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1. Introduction 

The recent empirical asset pricing literature has highlighted the role of investment in 

explaining the cross section of stock returns (e.g., Titman, Wei, and Xie (2004); Cooper, Gulen, 

and Schill (2008); Fama and French (2015); Hou, Xue, and Zhang (2015)).
1
 The negative 

relation between investment and subsequent stock returns, the so-called “investment effect” or 

“investment anomaly,” is a central implication of the production-based asset pricing models (e.g., 

Cochrane, 1991, 1996; Liu, Whited, and Zhang, 2009).
2
 In these models, a firm optimally adjusts 

investments according to changes in the cost of capital or expected returns. A general underlying 

assumption in these models is that there are no agency conflicts that might distort the investment 

policy. But a growing literature of dynamic corporate finance shows quantitatively that agency 

conflicts between a firm’s manager and its shareholders shape the firm’s policies.
3
 In this paper, 

we study the implications of agency costs in a dynamic q-theory model of investment. We are 

interested in how agency costs affect the investment paths of the firm and how the impacts are 

reflected in the cross–sectional patterns of stock returns.  

In particular, we consider an informational friction in which a shock in the capital stock 

accumulation process is only observed by the manager but not shareholders. We refer to the 

shock as the uncertainty in investment efficiency. This informational friction incentivizes the 

manager to divert investment for private benefits and motivates shareholders to deter such 

behavior by offering the manager an incentive-compatible contract that elicits truthful 

                                                 
1
 This literature finds that in general firms that make more investment or expand their assets more earn lower 

subsequent returns. 
2
 Cochrane (1991) links investment returns to asset returns. Cochrane (1996) uses investment returns to estimate a 

stochastic discount factor. Liu, Whited, and Zhang (2009) directly estimate a q-theory model from the investment-

expected-return relation. Berk, Green, and Naik (1999) and Carlson, Fisher, and Giammarino (2004) attribute the 

negative relation between investment and returns to the exercise of real options. Kogan and Papanikolaou (2013) 

argue that firms with a higher loading on the investment-specific shock display both high investment levels and low 

returns.  
3
 For example, Morellec, Nikolov, and Schuerhoff (2012) show that managerial agency costs explain leverage 

decisions, and Nikolov and Whited (2013) infer managerial agency costs from the cash policy of the firm.  
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investment behavior. Therefore, both investment and compensation are jointly determined in the 

model. The framework allows us to explore the limit of an optimally designed compensation in 

alleviating the investment inefficiency. This limit, shaped by some firm characteristics, renders 

cross-sectional implications for a firm’s investment level and the investment-return relation. 

We follow the dynamic agency literature in formulating the optimal contract problem 

(DeMarzo and Sannikov (2006); He (2009); DeMarzo, Fishman, He, and Wang. (2012)). For 

example, in the model of DeMarzo et al. (2012), investors cannot observe the shocks to 

productivity and thus the manager can divert the firm’s output for private benefits. Offering an 

incentive-compatible contract to the manager can prevent this behavior. But the agency problem 

cannot be fully resolved since the manager might terminate the contract, which would trigger a 

deadweight cost. As a result, the marginal q of the firm is reduced by the possibility that the 

manager will depart at some point in the future.  

By modeling agency costs in the form of investment diversion rather than output 

diversion as in the model of DeMarzo et al. (2012), our model delivers very different 

implications. More specifically, in our model, the agency cost of investment diversion can be 

represented by an augmented (increased) capital adjustment cost function. We refer to this 

agency cost as the agency investment friction. In capital budgeting decisions, the shareholders 

anticipate that an increase in the investment level would require a higher-powered compensation 

contract to elicit truthful action from the manager. However, a higher-powered contract has 

greater volatility, which increases the probability of inefficient contract termination, since the 

manager can opt for outside options when the compensation falls below some threshold. 

Therefore, under the incentive-compatible contract for truthful actions, managerial investment 

diversion implies a necessarily higher cost per unit of new investment, due to the expected 
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deadweight cost when the contract is terminated. Controlling for marginal q, a firm plagued by 

investment diversion would invest less than a first-best firm.
4
  

The magnitude of the agency investment friction is both firm-specific and time-varying. 

For firms with higher uncertainty in investment efficiency, the agency investment friction 

increases with the volatility of the incentive-compatible contract. Moreover, incentive 

compatibility requires the compensation to be dynamically linked to the performance of the firm. 

When the compensation to the manager is substantially reduced by a series of negative shocks in 

past performance, the per unit increase in compensation volatility is more costly, as is new 

investment. Therefore, within the same firm, the agency investment friction is state-dependent.  

The model generates testable predictions: a strong investment friction lowers the optimal 

investment level; it also leads to optimal investment being more inelastic to the risk premium and 

therefore a stronger negative relation between investment and subsequent stock returns. Since the 

agency investment friction varies across firms and states, holding the firm’s systematic risk and 

risk premium constant, the model predicts a state-dependent relation between investment and 

subsequent returns.
5
 

Using data from firms listed in the US during 1963-2014, we show strong evidence 

supporting our model predictions. Empirically, we measure uncertainty in investment efficiency 

by the idiosyncratic volatility of the firm’s stock returns and measure past performance by past 

stock returns.
6
 We find that higher idiosyncratic volatility and lower past stock returns are 

                                                 
4
 In DeMarzo et al. (2012), agency costs do not influence investment. Controlling for marginal q, firms with or 

without agency costs would make the same level of investment.  
5
 Li and Zhang (2010) show that the magnitude of the investment-return relation increases with investment frictions 

in a simple one-period model.  
6
 These measures are consistent with our model. Strictly speaking, the idiosyncratic volatility of stock returns 

consists of the idiosyncratic volatility of cash flows and that of investment efficiencies. But cross-sectionally, a firm 

with higher idiosyncratic volatility of stock returns tends to have noisier investment processes. Our interpretation of 

the idiosyncratic volatility of stock returns as informational uncertainty in investment technology is similar to that in 
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associated with a lower level of investment and a stronger investment effect. The effects of 

idiosyncratic volatility and past stock returns on the investment-return relation are strong across 

firms when investment is measured by investment-to-asset ratios (Lyandres, Sun, and Zhang 

(2008)), asset growth (Cooper, Gulen, and Schill (2008); Titman, Wei, and Xie (2013); 

Watanabe, Xu, Yao, and Yu (2013)), and a simple measure of capital expenditures divided by 

capital stock (Liu, Whited, and Zhang (2009)), but weaker when investment is measured by 

investment growth (Xing (2008); Mao and Wei (2015)).  

Overall, we make several important contributions to the literature. We contribute to the 

dynamic corporate finance literature by showing the impact of managerial agency costs on 

investment. Our model generates implications which are directly testable in an empirical setting. 

Existing models in the literature face empirical difficulties, for example, due to the measurement 

errors in observed q and unobserved (and heterogeneous) risk premiums.
7
 In a related paper, 

Nikolov and Schmid (2012) directly estimate the model of DeMarzo et al. (2012) by simulated 

method of moments. We make an extension of the literature by linking agency costs to the 

capital market implications of firm investment policy. Such extension is essential to empirically 

infer the agency costs across firms. By focusing on the investment-return relation, we are able to 

control for the cross-sectional risk premiums in our empirical tests.
8
  

The state-dependency of agency investment frictions in our model enriches the empirical 

predictions on the investment-return relation, compared with the simple one-period q-theory 

                                                                                                                                                             
Kogan and Papanikolaou (2013). Similarly, we use stock returns as a proxy for the performance of investment 

technology.  
7
 For example, agency costs lead to a reduced marginal q in both our model and that of DeMarzo et al. (2012). But 

empirically, it is very difficult to identify a reduction in the marginal q, not only because q is measured with noise, 

but also because we generally do not have a first-best q against which to compare the reduced q. The first-best q is 

influenced by cross-sectional risk premiums, since a higher risk premium implies that the future cash flow of the 

firm would be discounted more heavily.  
8
 We show that, in the model of DeMarzo et al. (2012), the effect of agency costs cannot be separated from the effect 

of (unobserved) cross-sectional risk premiums, if the latter is incorporated. Our model specification allows us to 

infer the agency costs from the investment-return relations in the cross section of firms. 
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model with investment frictions as the one in Li and Zhang (2010). In addition, we offer a 

rational explanation for the positive association between idiosyncratic volatility and the 

investment effect, which is often used as evidence to support a behavioral explanation. For 

example, Li and Zhang (2010) and Lam and Wei (2011) argue that high idiosyncratic volatility 

makes it more difficult for arbitrageurs to eliminate the mispricing due to investors’ under-

reaction to the manager’s overinvestment which destroys firm value. By linking idiosyncratic 

volatility with the agency investment friction, our model shows that such cross-sectional 

investment effect can be rationalized in a dynamic q-theory model. Furthermore, we document 

new evidence that the negative investment-return relation is stronger among firms with poorer 

past stock performance, and provide a rational explanation based on the q-theory of investment 

with agency costs.
9
  

In two recent studies, Panousi and Papanikolaou (2012) and Glover and Levine (2015) 

attribute the negative relation between investment and idiosyncratic risk to the risk aversion of 

the under-diversified managers. We show that firm-specific uncertainty can also influence 

investment through the agency channel. But the interpretation of firm-specific uncertainty is 

different; we interpret it as a proxy for the information gap between the manager and investors. 

In line with the data, the model also implies a much higher investment volatility than a model 

with fixed capital adjustment costs through the counter-cyclical agency investment friction.
10

  

                                                 
9
 Stambaugh, Yu, and Yuan (2012) show that the cross-sectional return anomalies are stronger in the short leg, 

following high levels of investor sentiment. They interpret the evidence as support for the mispricing explanation of 

the anomalies.  
10

 Barlevy (2004) and Lansing (2011) show that in rational q-theory models with fixed capital adjustment costs, 

investment growth exhibits the same volatility as output growth. But in the data, the former is much more volatile 

than the latter. Hirshleifer, Li, and Yu (2015) generate an investment process with excess volatility by introducing 

extrapolative bias.  
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The remainder of the paper is organized as follows. Section 2 sets up the model and 

solves it. Section 3 derives asset pricing implications from the model. Section 4 develops 

empirical hypotheses and presents the results. Section 5 concludes the paper. 

 

2.  The Model 

2.1 Model set-up 

We set up a neoclassic investment model which incorporates managerial agency costs 

(e.g., DeMarzo et al. (2012)). There are two types of external shocks: a productivity shock which 

affects the output and an investment efficiency shock which affects the capital accumulation 

process. We assume that the investment efficiency shock is only observed by the manager 

(insider) but not investors. This creates an incentive for the manager to divert investment for 

private benefits, which reduces the capital stock of the firm. Expecting this behavior from the 

manager, investors solve the optimal contracting problem and then determine the optimal 

investment process.  

 

2.1.1 Capital accumulation and managerial investment diversion 

We assume that the evolution of capital stock tK  follows a stochastic process as follows: 

   , ,=t t t t I t I t tdK I K dt I dB a I dt     (1) 

where ,I ta  is the manager’s actions, tI  is the investment rate, 0>  is the depreciation rate, and 

0>  is the volatility of the shock to investment efficiency. tIB ,  is a Brownian motion that 

generates shocks to investment efficiency.  

The total cost ( , )t tC I K  of making investment tI  is defined as follows: 
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 21
( , ) ( ) =

2
t t t t t t tC I K c i K i i K

 
  

 
 (2) 

where /t t ti I K  is the investment ratio, and 2 / 2i  with a constant  is a quadratic capital 

adjustment cost function that is usually assumed in the literature.
11

  

We assume that the manager can choose her action , {0,1}I ta  　 .
12

 When , = 0I ta , the 

manager puts all of the investment fund into the capital stock. When , =1I ta , the manager diverts 

all investment into her own account and enjoys an instantaneous benefit tI dt , where   

measures the efficiency of diversion. We assume that 0 < <1 , which indicates that diversion 

involves a deadweight cost and is inefficient. For simplicity, it is assumed that the diverted 

investment cannot be saved or invested and thus must be consumed by the manager immediately. 

To model agency costs, we assume that the evolution of ,I tB  is only observed by the 

manager but not investors, who are unable to distinguish the manager’s diversion behavior from 

a shock to investment efficiency. As a result, they would rely on an incentive contract to induce 

the truthful behavior from the manager, which will be described in Section 2.2. Moreover, we 

assume that ,I tB  is idiosyncratic. That is, the shocks generated by ,I tB  are not correlated with the 

pricing kernel t  (which will be specified later), and thus the risk of investment efficiency is not 

reflected directly in the returns required by investors.  

Uncertainty in investment efficiency can be interpreted as uncertainty in the efficiency of 

transferring external resources to productive capital. It has been studied in the recent literature of 

technological shocks and asset prices (e.g., Kogan and Papanikolaou (2013, 2014); Li (2014)). 

                                                 
11

 For capital stock    to be positive at any time in equation (1), the investment ratio              must be bounded by 

some constant a.e., of which we will verify later in the derivation of the optimal investment policy. We also restrict 

the parameter values so that the investment ratio would be non-negative.  
12

 This is without loss of generality in comparison to assuming that      is a non-negative value. The reason is that we 

are focusing on the equilibrium path along which the managerial compensation ensures        a.e.. 
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But in this literature, the shocks to investment efficiency are systematic and thus are priced in 

expected returns. In another model in Albuquerque and Wang (2008), the shocks to investment 

efficiency are also systematic so that the resulting agency costs are priced in returns directly. 

However, in our model, the investment efficiency shocks are purely idiosyncratic so that the 

associated agency costs are not directly priced in returns. We aim to study whether idiosyncratic 

shocks in investment efficiency associated with agency costs can have an impact on optimal 

investment and firm value, via a dynamic contracting framework. He (2009) also presents a 

dynamic agency problem in which the manager is able to control the asset growth of a firm, 

which is otherwise exogenously determined by a geometric Brownian motion. Our model differs 

in that the optimal investment is determined endogenously, from shareholders’ capital budgeting 

decisions.  

 

2.1.2 Production technology 

The firm uses the capital stock to generate output. The output tY  evolves as 

 = ,t t tdY K dA  (3) 

where tA  is the production technology. We assume that tA  evolves as 

 ,= ,t A tdA dt dB   (4) 

where   is the expected output per unit of capital, ,A tB  is a Brownian motion, and   is the 

exposure of the technology to this shock. We assume that the shock to production, ,A tB , is 
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systematic. That is, it correlates with the pricing kernel t , and generates the excess return of the 

firm’s stock.
 13

 The pricing kernel t  follows  

 
2

,l
1

= ,
2

n t A td rdt dB dt       (5) 

where   is the risk premium for one unit risk in ,A tB . As a result, the risk-free rate in the 

economy is r . 

We also assume that ,A tB  and ,I tB  are not correlated, and investors cannot infer one from 

the other. The evolution of tA  is fully observable by both the manager and investors and 

contractible. We therefore eliminate the information friction on productivity uncertainty and 

possible agency costs on the production side. By assuming that tA  is fully contractible, we 

deviate from DeMarzo et al. (2012) who generate agency costs in a q-theory model based on 

information frictions on ,A tB . We, instead, focus on an information friction on ,I tB  described in 

Section 2.1.1, in order to investigate the implications of managerial agency costs originating 

from the investment process.
14

 

 

2.1.3 First-best benchmark 

We now provide a solution for the Tobin’s q for a benchmark firm where the manager 

and shareholders are perfectly aligned in their interests, which we denote by FBq  (the first-best q). 

                                                 
13

 We assume the shock to production      to be purely systematic to affect cross-sectional stock returns. An 

idiosyncratic component could be added to   , but it will not affect our results. We do not hold a view on whether or 

not an observable      results from its being systematic.  
14

 In reality, the manager’s discretion over investment decisions might be larger than earnings management, with the 

latter being restricted by accounting rules. The agency costs associated with investment might therefore be more 

significant than those associated with output misreporting. We explain the identification strategy in Section 3 and 

show that our specification is a better option for empirical tests on agency costs than the original specification by 

DeMarzo et al. (2012). 
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In this first-best case, the manager does not divert investment, since the investment diversion is 

not efficient ( 1  ). The objective of the manager is to maximize the present value of cash flows: 

   0
0

( ) = max ( , ) .t t t
I

FB

t tP K K dA C I K dt


E  (6) 

In the Appendix A1 we show that the solution to (6) is  

 0 ,FB FBP q K  (7) 

with the optimal investment rate i  determined by  

 1 FBi q  . (8) 

FBq  is the solution to the following equation: 

  
 

2

 1
 ,

2

FB

FB
q

r q  



     (9) 

which is the same as the standard Tobin’s q in the literature (e.g., Hayashi (1982)). The marginal 

q and the average q are the same in the first-best benchmark. Due to the investment efficiency 

shock, the capital stock process in our model is stochastic, but the idiosyncratic investment 

efficiency shock does not influence the firm value or the optimal investment.  

 In the next sections, we derive the optimal contract and investment paths when the 

interests of the manager and shareholders are not aligned. Different from the first best case, the 

manager may divert investment which is not perfectly observed by shareholders. 

  

2.2 The optimal contract 

We assume that the manager has no initial wealth and the value of her reservation value 

is zero. She is essential for operation, and if she leaves the firm, the capital of the firm, tK , is 

sold for tlK . We assume 1 < ,FBl q  so that liquidation is strictly inefficient.
15

 We assume that 

outside investors can commit to a compensation contract, ( , , )I U   , which specifies the 

                                                 
15

 Since the liquidation value of the firm              , liquidation means a deadweight cost of         and 

is thus inefficient. On the other hand,         ensures that investment rate is non-negative a.e., which is required by 

the model.   
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investment rule tI , the manager’s cumulative monetary compensation tU , and a stochastic 

termination time  . tU  is a weakly increasing process due to limited liability of the manager.  

Since the manager cannot divert investment efficiently, i.e., 1< , it is desirable for 

investors to transfer the monetary payoff to the manager through a contract that prevents 

diversion in the first place. Therefore, we focus on the incentive-compatible contract under 

which the manager has no incentive to divert investment ( 0=ta  for  t0 ) following the 

dynamic agency literature. Under such a contract, the expected payoff to the manager is derived 

solely from the monetary payment tU : 

 ( )

0
( ) = ,r t

t tW e dU


   
  E  (10) 

subject to   being incentive compatible and ( ) 0W    (individual rationality of the manager). 

The 0r    measures the relative impatience of the manager and shareholders.
16

 The optimal 

incentive-compatible contract 
*  is determined in the following maximization problem of 

shareholders: 

   0 0
0 0,

( , ) = max ( ) .t t t t t t
i

tP K W K dA c K dt l K dUi
 

   


   E   (11) 

We will now characterize the optimal contract. For any incentive-compatible contract at 

time t  ( 0 t   ), the manager’s expected payoff from staying with the firm adjusted for her 

impatience relative to that of shareholders under the contract   is  

 ( )( )( ) = .r s

t t s

t

s
t

W e dU


    
  E  (12) 

We now show in the following lemma that the optimal contract can be defined by the joint 

evolution of tW  and tU . 

                                                 
16

 In the dynamic agency models (e.g., DeMarzo and Sannikov (2004); DeMarzo et al. (2012)),       is a technical 

requirement that ensures the firm pays out to the manager. As in He (2009), we require      . 
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Lemma 1. Under the optimal incentive-compatible contract 
* , the differential form of the 

m n ge ’s compens   on fo  ows 

  = ,t t t t t tdW W dt dK I K dt dU         (13) 

for [0, )t  , where inf{ 0 : 0}.tt W   tdU  reflects tW  at W , where W  is defined as 

( ) 1WP W   . 

Proof. All proofs of lemmas and propositions are given in the Appendix. 

Lemma 1 states that the optimal contract accounts for the time preference of the manager 

( tW dt ) and rewards her for truthful investment ( ,t I tI dB  ). For every unit of shock in ,I tB , the 

optimal contract provides a monetary payoff equal to tI , which is no less than the private 

benefit derived from diverting investment tI  and ensures incentive compatibility. Lemma 1 also 

states that the optimal contract does not load on the temporary shock ,A tB  in the output tY , but it 

loads on the shock ,I tB  which will  have a long-term impact as it is accumulated in the capital 

stock. Intuitively, the shock of ,A tB  is multiplied by tK  to produce the temporary shocks in the 

output tY , which is too noisy at the level of tK  (which is the aggregated level of investment 

flow tI ) to provide useful inference on each tI  at every split second.
17

  

As in DeMarzo and Sannikov (2006), for W W , investors are better off delaying 

payment to the manager by setting 0=tdU . This is because when the manager leaves the firm 

upon tW  hitting zero, inefficient liquidation takes place. The accumulated managerial payoff 

kept in the firm reduces this probability. However, keeping tW  at a high level has its cost, since 

the manager is impatient compared to investors and retaining payment inside the firm implies a 

                                                 
17

 Sannikov and Skrzypacz (2007) show a similar effect and provide a detailed proof.  
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cost to the firm ( ) tr W  . Thus there must be an upper boundary W  beyond which the firm 

starts to pay out. 

 

2.3 Optimal investment paths 

Once the optimal contract is determined, we can determine the optimal investment 

process. Since the system is in the scale of tK , we can reduce the number of state variables by 

setting a new state variable ./= ttt KWw  Denote the investors’ value function by 

( , ) = ( )t t t tP K W p w K , where ( , )t tP K W  is defined in (11). Analogous to W  in Lemma 1, w  is a 

reflective boundary for tw  and is defined by 

 ( ) = 1,p w   (14) 

which indicates that at w , outside investors are indifferent between starting to pay the manager 

and keeping the payoff in the firm, since the value implication of )(wp  is the same. 

For t   and 0tdU  , the process for wwt   is represented by the following equation: 

 ,= ( ) ( ) .t t t t t I tdw i w dt i w dB        (15) 

When tw w , investors pay the manager an instantaneous transfer equal to ( )t t tdU w w K   

which sets tw  back to w , and w  is a reflecting barrier for the process tw .
18

 The investors’ value 

function in the form of the discounted cash flow is 

     ( ) = , = ( ) ,t t t s s s s s st
t

tp w K P K W K dA c i K ds dU l K


    E_  (16) 

                                                 
18

 The traded security is the total value of the firm, which is               p w    w  . At w ,  p w    w       

satisfies the no-arbitrage condition at the reflecting barrier. 
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and the Hamilton-Jacobi-Bellman (HJB) equation of )(wp  for 0 tw w   is as follows (by 

dropping the subscript t ):
19

 

2 2 21
( ) = ( ) ( )( ) ( ) ( ) ( ) ( ) .sup

2i

rp w c i p w i p w w i p w i w      
 

          
 

 (17) 

The optimal investment i  is thus determined as follows:  

 *

2 2

( ) ( ) 1
= .

( )( )

p w wp w
i

p w w  

 

 
 (18) 

The marginal q of the firm is 

 
( ( , ) )

( ) = = ( ) ( ).A P K W W
q w p w wp w

K

 



 (19) 

Along the optimal investment path, the model firm with agency costs has a lower marginal q 

than the first-best marginal q in a firm without agency costs, FBq . Even at w , where it is 

maximized and the firm starts to pay the manager, ( ( , ) ) /P K W W K    is still less than FBq  

due to the positive probability that w  may reduce to zero and the manager leaves the firm. 

The value function )(wp  is concave. As w  increases, the risk of the manager’s leaving 

the firm decreases, which, in turn, increases outside investors’ value. But the value loss due to 

the higher effective discount rate of the manager is also larger. This result is formally stated in 

the following lemma:  

Lemma 2. 0<)(wp   for ).(0, ww   

                                                 
19

 An important adjustment of the process w  to adapt it into (17) is to eliminate the term            w   in the drift 

from its physical path. This is because the process of w   in (17) is under a measure which is risk-neutral to     (and 

as a result, under this measure,   can be divided from both sides of the HJB equation). Hence it differs from the 

physical measure of w  by that drift. See footnote 14 in He (2009). 
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Equations (18) and (19) give a simple representation of the model. That is, we are able to 

summarize the agency costs of investment diversion into a modified marginal q as well as a 

modified capital adjustment cost function, which is stated in the following proposition: 

Proposition 1. Let (.)p  be defined as in (17) and w  be the scaled value of the manager’s 

continuing in the firm with its evolution as in (15). Define two state variables ( )A w  and )(wqA  

as follows: 

 
2 2( ) = ( )( ) ,A w p w w      (20) 

 ( ) = ( ) ( ).Aq w p w wp w  (21) 

Then the agency investment friction ( )A w  and marginal q ( )Aq w  summarize the effects of 

agency costs on the firm investment decision in the model. Given the corresponding capital 

adjustment cost function 

 21
( ; )

2

AAc i w i i  , (22) 

the optimal investment level 
*i  is determined by equating the marginal cost of capital to the 

marginal q: 

 
( ; )

=1 .
A

AAc i w
i q

i
 




 (23) 

Proposition 1 states that the agency problem in the model is reflected in both the agency 

investment friction ( )A w  and the (reduced) marginal q ( )Aq w . It implies that, by adjusting both 

the marginal q and the capital adjustment cost function, we are able to adapt a general agency 

problem into a simple q-theory of investment.  
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The term 2 2( )( )p w w    in equation (20) represents an adjustment due to the agency 

costs.
20

 Since ( ) < 0p w , this adjustment term is positive. Hence, the manager’s diversion of 

investment increases the adjustment cost of capital. The intuition is that, an additional unit of 

investment increases the variance of the manager’s compensation w  by exactly 2 2( )w  , 

which effectively prevents the manager from diverting investment in the first place. However, 

using this high-powered compensation increases the volatility of w  and makes it more likely for 

w  to hit the zero boundary which would trigger the inefficient liquidation of the firm. The 

second-order derivative of the value function, ( )p w , measures the concavity of the value 

function for investors and how much the value is reduced by the variance of w . Therefore, the 

product 2 2( )( )p w w    is the additional cost of each unit of investment given the agency 

costs as is indicated by the shape of (.)p  and the current state variable w . 

The implication of Proposition 1 becomes clearer if we take the limiting case where 

r   which means that the discounting of investors is close to the discounting of the manager.
21

 

When r  , in the limit, the HJB equation (17) can be simplified to 

 ( ) ( ; ) ( )( ).A A Arq w c i w q w i        (24) 

This equation has the same form as the investment equation for the first-best benchmark without 

agency costs, that is,  

 ( ) ( ).FB FBrq c i q i        (25) 

Given state w , the firm with managerial investment diversion would invest like a first-best firm 

as if it had a state-dependent investment friction ( )A w  and a marginal q ( )Aq w . In other words, 

                                                 
20

 In Appendix A7, we argue that w     is not possible in our model. 
21

       is a special case of the model, where all the results of the model will be retained, except that w      will be an 

absorbing barrier for w. See Section 2.3.2 in He (2009).  
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the effect of agency costs is reflected in the two functions ( )A w  and ( )Aq w , which vary 

according to the state variable w . 

 

3.  Asset Pricing Implications 

 In this section we discuss the asset pricing implications of the model. In our discussion, 

we restrict ourselves to the limiting case where r  , since the comparison with the first-best 

case would be much simpler.  

 

3.1 Cross-sectional stock returns 

As we have incorporated the pricing kernel in the model, we are able to derive asset 

pricing implications in a q-theory model. As in DeMarzo et al. (2012), the traded security is the 

firm value, which is a combination of investors’ value  ,P K W  and the manager’s deferred 

payment W . 

Following Kogan and Papanikolaou (2014), the excess return of holding this security will 

be determined by the covariance of the change in firm value with the pricing kernel:
22

 

  
( )

cov , / .
dY c i Kdt dP dW d

R r dt
P W p w

 



   
    

  
E  (26) 

The total systematic risk of the firm is K , since it produces a cash flow KdA  which has 

exposure   to the pricing kernel. Since the price per unit of risk in the pricing kernel is  , the 

total compensation for risk for the whole firm  P W  is K and the per unit risk premium is 

 / p w  . The average market-to-book ratio,  p w , is negatively associated with  , 

                                                 
22

 We loosely call    the risk premium (which is actually the risk premium per unit of capital stock) and       p w  
the excess return of the firm (which is the risk premium per unit of firm value).  
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suggesting a positive value premium (e.g., Fama and French (1992)).
23

 This is due to the fact that 

a higher risk premium   leads to a lower market value per unit of capital K , which is 

documented by Berk (1995).  

 More importantly, a higher risk premium   leads to a lower marginal q and thus lower 

investment levels, which is the key observation in the investment-based asset pricing literature 

(e.g., Liu, Whited, and Zhang (2009)) and is obvious in the limiting case where r  . For any 

w , we have 

 *1 ,A Aq i   (27) 

where 
*i  is the optimal investment rate under agency costs solved from (24):

24
  

  
 2*

2
.

A

r
i r r

  
 



  
      (28) 

Therefore, the optimal investment 
*i  is monotonically decreasing in  . 

Furthermore, our model can generate the cross-sectional return-investment relation as in 

Li and Zhang (2010), based on the cross-sectional variation in agency investment friction. More 

specifically, when r  , we show in the Appendix A5 that, analogous to Li and Zhang (2010), 

we have 

 
 * /

< 0,
A

i 



  


 (29) 

which literally means that when the agency investment friction A  is larger, optimal investment 

*i  becomes inelastic to the risk premium  . In a group of firms with a higher agency 

investment friction, a larger (cross-sectional) difference in the risk premium   would be 

                                                 
23

 Following DeMarzo and Sannikov (2006), it can be shown that   p   w            e    w    w         .  
24

 We restrict the parameter values to ensure that the investment rate is positive, and the marginal q is not infinite. 

To this end, we assume              and                             . 
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required to generate a given difference in the investment rate i . As a result, the observed relation 

between investment and subsequent stock returns would be more pronounced.  

The relation in (29) drives our empirical identification of A . We show in the next 

subsection that empirical tests based on A  differentiate our model from that of DeMarzo et al. 

(2012). Our model also leads to better inferences on the effect of managerial agency costs on 

asset prices given the empirical difficulties that both marginal q and the firm risk premium   

are unobservable.  

 

3.2 Comparison to DeMarzo et al.’s (2012) model 

Our model is different from that of DeMarzo et al. (2012) in that we focus on the agency 

costs of investment (i.e., input), and we aim to generate cross-sectional return patterns. To this 

end, we adapt the pricing kernel (5) to the q-theory of investment. The same pricing kernel can 

also be applied to DeMarzo et al. (2012) and the majority of their results will hold. The major 

difference lies in the specifications on agency costs. In their model, the manager is able to under-

report the productivity shocks (shocks to tA ) and divert the output of the firm for private benefits. 

While they find a reduction in marginal q, we find an additional effect: an increased capital 

adjustment cost, i.e., the agency investment friction.  

Adapting the pricing kernel to our setting, the HJB equation that determines the optimal 

investment and firm value in DeMarzo et al. (2012) is as follows (when r  ): 

          2 21
  ,

2

A Arq w c i q w i p w            (30) 

where ( ) ( ) ( )Aq w p w wp w   is the marginal q with agency costs, which is the same as that in 

our model. However,   is the efficiency of the manager’s stealing from the firm’s output which 
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is the counterpart (input) of   in our model. 
2  is the variance of the shocks to the productivity 

that are observable to the manager only. In this equation, since ( )p w , which measures the 

agency costs created by a volatile w , is also less than zero, the term 2 2( ) / 2p w    actually 

measures how much the marginal q ( )Aq w  is reduced from the first-best q (i.e.,      which is 

solved by (25). In DeMarzo et al. (2012), the optimal investment is the same as that in a first-best 

firm with a marginal q equal to Aq ; in other words, controlling for the marginal q, firms with or 

without agency costs should make the same levels of investment. 

The reduction in marginal q due to agency costs derived in DeMarzo et al. (2012) is 

difficult to test empirically. First, marginal q is not directly observable and/or is measured with 

noise. It is difficult to compare marginal q in a cross section generated by the degree of agency 

costs. Second, from (30) we can see that while the agency costs would reduce marginal q (by the 

term 2 2( ) / 2p w   ), the risk premium   would have the same effect. Even if we do observe a 

cross-sectional pattern of marginal q, we still cannot attribute the effect purely to agency costs, 

unless we can identify either the (unobservable) risk premium   or the exact functional shape 

of ( )p w .  

We propose a new empirical test based on our specification. We do not rely directly on 

the cross-sectional marginal q or the cross-sectional risk premiums, but on the link between the 

cross-sectional investment-return relation and the agency investment friction A . To illustrate 

this, in our model, the HJB function that determines optimal investment is (when r  ) 

  2 2 21
( ) ( )( ) ( )( ).

2

A A

A

rq w i p w w i q w i     



          (31) 
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Compared to the first-best case in (25), the agency costs manifest as a component in A  (note 

that 2( ) = / 2c i i i ). A firm with higher agency costs of investment tends to have a higher A  

which leads to a more negative relation between investment and returns in the data as shown in 

(29). This is a unique empirical prediction of our model. Note that this prediction is not driven by 

any cross-sectional variations in the pricing kernel  , since A  is determined by the concavity 

of the function ( )p w , state variable w , and parameters   and 
2 .

25
 

 

3.3 State-dependent agency investment frictions, A  

We briefly discuss the state-dependency of the agency investment friction A  which will 

be useful for our empirical hypotheses in Section 4. Holding the physical adjustment cost   

constant for all firms, the model generates variations in the agency-related component

2 2( )( )p w w   , due to different investment efficiency shocks 2  and shocks to the state 

variable w . 

First, A  increases with the variance of investment efficiency shock 2 . When 2 0   

and the manager cannot divert investment, the agency problem does not affect the adjustment 

cost of investment, and the model is reduced to the first best. By assuming that 2 0   and that 

there is managerial investment diversion, we establish a channel through which idiosyncratic 

volatility in investment efficiency affects optimal investment.
26

 Intuitively, as 2  increases, to 

induce truthful investment behavior from the manager would require a higher-powered and more 

volatile compensation. As a result, each marginal unit of investment would lead to a higher 

                                                 
25

 Strictly speaking, the risk premium    can still affect  
 
 by influencing the second-order derivative of p w . But 

since it is of the second order, the effect would be minimum.  
26

 Idiosyncratic shocks generally have no effect on investment in the traditional neo-classical investment literature.  
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increase in the probability of inefficient liquidation, and the expected cost that is reflected in the 

agency investment friction would be higher.  

In general, 2  can be interpreted as the noisiness of information on the investment 

opportunity which creates an information gap between insiders and outsiders. This information 

gap is related to the volatility of idiosyncratic returns of the stock. In our model, the variance of 

idiosyncratic returns is related to 2  by our assumption that the shock to productivity is purely 

systematic and the shock to investment efficiency is idiosyncratic. However, even if we assume 

that there is an idiosyncratic component in productivity shock, investment efficiency shock 

would still contribute to the overall idiosyncratic shocks of stock returns. As a result, in reality if 

we sort the firms based on idiosyncratic volatility of stock returns, we would be able to generate 

a cross-sectional variation in the investment-return relation across 2  groups. 

Second, A  is also related to w , which is the manager’s payoff from staying with the 

firm. In Appendix A6 we show that / 0A w    when r  . In general, the agency costs are 

mitigated by increasing w : a higher w  reduces the probability of the manager’s leaving the firm 

(i.e., when w  hits zero) which is what triggers inefficient liquidation. Therefore the cost 

associated with implementing the incentive contract decreases, and the firm has a reduced cost of 

investment A . At the pay-out boundary w w , ( ) 0p w   and A  , the firm’s adjustment 

cost of capital reduces to the physical adjustment cost.  

The manager’s payoff from staying with the firm w  or W is not observed in the data.
27

 

The model predicts that the change in w  or W  is related to the idiosyncratic return of the firm. 

We prove in Appendix A7 that, while w  has a loading ( )i w   on the idiosyncratic shock 

                                                 
27

 Especially, it is not the observed managerial compensation. Instead, it should be the present value of all of the 

manager’s future compensation. 
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,I tdB , the return of the firm as shown in (26) has a loading  ( 1) / ( )p p w p i p w       on 

,I tdB . Cross-sectionally, if a firm is hit by a series of negative idiosyncratic returns, w  is also 

reduced accordingly. Therefore we would be able to generate a cross-sectional variation in A  

based on the past performance of the firm’s stock returns. 

 

4.  Empirical Tests 

4.1 Hypothesis development 

Since both 
*i and the elasticity of 

*i  with respect to the expected returns decrease in A , 

we hypothesize that 

H1. The optimal investment level is lower for firms with higher agency costs.  

H2. The negative association between the expected stock returns and the investment level is 

stronger for firms with higher agency costs. 

To test H1, we relate firm-level investment to agency costs in a panel regression while 

controlling for firm size, book-to-market ratios, and firm and year fixed effects. To test H2, we 

estimate the following Fama and MacBeth (1973) cross-sectional regression of monthly stock 

returns: 

,)()( 115141312110 it

A

itit

A

ititititit uInvInvBMLogMVLogR     (28) 

where Rit is monthly stock returns from July of year t to June of year t+1, and uit is an error term. 

Inv is a measure of firm investment and A is a measure of the agency investment friction. 

Log(MV) and Log(BM) are included to account for the well-documented size and value effects 

(e.g., Fama and French (1992)). According to the hypothesis, we predict a negative coefficient 

5  on the interaction term between investment and agency costs.  
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 In a different setting, we estimate the Fama and MacBeth (1973) cross-sectional 

regression separately for the subsamples of firms with high and low agency costs which allows 

all regression coefficients to vary across the subsamples. We then compare the coefficients on 

the investment variable in the two subsamples. In the subsample of firms with high agency costs, 

the coefficient on the investment variable is predicted to be more negative. In addition, we use 

double sorting to calculate portfolio returns. We test whether the return differentials between the 

high- and low-investment portfolios are larger in the group of firms with higher agency costs. 

The portfolio approach allows us to gauge the economic magnitude of the investment effect and 

unveil the non-monotonic relation between agency costs and the investment effect if any. 

As discussed in Section 3.3, A  increases in 2  and decreases in w . Therefore, cross-

sectionally, we posit that firms with higher idiosyncratic volatility of stock returns and lower past 

stock performance tend to have a higher A .
28

 Thus the empirical proxies for A  are the firm’s 

idiosyncratic volatility of stock returns and past stock returns.  

 

4.2 Data 

We obtain accounting data from Compustat and stock returns data from the Center for 

Research in Security Prices (CRSP). Following the literature, we restrict the sample to include 

only common shares and exclude all financial firms (SIC codes between 6000 and 6999). The 

sample period is from 1963 to 2014.  

We use four measures of investment used widely in the literature. They are investment-

to-asset ratio, I/A (Lyandres, Sun, and Zhang (2008)); asset growth, ΔA/A (Cooper, Gulen, and 

                                                 
28

 Strictly speaking, a higher  
 

 is associated with lower past idiosyncratic returns in the model. However, as 

empirical asset pricing models tend to have low R-squared in explaining returns of individual stocks, past 

idiosyncratic returns are highly correlated with past returns.  
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Schill (2008); Titman, Wei, and Xie (2013)); investment growth, ΔI/I (Xing (2008); Mao and 

Wei (2015)); and investment-to-capital ratios, I/K (Liu, Whited, and Zhang (2009)). All variable 

definitions are detailed in Appendix A8. 

Agency costs are proxied by idiosyncratic volatility (IVOL), a measure of the volatility in 

investment efficiency, and past stock returns (Rtn-1,-12), a measure of past performance. We 

follow Ang, Hodrick, Xing, and Zhang (2009) to calculate the idiosyncratic volatility as the 

standard deviation of the residuals from a regression of daily stock returns on the Fama-French 

three-factor model over the previous 12 months as of the end of June.
29

 We measure past stock 

returns by accumulating the returns of a stock over the previous 12 months as of the end of June. 

Panel A of Table 1 presents the summary statistics. The average monthly stock returns is 

1.03% with a standard deviation of 15.32%. The average idiosyncratic volatility in monthly 

percentage is 15.42% with a standard deviation of 9.81%. Compared to the other three measures 

of investment, the distribution of ΔI/I is more dispersed with a standard deviation of 2.25. This 

implies that the firm investment level is more persistent than the growth in investment. Panel B 

shows the pairwise cross-sectional Pearson correlations. All four investment proxies are highly 

correlated with the correlation coefficients ranging from 33% to 67%. On average, stock returns 

are significantly negatively correlated with all investment proxies and positively correlated with 

the book-to-market ratio. Also, the investment proxies are all negatively correlated with the 

book-to-market ratio. 

[Insert Table 1 here] 

4.3 Investment-level tests 

To test H1, we use a panel regression setting to relate firm investment to various 

determinants. Specifically, we regress each of the four investment proxies on firm size, book-to-

                                                 
29

 We require at least 60 non-missing observations to calculate the idiosyncratic volatility. 
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market ratio (an inverse proxy for investment opportunities), idiosyncratic volatility, and past 

returns while controlling for both firm and year fixed effects. Panel A of Table 2 reports the 

results that lend support to H1. The strongly negative associations between idiosyncratic 

volatility and investment suggest that higher firm-specific volatility in investment efficiency 

leads to a lower optimal investment level. The strongly positive associations between past returns 

and investment suggest that higher agency costs due to poorer past performance also lead to a 

lower optimal investment level. In addition, the coefficients on Ln(MV) and Ln(BM) indicate that 

small firms and growth firms have higher investment levels, consistent with the literature. 

Panousi and Papanikolaou (2012) also document a negative association between 

idiosyncratic volatility and investment. However, in their model, the reduced investment is a 

result of the manager’s not wanting to be exposed to idiosyncratic risk from her sizable equity 

ownership of the firm. They also find that the effect is mitigated when the compensation is 

mainly composed of options rather than shares. Since the inclusion of equity options in 

compensation structures has become popular after 1990 (e.g., Hall and Liebman (1998)), the 

prediction would be that the negative effects of managerial risk aversion should be weakened 

after 1990. To see if this is indeed the case, we include an interaction term between idiosyncratic 

volatility and a dummy variable that equals one for years after 1990. Panel B of Table 2 shows 

that the evidence is mixed. The effect of IVOL on investment is weaker in the latter period when 

I/A and ∆A/A are used as proxies, while stronger in the latter period for the case of I/K. Therefore, 

we posit that the managerial risk aversion story may not be able to fully account for decreasing 

investment levels in idiosyncratic volatility.  

[Insert Table 2 here] 
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It is worth noting that the results from the investment-level tests are consistent with our 

model, but they are plagued by errors in the measurement of investment opportunities (e.g., 

Erickson and Whited (2012)). Although we have controlled for the book-to-market ratio, 

idiosyncratic volatility and past returns may contain information about hidden investment 

opportunities. In particular, the investment-level tests cannot distinguish our model from that of 

DeMarzo et al. (2012). As in their model, the agency costs (proxied by idiosyncratic volatility 

and past returns) might drive a larger difference between an average q and a marginal q. In this 

sense, their model would also predict investment levels in the same way as ours. The lack of a 

good empirical measure for marginal q suggests that our next test, which relies on the agency 

investment frictions and cross-sectional return patterns, would be a better option for detecting 

agency costs.   

 

4.4 Fama and MacBeth cross-sectional regressions of returns 

Next, we explore the relation between investment and subsequent stock returns and the 

effect of agency costs. Table 3 presents the estimated coefficients from the Fama-MacBeth cross-

sectional regressions of monthly returns on firm size, book-to-market ratios, and investment. The 

significantly positive coefficients on the book-to-market ratio and the significantly negative 

coefficients on the investment proxies in regressions (1), (3), (5), and (7) confirm the stylized 

cross-sectional return patterns, namely, the value effect and the investment effect. When we 

include idiosyncratic volatility (IVOL) and its interaction with the investment proxies in 

regressions (2), (4), (6), and (8) shown in Panel A, the coefficients on the investment proxies 

become insignificant. To emphasize, the coefficients on the interaction terms are all significantly 
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negative, manifesting the effect of idiosyncratic volatility on the investment-return relations as 

predicted by our model.  

Panel B shows the coefficient estimates when we include past-one-year returns and its 

interaction with the investment proxies. The significantly positive coefficients on the interaction 

term in regressions (2), (4), and (8) underline the effect of past performance (Return-1,-12) on the 

investment-return relations, which also lends support to the model prediction. The corresponding 

coefficient is insignificant when investment is proxied by the investment growth variable, which 

is consistent with the model implications that cross-sectional returns should respond to 

investment levels, rather than investment growth rates. In addition, the fact that all investment 

proxies remain statistically significant after controlling for past stock performance indicates that 

the investment effect is not subsumed by the momentum effect (Jegadeesh and Titman (1993)). 

[Insert Table 3 here] 

The pooled cross-sectional regressions implicitly assume that the regression coefficients 

are the same across firms with different levels of agency costs or agency investment frictions. To 

relax this assumption, we replicate the tests using the subsamples split by idiosyncratic volatility 

or past stock performance. More specifically, firms are split into terciles at the end of June of 

each year based on IVOL (in Panel A) or Rtn-1,-12 (in Panel B) in Table 4.  

Table 4 reports the coefficient estimates for the subsamples of the highest tercile and the 

lowest tercile, and a statistical comparison of the coefficient on the investment proxy across the 

subsamples. Panel A shows that except for the case of ΔI/I, the magnitude of the coefficient on 

the investment proxy is significantly higher for the subsample of firms with high idiosyncratic 

volatility than for the one with low idiosyncratic volatility. On average, the magnitude of the 

coefficient in the high volatility subsample is about three times that in the low volatility 
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subsample. Besides, the value effect is generally stronger for firms with high idiosyncratic 

volatility, as demonstrated by the coefficients on the book-to-market ratio. Similarly, Panel B of 

Table 4 shows that the investment-return relation is significantly stronger for the subsample of 

firms with low past stock performance than that with high past stock performance, except for the 

case of ΔI/I. The magnitude of the coefficient in the low past stock performance subsample is 

about twice that in the high past stock performance subsample. 

To summarize, both Tables 3 and 4 provide evidence lending support to Hypothesis 2 

that the negative association between investment and expected returns is stronger for firms with 

higher agency investment frictions as reflected in higher idiosyncratic volatility and poorer past 

stock performance.   

[Insert Table 4 here] 

4.5 Portfolio tests 

The cross-sectional regressions examine the linear relation between investment and 

subsequent stock returns and its interaction with agency costs. Next we use the portfolio 

approach to gauge the economic magnitudes of the effect of agency investment frictions on the 

investment anomaly defined as the return differentials between the stocks with high and low 

investment. We first sort stocks into quintiles at the end of June based on the measure of agency 

investment frictions. Within each quintile, we further sort stocks into quintiles based on the 

investment proxy. The investment hedge portfolio returns are calculated as the differences 

between the average stock returns in the highest and lowest investment quintiles. Stocks are 

rebalanced at the end of every June. We then compare the investment effect between the highest 

and lowest investment friction groups.  
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Table 5 presents the results. Panel A shows that the average monthly returns of the 

investment hedge portfolios are approximately -1.0% in the highest idiosyncratic volatility group 

and approximately -0.1% in the lowest idiosyncratic volatility group. The magnitudes increase 

almost monotonically from the lowest to the highest IVOL groups. The significant spreads 

between the two extreme IVOL groups demonstrate that higher firm-specific volatility in 

investment efficiency amplifies the negative association between investment and expected 

returns. Similarly, Panel B of Table 5 shows that the investment effect is stronger in the groups 

with lower past stock returns. The average returns of the hedge portfolios are approximately -

1.0% in the lowest past return group and approximately -0.4% in the highest past return group. 

The differentials between the two are all statistically significant.  

Note also that the patterns are more pronounced when the variables of investment levels 

rather than investment growth serve as the proxy for investment. This is in line with the model 

implication that agency costs are mainly imposed on the optimal level of investment and its 

sensitivity to the expected returns rather than the time-series changes in investment level and the 

corresponding return sensitivity. Panels C and D of Table 5 report abnormal returns of the 

investment hedge portfolio corresponding to those in Panels A and B. The abnormal returns are 

calculated using the Fama-French three-factor model. The results are similar to the case of raw 

returns and therefore the implications remain robust after controlling for the risk factors. 

[Insert Table 5 here] 

4.6 Summary of empirical findings and discussions 

We find that higher idiosyncratic volatility and poorer past stock performance lead to a 

lower level of investment and a stronger negative association between corporate investment and 

subsequent stock returns. The evidence supports the predictions of our model which generates 
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agency investment frictions. Higher idiosyncratic volatility and poorer past stock performance 

increase investment frictions through the channel of agency costs. As a result, a higher agency 

investment friction implies a lower optimal investment level and a higher investment-return 

inelasticity.  

Similar empirical results are documented in the literature as evidence supporting the 

mispricing explanation for the investment effect. For example, Li and Zhang (2010) and Lam 

and Wei (2011) also find that the negative relation between stock returns and investment 

anomalous variables is more pronounced in firms with higher idiosyncratic volatility. They 

interpret the results to be consistent with the argument of mispricing with limits to arbitrage, 

since higher idiosyncratic volatility can imply a higher arbitrage risk and thus a stronger return 

anomaly. Zhang (2006) uses the evidence of a positive relation between stock volatility and 

short-term price continuation to support the behavioral interpretation that a greater information 

uncertainty leads to a greater price drift.  

Although we cannot fully exclude the mispricing explanations, our model—to a certain 

extent—rationalizes the relation between idiosyncratic volatility and the investment effect. From 

the corporate perspective, in firms with higher idiosyncratic volatility or noisier information, it is 

costly to induce truthful investment behavior from the manager, which translates into a higher 

capital adjustment cost and a lower investment.
 

Therefore, in our model, the effect of 

idiosyncratic volatility on the investment effect is interpreted as the fundamental risk of the 

firm’s business rather than the arbitrage risk from the perspective of investors.  

The evidence regarding the effect of past stock performance on the investment effect is 

new to the literature. Although both the momentum effect and the investment effect are well 

documented, few studies connect the insights of the two. Our model and the empirical results 
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highlight a fundamental mechanism of how past stock performance can affect the investment-

return relation in a rational framework. Stambaugh, Yu, and Yuan (2012) show that the cross-

sectional return anomalies are stronger in the short leg. They interpret the evidence as support for 

the mispricing due to investor sentiment and short-sell impediments. Our tests are different in 

that we compare the returns of the long-short strategies across subsamples sorted by past stock 

performance instead of separating the long side from the short side. 

 

5. Conclusion 

We set up a dynamic q-theory of investment model with managerial investment diversion 

to evaluate the impact of agency costs on a firm’s investment policy. We find that the possibility 

of investment diversion due to high idiosyncratic volatility in investment efficiency and poor 

past stock performance increases the investment friction of the firm. The implication of the 

model is that the investment effect or the negative association between firm investment and 

expected returns is more pronounced for firms with higher fundamental uncertainty and more 

negative shocks to the wealth of the manager. We use idiosyncratic volatility to proxy for the 

fundamental uncertainty of the firm and past stock performance to proxy for negative shocks to 

the wealth of the manager to test the implications of our model.  

The model offers a rational explanation for the effect of idiosyncratic stock volatility on 

the negative investment-return relation, which was previously used as evidence to support the 

mispricing or behavioral explanation. We view idiosyncratic volatility as a measure of 

information noisiness and the degree of managerial agency problems. Besides, the model also 

offers the novel prediction that in firms hit by poor stock performance, the investment friction is 

amplified by agency costs, which leads to a more negative return-investment relation. Both 
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predictions on the variations in the cross-sectional return-investment relation are supported by 

the data.  

Overall, our study extends the rational explanation for the investment effect based on a 

modified q-theory of investment by taking into account the degree of agency costs.
30

 We 

interpret agency costs as a major source of investment frictions. The cross-sectional relations 

between investment and subsequent returns can shed light on the variations in the degree of 

agency costs across firms. We show that connecting a corporate finance model to cross-sectional 

stock returns can provide rich implications, and potentially circumvents some major difficulties 

(e.g., errors in the measurement of Tobin’s q) in empirical corporate finance.  

  

                                                 
30

 Titman, Wei, and Xie (2004) also provide an explanation for the investment effect based on a pure agency cost 

argument. In contrast, our model provides a solution to the agency problem by offering the manager an incentive 

contract to prevent investment diversion. 
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Appendix 

We define the change of measure according to the pricing kernel (5). Given the filtered 

probability space { , }, t F F , under measure P, and with ,{ }A tB  being a Brownian motion, we 

can define the risk-neutral measure Q such that  

 2

,ex ).
2

p(
1

A tB
d

t
d

  
Q

P
  (32) 

Then under the risk-neutral measure Q, ,{ }Q

A tB  is a Brownian motion such that  

 , , .Q

A t A t tdB dB dt    (33) 

And the productivity process {A }t  under measure Q is 

 ,( ) ,Q

A ttdA dt dB       (34) 

where ( )   is the risk-adjusted productivity.  

 In all parts of this appendix, we will work under the risk-neutral measure Q, and the 

expectation operator [.]E  means that the expectation is taken under the measure Q.  

We require the following regulatory condition for the capital accumulation of the firm:  

  
2

0

T
rt

te K dt   
  E  for any 0T  , (35) 

and 

 lim 0.rT

T
Te K



      (36) 

We also require the following regulatory condition for the contract: 

  
2

0
.t

te dU


 
  

 
E   (37) 
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A1:  First-best benchmark 

We use the techniques in Hennessy (2004) to derive the first-best firm value with 

investment efficiency shocks. The HJB equation to solve (6) is 

 2 21
( ) ( , ) )m x (a

2

F FB F

K KK

B B

I
rP K C I K P I K P I          (38) 

If we define an infinitesimal generator ( )hA  such that for an arbitrary second order 

differentiable function h ,  

 2 21
( ) ( ) ,

2
K KKh h I K h I   A  (39) 

 at the optimum, equation (38) could be written as  

 ( ) ( , ) ( ).FB FBrP K C I K P    A  (40) 

Differentiating both sides of (38) with respect to K , we have  

 2 21
( ) ( ) .

2
K

FB FB FB FB

K KK K KKKrP C P I K P P I            (41) 

Multiplying K  on both sides of (41), we have  

 
2 2( ) ( ) ( ).FB FB FB FB FB

K K KK KK KrP K K C K P K P I K P I P K           A  (42) 

Since the optimal investment I  satisfies the following first order condition, 

 
2 ,FB FB

KI KKC P P I   (43) 

we must have the following equation: 

 
2 2( , ) .FB FB

K KKI K KC I K C I C K P I P I C K      (44) 

Combining (42) and (44) together we have  

 ( ) ( , ) ( ).FB FB

K KrP K K C I K P K    A  (45) 

And it can be seen that  

 ( ) ( ).FB FB

K

B BF F

Kr P P K P P K  A  (46) 

Define ( )FB

K

rt

t

FB

tt e P P K   , we have  

 ,( )rt

t t I td e dB    (47) 

where ( ) B

Kt

F

KIP K   . Therefore, t  is a martingale under measure Q. Integrating  t  up to time

T , we have  
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0

,0( ) ( ) .
T

FB FB FrT FB rt

t I t

B

T K T Ke P P K P P K e dB           E E  (48) 

Let T   and since the transversality condition (36) holds, the left hand side of (48) is zero, so 

we have  

 0 0.FB

K

F BP P K   (49) 

Define K

FB FBq P  as the marginal q for the first-best firm, (49) shows FBq  is also equal to the 

average q ( 0/FBP K ), so / 0FBdq dK  . Plugging it back to (38), we have  

 max ( ) ( ) ( ).FB FB

i
rq c i q i        (50) 

Therefore, the optimal investment is determined by  

 1 FBi q   (51) 

and FBq  is solved from  

  
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2

 1
 .

2
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q

r q  



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A2:  Proof of Lemma 1. 

The process 
0 0

t
t

t

s s

t s s tV e dU e dU e W


      
   E  for (0, )t   is a square-integrable 

martingale. According to the Martingale Representation Theorem, there exists progressively 

measurable processes ,I t  and ,A t  such that 
, , ,

0
0 ,

0

t t
s s

I s s I s A s At s sV V e I dB e K dB         . 

Therefore on the path of an incentive-compatible contract, we have  

 , , , , .I t t I t At t t t t A tdU dW W dt I dB K dB          (53) 

First, we show that to make the contract incentive compatible, with any given ,A t , we 

need ,I t  . Suppose that the manager deviates and diverts investment at the magnitude I  for 

a period from  t  to t . Let t t t    converge to zero. The capital stock tK  will be reduced to
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.tK I t   The output t tY Y   will be reduced from  , ,A t At tK B B   to 

  , ,At t A tK I t B B    . As a result, the reduction in compensation would converge to 

, , , ,( ) .I t A t A t A tI t I t B B            The first term ,I t I t    is an infinitesimal on the same order 

as , ( )I t IO t    and the second is an infinitesimal on the same order as 
3 2

,

/( )A t IO t   . On the 

other hand, the manager’s private benefit of diversion is tI , which is an infinitesimal on the 

same order as )( tIO  . Since ,A t  is a bounded function, , ( )A t t t tI t z z     is infinitely 

small relative to tI  and , ( )I t IO t    when 0t , which means that the choice of ,A t  has 

no effect on the manager’s action of diverting investment. It also follows that to make the 

contract incentive compatible, it is necessary to set ,I t   a.e..  

Next, we show that the optimal compensation satisfies ,I t   and , 0A t  . We also 

show the optimality of the payment boundary w  as defined in (14). Notice that this part of the 

proof is the same as DeMarzo et al. (2012). For any incentive-compatible contract ),,( UI , 

define its auxiliary gain process { }G  under the risk-neutral measure as (for t  ) under the risk-

neutral measure 
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 
   (54) 

At optimum, the drift of tdG is maximized at zero. Using Ito’s Lemma, the auxiliary 

process can be expressed as 



 41 

 

    

 

   

    

, , ,

, , ,

2

2 2 2 2 2 2 2

, ,

2

,
2

1 1
2

2 2

1

1

2 2

t

Q t

t t t

t

I t I t A t

Q

rt

t t t K W

KK WW KW WW t

W t tW I t A t A t

I

I t t K t t I t

t

e dG

I
K dA I dt dt rP K W dt P i K dt P Wdt

K

P P P i K dt P K dt

P dU P I dB K dB P i K dB

K rp i i i p p w p w


 

    

    


    



      

   

     

           

 
 
 

  
    

2 2 2 2 2

,

,

,

,

, , ,

1

2

1

t A t

Q

A t A tt t t I t t II tt

w p i p dt

p dU K p dB i p p w dB p i dB

  

    

  

         

 (55) 

Equation (55) is derived from the fact that if ( )p w K P=  where /w W K , then KP p p w  , 

WP p , 2 /KKP p w K , /WWP p K , and /KWP p w K  . From the above equation, if 

0p   and 1p   , the drift of tdG  is maximized by setting ,I t   (which is constrained by 

the incentive compatibility) and setting 0tdU   only when 1p   . 1p    is ensured by the 

simple intuition that the total firm value p w  cannot decrease through a positive value transfer 

from the shareholders to the manager. We prove 0p   in the proof of Lemma 2.  

The proof for setting the optimal inf{ : }00 tt W    is the same as the proof of 

Theorem 1 in He (2009). Also from (55), at optimum, the drift of tdG  is zero, and the HJB 

equation in (17) follows. 

A3:  Proof of Lemma 2. 

Combining the HJB function (17) and the optimal investment (18), we have 

    
 

 
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11
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p w
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 
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 
.  (56) 

Differentiating p with respect to w  in the equation gives 
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1 ( ) 2 ( )2 1

( ) ( )

p p w p w p wp p w wp
r p

p w p w

wp p

   


     

 

         
  

    

   

  (57) 

At boundary w ,   1p w    and   0p w  , so the above equation at w w  becomes 

  
 

2 2 21 ( )
.

2

p wp p w
r p

 




   
    (58) 

Therefore,   0p w  .  

For some 0>x  and for ),( wxww  , 0<)(wp  . Now choose the largest ww <~  

such that 0=)~(wp   and for ),,~( www  0<)(wp  . We obtain 

     
 

 
2

( ) 1
( ) = ( )

2

p wp w
r p wp w r wp w   



 
       .  (59) 

Since 
FBqpwp <~   and    

2

1
= ,

2

FB

FB
q

r q  


      0<)~(wp . At w~  

  
 

2 2 2

2

( ) ( ) 1 ( )( )
( ) =

2

p w wp w p w w
r p w

 




   
   (60) 

and ( ) > 0.p w  But this contradicts the selection of w~  as the largest w  such that 0=)(wp  , 

since following the selection, it must be true that for ),,~( www  0<)(wp   and 0<)~(wp  . 

Therefore, such w~  does not exist for ][0,w , and we have 0<)(wp   for the whole region.  

A4:  Proof of Proposition 1. 

The proof is straightforward, as it follows directly from (18), (19), and (23). 

A5:  Proof of 
 * /

< 0.
A

i 



  


 

It can be shown from (28) that  
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     

*

2

1

2A A

i

r r


     




       

,  (61) 

and from (61), if    
2

2A Ar r           
 increases in A  then the proof is 

complete. This is obvious, since for 
*i  to be meaningful, we have restricted the parameter values 

so that  

 0r        (62) 

    
2

2 / 0r r           . (63) 

And since A  ,    
2

2A Ar r             increases in A , and 
 

*i






 

decreases in A .  

A6:  Proof of / 0A w    when r  : 

From (20), we have  

 2 2 2( ) 2( )
A

p w w p
w


   


     


  (64) 

And from (57) we have 

   
 

 
2

2 2 2

2
2 2

1
( ) 2 ( ) .

2 ( )

p p w
r p i wp p w p w

p w

      
  

 
          

   
  (65) 

Since in our model with agency costs the investment level i  would be less than the first-best 

investment 
FBi , 

  
   2

2 .FB
r

i i r r
  

   


  
          (66) 

And when r  , the LHS of (65) is zero. Since 0p  , the only way for (65) to be true is 

that  

 2 2 2( ) 2 ( ) 0p w p w        .  (67) 
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Thus we have proved that  

 2 2 2( ) 2( ) 0.
A

p w w p
w


   


      


  (68) 

A7:  The loadings on the idiosyncratic shock IdB  

Equation  (15) shows that w  has a loading equal to ( )i w   on IdB . The instantaneous 

rate of return on the firm’s stock is  

 
( )dY c i Kdt dP dW

P W

  


. (69) 

It can be seen from (55) that while ( )dY c i Kdt  has no loading on IdB , dP  has a loading of 

  tK p p w p i     and dW has a loading equal to iK . Then the instantaneous return 

would have a loading on IdB  equal to  

 
   1p p w p

i
p w




   


 (70) 

Note that in the model, w   is not possible, since whenever w  , w  no longer diffuses, and 

results in an absorption at w  .
31

 Therefore, the shocks of IdB  always hit the instantaneous 

return and w  in the same direction.  

 

  

                                                 
31

 We can show that w   is only possible when r  , and if r  , we have w w   . The proof is the same 

as the proofs of Propositions 2 and 3 in He (2009).  
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A8:  Variable definitions 

 

I/A Investment-to-asset, calculated as the annual change in gross property, plant, and 

equipment (Compustat item PPEGT) plus the annual change in inventories (item 

INVT) divided by the lagged book value of assets.   

 

ΔA A Asset growth, calculated as the change in total assets (item AT) divided by lagged 

total assets.  

 

ΔI I Investment growth, calculated as the growth rate of capital expenditure (item 

CAPX). 

 

I/K Investment-to-capital, calculated as capital expenditure (item CAPX) divided by 

lagged gross property, plant, and equipment (item PPEGT). 

 

IVOL Idiosyncratic volatility, calculated as the standard deviation of the residuals in the 

regression of daily stock returns on Fam-French three factors (MKTRF, SMB, 

HML) over the previous 12 months ending at the end of June. 

 

Rtn-1,-12 Past returns, calculated as cumulative monthly returns over the previous 12 

months ending at the end of June. 

 

Ln(MV) Size, calculated as the log of market value of equity at the end of June.  

 

Ln(BM) Book-to-market, calculated as the log of the book value of equity divided by the 

market value of equity as of the end of December of the fiscal year. The book 

value of equity is calculated following Daniel and Titman (2006). 
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Table 1: Summary statistics and correlations 

 

Panel A reports the summary statistics for monthly stock returns in percentage (Return), idiosyncratic volatility in 

monthly percentage (IVOL), investment-to-asset ratios (I/A), asset growth (ΔA/A), investment growth (ΔI/I), 

investment-to-capital ratios (I/K), size (Ln(MV)), and book-to-market ratios (Ln(BM)). Variable definitions are 

detailed in Appendix A8. Variables are winsorized at the 1
st
 and 99

th
 percentiles. Panel B reports the correlations 

which are the time-series means of the pairwise cross-sectional Pearson correlations for each month. The 

significance of a given correlation is calculated based on the time-series standard errors. The sample period is from 

1963-2014. 
***

 and 
**

 indicate significance levels of 1% and 5%, respectively.  

 

Panel A: Summary statistics 

 

Mean Std Dev 1% 25% Median 75% 99% 

Return (%) 1.03 15.32 -39.13 -6.98 0.00 7.64 58.96 

IVOL (%) 15.42 9.81 3.62 8.50 12.76 19.35 54.63 

I/A 0.11 0.24 -0.36 0.01 0.06 0.15 1.29 

∆A A 0.26 0.78 -0.49 -0.01 0.08 0.23 4.93 

∆I I 0.63 2.25 -0.93 -0.25 0.11 0.65 13.11 

I/K 0.24 0.40 0.01 0.07 0.12 0.23 2.61 

Ln(MV) 4.55 2.16 0.25 2.93 4.42 6.05 10.02 

Ln(BM) -0.53 0.91 -3.24 -1.08 -0.47 0.08 1.55 

 

Panel B: Correlations 

 
Return (%) IVOL (%) I/A ∆A A ∆I I I/K Ln(MV) 

IVOL (%) -0.02
***

 
      

I/A -0.02
***

 -0.02
***

 
     

∆A A -0.02
***

 0.03
***

 0.67
***

 
    

∆I I -0.01
***

 0.08
***

 0.35
***

 0.33
***

 
   

I/K -0.02
***

 0.11
***

 0.52
***

 0.48
***

 0.53
***

 
  

Ln(MV) 0.00 -0.61
***

 0.07
***

 0.04
***

 -0.07
***

 -0.02
***

 
 

Ln(BM) 0.03
***

 0.01
*
 -0.18

***
 -0.22

***
 -0.10

***
 -0.24

***
 -0.29

***
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Table 2: Determinants of investment 

 

This table reports the coefficients estimated from panel regressions of investment on firm size (Ln(MV)), book-to-

market ratios (Ln(BM)), idiosyncratic volatility (IVOL), and past stock returns (Rtn-1,-12). Firm and year dummies are 

included in all regressions. The dependent variable is investment (Inv) proxied by investment-to-asset ratios (I/A), 

asset growth (ΔA/A), investment growth (ΔI/I), and investment-to-capital ratios (I/K). After is a dummy that equals 1 

if the year is after 1990 and zero otherwise. Variable definitions are detailed in Appendix A8. The sample period is 

from 1963-2014. The t-statistics are in parentheses. Standard errors are clustered by firm. 
***

, 
** 

and 
*
 indicate 

significance levels of 1%, 5% and 10%, respectively.  

 

Panel A: Investment regressions without the interaction term 

Dependent variable with Inv = I/A ∆A/A ∆I/I I/K 

 

(1) (2) (3) (4) 

Ln(MV) -0.003
**

 -0.050
***

 -0.104
***

 0.017
***

 

 

(-2.24) (-15.80) (-10.51) (7.75) 

Ln(BM) -0.066
***

 -0.231
***

 -0.341
***

 -0.076
***

 

 

(-39.39) (-48.09) (-24.48) (-28.63) 

IVOL -0.233
***

 -0.220
***

 -0.594
***

 -0.150
***

 

 

(-18.33) (-6.72) (-4.46) (-6.98) 

Rtn-1,-12 0.044
***

 0.171
***

 0.411
***

 0.039
***

 

 

(31.99) (40.64) (28.13) (18.72) 

Firm Dummy Yes Yes Yes Yes 

Year Dummy Yes Yes Yes Yes 

R-squared 0.11 0.15 0.04 0.10 

N 14,302 14,412 14,272 14,286 

  

Panel B: Investment regressions with the interaction term (IVOLAfter) 

Dependent variable with Inv = I/A ∆A/A ∆I/I I/K 

 

(1) (2) (3) (4) 

Ln(MV) -0.003
**

 -0.050
***

 -0.104
***

 0.017
***

 

 

(-2.20) (-15.79) (-10.51) (7.74) 

Ln(BM) -0.066
***

 -0.231
***

 -0.341
***

 -0.076
***

 

 

(-39.51) (-48.21) (-24.50) (-28.60) 

IVOL -0.330
***

 -0.461
***

 -0.680
***

 -0.048 

 

(-14.46) (-10.24) (-3.20) (-1.49) 

IVOLAfter 0.128
***

 0.317
***

 0.113 -0.135
***

 

 

(5.46) (6.52) (0.53) (-4.10) 

Rtn-1,-12 0.043
***

 0.171
***

 0.411
***

 0.040
***

 

 

(32.00) (40.65) (28.12) (18.74) 

Firm Dummy Yes Yes Yes Yes 

Year Dummy Yes Yes Yes Yes 

R-squared 0.11 0.15 0.04 0.10 

N 14,302 14,412 14,272 14,286 
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Table 3: Fama and MacBeth regressions on future returns: Whole-sample analysis 

 

This table reports the coefficients estimated from the Fama and MacBeth (1973) cross-sectional regressions of 

monthly returns on firm size (Ln(MV)), book-to-market ratios (Ln(BM)), and investment (Inv). In Panel A, 

idiosyncratic volatility (IVOL) and its interaction with investment are included. In Panel B, past stock returns (Rtn-1,-

12) and its interaction with investment are included. Investment (Inv) is proxied by investment-to-asset ratios (I/A), 

asset growth (ΔA/A), investment growth (ΔI/I), and investment-to-capital ratios (I/K). Variable definitions are 

detailed in Appendix A8. The sample period is from 1963-2014. The t-statistics are in parentheses. 
***

, 
** 

and 
*
 

indicate significance levels of 1%, 5% and 10%, respectively.  

 

Panel A: IVOL as a proxy for agency costs 

 
Inv = I/A Inv = ∆A A Inv = ∆I I Inv = I/K 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Ln(MV) 0.010 -0.057
*
 0.006 -0.053

*
 0.000 -0.063

**
 0.001 -0.059

*
 

 
(0.24) (-1.78) (0.12) (-1.70) (0.01) (-2.03) (0.03) (-1.88) 

Ln(BM) 0.347
***

 0.291
***

 0.341
***

 0.298
***

 0.357
***

 0.298
***

 0.330
***

 0.281
***

 

 
(4.84) (4.93) (4.91) (5.14) (4.73) (4.73) (4.75) (4.80) 

Inv -0.964
***

 -0.190 -0.395
***

 0.069 -0.071
***

 -0.021 -0.525
***

 0.268 

 
(-7.29) (-0.92) (-6.79) (0.45) (-6.83) (-1.09) (-5.60) (1.14) 

IVOL 
 

-0.025
*
 

 
-0.022

*
 

 
-0.025

*
 

 
-0.017 

  
(-1.96) 

 
(-1.66) 

 
(-1.83) 

 
(-1.24) 

InvIVOL 
 

-0.045
***

 
 

-0.028
**

 
 

-0.004
***

 
 

-0.056
***

 

  
(-3.79) 

 
(-2.49) 

 
(-2.82) 

 
(-3.44) 

R-squared 0.02 0.04 0.03 0.04 0.02 0.04 0.03 0.04 

N(groups) 612 612 612 612 612 612 612 612 

 

Panel B: Past stock performance as a proxy for agency costs 

 
Inv = I/A Inv = ∆A A Inv = ∆I I Inv = I/K 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Ln(MV) 0.010 0.006 0.006 0.004 0.000 -0.003 0.001 -0.002 

 
(0.24) (0.13) (0.12) (0.08) (0.01) (-0.07) (0.03) (-0.05) 

Ln(BM) 0.347
***

 0.354
***

 0.341
***

 0.350
***

 0.357
***

 0.363
***

 0.330
***

 0.337
***

 

 
(4.84) (5.35) (4.91) (5.51) (4.73) (5.22) (4.75) (5.30) 

Inv -0.964
***

 -0.967
***

 -0.395
***

 -0.389
***

 -0.071
***

 -0.067
***

 -0.525
***

 -0.505
***

 

 
(-7.29) (-7.20) (-6.79) (-5.79) (-6.83) (-5.88) (-5.60) (-4.71) 

Rtn-1,-12  
0.013 

 
0.015 

 
0.025

*
 

 
0.012 

  
(0.87) 

 
(0.97) 

 
(1.65) 

 
(0.82) 

InvRtn-1,-12  
0.091

***
 

 
0.030

***
 

 
0.002 

 
0.046

**
 

  
(4.84) 

 
(2.92) 

 
(0.86) 

 
(2.23) 

R-squared 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 

N(groups) 612 612 612 612 612 612 612 612 
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Table 4: Fama and MacBeth regressions of future returns: Subsample analyses 

 

This table reports the coefficients estimated from the Fama and MacBeth (1973) cross-sectional regressions of 

monthly returns on firm size (Ln(MV)), book-to-market ratios (Ln(BM)) and investment (Inv) in the subsamples. 

Firms are split into terciles at the end of June each year based on idiosyncratic volatility (IVOL) in Panel A and on 

past stock returns (Rtn-1,-12) in Panel B. “High” indicates the subsample with firms in the top tercile, while “Low” 

indicates the one with firms in the bottom tercile. t(High-Low) is the t-statistic comparing the coefficients on the 

investment variable across the two subsamples. Investment (Inv) is proxied by investment-to-asset ratio (I/A)s, asset 

growth (ΔA/A), investment growth (ΔI/I), and investment-to-capital ratios (I/K). Variable definitions are detailed in 

Appendix A8. The sample period is from 1963-2014. The t-statistics are in parentheses. 
***

, 
** 

and 
*
 indicate 

significance levels of 1%, 5% and 10%, respectively.  

 

Panel A: Idiosyncratic volatility (IVOL) as a proxy for agency costs 

 
Inv = I/A Inv = ∆A A Inv = ∆I I Inv = I/K 

IVOL Group Low High Low High Low High Low High 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Ln(MV) -0.038 -0.053 -0.036 -0.047 -0.042 -0.092
*
 -0.040 -0.069 

 
(-1.30) (-1.06) (-1.30) (-0.96) (-1.45) (-1.81) (-1.41) (-1.34) 

Ln(BM) 0.064 0.494
***

 0.086 0.491
***

 0.067 0.492
***

 0.060 0.470
***

 

 
(1.04) (7.91) (1.45) (7.63) (1.06) (7.25) (1.04) (7.18) 

Inv -0.368
**

 -1.173
***

 -0.019 -0.488
***

 -0.051
***

 -0.072
***

 -0.166 -0.674
***

 

 
(-2.56) (-8.27) (-0.14) (-7.12) (-3.56) (-6.62) (-0.90) (-7.41) 

t(High-Low) (-5.19) 
 

(-4.24) 
 

(-1.19) 
 

(-3.02) 
 

R-squared 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 

N(groups) 612 612 612 612 612 612 612 612 

 

Panel B: Past stock performance (Rtn-1,-12) as a proxy for agency costs 

 
Inv = I/A Inv = ∆A A Inv = ∆I I Inv = I/K 

Rtn-1,-12 group Low High Low High Low High Low High 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Ln(MV) 0.015 0.006 0.012 0.005 -0.002 -0.004 0.002 0.004 

 
(0.31) (0.14) (0.26) (0.11) (-0.04) (-0.11) (0.05) (0.09) 

Ln(BM) 0.447
***

 0.250
***

 0.440
***

 0.238
***

 0.472
***

 0.240
***

 0.432
***

 0.240
***

 

 
(6.43) (3.43) (6.52) (3.44) (6.45) (3.14) (6.36) (3.45) 

Inv -1.288
***

 -0.524
***

 -0.514
***

 -0.297
***

 -0.076
***

 -0.061
***

 -0.685
***

 -0.297
***

 

 
(-7.85) (-3.44) (-6.28) (-5.26) (-5.26) (-4.90) (-6.46) (-2.69) 

t (High-Low) (4.53) 
 

(2.60) 
 

(0.87) 
 

(2.79) 
 

R-squared 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 

N(groups) 612 612 612 612 612 612 612 612 

 

  



 50 

Table 5: Portfolio tests 

 

This table reports the average monthly returns in percent for the investment hedge portfolio across different groups 

sorted by idiosyncratic volatility (IVOL) in Panel A and past return (Rtn-1,-12) in Panel B. Each year at the end of 

June, stocks are first sorted into quintiles based on the sorting variable. Stocks are further sorted into quintiles based 

on investment (Inv). The returns of the investment hedge portfolio are calculated as the return differentials between 

the highest and lowest investment quintiles. Portfolios are rebalanced every June. (5-1) indicates the return 

differences across the investment hedge portfolios in the highest and lowest sorting variable quintiles. Panels C and 

Panel D report the excess returns of the portfolios corresponding to those in Panel A and Panel B, respectively. 

Abnormal returns are calculated using the Fama-French three-factor model. Investment (Inv) is proxied by 

investment-to-asset ratios (I/A), asset growth (ΔA/A), investment growth (ΔI/I), and investment-to-capital ratios 

(I/K). Variable definitions are detailed in Appendix A8. The sample period is from 1963-2014. The t-statistics are in 

parentheses. 
***

, 
** 

and 
*
 indicate significance levels of 1%, 5% and 10%, respectively. 

 

Panel A: Raw returns and using IVOL as a proxy for agency costs 

IVOL Inv =  I/A  Inv   ∆A A  Inv   ∆I I  Inv = I/K 

Rank Return t-stat  Return t-stat  Return t-stat  Return t-stat 

1 -0.180 (-3.14)  -0.106 (-1.68)  -0.097 (-2.00)  -0.103 (-1.26) 

2 -0.356 (-4.33)  -0.313 (-3.50)  -0.108 (-1.74)  -0.351 (-3.72) 

3 -0.631 (-6.22)  -0.774 (-6.78)  -0.530 (-6.33)  -0.547 (-4.46) 

4 -1.157 (-9.80)  -1.099 (-8.76)  -0.647 (-6.07)  -0.932 (-6.76) 

5 -1.153 (-8.79)  -1.103 (-8.23)  -0.634 (-5.12)  -0.958 (-6.46) 

(5-1) -0.973 (-7.42)  -0.997 (-7.26)  -0.537 (-4.14)  -0.856 (-5.76) 

 

Panel B: Raw returns and using past stock performance as a proxy for agency costs 

Rtn-1,-12 Inv =  I/A  Inv   ∆A A  Inv   ∆I I  Inv = I/K 

Rank Return t-stat  Return t-stat  Return t-stat  Return t-stat 

1 -1.196 (-8.58)  -1.115 (-7.61) 

 

-0.644 (-5.28) 

 

-0.963 (-6.37) 

2 -0.658 (-6.18)  -0.664 (-5.54) 

 

-0.398 (-4.49) 

 

-0.618 (-5.37) 

3 -0.632 (-6.94)  -0.650 (-6.61) 

 

-0.403 (-5.11) 

 

-0.512 (-4.53) 

4 -0.427 (-4.54)  -0.500 (-5.03) 

 

-0.251 (-3.17) 

 

-0.425 (-3.75) 

5 -0.432 (-3.91)  -0.434 (-3.71) 

 

-0.340 (-3.73) 

 

-0.230 (-1.83) 

(5-1) 0.764 (4.94)  0.681 (4.40)   0.304 (2.17)   0.733 (4.58) 
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Panel C: Abnormal returns using IVOL as a proxy for agency costs 

IVOL Inv =  I/A  Inv   ∆A A  Inv   ∆I I  Inv = I/K 

rank return t-stat  Return t-stat  Return t-stat  Return t-stat 

1 -0.176 (-3.13)  -0.048 (-0.88)  -0.073 (-1.51)  -0.052 (-0.81) 

2 -0.345 (-4.42)  -0.212 (-2.79)  -0.083 (-1.39)  -0.293 (-3.87) 

3 -0.605 (-6.43)  -0.657 (-6.82)  -0.464 (-5.91)  -0.425 (-4.53) 

4 -1.155 (-10.56)  -1.034 (-9.55)  -0.572 (-5.77)  -0.923 (-8.25) 

5 -1.075 (-8.60)  -1.012 (-7.88)  -0.567 (-4.60)  -0.902 (-6.67) 

(5-1) -0.900 (-7.04)  -0.964 (-7.12)  -0.494 (-3.76)  -0.850 (-5.57) 

 

Panel D: Abnormal returns using past stock performance as a proxy for agency costs 

Rtn-1,-12 Inv =  I/A  Inv   ∆A A  Inv   ∆I I  Inv = I/K 

rank Return t-stat  Return t-stat  Return t-stat  Return t-stat 

1 -1.105 (-8.37)  -1.040 (-7.85)  -0.593 (-4.97)  -0.902 (-6.92) 

2 -0.608 (-5.85)  -0.589 (-5.38)  -0.331 (-3.77)  -0.541 (-5.81) 

3 -0.556 (-6.74)  -0.548 (-6.21)  -0.343 (-4.44)  -0.436 (-5.28) 

4 -0.354 (-3.95)  -0.351 (-4.19)  -0.145 (-1.95)  -0.355 (-4.04) 

5 -0.384 (-3.74)  -0.300 (-2.81)  -0.271 (-3.04)  -0.125 (-1.23) 

(5-1) 0.721 (4.63)  0.740 (4.81)  0.322 (2.26)  0.776 (4.82) 

 


