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Abstract

Contagion in financial markets occurs when return and volatility transmit between fun-
damentally unrelated sectors. We develop an equilibrium model showing that contagion
arises because investors pay fluctuating attention to news. As a negative shock hits one
sector, investors pay more attention to it. This raises the volatility of equilibrium dis-
count rates resulting in simultaneous spikes in cross-sector correlations and volatilities.
We test our theory in the U.S. equity market from 1980 to 2009. Using comprehensive
customer-supplier relationships data to identify unrelated firms, we find evidence con-
sistent with the model’s predictions.
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1 Introduction

Evidence of contagion in financial markets has been extensively documented in the empirical
literature (e.g., Hamao, Masulis, and Ng, 1990; Lin, Engle, and Ito, 1994). More precisely,
there exists ample evidence of volatility and return spillovers between two seemingly unre-
lated assets.1 Such phenomena have become increasingly important in light of the recent
subprime and sovereign debt crises. This is because simultaneous spikes in asset volatilities
and cross-asset correlations significantly alter risk management strategies, optimal portfolio
choices, and the trading of derivatives.

In this paper, we provide theoretical and empirical evidence that investors’ fluctuating
attention to news is an important channel through which contagion arises in financial mar-
kets. We show that when investors’ attention to a particular sector increases, risk-adjusted
discount rates become more volatile. As a result, cross-sector correlations and volatilities
increase simultaneously in the entire market, despite the fact that cash-flows and news as-
sociated to each sector are independent from one another.

We consider a pure-exchange economy à la Lucas (1978) with two risky assets—sectors—
that are claims to two exogenous and independent dividend streams.2 The economy is popu-
lated by a representative investor who needs to estimate both unobservable expected dividend
growth rates (henceforth fundamentals). The investor has two different types of relevant in-
formation at hand: information provided by the observation of dividends, and information
provided by the observation of news. The key innovation here is that the investor pays
fluctuating attention to news, which is supported by empirical evidence in Da, Engelberg,
and Gao (2011).3 In other words, there are periods when she is well focused and capable
of processing many news sources, and periods when she is not. We assume that investor’s
attention to a given asset depends on the past performance of that asset’s dividend growth.
Importantly, we emphasize that attention to one asset is independent from attention to the
other because dividends are independent from each other.

The main prediction of our model is that fluctuating attention implies return and volatil-
ity spillover effects among fundamentally unrelated market sectors. The intuition is as fol-
lows. As a negative shock hits one market sector, more attention is paid to news on that
sector. Since the content of news is used to estimate the economic fundamental, a rise
in attention implies a faster transmission of news, thereby increasing the volatility of that

1See also King and Wadhwani (1990), Kaminsky and Reinhart (2000), Bae, Karolyi, and Stulz (2003),
Bekaert, Harvey, and Ng (2005), Diebold and Yilmaz (2009), King, Sentana, and Wadhwani (1994), Kallberg
and Pasquariello (2005), Barberis, Shleifer, and Wurgler (2005), and Boyer, Kumagai, and Yuan (2006).

2This assumption can be relaxed. It is imposed for the model to focus exclusively on an attention-based
contagion instead of a fundamental-based contagion.

3See also, Vlastakis and Markellos (2012), and Andrei and Hasler (2015).
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sector’s estimated fundamental. In equilibrium, a more volatile estimated fundamental en-
dogenously generates more volatile equilibrium discount rates. This in turn implies increases
in the volatility of the sector hit by the shock, the volatility of the sector that is unrelated
to it, and the cross-sector return correlation. The key mechanism of how shocks propagate
from one market sector to another is therefore through attention and discount rates.

The model reduces to a simple two-tree economy with investor learning when the fluctu-
ating attention feature is shut down, i.e., when attention is constant. In this case, dividend
share becomes the main driver of volatility and correlation. An increase in the dividend share
of one market sector, however, mechanically decreases that of the other. As a result, market
volatilities move in opposite directions and a simultaneous increase in market volatilities and
cross-market correlations is inconceivable. Thus, fluctuating investor attention to news is
necessary for observing the volatility and return spillover effects that are synonymous with
contagion in financial markets.

We put our model to the test by examining contagion among unrelated sectors in the U.S.
equity market from 1980 through 2009. We choose the U.S. market because contagion in
our model arises via shocks to the economy’s equilibrium discount rates. Therefore, using a
domestic market rather than international markets places less reliance on the assumption of a
well-integrated economy. Our empirical design is to examine contagion between an industry
and a group of firms that are fundamentally unrelated to that industry. We form industry
portfolios following the Fama-French portfolio definitions. We identify a group of firms
unrelated to each industry using a customer-supplier relationships database constructed from
the COMPUSTAT Segment Customer File.4 The relationship status are updated annually.
The database identifies 66,290 customer-supplier relationships during our sample period. We
use a conservative approach to form a portfolio of firms that is unrelated to each industry.
For firms to be considered fundamentally unrelated, they must belong to different industries
and there must be at least six degrees of separation between them in the customer-supplier
relationships database.

We examine contagion on eight pairs of unrelated portfolios that we construct: the in-
dustry portfolio and its unrelated-firm portfolio. Monthly volatilities and return correlations
are estimated using GARCH and DCC-GARCH models (see Engle (2002)). Following Ger-
vais, Kaniel, and Mingelgrin (2001), Barber and Odean (2008) among others, we use trading
volume as a proxy for investor attention. We choose trading volume because it is easily
measurable and as argued by Hou, Xiong, and Peng (2009), it should be highly correlated
with attention because investors cannot actively trade a stock if they do not pay attention

4Our method of identifying related firms is similar to Cohen and Frazzini (2008) who find a predictable
return pattern between economically linked firms
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to it. Precisely, our monthly measure of investor attention for each portfolio is defined by
its level of share turnover, i.e., trading volume during the month divided by number of com-
mon shares outstanding. Using the autoregressive moving-average model with exogenous
variables (ARMAX), we examine how changes in attention to two unrelated portfolios affect
changes in their volatilities and correlations.

We find clear evidence that supports the model’s predictions. Estimation results show
that a change in attention to the industry portfolio not only increases its portfolio volatility,
but also the volatility of the portfolio that is unrelated to it. We obtain the exact same
conclusions when we look at the effect of changes in attention on the correlation between two
unrelated portfolios. As a robustness check, we estimate time-varying dynamics of attention
and contagion using a multivariate VAR framework and reach the same conclusions. Overall,
our empirical results provide strong evidence that an increase in attention in one market
positively affects the volatility of the other market, as well as their cross-market return
correlation, despite the two markets being fundamentally unrelated.

This paper contributes to two strands of literature. The first is the asset pricing litera-
ture examining how contagion arises in financial markets. It is generally difficult to explain
both return and volatility spillover effects in a unified general equilibrium framework. For
instance, in Cochrane, Longstaff, and Santa-Clara (2008) and Martin (2013), market volatili-
ties and cross-market correlations are driven by dividend shares. An increase in the dividend
share of one market mechanically decreases that of another causing volatilities to move in
opposite directions. As a result, the model cannot generate a simultaneous increase in mar-
ket volatilities and cross-market correlations. Our paper shows that such challenge can be
resolved if one accounts for the observation that investors pay fluctuating attention to news.

Other studies that offer theoretical explanations for contagion include Kyle and Xiong
(2001), Kodres and Pritsker (2002), Dumas, Harvey, and Ruiz (2003), Yuan (2005), and
Pasquariello (2007) among others. Kodres and Pritsker (2002) show that when the dif-
ferences between unobservable payoffs and their corresponding signals are cross-sectionally
correlated, contagion arises through a portfolio re-balancing channel. Yuan (2005) shows
that asymmetric information and financial constraints lead to contagion. In Pasquariello
(2007), contagion is implied by asymmetric information and systemic risk. As shown by
Dumas, Harvey, and Ruiz (2003), observed excess correlations can be explained by a high
level of market integration. In these aforementioned studies, contagion is defined as the
correlation in excess of a benchmark model. Such definition differs slightly from ours in
that we require return volatilities and cross-return correlations of fundamentally unrelated
firms to increase simultaneously. Using the same definition of contagion as ours, Kyle and
Xiong (2001) show that contagion is implied by wealth effects. Our paper is complementary
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because it shows both theoretically and empirically that investors’ fluctuating attention to
news is a key determinant of contagion in financial markets.

This paper also contributes to the growing literature examining how investor attention
affects asset prices. Earlier evidence that new information can only influence prices if in-
vestors pay attention to it is shown in Huberman and Regev (2001). More recently, Dellavi-
gna and Pollet (2009) find the post-earnings announcement drift on stock returns is stronger
subsequent to earnings announced on Friday relative to other weekdays, suggesting that
inattention associated with Friday announcements delays information from being reflected
in stock prices.

The role of fluctuating attention on asset prices has also been documented by a number
of recent studies. Using Google search frequencies on companies’ names to measure investor
attention, Da, Engelberg, and Gao (2011) find their attention proxy positively predicts short-
term stock returns. Garcia (2013) finds that good and bad news recorded from the New
York Times explain returns on the Dow Jones Industrial Average better in recessions than
in expansions. This suggests that more attention is allocated to processing new information
during down markets. Andrei and Hasler (2015) find that stock-return volatility and risk
premia increase with both investor attention and uncertainty. In a static framework, Mondria
and Quintana-Domeque (2013) examines the role of limited information processing capacity
on two fundamentally unrelated markets and find that an increase in uncertainty of one
market implies a price drop in the other. Our results add to this growing literature by
showing the effect of fluctuating attention on the cross-section of returns, generating a new
and complementary contribution.

The remainder of the paper is organized as follows. Section 2 describes the model and
derives the equilibrium variables. Section 3 exposes the model’s predictions. Section 4
discusses our empirical tests and results. Section 5 concludes. Derivations and computational
considerations are provided in Appendix A.

2 Model

We consider an infinite horizon economy populated by a single investor who pays fluctu-
ating attention to news. There are two output processes (henceforth the dividends) with
unobservable expected growth rates (henceforth the fundamentals). The investor estimates
the value of the fundamentals by observing the dividends and two signals. Naturally, the
accuracies of the signals are positively related to the level of the investor’s attention.

All quantities are expressed in units of a single perishable good with price equal to unity.
The set of securities available for investment consists in one riskless asset in zero net supply
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and two risky assets (stocks) in positive supply of one unit. The riskless asset is locally
deterministic and pays a riskless rate r to be determined in equilibrium. The two stocks are
claims to exogenous dividends δ1 and δ2 and have prices P1 and P2, respectively. Dividends
dynamics are written as

dδit
δit

= fitdt+ σδdW
δ
it, i ∈ {1, 2} (1)

where
(
W δ

1 ,W
δ
2

)> is a standard Brownian motion.
Although the investor does not observe fundamentals f1 and f2, she knows that these

processes follow

dfit = λ(f̄ − fit)dt+ σfdW
f
it , i ∈ {1, 2} (2)

where
(
W f

1 ,W
f
2

)>
is a standard Brownian motion. Hence fundamentals mean-revert to

their long-term means f̄ at speed λ.
The investor has four pieces of information available to estimate the value of the fun-

damentals. The first two pieces consist in the dividend growth rates dδ1
δ1

and dδ2
δ2
. Because

fundamentals drive dividends, observing dividend growth rates provides valuable information
about the level of fundamentals.

The remaining two pieces of information are signals denoted by s1 and s2. Their dynamics
are

dsit = ΦitdW
f
it +

√
1− Φ2

itdW
s
it, i ∈ {1, 2} (3)

where Φ1,Φ2 ∈ [0, 1] represent the precisions of the signals. We interpret these two variables
as attention paid to stock 1 and stock 2, respectively. The reason being simply that the
more attention paid to a given sector, the more precise the news signal on that sector

becomes. The 6-dimensional vector
(
W δ

1 ,W
δ
2 ,W

f
1 ,W

f
2 ,W

s
1 ,W

s
2

)>
is a standard Brownian

motion. Therefore, markets are perfectly symmetric and fundamentally unrelated. This
assumption allows us to precisely determine the mechanism leading to contagion.

We motivate the dynamic of the information signals in Equation (3) as follows. Assume
the investor collects mit, i ∈ {1, 2} signals sjit, j = 1, . . . ,mit at time t. sji is the j-th
noisy signal providing information on fundamental i. These publicly available sources of
information represent, for instance, CNN Money, Financial Times, Bloomberg, Wall Street
Journal, etc. For simplicity, let us assume that the accuracies of these individual signals are
the same. That is, dsjit = adW f

it +
√

1− a2dW j
it, where 0 < a < 1 is the accuracy of the
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individual signals and all Brownian motions are uncorrelated. By aggregating, the investor
can summarize these mi sources of information into two signals si whose dynamics are

dsit = ΦitdW
f
it +

√
1− Φ2

1tdW
s
it,

where Φit = a√
1
mit

(1+(mit−1)a2)
. The above equation is equivalent to Equation (3). It shows

that the investor controls the accuracy of information Φi by choosing the number of signals
mi she acquires. When the investor is very attentive to news, the number of individual
signals collected is large and leads to high accuracy. When the investor is inattentive to
news, the number of signals acquired is small and leads to low accuracy. For this reason, we
call Φi the attention to news associated to fundamental i.

Our specification for the information signal in Equation (3) follows that in Scheinkman
and Xiong (2003), Dumas, Kurshev, and Uppal (2009), and Xiong and Yan (2010). It
shows that signals, s1 and s2 , provide information on the unexpected fluctuations driving
fundamentals and not on the level of the fundamentals. This specification differs from,
for instance, Detemple and Kihlstrom (1987), Veronesi (2000), Peng and Xiong (2006),
and Huang and Liu (2007), which model the dynamic of a signal s about the fundamental
f as dst = ftdt + σdW s

t . Intuitively, the latter specification implies that the observed
signal provides information on the level of the fundamental while in Equation (3), the signal
provides information on unexpected changes in the fundamental. Although we adopt the
former specification, our results would also hold under the alternative.

2.1 Definition of fluctuating attention

Following Andrei and Hasler (2015), attention to stock i satisfies

Φit =
Ψ

Ψ + (1−Ψ)eΛπit
, i ∈ {1, 2} (4)

πit =

∫ t

0

e−ω(t−u)

(
dδiu
δiu
− f̂iudu

)
, (5)

where Ψ > 0, ω > 0, Ψ > 0, and Λ ∈ R.
The parameter Ψ is the long-run level of attention paid to each stock. We assume the

attention paid to the stock i at time t depends on stock i’s past dividend performance πi.
The process πi measures the performance of past surprises in dividend i’s growth rate relative
to f̂i, the investor’s estimate of fundamental fi.5 We refer to πi as the performance index. In

5The dividend performance index is inspired by Koijen, Rodriguez, and Sbuelz (2009) who measure the
past performance of stock returns to allow for mean reversion.
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order to map the level of performance indices, πi, to the level of investor attention Φi ∈ [0, 1],
we use the logistic transformation shown in Equation (4).

The coefficient Λ indicates how the level of attention Φit changes in relation to the
dividend performance index πi. When Λ is positive, a positive shock to πi, i.e., positive
dividend growth surprises, would decrease the level of attention, implying that attention
is counter-cyclical. On the other hand, when Λ is negative, attention is pro-cyclical as a
positive shock to πi would increase Φit. The magnitude of Λ also determines the range of
attentions. A large magnitude of Λ pushes attentions to effectively belong to the entire
interval [0, 1], while a smaller magnitude would limit the range of attentions to be smaller.
When Λ is zero, attentions become constant and equal to the long-run level Ψ.

The parameter ω in Equation (5) controls the importance of past dividend growth sur-
prises relative to the current dividend growth surprise. If ω is small, then past dividend
surprises matter in the determination of the current performance index. Conversely if ω
is large, then past realizations of dividend surprises do not significantly alter the value of
the performance index. Equation (5) shows that the performance indices have the following
dynamics

dπit = −ωπitdt+ σδdWit, i ∈ {1, 2}, (6)

where dWit = 1
σδ

(
dδit
δit
− f̂idt

)
is a scaled surprise in dividend i at time t. The dynamic

of the performance indices in Equation (6) shows that πi reverts to 0 at speed ω. Since
fundamentals belong to the real line, dividend performance indices belong to the real line,
too.

Evidence of how attention fluctuates in relation to the dividend performance index is
provided in Andrei and Hasler (2015). In their study, the parameters driving the attention
dynamic are estimated using the U.S. GDP data from 1969 to 2012. Table 1 reports their pa-
rameters estimated using the Generalized Method of Moments. The parameter Λ is positive
and significant, suggesting the investor is attentive and gathers accurate information when
the dividend performance index is low (i.e., in bad macroeconomic episodes), and vice versa.
This finding suggests that attention is counter-cyclical. In other words, investors build more
accurate forecasts and react more aggressively to the incoming news in recessions than in
expansions.

To summarize, Equations (4) and (5) provide a one-to-one mapping between attention
and performance indices. Such mapping implies that attention is observable and depends on
the vector of state variables that are conditionally Gaussian. This modeling feature makes
it simple to apply standard Bayesian filtering techniques to the model.
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2.2 Filtered state variables

The investor learns about the fundamental fi, i ∈ {1, 2} by observing two different sources
of information: the dividend δi and the signal si. Proposition 1 describes the dynamics of
the variables inferred using these two sources of information.

Proposition 1. Following Liptser and Shiryaev (2001), the dynamics of the inferred vector
of state variables satisfy

dδ1t

δ1t

= f̂1tdt+
(
σδ 0 0 0

)
dWt (7)

dδ2t

δ2t

= f̂2tdt+
(

0 σδ 0 0
)
dWt (8)

df̂1t = λ(f̄ − f̂1t)dt+
(

γ1t
σδ

0 σfΦ1t 0
)
dWt (9)

df̂2t = λ(f̄ − f̂2t)dt+
(

0 γ2t
σδ

0 σfΦ2t

)
dWt (10)

dπ1t = −ωπ1tdt+
(
σδ 0 0 0

)
dWt

dπ2t = −ωπ2tdt+
(

0 σδ 0 0
)
dWt

dγ1t =

(
−γ

2
1t

σ2
δ

− 2λγ1t + σ2
f

(
1− Φ2

1t

))
dt (11)

dγ2t =

(
−γ

2
2t

σ2
δ

− 2λγ2t + σ2
f

(
1− Φ2

2t

))
dt. (12)

The innovation process W is a standard Brownian motion defined by

dWt ≡


dW1t

dW2t

dW3t

dW4t

 =


1
σδ

(
dδ1t
δ1t
− f̂1tdt

)
1
σδ

(
dδ2t
δ2t
− f̂2tdt

)
ds1t

ds2t

 . (13)

Proof. See Theorem 12.7 of Liptser and Shiryaev (2001).

The dynamic of filtered dividend processes in Equations (7) and (8) follows closely the
modeling assumption in Equation (1), but with the filtered fundamental f̂it appearing in the
drift term. The dynamic of the filtered fundamental, however, differs from that in Equation
(2). When the investor is able to learn about the fundamental by observing the dividend
and the signal, Equations (9) and (10) show that the volatility of the filtered fundamentals
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is stochastic and driven by two components. The first, γi, is defined as the uncertainty of
the current value of the fundamental. The second is attention Φi.

The level of attention also impacts the level of uncertainty, γi. Equations (11) and (12)
show that γi and Φi impacts the volatility of filtered fundamentals in opposite directions.
As attention increases, the investor gathers more accurate information. Hence the learning
procedure becomes more efficient and uncertainty decreases. Conversely, as attention drops
investors acquire less accurate information and uncertainty rises. For sufficiently high (low)
attention level, the third component in Equations (11) and (12) will decrease (increase)
enough to generate lower (higher) uncertainty. Interestingly, there is a lag between a change
in attention and a change in uncertainty because uncertainty is locally deterministic. There-
fore, high attention implies low future uncertainty, whereas low attention is followed by high
uncertainty.

Next we examine how the filtered fundamentals evolve. Equation (13) shows the vector
of innovations that are used to estimate what the value of the fundamentals are: the scaled
dividend surprise, 1

σδ

(
dδit
δit
− f̂idt

)
, and the news signal, dsit. From Equations (9) and (10),

we see that uncertainty, γi, loads on the dividend innovation while attention, Φi, loads on
the news innovation. As attention increases, the investor perceives the news source as more
important relative to the dividend source. Conversely, reduced attention pushes the investor
to weight the information content of the dividend performance more than that of the news
signal. This naturally implies that an increase (decrease) in attention weakens (strengthens)
the correlation between dividends and fundamentals.

2.3 Equilibrium

The representative investor has CRRA utility over consumption. Since the investment hori-
zon is assumed to be infinite, the investor maximizes her expected lifetime utility of con-
sumption subject to a budget constraint

sup
C,n

Et
(∫ ∞

t

e−∆(s−t) C
1−α
s

1− α
ds

)
s.t dVt = (rtVt + htdiag (Pt) (µt − rt12×1)− Ct) dt+ htdiag (Pt)DtdWt,

where C is consumption, V wealth, µ the 2× 1 vector of expected return, h the 1× 2 vector
of risky asset holdings, D the 2× 4 matrix of diffusion, ∆ the subjective discount rate, and
α the coefficient of relative risk aversion. The risk-free rate r and the 2 × 1 vector of stock
prices P are determined in equilibrium.

Solving the optimization problem and clearing markets yields the following state-price
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density

ξt = e−∆t

(
Ct
C0

)−α
= e−∆t

(
δ1t + δ2t

δ1,0 + δ2,0

)−α
. (14)

Equation (14) shows that the state-price density depends on dividend 1 and dividend 2.
As either fundamental 1 or fundamental 2 increases, the expected value of discount factors
decreases or, in other words, the expected discount rates increase. As will be explained
further, the interactions between fundamentals and discount rates implied by fluctuating
attention to news are key determinants of the contagion phenomenon.

Since the state-price density, ξ, prices future cash-flows, the price P T
i of a security paying

a single-dividend δiT at time T is defined by

P T
it = e−∆(T−t)Et

((
δ1T + δ2T

δ1t + δ2t

)−α
δiT

)
.

Proposition 2 characterizes the price of the single-dividend paying securities.

Proposition 2. At time t, the prices P T
1t and P T

2t of the securities paying the single-dividends
δ1T and δ2T at time T satisfy

P T
1t = e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+αQT

)
(15)

P T
2t = e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+(α−1)QT

)
− P T

1t, (16)

where ζi ≡ log δi is the log-dividend, and Q = log δ1
δ1+δ2

the log-dividend share.

Proof. See Appendix A.3.

The stock price Pit, i ∈ {1, 2} at current time t is defined as the sum of the single-dividend
paying securities P T

it over maturities T

Pit =

∫ ∞
t

P T
it dT. (17)

Equations (15) and (16) show the single-dividend paying securities are determined by
moment-generating functions (henceforth transforms) of the vector (ζ1, Q)>. Computing
these transforms is challenging, as the vector of state variables is not affine-quadratic. Ap-
pendix A.4 exposes a simple methodology that allows us to accurately approximate them.
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σδ f̄ λ σf ω Λ Ψ α ∆

1.4% 2.8% 0.42 2.9% 4.74 286 0.368 3 1%

Table 1: Calibration.
This table reports parameters determining the dynamics of dividends and fundamentals
obtained from Andrei and Hasler (2015). These parameters are calibrated to match several
moments of the U.S. GDP growth rate and its corresponding forecast from 1969 to 2012.

ζ1 Q f̂1 = f̂2 π1 = π2 γ1 = γ2

0 log (0.5) f̄ 0 γss

Table 2: Initial state values.
This table reports initial values of state variables that we use to generate the model impli-
cations. Initial dividend is set to unity, i.e., ζ1 ≡ log δi = 0. Dividends of stocks 1 and 2 are
initially of the same size, while the other values are set to long-term levels. Long-term levels
of the fundamentals and the performance indices are derived in Appendix A.1. Long-term
uncertainty, γss, is defined and derived in Appendix A.2.

3 Model implications

In this section, we investigate the implications of fluctuating attention on the dynamics of
return volatilities and cross-return correlation of two fundamentally unrelated stocks. We
show that increased attention to one stock raises return volatilities on both stocks, as well
as their cross-return correlation. That is, fluctuating attention implies return and volatil-
ity spillover effects among fundamentally unrelated stocks. We first discuss the volatility
spillover effects in relation to fluctuating attention. After, we examine the return spillover
effects.

3.1 Volatility spillovers

In order to understand the process leading to contagion, let us first characterize the compo-
nents in the stock-return diffusion. Recall that from Equation (13), the innovation process
driving the filtered state variables consists of four components. Applying the Itô’s lemma
to stock prices in Equation (17), we can write the components in the stock-return diffusion
matrix D as

D ≡

(
D11 D12 D13 D14

D21 D22 D23 D24,

)
, (18)
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where Dij is the j component in the return diffusion process of stock i. Expressions for the
components of the diffusion matrix D are provided in Definition 1 below.

Definition 1. The diffusion components of stock i satisfy

Di1 =
Pif̂1
Pi

γ1

σδ
+ σδ

(
1 +

Piπ1
Pi

+
PiQ̃
Pi

(
3− 2e−Q̃ − eQ̃

))
Di2 =

Pif̂2
Pi

γ2

σδ
+ σδ

(
Piπ2
Pi

+
PiQ̃
Pi

(
−3 + 2e−Q̃ + eQ̃

))
Di3 =

Pif̂1
Pi

σfΦ1

Di4 =
Pif̂2
Pi

σfΦ2,

where Piy stands for the derivative of stock i with respect to the state variable y and Q̃ ≡
log
(

1 + δ1
δ1+δ2

)
.

For brevity, we drop the time t notation when writing the stock price Pi and its partial
derivative Piy with respect to state y. Nevertheless, we note that all notations regarding the
stock price should be referenced against the current time period t.

Definition 2. The variance of stock i, σ2
i , satisfies

σ2
i =

4∑
j=1

D2
ij,

where Dij is the component in the stock-return diffusion matrix D in Equation (18), and its
expression is provided in Definition 1.

Definitions 1 and 2 show that a change in attention to stock 1 impacts the volatility of
both stock 1 and stock 2 through the stock-return diffusion component Di3. The significance
of the impact is determined by the sensitivity of stock prices P1 and P2 to the shock in
the filtered fundamental of stock 1, i.e., f̂1. This is essentially the value of the derivative
Pif̂1 ; i ∈ 1, 2, which we discuss below.

A positive shock in the filtered fundamental f̂1 has two opposite effects on stock 1. First,
dividend δ1 is expected to increase. This is the direct channel. Second, discount rates rise
(see Equation (14)), which represent the indirect channel. The direct channel pushes stock
price P1 up, while the indirect channel pushes stock price P1 down. As explained in Veronesi
(2000), the discounting effect is stronger than the dividend effect as long as risk aversion is
sufficiently large. An increase in expected future consumption increases current consumption
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because the investor smoothes consumption over time. Hence savings (investments) decrease,
as do the demands for stock 1, stock 2, and the riskless asset i.e. stock prices decline and the
risk-free rate rises. The decline in stock price P2, however, can be more pronounced than the
decline in stock price P1 because stock 2 is only impacted by the discounting effect. Note
that if the representative agent had either a small risk aversion or recursive utility (Epstein
and Zin, 1989; Duffie and Epstein, 1992) and a preference for early resolution of uncertainty,
then stock 1 would be more sensitive to a change in fundamental 1 than stock 2.

In order to see the effect of attention on volatilities visually, Figure 1 plots the relationship
between attention to stock 1 and return volatilities of both stocks. The model parameters
that we use are estimated from the U.S. GDP growth and forecast from 1969 to 2012; they
are reported in Table 1. The initial values of the state variables are reported in Table 2.
Most of the initial state values are set equal to their long-run means. We assume the initial
dividend the two stocks are of equal size.

Panels A and B of Figure 1 plot the impact of increasing attention on volatilities of stock
1 and stock 2, holding all other variables constant. We see that an increase in attention
to stock 1, i.e., Φ1, increases both return volatilities. That is, fluctuating attention implies
volatility spillover effects. The volatility of stock 2 increases more than the volatility of stock
1 because stock 2 is influenced by the discounting effect only. Regarding stock 1, the effect
of dividend δ1 dampens the discounting effect and therefore implies a weaker increase in its
volatility. Symmetrically, the volatility of stock 1 increases more than the volatility of stock
2 as attention to stock 2, i.e., Φ2, increases.

The joint effect of increasing attention paid to each stock 1 and stock 2, are illustrated
in Panels C and D of Figure 1. The results show that an increase in attention to any stock,
i.e., either Φ1 and Φ2, will increase both stock-return volatilities. Importantly, increasing
attention to both stock 1 and stock 2 appear to work together by pushing stock-return
volatilities higher. In other words, when total attention, i.e., Φ1 + Φ2, paid to the stocks
increases, the volatility spillover effects become most evident. Overall, Figure 1 shows that
an increase in attention to any stock leads to contagion in the form of increased stock-return
volatilities in the entire market. However, the effect is largest when the total attention paid
to the whole market increases.

While Figure 1 describes the static relationship between attention and volatilities, we
next examine how stock-return volatilities change relative to attention in a dynamic setting.
Such analysis is useful for understanding the economic relevance of fluctuating attention on
volatilities under the presence of noises generated by other state variables. We simulate
the model at the monthly frequency for 20 years, using the parameters and initial variables
reported in Tables 1 and 2. Figure 2 reports the results. Stock return volatilities are
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Figure 1: Stock-return volatilities vs. attention.
This figure provides a static analysis of our model’s implications on the volatility spillover
effects. Panels A and B plot the relationship between attention paid to stock 1 on the return
volatilities of stock 1 and 2, respectively. In Panels B and C, we plot the joint relationship
of attention paid to stock 1 and stock 2 on the return volatilities of stock 1 and stock 2,
respectively. The model parameters used to generate the results are reported in Table 1.
Initial values of the state variables are reported in Table 2.

plotted against aggregate attention paid to stocks 1 and 2. The figure shows a strong
positive relationship between increasing aggregate attention and volatilities of both stocks.
This finding is consistent with our previous results which show that stock-return volatilities
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Figure 2: Volatilities vs. aggregate attention.
This figure plots simulation results showing the dynamic relationship between volatilities and
aggregate attention. We simulate 20-year of data at the monthly frequency using the model
introduced in Section 2. The model parameters used to generate the results are reported in
Table 1. Initial values of the state variables are reported in Table 2. In both panels, the
x-axis indicates the aggregate attention paid to stocks 1 and 2. The left panel plots the
stock-return volatility for stock 1, while the right panel plots the stock-return volatility for
stock 2. Each dot represents one simulated monthly observation.

increase with attention to stocks 1 and 2 separately. Therefore, we expect volatilities of both
stocks to increase with aggregate attention as depicted in Figure 2. Overall, the simulation
results show a strong dependence between volatilities and aggregate attention. They also
confirm that the dynamics of the other state variables have very little influence on the
dynamics of stock-return volatilities.

In order to compare the dynamics of stock-return volatilities in a fluctuating attention
model to an otherwise equivalent constant attention model, Figure 3 plots results from a 20-
year simulation study for a model with fluctuating attention (Panel A), and for a model with
constant attention (Panel B). For the constant attention model, we turn off the fluctuating
attention feature by setting Λ = 0 in Equation (4), resulting in an economy with constant
investor attention, i.e., Φ1 = Φ2 = 0.368. Figure 3 shows the volatility dynamics significantly
differ between the fluctuating attention model and the constant attention model. In the fluc-
tuating attention model, volatilities swing rapidly from month-to-month and simultaneous
spikes in volatilities of stock 1 and stock 2 are often observed. On the other hand, results
from the constant attention model show that volatilities of the two stocks move smoothly
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and, on average, in opposite directions. In order to quantify the average correlation between
volatilities of stocks 1 and 2, we repeat this simulation study 10,000 times. We find the
volatility of volatility in the fluctuating attention model is about 1% for both stocks, while
the correlation between the volatilities of stock 1 and stock 2 is around 0.19. In the constant
attention model, however, volatility of volatility falls to 0.4%, while the correlation between
volatilities of stock 1 and stock 2 is −0.95.

Results from the above simulation exercise confirm that the volatility dynamics signifi-
cantly differ between the fluctuating attention model and the constant attention model. The
economic intuition for such difference is as follows. When attention is constant, volatilities
are principally driven by dividend shares. As the dividend share of stock 1 increases, the
dividend share of stock 2 mechanically decreases. As a result, volatilities move in opposite
directions. On the other hand, in our fluctuating attention model, variations in dividend
shares are outweighed by variations in aggregate attention. This implies an amplification of
the fluctuations in stock-return volatilities and a positive co-movement between them. To
summarize, the model with investor learning alone (e.g. the constant attention model) does
not help understand the dynamics of stock-return volatilities in the cross-section. However,
learning with fluctuating attention does. This explains why volatilities among fundamentally
unrelated sectors fluctuate strongly and co-vary positively, consistent with empirical findings
in Fleming, Kirby, and Ostdiek (1998).

3.2 Return spillovers

We now turn to the relationship between attention and the co-movement of stock returns.
The covariance and correlation between returns of stock 1 and stock 2 are described below.

Definition 3. The cross-return covariance, σ12, satisfies

σ12 =
4∑
j=1

D1jD2j,

where Dij is the component in the stock-return diffusion matrix D in Equation (18), and its
expression is provided in Definition 1.

Definition 4. The cross-return correlation, ρ12, satisfies

ρ12 =
σ12

σ1σ2

=

∑4
j=1 D1jD2j√∑4

j=1D
2
1j

√∑4
j=1 D

2
2j

,
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Figure 3: Time-series of cross-market volatilities: A simulation study
We plot time-series results of monthly volatilities from a 20-year simulation of the economy
introduced in Section 2. Monthly volatilities are calculated following Definition 2, and re-
ported in annualized terms. Panel A plots monthly volatilities of stock 1 and stock 2 for an
economy with fluctuating investor attention. In Panel B, we shut off the fluctuating atten-
tion feature of the model by setting Λ = 0 in Equation (4), and plot the monthly volatilities
for an economy with constant investor attention (Φ1 = Φ2 = 0.368). The model parameters
and their initial values are reported in Tables 1 and 2, respectively. In each panel, the blue
line indicates volatilities of stock 1, while the dashed black line indicates volatilities of stock
2.

where Dij is the component in the stock-return diffusion matrix D in Equation (18), and its
expression is provided in Definition 1.

We plot the static relationship between the level of attention paid to stock 1, i.e., Φ1, and
cross-return correlation in Panel A of Figure 4. We note that by symmetry, the relationship
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Figure 4: Cross-return correlation vs. attention.
This figure provides a static analysis of our model’s implications on the return spillover effect.
Panel A plots the relationship between attention paid to stock 1 and the level of cross-return
correlation between stock 1 and stock 2, holding other variables fixed. In Panel B, we plot
the joint relationship between attention paid to stock 1 and stock 2 of the level of their
cross-return correlation, while holding other variables fixed. The model parameters used to
generate the results are reported in Table 1. Initial values of the state variables are reported
in Table 2.

plot between Φ2 and ρ12 would look identical. Panel A shows that the cross-return correlation
between stock 1 and stock 2 is positive and increases with attention even though dividends,
fundamentals, and signals are uncorrelated. In Panel B, we plot the static relationship
showing the joint impact of attentions Φ1 and Φ2 on the cross-return correlation ρ12. Similar
to our results for volatilities, we find that an increase in attention to stock 1 and stock
2, together, further strengthens the return spillover effects. Thus, contagion arises most
prominently when the attention paid to the whole market increases.

We now turn to discuss the economic reasons leading to a positive cross-return correlation
in our model. First, we explain how cross-return correlation arises in the standard equilibrium
model, and after, discuss how the fluctuating attention feature produces the positive cross-
return correlation between two stocks. Following the exposition in Cochrane, Longstaff,
and Santa-Clara (2008), the cross-return correlation between stock 1 and stock 2 can arise
due to co-movements in one of the following four relationship pairs. The first is the co-
movement between price-dividend ratio P1

δ1
and dividend δ2. The second is the co-movement

between price-dividend ratio P2

δ2
and dividend δ1. The third is the co-movement between
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price-dividend ratios P1

δ1
and P2

δ2
. Finally, the fourth, is the co-movement between dividends

δ1 and δ2. Because our model assumes that dividend δ1 and dividend δ2 are uncorrelated,
the fourth relationship source can be eliminated.

The positive correlation between returns of stock 1 and stock 2 in our model is observed
through the discount rates. Consider a negative shock in the dividend of stock 1, i.e., the
Brownian shock dW1t is negative in Equation (7). This shock reduces the performance of
dividend δ1 thereby raising the attention paid to it. In the meantime, Equation (9) shows
that this dividend shock pushes the investor to decrease her estimation of its fundamental
f̂1. The decrease in the expectation of future dividend growth causes the discount rates to
fall and triggers an increase in price-dividend ratio P2

δ2
. As for stock 1, because risk aversion

is relatively large, the discounting effect outweighs its dividend effect. This also results in
an increase in price-dividend ratio P1

δ1
. The end result is a positive co-movement between

price-dividend ratios P1

δ1
and P2

δ2
, while the co-movement between δ1 and P2

δ2
is negative. The

former effect dominates the latter and implies a positive cross-return correlation because the
discounting channel is the strongest.

In the previous paragraph, we explain how given a sufficient risk aversion level, returns
between two unrelated stocks co-move due to the the discount rates effect. However, an
important result from our model is that the magnitude of cross-return correlation depends
on the level of investor attention (see Figure 4). This result can also be directly seen from
Definition 1, which shows that when attention paid to stock 1 increases, the cross-return
correlation rises because the diffusion components D13 and D23 increase (in absolute value).
The intuition to why attention impacts the magnitude of return spillover effects is discussed
below.

Recall that the diffusion process of the filtered fundamentals reflects two pieces of infor-
mation: dividend innovations (dW1t, dW2t) and signal innovations (dW3t, dW4t). It follows
from Equations (9) and (10) that the uncertainty γi loads on dividend innovations, while
attention Φi loads on signal innovations. As a negative shock hits dividend δ1, attention
to stock 1 increases but uncertainty γ1 remains constant because it is deterministic. In
other words, the weight assigned to signal innovations rises while the weight assigned to
dividend innovations remains unchanged. Consequently, the variance of the filtered funda-
mental increases while the covariance between the dividend and the filtered fundamental,
i.e., Et

[
dδ1t
δ1t
, df̂1t

]
, remains constant. This means that an increase in attention disconnects

the dividend dynamic from the filtered fundamental dynamic. Since the filtered fundamental
drives discount rates, the (positive) correlation between discount rates and dividend of stock
1 is reduced. As a result, the negative co-movement between price-dividend ratio of stock 2

and dividend of stock 1 is less pronounced when attention to stock 1 is high rather than low.
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The mechanism above explains why the cross-return correlation increases with attention
to stock 1, and by symmetry, with attention to stock 2. As a result, the cross-return cor-
relation rises, exactly like stock-return volatilities, with aggregate attention. Figure 5 plots
cross-return correlation results from a simulation study over 20-year horizon. In Panel A,
monthly return correlations are plotted against aggregate total attention. We observe a
strong positive relationship between correlation ρ12 and aggregate attention Φ1 + Φ2, similar
to the finding for volatilities.

Panel B of Figure 5 plots the monthly time-series of cross-return correlations for the
fluctuating attention model, as well as for the constant attention model. The correlation in
the constant attention model is positive. This finding is consistent with the prediction that
correlations between asset returns naturally arise due to the discount rate channel. However,
monthly cross-return correlations for the constant attention model do not fluctuate signif-
icantly from month-to-month, suggesting that fluctuations in dividend shares alone cannot
generate sudden cross-return spikes that are distinctive of financial contagion. However,
in the fluctuating attention model, monthly cross-return correlations swing more intensely.
This finding suggests that fluctuating attention is an important feature for generating the
return spillover effects observed in financial markets.

Performing 10,000 simulations of our economy over 20 years, we find that fluctuating
attention significantly amplifies the variations in cross-return correlation compared to an
economy in which the investor pays constant attention. Simulation results show that cor-
relation ranges from 0.38 to 0.47 in the constant attention model, and from 0.30 to 0.65 in
the fluctuating attention model. In addition, volatilities and correlation co-move positively
in the fluctuating attention model because those quantities are mainly driven by aggregate
attention. This result, however, does not hold when attention is constant because, in that
case, the dividend share is the main driver of volatility and correlation.

4 Empirical evidence

We test the model’s predictions described in Section 3 empirically. The objective is to show
that the transmission of return and volatility from one industry sector to other fundamentally
unrelated firms is associated with changes in investor attention. Our empirical setup is based
on the U.S. equity market during the period 1980-2009. We first describe the data and
method used to form groups of firms that are fundamentally unrelated. We then discuss
the estimation of return volatilities, cross-return correlations, and attention for each pair
of fundamentally unrelated portfolios. Next, we outline testable hypotheses based on the
model’s predictions. After, we discuss the empirical findings.
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Figure 5: Cross-return correlation and attention: A simulation study
We plot cross-return correlations results generated from a 20-year simulation. The model
parameters that we use are reported in Table 1. Initial values of the state variables are
reported in Table 2. Panel A plots simulation results showing the dynamic relationship
between correlation and aggregate attention Φ1 + Φ2. In Panel B, we plot the time-series
of monthly return correlations between stock 1 and stock 2 for an economy with fluctuating
attention (blue line) and constant attention (dashed black line). Monthly return correlations
are calculated following Definition 4.

4.1 Data construction

Our sample consists of U.S. incorporated firms that traded on the NYSE/AMEX and NAS-
DAQ between 1979 and 2009. We require that firms must have information available on
both CRSP and COMPUSTAT databases. Only firms with share code equal to 11 or 12 are
retained. We group firms into different industries following the Fama-French’s 17 industry
portfolios. Industry definitions are obtained from Kenneth French’s website.6 We choose the
17-industry classification because each industry’s size is sufficiently large to capture shocks to
its sector, and also because it is more refined than the Fama-French’s 12 portfolio definition.
Table 3 displays the names of industry portfolios that we study. There are 15 industries
listed in Table 3 because we do not consider firms in the financial industry, as well as firms
classified under "others" according to industry portfolio definitions.

For each industry, we identify firms that are not fundamentally related to it using
customer-supplier relationships data constructed from the COMPUSTAT Segment Customer

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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File.7 Statement of Financial and Account Standards (SFAS) No. 14 requires that each firm
discloses the existence and sales to individual customers (public or private entities) account-
ing for more than 10% of its revenue.8 In practice, we find that several customers who do
not represent more than 10% of a supplier firms’ total revenue are voluntarily reported. We
retain all relationships reported as identifications of relevant cash flow relationships. The
names of corporate customer are manually matched with their COMPUSTAT identifiers, i.e.,
GVKEYS, following the approach used in Banerjee, Dasgupta, and Kim (2008) and Cohen
and Frazzini (2008). The procedure identifies 66,290 customer-supplier-year relationships
between 1979 and 2009.

Using customer-supplier relationships data, we identify a set of firms unrelated to each
industry. The procedure is as follows. Each year, we identify firms in the CRSP universe
that are a customer of or a supplier to firms in the industry as reported in the database in
the current year, the past year, as well as the next year. We use the three-year window for
identification in order to account for relationships that are emerging, and those may have
been delayed in the reporting. A direct customer-supplier relationship between two firms
is referred to as the first-level relationship. When two firms are connected indirectly via
their connections with a common firm, we refer to the link as the second-level relationship.
Similarly, when two firms are indirectly connected through a firm in their second-level rela-
tionship, i.e., there is three degrees of separation between them, we refer to the link as the
third-level relationship. Following this definition, we say that a firm is fundamentally related
to an industry if it is connected with any firms in that industry up to the sixth relationship
level. Our relationships identification using up to six degrees of separation is conservative.
It accounts for direct and indirect relationships that could cause firms to be fundamentally
connected.

We apply additional filters to firms in the sample. We require that firms have been
public for more than one year, and have non-zero trading volume for all months in the
current calendar year. We eliminate firms that have prices below $5, firms that have market
capitalization less than $25 million, and firms that have a trading volume less than 4,000 per
year. These filters ensure our results are not driven by small-firm effects and effects related to
initial public offerings. Finally, we remove financial firms from the sample as they may have
lending and underwriting relationships that cannot be identified using the customer-supplier
relationships database. Following the above requirements, the final firm sample contains an
average of 2670 eligible firms per year between 1980 and 2009. Year 1979 is excluded from

7We thank Ling Cen for sharing with us the customer-supplier relationships database
8This requirement is relaxed after 1998 (See SFAS No. 131). However, most firms continue to report the

names of their customers in COMPUSTAT as well as in their 10-K filing.
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the final sample to eliminate potential biases associated with sample initiation. The number
of eligible firms in the final sample is relatively stable and has the inter-quartile range of 870.

We refer to a portfolio of firms classified under one of the Fama-French industries as the
industry portfolio, and refer to a portfolio of firms that is fundamentally unrelated to it as the
unrelated-firm portfolio. Firms in the unrelated-firm portfolio are from industries other than
the industry portfolio and must not have any links with firms in the industry portfolio as
defined by our relationships identification method described above. Table 3 summarizes the
number of firms that are in each pair of industry and unrelated-firm portfolios. The number
of firms in each portfolio changes annually as new relationships are formed and severed.
Panel A reports the median, minimum, and maximum number of firms entering into each
portfolio between 1980 and 2009. In all cases, the number of firms in an industry portfolio
is less than that of its corresponding unrelated-firm portfolio. Among the fifteen industries,
Machinery has the largest number of firms, with a median of 245 firms per year, while its
unrelated-firm portfolio has a median of 890 firms per year.

Panel B of Table 3 examines aggregate characteristics of each portfolio. We look at three
dimensions: size, earnings, and dividend. The values reported in Panel B represent their
time-series averages in units of one million U.S. dollars. We obtain firm-level information
from the COMPUSTAT Annual Fundamental File. Size is calculated annually as the total
market capitalization of each portfolio. Earnings of each portfolio are calculated annually by
multiplying annual earnings per share of each firm with its number of common shares, and
aggregating it across all firms in each portfolio. The calculation for Dividend is similar to
that for earnings. On average, the industry portfolio has smaller size, earnings, and dividend
payout relative to its unrelated-firm portfolio.

The general equilibrium model that we introduced in Section 2 provides predictions of
contagion between two firms with similar market share. In order to keep our empirical design
comparable to the model’s assumption, we make additional requirements for industry pairs
that we use to test the model’s predictions. We require that the average size of the industry
portfolio must be at least 10 percent of the size of its unrelated-firm portfolio. There are
nine industry pairs that meet this requirement. We denote them with an asterisk next to
the industry name in Table 3.

4.2 Time-varying volatilities, correlations, and attention

We measure contagion between the industry portfolio and its unrelated-firm portfolio by
looking at the dynamics of their return volatilities and cross-return correlation. The monthly
return for each portfolio is calculated as the weighted-average return across firms. We use
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firms’ ex-dividend returns in the calculation and use their market capitalizations calculated
on June 30th of each year as portfolio weights. The portfolio is formed in the beginning of
July and held through June of the next year. We do not re-balance the portfolio monthly in
order to avoid excess volatility generated through the mechanic of portfolio re-balancing.

We estimate the volatility and correlation dynamics for 9 industry and unrelated-firm
portfolios marked with an asterisk in Table 3. Each portfolio is estimated individually using
monthly returns from January 1980 to December 2009. There are 380 observations in each
estimation. We assume the return of each portfolio follows an AR(1) process and model its
volatility using a GARCH(1,1) specification. The choice of GARCH(1,1) is motivated by its
parsimony which is appropriate for the short time series that we have. Figure 6 plots condi-
tional volatilities, in annualized terms, for eight portfolio pairs estimated using GARCH(1,1).
Although we fit GARCH to nine portfolio pairs, we do not plot volatility dynamics for the
Utilities industry pair because maximum likelihood estimation of its unrelated-firm portfolio
does not converge. As a result, we drop Utilities from our analysis. From this point onward,
eight portfolio pairs shown in Figure 6 will be used in the empirical tests.

We follow Engle (2002) and estimate the correlation dynamics for each pair of portfolio
returns using the Dynamic Conditional Correlation (DCC) model (see also Tse and Tsui
(2002) for a similar model). We choose the DCC model instead of the multivariate GARCH
model because it is parsimonious. We consider the GARCH(1,1)-type specification for the
DCC model. Figure 7 plots monthly conditional correlations between the industry portfolio
and its unrelated-firm portfolio for eight portfolio pairs. In all cases, we find strong cor-
relations between the two fundamentally unrelated portfolios. This shows that significant
correlations between two groups of firms can arise even though they do not have cash flow
connections. Importantly, Figure 7 shows strong time-varying dynamics in monthly return
correlations between most portfolio pairs.9 For all portfolio pairs, we find that correlations
are highest during the month of October 1987 crash when the S&P 500 index dropped by
more than 23% in one day.

Our empirical objective is to show that time-varying volatilities and correlations that we
observe in Figures 6 and 7 are associated with changes in investor attention. It is generally
difficult to measure direct investor attention and the existing literature is inconclusive on the
preferred proxy. Following Gervais, Kaniel, and Mingelgrin (2001) and Barber and Odean
(2008) among others, we use trading volume as a proxy for investor attention. We choose
trading volume because it is easily measurable for all stocks traded in the CRSP universe.
As argued by Hou, Xiong, and Peng (2009), trading volume should be highly correlated with

9For brevity, we do no report parameter estimates from the GARCH and DCC models. All parameters
are statistically significant and can be made available upon requests.
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attention because investors cannot actively trade a stock if they do not pay attention to it.
The evidence that trading volume is informative of investor attention is provided by Chordia
and Swaminathan (2000), who find that high volume stocks tend to respond more quickly
to information than do low volume stocks.

We construct a monthly measure of investor attention to each stock by dividing its total
trading volume during the month by its number of common shares outstanding. This measure
is commonly referred to as share turnover. The scaling of trading volume by the number of
shares controls for the size differences between firms. Share turnover is always greater than
zero, and in most cases, its value is below one.10 Therefore, our empirical proxy for attention
generally lies in the interval [0,1], which closely resembles the definition of attention used
in our theoretical model (see Section 2.1). Monthly investor attention to the industry and
unrelated-firm portfolios is calculated as the weighted-average share turnover of firms in their
portfolio. Similar to the monthly return calculation, we use firms’ market capitalizations on
June 30th of each year as portfolio weights. The weights are applied to the portfolios starting
in the following month, i.e., July, and held through June of next year.

Figure 8 plots monthly share turnover of eight portfolio pairs that we study from 1980
through 2009. We find a strong increasing trend in monthly share turnover in all portfolios
as financial markets become more liberalized and the trading is moved to electronic trading
platforms. The level of share turnover also changes from month-to-month for each portfolio,
though the magnitude of changes are less noticeable than their conditional volatilities and
correlations. Overall, Figures 6 to 8 show that the variables we use to measure contagion
and attention vary substantially through time and that their dynamics are quite persistent.
In our empirical tests, we will focus on their monthly changes, and carefully control for any
lag effects associated with their dynamics.

4.3 Hypotheses and empirical tests

This section outlines four hypotheses that we test based on the model’s predictions. For
ease of reference, we first describe the notations that we use. We refer to the volatility of
the industry portfolio in month t as σ1,t, and the volatility of the unrelated-firm portfolio in
month t as σ2,t. The correlation between the two portfolios in month t is denoted by ρ12,t.
Finally, we let Φ1,t and Φ2,t be the share turnover, i.e., proxy for investor attention to the
industry portfolio and the unrelated-firm portfolio in month t, respectively. To keep notations
simple, we do not add subscripts identifying different industry pairs to our monthly variables.
Nevertheless, we emphasize that these time-series notations apply at the portfolio-pair level.

10In exceptional cases, monthly trading volume of a heavily traded stock can be higher than its number
of common shares.
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The first hypothesis that we test is how changes in attention to the industry portfolio and
the unrelated-firm portfolio are associated with contemporaneous changes in their volatilities.
It can be stated as follows.

Hypothesis 1. Change in volatility of the industry portfolio, i.e. ∆σ1,t, is positively related
to a contemporaneous change in its investor attention, ∆Φ1,t, as well as a contemporaneous
change in investor attention to its unrelated-firm portfolio, ∆Φ2,t (see Figure 1).

We empirically test the above hypothesis by estimating the following model:

∆σ1,t = α + Σ1
i=0β

′
i∆Φt−i + Σp

j=1γj∆σ1,t−j + Σq
k=1θkεt−k + εt, (19)

where ∆Φt = [∆Φ1,t, ∆Φ2,t]
′, and β0 and β1 are 2× 1 vectors. The residual of the regression

model is denoted by εt. The regression model in Equation (19) is an autoregressive moving-
average model with exogenous variables (ARMAX). The exogenous variables here are the
monthly change in share turnover of the two unrelated portfolios. We allow up to one lag of
∆Φt in the regression to control for persistence in the monthly change in share turnover.11

The number of lags in the autoregressive term and in the moving-average term is denoted
by p and q, respectively.

An important implication of the first hypothesis is that an increase in attention to one
sector can increase the volatility of the other sector, even though the two are fundamentally
unrelated. Although the statement in Hypothesis 1 focuses on the change in volatility of the
industry portfolio, ∆σ1,t, its prediction must symmetrically apply to the change in volatility
of the unrelated-firm portfolio, ∆σ2,t. That is, we expect ∆σ2,t to be positively related to
∆Φ1,t, as well as ∆Φ2,t. To test this, we estimate the ARMAX model similar to Equation
(19), but with ∆σ2,t as the dependent variable.

The next hypothesis examines the relationship between total attention to the portfolio
pairs and their volatilities.

Hypothesis 2. Change in volatility of the industry portfolio, i.e. ∆σ1,t, is positively related
to a contemporaneous change in total investor attention to the industry portfolio and its
unrelated-firm portfolio, ∆Φ1,t + ∆Φ2,t (see Figure 2).

We empirically test the above hypothesis by estimating the following model:

∆σ1,t = α + Σ1
i=0βi∆ (Φ1,t−i + Φ2,t−i) + Σp

j=1γj∆σ1,t−j + Σq
k=1θkεt−k + εt, . (20)

11Our main results remain qualitatively the same when longer lags of exogenous variables are added to
the regression.
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In Equation (20), the coefficients β0 and β1 are scalar because there is only one exogenous
variable, which is the monthly change in total share turnover of the two portfolios. The
prediction of the above hypothesis must also apply symmetrically to the change in volatility
of the unrelated-firm portfolio. Therefore, we expect that ∆σ2,t is positively related to ∆Φ1,t

+ ∆Φ2,t. We test this complementary hypothesis by estimating the ARMAX model similar
to Equation (20), but with ∆σ2,t as the dependent variable of interest.

In the next two hypotheses, we examine how fluctuating attention affects return correla-
tions between two fundamentally unrelated portfolios.

Hypothesis 3. Change in correlation between the industry and its unrelated-firm portfolios,
i.e. ∆ρ12,t, is positively related to a contemporaneous change in investor attention, ∆Φ1,t

and ∆Φ2,t (see Figure 4).

We test the above hypothesis by estimating the following regression model:

∆ρ12,t = α + Σ1
i=0β

′
i∆Φt−i + Σp

j=1γj∆ρ12,t + Σq
k=1θkεt−k + εt, (21)

where ∆Φt = [∆Φ1,t, ∆Φ2,t]
′. Next, we examine how contemporaneous changes in total

attention to the two portfolios affects their return correlations.

Hypothesis 4. Change in correlation between the industry and its unrelated-firm portfolios,
i.e. ∆ρ12,t, is positively related to a contemporaneous change in their total investor attention,
∆Φ1,t + ∆Φ2,t (see Figure 5).

We verify the above hypothesis by estimating the following model:

∆ρ12,t = α + Σ1
i=0β

′
i∆ (Φ1,t−i + Φ2,t−i) + Σp

j=1γj∆ρ12,t + Σq
k=1θkεt−k + εt. (22)

In all regression models, the optimal lags in the AR(p) and MA(q) representation are de-
termined using the Akaike information criterion (AICC), together with the Portmanteau
test for cross-autocorrelations between residuals. The model selection procedure that we use
follows that in Burnham and Anderson (2002).

An important remark regarding the notations used in Equations (19) through (22) is
that the ARMAX coefficients are identically named. We emphasize the coefficient names are
reused when writing the regression models simply to avoid notations overload. In practice,
their estimates will be different because the models are separately estimated. All regression
models are estimated in a panel on eight portfolio pairs using maximum likelihood. There
are 2864 monthly observations available in each estimation. Tables 4 and 5 reports their
results.
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4.4 Results

Table 4 reports three sets of estimation results based on the regression models in Equations
(19) and (21). In the first and second regression specifications, the dependent variables are
∆σ1,t and ∆σ2,t, respectively. The dependent variable in the third regression specification
is ∆ρ12,t. Looking at the first regression specification, we find the coefficient estimates on
∆Φ1,t and ∆Φ2,t are positive and significant. Such results are in line with the prediction
of Hypothesis 1. A positive and statistically significant coefficient on ∆Φ1,t shows that the
levels of volatility and investor attention to one sector tend to move in the same direction.
This finding is also consistent with Lamoureux and Lastrapes (1990) who find that the
trading volume of a stock has a positive and significant explanatory power on its volatility.
Importantly, we find that ∆Φ2,t is positive and strongly significant, although its magnitude is
smaller compared to the estimate on ∆Φ1,t. This finding suggests that changes in attention
to one sector can positively affect changes in volatility of the other sector, despite the two
sectors being fundamentally unrelated.

We obtain a similar conclusion when looking at the impact of changes in attention on
the volatility of the unrelated-firm portfolio, i.e. regression specification (II). An increase in
share turnover in each of the two portfolios significantly pushes the volatility of the unrelated-
firm portfolio, σ2,t, higher. Further, the positive relation between attention and volatilities
appear to be only in the contemporaneous month. This is because we find that estimates
on the lagged attention variables, i.e. ∆Φ1,t−1 and ∆Φ2,t−1, are not positive and statistically
significant. Overall, results obtained from regression specifications (I) and (II) in Table 4
provide a strong validation for our first hypothesis.

Next, we look at estimation results from the third regression specification in Table 4.
Similar to the results for volatilities, we find that changes in monthly correlations between
returns of two fundamentally unrelated portfolios are positively associated with changes
in investor attention. The coefficient estimates on both ∆Φ1,t and ∆Φ2,t are positive and
significant at the five and one percent levels, respectively. Overall, our empirical results here
are consistent with the prediction of Hypothesis 3.

In the next set of results, we look at how changes in total attention to the two fun-
damentally unrelated portfolios affect their volatilities as well as their return correlations.
Table 5 reports estimation results based on the regression models in Equations (20) and
(22). Overall, we find a positive and highly significant coefficient on ∆Φ1,t+∆Φ2,t for all
three regression specifications that we examined. The lagged variable for the change in total
attention, however, does not appear to have a positive influence on volatilities and correla-
tions. Thus, the positive effect of fluctuating attention is limited to the contemporaneous
month, which is consistent with our earlier finding in Table 4. Overall, the results in Table
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5 strongly support the model’s predictions stated in Hypotheses 2 and 4.
Our results in Tables 4 and 5 are based on the univariate ARMAX model. That is,

monthly changes in volatilities of the two portfolios, i.e., σ1,t and σ2,t, and their correlations,
ρ12,t, are separately modeled. We further examine the robustness of this assumption by
estimating the dynamics of these three variables in a multivariate framework. The model
that we use is the vector autoregressive moving-average with exogenous variable (VARMAX).
We first examine the predictions of Hypotheses 1 and 3. We estimate the following model

∆Yt = Λ + β0∆Φt + β1∆Φt−1 + Γ′1∆Yt−1 + Θ′1εt−1 + εt, (23)

where
∆Yt = [∆σ1,t, ∆σ2,t, ∆ρ12,t]

′ and ∆Φt = [∆Φ1,t, ∆Φ2,t]
′ .

The vector of residual terms is represented by εt = [u1,t, u2,t, u3,t]
′. Similar to our previous

estimations, we allow for one lag in the exogenous variable, ∆Φt. In Equation (23), β0 and
β1 are 3 × 2 matrices that capture the relationships between ∆Yt and changes in investor
attention during the current and previous months, i.e., ∆Φt and ∆Φt−1. We estimate the
model with one lag in the autoregressive and moving-average processes. The 2 × 1 vectors
Γ1 and Θ1 are coefficient estimates on the autoregressive and moving-average terms. Panel
A of Table 6 reports estimation results of the model in Equation (23) on the eight portfolio
pairs.

The results in Panel A confirm that our previous conclusions are robust after controlling
for potential cross-dynamics between volatilities and correlations. All coefficients on ∆Φ1,t

are positive and statistically significant, confirming that an increase in attention to the
industry portfolio raises the volatility of its portfolio, the portfolio that it is unrelated to,
as well as their returns correlation. We obtain a similar conclusion when looking at the
coefficients on ∆Φ2,t. Importantly, we find the magnitude of the coefficient estimates on
∆Φ1,t and ∆Φ2,t are very similar between Table 4 and Panel A of Table 6. This finding
suggests that our parameters estimates are robust to the model specification. Finally, we
examine the predictions of Hypotheses 2 and 4 in a multivariate framework. These two
hypotheses predict that changes in total attention to the portfolio pairs should raise their
portfolio volatilities as well as their correlations. We estimate the following model:

∆Yt = Λ + β0∆ (Φ1,t + Φ2,t) + β1∆ (Φ1,t−1 + Φ2,t−1) + Γ′1∆Yt−1 + Θ′1εt−1 + εt, (24)

where ∆Yt and εt are 3 × 1 vectors of dependent variables and residual terms, respectively.
The exogenous variable in Equation (24) is the total change in attention to the two portfolios,
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Φ1,t+Φ2,t. β0 and β1 are 3×1 vectors that capture the relationship between ∆Yt and changes
in total attention during the current and previous months. Estimation results of the model
in Equation (24) are reported in Panel B of Table 6. Clearly, the coefficient estimates on
Φ1,t + Φ2,t are positive and significant, confirming our results in Table 5. We also note that
the coefficient estimates in Panel B and those in Table 5 are very comparable in magnitude.
Overall, using both univariate and multivariate regression models, we find strong evidence
supporting our four hypotheses.

5 Conclusion

Recent empirical studies shed light on how investors focus on public information. These
studies document that attention to news is fluctuating and counter-cyclical. This paper shows
both theoretically and empirically that fluctuating attention implies return and volatility
spillover effects among fundamentally unrelated sectors. Indeed, a bad shock affecting one
sector propagates to other sectors through attention, simultaneously raising each sector’s
volatility and cross-sector correlation. We verify the claims of our model’s predictions in the
U.S. equity market using customer-supplier relationships data to identify unrelated groups
of firms. Through a series of empirical tests, we find strong evidence supporting fluctuating
attention as a channel through which contagion arises.

Our paper contributes to the existing literature by offering an explanation for financial
contagion through the well-documented observation that investors pay fluctuating atten-
tion to news. That is, return and volatility transmissions between fundamentally unrelated
sectors are natural outcomes of investors learning about news with counter-cyclical atten-
tion. Possible extensions of our work include incorporating more flexible preferences, e.g.,
Epstein-Zin preferences, as well as allowing for jumps in the dividend dynamics.
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A Appendix

A.1 Long-term means and variances

Let us consider the 4-dimensional vector Y =
(
f̂1 f̂2 π1 π2

)>
. The dynamics of Y in

vector notation is

dYt = (A−BYt) dt+ CdWt
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where

A =
(
λf̄ λf̄ 0 0

)>

B =


λ 0 0 0

0 λ 0 0

0 0 ω 0

0 0 0 ω



C =


γ1t
σδ

0 σfΦ1t 0

0 γ2t
σδ

0 σfΦ2t

σδ 0 0 0

0 σδ 0 0

 .

Applying Itô’s lemma on F ≡ eBtY yields

dF =


eλt(λf̄σδdt+γ1tdW1t+σfσδΦ1tdW3t)

σδ
etλ(λf̄σδdt+γ2tdW2t+σfσδΦ2tdW4t)

σδ

eωtσδdW1t

eωtσδdW2t

 .

Integrating from 0 to t and taking expectation yields
eλtE

(
f̂1t

)
− f̂10

eλtE
(
f̂2t

)
− f̂20

eωtE (π1t)− π10

eωtE (π2t)− π20

 =


(
eλt − 1

)
f̄(

eλt − 1
)
f̄

0

0

 .

Therefore, the long-term means satisfy

lim
t→+∞


E
(
f̂1t

)
E
(
f̂2t

)
E (π1t)

E (π2t)

 =


f̄

f̄

0

0

 .
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Similar computations yield the long-term variances

lim
t→+∞


Var

(
f̂1t

)
Var

(
f̂2t

)
Var (π1t)

Var (π2t)

 =


σ2
f

2λ
σ2
f

2λ
σ2
δ

2ω
σ2
δ

2ω

 .

A.2 Long-term uncertainty

The dynamics of the uncertainty γi conditional on πi = 0 is

dγit =

(
−γ

2
it

σ2
δ

− 2λγit + σ2
f

(
1−Ψ2

))
dt.

The dynamics of the uncertainty at the “steady-state” is

dγss
dt

= 0.

Solving yields

γss = σδ

√
σ2
f (1−Ψ2) + λ2σ2

δ − λσ
2
δ .

A.3 Proof of Proposition 2

The price of the single-dividend paying securities ST1 is defined by

P T
1t = Et

(
ξT
ξt
δ1T

)
. (25)

Substituting Equation (14) in Equation (25) yields

P T
1t = e−∆(T−t)(δ1t + δ2t)

αEt
(
δ1T

(
1

δ1T + δ2T

)α)
= e−∆(T−t)(δ1t + δ2t)

αEt
(
δ1−α

1T

(
δ1T

δ1T + δ2T

)α)
= e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+αQT

)
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where ζi ≡ log δi is the log-dividend and Q = log δ1
δ1+δ2

the log-dividend share. Similarly, the
price of the single-dividend paying security P T

2 satisfies

P T
2t = Et

(
ξT
ξt
δ2T

)
= e−∆(T−t)(δ1t + δ2t)

αEt
(
δ2T

(
1

δ1T + δ2T

)α)
= e−∆(T−t)(δ1t + δ2t)

αEt
(
δ−α1T δ2T

(
δ1T

δ1T + δ2T

)α)
= e−∆(T−t)eα(ζ1t−Qt)Et

(
e−αζ1T

(
e−QT − 1

)
eζ1T eαQT

)
= e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+(α−1)QT − e(1−α)ζ1T+αQT

)
= e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+(α−1)QT

)
− P T

1t

�

A.4 Approximation of the transforms

The idea consists in approximating the dynamics of the state-vector, and then computing
the transforms appearing in Equations (15) and (16) by applying the theory on affine pro-
cesses (e.g., Duffie, Pan, and Singleton, 2000). An accurate approximation of the dynamics
includes second-order terms. Consequently, before approximating we augment the state-
vector by these second order terms (Cheng and Scaillet, 2007). Then, we compute the drift
and variance-covariance matrix of the augmented state-vector. Finally, we approximate the
augmented drift and variance-covariance matrix by performing a Taylor expansion.

Because the dividend share belongs to the interval (0, 1), the log-dividend share Q belongs
to (−∞, 0). Therefore, the dynamics of Q cannot be accurately approximated by performing
Taylor expansions. To overcome this problem we perform the following change of variable12

Q̃ ≡ log

(
1 +

δ1

δ1 + δ2

)
= log

(
1 + eQ

)
where Q̃ ∈]0, log (2)[. The dynamics of Q̃ are

dQ̃t = e−2Q̃t
(
eQ̃t − 2

)(
eQ̃t − 1

)((
e2Q̃t − 2

)
σ2
δ + eQ̃t

(
f̂2t − f̂1t

))
dt

+
(
σδ

(
3− 2e−Q̃t − eQ̃t

)
σδ

(
−3 + 2e−Q̃t + eQ̃t

)
0 0

)
dWt.

12Note that this change of variable could be omitted. If it was, then the approximation of the transforms
would be slightly less accurate.
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Proposition 3. Under the change of variable stated above and the assumption that the coef-
ficient of relative risk aversion α is an integer, the single-dividend paying securities appearing
in Equations (15) and (16) satisfy

P T
1t = e−∆(T−t)

(
eζ1t

eQ̃t − 1

)α α∑
j=0

(
α

j

)
(−1)α−jEt

(
e(1−α)ζ1T+jQ̃T

)
(26)

P T
2t = e−∆(T−t)

(
eζ1t

eQ̃t − 1

)α α−1∑
j=0

(
α− 1

j

)
(−1)α−1−jEt

(
e(1−α)ζ1T+jQ̃T

)
− ST1t. (27)

Proof. The single-dividend paying securities price P T
1 satisfies

P T
1t = e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+αQT

)
= e−∆(T−t)

(
eζ1t

eQ̃t − 1

)α
Et
(
e(1−α)ζ1T

(
eQ̃T − 1

)α)
= e−∆(T−t)

(
eζ1t

eQ̃t − 1

)α
Et

(
e(1−α)ζ1T

α∑
j=0

(
α

j

)
(−1)α−jejQ̃T

)

= e−∆(T−t)
(

eζ1t

eQ̃t − 1

)α α∑
j=0

(
α

j

)
(−1)α−jEt

(
e(1−α)ζ1T+jQ̃T

)
. (28)

Similarly, P T
2 satisfies

P T
2t = e−∆(T−t)eα(ζ1t−Qt)Et

(
e(1−α)ζ1T+(α−1)QT

)
− P T

1t

= e−∆(T−t)
(

eζ1t

eQ̃t − 1

)α
Et
(
e(1−α)ζ1T

(
eQ̃T − 1

)α−1
)
− P T

1t

= e−∆(T−t)
(

eζ1t

eQ̃t − 1

)α α−1∑
j=0

(
α− 1

j

)
(−1)α−1−jEt

(
e(1−α)ζ1T+jQ̃T

)
− P T

1t. (29)

�

We now proceed with the approximation method that allows us to compute the transforms
appearing in Equations (28) and (29). Let the state-vector x be defined by

x ≡ (xi)
8
i=1

=
(
ζ1 Q̃ f̂1 f̂2 π1 π2 γ1 γ2

)>
,
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with the dynamic

dxt ≡ µ(xt) + σ(xt)dWt. (30)

In Equation (30), the state-vector x has a non-affine dynamic with a non-affine drift µ(x)

and a non-affine variance-covariance matrix σ(x)σ(x)>. Given the structure of µ(x) and
σ(x)σ(x)>, the augmented state-vector X is chosen to be

X ≡ (Xi)
17
i=1

=
(
ζ1 Q̃ f̂1 f̂2 π1 π2 γ1 γ2 . . .

. . . Q̃2 Q̃f̂1 Q̃f̂2 Q̃γ1 Q̃γ2 π2
1 π2

2 γ2
1 γ2

2

)>
dXt ≡µ(Xt) + σ(Xt)dWt.

Approximated expressions for the augmented drift µ(X) and the variance-covariance
matrix Σ(X) ≡ σ(X)σ(X)> are derived using a Taylor expansion around the reference
vector x0. We discuss the procedure below in Definition 5.

Definition 5. The reference vector x0 satisfies

x02 = log (1.5) x03 = x04 = f̄

x05 = x06 = 0 x07 = x08 ≡ γss.

Note that x01 is not defined because ζ1 neither shows up in the drift µ(X) nor in the variance-
covariance matrix Σ(X). f̄ is the long-term mean of f̂1 and f̂2, 0 is the long-term mean of π1

and π2, and γss = σδ
√
σ2
f (1−Ψ2) + λ2σ2

δ−λσ2
δ is the uncertainty conditional on πi = 0. The

derivations of the long-term means are provided in Appendix A.1. The long-term uncertainty
γss is computed in Appendix A.2.

The drift µ(X) and the variance-covariance matrix Σ(X) are expanded around the ref-
erence vector x0 defined in 5. More precisely, µ(X) and Σ(X) are written

µ(X) ≈ K0 +K1X

Σ(X) ≈ H0 +
17∑
i=1

HiXi,

whereK1 andHi, i = 0, . . . , 17 are 17-dimensional squared matrices andK0 a 17-dimensional
vector. K0, K1, and Hi, i = 0, . . . , 17 are available upon request.
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Using the approximation, the theory on affine processes applies. Following Duffie, Pan,
and Singleton (2000), the transforms defined in Equations (26) and (27) are approximated
by

Et
(
eεζ1T+χQ̃T

)
≈ eᾱ(T−t)+

∑17
i=1 β̄i(T−t)Xi , (31)

where the functions ᾱ(.) and β̄i(.), i = 1, . . . , 17, solve a set of 18 Riccati equations subject
to ᾱ(0) = 0, β̄1(0) = ε, β̄2(0) = χ, and β̄i(0) = 0, i = 3, . . . , 17.

The system of Riccati equations is

β̄′(τ) = K>1 β̄(τ) +
1

2
β̄(τ)>H+β̄(τ)

ᾱ′(τ) = K>0 β̄(τ) +
1

2
β̄(τ)>H0β̄(τ),

where τ = T − t.13 The set of Riccati equations is solved numerically. Then, substituting
Equation (31) in Equations (26) and (27) determines the single-dividend paying securities
prices P T

1 and P T
2 . As described in Equation (17), stock prices are obtained by numerically

integrating over the single-dividend paying securities.

13Note that the matrix H+ is 3-dimensional. It consists in the concatenation of the matrices Hi, i =
1, . . . , 17. This notation is used to avoid writing an equation for each β̄.
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Figure 6: Conditional volatility
We plot monthly conditional volatilities, in annualized terms, of eight industry portfolios
and their corresponding unrelated-firm portfolios. We assume that monthly portfolio return
follows and AR(1) process and model its volatilities using GARCH(1,1). We define industry
sectors following the Fama-French classifications (see Table 3). The title of each panel
indicates the name of the industry portfolio. A portfolio of firms unrelated to each industry,
i.e. Unrelated portfolio, is identified using U.S. supplier-customer relationships data from
1980 through 2009. We use size-weighted averages to calculate monthly returns of firms in
each portfolio. Portfolio weights are re-balanced once per year. In each panel, the solid line
plots conditional volatilities of the industry portfolio, while the dotted line plots conditional
volatilities of the unrelated-firm portfolio.
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Figure 7: Conditional correlation
We plot monthly conditional correlations between eight industry portfolios and their cor-
responding unrelated-firm portfolios. Conditional correlations for each portfolio pair are
estimated using the Dynamic Conditional Correlation (DCC) model (Engle (2002)). We
define industry sectors following the Fama-French classifications (see Table 3). The title of
each panel indicates the name of the industry portfolio. A portfolio of firms unrelated to each
industry, i.e. Unrelated-firm portfolio, is identified using U.S. supplier-customer relationships
data from 1980 through 2009. Monthly portfolio returns are calculated using size-weighted
averages. Portfolio weights are re-balanced once per year.
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Figure 8: Time-varying attention
We plot monthly share turnover of eight industry portfolios and their corresponding
unrelated-firm portfolios. Monthly share turnover for a firm is calculated by dividing its
monthly trading volume by its number of common shares outstanding. Portfolio share
turnover is calculated by size-weighted averaging share turnover across firms. Portfolio
weights are re-balanced once per year. The title of each panel indicates the name of the
industry portfolio. We define industry sectors following the Fama-French classifications (see
Table 3). A portfolio of firms unrelated to each industry, i.e. Unrelated-firm portfolio, is
identified using U.S. supplier-customer relationships data from 1980 through 2009. In each
panel, the solid line plots share turnover of the industry portfolio, while the dotted line plots
share turnover of the unrelated-firm portfolio.
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Panel A. Number of firms: Industry portfolio versus unrelated-firm portfolio

Industry name Median Min Max Median Min Max
Food* 84 62 109 977 732 1436
Mining 24 16 35 1079 791 1641
Oil & petroleum 73 34 116 1018 746 1457
Clothing & textiles 49 27 73 1045 762 1469
Consumer durables 38 17 61 1030 785 1460
Chemicals 51 37 70 993 729 1421
Consumption* 126 73 179 950 719 1385
Construction* 94 68 124 954 716 1360
Steel 43 27 68 1035 752 1467
Fabricated products 25 15 35 1036 783 1483
Machinery* 245 132 386 890 636 1235
Automobiles* 42 19 66 1037 789 1478
Transportation* 223 119 330 831 605 1185
Utilities* 153 106 177 933 658 1418
Retail* 161 82 219 912 672 1320

Panel B. Aggregate portfolio characteristics: Industry portfolio versus unrelated-firm portfolio

Industry  portfolio
Industry name Size Earnings Dividend Size Earnings Dividend
Food* 133.26 6.41 2.77 639.38 38.53 19.49
Mining 13.31 0.53 0.33 836.12 47.19 22.50
Oil & petroleum 44.06 1.97 1.08 702.35 41.32 20.12
Clothing & textiles 13.12 0.90 0.24 709.13 42.61 21.27
Durables 11.71 0.61 0.25 705.68 42.56 21.15
Chemicals 71.53 4.73 2.33 635.77 38.27 19.28
Consumption* 424.36 24.52 12.35 549.36 33.05 16.62
Construction* 70.60 3.86 1.28 636.74 38.16 19.31
Steel 23.18 1.36 0.52 697.64 41.77 20.93
Fabricated products 8.50 0.48 0.18 680.80 40.91 20.69
Machinery* 217.84 9.70 3.28 597.76 37.12 19.03
Automobiles* 72.15 6.26 2.33 702.04 42.16 21.14
Transportation* 177.89 8.79 3.00 554.38 34.56 18.10
Utilities* 189.60 14.27 10.51 547.87 29.48 12.04
Retail* 220.09 10.63 2.85 661.68 40.48 20.77

Number of firms in the portfolio each month

Total portfolio characteristics (annualized average in millions $)
Unrelated-firm portfolio

Unrelated-firm portfolioIndustry  portfolio

Table 3: Summary statistics of portfolio pairs
This table presents summary statistics of the 15 industry portfolios and their corresponding
unrelated-firm portfolios. The sample consists of U.S. firms in the CRSP database from 1980
through 2009 with non-missing information in COMPUSTAT. See text in Section 4.1 for ad-
ditional filters applied to the data. We classify firms into different industries following the
Fama-French 17-industry classifications. Industries labeled under "Financial" and "Others"
are excluded. We refer to a portfolio of firms classified under one of the Fama-French indus-
tries as the industry portfolio. We use U.S. customer-supplier relationships data to identify
a portfolio of firms that have unrelated business connections with firms in the industry port-
folio; we refer to it as the unrelated-firm portfolio. For firms to be unrelated, we require that
they have at least six degrees of separations between them in the relationships database.
The U.S. customer-supplier relationships data are updated annually. Industry portfolios and
their unrelated-firm portfolios are formed annually. (continued on next page...)
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Table 3: (Continued) Panel A summarizes the median, minimum, and maximum number
of firms that enter each portfolio from 1980 through 2009. In Panel B, we report time-series
means of aggregate portfolio characteristics. For each portfolio, we calculate its total market
capitalization (i.e. size), total earnings, and total dividend payout. These characteristics are
obtained from the COMPUSTAT Annual Fundamentals database, and aggregated across
firms in each portfolio. All values are reported in units of one million U.S. dollars. The
model setup proposed in Section 2 provides predictions of contagion between two entities
that have similar magnitude of cash flows. In order to make our empirical design similar
to the model, we exclude portfolio pairs that greatly differ in size and earnings cash flow.
We require that the average size of the industry portfolio is at least 10 percent relative to
the average size of its unrelated-firm portfolio. There are nine portfolio pairs that meet the
requirement. We denote them with an asterisk next to their industry name. We estimate
conditional volatilities and correlations of these nine portfolio pairs using the GARCH(1,1)
model and the DCC-GARCH(1,1) model, respectively. Each estimation consists of 380
monthly observations. Maximum likelihood estimation for the Utilities industry pair does
not converge and are therefore removed from further analyses. As a result, eight portfolio
pairs shown in Figure 6 are used in the empirical tests.
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Δσ1,t Δσ2,t Δρ12,t

(I) (II) (III)

Time-varying attentions
ΔΦ1,t 0.045*** 0.015*** 0.074**

(10.40) (4.53) (2.23)
ΔΦ2,t 0.021*** 0.052*** 0.130***

(5.07) (15.79) (4.08)
ΔΦ1,t-1 -0.024*** -0.010*** -0.032

(-3.58) (-2.74) (-0.89)
ΔΦ2,t-1 -0.016*** 0.004 0.067*

(-3.31) (0.85) (1.80)

ARMA coefficients
AR(1) 0.961*** 0.477*** 0.196*

(4.82) (10.59) (1.67)
AR(2) -0.348*** -0.079***

(-4.00) (-4.32)
MA(1) 1.299*** 0.659*** 0.303**

(10.57) (16.09) (2.33)
MA(2) -0.420***

(-4.47)
Model ARMAX(2,2,1) ARMAX(2,1,1) ARMAX(1,1,1)
AICC -10.62 -11.11 -6.53

Dependent variables

Table 4: Fluctuating attention and contagion
This table reports maximum likelihood estimates of the autoregressive moving-average model
with exogenous variables (ARMAX). The general regression model is:

∆yt = α+ β′0∆Φt + β′1∆Φt−1 + Σp
j=1γj∆yt−j + Σq

k=1θkεt−k + εt,

where ∆yt represents the dependent variable at time t, and ∆Φt = [∆Φ1,t, ∆Φ2,t]
′ is a vector

of exogenous variables that proxy for monthly change in investor attention to the industry
portfolio, ∆Φ1,t, and its unrelated-firm portfolio, ∆Φ2,t. β0 and β1 are 2×1 vectors. We esti-
mate the model in a panel on eight pairs of industry portfolios and unrelated-firm portfolios.
Figures 6 and 7 plot their time-series dynamics. The sample period is from 1980 through
2009, and the estimation frequency is monthly. A change in investor attention for each port-
folio in month t is measured as the difference between portfolio share turnover levels in the
current and previous months. Monthly share turnover for a firm is calculated by dividing
its monthly trading volume by its number of common shares outstanding. Portfolio share
turnover is calculated as the size-weighted average share turnover across firms. Portfolio
weights are re-balanced once per year. The dependent variables in regression specifications
(I) and (II) are monthly changes in conditional volatilities of the industry portfolio, ∆σ1,t,
and the unrelated-firm portfolio, ∆σ2,t, respectively. In regression specification (III), the
dependent variable is the monthly change in conditional correlations between the industry
portfolio and its unrelated-firm portfolio, ρ12,t. The number of lags in the ARMA represen-
tation is determined using the Akaike information criterion (AICC) and the Portmanteau
test. The intercepts, α, is estimated but not reported. T-statistic is reported in brackets
below each estimate. ***, **, * denote statistical significance at the confidence levels of 1,
5, and 10 percent, respectively.
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Δσ1,t Δσ2,t Δρ12,t

(I) (II) (III)

Time-varying attentions
Δ(Φ1,t + Φ2,t) 0.032*** 0.032*** 0.103***

(15.71) (20.58) (6.66)
Δ(Φ1,t-1 + Φ2,t-1) -0.019*** -0.003 0.019

(-4.56) (-1.39) (0.85)
ARMA coefficients
AR(1) 1.175*** 0.526*** 0.198*

(9.46) (11.45) (1.66)
AR(2) -0.341*** -0.081***

(-3.99) (-4.36)
MA(1) 1.282*** 0.689*** 0.305**

(10.34) (16.44) (2.30)
MA(2) -0.412*** -0.096

(-4.46) (-0.98)
Model ARMAX(2,1,1) ARMAX(2,1,1) ARMAX(1,1,1)
AICC -11.11 -11.09 -6.53

Dependent variables

Table 5: Fluctuating total attention and contagion
This table reports maximum likelihood estimates of the autoregressive moving-average model
with exogenous variable (ARMAX). The general regression model is:

∆yt = α+ β0∆ (Φ1,t + Φ2,t) + β1∆ (Φ1,t−1 + Φ2,t−1) + Σp
j=1γj∆yt−j + Σq

k=1θkεt−k + εt,

where ∆yt represents the dependent variable at time t, and ∆ (Φ1,t + Φ2,t) is the monthly
change in total investor attention to the industry portfolio, ∆Φ1,t, and its unrelated-firm
portfolio, ∆Φ2,t. β0 and β1 are scalars. We estimate the model in a panel on eight pairs
of industry portfolios and unrelated-firm portfolios. Figures 6 and 7 plot their time-series
dynamics. The sample period is from 1980 through 2009, and the estimation frequency
is monthly. A change in investor attention to each portfolio in month t is measured as
the difference between portfolio share turnover levels in the current and previous months.
Monthly share turnover for a firm is calculated by dividing its monthly trading volume by
its number of common shares outstanding. Portfolio share turnover is calculated as the
size-weighted average share turnover across firms. Portfolio weights are re-balanced once
per year. The dependent variables in regression specifications (I) and (II) are monthly
changes in conditional volatilities of the industry portfolio, ∆σ1,t, and the unrelated-firm
portfolio, ∆σ2,t, respectively. In regression specification (III), the dependent variable is the
monthly change in conditional correlations between the industry portfolio and its unrelated-
firm portfolio, ρ12,t. The number of lags in the ARMA representation is determined using
the Akaike information criterion (AICC) and the Portmanteau test. The intercept, α, is
estimated but not reported. T-statistic is reported in brackets below each estimate. ***, **,
* denote statistical significance at the confidence levels of 1, 5, and 10 percent, respectively.
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Δσ1,t Δσ2,t Δρ12,t Δσ1,t Δσ2,t Δρ12,t

(I) (II) (III) (IV) (V) (VI)

Time-varying attentions
ΔΦ1,t 0.044*** 0.016*** 0.062*

(10.40) (4.69) (1.86)
ΔΦ2,t 0.019*** 0.052*** 0.126***

(4.55) (15.68) (3.91)
ΔΦ1,t-1 -0.002 -0.004 -0.062*

(-0.32) (-1.11) (-1.67)
ΔΦ2,t-1 -0.006 -0.005 0.035

(-0.83) (-0.94) (0.73)
Δ(Φ1,t + Φ2,t) 0.031*** 0.035*** 0.089***

(14.36) (21.55) (5.73)
Δ(Φ1,t-1 + Φ2,t-1) -0.005 -0.007** -0.037

(-1.11) (-2.23) (-1.61)
ARMA coefficients
Δσ1,t-1 0.616*** -0.127*** -0.065 0.450*** -0.235* 0.424

(10.40) (-2.73) (0.38) (2.69) (-1.78) (0.39)
Δσ2,t-1 -0.012 0.568*** -1.512 0.094 0.710*** -1.154

(-0.16) (11.31) (-0.17) (0.77) (7.16) (-1.56)
Δρ12,t-1 0.042*** 0.016 0.775*** 0.073** 0.039 0.705***

(3.11) (1.35) (8.77) (2.25) (1.31) (3.19)
u1,t-1 0.721*** -0.139*** 0.228 0.550*** -0.232* 0.802

(12.30) (-2.97) (0.62) (3.25) (-1.75) (0.75)
u2,t-1 -0.004 0.797*** -1.397*** 0.104 0.902*** -1.228*

(-0.07) (18.11) (-3.57) (0.94) (10.24) (-1.87)
u3,t-1 0.040*** 0.014 0.824*** 0.071** 0.036 0.750***

(3.16) (1.27) (10.80) (2.21) (1.25) (3.65)
Model
AICC

Panel A Panel B

-28.68 -28.64
VARMAX(1,1,1)VARMAX(1,1,1)

Dependent variablesDependent variables

Table 6: Fluctuating attention and contagion: Multivariate model
This table reports maximum likelihood estimates of the vector autoregressive moving-average
model with exogenous variables (VARMAX). The model is estimated in panel on eight pairs
of industry portfolio and its unrelated-firm portfolio. The sample period is from 1980 through
2009. Figures 6 and 7 plot their time-series dynamics. We estimate the VARMAX model
with lags p = 1 and q = 1. We allow for one lag of exogenous variable. Specifically, the
regression model is:

∆Yt = Λ + β0∆Φt + β1∆Φt−1 + Γ′1∆Yt−1 + Θ′1εt−1 + εt,

where ∆Yt = [∆σ1,t, ∆σ2,t, ∆ρ12,t]
′ is a vector of monthly changes in volatilities and correla-

tions for a portfolio pair: the industry portfolio, its unrelated-firm portfolio. The coefficients
β0 and β1 are 3 × 2 matrix that capture the relationships between ∆Yt and changes in in-
vestor attention during the current and previous months, i.e., ∆Φt and ∆Φt−1. (continued
on next page...)
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Table 6: (Continued) The vector of residual is represented by εt = [u1,t, u2,t, u3,t]
′. The

2×1 vectors Γ1 and Θ1 are coefficient estimates on autoregressive and moving-average terms.
In Panel A, we report estimation results from a VARMAX(1,1,1) model where the exoge-
nous variable is a vector of monthly changes in investor attention to eight pairs of industry
portfolios and unrelated-firm portfolios. That is, i.e., ∆Φt = [∆Φ1,t, ∆Φ2,t]

′, where ∆Φ1,t is
the monthly change in attention to the industry portfolio, and ∆Φ2,t is the monthly change
in attention to the unrelated-firm portfolio. In Panel B, we estimate the VARMAX(1,1,1)
model where the exogenous variable is the monthly change in total attention to the portfolio
pair, i.e., ∆Φt = ∆Φ1,t + ∆Φ2,t. A change in investor attention to each portfolio in month
t is measured as the difference between portfolio share turnover levels in the current and
previous months. Monthly share turnover for a firm is calculated by dividing its monthly
trading volume by its number of common shares outstanding. Portfolio share turnover is
calculated as the size-weighted average share turnover across firms. Portfolio weights are
re-balanced once per year. The intercept, Λ, is estimated but not reported. T-statistic is
reported in brackets below each estimate. ***, **, * denote statistical significance at the
confidence levels of 1, 5, and 10 percent, respectively.
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