mv-n 1526.1 -3042.1 -3022.5 0.1 2.1 0.3 0.5 9.1 23.8 7.9
mv-tstd 1570.2 -3128.4 -3104.9 4.6 2.1 0.3 6.7 9.1 23.8 92.2
RS K = 2 stat 1589.9 -3155.8 -3108.7 7.2 89.4 0.1 19.2 69.0 90.2 96.9
RS K = 2 pred - - - - 53.3 77.0 51.9 69.0 90.2 83.9
RS K = 3 stat 1609.9 -3177.9 -3095.4 50.0 32.1 1.0 36.0 9.1 23.8 92.2
RS K = 3 pred - - - - 53.3 77.0 99.7 32.1 60.5 97.5

(P3)
emp - - - - 69.0 4.1 29.9 69.0 90.2 21.7
pot - - - - 53.3 11.6 78.6 89.4 94.9 49.6
mv-n 1593.5 -3177.0 -3157.4 0.1 0.7 0.2 1.0 9.1 23.8 7.9
mv-tstd 1660.3 -3308.6 -3285.1 3.6 0.7 0.2 31.6 - - 0.0
RS K = 2 stat 1679.5 -3335.0 -3287.9 50.0 69.0 4.1 23.3 69.0 90.2 65.5
RS K = 2 pred - - - - 69.0 90.2 69.7 69.0 90.2 53.8
RS K = 3 stat 1701.3 -3360.5 -3278.1 50.0 69.0 4.1 39.2 69.0 90.2 55.5
RS K = 3 pred - - - - 89.4 94.9 82.3 69.0 90.2 52.1

Note: Panel A refers to the statistical fit of the multivariate models. LL is the log-likelihood of the models. AIC and BIC refer
to the Akaike information criterion and the Bayesian information criterion. pberk is the p-value of a Jarque-Bera test applied
to the sample data transformed with its predictive cdf and the inverse cdf of the normal distribution. The tests in Panel B are
applied to model-based risk estimates for a long position in the spot portfolio and a short position in the S&P futures. puc
and pcc are p-values of Christoffersen (1998) tests on correct unconditional and conditional coverage. pCVaR refers to p-values
of one-sided CVaRα tests according to McNeil et al. (2005, p. 163). emp and pot are empirical and Peaks-over-Threshold
risk estimates for the corresponding loss series. mv-n and mv-tstd refer to multivariate normal and multivariate standardized
t-distribution models. RS denotes regime-switching models with K = 2 and K = 3 states. stat refers to backtest results for
the unconditional risk estimates and pred contains the corresponding results for conditional risk forecasts.

three-state models, BIC favors two-state models. We also perform JB-Tests on the distribu-

tion fit after transforming the sample data to normality with the Berkowitz (2001) approach.

Whereas the predictive distributions of all RS models pass this test at the 5% significance

level, the simpler multivariate normal and t-models are mostly rejected, which hints at a

misspecification of the tails for these models.

Before we compare the hedging performance derived from these models, we assess their

risk measurement quality. We focus on the 99% confidence level, which we will also use

for the hedging analysis. In particular, we analyze risk forecasts for an unhedged long po-

sition in (P1) - (P3) and a short position in the S&P futures derived from each of the bi-
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variate return models. For the RS models, we distinguish between unconditional forecasts

V̂aR
RS,u

α and ĈVaR
RS,u

α derived from the stationary distribution and series of conditional

forecasts V̂aR
RS,c

α and ĈVaR
RS,c

α based on the predictive distribution. Both are calculated us-

ing (24) and (25) with (32). We use empirical and extreme-value-theory-based risk estimates

as benchmarks for our analysis. Both are calculated from a univariate loss sample (lt)t=1,...,T .

As nonparametric VaRα and CVaRα estimators, the sample counterparts of (3) and (4) are

used, i. e. V̂aR
e

α = l(dT (1−α)e) and37

ĈVaR
e

α =
1

α

 1

T

T∑
i=d(1−α)T e+1

l(i) +

(
dT (1− α)e

T
− (1− α)

)
l(dT (1−α)e)

 ,(35)

where l(i) is the ith rank statistic of the loss sample. For the calculation of Peaks-over-

Threshold (POT) risk estimates, we consider the subsample of losses exceeding a threshold38

u and fit a generalized Pareto distribution to the loss exceedances lt − u. From the estimated

shape and scale parameters ξ̂ and β̂ and the number of exceedances nu we obtain the follow-

ing risk estimators39

V̂aR
pot

α = u+
β̂

ξ̂

[(
α
T

nu

)−ξ̂
− 1

]
,(36)

ĈVaR
pot

α = V̂aR
pot

α +
β̂ + ξ̂(V̂aR

pot

α − u)

1− ξ̂
.(37)

We use the conditional and unconditional coverage tests proposed by Christoffersen (1998)

and the CVaRα test introduced in McNeil et al. (2005, p. 163) for the formal evaluation of

the tail risk estimates obtained from these models. Corresponding test results can be found

in Panel B of Table 3. The VaRα estimates derived from the RS models and the benchmark

techniques are never rejected according to unconditional coverage tests at conventional sig-

nificance levels, whereas the risk forecasts derived from the elliptical specifications are all

rejected at the 10% significance level. According to the p-values of conditional coverage

tests, we observe a uniform improvement by using the predictive risk series. However, at

the 1% significance level, there is only a single rejection of the correct conditional coverage

37 See Rockafellar and Uryasev (2002, P.8) for this estimator.
38 We use the 0.9-quantile as threshold for our estimations.
39 See e. g. McNeil and Frey (2000) for these estimators.
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hypothesis for V̂aR
RS,u

α (long position in (P2)). Hence, the evidence in favor of dynamic risk

forecasting is not very strong for our monthly data. The CVaRα tests do not seem to have

much discriminatory power between the models. These tests reject the normal and t-models

only in some cases.

4.3 In-Sample Hedging Results

Turning to the core of our analysis, we now investigate unconditional hedging strategies

derived from the stationary distribution of the fitted RS models using Theorem 1. These are

compared to minimum-variance hedges40 and CVaRα-minimal hedging strategies obtained

from the nonparametric approach by Rockafellar and Uryasev (2000). The latter serve as

a benchmark for the maximum reduction of the empirical CVaRα estimates in a static in-

sample analysis. In addition to hedging weights, we of course provide CVaRα values for the

hedged positions, which we estimated with our models and also according to the non- and

semiparametric estimators from (35) and (37). We measure the reduction of tail risk attained

by switching from a simple minimum-variance strategy h∗var to the CVaRα-minimal policy

h∗CVaR by

∆% = 1− CVaRα(h∗CVaR)

CVaRα(h∗var)
.(38)

We focus on the results for three-state models, which we provide in Table 4.41

First, note that the hedging weights of the CVaRα-minimal strategies are always higher than

the corresponding minimum-variance weights. We find a 10% increase in the amount of

hedging for (P1)42, whereas the hedging positions for (P2) and (P3) are about 20% greater

than those of minimum-variance strategies. Moreover, the RS CVaRα hedging strategies are

always close to the in-sample optimum as measured by the empirical approach.

40 The differences between using a model-free OLS estimate and the model-based minimum-variance hedge
according to (19) is negligible. Thus, (19) is only relevant for conditional hedging strategies, which we
consider in Section 4.5.

41 Corresponding results for the two-state models are provided in the online appendix. Although differences
to the minimum-variance strategy are less pronounced, all effects remain similar.

42 Nevertheless, even the effect in this case, esp. in terms of risk reduction, is still in line with improvements
typically reported in the futures hedging literature.
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Table 4: Hedging Results: In-Sample

(P1) (P2) (P3)

uh var RS emp uh var RS emp uh var RS emp

Hedging weights [%]
h1 58.43 70.20 72.46 45.96 73.12 66.82 60.05 80.46 91.54

Risk measures [%]

ĈVaR
RS,u

α 12.08 4.88 4.48 4.50 14.65 9.01 7.01 7.15 15.74 7.41 6.31 6.59
∆% 8.07 7.79 22.24 20.65 14.81 11.11
ĈVaR

e

α 12.38 4.59 4.16 4.11 13.51 8.26 7.07 7.02 15.13 7.55 6.39 6.06
∆% 9.48 10.40 14.35 14.96 15.37 19.81

ĈVaR
pot

α 12.58 4.84 4.17 4.11 20.20 8.38 6.95 7.10 16.02 7.28 6.41 6.10
∆% 13.92 15.06 17.13 15.33 11.98 16.21

Moments (model/empirical)
mean RH [%] 0.80 0.51 0.45 0.44 0.76 0.52 0.38 0.41 0.81 0.50 0.40 0.34

0.80 0.51 0.45 0.44 0.75 0.52 0.38 0.41 0.81 0.51 0.40 0.35
std RH [%] 2.97 1.49 1.57 1.61 3.02 2.26 2.55 2.43 3.23 1.89 2.11 2.37

2.99 1.50 1.59 1.62 3.05 2.27 2.57 2.45 3.26 1.89 2.10 2.35
skewness RH -1.18 -0.24 0.14 0.19 -1.58 -0.75 0.09 -0.03 -1.63 -0.44 0.14 0.25

-1.35 -0.23 0.29 0.36 -1.76 -0.88 0.16 -0.03 -1.72 -0.79 -0.01 0.21
kurtosis RH 6.99 5.39 4.80 4.75 11.28 6.60 3.74 3.91 12.18 8.65 5.55 4.94

8.38 5.55 5.09 5.14 13.39 7.51 3.80 3.99 13.31 10.29 5.08 4.53

Tail characteristics
q̂0.9 2.45 1.37 1.52 1.59 2.61 2.12 2.72 2.53 2.65 1.78 2.12 2.41
ξ̂ 0.05 0.19 -0.06 -0.10 0.57 0.16 -0.04 -0.03 0.26 0.33 -0.07 -0.52
β̂ 2.78 0.73 0.90 0.92 1.34 1.39 1.38 1.47 2.40 0.84 1.48 2.41

Note: Hedging weights and risk of minimum-variance and CVaRα hedging strategies; in-sample results for α = 0.01. uh:
unhedged spot portfolios, var: minimum-variance hedging strategy, RS: stationary CVaRα hedging strategy, emp: CVaRα

hedging strategy based on Rockafellar and Uryasev (2002). h1 is the hedging weight of the S&P futures. ĈVaR
RS,u

α refers to
parametric risk estimates based on the stationary distribution of the fitted RS models. ĈVaR

e

α refers to empirical risk estimates

and ĈVaR
pot

α are POT-based risk estimates. ∆% is the relative tail risk reduction as compared to the minimum-variance
hedging strategy.

Second, we find that minimum-variance cross-hedges already successfully remove a large

fraction of tail risk, in particular for (P1) and (P3).43 However, we see that the increase in

the hedging amount implied by the CVaRα policies further reduces the tail risk of the net

positions. The risk reductions obtained by switching from a variance-based to a CVaRα-

minimal policy range between 8% and 22%. The evidence for advantages of CVaRα hedging

in our examples is conclusive because all measurement methods confirm a tail risk reduction

as compared to the minimum-variance strategy.

Third, we analyze the moments of the return distributions of the net positions to gain insights

into the sources of the risk reduction. We find that in all cases CVaRα hedging attains a tail

risk reduction by increasing skewness and lowering kurtosis of the hedged returns.44 The

43 For (P2), we attain similar reductions by adding the oil futures in Section 4.5.
44 Results show that the empirical and the model-implied moments match at least approximately.
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Figure 2: Exceedance Correlations and Lower Tail Dependence Functions of (P3) and the S&P Futures.

reduction is higher for (P2) and (P3), for which the returns of the minimum-variance strategy

still exhibit a sizable amount of skewness and excess kurtosis.

Fourth, we analyze the upper tails of the loss distributions as described by the GPD. CVaRα

hedges lower the shape parameter, and thus reduce the heaviness of the relevant tail in all

examples. This reduction comes at cost of increasing the 90%-quantile or the scale parameter

of the GDP, but it overcompensates for these effects according to the POT-CVaRα-estimates.

Concluding the presentation of our in-sample results, we provide a complementary view on

the differences between minimum-variance and CVaRα-based hedging in our examples. For

(P3) and the S&P futures, we plotted empirical exceedance correlations (Longin and Solnik,

2001) and the corresponding model implied values in Figure 2.45 For all three portfolios we

observe correlations to be higher in joint crash states than in joint good states, which ex-

plains the reduction in CVaRα by increasing the hedging weight. RS models (as depicted for

K = 3) can capture this dependence structure closely matching the empirical correlation es-

timates. Similar evidence for an increased dependence between spot and futures returns in

bear markets is obtained by comparing the empirical lower tail dependence functions (Garcia

and Tsafack, 2011) with the corresponding values implied by a normal distribution, which

are also provided in Figure 2. Interestingly, we find that over the plotted range, the values

derived from the stationary distribution of the RS model are even higher than those corre-

sponding to a t-model (copula) and they are close to the empirical values, which, however,

fluctuate quite strongly due to the small sample size.

45 We use a quantile-based threshold for the implementation of the correlations (Patton, 2004, p. 138).
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Table 5: Hedging Results: Out-of-Sample

(P1) (P2) (P3)

uh var RS emp uh var RS emp uh var RS emp

Hedging weights [%]
min h 47.30 50.78 58.29 27.70 25.76 16.19 44.36 50.56 52.84
mean h 53.33 60.12 65.53 36.2 43.35 52.08 50.62 65.72 69.98
max h 58.54 65.70 75.99 46.12 72.09 87.30 60.30 84.28 91.54
std h 3.68 3.83 7.51 6.07 13.41 19.96 6.22 12.11 15.60

Risk measures [%]
ĈVaR

e

α 14.18 6.12 5.62 5.1 16.81 11.92 11.57 9.85 18.03 11.27 9.56 9.78
∆% 8.19 16.68 2.91 17.34 15.10 13.18

ĈVaR
pot

α 13.95 6.47 5.58 4.93 18.27 11.67 10.85 10.00 17.50 10.31 9.64 9.80
∆% 13.78 23.72 7.05 14.28 6.48 4.94

Moments (empirical)
mean RH [%] 0.54 0.36 0.34 0.30 0.46 0.32 0.26 0.22 0.62 0.43 0.34 0.32
std RH [%] 3.31 1.42 1.36 1.36 3.67 2.67 2.56 2.50 3.84 2.2 2.03 2.11
skewness RH -1.42 -1.13 -0.81 -0.32 -1.71 -1.42 -1.34 -0.73 -1.61 -1.60 -1.42 -1.51
kurtosis RH 8.08 8.94 8.19 7.55 11.05 10.05 9.93 6.05 11.57 14.61 12.25 12.58

Note: Hedging weights and risk of minimum-variance and CVaRα hedging strategies based on RS models with two normal
components. For all strategies, we calculate hedging weights with a growing estimation window, using 175 observations for
the first estimation and updating the hedging weights monthly. Risk estimates and sample moments are based on the resulting
200 hedged return observations.

4.4 Out-of-Sample Hedging Results

In this section, we complement the in-sample performance evaluation with the results of two

out-of-sample experiments.

We begin with out-of-sample backtests in the presented datasets. We reserve the first 175

observations for the first estimation and work with a growing estimation window. In total,

200 two-state RS models per portfolio are estimated and used to derive the equal number of

RS CVaRα hedging weights.46 We use the same estimation windows to determine hedging

weights for the minimum-variance and the empirical minimum-CVaRα hedges. See Figure 3

for a plot of the resulting strategies. Note that there is a significant increase in the hedging

weights for all three portfolios as soon as data from the subprime crisis enter the estimation

window. However, it is important to remark that the hedging amount implied by CVaRα

strategies was already higher than with minimum-variance hedging before the financial crisis

occurred – at least for (P1) and (P3).

The results of these backtests are summarized in Table 5. Although we still use an uncon-

ditional hedging approach, the hedging policies are now time-varying due to re-estimation.

46 We estimated two-state models because in comparison with three-state models their calibration is more
stable with the limited amount of data available for the first estimations.
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Figure 3: Out-of-Sample Hedging Weights

Looking at their descriptive statistics, we find that the average hedging amount of an RS

CVaRα-minimal strategy is greater than for the minimum-variance approach with the differ-

ence ranging from 6% to 15%. Moreover, the standard deviation is higher for CVaRα hedg-

ing – with much of the variation in hedging weights being caused by the financial crisis. To

evaluate the risk reductions attained by the strategies, we again use ĈVaR
e

α and ĈVaR
pot

α .47

According to both measures, the tail risk reduction from switching to CVaRα hedging is al-

ways positive in our examples. The reductions over all portfolios and the two estimation

methods range between 3% and 15%. Again, these reductions come with an increase in re-

turn skewness and a decrease in kurtosis as compared to the minimum-variance approach.

Finally, these results emphasize that differences between tail risk and minimum-variance

hedging can already be attained using the most basic two-state RS models.

We next provide the results of simulation experiments to confirm the out-of-sample perfor-

mance of our hedging policies with larger sample sizes. We focus on (P3) and adopt the

hedging strategy derived from the corresponding three-state RS model. We consider three

different simulations: First, we assume that the fitted RS model is the true data-generating

process and simulate random paths starting from its stationary distribution. Second, we

sample from the empirical distribution (with replacement). Third, we simulate from a meta

model, consisting of a t-copula and skewed-t margins.48 This choice combines an elliptical

dependence structure allowing for (symmetric) tail dependence and nonelliptical marginal

47 Note that the reliability of the empirical CVaRα is seriously affected by the small sample size.
48 The parameter estimates are also provided in the online appendix.
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Table 6: Out-of-Sample Simulation Results

RS K = 3 bootstrap t-Copula + skewed-t margins

uh var RS emp uh var RS emp uh var RS emp

Hedging weights [%]
h1 60.05 80.45 91.54 60.05 80.45 91.54 60.05 80.45 91.54

Risk measures [%]
mean ĈVaR

e

α 15.38 7.24 6.25 6.53 14.92 7.46 6.30 6.03 14.00 7.99 7.43 7.62
mean ∆% 12.89 8.37 14.08 16.62 6.32 3.23
q0.5[∆%] 13.86 9.92 15.26 18.70 6.67 3.89
q0.25[∆%] 8.47 1.77 8.98 7.94 2.02 -3.55
q0.1[∆%] 2.53 -7.57 2.78 -3.04 -2.3 -10.61
q0.05[∆%] -1.81 -13.33 -1.50 -10.47 -5.28 -15.03
q0.01[∆%] -10.54 -26.50 -9.78 -24.66 -10.99 -23.82

Moments (model/empirical)
mean RH [%] 0.81 0.50 0.40 0.34 0.81 0.51 0.40 0.35 0.81 0.51 0.40 0.35
std RH [%] 3.22 1.89 2.11 2.37 3.25 1.89 2.09 2.35 3.24 1.98 2.21 2.47
skewness RH -1.58 -0.43 0.13 0.24 -1.66 -0.75 -0.01 0.20 -1.50 -1.18 -0.22 0.13
kurtosis RH 11.77 8.31 5.44 4.88 12.72 9.92 5.04 4.50 21.06 24.16 14.43 10.97

Note: Out-of-sample simulations for portfolio (P3). h1 denotes the hedging weight in the S&P futures. qα[∆%] refers to the
α-quantile of the risk reductions obtained from the simulations.

distributions. We simulate 10, 000 return samples each of length T = 1, 000 observations.

We do not re-estimate the models but apply the hedging weights estimated from the original

data for all strategies.

The results of this simulation study are reported in Table 6. Simulating from the estimated

model, the average CVaRα reduction confirms our analytic results from Table 4. Looking at

the quantiles of the reduction series obtained from our simulations, we find that the tail risk

reduction of RS CVaRα hedging as compared to the minimum-variance strategy is positive in

90% of the simulations under sampling from the model and the empirical distribution. This

implies a (weak) statistical significance of this reduction at the 10% level. The same quan-

tiles are negative for the nonparametric reference strategy, even under sampling from the

empirical distribution, which reveals a strong reliance of this technique on the specific char-

acteristics of the given sample. Remarkably, RS CVaRα hedging also attained a reduction in

75% of the samples simulated from the copula model, which indicates a certain robustness

against model misspecification. At the same time, we observe that the extent of the reduc-

tion decreases, indicating a positive contribution of dependence asymmetries to the reported

effects.
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Table 7: In-Sample Results, Composite Hedging

(P2)

uh var RS emp

Hedging weights [%]
h1 43.82 58.69 62.27
h2 15.56 14.85 17.18

Risk measures [%]

ĈVaR
RS,u

α 14.02 5.97 5.35 5.50
∆% 10.31 7.77
ĈVaR

e

α 13.51 5.73 4.97 4.55
∆% 13.30 20.59

ĈVaR
pot

α 20.20 5.50 4.83 4.79
∆% 12.09 12.83

Note: In-sample results for the composite hedging of portfolio (P2) using two futures. h1 denotes the hedging weight in the
S&P futures. h2 is the hedging weight in the oil futures.

4.5 Model Extensions and Robustness Checks

In this section, we investigate whether the documented advantage of tail-risk-minimal hedg-

ing can be confirmed for more complex setups. In particular, we first analyze an example for

multivariate CVaRα hedging and then report the performance of conditional CVaRα hedging

strategies derived from the predictive distribution of the RS models. Eventually, we provide

a battery of robustness checks on our modeling assumptions and datasets.

To assess the performance within a multivariate setting, we again consider (P2), which con-

tains the GSCI, and use the oil futures as a second hedging instrument in addition to the

S&P futures. Due to the promising results of three-state models in Section 4.3, we also fit a

three-state model for the joint return distribution of the spot portfolio and the two futures.49

The corresponding hedging weights and resulting risk estimates can be found in Table 7.

Although the hedging amount in the oil futures does not differ much between the three

strategies, we can again observe a reduction in tail risk by switching from the minimum-

variance hedge to a CVaRα-based approach, which ranges between 10% and 13% depending

on the measurement technique. As in the univariate case, this improvement is attained by

increasing the hedging weight of the S&P futures.

Next, we analyze the effect of using the predictive distribution of the RS models for CVaRα-

based hedging and now use a dynamic minimum-variance strategy according to (19) as a

benchmark. We report the corresponding in-sample results for our three univariate exam-

49 The estimation results are provided in the online appendix.
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Table 8: Dynamic Hedging

(P1) (P2) (P3)

uh RS-
var

RS-
CVaR

emp uh RS-
var

RS-
CVaR

emp uh RS-
var

RS-
CVaR

emp

Hedging weights [%]
min h1 54.22 63.98 72.46 43.12 69.94 66.82 48.30 69.90 91.54
mean h1 58.17 68.76 72.46 44.48 71.01 66.82 58.77 75.84 91.54
max h1 63.40 80.29 72.46 82.81 82.81 66.82 79.54 97.24 91.54
std h1 3.36 4.56 0.00 5.25 1.84 0.00 12.02 7.14 0.00

Risk measures [%]
ĈVaR

e

α 12.38 4.37 3.99 4.11 13.51 6.25 6.43 7.02 15.13 6.60 5.64 6.06
∆% 8.80 5.93 -2.91 -12.34 14.58 8.24

ĈVaR
pot

α 12.58 4.63 3.93 4.11 20.20 6.35 6.26 7.10 16.02 6.36 5.76 6.10
∆% 15.07 11.14 1.38 -11.75 9.53 4.17

Note: In-sample results for conditional hedging based on the predictive distribution of RS models with K = 3 normal compo-
nents. h1 denotes the hedging weight in the S&P futures.

ples in Table 8. Here the evidence is mixed: Although we again find CVaRα reductions from

8% to 15% for (P1) and (P3), the effect for (P2) is quite weak and changes its sign with the

evaluation method. Note, however, that for all portfolios, our strategy outperforms uncon-

ditional CVaRα-optimal hedging based on the empirical distribution.

Table 9 eventually provides the results of our robustness checks.50 First, we test whether

improvements can be obtained by fitting RS models with t-distributed components. We re-

port our results in Panel A. For (P1) to (P2) the findings are similar to the specification with

normal components. The hedging weight for (P3), however, is close to that of the minimum-

variance hedge. Looking at the parameters presented in the online appendix, we see that the

model does not identify a crash state in this case, emphasizing the importance of this feature

for our results. In Panel B we document different implementations of our CVaRα-minimal

approach, focusing on (P3). Here we find that the results remain almost unchanged if dis-

crete returns are used or if the MCVaRα is optimized instead of the CVaRα. However, we

find that differences between minimum-CVaRα and minimum-variance hedging decrease in

the confidence level. In Panel C, we validate our results based on another dataset. The results

obtained using different indices for the assets in the spot portfolio are similar to those of the

original specification.51 We also show that our findings cannot be attributed to the particular

choice of the rollover strategy by reproducing the hedge with the S&P spot series. We even-

50 All estimation results can again be found in the online appendix.
51 See the notes below Table 9 for the description of the data.
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Table 9: Robustness Checks

Panel A (P1) RS-t (P2) RS-t (P3) RS-t

uh var RS emp uh var RS emp uh var RS emp

Hedging weights [%]
h1 58.43 70.04 72.46 45.96 70.1 66.82 60.05 58.56 91.54

Risk measures [%]

ĈVaR
RS,u

α 12.05 4.88 4.49 4.51 14.23 8.8 7.23 7.27 10.37 5.55 5.55 7.97
∆% 7.83 7.50 17.87 17.44 0.11 -43.62
ĈVaR

e

α 12.38 4.59 4.16 4.11 13.51 8.26 7.05 7.02 15.13 7.55 7.70 6.06
∆% 9.42 10.40 14.64 14.96 -1.95 19.81

ĈVaR
pot

α 12.58 4.84 4.18 4.11 20.20 8.38 6.99 7.10 16.02 7.28 7.27 6.10
∆% 13.66 15.06 16.58 15.33 0.13 16.21

Panel B (P3) α = 0.025 (P3) MCVaRα (P3) Discrete returns

uh var RS emp uh var RS emp uh var RS emp

Hedging weights [%]
h1 60.05 72.46 67.13 60.05 81.49 91.54 59.58 78.81 86.88

Risk measures [%]
̂(M)CVaR

RS,u

α 11.43 5.22 4.92 4.97 16.55 7.92 6.71 6.93 15.00 7.15 6.18 6.33
∆% 5.70 4.68 15.23 12.45 13.67 11.52

̂(M)CVaR
e

α 10.90 5.19 5.02 4.99 15.94 8.06 6.73 6.40 13.93 6.98 6.04 5.93
∆% 3.34 3.79 16.41 20.53 13.44 15.05

̂(M)CVaR
pot

α 11.23 5.19 5.14 5.17 16.83 7.79 6.78 6.45 14.60 6.68 6.08 5.97
∆% 0.91 0.39 12.97 17.19 8.96 10.69

Panel C (P3) 1st sample half (P3) Different spot indices (P3) S&P spot

uh var RS emp uh var RS emp uh var RS emp

Hedging weights [%]
h1 46.66 60.75 64.72 70.67 90.79 105.85 60.34 79.93 89.58

Risk measures [%]

ĈVaR
RS,u

α 11.61 4.88 4.27 4.31 17.36 8.19 7.05 7.63 15.75 7.43 6.40 6.62
∆% 12.43 11.59 13.99 6.89 13.92 10.98
ĈVaR

e

α 11.51 3.92 3.53 3.43 17.33 8.72 7.39 6.76 15.13 7.57 6.49 6.15
∆% 10.12 12.54 15.17 22.45 14.25 18.72

ĈVaR
pot

α 13.39 3.85 3.39 3.42 17.32 8.41 7.15 7.13 16.02 7.13 6.50 6.30
∆% 11.94 11.16 14.97 15.23 8.91 11.71

Note: Panel A contains hedging results for three-state RS models with standardized t-distributed components and equal
degrees of freedom across the components. In Panel B we provide robustness results for using a different confidence level, the
demeaned CVaRα and discrete returns. Panel C shows results for (P3) with different time series. We replace our spot indices
with the MSCI All Country World Total Return Index, the BofA Merrill Lynch High Yield Master II Total Return Index and
the FTSE/EPRA NAREIT North America Total Return Index using 290 return observations from May 1990 to June 2014 and
substitute the perpetual S&P futures returns with the spot returns. Finally, we report results for the first half of our original
sample, for which we estimated RS models with two states.

tually confirm that similar reductions can be attained without data from the subprime crisis,

using the first half of the sample.52

52 As in the out-of-sample setup, we fitted a two-state model here due to the small sample size.
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5 Conclusion

In this paper, we studied the use of finite mixtures and in particular regime-switching mod-

els for tail risk management. We provided a general characterization of VaRα- and CVaRα-

minimal futures hedging strategies relying on results on quantile derivatives and showed

how to implement these characterizations for mixtures of elliptical distributions. Using mul-

tivariate regime-switching models, we empirically demonstrate that CVaRα minimizations

can change hedging strategies and tail risk characteristics as compared to variance mini-

mizations if the investments under consideration exhibit nonelliptical return distributions.

This observation might be especially useful for institutional investors who can benefit from

reduced capital requirements when implementing our policies.

An interesting direction for future studies is the implementation of RS tail-risk-minimal

hedging with more elaborate time series structures, in particular for the usage and evalu-

ation of these strategies with daily and weekly data. This would include a systematic anal-

ysis of dynamic (conditional) tail risk hedging against the unconditional approach, which

we favored throughout most of our work. Last but not least, the application of the ideas

presented here to derive portfolio selections under tail risk constraints or objectives seems to

be an interesting object of investigation.

Appendix

Proof of Proposition 1: First, we define the loss function lH : RN × RM × RM → R for a given vector of portfolio

weightsw

lH(rS , rF ,h) = −w′ · rS + h′ · rF ,(39)

such that LH(h) = lH(RS ,RF ,h). With this definition, (A1) - (A3) imply that the conditions for Theorem

2 in Hong (2009) are satisfied. Assumption 1 in Hong (2009), i.e., partial differentiability of the loss function

and its Lipschitz continuity, are implied by the linear structure of the function in (39) and the integrability

constraints in (A1). (A2) is a global version of Assumption 2 in Hong (2009) with the additional requirement

that the density is positive, which ensures the uniqueness of the VaRα. Since eventually, ∂lH
∂hj

= rF,j , (A3)

corresponds to Assumption 3, such that we can invoke Theorem 2 from Hong (2009) for the (1 − α)-quantile
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q1−α[lH(RS ,RF ,h)] = vα(h) to obtain

∂vα(h)

∂hj
=
∂q1−α
∂hj

[lH(RS ,RF ,h)] = E
[
∂lH
∂hj

(RS ,RF ,h) | lH(RS ,RF ,h) = vα(h)

]
.(40)

Again, with ∂lH
∂hj

= rF,j the componentwise application of this result for h implies that (8) contains the FOCs for

(5). These FOCs must be satisfied by the global minimizer of vα since the optimization problem is unconstrained.

However, due to h ∈ RM , the objective function may be unbounded, in which case (5) has no solution. This is

also true for (6). (9) follows as FOC for this problem from Theorem 3.1 in Hong and Liu (2009), which may

be applied since (A1) - (A3) imply that also the necessary conditions therein are satisfied. In particular, the

differentiability of vα follows from the first part of this proof. We thus obtain

∂cα(h)

∂hj
= E

[
∂lH
∂hj

(RS ,RF ,h) | lH(RS ,RF ,h) ≥ vα(h)
]
,(41)

which proves (9).

Proof of Theorem 1 First, we note that it is not difficult to show that the joint distribution of RF and LH is given

by

(42)

RF

LH

 | S = k ∼ EM+1(

µF,k
µL,k

 ,

 ΣF,k ΣFL,k

Σ′FL,k σ2
L,k

 , gk),

where the parameters are calculated according to (21), (22) and ΣFL,k = −Σ′SF,k ·w + ΣF,k · h. To derive the

FOCs for VaRα-minimal hedging we first rewrite the general expressions derived in Proposition 1 in terms of

conditional expectations for the component distributions and then use the properties of elliptical distributions

to give explicit representations of these expectations. Due to the positivity of the density generators in (M1), we

can write the expectation from (8) as E[RF | LH = l] = fL(l)
−1 · E[RF 1(LH = l)], with fL given by (23). Using

(42), this expectation can be decomposed into

E[RF | LH = l] =

K∑
k=1

πk
fL(l)

E[RF 1(LH = l) | S = k](43)

=

K∑
k=1

πk fL,k(l)

fL(l)
E[RF | LH = l, S = k] .(44)

We now exploit the fact that the component distributions are elliptical. In particular, we use the regression

property of elliptical distributions (Owen and Rabinovitch, 1983, P.2) and obtain

E[RF | LH = l] =

K∑
k=1

πk fL,k(l)

fL(l)

[
µF,k +

ΣFL,k

σ2
L,k

(l − µL,k)

]
.(45)

This proves (28) for l = vα(h) and zk(h) =
vα(h)−µL,k

σL,k
. Since we assumed the density generators to be continu-

ous, this also holds for the involved densities in (45) so that E[RF,j | LH = l] as a function of l is continuous for

all j = 1, . . . ,M , which implies that (A3) is valid under (M1).
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For the derivation of the CVaRα-minimal hedging strategy, we conclude by the same reasoning that

E[RF | LH ≥ l] =
K∑
k=1

πk P(LH ≥ l|S = k)

P(LH ≥ l)
E[RF | LH ≥ l, S = k] .(46)

Denoting the density of LH conditional on LH ≥ l and S = k by fLH |LH≥l, S=k, we can rewrite the involved

conditional expectations as

E[RF | LH ≥ l, S = k] =

∫ ∞
l

E[RF | LH = x, S = k] · fLH |LH≥l,S=k(x) λ(dx).(47)

Again using the regression property of elliptical distributions and the linearity of the integration operator, it

follows that

E[RF | LH ≥ l, S = k] =µF,k +
ΣFL,k

σ2
L,k

[E[LH | LH ≥ l, S = k]− µL,k] .(48)

We conclude that

E[RF | LH ≥ l] =
K∑
k=1

πk (1− FL,k(l))
P(LH ≥ l)

[
µF,k +

ΣFL,k

σ2
L,k

(E[LH | LH ≥ l, S = k]− µL,k)

]
.(49)

With Zk ∼ E1(0, 1, gk), it holds that

E[LH | LH ≥ l, S = k] = µL,k + σL,k E
[
Zk | Zk ≥

l − µL,k
σL,k

]
.(50)

Again, for l = vα(h) and with the definitions of zk(h) and λk(h), we obtain (29) because P(LH ≥ vα(h)) = α. It

remains to verify that (A2) is statisfied in our setting. This follows again from the assumed continuity of the den-

sity generators and the observation that the cdf of LH can be written as FLH (l,h) =
∑K
k=1 πk FZk

(
l−µL,k(h)

σL,k(h)

)
with Zk ∼ E1(0, 1, gk).
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