
On the Economic Value of Alphas

RAYMOND KAN and XIAOLU WANG∗

This version: March 2015

∗Kan is from the University of Toronto and Wang is from Iowa State University. Kan gratefully
acknowledges financial support from the National Bank Financial of Canada and the Social Sciences
and Humanities Research Council of Canada. Earlier version of the paper was circulated under the
title “Seeking Positive Alpha.” We thank Robert Grauer, Kevin Wang, Jason Wei, Jialin Yu, Chu
Zhang, Guofu Zhou, seminar participants at Central University of Finance and Economics, Hong
Kong Polytechnic University, Hong Kong University, Tsinghua University, University of Toronto,
University of Wisconsin at Madison, Wilfrid Laurier University, and participants at the 2011 Asian
Finance Association Annual Meeting and 2014 HKUST Finance Symposium on Asset Pricing for
helpful discussions and comments. Corresponding author: Raymond Kan, Joseph L. Rotman School
of Management, University of Toronto, 105 St. George Street, Toronto, Ontario, Canada M5S 3E6;
Tel: (416) 978-4291; Fax: (416) 978-5433; Email: kan@chass.utoronto.ca.



On the Economic Value of Alphas

Abstract

In this paper, we examine the benefit of incorporating test assets with nonzero alphas

into an optimal portfolio when the mean and covariance matrix of asset returns are estimated

with errors. Under the normality assumption, we derive the distribution of out-of-sample

return of a portfolio that is optimized based on sample mean and covariance matrix. We

show that as long as the benchmarks are not ex ante efficient, this sample optimal portfolio

will generate positive alpha relative to the benchmarks. However, due to estimation errors,

we need a very long estimation window for the sample optimal portfolio to outperform the

benchmarks. We further consider a strategy that optimally combines the risk-free asset, the

sample optimal portfolio, and the sample optimal portfolio based on just the benchmarks.

This combining strategy consistently outperforms the benchmarks, providing a reliable way

to realize the economic value of nonzero alphas.



I. Introduction

Since the seminal work of Jensen (1968), alpha has rapidly gained its popularity, and has

become a widely used measure for performance evaluation, both in academic research and in

practice. Today, in addition to the classic CAPM alpha, alphas with respect to many other

asset pricing models, such as the Fama-French (1993) three-factor model and the Carhart

(1997) four-factor model, are often used. Empirical asset pricing studies often find nonzero

alphas in various test assets. These findings are typically interpreted as a rejection of the

asset pricing model based on the benchmark portfolios. However, from the perspective of an

investor, the more relevant question is how to improve the investment performance over the

benchmark portfolios by using the test assets.

When the mean and the covariance matrix of the asset returns are known, one can

improve the maximum Sharpe ratio of the benchmark portfolios by incorporating test assets

with nonzero alphas. Specifically, Dybvig and Ross (1985) show that if an asset has a positive

alpha relative to a benchmark, then buying some of the asset at the margin will result in a

higher Sharpe ratio than that of the benchmark. In reality, the true mean and covariance

matrix are unknown and need to be estimated. Therefore, the optimal portfolio constructed

using the estimated mean and covariance matrix (which we call the sample optimal portfolio)

contains estimation errors, and the benefit of incorporating the test assets into the optimal

portfolio becomes unclear.1

In this paper, we study this problem by asking two related questions. First, given es-

timation errors, we examine whether the sample optimal portfolio will have positive alpha

relative to the benchmarks and whether the sample optimal portfolio can outperform the

benchmarks. Under the normality assumption, we derive the distribution of the excess re-

turn of the sample optimal portfolio. With this distribution, we show that as long as the

benchmarks are not ex ante efficient, the sample optimal portfolio will generate positive

unconditional alpha. In addition, we analyze the distribution of the t-ratio of the alpha of

1Brown (1976), Bawa and Klein (1976), Bawa, Brown, and Klein (1979), Jorion (1986), Pástor (2000),
Pástor and Stambaugh (2000), MacKinlay and Pástor (2000), Tu and Zhou (2004), Kan and Zhou (2007),
Tu and Zhou (2011) are examples of studies focusing on portfolio rules with parameter uncertainty. Pástor
(2000) and Pástor and Stambaugh (2000) also take into account the benchmark portfolios while studying
portfolio selection with parameter uncertainty.
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the sample optimal portfolio and show that it is not unusual to find statistically significant

positive alpha. However, due to estimation errors, the sample optimal portfolio does not

always outperform the optimal portfolio based only on the benchmarks (which we call the

benchmark sample optimal portfolio). In most cases, we need a very long estimation win-

dow in order for the sample optimal portfolio to outperform the benchmark sample optimal

portfolio.

Given the poor performance of the sample optimal portfolio, the second question we ask

is whether a combining rule — combining the risk-free asset, the sample optimal portfolio,

and the benchmark sample optimal portfolio — can improve the out-of-sample performance

and provide a reliable strategy to outperform the benchmarks.2 When the parameters are

known, the best strategy is to hold only the optimal portfolio and there is no point in

considering a combining strategy. When the parameters are unknown, the estimation errors

lower the benefit of including the test assets and we derive analytically the optimal weights

on the risk-free asset, the sample optimal portfolio, and the benchmark sample optimal

portfolio. As long as the benchmarks are not ex ante efficient, the optimal combining strategy

always has positive weight on the sample optimal portfolio. In addition, we show that

the optimal combining strategy consistently outperforms the benchmarks. Therefore, the

optimal combining portfolio provides a reliable strategy to realize the economic value of

nonzero alphas.

We check the robustness of our results to the departure from the assumption that excess

returns of risky assets are i.i.d. multivariate normal. Specifically, we examine two alternative

distributional assumptions: a multivariate t-distribution with five degrees of freedom and

an empirical distribution. Test results suggest that our conclusions are robust to alternative

distributional assumptions.

The remainder of the paper is organized as follows. Section II derives the distribution

of out-of-sample return and conditional alpha of the sample optimal portfolio. Section III

presents the optimal combining portfolio, and examines the performance of this combining

strategy. Section IV investigates the robustness of our results under alternative distributional

assumptions. Section V concludes and discusses future research opportunities.

2Jorion (1986), Kan and Zhou (2007), Tu and Zhou (2011) consider some alternative three-fund rules.
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II. The Sample Optimal Portfolio

A. The Setting

Consider a portfolio choice problem of an investor in a universe with a risk-free asset, K

benchmark portfolios, and N test assets. Let rt = [r′1,t, r
′
2,t]
′, where r1,t and r2,t are the

excess returns (in excess of risk-free rate) of the benchmark portfolios and the test assets

at time t, respectively. We assume that rt follows a multivariate normal distribution and is

independent and identically distributed (i.i.d.) over time with mean

µ =

[
µ1

µ2

]
(1)

and covariance matrix

V =

[
V11 V12

V21 V22

]
. (2)

The investor is assumed to choose a portfolio q in order to maximize the mean-variance

utility function

Uq = µq −
γ

2
σ2
q , (3)

where γ is the investor’s risk aversion coefficient, and µq and σ2
q are the mean and variance

of portfolio q.

When the benchmarks are ex ante efficient, the N test assets will have zero alphas, i.e.,

α = µ2 − V21V
−1

11 µ1 = 0N . (4)

The optimal portfolio consists of just the K benchmarks with weights

ws∗ =
1

γ
V −1

11 µ1. (5)

We call this portfolio the benchmark optimal portfolio and denote it as s∗. The utility of

holding portfolio s∗ is

Us∗ =
θ2

1

2γ
, (6)

where θ2
1 = µ′1V

−1
11 µ1 is the squared Sharpe ratio of the ex ante tangency portfolio of the K

benchmarks.
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When the benchmarks are inefficient, the N test assets will have nonzero alphas

α = µ2 − V21V
−1

11 µ1 6= 0N . (7)

It is possible for the investor to improve the utility by including the N test assets into the

portfolio. The optimal portfolio, p∗, has weights

wp∗ =
1

γ
V −1µ (8)

on the M ≡ N +K assets. The utility of holding portfolio p∗ is

Up∗ =
θ2

2γ
, (9)

where θ2 = µ′V −1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the M

assets. The utility improvement by including the N test assets is

Up∗ − Us∗ =
δ2

2γ
, (10)

where3

δ2 = θ2 − θ2
1 = µ′V −1µ− µ′1V −1

11 µ1 = α′Σ−1α, (11)

and Σ = V22 − V21V
−1

11 V12. In addition, it can be readily shown that the alpha of portfolio

p∗ relative to the K benchmark portfolios is

αp∗ =
δ2

γ
. (12)

Therefore, the existence of nonzero alphas for the test assets indicates that p∗ has positive

alpha and nonzero weights in the test assets.

However, µ and V are unknown in practice. Therefore, portfolios s∗ and p∗ are unattain-

able to the investor. We assume the investor estimates µ and V using a window of h months

of historical data of excess returns, and the estimates of µ and V at time t are given by

µ̂t =

[
µ̂1,t

µ̂2,t

]
=

1

h

t∑
τ=t−h+1

rτ , (13)

V̂t =

[
V̂11,t V̂12,t

V̂21,t V̂22,t

]
=

1

h

t∑
τ=t−h+1

(rτ − µ̂t)(rτ − µ̂t)′. (14)

3See Jobson and Korkie (1982) and Gibbons, Ross, and Shanken (1985).
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Natural estimators of ws∗ and wp∗ are the sample counterparts of (5) and (8):

ws,t =
1

γ
V̂ −1

11,tµ̂1,t, (15)

wp,t =
1

γ
V̂ −1
t µ̂t. (16)

We call these two portfolios as the benchmark sample optimal portfolio and the sample

optimal portfolio, and denote them as portfolio s and portfolio p, respectively. Given esti-

mation errors, we will examine whether portfolio p also has positive alpha with respect to the

benchmarks, and more importantly, whether the investor is better off by holding portfolio p

instead of portfolio s.

Note that ws,t and wp,t are random variables as functions of the historical returns data,

and therefore, the conditional mean and variance of portfolios s and p are also random

variables. The conditional out-of-sample utility of portfolio s and p at time t are given by

Us,t = w′s,tµ1 −
γ

2
w′s,tV11ws,t, (17)

Up,t = w′p,tµ−
γ

2
w′p,tV wp,t. (18)

It is natural then to evaluate a portfolio rule q with random weights wq,t based on its expected

out-of-sample utility4

E[Uq] = E
[
w′q,tµ−

γ

2
w′q,tV wq,t

]
. (19)

B. Distribution of Out-of-Sample Returns of the Sample Optimal
Portfolio

Since there are estimation errors in µ̂t and V̂t, the distribution of the out-of-sample return

of the sample optimal portfolio p could significantly differ from that of the true optimal

portfolios p∗. In this subsection, we obtain the distribution of the out-of-sample return of

the sample optimal portfolio p.

Conditional on portfolio weights wp,t, the excess return of the sample optimal portfolio

4Brown (1976), Jorion (1986), Frost and Savarino (1986), Stambaugh (1997), Ter Horst, De Roon, and
Werkerzx (2006), Kan and Zhou (2007), and Tu and Zhou (2011) are examples of using expected out-of-
sample utility to evaluate portfolio rules.
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at time t+ 1 is given by

rp,t+1 = w′p,trt+1. (20)

Under the normality assumption on rt+1, rp,t+1 is conditionally normally distributed with

conditional mean and variance given by

µp,t = w′p,tµ, (21)

σ2
p,t = w′p,tV wp,t. (22)

Note that although rp,t+1 is normally distributed when condtional on wp,t, the unconditional

distribution of rp,t+1 is not normally distributed. In the following Proposition, we present

the unconditional distribution of rp,t+1.

Proposition 1: Let x1 ∼ N(0, 1), z1 ∼ N(
√
hθ, 1), u0 ∼ χ2

M−1, u1 ∼ χ2
h−M , u2 ∼ χ2

h−M+1,

u3 ∼ χ2
M−2, and they are independent of each other. When h > M > 1, the joint distribution

of µp,t and σ2
p,t can be obtained using

µp,t =

√
hθ

γu1

(
z1 +

x1
√
u0√
u2

)
, (23)

σ2
p,t =

h(z2
1 + u0)

γ2u2
1

(
1 +

x2
1 + u3

u2

)
. (24)

When M = 1, we have

µp,t =

√
hθz1

γu1

, σ2
p,t =

hz2
1

γ2u2
1

. (25)

The out-of-sample excess returns of portfolio p can be simulated using

rp,t+1 = µp,t + σp,ty, (26)

where y ∼ N(0, 1) and it is independent of x1, z1, u0, u1, u2, and u3.

Proposition 1 shows that although wp,t is a function of µ̂t and V̂t, the joint distribution of

µp,t and σ2
p,t only depends on two normal random variables (x1 and z1) and four central chi-

squared random variables (u0 to u3). In the proof of Proposition 1, we can see that z1 and u0

are due to the randomness of µ̂t and x1, u1, u2, and u3 are due to the randomness of V̂t. In

addition, Proposition 1 reveals that the distribution of rp,t+1 is completely determined by γ,
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h, M , and θ. There is no need to specify µ and V for us to obtain the distribution of rp,t+1.

Therefore, Proposition 1 provides us a speedy approach for simulating the distribution of

rp,t+1 without the need to simulate the excess returns on the M assets. By replacing M with

K and θ with θ1, Proposition 1 also allows us to obtain the unconditional distribution of

rs,t+1.

In Figure 1, we plot the density function of the excess return of the sample optimal port-

folio p together with that of the true optimal portfolio p∗ (h =∞) for different combinations

of h (60 or 120) and M (13 or 28), assuming that the investor has a relative risk aversion

of 10 and the tangency portfolio of the M assets has a Sharpe ratio of θ = 0.3. When com-

paring with the distribution of the true optimal portfolio (which is normally distributed),

the excess return of the sample optimal portfolio exhibits a higher volatility, especially when

the length of the estimation window is short and when there are more risky assets. This is

because with short estimation window or more risky assets, there are more estimation errors,

which makes rp,t+1 more volatile.

Figure 1 about here

Using the results of Proposition 1, we can obtain the noncentral and central moments of

rp,t+1. The first four noncentral moments are given by5

E[rp,t+1] = E[µp,t] =
hθ2

γ(h−M − 2)
for h > M + 2, (27)

E[r2
p,t+1] = E[µ2

p,t] + E[σ2
p,t]

=
h2(h−M − 1)θ4 + h(h− 2)[(h+ 1)θ2 +M ]

γ2(h−M − 1)(h−M − 2)(h−M − 4)
for h > M + 4, (28)

E[r3
p,t+1] = E[µ3

p,t] + 3E[µp,tσ
2
p,t]

=
h3(h−M − 1)θ6 + 3h2(h− 2)θ2[(h+ 1)θ2 +M + 2]

γ3(h−M − 1)(h−M − 2)(h−M − 4)(h−M − 6)
for h > M + 6, (29)

E[r4
p,t+1] = E[µ4

p,t] + 6E[µ2
p,tσ

2
p,t] + 3E[σ4

p,t]

=
h4(h−M − 1)(h−M − 3)θ8

γ4(h−M − 4)4(h−M − 6)(h−M − 8)

5Using the inverse first and second moments of central Wishart distributions, Kan and Zhou (2007) obtain
E[µp,t] and E[σ2

p,t]. However, it is difficult to generalize their method to obtain the higher order moments
of rp,t+1.
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+
6h3(h− 2)(h−M − 3)[(h+ 1)θ2 +M + 4]θ4

γ4(h−M − 4)4(h−M − 6)(h−M − 8)

+
3h2(h− 2)(h− 4) [((h+ 1)θ2 +M + 2)2 − 2(M + 2)]

γ4(h−M − 4)4(h−M − 6)(h−M − 8)
for h > M + 8, (30)

where (a)r = a(a+ 1) · · · (a+ r − 1).

With the first four noncentral moments of rp,t+1 available, the variance and the third and

fourth central moments of rp,t+1 can be obtained as

Var[rp,t+1] = E[r2
p,t+1]− E[rp,t+1]2 for h > M + 4, (31)

E[(rp,t+1 − E[rp,t+1])3] = E[r3
p,t+1]− 3E[r2

p,t+1]E[rp,t+1] + 2E[rp,t+1]3 for h > M + 6, (32)

E[(rp,t+1 − E[rp,t+1])4] = E[r4
p,t+1]− 4E[r3

p,t+1]E[rp,t+1] + 6E[r2
p,t+1]E[rp,t+1]2

− 3E[rp,t+1]4 for h > M + 8. (33)

With the expressions of the unconditional mean µp ≡ E[rp,t+1] and variance σ2
p ≡ Var[rp,t+1]

of the sample optimal portfolio available, we can easily compute the unconditional Sharpe

ratio (denoted as θp = µp/σp) of the sample optimal portfolio. In Figure 2, we plot θp/θ as a

function of h for four different combinations of θ (0.2 and 0.3) and M (13 and 28). Figure 2

clearly shows that the estimation errors of µ̂t and V̂t significantly reduce the Sharpe ratio of

the sample optimal portfolio. This is particularly the case when θ is small and M is large.

When θ = 0.2 and M = 28, θp is still less than 67% of θ even using a very long estimation

window of h = 600.

Figure 2 about here

From Figure 1, we observe that while rp,t+1 is not normally distributed, its distribution

is almost symmetric. To understand whether this is a general property of rp,t+1, we plot

the coefficient of skewness of rp,t+1 as a function of h for different combinations of θ (0.2 or

0.3) and M (13 or 28) in Figure 3. The figure suggests that while the excess return of the

sample optimal portfolio has positive skewness, its coefficient of skewness is tiny even when

the estimation window is short. The observation that rp,t+1 does not have much skewness

is important because it shows that the sample optimal portfolio is not a dynamic trading

strategy that aims at replicating the payoff of an option.
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Figure 3 about here

In Figure 4, we show the corresponding plot of coefficient of excess kurtosis of rp,t+1 as

a function of h. Unlike the coefficient of skewness, the coefficient of excess kurtosis of rp,t+1

is rather large, especially when h is small. The positive excess kurtosis indicates that rp,t+1

has a fatter tail than the normal distribution. If investors do not like return distributions

that have fat tails, then the sample optimal portfolio will be less desirable due to the excess

kurtosis introduced by the estimation errors on the optimal weights.

Figure 4 about here

C. Distribution of Conditional Alpha of the Sample Optimal Port-
folio

Under our i.i.d. setting, the conditional alpha and beta of the true optimal portfolio p∗ are

constant over time because wp∗ is constant over time. However, for the sample optimal

portfolio, its weights wp,t are time varying, so its conditional alpha and beta are no longer

constant over time. The conditional alpha of the sample optimal portfolio at time t is given

by

αp,t = w′p,t

[
0K
α

]
=

1

γ
µ̂′tV̂

−1
t

[
0K
α

]
. (34)

In the following Proposition, we provide a simplification of the distribution of the conditional

alpha for the sample optimal portfolio.

Proposition 2: Let y ∼ N(0, 1), u0 ∼ χ2
M−1(hθ2

1), u1 ∼ χ2
h−M , u2 ∼ χ2

h−M+1, and they are

independent of each other. When h > M > 1, the distribution of αp,t can be generated using

αp,t =

√
hδ

γu1

[
√
hδ +

(
1 +

u0

u2

) 1
2

y

]
. (35)

Proposition 2 reveals that the distribution of αp,t depends only on γ, h, M , θ, and θ1. When

θ = θ1 (i.e., δ = 0), the benchmark portfolios are ex ante efficient, and αp,t = 0. Otherwise,

αp,t is nonzero.
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Figure 5 about here

In Figure 5, we plot the density function of αp,t for an investor with γ = 10. We assume

θ1 = 0.1 and θ = 0.3, so the benchmark portfolios are not ex ante efficient. Density functions

for different combinations of h (60 or 120) and M (13 or 28) are plotted in the figure. Figure 5

shows that there is very high likelihood that αp,t is positive. However, due to estimation

errors, unlike the alpha of the true optimal portfolio (αp∗) which is always positive, αp,t can

take both positive and negative values. The probability for αp,t to be negative is non-trivial

when h is small and M is large. In addition, Figure 5 shows that the distribution of αp,t is

more volatile when there are more risky assets (M = 28) and when the estimation window

is short (h = 60) due to more estimation errors.

In general, the unconditional alpha of a portfolio is not equal to the expectation of the

conditional alpha of the portfolio. However, under our setting, the conditional mean and

variance of the benchmark portfolios are constant over time. As a result, the unconditional

alpha of the sample optimal portfolio is indeed the same as the expectation of its conditional

alpha. Therefore, the unconditional alpha of the sample optimal portfolio is

αp = E[αp,t] =
hδ2

γ(h−M − 2)
=

hαp∗

h−M − 2
when h > M + 2. (36)

This result shows that estimation errors of the optimal weights do not destroy the uncondi-

tional alpha of the sample optimal portfolio. As long as the benchmark portfolios are not ex

ante efficient (i.e., δ > 0), the unconditional alpha of the sample optimal portfolio is positive.

In fact, the unconditional alpha of the sample portfolio is actually larger than that of the

true optimal portfolio αp∗ . This is due to the fact that

E[wp,t] =
1

γ
E[V̂ −1

t µ̂t] =
h

(h−M − 2)γ
V −1µ =

h

h−M − 2
wp∗ , (37)

so the sample optimal portfolio on average invests more in the risky assets than the true

optimal portfolio, which explains why αp > αp∗ .

Although we have established that the sample optimal portfolio has positive unconditional

alpha, we have not established that the t-ratio of the estimated alpha can be significant. The

alpha of a portfolio depends on how much leverage is used in the portfolio, so it is rather
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difficult to directly compare alphas across portfolios. In contrast, the t-ratio of estimated

alpha is independent of the degree of leverage used in the portfolio, so comparison of t-ratios

across different portfolios is more meaningful.

In addition, we can interpret t-ratio of estimated alpha as a measure of value-added to

the benchmark portfolios. In order to see that, we cite the following well known result (which

is a special case of (11)):

θ2
∗ = θ2

1 + AR2
q , (38)

where θ∗ is the Sharpe ratio of the tangency portfolio from combining the benchmark port-

folios with a given portfolio q, and

ARq =
αq
σ(εq)

, (39)

is the appraisal ratio of portfolio q, with σ(εq) being the standard deviation of the residuals

of regressing excess returns of portfolio q on excess returns of the benchmark portfolios.

From (38), we can see that the appraisal ratio of a portfolio tells us how much it can help to

improve the Sharpe ratio of the benchmark portfolios. It is straightforward to show that the

t-ratio of estimated alpha of a portfolio is proportional to the sample measure of its appraisal

ratio, so comparing t-ratios of estimated alphas across portfolios is the same as comparing

their sample appraisal ratios.

Figure 6 about here

It is rather difficult to obtain the exact distribution of t-ratio of estimated alpha of the

sample optimal portfolio, t(α̂p), because of overlapping estimation windows. However, it can

be readily shown that the distribution of t(α̂p) depends only on h, T , K, N , θ1, and θ. With

the choice of these six parameters, we can readily simulate rt for t = 1, . . . T to construct a

time series of rp,t for t = h+1, . . . , T . We can then run a regression of rp,t on a constant term

and r1,t to obtain t(α̂p). We assume K = 3, T = 990, θ1 = 0.1 and θ = 0.3 in our simulation

experiment. Using 1,000,000 simulations, we plot in Figure 6 the density function of t(α̂).

Density functions for different combinations of h (60 or 120) and M (13 or 28) are plotted

in the figure. Figure 6 shows that it is not difficult to find statistically significant alpha for
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the sample optimal portfolio as there is a fairly high probability for the t-ratio to be above

two. In addition, the figure shows that the distribution of t(α̂p) has higher mean for larger h

and smaller M . This is because with larger h and smaller M , there is less estimation error

on α̂p, which then leads to a larger t(α̂p).

Finally, we examine the alphas of sample optimal portfolio empirically using monthly

return data over the period of 1931/7 to 2013/12. We consider five different sets of test

assets. They are (1) 10 portfolios sorted by momentum, (2) 10 portfolios sorted by volatility,

(3) 10 portfolios sorted by idiosyncratic volatility, (4) 10 short-term reversal portfolios sorted

based on returns of prior month, and (5) 5×5 size and book-to-market ranked portfolios.

The return data for the 10 momentum portfolios, 10 short-term reversal portfolios, and 5×5

size and book-to-market ranked portfolios are obtained from Ken French’s website. For the

volatility portfolios, we take all the common stocks in the combined NYSE/AMEX/NASDAQ

at the end of each month and sort them into ten deciles based on the volatility computed

using daily returns in the month. For each volatility portfolio, we compute its value-weighted

return for the next month and the portfolio is rebalanced every month. The idiosyncratic

volatility portfolios are formed in a similar fashion except the sorting of stocks is based on

their idiosyncratic volatility with respect to the value-weighted market portfolio using daily

returns in the month.6

Table I about here

Table II about here

Table I reports the estimated alphas (in percentage points) and their t-ratios (OLS and

White) of the sample optimal portfolio with respect to four asset pricing models with an

estimation window of h = 120, assuming γ = 10. The four asset pricing models that we

consider are: (1) CAPM with value-weighted market index, (2) CAPM with equal-weighted

market index, (3) Fama-French three-factor model, and (4) Carhart four-factor model.7 The

6Ang, Hodrick, Xing, and Zhang (2006) show that high idiosyncratic volatility leads to low future stock
returns. Unlike Ang et al., which compute the idiosyncratic volatility with respect to three Fama-French
factors, we use just the value-weighted market portfolio because daily Fama-French factors are not available
before 1963.

7The equal-weighted market index is on the combined NYSE/AMEX/NASDAQ, and its return data are
obtained from the CRSP. All other factors are obtained from Ken French’s website.
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Sharpe ratios of the sample optimal portfolios are also presented in the table. In Table II, we

repeat the same analysis with a shorter estimation window of h = 60. Tables I and II show

that all alphas of sample optimal portfolios are positive with significant t-ratios, regardless

of the test assets used and the length of estimation window. The sample Sharpe ratio shows

variation across different sets of test assets, and a higher Sharpe ratio is often associated

with a larger alpha. In addition, we can see that the magnitude of alpha is larger when the

estimation window is short (h = 60) but the t-ratio is larger when the estimation window is

long (h = 120), consistent with our previous discussion.

D. Performance Comparison of the Sample Optimal Portfolio and
the Benchmark Sample Optimal Portfolio

In the previous subsection, we show that estimation errors do not destroy the positive alpha

of the sample optimal portfolio, and it is not difficult to find statistically significant alpha

for the sample optimal portfolio. In this subsection, we examine whether the positive alpha

can lead to better performance, that is, whether the investor is better off by holding the

sample optimal portfolio p instead of the benchmark sample optimal portfolio s.

Using the results from Proposition 1, we obtain the expected out-of-sample performance

of portfolios p and s in the following Proposition.

Proposition 3: The expected out-of-sample utility of the sample optimal portfolio p and the

benchmark sample optimal portfolio s are given by

E[Up] =
h

γ(h−M − 2)

[
θ2 − (h− 2)(M + hθ2)

2(h−M − 1)(h−M − 4)

]
for h > M + 4, (40)

E[Us] =
h

γ(h−K − 2)

[
θ2

1 −
(h− 2)(K + hθ2

1)

2(h−K − 1)(h−K − 4)

]
for h > K + 4. (41)

Using the results from Proposition 3, we can obtain the difference in expected out-of-

sample performance of the sample optimal portfolio and the benchmark sample optimal

portfolio

∆p = E[Up]− E[Us]. (42)

Figure 7 plots ∆p as a function of the length of the estimation window (h). We assume

K = 3, θ1 = 0.1, and γ = 10. Different combinations of θ (0.2 and 0.3) and N (10 or 25)
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are examined. Figure 7 shows that unlike the true optimal portfolio p∗, the sample optimal

portfolio p does not always outerform the benchmark sample optimal portfolio s. When the

estimation window is relatively short, portfolio p underperforms portfolio s. For example,

when θ = 0.3 and N = 10, the estimation window needs to be longer than 180 months in

order for portfolio p to outperform portfolio s. The required estimation window becomes even

longer when θ goes down and N goes up. For θ = 0.2 and N = 25, portfolio p underperforms

portfolio s even for estimation window as long as 600 months. The underperformance of

portfolio p is due to the fact that portfolio p involves more risky assets than portfolio s and

hence more estimation errors. When the length of the estimation window is short and when

N is large, the effect of estimation errors on the test assets outweighs the effect of improved

Sharpe ratio.

Figure 7 about here

III. The Optimal Combining Portfolio

The previous section shows that although the sample optimal portfolio has positive uncondi-

tional alpha, the investor is not necessarily better off by holding the sample optimal portfolio

p instead of the benchmark sample optimal portfolio s as shown in Figure 7. In this section,

we examine whether we can improve portfolio performance by combining the sample optimal

portfolio p, the benchmark sample optimal portfolio s, and the risk-free asset.

A. The Optimal Combining Rule

We consider a combining portfolio which is a linear combination of p and s, so the excess

return of the combining portfolio c at time t+ 1 is

rc,t+1 = λ1rp,t+1 + λ2rs,t+1 = λ1w
′
p,trt+1 + λ2w

′
s,tr1,t+1, (43)

where λ1 and λ2 are two scalar combining coefficients. The expected out-of-sample perfor-

mance of the combining portfolio c is

E[Uc(λ1, λ2)] = λ1E[w′p,tµ] + λ2E[w′s,tµ1]
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− γ

2

(
λ2

1E[w′p,tV wp,t] + λ2
2E[w′s,tV11ws,t] + 2λ1λ2E

[
w′p,t

[
V11

V21

]
ws,t

])
. (44)

In the following Proposition, we obtain the optimal values of λ1 and λ2 as well as the expected

out-of-sample performance of the optimal combining portfolio c∗.8

Proposition 4: The λ1 and λ2 that maximize E[Uc(λ1, λ2)] are given by:

λ∗1 =
(h−M − 2)δ2

B − C
, (45)

λ∗2 = (h−K − 2)

(
θ2

1

C
− δ2

B − C

)
, (46)

where

B =
(h− 2)(h−M − 2)(M + hθ2)

(h−M − 1)(h−M − 4)
, (47)

C =
(h− 2)(h−K − 2)(K + hθ2

1)

(h−K − 1)(h−K − 4)
. (48)

The expected out-of-sample performance of the optimal combining portfolio c∗ is

E[Uc∗ ] = E[Uc(λ
∗
1, λ
∗
2)] =

hθ4
1

2γC
+

hδ4

2γ(B − C)
. (49)

When h > M + 4, we have B > 0 and C > 0. In addition, we have B > C because

0 <
h−M − 4

h−K − 4
<
h−M − 2

h−K − 2
<
h−M − 1

h−K − 1
< 1

⇒ 0 <
(h−M − 1)

(h−K − 1)

(h−M − 4)(h−K − 2)

(h−K − 4)(h−M − 2)
< 1

⇒ 0 <
C

B
=

(K + hθ2
1)(h−M − 1)

(M + hθ2)(h−K − 1)

(h−M − 4)(h−K − 2)

(h−K − 4)(h−M − 2)
< 1

⇒ B > C. (50)

Unlike E[Up] which can take negative values, Proposition 4 suggests that the optimal com-

bining portfolio c∗ always has positive expected out-of-sample performance when h > M+4.

8Tu and Zhou (2011) also consider a combining portfolio rule of p and a fixed weight portfolio. However,
their combining portfolio rule imposes a constraint of λ1 +λ2 = 1, and this constraint can lead to substantial
utility loss. In addition, unlike other portfolio rules, the out-of-sample utility of their combining portfolio
rule is not linear in 1/γ, so whether their combining portfolio rule outperforms other portfolio rules or not
depends on the choice of γ.

15



Moreover, when the benchmark portfolios are not ex ante efficient (i.e., δ > 0), Proposition 4

indicates that the optimal combining portfolio c∗ has positive weight on the sample optimal

portfolio (i.e., λ∗1 > 0), suggesting that there are benefits of incorporating test assets with

nonzero alphas.

Figure 8 about here

In Figure 8, we plot λ∗1 as a function of the length of estimation window (h) for an

investor with γ = 10. The number of benchmark portfolios is assumed to be three (K = 3),

and the Sharpe ratio of the benchmark optimal portfolio is assumed to be 0.1 (θ1 = 0.1).

The figure plots the results for different combinations of θ (0.2 or 0.3) and N (10 or 25).

Figure 8 shows that although the optimal weight on the sample optimal portfolio is positive,

the weight is far less than 100%, suggesting that when there are estimation errors, holding

only the sample optimal portfolio is not the best strategy. The optimal weight λ∗1 increases

as h goes up, N goes down, and θ goes up. With a higher value of θ, incorporating the

test assets can improve portfolio performance more, and as a result, the optimal combining

portfolio has more weight on the sample optimal portfolio. As h goes up or N goes down,

there are fewer estimation errors in wp,t. Therefore, the benefit of improved Sharpe ratio

of the sample optimal portfolio outweighs the effect of estimation errors, and the optimal

combining portfolio has more weight on the sample optimal portfolio.

Figure 9 about here

In Figure 9, we plot λ∗2 as a function of the length of estimation window (h) for different

combinations of θ (0.2 or 0.3) and N (10 or 25), using the same assumptions as those for

Figure 8. Figure 9 shows that the optimal combining strategy has nonzero weight on the

benchmark sample optimal portfolio. This is because due to estimation errors, holding just

the sample optimal portfolio is not optimal, and including another portfolio with random

weights (i.e., the benchmark sample optimal portfolio) helps to diversify the estimation

errors. Unlike λ∗1, λ∗2 decreases as N goes down and θ goes up. This is because smaller

N and higher θ indicate more benefit of incorporating the sample optimal portfolio into
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the combining strategy. As a result, less weight is put on the benchmark sample optimal

portfolio. In addition, Figure 9 shows that λ∗2 is not a monotonic function of h. This can be

explained by two facts. First, when h is small, there are significant estimation errors involved

in both portfolios p and s. Since we do not restrict λ∗1 + λ∗2 = 1, the optimal strategy is to

shift more weight to the risk-free asset. Therefore, the magnitudes of both λ∗1 and λ∗2 are

small when h is small. As h goes up, there are increased benefits for investing in both p and

s, so the optimal combining portfolio will see an increase in the magnitudes of λ∗1 and λ∗2.

Second, as h goes to infinity, we can estimate the parameters accurately and the benefit of

incorporating the sample optimal portfolio becomes dominant. As a result, for very large h,

the optimal combining portfolio will have close to 100% on the sample optimal portfolio and

almost zero weight on the benchmark sample optimal portfolio. These two effects lead to a

non-monotonic behavior of λ∗2 as h increases.

Comparing the expected out-of-sample performance of the optimal combining portfolio in

(49) with that of the benchmark sample optimal portfolio in (41), we obtain the performance

improvement of portfolio c∗ relative to portfolio s

∆c∗ = E[Uc∗ ]− E[Us] =
h

2γC

(
θ2

1 −
C

h−K − 2

)2

+
hδ4

2γ(B − C)
. (51)

Note that both terms in the above equation are positive. The first term reflects the utility

gain due to the possibility to optimize between portfolio s and the risk-free asset,9 and the

second term reflects the utility gain due to the improved Sharpe ratio by incorporating the

sample optimal portfolio. Intuitively, the effect of the first term dominates when h is small,

and the effect of the second term dominates when h is large.

Figure 10 about here

In Figure 10, we plot ∆c∗ as a function of h. The figure shows that when h is small (e.g.,

h = 60), the combining portfolio greatly outperforms portfolio s. As discussed previously,

this is due to the effect of the first term in (51). As h goes up, this effect attenuates and

9It can be shown that the expected out-of-sample performance of the optimal portfolio combining the
benchmark sample optimal portfolio s and the risk-free asset is hθ41/(2γC). Relative to portfolio s, the
performance improvement is given by the first term in (51).
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the effect coming from the improved Sharpe ratio (i.e., the second term in (51)) increases,

which converges to δ2/(2γ) as h→∞.

B. Implementable Combining Rules

Since θ2
1 and δ2 are unknown in practice, the optimal combining portfolio c∗ is not feasible.

We need to estimate θ2
1 and δ2 in order to implement the combining rule. We consider two

different sets of estimators. The first set of estimator of θ2
1 and δ2 is their sample counterparts

θ̂2
1 = µ̂′1,tV̂

−1
11,tµ̂1,t, (52)

δ̂2 = µ̂tV̂
−1
t µ̂t − µ̂′1,tV̂ −1

11,tµ̂1,t. (53)

In the proof of Proposition 5, we show that

θ̂2
1 ∼

K

h−K
FK,h−K(hθ2

1), (54)

δ̂2|θ̂2
1 ∼

(1 + θ̂2
1)N

(h−M)
FN,h−M

(
hδ2

1 + θ̂2
1

)
, (55)

where Fn1,n2(λ) represents the noncentral F distribution with degrees of freedom of n1 and

n2, and a noncentrality parameter of λ. It is well known that these estimators can be heavily

biased when h is small.

In order to come up with improved estimators of θ2
1 and δ2, we first note that the problem

of estimating θ2
1 and δ2 is equivalent to the problem of estimating the noncentrality parameter

of a noncentral F -distribution using a single observation. This problem has been studied by

a number of researchers in statistics. Our second set of estimators of θ2
1 and δ2 is based on

an adjusted estimator suggested by Kubokawa, Robert, and Saleh (1993):

θ̂2
1,a =

(h−K − 2)θ̂2
1 −K

h
+

2(θ̂2
1)

K
2 (1 + θ̂2

1)−
h−2
2

hBθ̂21/(1+θ̂21)(K/2, (h−K)/2)
, (56)

δ̂2
a =

(h−M − 2)δ̂2 −N(1 + θ̂2
1)

h
+

2(1 + θ̂2
1)Ξ

N
2 (1 + Ξ)−

h−K−2
2

hBΞ/(1+Ξ)(N/2, (h−M)/2)
, (57)

where Ξ = δ̂2/(1 + θ̂2
1) and

Bz(a, b) =

∫ z

0

ya−1(1− y)b−1dy (58)
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is the incomplete beta function.10

With the estimators of θ2
1 and δ2 available, we can obtain the estimators of λ1 and λ2.

For the first set of estimator of θ2
1 and δ2, we have

λ̂1 =
(h−M − 2)δ̂2

B̂ − Ĉ
, (59)

λ̂2 = (h−K − 2)

(
θ̂2

1

Ĉ
− δ̂2

B̂ − Ĉ

)
, (60)

where

B̂ =
(h− 2)(h−M − 2)[M + h(θ̂2

1 + δ̂2)]

(h−M − 1)(h−M − 4)
, (61)

Ĉ =
(h− 2)(h−K − 2)(K + hθ̂2

1)

(h−K − 1)(h−K − 4)
. (62)

For the second set of estimator of θ2
1 and δ2, we have

λ̂1,a =
(h−M − 2)δ̂2

a

B̂a − Ĉa
, (63)

λ̂2,a = (h−K − 2)

(
θ̂2

1,a

Ĉa
− δ̂2

a

B̂a − Ĉa

)
, (64)

where

B̂a =
(h− 2)(h−M − 2)[M + h(θ̂2

1,a + δ̂2
a)]

(h−M − 1)(h−M − 4)
, (65)

Ĉa =
(h− 2)(h−K − 2)(K + hθ̂2

1,a)

(h−K − 1)(h−K − 4)
. (66)

We call the combining portfolio that uses λ̂1 and λ̂2 as portfolio cs, and the one that uses

λ̂1,a and λ̂2,a as portfolio ca.

Analytical computation of the expected out-of-sample performance of the combining

portfolios cs and ca is difficult. In the following Proposition, we present a fast simulation

approach to obtain the expected out-of-sample performance of these rules, which requires

simulating only a small number of independent univariate random variables. Besides pro-

viding an efficient method for computing E[Uc(λ̂1, λ̂2)] and E[Uc(λ̂1,a, λ̂2,a)], Proposition 5

also shows that these two quantities only depend on h, K, N , γ, θ1, and θ.

10This adjusted estimator has also been applied in Kan and Zhou (2007).
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Proposition 5: The expected out-of-sample performance of the implementable combining

rules can be simulated using the following steps:

1. Let ỹ0 ∼ N(0, 1), z11 ∼ N(
√
hθ1, 1), u1 ∼ χ2

h−K, u2 ∼ χ2
h−M , v1 ∼ χ2

K−1, v2 ∼ χ2
N−1,

and all these random variables are independent of each other.11

2. Set θ̂2
1 = ũ1/u1, where ũ1 = z2

11 + v1.

3. Set δ̂2 = (1 + θ̂2
1)ũ2/u2, where ũ2 = ỹ2

1 + v2 and ỹ1 = ỹ0 −
√
hδ/

√
1 + θ̂2

1.

4. With θ̂2
1 and δ̂2 available, we can obtain λ̂1 and λ̂2 using (59)–(60).

5. Obtain the expressions for the following five terms using simulation:

E1 =
√
hθ1E[λ̂1z11q]−

√
hδE

 λ̂1

√
1 + θ̂2

1ỹ1

u2

 , (67)

E2 =
√
hθ1E

[
λ̂2z11

u1

]
, (68)

E3 =
h(h− 2)

h−K − 1

(
E[λ̂2

1ũ1q
2] +

h−K − 2

h−M − 1
E

[
λ̂2

1δ̂
2

u2

(
1 +

1

u1(1 + θ̂2
1)

)]

+
hδ2

h−M − 1
E

[
λ̂2

1θ̂
2
1v2

(1 + θ̂2
1)u1u2

2

])
, (69)

E4 =
h(h− 2)

h−K − 1
E

[
λ̂2

2θ̂
2
1

u1

]
, (70)

E5 =
h(h− 2)

h−K − 1
E[λ̂1λ̂2θ̂

2
1q]. (71)

where

q =
1

u1

(
1 +

v2 + ỹ0ỹ1

u2

)
. (72)

6. The expected out-of-sample performance of portfolio cs can be written as

E[Uc(λ̂1, λ̂2)] =
1

γ
(E1 + E2)− 1

2γ
(E3 + E4 + 2E5). (73)

11We use the convention of χ2
0 ≡ 0 to deal with the case that K = 1 or N = 1.
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Note that θ̂2
1,a and δ̂2

a are functions of θ̂2
1 and δ̂2. With the expressions of θ̂2

1 and δ̂2 available,

we can easily obtain the expressions of θ̂2
1,a and δ̂2

a, and therefore, the expressions of λ̂1,a and

λ̂2,a. Replacing θ̂2
1 with θ̂2

1,a, δ̂
2 with δ̂2

a, λ̂1 with λ̂1,a, and λ̂2 with λ̂2,a, we get the expression

of the out-of-sample performance of portfolio ca, E[Uc(λ̂1,a, λ̂2,a)].

Figure 11 about here

Figure 12 about here

In Figures 11 and 12, we examine the performance improvement of the implementable

combining portfolios relative to the benchmark sample optimal portfolio as a function of

the length of estimation window for an investor with γ = 10. The number of benchmark

portfolios is assumed to be three (K = 3), and the Sharpe ratio of the true benchmark

optimal portfolio is assumed to be 0.1 (θ1 = 0.1). Figure 11 is based on the implementable

combining portfolio with sample estimates of θ2
1 and δ2 (i.e., portfolio cs), and Figure 12 is

based on the implementable combining portfolio with adjusted estimates of θ2
1 and δ2 (i.e.,

portfolio ca).

Figure 11 shows that when N = 10, portfolio cs outperforms the benchmark sample

optimal portfolio regardless of the length of the estimation window. However, when N = 25,

there are more estimation errors in the combining coefficients, and portfolio cs does not

outperform the benchmark sample optimal portfolio when h is small. With the adjusted

estimates, Figures 12 shows that portfolio ca consistently outperforms the benchmark sample

optimal portfolio regardless of the values of h, N , and θ. Therefore, the implementable

combining portfolio with adjusted estimates provides the investor a portfolio strategy that

reliably outperforms the benchmark sample optimal portfolio.

Table III about here

Table IV about here

Finally, we empirically examine the performance improvement over the benchmark sam-

ple optimal portfolio for different portfolio rules using return data over the period of 1931/7
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to 2013/12. We consider the same four sets of benchmark portfolios and the five sets of test

assets as in Tables I and II. Table III reports the results with an estimation window of 120

months, and Table IV is based on an estimation window of 60 months. The results in the

two tables are consistent with our theoretical findings. Both tables show that the sample

optimal portfolio p grossly underperforms the benchmark sample optimal portfolio s, but

the two combining portfolio rules (cs and ca) often offer improvement over portfolio s. In all

the cases, the combining portfolio with adjusted estimates (i.e., portfolio ca) performs better

than the portfolio with sample estimates (i.e., portfolio cs), confirming the findings from Fig-

ures 11 and 12. When the estimation window is 60 months, the performance improvement

of portfolio cs is negative in some cases, and that of portfolio ca is mostly positive. With

a longer estimation window (h = 120), the performance improvement increases in general.

Nevertheless, we notice that for the Fama-French three-factor model and the Carhart four-

factor model, the performance improvement can be lower for h = 120 than that for h = 60.

This pattern is also observed in Figure 10, which can be explained by the relative importance

of the two effects in (51).

IV. Robustness Check: Departure from the Normality

So far, our analysis is based on the assumption that the excess returns of the risky assets

are i.i.d. multivariate normal. It is natural to question the robustness of our results when

the excess returns are not multivariate normally distributed. We address this concern by

studying two alternative distributional assumptions on the excess returns. The first alter-

native is a multivariate t-distribution with five degrees of freedom. Under the multivariate

t-distribution assumption, the excess returns of the risky assets have fat tails, which is often

what we find in actual data. The second alternative is an empirical distribution based on the

actual excess return data. We take the excess monthly returns of 10 momentum portfolios

and the benchmark portfolios over the period of 1931/7 to 2013/12 as the population distri-

bution and assume the excess returns of the risky assets are independently drawn from this

empirical distribution. In order to have a proper comparison across the three distributional

assumptions, we set the mean and covariance matrix of the excess returns to be identical in
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the three cases.

Figure 13 about here

In Figure 13, we present the distributions of the excess returns of the sample optimal

portfolio under the three distributional assumptions, assuming the benchmark portfolios are

the Fama-French three factors and the investor has γ = 10 and use h = 60 to construct the

sample optimal portfolio. The distribution of rp,t+1 under the two alternative distributional

assumptions are generated based on 1,000,000 simulations. We notice that the distributions

of rp,t+1 under the two alternative distributional assumptions are quite similar. They both

show higher kurtosis than the one from the normality assumption. Nevertheless, the distri-

bution of rp,t+1 under the three distributional assumptions are not too far off from each other.

Therefore, we consider the distribution of rp,t+1 derived under the normality assumption as

a good working approximation for the case of monthly data.

Figure 14 about here

In Figure 14, we examine the robustness of the distribution of the t-ratio of alpha to

departure from the multivariate normality assumption. Similarly, we assume γ = 10 and

h = 60, and obtain the distribution of t-ratio under the two alternative distributional as-

sumptions using 1,000,000 simulations. Figure 14 shows that the distribution of t-ratio is

not particularly sensitive to the distributional assumption on the excess returns of the risky

assets and the benchmark portfolios.

Figure 15 about here

In Figure 15, we plot the performance improvement of the implementable combining port-

folio with adjusted estimates relative to the benchmark sample optimal portfolio (∆ca) as a

function of the length of estimation window (h) under the two alternative distributional as-

sumptions for an investor with γ = 10 based on 1,000,000 simulations. The figure shows that

the performance improvement under the multivariate t-distribution is very similar to that

under the multivariate normal distribution, whereas the performance improvement under the
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empirical distribution is slightly lower compared to that under the other two distributional

assumptions. Nevertheless, the performance improvement is positive under all the three

distributional assumptions. Therefore, our conclusion that the implementable combining

portfolio with adjusted estimates consistently outperforms the benchmark sample optimal

portfolio is robust to alternative distributional assumptions.

V. Conclusion

In this paper, we study the benefit of incorporating test assets with nonzero alphas into an

optimal portfolio where the parameters are estimated with errors. Our theoretical results

suggest that as long as the benchmark portfolios are not ex ante efficient, the sample optimal

portfolio can generate a positive alpha. In addition, we demonstrate that the t-ratio of the

estimated alpha of such a portfolio strategy is often statistically significant. However, due to

estimation errors, the sample optimal portfolio does not outperform the benchmarks unless

we have a very long estimation window. To explore the economic value of nonzero alphas,

we investigate an optimal combining rule, and show that this portfolio strategy consistently

outperforms the benchmarks.

An important assumption in our theoretical analysis is that the excess returns on the risky

assets are independent and identically distributed. Nevertheless, we believe qualitatively

similar results can be obtained even when the expected return and covariance matrix of

risky assets are time-varying, provided that they evolve over time in a slowly moving fashion.

Although analytical results are difficult to obtain beyond the i.i.d. multivariate normality

assumption, more simulation analyses could provide us additional insights on the impact of

time-varying return distribution.

The results of our paper also provide an explanation for the persistence of alphas of test

assets. When investors do not know the true alphas of certain assets, they will optimally

scale back their investments on such assets, especially when the estimation window is short.12

Without enough money moving into these assets, it will take a long time for their prices to

adjust, and this can lead to persistent alphas for these assets.

12In our context, this is represented by a small λ∗1 in the sample optimal portfolio p.
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From an asset pricing perspective, the alpha of a sample optimal portfolio offers us a

potential way to test the mean-variance efficiency of a given set of benchmark portfolios.

This is because the unconditional alpha of a sample optimal portfolio is zero if and only if

the benchmark portfolios are ex ante efficient. This provides an alternative to the popular

Gibbons-Ross-Shanken (1989) test of mean-variance efficiency of a given set of benchmark

portfolios. Unlike the Gibbons-Ross-Shanken test which is performed using in-sample alphas

of the test assets, our test is attractive in the sense that it makes use of out-of-sample alpha

from a trading strategy, which is potentially more relevant for investors.
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Appendix

Proof of Proposition 1: Under the multivariate normality assumption, it is well known that

µ̂t and V̂t are independent of each other and have the following distributions:

µ̂t ∼ N(µ, V/h), (A1)

V̂t ∼ WM(h− 1, V/h), (A2)

where WM(h−1, V/h) is a Wishart distribution with h−1 degree of freedom and covariance

matrix V/h. Define η = V −
1
2µ/θ, we have η′η = 1. Let P be an M ×M orthonormal matrix

with its first column equals to η. By defining

z =
√
hP ′V −

1
2 µ̂t ∼ N

([ √
hθ

0M−1

]
, IM

)
, (A3)

W = hP ′V −
1
2 V̂tV

− 1
2P ∼ WM(h− 1, IM), (A4)

we can write the weights of the sample optimal portfolio p as

wp,t =
1

γ
V̂ −1
t µ̂t =

√
h

γ
V −

1
2PW−1z. (A5)

It follows that

µp,t = µ′wp,t =

√
hθ

γ
e′1W

−1z, (A6)

σ2
p,t = w′p,tV wp,t =

h

γ2
z′W−2z, (A7)

where e1 = [1, 0′M−1]′. Define an M ×M orthonormal matrix Q = [z̃, Q1] with its first

column equals to z̃ = z/(z′z)
1
2 . Let

A = (Q′W−1Q)−1 =

[
z̃′W−1z̃ z̃′W−1Q1

Q1W
−1z̃ Q1W

−1Q1

]−1

=

[
A11 A12

A21 A22

]
∼ WM(h− 1, IM), (A8)

where A11 is the (1, 1) element of A. Theorem 3.2.10 of Muirhead (1982) suggests that

u1 ≡ A11·2 = A11 − A12A
−1
22 A21 ∼ χ2

h−M , (A9)

and it is independent of A12 and A22. In addition, using the result of Dickey (1967), we can

show that

−A−1
22 A21 ∼

x
√
u2

, (A10)
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where x ∼ N(0M−1, IM−1), u2 ∼ χ2
h−M+1, and they are independent of each other and u1.

Using the partitioned matrix inverse formula, we can easily verify that

z̃′W−1z̃ = A−1
11·2 =

1

u1

, (A11)

Q′1W
−1z̃ = −A−1

22 A21A
−1
11·2 =

x

u1
√
u2

. (A12)

With these identities, we can write

z′W−2z = z′W−1 (z̃z̃′ +Q1Q
′
1)W−1z = (z′z)

(
1

u2
1

+
x′x

u2
1u2

)
. (A13)

Let z1 ∼ N(
√
hθ, 1) and x1 ∼ N(0, 1) be the first element of z and x, respectively. We can

write z′z = z2
1 + u0 and x′x = x2

1 + u3 where u0 ∼ χ2
M−1 and u3 ∼ χ2

M−2. It follows that

σ2
p,t =

h(z2
1 + u0)

γ2u2
1

(
1 +

x2
1 + u3

u2

)
. (A14)

Without loss of generality, let the first column of Q1 be

ξ =
(IM − z̃z̃′)e1

[e′1(IM − z̃z̃′)e1]
1
2

=
(IM − z̃z̃′)e1√

1− z21
z′z

. (A15)

From (A12), we know that

x1

u1
√
u2

= ξ′W−1z̃ =
e′1W

−1z̃ − e′1z̃

u1√
1− z21

z′z

=
e′1W

−1z − z1
u1√

u0

, (A16)

and hence

e′1W
−1z =

z1

u1

+
x1
√
u0

u1
√
u2

. (A17)

It follows that

µp,t =

√
hθ

γu1

(
z1 +

x1
√
u0√
u2

)
. (A18)

When M = 1, u0 and x vanish and we have

µp,t =

√
hθz1

γu1

, σ2
p,t =

hz2
1

γ2u2
1

. (A19)

This completes the proof.
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Proof of Proposition 2: We first deal with the case that δ > 0. Let P be an M × M

orthonormal matrix with its first column equals to

η =
1

δ
V −

1
2

[
0K
α

]
. (A20)

By defining

z =
√
hP ′V −

1
2 µ̂t ∼ N(

√
hP ′V −

1
2µ, IM), (A21)

W = hP ′V −
1
2 V̂tV

− 1
2P ∼ WM(h− 1, IM), (A22)

we can write

αp,t =
1

γ
µ̂′tV̂

−1
t

[
0K
α

]
=

√
hδ

γ
z′W−1e1. (A23)

Following the proof of Proposition 1, in particular (A17), we can write

z′W−1e1 =
z1

u1

+
x1
√
u0

u1
√
u2

, (A24)

where z1 ∼ N(
√
hδ, 1), x1 ∼ N(0, 1), u0 ∼ χ2

M−1(hθ2
1), u1 ∼ χ2

h−M , u2 ∼ χ2
h−M+1, and they

are independent of each other. The mean of z1 and the noncentrality parameter of u0 are

obtained as follows:

E[z1] =
√
hη′V −

1
2µ =

√
h

δ
α′(−Σ−1V21V

−1
11 µ1 + Σ−1µ2) =

√
hα′Σ−1α

δ
=
√
hδ, (A25)

E[z]′E[z]− E[z1]2 = hθ2 − hδ2 = hθ2
1. (A26)

Conditional on u0, u1, and u2, we have

z′W−1e1 ∼ N

(√
hδ

u1

,
1

u2
1

(
1 +

u0

u2

))
, (A27)

and hence we can write

αp,t =

√
hδ

γu1

[
√
hδ +

(
1 +

u0

u2

) 1
2

y

]
, (A28)

where y ∼ N(0, 1) and it is independent of u0, u1, and u2. Note that when δ = 0, we have

αp,t = 0 from (34), so (A28) also holds for the δ = 0 case. This completes the proof.
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Proof of Proposition 3: E[Up] and E[Us] can be obtained by using Eq.(20) of Kan and Zhou

(2007). Here we provide an alternative proof. Based on the results of Proposition 1, the

expected out-of-sample utility of portfolio p can be obtained as

E[Up] = E
[
µp,t −

γ

2
σ2
p,t

]
=

√
hθ

γ
E

[
z1

u1

+
x1
√
u0

u1
√
u2

]
− h

2γ
E

[
z2

1 + u0

u2
1

(
1 +

x2
1 + u3

u2

)]
. (A29)

Note that x1 has zero mean and is independent of u0, u1, and u2. In addition, z′z = z2
1 +u0 ∼

χ2
M(hθ2), x′x = x2

1 + u3 ∼ χ2
M−1, and z′z, x′x, u1, and u2 are independent of each other.

Therefore,

E[Up] =

√
hθ

γ
E

[
z1

u1

]
− h

2γ
E[z′z]E

[
1

u2
1

](
1 + E[x′x]E

[
1

u2

])
=

hθ2

γ(h−M − 2)
− h

2γ

(M + hθ2)

(h−M − 2)(h−M − 4)

(h− 2)

(h−M − 1)

=
h

γ(h−M − 2)

[
θ2 − (h− 2)(M + hθ2)

2(h−M − 1)(h−M − 4)

]
. (A30)

The derivation of E[Us] is obtained by changing M to K and θ to θ1 in the proof above.

This completes the proof.

Proof of Proposition 4: We can write

E[Uc(λ1, λ2)] = λ1E[µp,t] + λ2E[µs,t]−
γ

2

(
λ2

1E[σ2
p,t] + λ2

2E[σ2
s,t] + 2λ1λ2E[σps,t]

)
, (A31)

where µp,t and µs,t are the conditional mean of portfolio p and portfolio s at time t, σ2
p,t and

σ2
s,t are the conditional variance of the two portfolios, and σps,t is the conditional covariance

between the two portfolio. Differentiating E[Uc(λ1, λ2)] with respect to λ1 and λ2 and setting

them equal to zero, we have

∂E[Uc(λ1, λ2)]

∂λ1

= E[µp,t]− γλ1E[σ2
p,t]− γλ2E[σps,t] = 0, (A32)

∂E[Uc(λ1, λ2)]

∂λ2

= E[µs,t]− γλ2E[σ2
s,t]− γλ1E[σps,t] = 0. (A33)

Solving for λ1 and λ2, we obtain

λ∗1 =
1

γ

(
E[µp,t]E[σ2

s,t]− E[µs,t]E[σps,t]

E[σ2
s,t]E[σ2

p,t]− E[σps,t]2

)
, (A34)
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λ∗2 =
1

γ

(
E[µs,t]E[σ2

p,t]− E[µp,t]E[σps,t]

E[σ2
s,t]E[σ2

p,t]− E[σps,t]2

)
. (A35)

From the proof of Proposition 3, we have

E[µp,t] =
hθ2

γ(h−M − 2)
, (A36)

E[σ2
p,t] =

h(h− 2)(M + hθ2)

γ2(h−M − 1)(h−M − 2)(h−M − 4)
, (A37)

E[µs,t] =
hθ2

1

γ(h−K − 2)
, (A38)

E[σ2
s,t] =

h(h− 2)(K + hθ2
1)

γ2(h−K − 1)(h−K − 2)(h−K − 4)
. (A39)

It remains to obtain an explicit expression of E[σps,t]. Let P = [P1, P2] be an M × M

orthonormal matrix with its first K columns equal to

P1 = V
1
2

[
IK

0N×K

]
V
− 1

2
11 . (A40)

By defining

z =

[
z1

z2

]
=
√
hP ′V −

1
2 µ̂t ∼ N(

√
hP ′V −

1
2µ, IM), (A41)

W =

[
W11 W12

W21 W22

]
= hP ′V −

1
2 V̂tV

− 1
2P ∼ WM(h− 1, IM), (A42)

where z1 is a K × 1 vector and W11 is a K ×K submatrix of W , we can write

E[σps,t] =
1

γ2
E

[
µ̂′tV̂

−1
t V

[
IK

0N×K

]
V̂ −1

11,tµ̂1,t

]
=

h

γ2
E

[
z′W−1

[
IK

0N×K

]
W−1

11 z1

]
. (A43)

Applying the partitioned matrix inverse formula, we have

E[σps,t] =
h

γ2
E
[
z′1W

−2
11 z1 + (z′1W

−1
11 W12 − z′2)W−1

22·1W21W
−2
11 z1

]
, (A44)

where W22·1 = W22 − W21W
−1
11 W12. Using Theorem 3.2.10 of Muirhead (1982), we have

W22·1 ∼ WN(h−K−1, IN), vec(W21W
− 1

2
11 ) ∼ N(0NK , INK), W11 ∼ WK(h−1, IK), and W22·1,

W11, and Z = W21W
− 1

2
11 are independent of each other. In addition, E[z′2W

−1
22·1W21W

−2
11 z1] =

E[z′2W
−1
22·1ZW

− 3
2

11 z1] = 0 because E[Z] = 0N×K and Z is independent of W11, W22·1 and z.
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Using the expression for the moments and inverse moments of a Wishart distribution from

Haff (1979), we obtain

E[Z ′Z] = NIK , (A45)

E[W−1
22·1] =

1

h−M − 2
IN , (A46)

E[W−2
11 ] =

h− 2

(h−K − 1)(h−K − 2)(h−K − 4)
IK . (A47)

Together with the fact that z′1z1 ∼ χ2
K(hθ2

1) and E[z′1z1] = K + hθ2
1, we obtain an explicit

expression of E[σps,t] as

E[σps,t] =
h

γ2

(
E[z′1W

−2
11 z1] +

E[z′1W
−1
11 W12W21W

−2
11 z1]

h−M − 2

)
=

h

γ2

(
E[z′1W

−2
11 z1] +

E[z′1W
− 1

2
11 Z ′ZW

− 3
2

11 z1]

h−M − 2

)

=
h

γ2

(
E[z′1W

−2
11 z1] +

NE[z′1W
−2
11 z1]

h−M − 2

)
=

h(h− 2)(K + hθ2
1)

γ2(h−K − 1)(h−K − 4)(h−M − 2)
. (A48)

Substituting (A36)–(A39) and (A48) in (A34) and (A35), we obtain the expressions of λ∗1 and

λ∗2. Finally, using the expressions of λ∗1 and λ∗2 and substituting (A36)–(A39) and (A48) in

(A31), we obtain the expected out-of-sample performance of the optimal combining portfolio.

This completes the proof.

Proof of Proposition 5: Let P = [P1, P2] be an M ×M orthonormal matrix as defined in

the proof of Proposition 4. Further define an M ×M orthonormal matrix

Q =

[
Q1 0K×N

0N×K Q2

]
, (A49)

where Q1 is a K ×K orthonormal matrix with its first column equals to V
− 1

2
11 µ1/θ1, and Q2

is an N ×N orthonormal matrix with its first column equals to P ′2V
− 1

2µ/δ. Define

z ≡
[
z1

z2

]
=
√
hQ′P ′V −

1
2 µ̂t ∼ N



√
hθ1

0K−1√
hδ

0N−1

 , IM
 , (A50)
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W = hQ′P ′V −
1
2 V̂tV

− 1
2PQ ≡

[
W11 W12

W21 W22

]
∼ WM(h− 1, IM), (A51)

where z1 is the first K elements of z, and W11 is the upper left K × K submatrix of W .

Using Theorem 3.2.10 of Muirhead (1982), we have W22·1 ≡ W22 −W21W
−1
11 W12 ∼ WN(h−

K − 1, IN), vec(Z) ≡ vec(W21W
− 1

2
11 ) ∼ N(0NK , INK), W11 ∼ WK(h − 1, IK), and they are

independent of each other. With the above transformations, we can write

µ̂t =
1√
h
V

1
2PQz, (A52)

V̂ −1
t = hV −

1
2PQW−1Q′P ′V −

1
2 . (A53)

Using the definition of P1, we have

[IK , 0K×N ]V
1
2PQ = V

1
2

11P
′
1PQ = V

1
2

11[IK , 0K×N ]Q = [V
1
2

11Q1, 0K×N ], (A54)

and we can express µ̂1,t and V̂ −1
11,t as

µ̂1,t = [IK , 0K×N ]µ̂t =
1√
h
V

1
2

11Q1z1, (A55)

V̂ −1
11,t = ([IK , 0K×N ]V̂t[IK , 0K×N ]′)−1 = hV

− 1
2

11 Q1W
−1
11 Q

′
1V
− 1

2
11 , . (A56)

Let S1 = [η1, T1] be a K × K orthonormal matrix with its first column equals to η1 =

z1/(z
′
1z1)

1
2 , and

A = (S ′1W
−1
11 S1)−1 ≡

[
A11 A12

A21 A22

]
∼ WK(h− 1, IK), (A57)

where A11 is the (1,1) element of A. Theorem 3.2.10 of Muirhead (1982) suggests that

u1 ≡ A11−A12A
−1
22 A21 ∼ χ2

h−K , and it is independent of A12 and A22. Since η′1W
−1
11 η1 = 1/u1,

we can write

θ̂2
1 = z′1W

−1
11 z1 = (z′1z1)η′1W

−1
11 η1 =

ũ1

u1

, (A58)

where ũ1 ≡ z′1z1 = z2
11+v1 with z11 ∼ N(

√
hθ1, 1) being the first element of z1 and v1 ∼ χ2

K−1,

and u1 and ũ1 are independent of each other. Using the result of Dickey (1967), we have

T ′1W
−1
11 η1 =

s1

u1
√
w1

, (A59)
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where s1 ∼ N(0K−1, IK−1) and w1 ∼ χ2
h−K+1, and s1, w1, u1, and ũ1 are independent of each

other. Therefore,

z′1W
−2
11 z1 = z′1W

−1
11 (η1η

′
1 + T1T

′
1)W−1

11 z1 =
ũ1

u2
1

(
1 +

s′1s1

w1

)
, (A60)

Let the first column of T1 be

(IK − η1η
′
1)ẽ1

[ẽ′1(IK − η1η′1)ẽ1]
1
2

=
(IK − η1η

′
1)ẽ1√

1− z211
z′1z1

=
(IK − η1η

′
1)ẽ1√

v1/ũ1

, (A61)

where ẽ1 = [1, 0′K−1]′. Following the proof of Proposition 1, in particular (A17), we obtain

ẽ′1W
−1
11 z1 =

z11

u1

+
s11
√
v1

u1
√
w1

, (A62)

where s11 is the first element of s1.

Let ξ1 = W
− 1

2
11 z1/θ̂1 and y ≡ W21W

−1
11 z1 − z2 = θ̂1Zξ1 − z2. Conditional on W

− 1
2

11 z1, we

have

y ∼ N
(
−E[z2], (1 + θ̂2

1)IN

)
. (A63)

Using the fact that E[z2] =
√
hδê1 where ê1 = [1, 0′N−1]′, we define

ỹ ≡ y√
1 + θ̂2

1

∼ N

− √
hδ√

1 + θ̂2
1

ê1, IN

 , (A64)

and

ũ2 ≡ ỹ′ỹ = ỹ2
1 + v2 (A65)

where ỹ1 is the first element of ỹ and v2 ∼ χ2
N−1. In addition, ỹ1 is independent of v2, and

we can write

ỹ1 = ỹ0 −
√
hδ/

√
1 + θ̂2

1, (A66)

where ỹ0 ∼ N(0, 1),

Let S2 = [η2, T2] be an N ×N orthonormal matrix with its first column equals to

η2 =
y

(y′y)
1
2

, (A67)

and

B = (S ′2W
−1
22·1S2)−1 ≡

[
B11 B12

B21 B22

]
∼ WN(h−K − 1, IN), (A68)
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where B11 is the (1,1) element of B. Using Theorem 3.2.10 of Muirhead (1982), we have

u2 ≡ B11−B12B
−1
22 B21 ∼ χ2

h−M , and it is independent ofB21 andB22. Since η′2W
−1
22·1η2 = 1/u2,

we can write

δ̂2 = θ̂2 − θ̂2
1 = z′W−1z − z′1W−1

11 z1 = y′W−1
22·1y =

(1 + θ̂2
1)ũ2

u2

, (A69)

where ũ2 and u2 are independent of each other. In addition, we have

T ′2W
−1
22·1η2 =

s2

u2
√
w2

, (A70)

where s2 ∼ N(0N−1, IN−1) and w2 ∼ χ2
h−M+1, and they are independent of each other and

u1, u2, ũ1, and ũ2. We can write

y′W−2
22·1y = y′W−1

22·1(η2η
′
2 + T2T

′
2)W−1

22·1y =
(1 + θ̂2

1)ũ2

u2
2

(
1 +

s′2s2

w2

)
. (A71)

Let the first column of T2 be
(IN − η2η

′
2)ê1

[ê′1(IN − η2η′2)ê1]
1
2

. (A72)

Following the proof of Proposition 1, we have

ê′1W
−1
22·1y =

ỹ1

√
1 + θ̂2

1

u2

+
s21

√
(1 + θ̂2

1)v2

u2
√
w2

, (A73)

where s21 is the first element of s2.

Note that s1 and w1 in (A60) and (A62) are independent of θ̂2
1 and δ̂2, and therefore,

independent of λ̂2. Together with the fact that s11 has zero mean, we obtain

E2 ≡ E[λ̂2µ
′
1V̂
−1

11,tµ̂1,t] =
√
hθ1E[λ̂2ẽ

′
1W

−1
11 z1] =

√
hθ1E

[
λ̂2z11

u1

]
, (A74)

E4 ≡ E[λ̂2
2µ̂1,tV̂

−1
11,tV11V̂

−1
11,tµ̂1,t] = hE[λ̂2

2z
′
1W

−2
11 z1] =

h(h− 2)

h−K − 1
E

[
λ̂2

2θ̂
2
1

u1

]
. (A75)

In addition, note that s2 and w2 in (A71) and (A73) are also independent of θ̂2
1 and δ̂2, and

s2 has zero mean. We have

E[λ̂1ê
′
1W

−1
22·1y] = E

 λ̂1ỹ1

√
1 + θ̂2

1

u2

 , (A76)
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E[λ̂2
1y
′W−2

22·1y] =
h−K − 2

h−M − 1
E

[
λ̂2

1(1 + θ̂2
1)ũ2

u2
2

]
. (A77)

To complete the proof, we still need to obtain the following terms

E1 ≡ E[λ̂1µ
′V̂ −1
t µ̂t], (A78)

E3 ≡ E
[
λ̂2

1µ̂
′
tV̂
−1
t V V̂ −1

t µ̂t

]
, (A79)

E5 ≡ E

[
λ̂1λ̂2µ̂

′
tV̂
−1
t

[
V11

V21

]
V̂ −1

11,tµ̂1,t

]
. (A80)

Using (A52), (A53), (A56), and applying the partitioned matrix inverse formula on W , we

get

E1 =
√
hθ1E[λ̂1(ẽ′1W

−1
11 z1 + ẽ′1W

−1
11 W12W

−1
22·1y)]−

√
hδE[λ̂1ê

′
1W

−1
22·1y], (A81)

E3 = hE[λ̂2
1(z′1W

−2
11 z1 + 2y′W−1

22·1W21W
−2
11 z1 + y′W−2

22·1y + y′W−1
22·1W21W

−2
11 W12W

−1
22·1y)],

(A82)

E5 = hE[λ̂1λ̂2(z′1W
−2
11 z1 + y′W−1

22·1W21W
−2
11 z1)]. (A83)

The expectation of the terms that involve ẽ′1W
−1
11 z1, z′1W

−2
11 z1, ê′1W

−1
22·1y, and y′W−2

22·1y have

already been derived. It remains to obtain the following three terms

D1 = E[λ̂1ẽ
′
1W

−1
11 W12W

−1
22·1y], (A84)

D2 = E[λ̂2
1y
′W−1

22·1W21W
−2
11 z1], (A85)

D3 = E[λ̂2
1y
′W−1

22·1W21W
−2
11 W12W

−1
22·1y]. (A86)

Using (A70) and the fact that s2 ∼ N(0N−1, IN−1) and w2 ∼ χ2
h−M+1, we can rewrite these

three terms as

D1 = E[λ̂1ẽ
′
1W

−1
11 W12(η2η

′
2 + T2T

′
2)W−1

22·1y]

= E

λ̂1

 ẽ′1W−1
11 W12y

u2

+
ẽ′1W

−1
11 W12T2s2

√
(1 + θ̂2

1)ũ2

u2
√
w2


= E

[
λ̂1

u2

ẽ′1W
− 1

2
11 Z ′y

]
, (A87)

D2 = E[λ̂2
1y
′W−1

22·1(η2η
′
2 + T2T

′
2)W21W

−2
11 z1]
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= E
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1)ũ2s
′
2(T ′2W21W

−2
11 W12T2)s2

u2
2w2

)]
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1)ũ2tr(W21W
−2
11 W12)

h−M − 1
+

(h−M − 2)y′W21W
−2
11 W12y

h−M − 1

)]

= E

[
λ̂2

1

u2
2

(
(1 + θ̂2
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The fourth equality of D3 is obtained because

tr(T ′2W21W
−2
11 W12T2) = tr(W21W

−2
11 W12T2T

′
2)

= tr
(
W21W

−2
11 W12(IN − η2η

′
2)
)

= tr(W21W
−2
11 W12)− η′2W21W

−2
11 W12η2. (A90)

Define a K × (K − 1) orthonormal matrix

H = W
1
2

11T1(T ′1W11T1)−
1
2 , (A91)

and it can be seen that HH ′ = IK − ξ1ξ
′
1. It is easy to show that

vec(ZH) ∼ N
(
0N(K−1), IN(K−1)

)
(A92)

and ZH is independent of W11, y, ũ1, and u2. In addition, we have

H ′W−1
11 H = (T ′1W11T1)−1 = A−1

22 , (A93)

36



which is independent of u1, u2, ũ1, and y′y, and

E
[
A−1

22

]
=

1

h−K − 1
IK−1. (A94)

Given the definition of H and the fact that ZH has zero mean, we can use (A60) and (A62)

to rewrite D1 and D2 as

D1 = E

[
λ̂1

u2

ẽ′1W
− 1

2
11 (ξ1ξ

′
1 +HH ′)Z ′y

]
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y′Zξ1

]
, (A95)

D2 = E

[
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11 ξ1

]
=
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]
(A96)

In addition, using

E
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we can simplify D3 to

D3 = E
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1

u2
2
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Conditional on W
− 1

2
11 and y, we have

Zξ1|y,W
− 1

2
11 z1 ∼ N

 θ̂1√
1 + θ̂2

1

ỹ +

√
hδ√

1 + θ̂2
1

ê1
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 , (A99)
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y′Zξ1|y, θ̂2
1 ∼ N

θ̂1

ũ2 +

√
hδỹ1√
1 + θ̂2

1

 , ũ2

 . (A100)

Using (A99) and (A100), we can then express D1 to D3 as

D1 = E

 λ̂1z11

u1u2

ũ2 +

√
hδỹ1√
1 + θ̂2

1

 , (A101)

D2 =
h− 2

h−K − 1
E

 λ̂2
1ũ1

u2
1u2

ũ2 +

√
hδỹ1√
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D3 = E
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hδỹ1√
1 + θ̂2

1

2
+

h(h− 2)δ2

(h−K − 1)(h−M − 1)
E

[
λ̂2

1θ̂
2
1v2

u1u2
2(1 + θ̂2

1)

]

+
(K − 1)(h−K − 2)

(h−K − 1)(h−M − 1)
E

[
λ̂2
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. (A103)

Putting all the terms together and after simplification, we obtain the expressions in Propo-

sition 5. This completes the proof.
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Figure 1
Distribution of Excess Return on the Sample Optimal Portfolio
The figure plots the unconditional distribution of excess return on the sample optimal port-
folio for an investor with γ = 10 under the assumption that the excess returns of the risky
assets and the benchmark portfolios are i.i.d. multivariate normal. The Sharpe ratio of the
ex ante tangency portfolio is assumed to be 0.3 (θ = 0.3). Two different values of the length
of estimation window (h = 60 or 120) and number of risky assets (M = 13 or 28) are exam-
ined. For comparison, the figure also plots the distribution of the excess return on the true
optimal portfolio (h =∞).
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Figure 2
Sharpe Ratio of the Sample Optimal Portfolio as a Function of the Length of
Estimation Window
The figure plots the ratio of the unconditonal Sharpe ratio of the sample optimal portfolio
(θp) to the Sharpe ratio of the true optimal portfolio (θ) as a function of the length of
estimation window (h). The excess returns are assumed to be i.i.d. multivariate normal.
The four lines in the graph are for different combinations of θ (0.2 or 0.3) and number of
risky assets M (13 or 28).
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Figure 3
Coefficient of Skewness of the Sample Optimal Portfolio as a Function of the
Length of Estimation Window
The figure plots the coefficient of skewness of the excess return of the sample optimal portfolio
as a function of the length of estimation window (h). The excess returns are assumed to be
i.i.d. multivariate normal. The four lines in the graph are for different combinations of θ (0.2
or 0.3) and number of risky assets M (13 or 28).
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Figure 4
Coefficient of Excess Kurtosis of the Sample Optimal Portfolio as a Function of
the Length of Estimation Window
The figure plots the coefficient of excess kurtosis of the excess return of the sample optimal
portfolio as a function of the length of estimation window (h). The excess returns are assumed
to be i.i.d. multivariate normal. The four lines in the graph are for different combinations of
θ (0.2 or 0.3) and number of risky assets M (13 or 28).
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Figure 5
Distribution of Conditional Alpha of the Sample Optimal Portfolio
The figure plots the distribution of conditional alpha of the sample optimal portfolio for an
investor with a relative risk aversion of 10 (γ = 10) under the assumption that the excess
returns of the risky assets are i.i.d. multivariate normal. Sharpe ratios of the true optimal
portfolio (θ) and the true benchmark optimal portfolio (θ1) are assumed to be 0.3 and 0.1,
respectively. The four lines in the graph are for different combinations of number of risky
assets M (13 or 28) and the length of estimation window h (60 or 120). αp∗ is the alpha of
the true optimal portfolio.
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Figure 6
Distribution of OLS t-ratio of Sample Alpha of the Sample Optimal Portfolio
The figure plots the distribution of the OLS t-ratio of sample alpha of the sample optimal
portfolio under the assumption that the excess returns are i.i.d. multivariate normal. Sharpe
ratios of the true optimal portfolio (θ) and the true benchmark optimal portfolio (θ1) are
assumed to be 0.3 and 0.1, respectively. The number of benchmark portfolios is assumed
to be three (K = 3) and the length of the time series is set equal to 990 (T = 990). The
four lines in the graph are for different combinations of number of risky assets M (13 or 28)
and the length of estimation window h (60 or 120). The distribution is based on 1,000,000
simulations.
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Figure 7
Difference in Out-of-sample Performance between Portfolio p and Portfolio s
The figure plots the difference in expeceted out-of-sample performance (annualized and in
percentage points) between portfolio p and portfolio s (∆p = E[Up] − E[Us]) as a function
of the length of estimation window (h) for an investor with γ = 10. The excess returns are
assumed to be i.i.d. multivariate normal. The number of benchmark portfolios is assumed
to be three (K = 3). The Sharpe ratio of the true benchmark optimal portfolio is assumed
to be 0.1 (θ1 = 0.1). The four lines in the graph are for different combinations of θ (0.2 or
0.3) and N (10 or 25).
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Figure 8
Weight on the Sample Optimal Portfolio in the Optimal Combining Portfolio
The figure plots the weight on the sample optimal portfolio in the optimal combining portfolio
(λ∗1) as a function of the length of estimation window (h) for an investor with γ = 10,
under the assumption that the excess returns are i.i.d. multivariate normal. The number
of benchmark portfolios is assumed to be three (K = 3). The Sharpe ratio of the true
benchmark optimal portfolio is assumed to be 0.1 (θ1 = 0.1). The four lines in the graph are
for different combinations of θ (0.2 or 0.3) and N (10 or 25).
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Figure 9
Weight on the Benchmark Sample Optimal Portfolio in the Optimal Combining
Portfolio
The figure plots the weight on the benchmark sample optimal portfolio in the optimal com-
bining portfolio (λ∗2) as a function of the length of estimation window (h) for an investor
with γ = 10, under the assumption that the excess returns are i.i.d. multivariate normal.
The number of benchmark portfolios is assumed to be three (K = 3). The Sharpe ratio of
the true benchmark optimal portfolio is assumed to be 0.1 (θ1 = 0.1). The four lines in the
graph are for different combinations of θ (0.2 or 0.3) and N (10 or 25).
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Figure 10
Difference in Expected Out-of-sample Performance between the Optimal Com-
bining Portfolio and the Benchmark Sample Optimal Portfolio
The figure plots the difference in expected out-of-sample performance (annualized and in
percentage points) between the optimal combining portfolio and the benchmark sample op-
timal portfolio (∆c∗ = E[Uc∗ ]−E[Us]) as a function of the length of estimation window (h)
for an investor with γ = 10, under the assumption that the excess returns are i.i.d. multi-
variate normal. The number of benchmark portfolios is assumed to be three (K = 3). The
Sharpe ratio of the true benchmark optimal portfolio is assumed to be 0.1 (θ1 = 0.1). The
four lines in the graph are for different combinations of θ (0.2 or 0.3) and N (10 or 25).
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Figure 11
Difference in Expected Out-of-sample Performance between the Implementable
Combining Portfolio with Sample Estimates and the Benchmark Sample Optimal
Portfolio
The figure plots the difference in expected out-of-sample performance (annualized and in
percentage points) of the implementable combining portfolio with sample estimates and the
benchmark sample optimal portfolio (∆cs = E[Ucs ] − E[Us]) as a function of the length of
estimation window (h) for an investor with γ = 10, under the assumption that the excess
returns are i.i.d. multivariate normal. The number of benchmark portfolios is assumed to
be three (K = 3). The Sharpe ratio of the true benchmark optimal portfolio is assumed to
be 0.1 (θ1 = 0.1). The four lines in the graph are for different combinations of θ (0.2 or 0.3)
and N (10 or 25).
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Figure 12
Difference in Expected Out-of-sample Performance between the Implementable
Combining Portfolio with Adjusted Estimates and the Benchmark Sample Op-
timal Portfolio
The figure plots the difference in expected out-of-sample performance (annualized and in
percentage points) of the implementable combining portfolio with adjusted estimates and
the benchmark sample optimal portfolio (∆ca = E[Uca ]− E[Us]) as a function of the length
of estimation window (h) for an investor with γ = 10, under the assumption that the excess
returns are i.i.d. multivariate normal. The number of benchmark portfolios is assumed to
be three (K = 3). The Sharpe ratio of the true benchmark optimal portfolio is assumed to
be 0.1 (θ1 = 0.1). The four lines in the graph are for different combinations of θ (0.2 or 0.3)
and N (10 or 25). The figure is based on 1,000,000 simulations.
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Figure 13
Distribution of Excess Return on the Sample Optimal Portfolio under Various
Distributional Assumptions
The figure plots the distribution of excess return on the sample optimal portfolio with 13
risky assets (M = 13) for an investor with γ = 10 under three distributional assumptions
on the excess returns of the risky assets: multivariate normal (solid line), multivariate t
with five degrees of freedom (dotted line) and an empirical distribution resampled from
the monthly excess returns on 10 momentum portfolios and the Fama-French three-factor
portfolios over the period of 1931/7 to 2013/12 (dashed line). The mean and covariance
matrix of multivariate normal and multivariate t are set equal to those from the empirical
distribution. The estimation window is assumed to be h = 60. The figure is based on
1,000,000 simulations.
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Figure 14
Distribution of OLS t-ratio of Sample Alpha of the Sample Optimal Portfolio
under Various Distributional Assumptions
The figure plots the distribution of OLS t-ratio of sample alpha of the sample optimal port-
folio with N = 10 under three distributional assumptions on the excess returns on the risky
assets and the benchmark portfolios: multivariate normal (solid line), multivariate t with five
degree of freedom (dotted line) and an empirical distribution resampled from the monthly
excess returns on 10 momentum portfolios and the benchmark portfolios over the period of
1931/7 to 2013/12 (dashed line). The mean and covariance matrix of multivariate normal
and multivariate t are set equal to those from the empirical distribution. The estimation
window is assumed to be h = 60. The figure is based on 1,000,000 simulations.
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Figure 15
Difference in Expected Out-of-sample Performance between the Implementable
Combining Portfolio with Adjusted Estimates and the Benchmark Sample Op-
timal Portfolio under Various Distributional Assumptions
The figure plots the difference in the expected out-of-sample performance (annualized and
in percentage points) of the implementable combining portfolio with adjusted estimates and
the benchmark sample optimal portfolio with three benchmark portfolios (K = 3) and 10
risky assets (N = 10) as a function of the length of estimation window (h) for an investor
with γ = 10 under three distributional assumptions on the excess returns of the risky assets:
multivariate normal (solid line), multivariate t with five degrees of freedom (dotted line)
and an empirical distribution resampled from the monthly excess returns on 10 momentum
portfolios and the Fama-French three-factor portfolios over the period 1931/7 to 2013/12
(dashed line). The mean and covariance matrix of multivariate normal and multivariate
t are set equal to those from the empirical distribution. The figure is based on 1,000,000
simulations.
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Table I: Alpha of Sample Optimal Portfolios (with h = 120 months)

The table presents alpha (in percentage points) and its t-ratios (OLS and White) of the sample
optimal portfolio strategy with respect to four asset pricing models: the CAPM with value-weighted
market index, the CAPM with equal-weighted market index, the Fama-French three-factor model,
and the Carhart four-factor model, assuming γ = 10. From 1941/7 to 2013/12, a sample optimal
portfolio is constructed at the beginning of each month using historical excess returns from the
previous 120 months and held for one month. Results are reported for sample optimal portfolios
constructed from five different sets of test assets. They are (1) 10 momentum portfolios, (2) 10
volatility portfolios, (3) 10 idiosyncratic volatility portfolios, (4) 10 short-term reversal portfolios,
and (5) 5×5 size and B/M portfolios. All portfolios are value-weighted. Sample Sharpe ratio (θ̂)
of the sample optimal portfolios are also reported in the table.

VW EW FF3 Carhart4

10 Momentum Portfolios

θ̂p 0.270 0.306 0.310 0.344
α̂p 1.512 1.794 1.835 1.540
t(α̂p)-OLS 7.04 7.93 7.04 5.54
t(α̂p)-White 7.21 8.17 6.98 5.11

10 Volatility Portfolios

θ̂p 0.274 0.411 0.410 0.468
α̂p 1.765 3.938 4.018 4.151
t(α̂p)-OLS 7.16 11.34 10.57 10.44
t(α̂p)-White 7.40 11.71 10.59 10.25

10 Idiosyncratic Volatility Portfolios

θ̂p 0.286 0.480 0.449 0.488
α̂p 1.895 5.040 4.521 4.695
t(α̂p)-OLS 7.48 13.33 11.80 11.30
t(α̂p)-White 7.66 13.52 11.89 10.90

10 Short-term Reversal Portfolios

θ̂p 0.168 0.197 0.204 0.332
α̂p 0.674 0.874 0.638 1.195
t(α̂p)-OLS 3.77 4.61 3.15 4.84
t(α̂p)-White 3.83 4.63 3.15 4.43

5×5 Size and B/M Portfolios

θ̂p 0.261 0.291 0.250 0.298
α̂p 2.525 3.047 2.369 2.048
t(α̂p)-OLS 7.06 7.91 6.02 5.01
t(α̂p)-White 6.88 7.77 5.99 5.00
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Table II: Alpha of Sample Optimal Portfolios (with h = 60 months)

The table presents alpha (in percentage points) and its t-ratios (OLS and White) of the sample
optimal portfolio strategy with respect to four asset pricing models: the CAPM with value-weighted
market index, the CAPM with equal-weighted market index, the Fama-French three-factor model,
and the Carhart four-factor model, assuming γ = 10. From 1936/7 to 2013/12, a sample optimal
portfolio is constructed at the beginning of each month using historical excess returns from the
previous 60 months and held for one month. Results are reported for sample optimal portfolios
constructed from five different sets of test assets. They are (1) 10 momentum portfolios, (2) 10
volatility portfolios, (3) 10 idiosyncratic volatility portfolios, (4) 10 short-term reversal portfolios,
and (5) 5×5 size and B/M portfolios. All portfolios are value-weighted. Sample Sharpe ratio (θ̂)
of the sample optimal portfolios are also reported in the table.

VW EW FF3 Carhart4

10 Momentum Portfolios

θ̂p 0.209 0.262 0.240 0.290
α̂p 1.780 2.317 2.408 2.473
t(α̂p)-OLS 5.60 7.23 6.12 5.51
t(α̂p)-White 5.83 7.39 6.10 5.22

10 Volatility Portfolios

θ̂p 0.256 0.384 0.387 0.429
α̂p 2.518 5.199 5.488 5.517
t(α̂p)-OLS 7.11 11.19 10.86 10.36
t(α̂p)-White 7.35 11.53 10.81 10.45

10 Idiosyncratic Volatility Portfolios

θ̂p 0.285 0.472 0.426 0.463
α̂p 2.832 6.864 6.061 6.383
t(α̂p)-OLS 7.92 13.82 11.96 11.54
t(α̂p)-White 8.09 14.05 12.14 11.89

10 Short-term Reversal Portfolios

θ̂p 0.179 0.224 0.214 0.305
α̂p 1.295 1.759 1.736 2.206
t(α̂p)-OLS 4.58 6.07 5.01 5.58
t(α̂p)-White 4.53 6.12 4.89 5.52

5×5 Size and B/M Portfolios

θ̂p 0.170 0.215 0.151 0.195
α̂p 3.536 4.945 3.643 3.429
t(α̂p)-OLS 4.60 6.09 4.11 3.53
t(α̂p)-White 4.41 5.94 3.86 3.31
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Table III: Performance Improvement over the Sample Benchmark Portfolio for
Various Portfolio Rules (with h = 120 months)

The table presents improvement in out-of-sample performance (annualized and in percentage points)
of various portfolio rules over the benchmark sample optimal portfolio (s) for an investor with
γ = 10. The three portfolio rules are (1) sample optimal portfolio (p), (2) combining portfolio of p
and s with sample estimates of weights (cs), and (3) combining portfolio of p and s with adjusted
estimates of weights (ca). Five different sets of test assets are examined against four different
benchmarks. The benchmark portfolios are (1) the CAPM with value-weighted market index, (2)
the CAPM with equal-weighted market index, (3) the Fama-French three-factor model, and (4)
the Carhart four-factor model. The test assets considered are (1) 10 momentum portfolios, (2) 10
volatility portfolios, (3) 10 idiosyncratic volatility portfolios, (4) 10 short-term reversal portfolios,
and (5) 5×5 size and B/M portfolios. At the beginning of each month from 1941/7 to 2013/12,
portfolios are constructed using historical excess returns from previous 120 months and held for
one month. Out-of-sample performance of a given portfolio q is calculated as µ̂q − (γ/2)σ̂2

q , where
µ̂q and σ̂2

q are the sample mean and variance computed using the 870 monthly excess returns. ∆q

is the performance improvement of a portfolio q (which can be either p, cs, or ca) over portfolio s.

VW EW FF3 Carhart4

10 Momentum Portfolios

∆p −4.830 −3.502 −8.639 −16.164
∆cs 2.168 3.289 2.584 0.310
∆ca 2.462 3.523 3.042 1.156

10 Volatility Portfolios

∆p −9.259 −12.937 −20.107 −21.850
∆cs 0.381 2.650 1.145 2.694
∆ca 0.746 3.038 1.605 3.246

10 Idiosyncratic Volatility Portfolios

∆p −9.424 −10.988 −15.324 −22.097
∆cs 1.198 5.936 5.012 4.172
∆ca 1.887 6.334 5.666 5.152

10 Short-term Reversal Portfolios

∆p −7.645 −6.923 −10.003 −12.152
∆cs −0.603 −0.115 −0.247 1.328
∆ca 0.064 0.400 0.542 2.003

5×5 Size and B/M Portfolios

∆p −34.357 −37.806 −44.979 −55.068
∆cs 0.944 1.127 −0.202 −0.944
∆ca 2.987 2.972 2.207 2.070
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Table IV: Performance Improvement over the Sample Benchmark Portfolio for
Various Portfolio Rules (with h = 60 months)

The table presents improvement in out-of-sample performance (annualized and in percentage points)
of various portfolio rules over the benchmark sample optimal portfolio (s) for an investor with
γ = 10. The three portfolio rules are (1) sample optimal portfolio (p), (2) combining portfolio of p
and s with sample estimates of weights (cs), and (3) combining portfolio of p and s with adjusted
estimates of weights (ca). Five different sets of test assets are examined against four different
benchmarks. The benchmark portfolios are (1) the CAPM with value-weighted market index, (2)
the CAPM with equal-weighted market index, (3) the Fama-French three-factor model, and (4)
the Carhart four-factor model. The test assets considered are (1) 10 momentum portfolios, (2) 10
volatility portfolios, (3) 10 idiosyncratic volatility portfolios, (4) 10 short-term reversal portfolios,
and (5) 5×5 size and B/M portfolios. At the beginning of each month from 1936/7 to 2013/12,
portfolios are constructed using historical excess returns from previous 60 months and held for one
month. Out-of-sample performance of a given portfolio q, is calculated as µ̂q − (γ/2)σ̂2

q , where µ̂q
and σ̂2

q are the sample mean and variance computed using the 930 monthly excess returns. ∆q is
the performance improvement of a portfolio q (which can be either p, cs, or ca) over portfolio s.

VW EW FF3 Carhart4

10 Momentum Portfolios

∆p −32.354 −26.541 −48.138 −68.535
∆cs −0.787 1.390 1.813 2.160
∆ca 1.018 2.541 4.253 5.285

10 Volatility Portfolios

∆p −36.841 −53.550 −64.870 −72.036
∆cs −0.240 0.381 4.360 8.132
∆ca 1.632 2.072 6.205 10.011

10 Idiosyncratic Volatility Portfolios

∆p −34.611 −50.386 −58.941 −72.085
∆cs 1.255 5.050 7.325 10.087
∆ca 3.062 6.013 8.768 12.032

10 Short-term Reversal Portfolios

∆p −26.561 −23.014 −38.190 −48.599
∆cs −0.695 0.757 1.906 5.570
∆ca 0.852 1.775 3.970 7.676

5×5 Size and B/M Portfolios

∆p −280.717 −298.117 −374.518 −452.742
∆cs −5.789 −4.212 −4.558 −2.006
∆ca −0.162 1.014 1.842 5.182
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