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ABSTRACT 
We design an intuitive yet simple measure of market liquidity (TC) to capture “flight to liquidity” 
aspect of the liquidity risk. TC is constructed as the ratio of total trade volume of stocks in the top 
trading volume quintile to that in the bottom. Its variation captures the liquidity shift between the 
most liquid (highest quality) and the least liquid (lowest quality) stocks, intensified during the flight 
to liquidity. Among the liquidity risk factors, one constructed from TC (TC factor) is the most 
effective in yielding evidence consistent with the predictions of popular models of flight to liquidity. 
TC is a priced state variable whose pricing impact is beyond those of existing liquidity measures. 
Annualized return spread between top and bottom quintiles of TC factor loading sorted portfolios is 
about 5%.  
 
JEL: G11, G12 
Keywords: Trading volume; liquidity; asset pricing; flight to liquidity; flight to quality 
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Flight to Liquidity and the Cross-Section of Stock Returns  
 

I. Introduction 

“Flight to liquidity” refers to the episodes in which a large shock to market liquidity induces 

traders shift towards high quality and liquid stocks, making low quality and illiquid stocks 

extremely illiquid. In this study, we construct trading volume concentration (TC) as an intuitive yet 

simple measure of market liquidity aiming at capturing “flight to liquidity” risk. TC is constructed 

as the ratio of total trade volume of stocks in the top trade volume quintile to that in the bottom, 

thus its variation captures the liquidity shift between the most liquid (highest quality) and the least 

liquid (lowest quality) stocks, intensified during the flight to liquidity1 We find that stocks with 

high TC-based liquidity risk ex-ante suffered from the most negative return in the months of flights 

ex-post; However, they also have higher expected return in the overall sample period even after 

controlling for existing liquidity risk measures, indicating that flight to liquidity risk is priced and 

its price impact is beyond those captured by existing risk measures.    

Brunnermeier and Pedersen (2009) links market liquidity to funding liquidity. In their model, 

speculative traders play the role of market makers who provide liquidity and immediacy, but they 

also face funding constraints and obtain financing from financiers by posting margins and pledging 

the securities as collateral. When a significantly negative shock hits the market, stock prices decline 

considerably and speculators hit their margin constraints and are forced to liquidate, which impairs 

their ability to provide liquidity. The worsen market liquidity, in turn, raises financiers’ risk of 

capital provision and induces them to raise margins on speculators’ accounts; the reduced funding 

liquidity, in turn, furthers reduce speculators’ ability to provide liquidity, and hence a liquidity spiral. 

Furthermore, as this happens, the deterioration of speculators’ capital induces them to shift liquidity 

provision away from illiquid stocks toward liquid stocks as the former is more capital-expensive 

                                                      
1 “Flight to liquidity” and “flight to quality” are generally refer to similar phenomena in practices and in most literature. 
Though Beber, Brandt, and Kavajecz (2009) distinctly refer “flight to quality” and “flight to liquidity” as investors 
rebalancing portfolios toward low credit risk and liquid securities respectively in bond market, there is less distinction 
in equity market. Hence, we use the two terms interchangeably in this paper. 
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due to higher margins, which widens the liquidity differential between liquid and illiquid stocks 

even more and results in flight to liquidity. Note that the distinguishing feature of the flight to 

liquidity episode — the intensified liquidity shifting from illiquid stocks to liquid stocks would be 

captured as increasing TC.2     

The argument of flight to liquidity can also be made from the demand side of market liquidity. 

Vayanos (2004) presents an asset pricing model where investors have to liquidate when asset prices 

fall below a lower bound. This liquidation risk can lead to flight to liquidity when illiquid assets 

become riskier and investors become more risk averse during volatile times (such as financial 

crises). Næs, Skjeltorp, and Ødegaard (2011), using a unique stock market ownership data for 

Norway, find that changes in stock market liquidity coincide with changes in investors’ portfolio 

composition. Particularly, they find that investors shift their stock portfolios from smaller and less 

liquid stocks into larger and more liquid stocks when market becomes illiquid. While investors’ 

portfolio choices cannot be observed directly, trading volume concentration in the cross-section of 

stock market provides a good proxy. As suggested by Longstaff (2009), when market is illiquid, 

featured by a “blackout” risk of illiquid assets, liquid assets become the “only game in town” and 

investors trade more on them. Trading more on larger and more liquid stocks manifests as high TC 

in the end.  

As discussed above, one key feature of TC is that it captures the liquidity shift from illiquid to 

liquid stocks. Most, if not all, of the existing market-wide liquidity measures focus only on the 

average. That is, they are constructed by averaging the liquidity measures across all individual 

stocks and hence, cannot capture the liquidity shift among these stocks.3 For example, Amihud’s 

(2002) market illiquidity is the cross-sectional average of individual stock’s illiquidity measure. A 

                                                      
2 Flight-to-liquidity phenomena is most likely to trigger within asset market rather than across asset markets due to 
capital immobility and market segmentation as featured by, for example, Mitchell, Pedersen, and Pulvino (2007), Duffie 
(2010) and He and Xiong (2013). 
3 To our best knowledge, no existing measure considers the liquidity shift among individual stocks in gauging 
market-wide liquidity risk. For example, Amihud (2002), Pastor and Stambaugh (2003), Liu (2006), Sadka (2006), and 
Brennan, Huh, and Subrahmanyam (2013) use the equally (or value) weighted average of their proprietary liquidity 
measures for individual stocks to construct the market-wide liquidity measures. Readers are referred to Pastor and 
Stambaugh (2003, p.657) for detail discussion of the construction of aggregate stock market liquidity measures used in 
literature from averaging across sample stocks. 
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larger Amihud (2002) market illiquidity do not necessarily mean investors will move from high  

liquidity stocks to low liquidity stocks; it could just mean the Amihud illiquidity measure of all 

stocks in the market become larger, which misses the notion of flight to liquidity. Similarly, 

although a large aggregate trade volume is often associated with liquid market, high aggregate 

trading volume is also observed in a market where flight to liquidity is taking place. The former 

situation leads to smaller trading volume concentration while the latter leads to high trading volume 

concentration when trading moves from low volume stocks to high volume ones. Consistent with 

this observation, we find that more than 60% of TC is indeed unexplained by other existing liquidity 

risk measures. Moreover, we will show later that stocks with high sensitivity to TC-based liquidity 

risk factor have different firm characteristics and behave differently from stocks with high 

sensitivity to existing liquidity risk factors in the literature.4  

    Other than relying on its intuitive appeal, we further demonstrate that TC is effective in 

capturing the predictions from prominent models of flight to liquidity. Consistent with 

Brunnermeier and Pedersen (2009), we find that a decreased funding liquidity (an increase in TED 

spread) reduces market liquidity (an increase in TC) more than other prominent market liquidity 

measures that include Amihud (2002), Pastor and Stambaugh (2003), Liu (2006), Sadka (2006), and 

Brennan et al. (2013).  

Brunnermeier and Pedersen (2009) suggest that high volatility stocks are most costly to 

                                                      
4 The phenomenon of flight to liquidity in the cross section of stock market also has been emphasized in Acharya and 
Pedersen (2005) who find that illiquid stocks also tend to have high liquidity risk, suggesting that illiquid stocks 
becomes even less liquid in times of down markets or generally illiquidity markets. Acharya and Pedersen (2005) 
develop a unified theoretical model (i.e., liquidity-adjusted CAPM) to explain the pricing effect of liquidity and 
liquidity risk. There are three liquidity risks in their model. In addition to the return sensitivity to market liquidity, the 
co-movement of stock liquidity with market return and market liquidity are also components of liquidity risk. Among 
the three liquidity betas considered in their model, they find that the most important source of liquidity risk is from the 
co-movement of stock liquidity with market return (i.e., their β4). Furthermore, their empirical tests show that this risk 
premium with respect to this liquidity beta, which is largely ignore in previous literature is the largest. However, due to 
the problem of collinearity among liquidity level and their three liquidity betas, they can only find weak empirical 
support for the notion. Our TC measure of flight to liquidity risk is different from theirs in that our TC-beta is in a 
U-shaped relationship with Amihud’s illiquid level. This U-shaped relationship enables us to mitigate collinearity 
problem they face in their β4 and to capture flight to liquidity risk that is least contaminated by the level of liquidity.  
Indeed, our results also suggest that the risk arising from the concern of liquidity in down market or when market is 
extremely illiquid (i.e., the flight to quality risk) is an important component of liquidity risk. Our results also confirm 
that this aspect of liquidity risk goes beyond the traditional liquidity risk (i.e., the return sensitivity to the average 
market liquidity) and probably is more important in the pricing of liquidity risk. 
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provide liquidity as they require larger margins. Liquidation risk, the main driver of flight to 

liquidity in Vayanos (2004), is also higher for more volatile stocks. Both models predict volatile 

stocks would have a larger flight to liquidity risk. This implies the price impact differential between 

high and low volatility stocks from a liquidity shock would be greatest when the shock come from a 

liquidity measure like TC that is best able to capturing the liquidity shift between illiquid (volatile) 

stocks and liquid (less volatile) stocks during the flights. Indeed, we find that liquidity shocks in TC 

explain the cross-sectional price impact across volatility portfolios better than shocks to existing 

liquidity risk measures. 

After showing TC to be the most effective market-wide liquidity measure in capturing flight to 

liquidity, we move on to investigate whether TC is a priced state variable and whether its price 

impact goes beyond those of existing liquidity risk measures. Affirmative outcome from these 

investigations would strongly suggest flight to liquidity is a priced risk. The existence of 

commonality of liquidity (i.e., liquidity of individual asset co-moves with market-wide liquidity) is 

first documented by Chordia, Roll and Subrahmanyam (2000). This discovery may have facilitated 

Pastor and Stambaugh (2003) to recognize the possibility that market liquidity can be a priced state 

variable--- a notion subsequently adopted by Acahraya and Pedersen (2005) and Sadka (2006) 

among others. Following these works, we construct a TC-based liquidity risk factor (∆𝑇𝑇) as 

innovations of TC from a VAR model that also controls for the Fama–French three factors and for 

an exogenous time trend indicator.5 We estimate the liquidity risk of a stock (TC-beta) as the factor 

loading of ∆𝑇𝑇 based on the Fama-French (1993) three-factor model augmented with ∆𝑇𝑇, and 

then test if stocks with higher (lower) TC-beta have higher (lower) expected returns. As we 

construct our liquidity risk factor (∆𝑇𝑇) by taking the negative value of TC innovations, a high 

∆𝑇𝑇 indicates a high market liquidity state. We find a significant liquidity risk premium in the 

cross-section of stock returns. In portfolio tests, the average value-weighted stock return in the 
                                                      
5 The time-series pattern of TC demonstrates a long-term uptrend and is autocorrelated. This time-series pattern 
coincides with recent evolution of trading activity in U.S. stock market, which has increased over the past few decades 
as discussed, among others, in French (2008) and Chordia, Roll and Subrahmanyam (2011). To be comparable with 
other liquidity measures, we also use a simple AR (2) with time trend model to filter out the time trend and 
autocorrelation components in the time series. The results from employing this model are qualitatively unchanged. 
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highest TC-beta quintile significantly outperforms that in the lowest TC-beta quintile by about 5% 

annually. The return premium remains significantly positive after risk-adjusting by the CAPM and 

the Fama−French (1993) three- and four-factor models. 

We also perform Two Stage Cross Sectional Regression (2SCSR) tests on individual stocks 

similar in spirit to Core, Guay and Verdi (2008) and Hirshleifer and Jiang (2010), and find a 

significantly positive coefficient on TC-beta, indicating again that TC-based liquidity risk factor is a 

priced factor. The coefficient remains significant after controlling for other liquidity risk measures 

and firm characteristics. Our tests that perform a horse race also show that the power of TC-beta to 

explain returns appears to dominate other existing liquidity betas. These results indicate that TC is 

indeed a priced state variable and that the pricing impact of TC-based liquidity risk goes beyond 

those of existing liquidity risk measures, which, in turn, strongly suggests that flight to liquidity risk 

is an important component of liquidity risk.  

To verify that the higher expected return earned by TC-beta stocks indeed reflect the risk   

premium of (compensation to) flight to liquidity, we examine if stocks with large TC-beta ex-ante  

experience the greatest price decline during the flight months, as captured by large drops in ∆𝑇𝑇. 

We find stocks in the highest TC-beta quintile on average experience a more negative monthly 

return of 0.76% compared to stocks in the lowest TC-beta quintile during flight months. More 

importantly, TC-beta dominates other liquidity-betas in explaining the negative return impacts in 

the cross section of stocks during the flight periods just as it does in explaining the expected return 

in the overall sample period.  

We contribute to the liquidity risk literature by introducing a new liquidity measure designed 

specifically to capture flight to liquidity. Existing liquidity risk measures (e.g., Amihud 2002, Pastor 

and Stambaugh 2003, Archaya and Pedersen (2005), Sadka 2006) are constructed as innovation to 

the level of average marker-wide liquidities, which are ineffective in capturing the liquidity shift 

from liquid stocks to illiquid stocks during the flights. In contrast, a large (small) TC literally 

describes a state variable in which the flights and the liquidity shift are (not) taking place. We 
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provide strong empirical support for Brunnermeier and Pedersen (2009) and Vayonos (2004), which 

predict tight links among funding liquidity, volatility and market liquidity that can lead to flight to 

liquidity under certain conditions. The fact that we find these links are tightest when TC is 

employed as the market liquidity measure are consistent with (1) TC is a good measure of flight to 

liquidity and (2) Brunnermeier and Pedersen (2009) and Vayonos (2004) are good models of fight 

to liquidity.  

We also contribute to flight to liquidity literature by investigating if the risk of flight to 

liquidity is priced. Using data on Euro-area government bond markets, Beber et al. (2009) find that 

credit quality matters for bond valuations but in the time of market stress, investors chase liquidity 

such that the most illiquid bonds would have the highest yield spread. Other than the market 

difference, this paper differs from Beber et al. (2009) in two important aspects. First, Beber et al. 

(2009) study the pricing impact of the level of ex-post liquidity, we study the impact of ex-ante 

liquidity risk where TC-beta was estimated with 60-months rolling window leading up to the 

formation month. Second, their results are about the contemporaneous relationship between return 

and liquidity. While we also investigate the contemporaneous impact of TC-beta during the liquidity 

crisis periods, our focus is mainly on the impact of ex-ante liquidity risk on expected return. We 

find that high TC-beta stocks suffered from the most negative return in the months of flights, they 

also have the higher expected return in normal time, indicating that TC-beta risk is priced.  

Furthermore, the price impact of TC-beta, the liquidity risk measure motivated specifically to 

measure the flight to liquidity, dominate the price impact of other liquidity risk measures in both 

type of tests strongly suggest the risk of flight to liquidity is priced.  

The rest of the paper is organized as follows. Section II describes the properties of TC and the 

construction of our TC-based liquidity factor. Section III provides evidence to support that TC is 

better than others in capturing the flight to liquidity aspect of liquidity risk. Section IV conducts the 

asset pricing tests of TC in the cross-section of stock returns. Section V concludes this paper. 

 

II. Properties of Trading Volume Concentration 
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A. Data and Sample Selection 

Our empirical tests use a sample that includes NYSE/AMEX stocks over the period from 

January 1967 to December 2013.6 We restrict our sample to those stocks with CRSP share codes 

10 or 11. Data on stock prices and volumes are obtained from CRSP daily or monthly stock files. 

To construct the monthly time series of trading volume concentration, we first generate monthly 

dollar volume for individual stocks (𝐷𝐷𝐷𝐷) by aggregating their daily dollar volume over a given 

month, where daily dollar volume is calculated by multiplying the number of shares traded by the 

stock’s price per share on a specified day. In addition, we require other relevant variables on firm 

characteristics, such as market capitalization (𝑀𝑀); book-to-market ratio (𝐵𝐵)7; cumulative return 

from t−7 to t−12 month (𝑅𝑅𝑅(−12,−7))8; share turnover (𝑇𝑇𝑇𝑇); idiosyncratic volatility (𝐼𝐼), 

defined as the standard deviation of return residuals estimated by regressing individual stocks’ daily 

excess returns on the Fama−French three factors in a given month; Amihud’s (2002) 

return-to-volume illiquidity measure (𝑅𝑅); Brennan et al.’s (2013) turnover-version down (negative 

returns) half-Amihud liquidity measure (𝑅𝑅−); and Liu’s (2006) 𝐿𝐿1 and 𝐿𝐿12  illiquidity 

measures. 

To estimate the factor-adjusted returns associated with liquidity risk, we require traditional 

four factors such as market factor (𝑀𝑀𝑀), size factor (𝑆𝑆𝑆), value factor (𝐻𝐻𝐻), and momentum 

factor ( 𝑀𝑀𝑀 ), which are obtained from French’s website 

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). Besides, to test the 

effect of funding liquidity, we also require data on the TED spread, as defined by the difference 

between the 3-month LIBOR Eurodollar rate and the 3-month T-bill rate (1986−2013), which is 

collected from Federal Reserve Bank of St. Louis. 

 

                                                      
6 We exclude NASDAQ stocks in constructing the trading volume concentration because of different trading protocols 
across exchanges (e.g., Atkins and Dyl (1997), Chordia et al. (2007), and Chordia et al. (2011)). Also, data on 
NASDAQ stock returns and volume are available from CRSP only beginning January 1983.   
7 When adopting book value of equity to measure book-to-market ratio (𝐵𝐵), as suggested by Hirshleifer, Hou, Teoh, 
and Zhang (2004), we assume a minimum 4-month gap between the fiscal year end and the actual report release month. 
Data on book value of equity is collected from Compustat, with a sample excluding negative-𝐵𝐵 stocks. 
8 Novy-Marx (2012) suggests that momentum effect is mainly driven by stocks’ performance 12 to 7 months prior to 
portfolio formation, we thus use 𝑅𝑅𝑅(−12,−7) to capture momentum effect. 
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B. Metrics of Trading Volume Concentration (TC) and TC-based Liquidity Factor 

To study the properties of trading volume concentration, we begin by investigating the cross 

section of trading-volume distribution over time. At the end of each month, we sort all 

NYSE/AMEX stocks into dollar-volume quintiles (denoted as High, Q4, Q3, Q2, and Low) based 

on their NYSE breakpoints of monthly dollar volume. To show the concentration of cross-sectional 

trading volume, we calculate the trading-volume density (denoted as 𝑇𝑇) as the sum of dollar 

volumes of stocks in each quintile divided by aggregating dollar volumes of all sample stocks. 

Hence, the sum of trading-volume density (%) across all five quintiles is equal to 100% in each 

month. The cross-sectional distribution of trading volume is highly concentrated on the 

dollar-volume quintile High and this concentration has increased gradually over the sample period. 

During January 1963 to December 2013. As shown in Table I, the average trading-volume density 

for the quintile High is 75.9%. Over time, the trading-volume density for the quintile High is 67% 

in January 1963 and has increased to 77% in December 2013.9 On the other hand, the remaining 

four quintiles (Q4, Q3, Q2, and Low) together only account for a small portion of aggregate trading 

volume. 

 

【Table I Insert Here】 

 

Since we propose that trading volume concentration captures the tendency of “flight to 

liquidity/quality” effect in the stock market, our metrics should easily and directly measure the 

relative volume contribution from liquid (and/or high quality) versus illiquid (and/or low quality) 

stocks. Table I shows that the dollar-volume quintile High (Low) is generally comprised of stocks 

with large (small) size, high (low) liquid and low (high) idiosyncratic volatility. The average market 

capitalization (𝑀𝑀) for quintile High is $12.76 billion and monotonically decreases to $0.09 billion 

                                                      
9 We also plot the time series of the dollar-volume and market-capitalization contributions for stocks that experienced 
the largest (top 30, 100, 200 and 300) annual dollar volume for each year. The time-series patterns of these smaller 
subsets of top trading volume stocks also replicate that of dollar-volume quintile High. This provides an additional and 
even stronger evidence of high and increasing trading volume concentration since this approach focuses on top ends of 
cross-sectional distributions and is independent of the method of grouping (For example, DeAngelo, DeAngelo, and 
Skinner (2004) apply this approach to show the high and increasing dividend concentration and earning consolidation). 
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for quintile Low. Amihud’s (2002) illiquidity measure (𝑅𝑅) monotonically increases from 0.01 for 

quintile High to 12.91 for quintile Low. The idiosyncratic return volatility (𝐼𝐼) monotonically 

increases from 1.75% for quintile High to 3.26% for quintile Low. Hence, we construct our metrics 

of trading volume concentration (𝑇𝑇) as the natural log of the ratio of the dollar volume density of 

quintile High relative to that of quintile Low: 

𝑇𝑇𝑡 = ln �𝑇𝑇𝑇𝑡
𝑇𝑇𝑇𝑡

�                                 (1) 

where 𝑇𝑇𝑇𝑡 (𝑇𝑇𝑇𝑡) is the trading-volume density of quintile High (Low) in month t. 

The logarithm rescales to the trading-volume density is not trivial. It preserves the time-series 

properties while captures more intuitively the nature of liquidity risk. Though the trading-volume 

density for quintile Low (𝑇𝑇𝑇) is small, it is also important in detecting the dynamics of market 

liquidity. Næs et al. (2011) show that investors’ portfolio choice is correlated with market liquidity, 

especially for the smallest firms. Longstaff (2009) also shows that distortion in agent’s consumption 

plans arising from illiquid assets in the market has an equilibrium asset pricing effect even in the 

absence of transaction costs or other explicit liquidity costs. 

 

【Figure 1 Insert Here】 

 

The top panel of Figure 1 plots the monthly time series of 𝑇𝑇 over the period from January 

1967 to December 2013. We observe that peaks in 𝑇𝑇 generally correspond to the occurrence of 

major market crises, such as market crashes in 1987, internet bubble burst in 2001, and financial 

crisis in 2008. This anecdotal observation suggests that 𝑇𝑇 captures the flight to liquidity effect as 

predicted by the recent literature. That is, the flight to liquidity effect occurs when market declines, 

becomes illiquid, or becomes more volatile. For example, Brunnermeier and Pedersen (2009) 

predict that market liquidity is subject to “flight to liquidity” and co-moves with market returns. The 

models of Gromb and Vayanos (2002) and Garleanu and Pedersen (2007) also predict that higher 

market volatility is related to less available risk-bearing capacity, which implies a lower liquidity. 

Hameed, Kang, and Viswanathan (2010) provide empirical evidence on that negative market returns 
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decrease stock liquidity. 

To capture the liquidity risk associated with 𝑇𝑇, we need to estimate innovations in 𝑇𝑇. 

Similar to Chen and Petkova (2012), we construct our 𝑇𝑇-based liquidity risk factor by estimating 

a first-order VAR model that includes the Fama−French three factors and 𝑇𝑇. An exogenous 

variable, time trend indicator, is also included into the model.10 Specifically, we estimate the 

first-order VAR model using data available up to month t: 

�

𝑀𝑀𝑀𝑡
𝑆𝑆𝑆𝑡
𝐻𝐻𝐻𝑡
𝑇𝑇𝑡

� = 𝐴 �

𝑀𝑀𝑀𝑡−1
𝑆𝑆𝑆𝑡−1
𝐻𝐻𝐻𝑡−1
𝑇𝑇𝑡−1

� + 𝐵[𝑡] + 𝑒𝑡                  (2) 

where 𝑒𝑡 represents a vector of innovations for each variable in the state vector. At each month t, 

we extract innovations in 𝑇𝑇 from the residuals (𝑒̂𝑡). As high 𝑇𝑇 reveals high tendency to flight 

to liquidity and proxies for worse market liquidity state, we define our 𝑇𝑇-based liquidity risk 

factor (∆𝑇𝑇) as the reverse of the innovations in 𝑇𝑇 to follow the convention that high (low) value 

of ∆𝑇𝑇 indicates a high (low) market liquidity state. The first observation for ∆𝑇𝑇 is for January 

1972 since we require the estimation of Eq. (2) to contain at least 60 months. As shown in the 

bottom panel of Figure 1, several periods with extremely low levels of ∆𝑇𝑇 coincide with the 

occurrence of major market crises, suggesting ∆𝑇𝑇 exhibits potential ability in capturing flight to 

liquidity risk. 

 

C. Comparison with Other Liquidity Risk Measures 

To show that our 𝑇𝑇-based liquidity risk factor captures different aspect of liquidity risk, we 

compare it with several other existing liquidity factors that are commonly used in the literature. The 

liquidity measures we consider are aggregate dollar volume, Amihud’s (2002) illiquidity measure, 

Brennan et al.’s (2013) turnover-version negative half-Amihud illiquidity measure, Liu’s (2006) 

turnover-adjusted number of zero trade measure, Pastor and Stambaugh’s (2003) price impact 

measure, and Sadka’s (2006) variable-permanent price impact measure. We summarize how these 

                                                      
10 As shown in the top panel of Figure 1, the time-series pattern in 𝑇𝑇 exhibits certain degree of time trend and 
autocorrelations, which motivates us to estimate a first-order VAR model with an exogenous time-trend indicator. 
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liquidity factors are designed as follows. 

First, to show that the liquidity risk information contained in our 𝑇𝑇-based liquidity factor is 

different from that in aggregate trading volume, we consider aggregate dollar trading volume as a 

pseudo liquidity measure for comparison. Aggregate trading volume in a given month (𝐴𝐴𝐴𝐴𝐴𝑡) is 

calculated by averaging individual stocks’ monthly dollar volume traded (𝐷𝐷𝐷𝐷𝑖,𝑡) over all sample 

stocks listed on NYSE/AMEX. Using the similar VAR model by replacing 𝑇𝑇 with 𝐴𝐴𝐴𝐴𝐴 in 

Eq. (2), we construct a liquidity factor associated with aggregate trading volume, as denoted by 

∆𝐴𝐴𝐴𝐴𝐴. 

Second, Amihud (2002) provides a simple illiquidity measure in attempt to capture the price 

impact aspect of liquidity. We take the time-average of daily return-to-volume ratio over one month 

to construct stock i’s Amihud (2002) illiquidity measure in month t (𝑅𝑅𝑖,𝑡): 

𝑅𝑅𝑖,𝑡 = 1
𝑁
∑ �𝑅𝑖,𝑑,𝑡�

𝐷𝐷𝐷𝐷𝑖,𝑑,𝑡

𝑁
𝑑=1                              (3) 

where �𝑅𝑖,𝑑,𝑡� is stock i’s absolute daily return on day d in month t and 𝐷𝐷𝐷𝐷𝑖,𝑑,𝑡 is stock i’s 

dollar trading volume (in $ millions) on day d in month t. 𝑁 is the number of trading days over 

month t.11 𝑅𝑅𝑖,𝑡 measures illiquidity because high price impact is related to low liquidity. We then 

take a simple average across all common stocks listed on NYSE/AMEX to generate market-wide 

Amihud’s (2002) illiquidity level (𝐴𝐴𝐴ℎ𝑢𝑢𝑡) and construct a liquidity factor associated with 

𝐴𝐴𝐴ℎ𝑢𝑢, as denoted by ∆𝐴𝐴𝐴ℎ𝑢𝑢, using the similar VAR model by replacing 𝑇𝑇 with 𝐴𝐴𝐴ℎ𝑢𝑢 

in Eq. (2). A recent paper by Brennan et al. (2013) further decomposes the turnover-version 

Amihud’s (2002) illiquidity measure into components that correspond to positive and negative 

return days and find that only the down-market component, negative half-Amihud illiquidity 

measure, is priced. Thus, we also construct a market-wide negative half-Amihud illiquidity measure 

(𝐴𝐴𝐴ℎ𝑢𝑢𝑡−).   

Third, Pastor and Stambaugh (2003) also propose a price impact measure by focusing on a 

dimension related to temporary price changes accompanying order flows. The estimates of the 
                                                      
11 We form 𝑅𝑅𝑖,𝑡 using a sample of NYSE/AMEX common stocks with at least 15 trading days per month. 
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liquidity measure for stock i in month t can be generated from the following regression model:  

𝑅𝑖,𝑑+1,𝑡
𝑒 = 𝜃𝑖,𝑡 + 𝜙𝑖,𝑡𝑅𝑖,𝑑,𝑡 + 𝐺𝐺𝐺𝐺𝐺𝑖,𝑡𝑠𝑠𝑠𝑠�𝑅𝑖,𝑑,𝑡

𝑒 � × 𝐷𝐷𝐷𝐷𝑖,𝑑,𝑡 + 𝜖𝑖,𝑑+1,𝑡        (4) 

where 𝑅𝑖,𝑑,𝑡
𝑒  is stock i’s excess daily return (in excess of CRSP value-weighted market return) on 

day d in month t. 𝐺𝐺𝐺𝐺𝐺𝑖,𝑡 is designed to catch the price reverse from the previous day’s order 

flow shock. By taking a cross-sectional average of 𝐺𝐺𝐺𝐺𝐺𝑖,𝑡 across NYSE/AMEX stocks in a 

given month and scaling a series of total dollar value, Pastor and Stambaugh (2003) construct a 

liquidity factor (we denote it as Δ𝑃𝑃) based on a AR (1) model, which can be obtained from 

Wharton Research Data Services (WRDS). 

    Fourth, Liu (2006) introduces a new illiquidity measure associated with the number of zero 

trading volumes and argue that it performs well in capturing multi-dimensions of liquidity such as 

trading speed, quantity, and cost. Liu (2006) defines the standardized turnover-adjusted number of 

zero daily trading volume over the prior 1 month (𝐿𝐿1𝑖,𝑡) for stock i in month t as: 

𝐿𝐿1𝑖,𝑡 = [#1𝑖,𝑡 + 1/ 𝑇𝑇𝑇𝑇1𝑖,𝑡
480,000

] × 21
𝑁𝑁𝑁𝑁1𝑖,𝑡

                          (5) 

where #1 is the number of zero daily volumes in prior 1 month. 𝑇𝑇𝑇𝑇1 is share turnover over 

the prior 1 month. 𝑁𝑁𝑁𝑁1 is the total number of trading days in the market over the prior 1 month. 

Once 𝐿𝐿1𝑖,𝑡 is constructed, the aggregate change in market liquidity at the end of month t can be 

calculated as: 𝐷𝐷𝐷𝐷1𝑡 = 1
𝑜𝑜𝑜𝑡

∑ (𝑜𝑜𝑜𝑡
𝑖=1 𝐿𝐿1𝑖,𝑡 − 𝐿𝐿1𝑖,𝑡−1), where 𝑜𝑜𝑜𝑡 is the number of eligible 

NYSE/AMEX common stocks at the end of month t. We then denote ∆𝐿𝐿𝐿 as a liquidity factor by 

estimating the residuals in 𝐷𝐷𝐷𝐷1𝑡 based on the AR (1) specification with a drift using data 

available up to month t. 

Finally, using intra-day transaction data (TAQ), Sadka (2006) decomposes firm-level liquidity 

into variable and fixed price-impact effects and finds that the variation of the market-wide variable 

component (𝐿𝐿𝐿𝑡𝜆), not the fixed component, is priced in the cross-section of momentum and PEAD 

portfolios. We denote 𝐿𝐿𝐿𝑡𝜆 as Δ𝑆𝑆𝑆𝑆𝑆 in this paper and collect the data on Δ𝑆𝑆𝑆𝑆𝑆, covering 

the period from April 1983 to December 2012, from Sadka’s website 
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(https://www2.bc.edu/ronnie-sadka/). 

 

【Table II Insert Here】 

 

Table II reports descriptive statistics on ∆𝑇𝑇 and its correlations with other risk factors and 

other liquidity factors, which include ∆𝐴𝐷𝐷𝐷𝐷 , ∆𝐴𝐴𝐴ℎ𝑢𝑢 , ∆𝐴𝐴𝐴ℎ𝑢𝑢− , ∆𝐿𝐿𝐿 , ∆𝑃𝑃 , and 

∆𝑆𝑆𝑆𝑆𝑆. As shown in Panel A of Table II, by construction, the mean and median of ∆𝑇𝑇 both 

close to 0 and the magnitudes of maximum and minimum are roughly equal. It suggests that ∆𝑇𝑇 

is stationary and symmetrically distributed. Similarly, the descriptive statistics shown in Panel A 

also suggest that the time series of other liquidity factors we considered are stationary and 

symmetrically distributed. As shown in Panel B, ∆𝑇𝑇 is positively correlated with market excess 

return (𝑀𝑀𝑀) at 0.09 during the period from January 1972 to December 2013, suggesting that 

negative shocks to 𝑇𝑇 (increases in illiquidity) coincide with declines in the market. Also, ∆𝑇𝑇 is 

positively correlated with size premium (𝑆𝑆𝑆) at 0.16. However, ∆𝑇𝑇 appears to be uncorrelated 

with 𝐻𝐻𝐻 and 𝑀𝑀𝑀. 

Panel B of Table II further shows the correlations among ∆𝑇𝑇 and other liquidity factors. As 

we expect that the time-series variation in 𝑇𝑇  captures market-wide liquidity risk, ∆𝑇𝑇  is 

significantly correlated with other existing liquidity factors. Correlations between ∆𝑇𝑇  and 

∆𝐴𝐴𝐴ℎ𝑢𝑢 , ∆𝐴𝐴𝐴ℎ𝑢𝑢− , ∆𝐿𝐿𝐿 , ∆𝑃𝑃 , and ∆𝑆𝑆𝑆𝑆𝑆  are −0.15, −0.13, −0.54, 0.15, and 0.20, 

respectively. Interestingly, a positive correlation between ∆𝐴𝐷𝐷𝐷𝐷 and ∆𝐴𝐴𝐴ℎ𝑢𝑢 (0.23) and a 

negative correlation between ∆𝐴𝐷𝐷𝐷𝐷 and ∆𝐴𝐴𝐴ℎ𝑢𝑢− (−0.17) appear to reflect that innovations 

in aggregate trading volume are ambiguous in capturing dynamics of market liquidity risk. In 

addition, we find that almost all the correlations between each pair are statistically significant. The 

overall correlation matrix confirms that ∆𝑇𝑇 captures the dynamic of market-wide liquidity and 

supports Korajczyk and Sadka (2008) that there exists common information regarding market 

liquidity risk across liquidity measures. 

Nevertheless, the correlation structure above implies that these liquidity factors are somewhat 
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similar but far from identical in how they vary over time. Following Hu, Pan, and Wang (2013), we 

run a set of time-series regressions of ∆𝑇𝑇 on other liquidity factors. Panel C of Table II reports 

the results. The first row includes ∆𝐴𝐷𝐷𝐷𝐷 , ∆𝐴𝐴𝐴ℎ𝑢𝑢 , ∆𝐴𝐴𝐴ℎ𝑢𝑢− , ∆𝐿𝐿𝐿 , and ∆𝑃𝑃  as 

explanatory variables over the whole period from January 1972 to December 2013, and shows that 

the adjusted R2 of this regression is 0.38. The second row includes ∆𝐴𝐷𝐷𝐷𝐷 , ∆𝐴𝐴𝐴ℎ𝑢𝑢 , 

∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃, and ∆𝑆𝑆𝑆𝑆𝑆 as explanatory variables over the period from April 1983 to 

December 2012, and reveals that the adjusted R2 is 0.30. Overall, other liquidity factors jointly 

explain only 38% (or less) of the time variation of ∆𝑇𝑇, and more than 60% of the time variation of 

∆𝑇𝑇  is unexplained by these existing liquidity factors. These results suggest that 𝑇𝑇 -based 

liquidity factor, ∆𝑇𝑇, contains additional information regarding liquidity risk that is distinguished 

from other liquidity risk factors. 

The overall evidence above suggests that ∆𝑇𝑇 is correlated with but different from other 

existing liquidity factors and thus it captures the market-wide liquidity risk through the investors’ 

“flight to liquidity” tendency, which is missed in existing liquidity risk measures. That is, ∆𝑇𝑇 is a 

novel measure in capturing the episodes that when market liquidity risk is high, investors tend to 

migrate from small and illiquid stocks to large and liquid stocks, resulting in the unexpected 

increase in trading volume concentration and verse vice. 

 

III. Evidence on Flight to Liquidity 

So far, we have relied on the intuitive notion that variation in 𝑇𝑇 captures the movement of 

trading between the most liquid and the least liquid stocks as a justification for 𝑇𝑇 being good at 

capturing the flight to quality aspect of market-wide liquidity risk. In this section, we provide 

justification from evidence predicted by widely accepted models on flight to liquidity such as 

Vayanos (2004) and Brunnermeier and Pedersen (2009).  

 

A. Funding Liquidity and Market Liquidity 

 Brunnermeier and Pedersen (2009) suggest that some negative shocks to the collateral of 



16 
 

market makers would affect their capability to provide liquidity, especially for illiquid stocks, which 

may lead to flight to liquidity. Their model predicts that speculator’s capital (funding liquidity) and 

market volatility affect market liquidity. To empirically test this prediction, we run a time-series 

regression of our 𝑇𝑇-based liquidity factor (∆𝑇𝑇) on changes in a funding liquidity measure. For 

comparison, we also consider various other liquidity factors (i.e.,  ∆𝐴𝐴𝐴𝐴𝐴 , ∆𝐴𝐴𝐴ℎ𝑢𝑢 , 

∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃, and ∆𝑆𝑆𝑆𝑆𝑆) as dependent variables. Following Brunnermeier, Nagel, 

and Pedersen (2008) and Frazzini and Pedersen (2014), we use TED spread as a proxy for funding 

liquidity. We also control for several variables that may affect market liquidity (e.g., Brennan, 

Chordia, Subrahmanyam, and Tong (2012)): market returns (𝑅𝑚,𝑡), measured by monthly returns on 

the value-weighted CRSP NYSE/AMEX/NASDAQ index in month t; market volatility (𝑉𝑉𝑉𝑡), 

measured by the daily CBOE VIX option implied volatility index averaged over month t; change in 

the ratio of the number of stocks with a positive return to that with a negative return in month t 

(∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡); change in default yield premium in month t (∆𝐷𝐷𝐷𝑡); change in term yield premium 

in month t (∆𝑇𝑇𝑇𝑇𝑡); and the January dummy variable, 𝐽𝐽𝐽𝑡, to capture the January effect that 

may seasonally affect the market liquidity conditions. The time-series regression for the period from 

January 1986 to December 2012 is set as follows:12 

∆𝐿𝐿𝐿𝑡 = 𝛾0 + 𝛾1∆𝑇𝑇𝑇𝑡 + 𝛾2𝑅𝑚,𝑡 + 𝛾3𝑉𝑉𝑉𝑡 + 𝛾4∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡  

+𝛾5∆𝐷𝐷𝐷𝑡 + 𝛾6∆𝑇𝑇𝑇𝑇𝑡 + 𝛾7𝐽𝐽𝐽𝑡 + 𝜖𝑡                       (6) 

where ∆𝐿𝐿𝐿𝑡  are various liquidity factors (i.e., ∆𝑇𝑇, ∆𝐴𝐴𝐴𝐴𝐴, ∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, 

∆𝑃𝑃, and ∆𝑆𝑆𝑆𝑆𝑆). ∆𝑇𝑇𝑇𝑡 is change in TED spread in month t. To compare the sensitivities of 

various liquidity factors to funding liquidity, we standardize each of dependent variables to have an 

equal mean of zero and an equal standard deviation of one when estimating Eq. (6). 

 

【Table III Insert Here】 

 

                                                      
12 We choose this period because data on TED spread is available since 1986. Also, since ∆𝑆𝑆𝑆𝑆𝑆 is considered as a 
comparable candidate and its sample period is available end at December 2012, the analysis here covers the period from 
January 1986 to December 2012.  
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Table III reports the results. The first column shows that the coefficient on ∆𝑇𝑇𝑇 for the 

dependent variable ∆𝑇𝑇 is −0.33, statistically significant with a t-statistic of −2.09. Consistent 

with Brunnermeier and Pedersen’s (2009) prediction, this result suggests that a decrease in funding 

liquidity (an increase in TED spread) makes market makers harder to provide liquidity and to shift 

to high quality stocks, hence reducing market liquidity. In addition, the coefficient on market 

volatility (𝑉𝑉𝑉𝑚) is −0.02, again statistically significant (t-statistic = −3.04), suggesting a more 

volatile market tends to reduce market liquidity. By considering innovation in aggregate trading 

volume (∆𝐴𝐷𝐷𝐷𝐷) as a pseudo liquidity proxy, the second column shows that the coefficient on 

∆𝑇𝑇𝑇 for the dependent variable ∆𝐷𝐷𝐷𝐷 is 0.31, significant with a t-statistic of 2.01. The 

positive coefficient shows that a tightened funding liquidity actually increases aggregate trading 

volume. As discussed below, this is consistent with Pastor and Stambaugh (2003) and Longstaff 

(2009). Moving from third to last column, however, we find that the regression coefficients on 

∆𝑇𝑇𝑇  for other liquidity factors as the dependent variables are insignificant or marginally 

significant. 

Aggregate trading volume (or market turnover) is a commonly used proxy for market liquidity 

since it is generally positively correlated with market liquidity in liquid market conditions. However, 

its ability in capturing market liquidity risk becomes problematic when market is illiquid. Pastor 

and Stambaugh (2003) show that trading volume or turnover is useful in explaining the 

cross-sectional difference in liquidity but seems not to capture the time variation in aggregate 

liquidity, because aggregate trading volume tend to be higher not only in liquid market, but also in 

illiquid market. Particularly, they show that the time-series correlation between their market 

liquidity measure and aggregate dollar volume turns negative when calculated only across 

low-liquidity months. Also, Longstaff’s (2009) calibrated model suggests that the presence of 

illiquid assets in the market, associated with higher liquidity risk, actually leads to higher aggregate 

trading volume. Consistent with Pastor and Stambaugh (2003) and Longstaff (2009), our evidence 

suggests that the ability of trading volume concentration in capturing market-wide liquidity risk is 
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not driven by aggregate trading volume per se. 

The overall results in Table III suggest that our 𝑇𝑇-based liquidity factor (∆𝑇𝑇) is the most 

sensitive to funding liquidity compared to other liquidity factors. This provides the first supportive 

evidence that 𝑇𝑇 plays a more important role in capturing the flight to liquidity/quality aspect of 

market liquidity risk. 

 

B. Cross-sectional Effect of TC on Volatility Portfolios 

Brunnermeier and Pedersen (2009) suggest that, due to funding constraint of market makers, 

market liquidity is subject to flight to liquidity. Since liquid and low risk assets require fewer 

margins, market makers optimally choose to provide more liquidity for these assets compared to 

illiquid and high risk assets when their funding is tight. Vayanos (2004) presents an asset pricing 

model where investors need to liquidate when asset prices fall below a lower bound. Vayanos (2004) 

further links the risk of needing to liquidate to volatility. These models predict a liquidity shock 

increases the differential liquidity and thus price impact between high and low quality stocks.  

If 𝑇𝑇 contains more information about the tendency of flight to liquidity, the 𝑇𝑇-based 

liquidity factor would explain the return spreads of portfolios sorted by individual stocks’ quality 

(risk) more significantly than other liquidity factors. Following Novy-Marx (2014) and others, we 

employ an intuitive measure, idiosyncratic volatility, as a proxy for the quality (or risk) of 

individual stocks. For each month t, NYSE/AMEX stocks (with CRSP share code 10 or 11) are 

sorted into quintiles based on their NYSE breakpoints of idiosyncratic volatility on month t-2.13 

The equally-weighted monthly returns for each quintile on month t are then calculated. We then test 

our hypotheses by regressing the monthly excess returns of the idiosyncratic volatility quintiles 

(𝑅𝑅𝑅𝑝,𝑡) on various liquidity factors. Specifically, we run the following time-series regressions on a 

sample period from January 1986 to December 2012: 

𝑅𝑅𝑅𝑝,𝑡 = 𝛾𝑝,0 + 𝛾𝑝,1∆𝑇𝐶𝑡 + 𝛾𝑝,2∆𝐴𝐴𝐴𝐴𝐴𝑡 + 𝛾𝑝,3∆𝐴𝐴𝐴ℎ𝑢𝑢𝑡 + 𝛾𝑝,4∆𝐴𝐴𝐴ℎ𝑢𝑢𝑡− 

                                                      
13 Individual stock’s idiosyncratic volatility is defined as the standard deviation of residuals estimated by regressing 
individual stocks’ daily excess returns on the Fama-French three factors in a given month. 
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+𝛾𝑝,5∆𝐿𝐿𝐿𝑡 + 𝛾𝑝,6∆𝑃𝑃𝑡 + 𝛾𝑝,7∆𝑆𝑆𝑆𝑆𝑆𝑡 + 𝛾𝑝,8𝐗𝑡 + 𝜖𝑝,𝑡                  (7) 

where 𝑅𝑅𝑅𝑝,𝑡, p=High, Q4, Q3, Q2, and Low, are the excess returns on idiosyncratic volatility 

portfolios in month t. For comparison, we standardize each liquidity factor (i.e., ∆𝑇𝐶, ∆𝐴𝐷𝐷𝐷𝐷, 

∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃 and ∆𝑆𝑆𝑆𝑆𝑆) and thus allow it to have an equal mean of zero 

and an equal standard deviation of one. 𝐗𝒕 is a set of control variables that include ∆𝑇𝑇𝑇𝑡, 𝑅𝑚,𝑡, 

𝑉𝑉𝑉𝑡, ∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡 , ∆𝐷𝐷𝐷𝑡, ∆𝑇𝑇𝑇𝑇𝑡, and 𝐽𝐽𝐽𝑡, which are defined in Table III. Table IV presents 

the result. 

 

【Table IV Insert Here】 
 

The second row shows the return impact of our 𝑇𝑇-based liquidity factor on the idiosyncratic 

volatility sorted portfolios from high (High IV) to low (Low IV). As expected, we find that the 

coefficients on ∆𝑇𝑇 decrease monotonically from High IV to Low IV, suggesting that the return 

impact from 𝑇𝑇-based liquidity risk is larger for high risk (low quality) stocks than for low risk 

(high quality) stocks. The last column shows the result of testing whether the coefficients on ∆𝑇𝑇 

for the High IV and Low IV portfolios are equal. We find that a t-statistic for the test is 3.37, 

indicating that the return impact for the High IV and Low IV portfolios is significantly different. 

From the third to eighth rows, we find instead that the differences in coefficients on other liquidity 

factors are insignificant in most cases. This result thus provides second evidence to support the 

argument that our 𝑇𝑇-based liquidity factor is better than others in capturing the flight to liquidity 

risk.   

 

IV. Pricing TC-based Liquidity Risk in the Cross-Section 

It has been broadly accepted that the market-wide liquidity risk is an important risk factor in 

determining the cross-section of asset returns since Pastor and Stambaugh (2003) first propose and 

show that it can be a priced state variable, (see, e.g., Pastor and Stambaugh (2003), Acharya and 

Pederson (2005), Liu (2006), and Sadka (2006)). As ∆𝑇𝑇, designed to capture flight to liquidity, is 

distinct from other measures of market-wide liquidity risk, showing ∆𝑇𝑇 a priced factor would 
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provide strong support for flight to liquidity to be an important liquidity risk not captured by 

existing liquidity risk measures. We start by testing if ∆𝑇𝑇 is a priced liquidity factor based on a 

portfolio test that is similar to Pastor and Stambaugh (2003). Then, similar to Core, Guay and Verdi 

(2008) and Hirshleifer and Jiang (2010), we run a Two Stage Cross-Sectional Regression (2SCSR) 

of individual stock returns. This regression allows us to control simultaneously for existing liquidity 

risk measures as well as for other firm characteristics and thus can provide direct evidence to 

support that 𝑇𝑇’s pricing impact goes beyond those of existing liquidity risk measures. Finally, to 

verify that TC captures the ex-ante flight to liquidity risk, we examine weather stocks with higher 

ex-ante liquidity risk associated TC suffer greater price impact during the periods of extremely 

negative liquidity shocks (i.e., months of flight). 

 

A. Portfolio Tests 

Following Pastor and Stambaugh (2003), we measure 𝑇𝑇-based liquidity risk as the loading 

on ∆𝑇𝑇 based on a liquidity-augmented Fama−French three-factor model, using prior 60-month 

data: 

𝑅𝑖,𝑡 = 𝛽0 + 𝛽𝑖,𝑀𝑀𝑀𝑀𝑀𝑀𝑡 + 𝛽𝑖,𝑆𝑆𝑆𝑆𝑆𝑆𝑡 + 𝛽𝑖,𝐻𝐻𝐻𝐻𝐻𝐻𝑡 + 𝛽𝑖,∆𝑇𝑇∆𝑇𝑇𝑡 + 𝜀𝑖,𝑡        (8) 

where 𝑅𝑖,𝑡 is stock i’s excess return relative to the 30-day T-bill rate in month t. As discussed in 

Section II, we define ∆𝑇𝑇 as the negative sign of 𝑇𝑇 innovations estimated from a first-order 

VAR model. Since a higher innovation in 𝑇𝑇 corresponds to market illiquidity, the negative sign 

makes ∆𝑇𝑇 positively correlated with market liquidity. Based on this convention, stocks with 

higher 𝑇𝑇-beta (𝛽∆𝑇𝑇) are those stocks earning lower returns and not a good hedge when market is 

illiquid. Thus, stocks with higher 𝛽∆𝑇𝑇 are considered more risky and should earn higher liquidity 

risk premium.  

We test the hypothesis by investigating the expected returns of portfolios sorted by 𝛽∆𝑇𝑇. Our 

test sample contains NYSE/AMEX stocks with share codes of 10 or 11 and with year-end prices 

less than $5. Since the first observation for ∆𝑇𝑇 is for January 1972 and we require data on five 
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years of monthly returns continuing through the current year-end to estimate 𝛽∆𝑇𝑇 , the first 

observation on 𝛽∆𝑇𝑇 is for December 1976. At the end of each year during 1976−2012, we sort 

sample stocks into 𝛽∆𝑇𝑇  quintiles using their NYSE breakpoints and trace subsequent 

equally-weighted and value-weighted monthly returns over a 12-month holding period for each 

quintile. The portfolio returns for the 12 post-ranking months are linked across years (1977−2013) 

to construct one series of post-ranking returns for each portfolio. 

 

【Table V Insert Here】 

 

Panel A of Table V reports the average equally-weighted excess monthly returns (EXRET) and 

risk-adjusted returns (alphas) estimated from the regressions of excess portfolio post-ranking 

returns by the CAPM (CAPM 𝛼), the three-factor model (FF-3 𝛼), and the four-factor model 

(FF-4 𝛼). Consistent with Pastor and Stambaugh (2003), among others, we find a significant 

liquidity risk premium: stocks with higher (lower) liquidity risk have higher (lower) expected 

returns. The first row in Panel A shows that the expected returns monotonically decrease from the 

quintile with the highest 𝑇𝑇-based liquidity risk (High) to the quintile with the lowest 𝑇𝑇-based 

liquidity risk (Low). The average equally-weighted excess monthly return for quintile High is 

1.006% per month while that for quintile Low is lower at 0.764% per month. The return spread 

between the High and Low quintiles (H−L) is 0.241% per month, statistically significant with a 

t-statistic of 2.89.14 The annualized return spread is about 3%. The high-minus-low 𝛽∆𝑇𝑇 (H−L) 

return spreads after risk-adjusting by the CAPM, the Fama−French three-factor model, and the 

four-factor model are 0.285%, 0.284%, and 0.222% per month, respectively, and they are all 

statistically significant.  

The last row in Panel A of Table V shows the post-ranking 𝑇𝑇-betas (Ex post 𝛽∆𝑇𝑇), which 

are estimated by regressing the equally-weighted excess monthly returns on the Fama−French three 

factors and ∆𝑇𝑇. We observe that ex-post 𝛽∆𝑇𝑇  generally decreases from 1.339 for the high 

                                                      
14 To control for the potential January/turn of the year effect, we also calculate the return spreads without Januarys. The 
results are qualitatively similar. 



22 
 

pre-ranking 𝛽∆𝑇𝑇 quintile (High) to −0.787 for the low pre-ranking 𝛽∆𝑇𝑇 quintile (Low). The H−L 

portfolio has a significant ex-post 𝛽∆𝑇𝑇  of 2.126 (with a t-statistic = 3.88). This pattern of 

post-ranking 𝛽∆𝑇𝑇 across pre-ranking quintiles suggests that the pre-ranking estimated beta is 

persistent at least for a one-year holding horizon and provides a good estimation for the liquidity 

risk of stocks. 

To make sure our results are not driven by the fact that high beta stocks tend to be smaller and 

high returns, we also present value-weighted results in Panel B of Table V. The average 

value-weighted monthly return still decreases monotonically from the High to Low 𝛽∆𝑇𝑇 quintiles. 

Compared to the equally-weighted results in Panel A, the average value-weighted return spread 

between High to Low 𝛽∆𝑇𝑇 quintiles is higher and retains significantly positive. The average 

spread in value-weighted excess monthly returns is 0.384% per month, or 4.6% annually (with a 

t-statistic = 2.72) and the risk-adjusted alphas by the CAPM and the Fama−French three- and 

four-factor models are 0.476%, 0.475%, and 0.366% per month, respectively (all statistically 

significant). These return premiums from 𝑇𝑇-based liquidity risk are comparable to Pastor and 

Stambaugh (2003) and Sadka (2006) in economic magnitude. For example, the CAPM-adjusted 

alpha to high-minus-low 𝛽∆𝑇𝑇 quintile is 0.476% per month (or 5.71% annually). Pastor and 

Stambaugh (2003) show that the value-weighted liquidity risk premium (the CAPM-adjusted alpha) 

sorted on their historical liquidity beta is about 4.66% annually during January 1968 to December 

1999. Sadka (2006) also concludes that the variable component of liquidity risk is priced with a 

premium of about 5–6% annually. In sum, both results from equally- and value-weighted portfolios 

consistently support that our 𝑇𝑇-based liquidity risk is priced in the cross-section of stock returns.  

In Panel C of Table V, we shows the characteristics of the portfolios sorted by 𝛽∆𝑇𝑇. Generally 

speaking, we observe that our 𝑇𝑇 -based liquidity risks capture somewhat different liquidity 

characteristics from liquidity levels of individual stocks. For example, Amihud’s (2002) illiquidity 

measure (𝑅𝑅) is U-shaped across the 𝛽∆𝑇𝑇 quintiles. Not surprisingly, the highest liquidity risk 

quintile (High) generally comprises more of illiquidity stocks (average 𝑅𝑅 of 0.259). But we also 
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observe that the lowest liquidity risk quintile (Low) also comprises more of illiquidity stocks 

(average 𝑅𝑅 of 0.408). Instead, we observe that the average 𝑅𝑅s are lower among the middle 

liquidity-risk quintiles (Q3 and Q4). This is consistent with Lou and Sadka (2011) that liquidity 

level and liquidity risk (liquidity betas) capture different dimensions of liquidity characteristics in 

the cross-section of stocks. Similarly, characteristics that are associated with liquidity levels (e.g., 

market capitalization (𝑀𝑀), share turnover (𝑇𝑇𝑇𝑇) and idiosyncratic risk (𝐼𝐼)) are also U-shaped 

or reverse U-shaped across the 𝛽∆𝑇𝑇 quintiles. In sharp contrast with Liu (2006), who shows that 

the book-to-market ratio (𝐵𝐵) increases monotonically from the low liquidity risk portfolio to the 

high liquidity risk portfolio, the liquidity risk estimated by our liquidity factor ∆𝑇𝑇 exhibits no 

obvious association with the book-to-market ratio (𝐵𝐵). In Panel D of Table V, we further 

investigate the correlations between 𝛽∆𝑇𝑇 and liquidity betas estimated by other liquidity factors. 

In general, stocks with high liquidity risk exposure to ∆𝑇𝑇 also have higher liquidity risk exposure 

to other liquidity factors.15 To examine if the pricing power of ∆𝑇𝑇 goes beyond those of existing 

liquidity risk measures and other firm characteristics, we conduct a regression-based test to control 

for these variables in the next subsection.  

 

B. Two Stage Cross-Sectional Regression Test for Individual Stocks 

So far, we have shown that stocks with higher 𝛽∆𝑇𝑇 (i.e., higher 𝑇𝑇-based liquidity risk) on 

average earn higher subsequent returns. This subsection further tests whether 𝛽∆𝑇𝑇 predicts the 

cross-sectional returns of individual stocks based on Fama and MacBeth (1973) style 

cross-sectional regressions, which control for various firm characteristics and enable us to compare 

the return predicting power of all liquidity betas simultaneously. Ang, Liu, and Schwarz (2010) 

suggest that using individual stocks increases the cross-sectional dispersion in factor loadings and 

the precision for the estimation of the risk premium. We hence utilize individual stock returns to 

generate stock-level 𝑇𝑇-betas when conducting a two-step Fama and MacBeth (1973) procedure. 

                                                      
15 In Panel D of Table V, the negative correlations between 𝛽∆𝑇𝑇 and 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢, 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−, or 𝛽∆𝐿𝐿𝐿 is because ∆𝑇𝑇 
measures market liquidity while ∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, and ∆𝐿𝐿𝐿 measure market illiquidity. 



24 
 

In particular, we run a stock-level Fama−MacBeth (1973) regression with excess monthly 

returns of individual stocks as the dependent variable and 𝛽∆𝑇𝑇 as the key independent variable. At 

the end of each year, 𝛽∆𝑇𝑇  is estimated based on a time-series rolling regression (annually 

rebalanced) that includes the Fama−French three factors and ∆𝑇𝑇, using prior 60-month data (five 

years of monthly returns continuing through the current year-end). We then keep the values of 𝛽∆𝑇𝑇 

constant for the following 12 months to forecast stock returns in the regressions. 

𝛽∆𝐴𝐴𝐴𝐴𝐴, 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢, 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢− , 𝛽∆𝐿𝐿𝐿, 𝛽∆𝑃𝑃, and 𝛽∆𝑆𝑆𝑆𝑆𝑆 are those liquidity betas used to 

compare with 𝛽∆𝑇𝑇.16 When making the pairwise comparison of 𝛽∆𝑇𝑇 and 𝛽∆𝑃𝑃 in a model, for 

instance, we estimate them simultaneously based on a time-series rolling regression (annually 

rebalanced) that includes the Fama−French three factors augmented with ∆𝑇𝑇 and ∆𝑃𝑃. Other 

liquidity betas are estimated using the similar procedure in various model specifications. For 

comparison, we standardize each liquidity beta at monthly frequency and thus allow it to have an 

equal mean of zero and an equal standard deviation of one. 

We also incorporate a set of control variables in the regression. 𝛽𝑀𝑀𝑀, 𝛽 𝑆𝑆𝑆, and 𝛽𝐻𝐻𝐻 are 

individual stock i’s Fama−French three-factor loadings, estimated from a time-series model with the 

liquidity-augmented Fama-French three-factor models using prior 60-month data (annually 

rebalanced) at the end of prior year. We keep the values of 𝛽𝑀𝑀𝑀, 𝛽𝑆𝑆𝑆, and 𝛽𝐻𝐻𝐻 constant for 

the following 12 months to be control variables in the regressions. 𝑅𝑅𝑅(−12,−7) is the cumulative 

return from t−7 to t−12 month. 𝑅𝑅𝑅𝑡−1 is the stock return on month t−1. 𝑅𝑅𝑅(−36,−13) is the 

cumulative return from t−13 to t−36 month. Following Brennan et al. (2012), we lag other control 

variables of firm characteristics by two months to avoid the bid-ask bounce effect (Jegadeesh 

(1990); and Brennan et al. (1998)). ln𝑀𝑀𝑡−2 is natural log of market capitalization on month t−2. 

𝐵𝐵𝑡−2 is the book-to-market ratio on month t−2. ln𝑇𝑇𝑇𝑇𝑡−2 is natural log of share turnover on 

month t−2. 𝐼𝐼𝑡−2 is the idiosyncratic volatility on month t−2. ln𝑅𝑅𝑡−2−  is natural log of 𝑅𝑅− on 

month t−2. ln𝑅𝑅𝑡−2 is natural log of 𝑅𝑅 on month t−2. ln𝐿𝐿12𝑡−2 is natural log of 𝐿𝐿12 on 
                                                      
16 As the sample period of ∆𝑆𝑆𝑆𝑆𝑆 runs from April 1983 to December 2012, 𝛽∆𝑆𝑆𝑆𝑆𝑆  is estimated beginning on 
December 1988. 
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month t−2. To address the error in variable problem, we report the associated t-statistics based on 

standard errors that are Shanken (1992) corrected. Table VI reports the regression results. 

 

【Table VI Insert Here】 

 

The overall results of Table VI show that the coefficients on 𝛽∆𝑇𝑇 are positive and significant 

for all model specifications with and without comparing other liquidity betas. At first, Models I and 

II focus on the explanatory power of 𝛽∆𝑇𝑇 for expected returns without considering other liquidity 

betas. Model I includes 𝛽𝑀𝑀𝑀, 𝛽 𝑆𝑆𝑆, and 𝛽𝐻𝐻𝐻 as controls for other factor risks and shows that 

the coefficient on 𝛽∆𝑇𝑇 is 0.107 (with a t-statistic = 2.74), which represents a price of risk for 

𝑇𝑇-based liquidity risk. For individual stocks, the 1st-percentile standardized 𝛽∆𝑇𝑇 is −2.85, while 

the 99th-percentile standardized 𝛽∆𝑇𝑇 is 2.37. This suggests that as 𝛽∆𝑇𝑇 moves from the 1st to 

the 99th percentile, the expected return will increase by about 0.56% per month (= (2.37− 

(−2.85))×0.107%). After controlling for a set of standard predictors of returns, Model II shows that 

the coefficient on 𝛽∆𝑇𝑇 is 0.103, which remains statistically significant (t-statistic = 2.83).  

Further, we conduct a set of horse race between 𝛽∆𝑇𝑇 and other liquidity betas and show that 

𝛽∆𝑇𝑇 have an ability to predict the cross-section of returns incremental to well-known liquidity risk 

betas. In all the pairwise comparisons from Models III to VIII, 𝛽∆𝑇𝑇 consistently dominates other 

liquidity betas in determining expected returns in magnitude and in statistical significance. From 

these models, we find that coefficients on 𝛽∆𝑇𝑇 remain statistically significant while others are 

insignificant or weakly significant. For example, Model V shows that the coefficient on 𝛽∆𝑇𝑇 is 

0.108 with a t-statistic of 2.68, after controlling for 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−  and other firm characteristics. In 

addition, based on a full specification including all other liquidity betas and other control variables 

in Model XI that covers the period from January 1989 to December 2012, we observe that 𝛽∆𝑇𝑇 is 

still significantly priced at 0.109 with a t-statistic of 2.00 while others remain insignificant. Finally, 

as shown in Model XII, we exclude Januarys from our sample periods and find that the ability of 
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𝛽∆𝑇𝑇 in predicting future returns is still significant (0.119 with a t-statistic of 2.14) and slightly 

higher than that in Model XI with Januarys included. 

Overall, the evidence in Table VI confirms that stocks with higher 𝑇𝑇-betas on average earn 

higher subsequent return over a 12-month holding period, even after controlling for well-known 

return predictors and other existing liquidity betas. Compared to existing liquidity risk factors, 

𝑇𝑇-beta is the superior one in terms of economic significance and statistical significance in 

predicting the cross-section of stock returns. This result empirically supports the notion that 𝑇𝑇 is 

a priced state variable whose pricing impact goes beyond those of existing liquidity risk measures. 

It also implies that the flight to liquidity risk, fear of becoming extremely illiquid when a large 

shock to market liquidity occurs, is an important aspect of liquidity risk that compensates liquidity 

risk premium beyond those that is captured by existing liquidity risk measures. 

C. Do Stocks with High TC-beta Stock Ex-ante Suffer More in the Months of Flight to Liquidity? 

If the higher expected return earned by TC-beta stocks, as shown in the section above,   

indeed reflects the risk premium of flight to liquidity, high 𝑇𝑇-beta stocks, as compared to low 

𝑇𝑇-beta stocks, should experience more negative price impact during the months in which flight to 

liquidity presumes to have occurred according to our 𝑇𝑇 measure (see Figure 1). 

Lou and Sadka (2011), who use Pastor and Stambaugh’s (2003) factor and Sadka’s (2006) 

factor, find that the return spread between stocks with high and low liquidity risk reversed during 

the 2008–2009 financial crisis. That is, high-liquidity-risk stocks declined more than 

low-liquidity-risk stocks during the crisis period. We extend Lou and Sadka (2011) by investigating 

the average stock returns during the months when flight to liquidity occurred (abbreviate as flight 

months, identified as the bottom 5% of ∆𝑇𝑇 in our sample period) as explained by various 

liquidity betas (i.e., 𝛽∆𝑇𝑇, 𝛽∆𝐴𝐴𝐴𝐴𝐴, 𝛽∆𝐴𝑚𝑚ℎ𝑢𝑢, 𝛽∆𝐴𝑚𝑚ℎ𝑢𝑢− , 𝛽∆𝐿𝐿𝐿, 𝛽∆𝑃𝑃, or 𝛽∆𝑆𝑆𝑆𝑆𝑆) and control 

variables. Particularly, we run the following Fama-Macbeth (1973) regression during flight months: 

               𝑅𝑖,𝑡 = 𝑎0 + 𝑎1𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐻 + 𝑎2𝛽∆𝑇𝑇,𝑖,𝑡−1

𝐿 + 𝑎3𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1
𝐻 + 𝑎4𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1

𝐿  

                           +𝑎5𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1
𝐻 + 𝑎6𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1

𝐿  + 𝑎7𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1
𝐻 + 𝑎8𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1

𝐿  
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                           +𝑎9𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1
𝐻  + 𝑎10𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1

𝐿 + 𝑎11𝛽∆𝑃𝑃,𝑖,𝑡−1
𝐻 + 𝑎12𝛽∆𝑃𝑃,𝑖,𝑡−1

𝐿 + 𝑎13𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐻  

+𝑎14𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐿 + 𝑎15𝐗𝑖 + 𝜀𝑖,𝑡                                         (9) 

where 𝑅𝑖,𝑡 is stock i’s excess return relative to the 30-day T-bill rate in flight month t. 𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐻  

(𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐿 ) is high (low) TC-beta dummy variable that equals one if stock i’s TC-beta in the month 

prior to flight month is in the top (bottom) quintile based on their NYSE breakpoints, and zero 

otherwise. The dummy variables 𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1
𝐻 , 𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1

𝐿 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1
𝐻 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1

𝐿 , 

𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1
𝐻 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1

𝐿 , 𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1
𝐻 , 𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1

𝐿 , 𝛽∆𝑃𝑃,𝑖,𝑡−1
𝐻 , 𝛽∆𝑃𝑃,𝑖,𝑡−1

𝐿 , 𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐻 , 

𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐿  are defined similarly. To be comparable, various liquidity betas for stock i in month 

t-1 are estimated simultaneously using a model that includes the Fama−French three factors 

augmented with all liquidity factors using prior 60-month data (five years of monthly returns 

continuing through month t-1). 𝐗𝑖  is a set of control variables that contains high and low 

Fama−French three-factor loadings dummy variables for 𝛽𝑀𝑀𝑀,𝑖,𝑡−1, 𝛽𝑆𝑆𝑆,𝑖,𝑡−1 , 𝛽𝐻𝐻𝐻,𝑖,𝑡−1  and 

those described in Table VI. For comparison, all independent variables are demeaned. For brevity, 

we present only the intercepts and coefficients on dummy variables of various liquidity betas.  

 

【Table VII Insert Here】 
 

    Table VII reports the results. Our baseline result (Model I) covers the period from January 

1977 to December 2013 and excludes 𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1  as explanatory variable (due to data 

availability). It shows that controlling other liquidity betas and control variables to be zero (as their 

mean values), the average return during the flight month for stocks in the top TC-beta quintile is 

-4.29% (the sum of intercept and coefficient on 𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐻 ) and that for stocks in the bottom TC-beta 

quintile is -3.53% (the sum of intercept and coefficient on 𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐿 ). This result confirms Lou and 

Sadka’s (2011) finding that, during the recent financial crisis period, high-liquidity-risk stocks 

declined significantly more than low-liquidity-risk stocks. More importantly, when comparing the 

return spread explained by other liquidity betas, we find that the explanatory power of 𝛽∆𝑇𝑇 

dominates the others in magnitude and statistical significance. In the second half of the table, we 
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find that the return spread between top and bottom 𝑇𝑇-beta quintile (i.e., coefficient difference for 

𝛽∆𝑇𝑇𝐻 − 𝛽∆𝑇𝑇𝐿 ) is −0.76 (with a t-statistic = −2.28), which is larger in magnitude and more significant 

than the others. In most cases, the coefficient differences for other liquidity betas are statistically 

insignificant. Finally, when including also the dummy variables on Sadka’s liquidity beta 

(𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐻  and 𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1

𝐿 ) as explanatory variables and covering the shorter period from 

January 1989 to December 2012, as shown in Model II, we still find that the explanatory power of 

𝛽∆𝑇𝑇 for the return spread during periods of flight to liquidity dominates the other liquidity betas. 

The overall result indicates that liquidity risk with respect to 𝑇𝑇 factor is the most effective in 

capturing the cross-sectional return impact of liquidity risk when flight to liquidity occurs.  

 

D. Robustness Checks 

In this subsection, we provide further evidence to confirm that𝑇𝑇’s pricing effect is robust to 

two sub-periods and to various estimations of 𝑇𝑇-based liquidity factor. Table VIII reports the 

robustness tests that repeat 2SCSR of Models X and Model XII in Table VI. To save space, we 

report only the regression coefficients on 𝛽∆𝑇𝑇 and other liquidity betas for comparison. 

 

【Table VIII Insert Here】 

 

D.1 Sub-periods 

French (2008) documents that the aggregate trading volume (measured by market turnover) of 

U.S. stock market has increased dramatically since 1990s. The pricing effect of our 𝑇𝑇-based 

liquidity risk may also experience structural change after 1990 because the measure uses 

information that is related to market trading volume. To test the robustness of the pricing effect of 

∆𝑇𝑇 to various periods, we run the Model X of Table VI for two sub-periods: January 1977 to 

December 1995 and January 1996 to December 2013. Models I and II in Table VIII report the 

regression results for the two sub-periods. We find that the coefficients on 𝛽∆𝑇𝑇 are roughly equal 

and both are significant, indicating that the pricing power of 𝛽∆𝑇𝑇  is robust across the two 
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sub-periods. For comparison, we find that among other liquidity betas, only the coefficient on 

𝛽∆𝐿𝐿𝐿 for the first sub-period (Model I) is marginally significant but it becomes insignificant for the 

second sub-period (Model II). The results confirm the predictability of 𝑇𝑇-beta is not due to a 

specific sub-period. 

 

D.2 Alternative measures of innovations in TC 

One advantage of using information from trading volume concentration to capture the flight 

to liquidity risk is that it is easy to calculate and model free. Our 𝑇𝑇-based liquidity risk factor in 

the previous pricing tests use innovations constructed from the first-order VAR model that also 

controls for the Fama−French three factors. One may be curious if using a simple way to extract 

innovations from 𝑇𝑇 time series is also robust to pricing the cross section of stock returns. From 

Models III to VI of Table VIII, we use two alternative and easier ways to construct ∆𝑇𝑇 and 

replicate the 2SCSR tests in Table VI. In models III and IV, we generate simply the reverse 

residuals from estimating the AR (2) model with a time-trend indicator using data available up to 

month t to construct the liquidity factor, ∆𝑇𝑇𝑡𝐴𝐴2, and estimate its loadings, 𝛽∆𝑇𝑇𝐴𝐴2. As shown in 

Model III (not covering the beta on Sadka’s (2006) factor), liquidity beta estimated based on 

∆𝑇𝑇𝐴𝐴2 (𝛽∆𝑇𝑇𝐴𝐴2) remains a significant predictor for future returns of individual stocks. Also, for a 

test period from January 1989 to December 2012, Model IV (covering the beta on Sadka’s (2006) 

factor) shows that the significance of the coefficient on 𝛽∆𝑇𝑇𝐴𝐴2  becomes weaker while its 

t-statistic of 1.81 remains the largest in magnitude when comparing with other liquidity betas. 

Liquidity factor constructed as simple as the first-order difference also delivers the similar and 

robust results. In Models V and VI, we use ∆𝑇𝑇𝑡𝐹𝐹, defined as reverse monthly first differences in 

𝑇𝑇, to run the regressions and find that 𝛽∆𝑇𝑇𝐹𝐹 remains a significant and positive explanatory 

variable for future returns of individual stocks. 

 In sum, the robustness tests in Table VIII show that the pricing power of liquidity risk as an 

exposure to our 𝑇𝑇-based liquidity factor is close to those in Table VI. The overall result thus 

supports that the pricing power of 𝑇𝑇-based liquidity factor is not subject to specific periods or to 
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methods in constructing factors. 

 

 

V. Conclusion 

This paper develops a new market-wide liquidity risk factor from the time variation of trading 

volume concentration (TC) in the cross-section of stock market. In contrast to existing liquidity risk 

measures that capture the risk of aggregate liquidity, 𝑇𝑇 -based liquidity factor captures the 

market-wide liquidity risk generated from the liquidity shift manifested in the flight to liquidity.  

As predicted by Brunnermeier and Pedersen (2009) that market is subject to “flight to liquidity”  

when the funding liquidity is tight, we find that 𝑇𝑇-based liquidity factor is better than other 

liquidity factors in capturing the link between market liquidity and funding liquidity. We also show 

that 𝑇𝑇-based liquidity factor is better than other liquidity factors in detecting the effect of liquidity 

shocks on the cross-sectional returns across idiosyncratic volatility portfolios, a commonly-used 

proxy for quality of stocks. The overall results suggest that 𝑇𝑇-based liquidity factor captures flight 

to liquidity risk in the market and enables us to test if it is priced.  

We find that 𝑇𝑇-based liquidity risk is priced in the cross-section of stock returns. In portfolio 

tests, the average value-weighted stock return in the highest TC-beta quintile significantly 

outperforms that in the lowest TC-beta quintile by about 5% annually. The return premium remains 

significantly positive after risk-adjusting by the CAPM and the Fama−French (1993) three- and 

four-factor models. 

We also perform 2SCSR on individual stocks and run horse-race tests comparing the return 

predictive powers of the beta of different liquidity risk factors. We find the coefficients on TC-beta 

are positive and significant for all model specifications with and without comparing other liquidity 

betas. Moreover, TC-beta consistently dominates other liquidity betas in predicting returns both in 

magnitude and in statistical significance. Our results are robust to controlling for firm 

characteristics, to risk-adjusting by traditional factor loadings, to controlling for the pricing effects 

from existing liquidity measures, to various sub-periods, and to different method to generate 
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innovations in TC. Furthermore, we show that stocks with highest 𝑇𝑇-beta prior to the flight 

months exhibits the largest price decline during the flight period, but earn higher return in normal 

time, indicating that 𝑇𝑇 is good at capturing the flight to liquidity risk and its pricing impact  

goes beyond those captured by existing liquidity risk measures. 

One important implication of our empirical results is that distribution rather than level of 

aggregate trading volume may reveal more information about market dynamics. Pastor and 

Stambaugh (2003) suggest that measures of trading activity such as volume and turnover do not 

appear to capture time variation in market liquidity though it is useful in explaining cross-sectional 

differences in liquidity. While aggregate trading volume level does not appear to capture time 

variation in market liquidity, our evidence shows that trading volume distribution does.    
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Figure 1. Time Series of Trading Volume Concentration (TC) and TC-based Liquidity Factor 
This figure displays the time series of trading volume concentration (𝑇𝑇) and 𝑇𝑇-based liquidity factor (∆𝑇𝑇). 
 𝑇𝑇𝑡 = ln �𝑇𝑇𝑇𝑡

𝑇𝑇𝑇𝑡
�, where 𝑇𝑇𝑇𝑡  (𝑇𝑇𝑇𝑡) is the dollar volume density of quintile High (Low) in month t. To create 𝑇𝑇, 

we require the sample to contain NYSE/AMEX stocks with CRSP share codes of 10 or 11 over the period January 1967 
to December 2013. ∆𝑇𝑇 at each month t is generated by estimating the first-order VAR model using data available up 
to month t: 

�
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where 𝑀𝑀𝑀, 𝑆𝑆𝑆, and 𝐻𝐻𝐻 are the Fama−French three factors and t is the time trend indicator. 𝑒𝑡 represents a 
vector of innovations for each variable in the state vector. From 𝑒̂𝑡, we extract our 𝑇𝑇-based liquidity factor (∆𝑇𝑇) as 
the negative sign of innovations in 𝑇𝑇. The first observation for ∆𝑇𝑇 is January 1972 since we require the estimation 
of the VAR model to contain at least 60 months. 
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Table I 
Characteristics of Quintiles by Dollar Trading Volume 

This table summarizes descriptive statistics for dollar volume (𝐷𝐷𝐷𝐷) quintiles. The sample contains NYSE/AMEX 
stocks with share codes of 10 or 11 over the period from January 1967 to December 2013. Stocks are sorted into 
quintiles (denoted as High, Q4, Q3, Q2, and Low) based on the NYSE breakpoints of dollar volume at the end of each 
month. 𝑇𝑇 is the trading-volume density, measured as the total dollar volume in each dollar-volume quintile divided 
by aggregate dollar volume of all sample stocks for each month. 𝑆𝑆𝑆𝑆 is the monthly share volume. 𝑇𝑇𝑇𝑇 is the 
monthly share turnover. Monthly data on 𝐷𝐷𝐷𝐷, 𝑆𝑆𝑆𝑆, and 𝑇𝑇𝑇𝑇 are computed using the daily trading volume first 
and then are aggregated over a month. 𝑀𝑀 is the market capitalization at the end of each month. 𝑅𝑅 is the average of 
Amihud’s (2002) daily return-to-volume illiquidity measures within a month. 𝐼𝐼 is the standard deviation of residuals 
estimated by regressing individual stocks’ daily excess returns on the Fama−French three factors over a month. The 
values in each quintile are cross-sectionally equally-weighted month by month (except 𝑇𝑇) and then the time-series 
averages of those values are presented. Number of stocks for each month ranges from 1,511 to 2,598, with a time-series 
average of 2,109. 

 High Q4 Q3 Q2 Low 
DVOL ($m) 1498.19  274.05  97.68  33.96  3.98  
TD (%) 75.85  14.88  5.82  2.44  1.01  
SVOL (m) 43.01  10.92  4.89  2.46  0.68  
TURN (%) 12.91  11.83  9.79  7.42  3.51  
ME ($b) 12.76  2.15  0.87  0.41  0.09  
RV 0.01  0.03  0.10  0.29  12.91  
IV (%) 1.75  1.90  2.07  2.31  3.26  
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Table II 
Descriptive Statistics and Correlation Matrix 

This table reports descriptive statistics on ∆𝑇𝑇 and other risk factors and liquidity factors in Panel A, their 
Pearson correlations among each other in Panel B, and the time-series regression results of ∆𝑇𝑇 on other 
liquidity factors in Panel C. ∆𝑇𝑇  is our 𝑇𝑇 -based liquidity factor, defined as the negative sign of 
innovations in 𝑇𝑇, estimated from a first-order VAR model. The first observation for ∆𝑇𝑇 is January 1972 
and thus the sample period in this table runs from January 1972 to December 2013 (504 months). 𝑀𝑀𝑀, 
𝑆𝑆𝑆, 𝐻𝐻𝐻, and 𝑀𝑀𝑀 are the Fama−French four factors obtained from French’s website. ∆𝐴𝐷𝐷𝐷𝐷, 
∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃, and ∆𝑆𝑆𝑆𝑆𝑆 are those commonly used liquidity factors, defined in 
Section II. Data on ∆𝑆𝑆𝑆𝑆𝑆 runs from April 1983 to December 2012, which is obtained from Sadka’s 
website. Numbers in square brackets in Panel B (C) are p-values (Newy-West (1987) t-statistics with four 
lags). 

Panel A: Descriptive Statistics 
  Mean STD Median Min Max 
∆𝑇𝑇 0.00 0.16 0.00 -0.63 0.55 
𝑀𝑀𝑀 (%) 0.53 4.61 0.90 -23.24 16.10 
𝑆𝑆𝑆 (%) 0.20 3.13 0.07 -16.40 22.02 
𝐻𝐻𝐻 (%) 0.40 3.00 0.39 -12.61 13.88 
𝑀𝑀𝑀 (%) 0.71 4.47 0.78 -34.72 18.39 
∆𝐴𝐴𝐴𝐴𝐴 0.02 0.16 0.01 -0.43 0.67 
∆𝐴𝐴𝐴ℎ𝑢𝑢 0.02 0.29 0.00 -0.81 0.95 
∆𝐴𝐴𝐴ℎ𝑢𝑢− -0.01 0.16 0.00 -0.83 0.62 
∆𝐿𝐿𝐿 0.00 0.01 0.00 -0.04 0.04 
∆𝑃𝑃 0.00 0.06 0.01 -0.38 0.29 
∆𝑆𝑆𝑆𝑆𝑆 0.00 0.01 0.00 -0.04 0.02 

Panel B: Correlations Matrix 

 𝑀𝑀𝑀 𝑆𝑆𝑆 𝐻𝐻𝐻 𝑀𝑀𝑀 ∆𝐴𝐷𝐷𝐷𝐷 ∆𝐴𝐴𝐴ℎ𝑢𝑢 ∆𝐴𝐴𝐴ℎ𝑢𝑢− ∆𝐿𝐿𝐿 ∆𝑃𝑃 ∆𝑆𝑆𝑆𝑆𝑆 
∆𝑇𝑇 0.099  0.161  -0.047  0.053  -0.170  -0.156  -0.133  -0.541  0.146  0.196  

 [0.03] [0.00] [0.29] [0.24] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
∆𝐴𝐷𝐷𝐷𝐷      0.230  -0.171  -0.192  -0.071  -0.245  

      [0.00] [0.00] [0.00] [0.11] [0.00] 
∆𝐴𝐴𝐴ℎ𝑢𝑢       0.224  0.103  -0.090  -0.061  

       [0.00] [0.03] [0.04] [0.25] 
∆𝐴𝐴𝐴ℎ𝑢𝑢−        0.189  -0.272  -0.185  

        [0.00] [0.00] [0.00] 
∆𝐿𝐿𝐿         -0.067  0.005  

         [0.14] [0.93] 
∆𝑃𝑃          0.224  
                    [0.00] 

Panel C: ∆𝑻𝑻 Regressed on Other Liquidity Factors 
Intercept ∆𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴ℎ𝑢𝑢 ∆𝐴𝐴𝐴ℎ𝑢𝑢− ∆𝐿𝐿𝐿 ∆𝑃𝑃 ∆𝑆𝑆𝑆𝑆𝑆  N Adj. R2 

0.003  -0.284  -0.008  -0.050  -12.417  0.202    504 0.375 
[0.52] [-7.30] [-0.35]  [-1.20]  [-15.85]  [1.62]      0.014 -0.271 -0.006 -0.069 -14.683 0.135 2.660  357 0.298 
[1.91] [-5.26] [-0.24] [-1.37] [-8.32] [0.92] [2.41]       
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Table III 
Market Liquidity and Funding Liquidity 

This table reports the results by running a time-series regression of various liquidity factors on funding 
liquidity and other controls during January 1986 to December 2012: 

∆𝐿𝐿𝐿𝑡 = 𝛾0 + 𝛾1∆𝑇𝑇𝑇𝑡 + 𝛾2𝑅𝑚,𝑡 + 𝛾3𝑉𝑉𝑉𝑡 + 𝛾4∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡 + 𝛾5∆𝐷𝐷𝐷𝑡 + 𝛾6∆𝑇𝑇𝑇𝑇𝑡 + 𝛾7𝐽𝐽𝐽𝑡 + 𝜖𝑡 

where ∆𝐿𝐿𝐿𝑡 are various liquidity factors (i.e., ∆𝑇𝑇,  ∆𝐴𝐷𝐷𝐷𝐷, ∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃 and 
∆𝑆𝑆𝑆𝑆𝑆). ∆𝑇𝑇𝑇𝑡 is used to proxy for funding liquidity, defined the change in the TED spread (the 
difference between the 3 months LIBOR Eurodollar rate and the 3 months T-bill rate). 𝑅𝑚,𝑡is monthly return 
on the value-weighted CRSP NYSE/AMEX/NASDAQ index in month t. 𝑉𝑉𝑋𝑡 is the CBOE VIX option 
implied volatility index. ∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡 is change in the ratio of the number of stocks with a positive return to 
that with a negative return in month t. ∆𝐷𝐷𝐷𝑡 is change in default yield premium in month t, where 𝐷𝐷𝐷𝑡 
is defined as BAA-rated minus AAA-rated bond yield in month t. ∆𝑇𝑇𝑇𝑇𝑡 is change in term yield 
premium in month t, where 𝑇𝑇𝑇𝑇𝑡 is defined as 10-year minus 3-momth bond yield in month t. 𝐽𝐽𝐽𝑡 is a 
dummy variable that equals one in the month of January and zero otherwise. For comparison, we standardize 
each dependent variable and thus allow it to have an equal mean of zero and an equal standard deviation of 
one. Numbers in square brackets are Newey-West (1987) t-statistics with four lags for each of regression 
coefficients. 
  ∆𝑇𝑇 ∆𝐴𝐴𝐴𝐴𝐴 ∆𝐴𝐴𝐴ℎ𝑢𝑢 ∆𝐴𝐴𝐴ℎ𝑢𝑢− ∆𝐿𝐿𝐿 ∆𝑃𝑃 ∆𝑆𝑆𝑆𝑆𝑆 
Intercept 0.578  -0.937  -0.438  -0.188  -0.138  0.674  0.338  

 [3.69] [-7.71] [-3.59] [-1.37] [-0.96] [4.37] [2.16] 
∆𝑻𝑻𝑻𝒕 -0.331  0.310  0.093  0.083  0.058  -0.240  -0.285  

 [-2.09] [2.01] [0.65] [0.71] [0.26] [-1.35] [-1.65] 
𝑅𝑚,𝑡 0.006  0.023  -0.016  -0.087  -0.034  0.046  0.031  

 [0.41] [1.82] [-1.28] [-6.12] [-2.07] [2.25] [1.73] 
𝑉𝑉𝑉𝑡  -0.021  0.039  0.021  0.014  0.004  -0.033  -0.015  

 [-3.04] [7.70] [3.86] [2.19] [0.68] [-4.12] [-1.85] 
∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡  0.114  0.005  -0.062  -0.206  0.047  0.032  -0.086  

 [3.29] [0.14] [-1.65] [-4.80] [1.55] [0.89] [-2.27] 
∆𝐷𝐷𝐷𝑡 0.461  0.260  0.365  0.675  -0.689  0.941  -1.154  

 [0.90] [0.67] [0.95] [1.27] [-1.27] [1.30] [-1.08] 
∆𝑇𝑇𝑇𝑇𝑡 -0.036  -0.277  -0.126  0.109  0.115  0.403  -0.255  

 [-0.15] [-1.61] [-0.72] [0.67] [0.44] [1.61] [-1.04] 
𝐽𝐽𝐽𝑡 -1.600  1.064  0.157  -0.395  1.030  -0.093  -0.590  

 [-8.01] [7.05] [0.88] [-2.54] [3.34] [-0.56] [-2.35] 

        Adj. R2 0.259  0.178  0.046  0.455  0.087  0.146  0.111  
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Table IV 
The Effect of Liquidity Factors on Returns across Idiosyncratic Volatility Portfolios 

This table reports the results by regressing the excess returns across idiosyncratic volatility portfolios on 
various liquidity factors and other controls during January 1986 to December 2012:  
𝑅𝑅𝑅𝑝,𝑡 = 𝛾𝑝,0 + 𝛾𝑝,1∆𝑇𝐶𝑡 + 𝛾𝑝,2∆𝐴𝐴𝐴𝐴𝐴𝑡 + 𝛾𝑝,3∆𝐴𝐴𝐴ℎ𝑢𝑢𝑡 + 𝛾𝑝,4∆𝐴𝐴𝑖ℎ𝑢𝑢𝑡− + 𝛾𝑝,5∆𝐿𝐿𝐿𝑡 + 𝛾𝑝,6∆𝑃𝑃𝑡 + 𝛾𝑝,7∆𝑆𝑆𝑆𝑆𝑆𝑡 

                 +𝛾𝑝,8𝐗𝑡 + 𝜖𝑝,𝑡 

where 𝑅𝑅𝑅𝑝,𝑡, p=High, Q4, Q3, Q2, and Low, are the excess returns on idiosyncratic volatility portfolios in 
month t. NYSE/AMEX stocks (with CRSP share code 10 or 11) are sorted into quintiles based on their 
NYSE breakpoints of idiosyncratic volatility on month t-2. The equally-weighted monthly returns for each 
quintile on month t are calculated. Individual stock’s idiosyncratic volatility is measured as the standard 
deviation of residuals estimated by regressing individual stocks’ daily excess returns on the Fama−French 
three factors in a given month. For comparison, we standardize each liquidity factor (i.e., ∆𝑇𝐶, ∆𝐴𝐷𝐷𝐷𝐷, 
∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃 and ∆𝑆𝑆𝑆𝑆𝑆) and thus allow it to have an equal mean of zero and an 
equal standard deviation of one. 𝐗𝑡 is a set of control variables that include ∆𝑇𝑇𝑇𝑡, 𝑅𝑚,𝑡, 𝑉𝑉𝑉𝑡, ∆𝑈𝑈/
𝐷𝐷𝐷𝐷𝑡, ∆𝐷𝐷𝐷𝑡, ∆𝑇𝑇𝑇𝑇𝑡, and 𝐽𝐽𝐽𝑡 , which are defined in Table III. Numbers in square brackets are 
Newey-West (1987) t-statistics with four lags for each of regression coefficients. 

  High IV Q4 Q3 Q2 Low IV H-L 
Intercept -2.109  -0.621  0.236  0.134  0.383  -2.493  

 [-2.25]  [-1.06]  [0.52]  [0.46]  [1.51]  [-2.55]  
∆𝑻𝑪𝒕 1.171  0.757  0.522  0.360  0.116  1.055  

 [3.30]  [3.32]  [2.76]  [2.16]  [0.82]  [3.37]  
∆𝐴𝐴𝐴𝐴𝐴𝑡 0.231  -0.036  -0.058  -0.121  -0.117  0.349  

 [1.03]  [-0.26]  [-0.48]  [-1.13]  [-1.20]  [1.66]  
∆𝐴𝑚𝑚ℎ𝑢𝑢𝑡 -0.455  -0.046  -0.004  0.024  0.062  -0.517  

 [-1.93]  [-0.30]  [-0.03]  [0.19]  [0.59]  [-2.32]  
∆𝐴𝐴𝐴ℎ𝑢𝑢𝑡− 0.299  -0.073  -0.155  -0.273  -0.306  0.605  

 [0.77]  [-0.33]  [-0.81]  [-1.77]  [-2.21]  [1.66]  
∆𝐿𝐿𝐿𝑡 0.079  0.048  0.086  0.082  0.055  0.024  

 [0.23]  [0.24]  [0.51]  [0.62]  [0.50]  [0.08]  
∆𝑃𝑃𝑡 -0.067  0.093  0.038  0.094  0.089  -0.156  

 [-0.24]  [0.43]  [0.20]  [0.62]  [0.81]  [-0.66]  
∆𝑆𝑆𝑆𝑆𝑆𝑡 0.397  0.337  0.296  0.200  0.192  0.206  

 [1.53]  [2.01]  [2.02]  [1.58]  [1.95]  [0.82]  
∆𝑇𝑇𝑇𝑡 -0.867  -0.387  -0.130  -0.023  0.359  -1.226  

 [-1.13]  [-0.82]  [-0.35]  [-0.09]  [1.75]  [-1.73]  
𝑅𝑚,𝑡 1.319  1.080  0.931  0.810  0.589  0.730  

 [9.96]  [11.91]  [11.91]  [12.44]  [11.22]  [5.62]  
𝑉𝑉𝑉𝑡 0.046  0.013  -0.015  -0.003  -0.006  0.053  

 [1.04]  [0.48]  [-0.72]  [-0.21]  [-0.54]  [1.13]  
∆𝑈𝑈/𝐷𝐷𝐷𝐷𝑡 -0.222  0.033  0.151  0.103  0.066  -0.288  

 [-0.96]  [0.23]  [1.38]  [1.18]  [0.84]  [-1.26]  
∆𝐷𝐷𝐷𝑡 -8.026  -2.950  -2.299  -0.566  -0.527  -7.499  

 [-3.14]  [-1.68]  [-1.19]  [-0.41]  [-0.56]  [-3.41]  
∆𝑇𝑇𝑇𝑇𝑡 3.374  1.260  0.555  -0.308  -0.765  4.139  

 [3.30]  [2.11]  [1.09]  [-0.71]  [-2.31]  [4.12]  
𝐽𝐽𝐽𝑡 8.319  2.424  1.177  0.295  -0.390  8.709  

 [4.54]  [3.52]  [2.21]  [0.67]  [-1.04]  [4.90]  

       Adj. R2 0.670  0.789  0.812  0.813  0.773  0.442  
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Table V 
Post-Ranking Returns and Characteristics of 𝜷∆𝑻𝑻 Portfolios 

This table reports post-ranking returns and characteristics of quintiles sorted by 𝛽∆𝑇𝑇 , which is estimated using prior 60-month data 
(five years of monthly returns continuing through the current year-end) based on the following model: 

𝑅𝑖,𝑡 = 𝛽0 + 𝛽𝑖,𝑀𝑀𝑀𝑀𝑀𝑀𝑡 + 𝛽𝑖,𝑆𝑆𝑆𝑆𝑆𝑆𝑡 + 𝛽𝑖,𝐻𝐻𝐻𝐻𝐻𝐻𝑡 + 𝛽𝑖,∆𝑇𝑇∆𝑇𝑇𝑡 + 𝜀𝑖,𝑡 

where 𝑅𝑖,𝑡 is stock i’s excess return relative to the 30-day T-bill rate in month t. 𝑀𝑀𝑀, 𝑆𝑆𝑆, and 𝐻𝐻𝐻 are the Fama−French 
three factors. ∆𝑇𝑇𝑡 is 𝑇𝑇-based liquidity factor. The first observation for ∆𝑇𝑇 is for January 1972. At the end of each year during 
1976−2012, we sort sample stocks into 𝛽∆𝑇𝑇  quintiles using their NYSE breakpoints and trace subsequent monthly returns for a 
12-month holding period for each quintile. High (Low) denotes the quintile with high (low) pre-ranking 𝛽∆𝑇𝑇 . The portfolio returns 
for the 12 post-ranking months are linked across years (1977−2013) to construct one series of post-ranking returns for each quintile. 
Panel A (B) reports average equally-weighted (value-weighted) post-ranking returns. Portfolio H−L is a zero-cost hedge portfolio that 
longs on the high pre-ranking 𝛽∆𝑇𝑇  quintile and shorts on the low pre-ranking 𝛽∆𝑇𝑇  quintile. EXRET is the average excess monthly 
returns (excess of the 30-day T-bill rate). CAPM 𝛼, FF-3 𝛼, and FF-4 𝛼 are the alphas estimated from the regression of the full 
sample monthly portfolio returns on 𝑀𝑀𝑀, on the Fama−French three factors, and on the Fama−French four factors, respectively. Ex 
post 𝛽∆𝑇𝑇  is estimated by regressing quintiles’ post-ranking excess returns on the Fama−French three factors and ∆𝑇𝑇. Panel C 
reports portfolio characteristics in the portfolio formation month at each year end between 1976 and 2012. 𝑀𝑀  is market 
capitalization on formation month. 𝑅𝑅 is Amihud (2002) return-to-volume illiquidity measure on formation month. 𝐵𝐵 is the 
book-to-market ratio, which is measured using only sample of non-negative 𝐵𝐵. 𝑅𝑅𝑅(−12,−7) is cumulative return from t−7 to t−12 
month prior to formation month. 𝑇𝑇𝑇𝑇 is monthly share turnover on formation month. 𝐼𝐼 is the standard deviation of return 
residuals estimated by regressing individual stocks’ daily excess returns on the Fama−French three factors over the formation month. 
Panel D reports the correlations between 𝛽∆𝑇𝑇  and other liquidity betas, 𝛽∆𝐴𝐴𝐴𝐴𝐴, 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢, 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−, 𝛽∆𝐿𝐿𝐿, 𝛽∆𝑃𝑃, or 𝛽∆𝑆𝑆𝑆𝑆𝑆, 
estimated using prior 60-month data based on the model that includes the Fama−French three factors augmented either with 
∆𝐴𝐴𝐴𝐴𝐴, ∆𝐴𝐴𝐴ℎ𝑢𝑢, ∆𝐴𝐴𝐴ℎ𝑢𝑢−, ∆𝐿𝐿𝐿, ∆𝑃𝑃, or ∆𝑆𝑆𝑆𝑆𝑆. Data on 𝛽∆𝑆𝑆𝑆𝑆𝑆 covering the period at the end of each year during 
1988−2011. The sample contains NYSE/AMEX stocks with CRSP share codes of 10 or 11 and with the year-end prices less than $5. 
Numbers in square brackets are t-statistics. 

Panel A: Equally-Weighted Portfolios 
 High Q4 Q3 Q2 Low H-L 

EXRET (%) 1.006 0.941 0.870 0.798 0.764 0.241 
 [3.98] [4.17] [4.01] [3.58] [2.87] [2.89] 
CAPM 𝛼 (%) 0.372 0.368 0.319 0.232 0.087 0.285 
 [3.19] [3.72] [3.36] [2.38] [0.75] [3.43] 
FF-3 𝛼 (%) 0.081 0.118 0.063 -0.043 -0.204 0.284 
 [0.95] [1.57] [0.93] [-0.64] [-2.63] [3.42] 
FF-4𝛼 (%) 0.129 0.173 0.101 0.047 -0.093 0.222 
 [1.50] [2.29] [1.47] [0.73] [-1.25] [2.66] 
       Ex post 𝛽∆𝑇𝑇  1.339 1.123 1.330 0.721 -0.787 2.126 
 [2.37] [2.24] [2.95] [1.62] [-1.52] [3.88] 

Panel B: Value-Weighted Portfolios 
 High Q4 Q3 Q2 Low H-L 

EXRET (%) 0.868 0.758 0.687 0.612 0.484 0.384 
 [3.79] [3.57] [3.46] [2.97] [1.83] [2.72] 
CAPM 𝛼 (%) 0.275 0.208 0.176 0.082 -0.201 0.476 
 [3.04] [2.48] [2.15] [0.95] [-1.94] [3.43] 
FF-3 𝛼 (%) 0.164 0.126 0.087 -0.007 -0.311 0.475 
 [1.93] [1.72] [1.29] [-0.10] [-3.09] [3.36] 
FF-4𝛼 (%) 0.150 0.156 0.097 0.050 -0.216 0.366 
 [1.73] [2.09] [1.42] [0.74] [-2.16] [2.58] 
       Ex post 𝛽∆𝑇𝑇  1.553 0.886 0.992 0.798 -0.777 2.330 

 [2.74] [1.81] [2.21] [1.75] [-1.16] [2.48] 
Panel C: Portfolio Characteristics 

 High Q4 Q3 Q2 Low H-L 
ME ($b) 3.007  5.278  6.151  5.424  3.825  -0.818  
RV 0.259  0.207  0.219  0.272  0.408  -0.149  
BM 0.729  0.686  0.708  0.725  0.779  -0.050  
RET(-12, -7) (%) 15.828  12.691  12.058  12.768  17.217  -1.390  
TURN (%) 9.701  8.035  8.039  8.575  10.719  -1.018  
IV (%) 1.985  1.653  1.611  1.704  2.069  -0.085  

Panel D: Correlations with Other Liquidity Betas 

 𝛽∆𝑇𝑇  𝛽∆𝐴𝐴𝐴𝐴𝐴 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢− 𝛽∆𝐿𝐿𝐿 𝛽∆𝑃𝑃 
𝛽∆𝐴𝐷𝐷𝐷𝐷 -0.170       𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢 -0.102  0.302      𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢− -0.171  0.098  0.185     𝛽∆𝐿𝐿𝐿 -0.347  -0.087  -0.014  0.035    𝛽∆𝑃𝑃 0.100  -0.175  -0.054  -0.158  0.030   𝛽∆𝑆𝑆𝑆𝑆𝑆 0.215  -0.287  -0.071  -0.283  -0.093  0.187 
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Table VI 
Two Stage Cross-Sectional Regression of Individual Stock Returns 

This table reports the firm-level Fama−MacBeth (1973) regression results with excess monthly returns of individual stocks as a dependent 
variable and 𝛽∆𝑇𝑇 as the key independent variable. At the end of each year during 1976−2012, 𝛽∆𝑇𝑇 is estimated based on a time-series 
rolling regression (annually rebalanced) that includes the Fama-French three factors and ∆𝑇𝑇, using prior 60-month data (five years of 
monthly returns continuing through the current year-end). We then keep those values of 𝛽∆𝑇𝑇 constant for the following 12 months in the 
regressions. 𝛽∆𝐴𝐴𝐴𝐴𝐴 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢− , 𝛽∆𝐿𝐿𝐿 , 𝛽∆𝑃𝑃 , and 𝛽∆𝑆𝑆𝑆𝑆𝑆  are those liquidity betas used to compare with 𝛽∆𝑇𝑇  (As the 
sample period of ∆𝑆𝑆𝑆𝑆𝑆 runs from April 1983 to December 2012 and 𝛽∆𝑆𝑆𝑆𝑆𝑆 is estimated beginning on December 1988, the analyses in 
model VIII, XI, and XII cover the period from January 1989 to December 2012). When we make a pairwise comparison of 𝛽∆𝑇𝑇 and 
𝛽∆𝐴𝐴𝐴𝐴𝐴 in model III, for example, we estimate them simultaneously based on a model that includes the Fama−French three factors plus 
∆𝑇𝑇 and ∆𝐴𝐴𝐴𝐴𝐴. Other liquidity betas are estimated using the similar procedure in various model specifications. For comparison, we 
standardize each liquidity beta at monthly frequency and thus allow it to have an equal mean of zero and an equal standard deviation of one. 
We also incorporate a set of control variables in the regression. 𝛽𝑀𝑀𝑀, 𝛽𝑆𝑆𝑆, and 𝛽𝐻𝐻𝐿 are individual stock i’s Fama−French three-factor 
loadings, estimated from a time-series model with the liquidity-augmented Fama−French three-factor models using prior 60-month data 
(annually rebalanced) at the end of the year. We keep the values of 𝛽𝑀𝑀𝑀, 𝛽𝑆𝑆𝑆, and 𝛽𝐻𝐻𝐻 constant for the following 12 months to be 
control variables in the regressions. ln𝑀𝑀𝑡−2 is natural log of market capitalization on month t−2. 𝐵𝐵𝑡−2 is the book-to-market ratio on 
month t−2. 𝑅𝑅𝑅(−12,−7)  is the cumulative return from t−7 to t−12 month. 𝑅𝑅𝑅𝑡−1  is stock return on month t−1. 𝑅𝑅𝑅(−36,−13)  is 
cumulative return from t−13 to t−36 month. ln𝑇𝑇𝑇𝑇𝑡−2 is natural log of share turnover on month t−2. 𝐼𝐼𝑡−2 is the standard deviation of 
return residuals estimated by regressing individual stocks’ daily excess returns on the Fama−French three factors over the month 
t−2. ln𝑅𝑅𝑡−2−  is natural log of 𝑅𝑅− on month t−2. ln𝑅𝑅𝑡−2 is natural log of 𝑅𝑅 on month t−2. ln𝐿𝐿12𝑡−2 is natural log of 𝐿𝐿12 on 
month t−2. Ex. January is the sample period excluding January. The sample contains NYSE/AMEX stocks with CRSP share codes of 10 or 
11 and with the year-end prices less than $5. The t-statistics adjusted for errors-in-variables by following Shanken (1992) are reported in 
square brackets. 

  I II III IV V VI VII VIII IX X XI XII 
Intercept 0.632 4.592 4.525 4.563 4.513 4.580 4.592 5.110 4.463 3.813 5.080 4.979 
 [3.82] [4.16] [3.91] [4.14] [3.74] [4.03] [4.25] [3.56] [3.69] [3.09] [3.55] [3.35] 
𝜷∆𝑻𝑻 0.107 0.103 0.102 0.103 0.108 0.115 0.098 0.096 0.124 0.154 0.109 0.119 

 [2.74] [2.83] [2.66] [2.90] [2.68] [2.65] [2.77] [2.07] [2.53] [3.08] [2.00] [2.14] 
𝛽∆𝐴𝐷𝐷𝐷𝐷   0.043      0.064 0.054 0.031 0.025 

   [0.94]      [1.24] [1.01] [0.53] [0.41] 
𝛽∆𝐴𝑚𝑚ℎ𝑢𝑢    -0.021     -0.022 -0.023 -0.034 -0.019 

    [-0.65]     [-0.58] [-0.57] [-0.76] [-0.41] 
𝛽∆𝐴𝑚𝑚ℎ𝑢𝑢−     -0.096    -0.098 -0.094 -0.106 -0.073 

     [-1.74]    [-1.71] [-1.55] [-1.61] [-1.08] 
𝛽∆𝐿𝐿𝐿      -0.064   -0.069 -0.093 -0.041 -0.048 

      [-1.48]   [-1.45] [-1.89] [-0.87] [-1.01] 
𝛽∆𝑃𝑃       0.059  0.054 0.037 0.064 0.033 

       [1.35]  [1.10] [0.75] [1.11] [0.59] 
𝛽∆𝑆𝑆𝑆𝑆𝑆        -0.042   -0.052 -0.056 
        [-0.86]   [-1.06] [-1.10] 
𝛽∆𝑀𝑀𝑀 0.125 0.245 0.238 0.244 0.243 0.250 0.235 0.346 0.231 0.143 0.321 0.194 

 [0.71] [1.75] [1.61] [1.76] [1.59] [1.74] [1.72] [1.94] [1.49] [0.92] [1.80] [1.11] 
𝛽∆𝑆𝑆𝑆 0.087 0.049 0.049 0.047 0.051 0.054 0.052 -0.009 0.053 0.018 -0.002 -0.055 

 [0.86] [0.64] [0.61] [0.62] [0.62] [0.70] [0.70] [-0.09] [0.63] [0.20] [-0.03] [-0.54] 
𝛽∆𝐻𝐻𝐻 0.157 0.068 0.067 0.068 0.065 0.076 0.075 0.021 0.070 0.126 0.034 0.114 
 [1.48] [0.71] [0.66] [0.71] [0.63] [0.77] [0.80] [0.16] [0.67] [1.21] [0.26] [0.90] 
ln𝑀𝑀𝑡−2  -0.393 -0.380 -0.386 -0.383 -0.395 -0.393 -0.524 -0.372 -0.308 -0.504 -0.503 

  [-2.75] [-2.54] [-2.70] [-2.46] [-2.68] [-2.80] [-2.75] [-2.37] [-1.92] [-2.64] [-2.56] 
𝐵𝐵𝑡−2  0.203 0.189 0.200 0.210 0.201 0.196 0.137 0.183 0.119 0.097 0.057 
  [2.16] [1.92] [2.13] [2.04] [2.08] [2.10] [1.07] [1.76] [1.13] [0.76] [0.44] 
𝑅𝑅𝑅(−12,−7)  0.670 0.662 0.667 0.651 0.653 0.666 0.482 0.621 0.763 0.402 0.528 

  [3.25] [3.07] [3.25] [2.89] [3.06] [3.30] [1.83] [2.70] [3.18] [1.52] [1.90] 
𝑅𝑅𝑅𝑡−1  -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.023 -0.026 -0.021 -0.023 -0.016 

  [-5.54] [-5.30] [-5.58] [-5.12] [-5.40] [-5.69] [-3.65] [-5.11] [-4.11] [-3.74] [-2.70] 
𝑅𝑅𝑅(−36,−13)  -0.013 -0.019 -0.018 -0.010 -0.014 -0.017 -0.039 -0.036 0.014 -0.054 -0.009 
  [-0.21] [-0.29] [-0.29] [-0.14] [-0.22] [-0.29] [-0.47] [-0.51] [0.19] [-0.64] [-0.10] 
ln𝑇𝑇𝑇𝑇𝑡−2  0.160 0.161 0.166 0.164 0.151 0.160 0.091 0.158 0.136 0.099 0.054 

  [1.42] [1.37] [1.48] [1.34] [1.32] [1.45] [0.58] [1.28] [1.08] [0.65] [0.35] 
𝐼𝐼𝑡−2  -0.142 -0.140 -0.144 -0.143 -0.143 -0.142 -0.027 -0.140 -0.144 -0.032 -0.031 
  [-3.13] [-2.93] [-3.18] [-2.88] [-3.05] [-3.18] [-0.47] [-2.77] [-2.73] [-0.57] [-0.53] 
ln𝑅𝑅𝑡−2−   0.347 0.330 0.344 0.339 0.342 0.347 0.408 0.323 0.280 0.387 0.371 
  [3.11] [2.88] [3.10] [2.80] [3.00] [3.22] [2.67] [2.70] [2.18] [2.58] [2.29] 
ln𝑅𝑅𝑡−2  -0.270 -0.255 -0.261 -0.259 -0.272 -0.271 -0.426 -0.248 -0.202 -0.402 -0.402 
  [-1.55] [-1.35] [-1.47] [-1.30] [-1.50] [-1.59] [-1.60] [-1.21] [-1.06] [-1.62] [-1.59] 
ln𝐿𝐿12𝑡−2  0.001 0.001 0.001 -0.002 0.001 0.001 -0.002 0.001 -0.005 0.001 -0.008 
  [0.01] [0.04] [0.03] [-0.07] [0.01] [0.03] [-0.07] [0.01] [-0.42] [0.03] [-0.53] 
             Ex. January N N N N N N N N N Y N Y 

             Sample Period 1977.01- 
2013.12 

1977.01- 
2013.12 

1977.01- 
2013.12 

1977.01- 
2013.12 

1977.01- 
2013.12 

1977.01- 
2013.12 

1977.01- 
2013.12 

1989.01- 
2012.12 

1977.01- 
2013.12 

1977.01- 
2013.12 

1989.01- 
2012.12 

1989.01- 
2012.12 

Avg. N per month 1,283 967 967 967 967 967 967 938 967 969 938 943 
Avg. R2 0.042 0.094 0.097 0.096 0.096 0.096 0.097 0.102 0.106 0.104 0.115 0.112 
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Table VII 
Price Impact of Liquidity Betas in the Flight Months 

This table reports the impact of various liquidity betas on stock returns in the months of flights by estimating the Fama−MacBeth (1973) 
regression model:  

𝑅𝑖,𝑡 = 𝑎0 + 𝑎1𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐻 + 𝑎2𝛽∆𝑇𝑇,𝑖,𝑡−1

𝐿 + 𝑎3𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1
𝐻 + 𝑎4𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1

𝐿 + 𝑎5𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1
𝐻 + 𝑎6𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1

𝐿  

                                     +𝑎7𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1
𝐻 + 𝑎8𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1

𝐿 + 𝑎9𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1
𝐻 + 𝑎10𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1

𝐿 + 𝑎11𝛽∆𝑃𝑃,𝑖,𝑡−1
𝐻 + 𝑎12𝛽∆𝑃𝑃,𝑖,𝑡−1

𝐿  

                                     +𝑎13𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐻 + 𝑎14𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1

𝐿 + 𝑎15𝐗𝑖 + 𝜀𝑖,𝑡 

where 𝑅𝑖,𝑡 is stock i’s excess return relative to the 30-day T-bill rate in flight month t. Flight month is identified by the bottom 5% of ∆𝑇𝑇. 
𝛽∆𝑇𝑇,𝑖,𝑡−1
𝐻  (𝛽∆𝑇𝑇,𝑖,𝑡−1

𝐿 ) is high (low) TC-beta dummy variable that equals one if stock i’s TC-beta in the month prior to flight month is in the 
top (bottom) quintile sorted based on their NYSE breakpoints, and zero otherwise. The dummy variables 𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1

𝐻 , 𝛽∆𝐴𝐴𝐴𝐴𝐴,𝑖,𝑡−1
𝐿 , 

𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1
𝐻 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢,𝑖,𝑡−1

𝐿 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1
𝐻 , 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−,𝑖,𝑡−1

𝐿 , 𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1
𝐻 , 𝛽∆𝐿𝐿𝐿,𝑖,𝑡−1

𝐿 , 𝛽∆𝑃𝑆,𝑖,𝑡−1
𝐻 , 𝛽∆𝑃𝑃,𝑖,𝑡−1

𝐿 , 𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐻 , and 

𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1
𝐿  are defined similarly. Various liquidity betas for stock i in month t-1 are estimated simultaneously using a model that includes 

the Fama−French three factors augmented with all liquidity factors using prior 60-month data (five years of monthly returns continuing 
through month t-1). 𝐗𝑖 is a set of control variables that contains high and low Fama−French three-factor loadings dummy variables for 
𝛽𝑀𝑀𝑀,𝑖,𝑡−1 , 𝛽𝑆𝑆𝑆,𝑖,𝑡−1 , 𝛽𝐻𝐻𝐻,𝑖,𝑡−1  and those described in Table V. All independent variables are demeaned. The sample contains 
NYSE/AMEX stocks with CRSP share codes of 10 or 11 during a period from January 1977 to December 2013 (Analyses regarding 
𝛽∆𝑆𝑆𝑆𝑆𝑆,𝑖,𝑡−1 cover a period from January 1989 to December 2012 due to data available). For brevity, we present only the intercepts and 
coefficients on dummy variables of various liquidity betas. The t-statistic to test whether the average of coefficient is different from zero is 
reported in square brackets. 

 I II 
Intercept -4.215 -0.706 

 [-0.91] [-0.47] 
𝜷∆𝑻𝑻𝑯  -0.076 0.099 

 [-0.33] [0.30] 
𝜷∆𝑻𝑻𝑳  0.683 0.802 

 [2.84] [3.02] 
𝛽∆𝐴𝐴𝐴𝐴𝐴𝐻  -0.234 -0.535 

 [-1.02] [-1.94] 
𝛽∆𝐴𝐴𝐴𝐴𝐴𝐿  -0.058 -0.006 

 [-0.19] [-0.01] 
𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢
𝐻  0.125 0.353 

 [0.65] [1.45] 
𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢
𝐿  -0.042 0.147 

 [-0.18] [0.49] 
𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−
𝐻  0.316 0.170 

 [1.49] [0.54] 
𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−
𝐿  -0.232 -0.496 

 [-0.90] [-1.36] 
𝛽∆𝐿𝐿𝐿𝐻  -0.037 -0.516 

 [-0.13] [-1.30] 
𝛽∆𝐿𝐿𝐿𝐿  -0.695 -0.518 

 [-4.13] [-1.80] 
𝛽∆𝑃𝑃𝐻  -0.059 0.349 

 [-0.19] [0.74] 
𝛽∆𝑃𝑃𝐿  -0.176 -0.286 

 [-0.66] [-0.87] 
𝛽∆𝑆𝑆𝑆𝑆𝑆𝐻   -0.541 

  [-1.67] 
𝛽∆𝑆𝑆𝑆𝑆𝑆𝐿   -0.288 

  [-1.02] 

   𝜷∆𝑻𝑻𝑯 − 𝜷∆𝑻𝑻𝑳  -0.760 -0.703 

 [-2.28] [-2.24] 
𝛽∆𝐴𝐴𝐴𝐴𝐴𝐻 − 𝛽∆𝐴𝐴𝐴𝐴𝐴𝐿  -0.176 -0.529 

 [-0.43] [-0.90] 
𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢
𝐻 − 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢

𝐿  0.167 0.205 

 [0.57] [0.58] 
𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−
𝐻 − 𝛽∆𝐴𝐴𝐴ℎ𝑢𝑢−

𝐿  0.548 0.666 

 [1.48] [1.48] 
𝛽∆𝐿𝐿𝐿𝐻 − 𝛽∆𝐿𝐿𝐿𝐿  0.658 0.002 

 [1.98] [0.01] 
𝛽∆𝑃𝑃𝐻 − 𝛽∆𝑃𝑃𝐿  0.117 0.635 

 [0.24] [0.91] 
𝛽∆𝑆𝑆𝑆𝑆𝑆𝐻 − 𝛽∆𝑆𝑆𝑆𝑆𝑆𝐿   -0.253 

  [-0.48] 
   Sample Period 1977.01-2013.12 1989.01-2012.12 
Avg. N per month 1,051 1,014 
Avg. R2 0.168 0.171 
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Table VIII 
Two Stage Cross-Sectional Regression of Individual Stock Returns: Robustness 

This table presents a set of robust results by replicating Models X and XII of Table V. Models I and II replicate Model 
X of Table V for two sub-periods: January 1977 to December 1995 and January 1996 to December 2013. Models 
III−VI replicate Models X and XII of Table V by using alternative measures of 𝑇𝑇 innovations. In Models III and IV, 
we use ∆𝑇𝑇𝑡𝐴𝐴2, defined as the reverse residuals from estimating the AR (2) model with a time-trend indictor 
(𝑇𝑇𝑡 = 𝑎0 + 𝑎1𝑇𝑇𝑡−1 + 𝑎2𝑇𝑇𝑡−2 + 𝑎3𝑡 + 𝑢𝑡) using data available up to month t; and in Models V and VI, we use 
∆𝑇𝑇𝐹𝐹, defined as reverse monthly first differences in 𝑇𝑇. For comparison, we standardize each liquidity beta at 
monthly frequency and thus allow it to have an equal mean of zero and an equal standard deviation of one. For brevity, 
we present only the regression coefficients on 𝛽∆𝑇𝑇 and other liquidity betas for comparison. Ex. January is the sample 
period excluding January. The sample contains NYSE/AMEX stocks with CRSP share codes of 10 or 11 and with the 
year-end prices less than $5. The t-statistics adjusted for errors-in-variables by following Shanken (1992) are reported in 
square brackets. 

  Sub-periods  Alternative Measures of 𝑇𝑇 Innovations 

  I II  III IV V VI 
𝜷∆𝑻𝑻  0.151  0.157         [2.49]  [2.41]       𝜷∆𝑻𝑻𝑨𝑨𝟐      0.149  0.113    

     [2.77]  [1.81]    𝜷∆𝑻𝑻𝑭𝑭        0.151  0.108  
       [2.95]  [1.90]  
𝛽∆𝐴𝐷𝐷𝐷𝐷   0.072  0.034   0.056  0.027  0.058  0.031  

  [1.26]  [0.45]   [1.15]  [0.45]  [1.19]  [0.52]  
𝛽∆𝐴𝑚𝑚ℎ𝑢𝑢  0.004  -0.051   -0.025  -0.022  -0.022  -0.019  

  [0.08]  [-0.90]   [-0.70]  [-0.48]  [-0.63]  [-0.42]  
𝛽∆𝐴𝑚𝑚ℎ𝑢𝑢−  -0.115  -0.071   -0.092  -0.074  -0.088  -0.068  

  [-1.51]  [-0.95]   [-1.69]  [-1.10]  [-1.66]  [-1.06]  
𝛽∆𝐿𝐿𝐿  -0.118  -0.067   -0.100  -0.053  -0.096  -0.051  

  [-1.79]  [-1.17]   [-2.03]  [-1.00]  [-1.99]  [-1.00]  
𝛽∆𝑃𝑃  0.014  0.062   0.036  0.031  0.034  0.027  

  [0.24]  [0.94]   [0.81]  [0.57]  [0.77]  [0.50]  
𝛽∆𝑆𝑆𝑆𝑆𝑆       -0.060    -0.058  
      [-1.16]   [-1.19]  
   

 
  

   Control Variables  Y Y  Y Y Y Y 
Ex. January  Y Y  Y Y Y Y 

 
  

 
  

   Sample Period  1977.01- 
1995.12 

1996.01- 
2013.12 

 1977.01- 
2013.12 

1989.01- 
2012.12 

1977.01- 
2013.12 

1989.01- 
2012.12 

Avg. N per month  965  974   969  943  969  943  
Avg. R2  0.093  0.116    0.104  0.111  0.104  0.111  
 
 
 
 
 
 
 
 
 
 
 
 
 
 


