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Abstract

We provide a theoretical and empirical analysis of the relationship between expected op-

tion returns and the volatility of the underlying securities. We show analytically that in

a Black-Scholes framework, the expected return from holding a call option is a decreas-

ing function of the volatility of the underlying. The expected return from holding a put

option is an increasing function of the volatility of the underlying. These predictions are

strongly supported by the data. In the cross-section of stock option returns, returns on

call (put) option portfolios decrease (increase) with underlying stock volatility. This strong

negative (positive) relation between call (put) option returns and volatility is not due to

cross-sectional variation in expected stock returns. It holds in various option samples with

di¤erent maturities and moneyness, and it is robust to alternative measures of underlying

volatility and di¤erent weighting methods. Time-series evidence also supports the predic-

tions from option pricing theory. Future returns on S&P 500 index call (put) options are

negatively (positively) related to S&P 500 index volatility.
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1 Introduction

Recent empirical work on equity options has documented several interesting patterns in the cross-

section of option returns that are related to the volatility of the underlying securities. Goyal

and Saretto (2009) show that straddle returns and delta-hedged call option returns increase

as a function of the volatility risk premium, the di¤erence between historical volatility and

implied volatility. Vasquez (2012) reports that the slope of the implied volatility term structure

is positively related to future option returns. Cao and Han (2013) document a negative relation

between the underlying stock�s idiosyncratic volatility and delta-hedged equity option returns.

These �ndings are purely empirical. At a theoretical level, it is of course well understood

that option prices increase with underlying volatility, but the existing literature is silent about

the theoretical relation between underlying volatility and expected option returns. This paper

addresses precisely this issue. Building on the work of Rubinstein (1984) and Broadie, Chernov,

and Johannes (2009), we derive analytical expressions for expected holding period option returns

in the context of the Black-Scholes framework. We demonstrate that the expected return on

holding a call option is a decreasing function of the underlying volatility, while the expected

return on holding a put option is an increasing function of the underlying volatility.

We provide cross-sectional and time-series tests of this theoretical relation between stock

volatility and expected option returns. Using the cross-section of stock option returns for 1996-

2013, we document that call (put) option portfolio returns exhibit a strong negative (positive)

relation with underlying stock volatilities. Sorting all available options into quintiles, we �nd

a a statistically signi�cant di¤erence of �13:8% (7:1%) per month between the average returns

of the quintile call (put) option portfolio with the highest underlying stock volatilities and the

call (put) quintile portfolio with the lowest underlying volatilities. We show that these �ndings

are not driven by cross-sectional variation in expected stock returns. Our results are robust to

using di¤erent option maturities and moneyness, as well as alternative measures of underlying

volatility and portfolio weighting methods.

We also provide time-series evidence. We �nd that index call (put) options tend to have

lower (higher) returns in the month following high volatility periods. The �ndings are robust

to di¤erent index volatility proxies and are not driven by illiquid option contracts. The time-

series results complement our cross-sectional �ndings and provide strong empirical support for

our theoretical predictions.

We provide several extensions of the benchmark theoretical analysis. The empirical short-

comings of the Black-Scholes model are well-documented, and we therefore investigate if realistic

extensions of the Black-Scholes model lead to di¤erent theoretical predictions. We show that if

2



the expected stock return is positively related to the stock�s volatility, the theoretical predictions

are strengthened. We use realistic parameterizations of the Heston (1993) model to show that,

if volatility is time-varying and if the innovations to volatility and returns are correlated, sim-

ilar theoretical predictions obtain. Finally, we also provide some theoretical results for option

straddles.

Interestingly, the notion that call option returns decrease with the underlying volatility has

been appreciated and applied in other areas of the �nance literature. Galai and Masulis (1976)

show, under the joint assumption of the CAPM and the Black-Scholes model, that under certain

realistic conditions the expected instantaneous rate of return on �rm equity, which is essentially

a call option on �rm value, decreases with the variance of the rate of return on �rm value.

Johnson (2004) points out that in a levered �rm, the expected equity return should decrease as a

function of idiosyncratic asset risk. He uses this insight to explain the puzzling negative relation

between stock returns and the dispersion of analysts�earnings forecasts. Lyle (2014) explores

the implications of the negative relation between expected call option returns and underlying

volatility to study the relation between information quality and future option and stock returns.

Broadie, Chernov, and Johannes (2009) use simulations to show that expected put option returns

increase with underlying volatility.

We contribute to this literature by analytically demonstrating the negative (positive) relation

between expected call (put) option return and underlying volatility, and by providing empiri-

cal evidence consistent with these theoretical predictions. To the best of our knowledge these

theoretical and empirical �ndings are new to the literature.

We also contribute to the growing empirical literature on the cross-section of equity option re-

turns. Besides the studies by Goyal and Saretto (2009), Vasquez (2012), and Cao and Han (2013),

several recent studies have documented interesting empirical regularities in the cross-section of

option returns. Boyer and Vorkink (2014) document a negative relation between ex-ante option

total skewness and future option returns. Goodman, Neamtiu, and Zhang (2013) �nd that fun-

damental accounting information is related to future option returns. Karakaya (2014) proposes a

three-factor model to explain the cross-section of equity option returns. Christo¤ersen, Goyenko,

Jacobs, and Karoui (2014) report illiquidity premia in the cross-section of equity options. Our

paper adds to this growing literature by theoretically identifying the relation between expected

option returns and stock volatility, perhaps the most intuitively appealing determinant of option

prices and returns. Given that this theoretical relationship is validated by the data, our work

suggests that new empirical work on option returns may want to control for the e¤ect of volatility

when identifying other determinants of option returns.

The paper proceeds as follows. Section 2 provides the theoretical results on the relation
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between expected option returns and underlying stock volatility in the Black-Scholes model.

Section 3 presents our main empirical results, using data on the cross-section of stock option

returns. Section 4 discusses extensions of the theoretical and empirical analysis. Section 5

performs an extensive set of robustness checks. Section 6 presents time-series tests using index

options, and Section 7 concludes the paper.

2 Volatility and Expected Option Returns: Theory

In this section, we derive the theoretical results on the relationship between option returns and the

volatility of the underlying security. We derive these results in the context of the Black-Scholes

(1973) model, even though it is well known that the Black-Scholes model has some important

empirical shortcomings. Most importantly, more accurate valuation of options is possible by

accommodating stochastic volatility as well as jumps in returns and volatility.1 However, the

Black-Scholes model has the important advantage of analytical tractability, and we therefore use

it to derive a benchmark set of theoretical results. In Section 4, we investigate if these results

continue to hold if other, more realistic, processes are assumed for the underlying securities.

Even within the con�nes of the Black-Scholes model, the relation between option returns and

the volatility of the underlying security can be studied in several ways. Much of the literature on

option returns uses expected instantaneous option returns. In the Black-Scholes (1973) model,

consider the following notation for the geometric Brownian motion dynamic of the underlying

asset:
dSt
St

= �dt+ �dB (2.1)

where S is the price of underlying asset, � is the volatility parameter, and � is the drift or

the expected return of the underlying asset. It can be shown that in this model, the expected

instantaneous option return is linear in the expected instantaneous return on underlying asset:

E(
dO

O
) = rdt+

@O

@S

S

O
(�� r)dt (2.2)

where O is the price of the European option, and r is the risk-free rate. This expression provides

some valuable intuition regarding the determinants of expected option returns. The expected

option return depends on @O
@S

S
O
, which re�ects the leverage embedded in the option. The leverage

itself is a function of moneyness, maturity, and the volatility of the underlying security.

While equation (2.2) provides valuable intuition, it has some important limitations for our

1Bates (2003) and Garcia, Ghysels, and Renault (2010) provide excellent surveys.
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purposes. It describes the relation between expected option returns with underlying volatility at

each instant, but these returns are not empirically observable. For empirically observable holding

periods, the linear relation between the option returns and the underlying asset returns may not

hold because the option price is a convex function of the price of underlying asset.

We therefore analyze the impact of underlying volatility on expected option returns by build-

ing on the work of Rubinstein (1984) and Broadie, Chernov, and Johannes (2009), who point

out that expected option returns can be computed analytically within models that allow for an-

alytic expressions for option prices. For our benchmark results, we therefore rely on the classical

Black-Scholes option pricing model to obtain an analytical expression for the expected return of

holding an option to maturity. We then compute the �rst order derivative of the expected option

return with respect to the volatility of the underlying security. We show that the expected return

for holding a call option to maturity is a decreasing function of the underlying volatility, while

the expected return for holding a put option to maturity is an increasing function of underlying

volatility.

Denote the time t prices of European call and put options with strike price K and maturity

T by Ct(t; T; St; �;K; r) and Pt(t; T; St; �;K; r) respectively. By de�nition, the expected gross

returns for holding the options to expiration are given by:

Rcall =
Et[max(ST �K; 0)]

Ct(t; T; St; �;K; r)
(2.3)

Rput =
Et[max(K � ST ; 0)]

Pt(t; T; St; �;K; r)
(2.4)

Propositions 1 and 2 indicate how these expected call and put option returns change with respect

to the underlying volatility �. We provide the detailed proof for the case of the call option in

Proposition 1, because the proof provides valuable intuition for the result. The intuition for the

case of the put option is similar and the proof is relegated to the appendix.

Proposition 1 Everything else equal, the expected return of holding a call option to expiration
is higher if the underlying asset has lower volatility (@Rcall

@�
< 0).

Proof. We start by reviewing several well-known facts that are needed to derive the main result.
If the underlying asset follows a geometric Brownian motion, the price of a European call option
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written on the asset is given by the Black-Scholes formula:

Ct(t; T; St; �;K; r) = StN(d1)� e�r�KN(d2) (� = T � t) (2.5)

d1 =
ln St

K
+ (r + 1

2
�2)�

�
p
�

d2 =
ln St

K
+ (r � 1

2
�2)�

�
p
�

(2.6)

Vega is the �rst-order derivative of the option price with respect to the underlying volatility. It

measures the sensitivity of the option price to small changes in the underlying volatility. The

Black-Scholes Vega is the same for call and put options:

� =
p
�St (d1) (2.7)

where  is the probability density function of the standard normal distribution. We also have:

St (d1) = e�r�K (d2). (2.8)

Now we are ready to derive the main result. We �rst write the expected call option return in

(2.3) in a convenient way, so that both the numerator and the denominator exhibit the functional

form of the Black-Scholes formula. This allows us to conveniently evaluate the derivative of the

expected option return with respect to the underlying volatility, using the Black-Scholes Vega in

(2.7).

The denominator of (2.3) is the price of the call option and is therefore given by the Black-

Scholes formula in (2.5). The numerator of (2.3), the expected option payo¤at expiration, can be

transformed into an expression that has the same functional form as the Black-Scholes formula.

We get:

Et[max(ST �K; 0)] =

Z
z�
(Ste

��� 1
2
�2�+�

p
�z �K)

1p
2�
e�

z2

2 dz (2.9)

= e�� [StN(d
�
1)� e���KN(d�2)] (2.10)

where

d�1 =
ln St

K
+ (�+ 1

2
�2)�

�
p
�

d�2 =
ln St

K
+ (�� 1

2
�2)�

�
p
�

. (2.11)

Combining (2.5) and (2.10), the expected return for holding a European call option to maturity
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is given by:

Rcall =
Et[max(ST �K; 0)]

Ct(t; T; St; �;K; r)
=
e�� [StN(d

�
1)� e���KN(d�2)]

StN(d1)� e�r�KN(d2)
. (2.12)

Using a di¤erent approach, Boyer and Vorkink (2014) derive an equivalent expression for the

expected return of holding a call option to maturity.

Taking the derivative of (2.12) with respect to � gives:

@Rcall

@�
=

e��
p
�St (d

�
1)[StN(d1)� e�r�KN(d2)]� e�� [StN(d

�
1)� e���KN(d�2)]

p
�St (d1)

[StN(d1)� e�r�KN(d2)]2

=
e��
p
�Stf (d�1)[StN(d1)� e�r�KN(d2)]�  (d1)[StN(d

�
1)� e���KN(d�2)]g

[StN(d1)� e�r�KN(d2)]2
. (2.13)

Note that we use equation (2.7) to derive (2.13). From (2.13) it can be seen that @Rcall
@�

inherits

the sign of  (d�1)[StN(d1)�e�r�KN(d2)]� (d1)[StN(d�1)�e���KN(d�2)]. Denote this expression
by EX. We now show that EX is negative. We have:

1

 (d�1) (d1)
EX =

StN(d1)� e�r�KN(d2)

 (d1)
� StN(d

�
1)� e���KN(d�2)

 (d�1)
(2.14)

Using equation (2.8), it follows that

1

 (d�1) (d1)
EX =

StN(d1)� St (d1)
 (d2)

N(d2)

 (d1)
�
StN(d

�
1)�

St (d�1)
 (d�2)

N(d�2)

 (d�1)
(2.15)

= St[(
N(d1)

 (d1)
� N(d2)

 (d2)
)� (N(d

�
1)

 (d�1)
� N(d�2)

 (d�2)
)]. (2.16)

Because according to economic theory, the expected rate of return on risky assets must exceed

the risk-free rate (� > r), we have d�1 > d1 and d�2 > d2. We also have d�1 > d�2 and d1 > d2, from

the de�nition of (2.6) and (2.11). Now consider N(d)
 (d)

. It can be shown that it is an increasing

and convex function of d. Evaluating N(d)
 (d)

at d1, d2, d�1, and d
�
2, it can be seen that the expression

(N(d1)
 (d1)

� N(d2)
 (d2)

) � (N(d
�
1)

 (d�1)
� N(d�2)

 (d�2)
) e¤ectively amounts to the negative of the second di¤erence

(derivative) of an increasing and convex function. Therefore:

(
N(d1)

 (d1)
� N(d2)

 (d2)
)� (N(d

�
1)

 (d�1)
� N(d�2)

 (d�2)
) < 0. (2.17)

This implies EX < 0 which in turn implies @Rcall
@�

< 0.

Proposition 2 Everything else equal, the expected return of holding a put option to expiration
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is higher if the underlying asset has higher volatility (@Rput
@�

> 0).

Proof. See Appendix A.

3 Empirical Results: Volatility and the Cross-Section of

Option Returns

In this section, we empirically test Propositions 1 and 2 using the cross-section of options written

on individual stocks. For our benchmark empirical analysis, we use the cross-section of stock

options that are at-the-money and one month away from expiration. Our motivation is that

Propositions 1 and 2 predict a relationship between expected option returns and underlying

volatility, everything else equal. It is therefore critical to control for other option characteristics

that a¤ect returns when studying the relation between option returns and the underlying volatil-

ity. Existing studies have documented that moneyness and maturity also a¤ect option returns,

see for example Coval and Shumway (2001).

To address this issue, we therefore use an option sample that is homogeneous in maturity and

moneyness. We choose one month at-the-money options because these are the most frequently

traded options, and they are subject to fewer data problems (see, among others, Goyal and

Saretto, 2009).

3.1 Data

We obtain stock return data from CRSP and relevant accounting information from Compustat.

We obtain option data from OptionMetrics through WRDS. OptionMetrics provides historical

option closing bid and ask quotes, as well as information on the underlying securities for U.S.

listed index options and equity options. Every month, on the �rst trading day after monthly

option expiration, we select equity options with 0:95 � K=S � 1:05 that expire over the next

month. The expiration day for standard exchanged-traded options is the Saturday immediately

following the third Friday of the expiration month, so our sample consists mainly of Mondays.

Occasionally it is a Tuesday if Monday is an exchange holiday.

We apply several standard �lters to the option data. An option is included in the sample if it

meets all of the following requirements: 1) the best bid prices is positive and the best bid price

is smaller than the best o¤er price; 2) it does not violate no-arbitrage bounds; for call options

we require that the price of the underlying exceeds the best o¤er, which is in turn higher than

max(0; S �K); for put options we require that the exercise price exceeds the best bid, which is
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in turn higher than max(0; K � S); 3) for equity options, we require that no dividend is paid

over the duration of the option contract; 4) open interest is positive; 5) volume is positive; 6) we

require that the bid-ask spread exceeds $0:05 when the option price is below $3, and $0:10 when

the option price is higher than $3; 7) the expiration day is standard, the Saturday following the

third Friday of the month; 8) settlement is standard; 9) implied volatility is not missing.

We compute the monthly return from holding the option to expiration using the mid-point

of the bid and ask quotes as a proxy for the market price of the option contract.2 If an option

expires in the money, the return to holding the option to maturity is the di¤erence between the

terminal payo¤ and the initial option price divided by the option price. If an option expires

out of the money, the option return is �100%. Our equity option sample contains 247,859 call
options and 188,046 put options over the time period from January 1996 to July 2013. In our

benchmark results, we measure volatility using the realized volatility computed using daily data

for the preceding month, and we refer to this as 30-day realized volatility.3

Table 1 reports summary statistics for equity options across moneyness categories. Moneyness

is de�ned as the strike price over the underlying stock price. On average the returns to buying

call (put) options are positive (negative). Both call and put option returns increase with the

strike price. These patterns are consistent with the stylized facts in Coval and Shumway (2001).

Also note that option-implied volatility exceeds realized volatility for all moneyness categories,

but the di¤erences are often small. Gamma and Vega are highest for at-the-money options and

decrease as options move away from the money.

3.2 The Cross-Section of Option Portfolio Returns

Each month, on each portfolio formation date, we sort the options into �ve quintile portfo-

lios based on their realized volatility, and we compute equal-weighted returns for these option

portfolios over the following month. We conduct this exercise for call options and put options

separately.

Panel A of Table 2 displays the averages of the resulting time series of returns for the �ve

call option portfolios, as well as the return spread between the two extreme portfolios. Portfolio

�Low� contains call options with the lowest realized volatility, and portfolio �High� contains

2Stock options are American options. Several studies (see, among others, Boyer and Vorkink 2014) have
demonstrated that adjusting for early exercise has very minimal empirical implications. We further minimize the
impact of the American feature of the contract by only studying equity options that do not have an ex-dividend
date during the life of the option contract.

3Because this measure uses data for the previous month, it is e¤ectively based on approximately 22 returns.
For convenience, we use calendar days and refer to it as 30-day volatility. The same remark applies to volatility
measures for other horizons used throughout the paper.
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call options with the highest realized volatility. Proposition 1 states that the expected call

option return is a decreasing function of the underlying stock volatility. Consistent with this

result, we �nd that call option portfolio returns decrease monotonically with the underlying

stock volatility. The average returns for portfolio High and portfolio Low are 0:9% and 14:7%

per month respectively. The resulting return di¤erence between the two extreme portfolios (H-L)

is �13:8% per month and highly statistically signi�cant, with a Newey-West (1987) t-statistic of
�3:42.
Panel B of Table 2 presents the averages of the resulting time-series of returns for the �ve put

option portfolios. Again, portfolio Low (High) contains put options with the lowest (highest)

underlying stock volatilities. For put option portfolios, the average return increases from �14:6%
per month for portfolio Low to�7:5% per month for portfolio High, with a positive and signi�cant
H-L return di¤erence of 7:1%. This �nding con�rms Proposition 2, which states that expected

put option returns are an increasing function of the underlying stock volatility.

Table 2 also provides results using only options with 0:975 � K=S � 1:025. By using a tighter
moneyness interval, we reduce the impact of moneyness on expected option returns. The results

are very similar. The average option portfolio returns decrease (increase) with the underlying

stock volatility for calls (puts). The H-L di¤erences are �13:8% and 7:7% for call and put option
portfolios respectively, and are statistically signi�cant. This suggests that our empirical results

are not due to di¤erences in option moneyness.

These results are obtained using option returns computed using the mid-point of the bid and

ask quotes. To ensure that our results do not depend on this assumption, Panel C of Table 2

computes average option portfolio returns based on the ask price. As expected, average returns

are somewhat smaller than in Panels A and B. However, we again �nd a strong negative (positive)

relation between call (put) option portfolio returns and the underlying stock volatility. The H-L

di¤erences are both statistically signi�cant and are of a similar order of magnitude than the ones

reported in Panels A and B.

4 Discussion and Extensions

In this section, we further extend our theoretical and empirical analysis. An potential concern is

that our theoretical results are obtained using the Black-Scholes model. The Black-Scholes model

has some well-known empirical shortcomings, and it is possible that adjusting the theoretical

model for these empirical shortcomings may a¤ect the results. Most importantly for the purpose

of our investigation, it is well-known that Black-Scholes assumption of constant volatility is

strongly rejected by the data. We therefore investigate the implications of the Heston (1993)

10



stochastic volatility model for returns.

Another potential problem is that in the Black-Scholes model, the expected return on the

underlying stock is the constant �: However, if we model the drift of the underlying stock using

equilibrium model, it is possible to obtain a result where the drift is positively related to the

volatility of the underlying stock or the stock index. It is therefore important to investigate how

a positive relationship between � and � could a¤ect our theoretical results.

At a purely empirical level, we document the cross-sectional relation between volatility and

option returns after controlling for the return on the underlying stock. We also explore the

relation between volatility and straddle returns, because prices of straddles are volatility-sensitive

and expected straddle returns do not depend on the drift of the underlying stock.

4.1 Volatility-Dependent Return Drifts

In the simple Black-Scholes set-up, � and � are constants and thus by de�nition independent.

The impact of volatility on expected option returns is therefore exclusively due to the di¤usive

part of the stock return. For more general models, or when considering equilibrium foundations

for the Black-Scholes model, the return drift and the volatility are not likely to be independent.

For instance, a CAPM-type setup suggests a positive relation between the drift and volatility

in the case of index returns. For stock returns the relation with stock volatility is of course not

as explicit, but it is reasonable to assume that stock volatility will be positively related to the

determinants of the risk premium. It is therefore worth exploring if our empirical �ndings are

due to the indirect e¤ect of volatility on expected option returns through �.

A positive relation between expected stock returns and volatility means that a higher volatil-

ity leads to a higher �, which further implies a higher expected call option return and a lower

expected put option return, as the expected call (put) option return increases (decreases) with

�. This is a fairly intuitive result which can also be shown analytically.4 This channel there-

fore has the opposite e¤ect of the relation between volatility and option returns highlighted by

Propositions 1 and 2. In other words, if the expected stock return is (partly) determined by

stock volatility, this will reduce the strength of the empirical relationship documented in Table

2.

We therefore conclude that the empirical relationship documented in Table 2 is not due

to volatility-dependent drifts in the underlying security, and more likely due to the theoretical

channels studied in Propositions 1 and 2.

4Appendix B shows that @Rcall

@� > 0 and @Rput

@� < 0.
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4.2 Controlling for Expected Stock Returns

Section 4.1 shows analytically that if expected stock returns depend positively on volatility, which

is plausible, our cross-sectional �ndings in Section 3 cannot be explained by the e¤ect of volatility

on return drifts. We now further investigate if the underlying stock returns a¤ect our results by

empirically controlling for expected stock returns. This is of course challenging because available

measures of expected returns are likely to be very noisy.

Expected call option returns increase with the expected return of the underlying asset and

expected put option returns decrease with the expected return of underlying asset. Thus, if the

high volatility portfolios in Section 3 are primarily composed of stocks that have lower expected

returns than those in the low volatility portfolios, the result that average call (put) options in

the high volatility portfolios earn lower (higher) returns may not be due to volatility.

In this section, we therefore study the relation between option returns and underlying stock

volatility after controlling for expected stock returns. Unlike volatility, expected stock returns

are notoriously di¢ cult to measure. According to the Capital Asset Pricing Model (CAPM)

of Sharpe (1964), Lintner (1965), and Black (1972), the covariance of a stock�s return with the

market or beta is the sole determinant of the cross-sectional variation in expected stock returns.

We therefore �rst rely on a double sort on beta and volatility to ensure our results are not driven

by cross-sectional di¤erences in expected stock returns. We form �ve quintile portfolios based

on underlying stock betas, and then within each beta quintile options are further sorted into �ve

quintile portfolios according to underlying stock volatility. We once again measure underlying

stock volatility by 30-day realized volatility.5 Beta is estimated using the market model over the

30 days preceding the portfolio formation date:

rit � rft = �i + �i(rMt � rft ) + �it

where rit and r
M
t are the daily returns on stock i and the market respectively, and rft is the

risk-free rate.

Table 3 presents the results of this double sort. Consistent with the single sort results, in each

beta quintile call (put) option portfolio returns decrease (increase) with underlying volatility. In

all beta quintiles, the average return di¤erences between the two extreme call option portfolios are

negative, ranging from �17% to �8% per month, and statistically signi�cant. For put options,

the high minus low di¤erences are all positive and statistically signi�cant for the third through

�fth beta quintiles. These �ndings strongly suggest that our results are not driven by di¤erences

between the expected returns of the underlying stocks.

5Results are similar when using other volatility measures.
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Next, we run Fama-MacBeth (1973) regressions that allow us to simultaneously control for

risk factors and stock characteristics that are related to expected stock returns. Every month we

run the following cross-sectional regression

Ri
t+1= 
0;t+
1;tV OL

i
t+�tZ

i
t+� (4.1)

where Ri
t+1 is the return on holding option i from month t to month t+1, V OL

i
t is the underlying

stock volatility for option i, and Zi
t is a vector of control variables that includes moneyness, stock

beta, �rm size, and book-to-market. Both V OLit and Z
i
t are observable at time t for option i.

We use three proxies for the underlying stock volatility: 30-day, 60-day, and 365-day realized

volatility, all computed using daily returns with the relevant windows.

Table 4 reports the time-series averages of the 
 and� coe¢ cients in equation (4.1), along with

Newey-West (1987) t-statistics which adjust for potential autocorrelation and heteroscedasticity.

Columns (1) to (3) report regression results for call options. The average slope coe¢ cient is

always negative and highly signi�cant for all volatility measures. For example, in column (1) of

Table 4 we �nd the average slope coe¢ cient on 30-day realized volatility is �0:254 with a Newey-
West t-statistics of �4:57. Because the di¤erence in average underlying volatility between the
two extreme call option portfolios in Table 2 is 0:6, this implies a decline of �0:254�0:6 = 15:24%
per month in average returns if a call option were to move from the bottom volatility portfolio

to the top volatility portfolio, other characteristics held constant. Note that this estimate is very

similar to the result in Table 2.

In columns (4)-(6), we provide results for put options. As expected, the average slope co-

e¢ cient on underlying volatility is positive and statistically signi�cant for all volatility proxies,

ranging from 10:5% to 22:2% per month. These �ndings again suggest that our results cannot

be attributed to di¤erences in expected stock returns.

The empirical results in Tables 3 and 4 strongly suggest that our benchmark results in Table

2 are not due to di¤erences in the returns on the underlying stocks. Because it is di¢ cult to

control for expected returns, we see these results as merely as a con�rmation of the analytical

argument in Section 4.1. Overall, we conclude that our main result that in the cross-section, call

(put) options with high underlying volatilities tend to have lower (higher) returns in the next

month is not only consistent with Propositions 1 and 2, but is due to the mechanism by which

volatility a¤ects expected option returns in the simple Black-Scholes model.
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4.3 Holding-Period Expected Option Returns

Appendix C derives the analytical expression for the expected call option return over any holding

period h in the Black-Scholes model:6

Rh
call =

e�h[S0N(d
�
1)� e�[r+(��r)HP ]TKN(d�2)]

S0N(d1)� e�rTKN(d2)
(4.2)

d�1 =
ln S0

K
+ [HP (�� r) + r + 1

2
�2]T

�
p
T

d�2 =
ln S0

K
+ [HP (�� r) + r � 1

2
�2]T

�
p
T

where the timeline is shifted to [0; T ] from [t; T ] to ease notation, h is the holding period (0 <

h < T ), and HP = h=T is the ratio of the holding period to the life of the option contract. In

the interest of brevity, we exclusively focus on call options in this section. The extension to put

options is straightforward.

Note that the expected holding-to-expiration option return in (2.12) is nested in (4.2), for

HP = 1. We can use the structure of the proof of Proposition 1 to show @Rhcall
@�

< 0, by observing

r+(��r)HP > r. Thus, we conclude that expected call (put) option returns decrease (increase)

with underlying volatility for any holding period in the Black-Scholes model.

4.4 Expected Option Returns in the Heston Model

In Section 4.1, we addressed a potential shortcoming of the Black-Scholes model for studying

the impact of volatility on expected option returns. We established that extending the model

by allowing for a positive relation between the drift of the underlying stock and the volatility

cannot explain the empirical relationship documented in Table 2. When considering volatility,

the Black-Scholes model has another well-documented disadvantage. A large number of studies

have shown that volatility is time varying, and that (the innovations to) volatility and stock

returns are correlated.7 This correlation is often referred to as the leverage e¤ect.

To address the implications of time-varying volatility and the leverage e¤ect, we now analyze

expected option returns using the Heston (1993) model instead of the Black-Scholes model.

The Heston model has become an important modeling tool in the option literature, because it

captures important stylized facts such as time-varying volatility and the leverage e¤ect, while

6See Rubinstein (1984) for a similar expression based on a discrete-time model.
7See Engle (1982), Bollerslev (1986), Nelson (1991), Glosten, Jagannathan and Runkle (1993), and Engle and

Ng (1993), among many others.
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also allowing for quasi-closed form European option prices. Appendix D shows that the expected

return of holding a call option to expiration in the Heston model is given by:

RHeston
call (St; V t; �) =

e�� [StP
�
1 � e���KP �2 ]

StP1 � e�r�KP2
(4.3)

where P1, P2, P �1 and P
�
2 are de�ned in Appendix D. The expected call option return in the

Heston model has the same functional form as in the Black-Scholes model. Unlike for the case

of the Black-Scholes model, the sign of @R
Heston
call (St;V t;�)

Vt
cannot be derived analytically. However,

the expected option return in equation (4.3) can be easily calculated given a set of parameter

values.

In Table 5, we compute expected option returns according to (4.3) for di¤erent parameteriza-

tions of the expected stock returns and the conditional stock variance. For all other parameters,

we use the parameters from Broadie, Chernov, and Johannes (2009). Table 5 indicates that the

patterns in expected option returns in a stochastic volatility model are similar to the patterns in

Black-Scholes expected option returns. In particular, expected call option returns increase (de-

crease) with expected stock return (current stock variance), whereas expected put option returns

decrease (increase) with expected stock return (current stock variance). In unreported results

using other parameterizations, similar conclusions obtain.

4.5 Volatility and Expected Straddle Returns

We now investigate the cross-sectional relation between volatility and expected straddle returns.

Most of the existing papers that investigate the cross-sectional relation between option returns

and di¤erent aspects of volatility focus on straddle returns. See for example Goyal and Saretto

(2009) and Vasquez (2012). Those studies do not test a direct implication of a theoretical

model, and they focus on straddles to separate the cross-sectional e¤ects of volatility and the

underlying stock returns. Our approach is somewhat di¤erent because our main focus is to test

the theoretical results in Propositions 1 and 2. These results are for expected returns on puts and

calls, and within the context of the Black-Scholes model the expected return on the underlying

stocks are explicitly taken into account. However, as discussed in Section 4.1, when considering a

generalization of the Black-Scholes model that allows for volatility-dependent drifts, controlling

for the expected stock return becomes relevant. This motivates us to look at returns on straddles.

A straddle consists of the simultaneous purchase of a call option and a put option on the

same underlying asset. The call and put options have the same strike price and time to maturity.
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The expected gross return on a straddle is given by:

Rstraddle =
Et[max(ST �K; 0)] + Et[max(K � ST ; 0)]

Ct(� ; St; �;K; r) + Pt(� ; St; �;K; r)

where Ct(� ; St; �;K; r) and Pt(� ; St; �;K; r) are the call and put prices that an investor has

to pay to build a long position in straddle. Appendix E shows that d2 > 0 is a su¢ cient

condition for a negative relation between straddle returns and underlying volatility. Recall that

d2 =
ln

St
K
+(r� 1

2
�2)�

�
p
�

. Therefore, the condition d2 > 0 is likely to hold for straddles with strike

prices below the current stock price. We therefore investigate if average straddle returns decrease

with underlying volatility for such straddles.

Table 6 reports the empirical results. Consistent with our hypothesis, we �nd a strong

negative relation between straddle returns and underlying stock volatilities. Each month, we

form straddles using only equity options with 0:95 � K=S � 1. These straddles are sorted into
�ve quintile portfolios based on 30-day realized volatility. We then compute equal-weighted and

volume-weighted straddle portfolios returns over the following month. The straddle volume is

the average of call and put volume.

Panel A of Table 6 reports time-series average returns for the �ve straddle portfolios. The re-

turns decrease with underlying stock volatility. For example, the equal-weighted average straddle

portfolio returns drop from 2:8% per month for the low volatility portfolio to �2:6% per month

for the high volatility portfolio. The resulting return di¤erence is �5:4% per month and highly

statistically signi�cant with a Newey-West adjusted t-statistic of �2:90. With volume weighting,
the return spread is �6:3% per month and also statistically signi�cant.

In Panels B and C of Table 6, we investigate two more straddle samples with 0:875 � K=S �
0:95 and 0:8 � K=S � 0:875. The results are very similar and reinforce our conclusion that there
is a negative relation between straddle returns and underlying volatility provided the condition

d2 > 0 holds.

5 Robustness

In this section we investigate the robustness of the results in Table 2 to a number of implemen-

tation choices. We investigate the robustness to the measure of realized volatility, the weights

used to compute portfolio returns, and the composition of the option sample.
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5.1 Robustness With Respect to the Volatility Measure

Table 2 uses realized volatility computed using daily data for the preceding month to proxy for

the underlying volatility. This is a standard volatility measure that is often used in the litera-

ture. Ang, Hodrick, Xing, and Zhang (2006) and Lewellen and Nagel (2006) argue that 30-day

realized volatility strikes a good balance between estimating parameters with a reasonable level

of precision and capturing the conditional aspect of volatility. We now consider four alternative

estimators of underlying stock volatility. We proxy underlying volatility using realized volatili-

ties computed over the past 14 days, the past 60 days, and the past 365 days, as well as using

option-implied volatility.

Panel A of Table 7 presents time series average returns for the �ve call option portfolios and

Panel B reports average returns for put option portfolios. Consistent with our benchmark results

in Table 2, we �nd that for all underlying volatility proxies, the returns on the call option portfo-

lios exhibit a strong negative relation with underlying stock volatilities, while put option portfolio

returns display a strong positive relation with underlying stock volatilities. For example, when

sorted on 60-day realized volatility, the average returns for call option portfolios with the largest

and smallest underlying volatilities are 1:4% and 15:5% per month respectively. The resulting

di¤erence between the two extreme portfolios is �14:1% per month and is highly statistically

signi�cant with a Newey-West t-statistic of �3:44. In contrast, for put option portfolios, the
average returns monotonically increase from �15:7% per month for the lowest volatility portfolio
to �5:9% per month for the highest volatility portfolio. The resulting di¤erence is 9:8% per

month and is also statistically signi�cant.

When sorted on 14-day and 365-day realized volatility, the returns display a same pattern.

The average returns decrease (increase) with underlying volatilities for call (put) portfolios. The

return di¤erences between the two extreme call option portfolios are negative and statistically

signi�cant with a magnitude of �13% and �8:6% per month, respectively. The corresponding

di¤erences for put option portfolios are positive and statistically signi�cant, with a magnitude

of 5:9% and 11:7% per month, respectively.

We also sort options based on their implied volatilities. Option-implied volatilities are at-

tractive because they provide genuinely forward-looking estimates, but they are model-dependent

and may include volatility risk premiums.8 Again consistent with our benchmark results, we �nd

that call (put) option portfolios with larger implied volatilities earn lower (higher) returns. Panel

8Equity options are American options. We use implied volatilities from OptionMetrics, which are calculated
using the Cox, Ross, and Rubinstein binomial tree model. On the volatility risk premium embedded in individual
stock options, see Bakshi and Kapadia (2003b), Driessen, Maenhout, and Vilkov (2009), and Carr and Wu (2009)
for more details.
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A of Table 7 reveals that returns on call option portfolios monotonically decrease with implied

volatilities. The return spread is �16:6% per month and is highly statistically signi�cant. The

return spread for the two extreme put option portfolios is positive with a magnitude of 5:9% per

month, but it is not statistically signi�cant.

5.2 Robustness With Respect to the Option Sample

We now investigate the relationship between expected option returns and underlying volatility

using �ve other option samples with di¤erent maturities and moneyness. We examine the fol-

lowing �ve option samples: two-month at-the-money options, one-month in-the-money options,

two-month in-the-money options, one-month out-of-the-money options, and two-month out-of-

the-money options. We de�ne at-the-money as having moneyness of 0:95 � K=S � 1:05, in-the-
money calls as 0:80 � K=S < 0:95; and in-the-money puts as 1:05 < K=S � 1:20. Out-of-the-
money calls are de�ned as 1:05 < K=S � 1:20 and out-of-the-money puts as 0:80 � K=S < 0:95.

The results are presented in Table 8.

Panel A of Table 8 provides time-series average returns of call option portfolios sorted on

30-day realized volatility for the �ve alternative option samples. Consistent with the benchmark

results in Table 2, we �nd that returns on call option portfolios decrease with underlying volatility

for all option samples. The return di¤erences between the two extreme portfolios are negative and

statistically signi�cant in all cases, with magnitudes ranging from �7:8% to �18:6% per month.
For instance, for two-month at-the-money calls, the equal-weighted average option portfolio

returns decrease monotonically with underlying volatility. The return spread is �17:1% per

month and highly signi�cant with a Newey-West t-statistic of �3:04.
Panel B of Table 8 summarizes average returns of put option portfolios sorted on 30-day

realized volatility for the �ve option samples. Average put option returns exhibit a strong positive

relationship with underlying volatilities. The returns spreads are all positive and statistically

signi�cant, ranging from 5:7% to 17:8% per month. For instance, for two-month at-the-money

puts, average returns monotonically increase from �20:7% per month for the lowest volatility

portfolio to �5:6% per month for the highest volatility portfolio. The resulting return spread is

15:1% per month and is both economically and statistically signi�cant.

5.3 Robustness With Respect to the Portfolio Weighting Method

In this subsection, we examine if the negative (positive) relation between call (put) option portfo-

lio returns and underlying volatility persists if di¤erent weighting methods are used for computing

option portfolio returns. We calculate option volume weighted, option open interest weighted
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and option value weighted average portfolio returns. Option value is de�ned as the product of

the option�s open interest and its price.9

Table 9 contains return spreads for option portfolios sorted on 30-day realized volatility, using

these alternative weighting methods. Regardless of the weighting method, the return spreads

are negative (positive) for call (put) option portfolios, and they are statistically signi�cant in

most cases. These results suggest that our empirical �ndings are not due to the equal-weighting

method used in Table 2.

6 Volatility and the Time Series of Index Option Returns

Section 3 uses the cross-section of equity options to provide empirical evidence supporting Propo-

sitions 1 and 2. We now turn to the implications of our results for the extensive literature on

index option returns.10 We document that call (put) options with high underlying stock volatil-

ities tend to have lower (higher) returns in the subsequent month. In this section, we explore

the time-series implications of Propositions 1 and 2 by studying the relation between monthly

S&P 500 index option (SPX) returns and S&P 500 index volatility. Consistent with Proposition

1 and 2, we �nd that SPX call (put) options tend to have lower (higher) returns in the month

following a high volatility month.

6.1 Data

On the �rst trading day after each month�s option expiration date, we collect index options that

mature in the next month with 0:9 � K=S � 1:1. Table 10 provides summary statistics for SPX
option data by moneyness. Index put options (especially out-of-the-money puts) generate large

negative returns, consistent with the existing literature (see, among others, Bondarenko, 2003).

For example, for the moneyness interval 0:94 < K=S � 0:98, the average return is �40:6% per

month in our sample. Table 10 also shows that in our sample, out-of-the-money SPX calls have

large negative returns. This is puzzling because expected call option returns should increase as

a function of the strike price. This may be due to our sample period.

Comparing Tables 10 and 1 highlights several important di¤erences between index options

and individual stock options. First, the volatility skew, the slope of implied volatility against

9We also considered portfolio returns weighted by underlying stock capitalization and �nd similar results.
These results are available upon request.
10This literature includes the work by Jackwerth (2000), Coval, and Shumway (2001), Bakshi, and Kapadia

(2003), Bondarenko (2003), Jones (2006), Driessen, and Maenhout (2007), Driessen, Maenhout, and Vilkov (2009),
Santa-Clara, and Saretto (2009), Broadie, Chernov, and Johannes (2009), Constantinides et al. (2009, 2011 and
2013) and Buraschi, Trojani, and Vedolin (2014).
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moneyness, is much less pronounced for individual stock options. Second, the average monthly

S&P 500 index volatility is 17%, which translates into a volatility risk premium (implied volatility

minus realized volatility) as large as 10% for index options. This is in stark contract to the

volatility risk premium we observe for individual stock options. Third, index options have much

larger Vega and smaller Gamma than stock options.

6.2 Analyzing the Time Series of Index Option Returns

Propositions 1 and 2 characterize a general property of expected option returns: call (put) option

returns decrease (increase) with underlying volatility. This property should hold in the time series

of option returns as well as in the cross-section. We investigate the time-series implications of

Propositions 1 and 2 by using index option returns to estimate the following time-series regression:

Ri
t+1 = constant+ �1V OLt + �2Moneynessit + �3Index_rett + � (6.1)

where Ri
t+1 is the return on holding index option i from month t to month t+ 1, Index_rett is

the return of S&P 500 in month t and V OLt is the index volatility. We consider four proxies for

S&P 500 index volatility: the 14-day realized volatility, the 30-day realized volatility, the 60-day

realized volatility, and the implied volatility. These volatilities are de�ned as in the cross-sectional

analysis and are known in month t.

The slope coe¢ cient estimate on volatility �1 is the main object of interest. According to

Propositions 1 and 2, we expect �1 to be negative for SPX call options and positive for SPX put

options. Moneyness (K/S) is also included in the regression because previous studies (e.g., Coval

and Shumway, 2001) have shown that moneyness is an important determinant of option returns.

Table 11 presents the coe¢ cient estimates, t-statistics, and adjusted R-squares for the re-

gressions in equation (6.1). Consistent with Propositions 1 and 2, the slope coe¢ cient on index

volatility is always negative (positive) for SPX call (put) options, regardless of the index volatility

proxy. For example, column (2) of Panel A of Table 11 shows that when using 30-day realized

volatility as the volatility proxy, the slope coe¢ cient on index volatility is �0:92 for SPX calls
and is highly signi�cant with a t-statistic of �3:79. For a 1% increase in S&P 500 volatility, the

return to holding an SPX call option over the next month is expected to decrease by 0:92%. In

contrast, in column (2) of Panel B of Table 11, the slope coe¢ cient on index volatility for SPX

puts is 1:39 and it is also highly statistically signi�cant.

Table 10 indicates that in-the-money SPX options are much less traded than their at-the-

money and out-of�the-money counterparts. The regressions so far, however, are based on the

full sample that also contains in-the-money SPX options. To ensure our results are not driven
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by illiquid in-the-money options, we repeat the regressions in (6.1) using only liquid options.

Speci�cally, we only consider SPX calls with 0:98 � K=S � 1:10 and SPX puts with 0:90 �
K=S � 1:02.
The regression results using only liquid options are presented in column (5) to (8) in Table

11. Consistent with the results using the full sample, we �nd that the slope coe¢ cient estimate

on index volatility is always negative (positive) and statistically signi�cant for SPX calls (puts)

regardless of the volatility proxy. For example, when using 60-day realized volatility as a proxy,

we �nd a slope coe¢ cient of �1:62 for SPX calls and 1:58 for SPX puts, and both are highly
signi�cant with t-statistics of �3:77 and 2:98 respectively. These results con�rm that our �ndings
are not due to illiquid index options.

7 Conclusion

This paper analyzes the relation between expected option returns and underlying volatility. We

demonstrate analytically that in the simple Black-Scholes framework, the expected call option

return is a decreasing function of underlying volatility and the expected put option return is an

increasing function of underlying volatility.

Our empirical results con�rm this theoretical prediction. We conduct a cross-sectional test

using stock options. We �nd that call (put) options on high volatility stocks tend to have lower

(higher) returns over the next month. We also conduct a time-series test using index option

returns. Following high volatility periods, index call (put) options tend to have lower (higher)

returns over the next month. Our empirical �ndings are robust to di¤erent empirical implemen-

tation choices, such as di¤erent option samples, weighting methods, and volatility proxies..

Our �ndings have important implications for other areas of �nance research. Many �nancial

instruments, such as credit default swaps, callable bonds, and levered equity, to name just a few,

have embedded option features. Our theoretical results are also applicable to these assets. We

plan to address this in future research.
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Appendix A: Proof of Proposition 2

In this appendix, we present the proof of Proposition 2. The expected gross return of holding a

put option to expiration in (2.4) can be rewritten using the Black-Scholes formula.

Rput =
Et[max(K � ST ; 0)]

Pt(� ; St; �;K; r)

=

R z�
(K � Ste

��� 1
2
�2�+�

p
�z) 1p

2�
e�

z2

2 dz

Pt(� ; St; �;K; r)

=
e�� [e���KN(�d�2)� StN(�d�1)]
e�r�KN(�d2)� StN(�d1)

(A.1)
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Taking the derivative with respect to � in (A.1) yields:

@Rput

@�
=

e��
p
�St (�d�1)[e�r�KN(�d2)� StN(�d1)]� e�� [e���KN(�d�2)� StN(�d�1)]

p
�St (�d1)

[e�r�KN(�d2)� StN(�d1)]2

=
e��
p
�Stf (�d�1)[e�r�KN(�d2)� StN(�d1)]�  (�d1)[e���KN(�d�2)� StN(�d�1)]g

[e�r�KN(�d2)� StN(�d1)]2

where we use the fact that the Vega of a put option is
p
�St (�d1). Clearly, the sign of @Rput@�

depends on  (�d�1)[e�r�KN(�d2)� StN(�d1)]� (�d1)[e���KN(�d�2)� StN(�d�1)], which we
denote by B. Next we show B is positive. To see this,

B =  (�d�1)[e�r�KN(�d2)� StN(�d1)]�  (�d1)[e���KN(�d�2)� StN(�d�1)]
B

 (�d�1) (�d1)
=

e�r�KN(�d2)� StN(�d1)
 (�d1)

� e���KN(�d�2)� StN(�d�1)
 (�d�1)

.
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Using the fact that e�r�K (�d2) = St (�d1),

B

 (�d�1) (�d1)
=

St (�d1)
 (�d2) N(�d2)� StN(�d1)

 (�d1)
�

St (�d�1)
 (�d�2)

N(�d�2)� StN(�d�1)
 (�d�1)

= Stf[
N(�d2)
 (�d2)

� N(�d1)
 (�d1)

]� [N(�d
�
2)

 (�d�2)
� N(�d�1)
 (�d�1)

]g

= Stf[
N(�d�1)
 (�d�1)

� N(�d�2)
 (�d�2)

]� [N(�d1)
 (�d1)

� N(�d2)
 (�d2)

]g.

Because the expected rate of return on a risky asset exceeds the risk-free rate (� > r), we have

d�1 > d1 and d�2 > d2. One can easily verify that
N(�d)
 (�d) is a decreasing and convex function in d.

It follows that11

[
N(�d�1)
 (�d�1)

� N(�d�2)
 (�d�2)

]� [N(�d1)
 (�d1)

� N(�d2)
 (�d2)

] > 0.

Therefore,

B > 0) @Rput

@�
> 0

Appendix B: Expected Stock Returns and Expected Op-

tion Returns

In this appendix, we show that expected call (put) option returns increase (decrease) with ex-

pected stock returns: @Rcall
@�

> 0 and @Rput
@�

< 0. First, recall from (2.12):

Rcall =
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11The second-order derivative of a decreasing and convex function is positive. E¤ectively [N(�d
�
1)

 (�d�1)
� N(�d�2)

 (�d�2)
]�

[N(�d1) (�d1) �
N(�d2)
 (�d2) ] is the second order derivative of

N(�d)
 (�d) with respect to d and therefore it is positive.
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Taking the derivative with respect to � leads to

@Rcall

@�
=
�e�� [StN(d

�
1)� e���KN(d�2)] + e�� [�e���KN(d�2)]

StN(d1)� e�r�KN(d2)

where  is the probability density function of standard normal distribution. Note that we apply

the fact that the Rho of a call option is �e���KN(d�2) in deriving the above equation.
@Rcall
@�

can

be further simpli�ed:

@Rcall

@�
=

�e�� [StN(d
�
1)� e���KN(d�2)] + �KN(d�2)

StN(d1)� e�r�KN(d2)

=
�e��StN(d

�
1)

StN(d1)� e�r�KN(d2)
> 0.

To see that the derivative is positive, notice that the denominator is just the price of call option

which is always positive, and the numerator is obviously greater than zero.

Next we show that the expected put option return is a decreasing function of the expected

stock return. Recall that the expected put option return is:

Rput =
e�� [e���KN(�d�2)� StN(�d�1)]
e�r�KN(�d2)� StN(�d1)

where d�1, d
�
2, d1, and d2 are de�ned the same as the above. Taking the derivative with respect

to � yields:

@Rput

@�
=

�e�� [e���KN(�d�2)� StN(�d�1)] + e�� [��e���KN(�d�2)]
e�r�KN(�d2)� StN(�d1)

=
��e��StN(�d�1)

e�r�KN(�d2)� StN(�d1)
< 0.

Note the denominator is the price of put option which is always positive, and therefore the ratio

itself is negative.

Appendix C: Holding-Period Expected Option Returns

In this appendix, we derive expected holding-period option returns in the Black-Scholes model.

To save space, we only focus on call options. The analysis of put options proceeds along the same

lines. To facilitate the notation, we consider an European call option at time 0 that matures

at time T . By de�nition, the expected return of holding the call option from time 0 to time h

24



(h < T ) is:

Rh
call =

E0fShN(d01)� e�r(T�h)KN(d02)g
S0N(d1)� e�rTKN(d2)

where ShN(d01)� e�r(T�h)KN(d02) is the future value of the option at time h, and

d01 =
ln Sh

K
+ (r + 1

2
�2)(T � h)

�
p
T � h

d02 =
ln Sh

K
+ (r � 1

2
�2)(T � h)

�
p
T � h

d1 =
ln S0

K
+ (r + 1

2
�2)T

�
p
T

d2 =
ln S0

K
+ (r � 1

2
�2)T

�
p
T

.

The expected future value of the option at time h can be split into two pieces:

E0fShN(d01)� e�r(T�h)KN(d02)g =

Z 1

�1
[S0e

�h� 1
2
�2h+�

p
hzN(d01)� e�r(T�h)KN(d02)]

1p
2�
e�

z2

2 dz

=

Z 1

�1
S0e

�h� 1
2
�2h+�

p
hzN(d01)

1p
2�
e�

z2

2 dz

+

Z 1

�1
�e�r(T�h)KN(d02)

1p
2�
e�

z2

2 dz.

For the �rst integral, it can be shown thatZ 1

�1
S0e

�h� 1
2
�2h+�

p
hzN(d01)

1p
2�
e�

z2

2 dz

= S0e
�h

Z 1

�1

1p
2�
e�

(z��
p
h)2

2 N(
ln S0

K
+ �h� 1

2
�2h+ �

p
hz + (r + 1

2
�2)(T � h)

�
p
T � h

)dz: (C.1)

De�ne a new variable z� = z � �
p
h and (C.1) becomes

S0e
�h

Z 1

�1

1p
2�
e�

z�2
2 N(

ln S0
K
+ (�� r)h+ (r + 1

2
�2)T

�
p
T � h

+

r
h

T � h
z�)dz�: (C.2)

Now, using the fact that (see Rubinstein 1984)Z 1

�1

1p
2�
e�

z�2
2 N(A+Bz�) = N(

Ap
1 +B2

)

(C.2) can be further simpli�ed as

S0e
�hN(

ln S0
K
+ (�� r)h+ (r + 1

2
�2)T

�
p
T

). (C.3)
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Following the same steps, the second integral is rewritten as

Z 1

�1
�e�r(T�h)KN(d02)

1p
2�
e�

z2

2 dz = �e�r(T�h)KN(
ln S0

K
+ (�� r)h+ (r � 1

2
�2)T

�
p
T

). (C.4)

Putting (C.3) and (C.4) together, we obtain

Rh
call =

S0e
�hN(

ln
S0
K
+(��r)h+(r+ 1

2
�2)T

�
p
T

)� e�r(T�h)KN(
ln

S0
K
+(��r)h+(r� 1

2
�2)T

�
p
T

)

S0N(d1)� e�rTKN(d2)
.

This can be further simpli�ed to

Rh
call =

e�h[S0N(d
�
1)� e�[r+(��r)HP ]TKN(d�2)]

S0N(d1)� e�rTKN(d2)
(C.5)

d�1 =
ln S0

K
+ [HP (�� r) + r + 1

2
�2]T

�
p
T

d�2 =
ln S0

K
+ [HP (�� r) + r � 1

2
�2]T

�
p
T

where HP = h=T .

Appendix D: Expected Option Returns in the HestonModel

In this appendix, we derive the expected return of holding a call option to expiration in the

Heston (1993) stochastic volatility model. The Heston (1993) model assumes that the asset price

and its spot variance obey the following dynamics under the physical measure P

dSt = �Stdt+ St
p
VtdZ

P
1

dVt = �(� � Vt)dt+ �
p
VtdZ

P
2

where � is the drift of the stock price, � is the long run mean of the stock variance, � is the rate

of mean reversion, � is the volatility of volatility, and Z1 and Z2 are two correlated Brownian

motions with E[dZ1dZ2] = �dt. The dynamics under the risk-neutral measure Q are

dSt = rStdt+ St
p
VtdZ

Q
1

dVt = [�(� � Vt)� �Vt]dt+ �
p
VtdZ

Q
2

26



where r is the risk-free rate and � is the market price of volatility risk. Again we consider the

expected return of holding a call option to expiration:

RHeston
Call (St; Vt; �) =

Et[max(ST �K; 0)]

Ct(t; T; St; Vt))
=

EP
t [max(ST �K; 0)]

EQ
t [e

�r� max(ST �K; 0)]
.

Heston (1993) provides a closed-form solution to an European call option, up to a univariate

numerical integral:

C(t; T; St; Vt) = EQ
t [e

�r� max(ST �K; 0)] = StP1 � e�r�KP2 (D.1)

where P1 and P2 are given by12

Pj =
1

2
+
1

�

Z 1

0

Re(
e�i� lnKfj(x; V; � ;�)

i�
)d� (D.2)

fj(x; V; � ;�) = eC(� ;�)+D(� ;�)V+i�x

C(� ;�) = r�i� +
a

�2
f(bj � ���i+ d)� � 2 ln[1� ged�

1� g
]g

D(� ;�) =
bj � ���i+ d

�2
[
1� ed�

1� ged�
]

g =
bj � ���i+ d

bj � ���i� d

d =
q
(���i� bj)2 � �2(2uj�i� �2)

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �+ �� ��; b2 = �+ �:

By analogy, it can be shown that expected call option payo¤ at expiration is

EP
t [max(ST �K); 0] = e�� [StP

�
1 � e���KP �2 ] (D.3)

where

P �j =
1

2
+
1

�

Z 1

0

Re(
e�i� lnKf �j (x; V; � ;�)

i�
)d� (D.4)

f �j (x; V; � ;�) = eC(� ;�)+D(� ;�)V+i�x

12Note that x = lnS:
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C(� ;�) = ��i� +
a

�2
f(bj � ���i+ d)� � 2 ln[1� ged�

1� g
]g

D(� ;�) =
bj � ���i+ d

�2
[
1� ed�

1� ged�
]

g =
bj � ���i+ d

bj � ���i� d

d =
q
(���i� bj)2 � �2(2uj�i� �2)

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �� ��; b2 = �:

Putting (D.1) and (D.3) together, the analytical expected holding-to-maturity call option return

in Heston model is

RHeston
Call (St; Vt; �) =

e�� [StP
�
1 � e���KP �2 ]

StP1 � e�r�KP2
: (D.5)

Appendix E: Expected Straddle Returns

In this appendix we study the relation between expected straddle returns and the underlying

volatility. The expected gross return on a straddle is de�ned as

Rstraddle =
Et[max(ST �K; 0)] + Et[max(K � ST ; 0)]

Ct(� ; St; �;K; r) + Pt(� ; St; �;K; r)

=
[StN(d

�
1)� e���KN(d�2)]e

�� + [e���KN(�d�2)� StN(�d�1)]e��
StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)

.

We investigate the impact of volatility on expected straddle returns by taking the derivative of

Rstraddle with respect to �. It follows that

@Rstraddle

@�
=

2e��
p
�St (d

�
1)A� 2e��

p
�St (d1)B

[StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)]2

=
2e��

p
�Stf (d�1)A�  (d1)Bg

[StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)]2

where A = StN(d1)�e�r�KN(d2)+e�r�KN(�d2)�StN(�d1) and B = StN(d
�
1)�e���KN(d�2)+

e���KN(�d�2)�StN(�d�1). It is clear that the sign of @Rstraddle@�
is determined by  (d�1)A� (d1)B.

This term can be positive or negative depending on underlying parameters.

It can be shown that d2 > 0 is a su¢ cient condition for @Rstraddle
@�

< 0. We now prove that

d2 > 0 implies  (d�1)A�  (d1)B < 0. First recall from previous analysis d�1 > d1 > d2. We then
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have

d2 > 0) 0 <  (d�1) <  (d1). (E.1)

Moreover, note that
@A

@r
= �e�r�K[N(d2)�N(�d2)]

and therefore,

d2 > 0)
@A

@r
> 0

which further implies

0 < A < B (E.2)

by noting that B is obtained by replacing r with � in A. Putting together (E.1) and (E.2),

d2 > 0)  (d�1)A�  (d1)B < 0) @Rstraddle

@�
< 0
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Table 1: Summary Statistics for Equity Options

We present averages by moneyness category of monthly equity option returns (return), the un-

derlying stock�s realized volatility over the preceding month (30-day realized vol), option implied

volatility (implied vol), option volume (volume) and the option Greeks. Panel A reports on call

options and Panel B on put options. We compute monthly option returns using the midpoint of

bid and ask quotes. Realized volatility is calculated as the standard deviation of the logarithms

of daily returns over the preceding month. The sample consists of options that are at-the-money

(0:95 � K=S � 1:05) and approximately one month from expiration. The sample period is from

January 1996 to July 2013.

Moneyness K=S [0:95� 0:97] (0:97� 0:99] (0:99� 1:01] (1:01� 1:03] (1:03� 1:05]
Panel A: Call Options

Return 0.054 0.080 0.111 0.119 0.100

30-day realized vol 47.06% 45.57% 44.70% 44.23% 44.97%

Implied vol 49.03% 46.94% 45.49% 44.90% 45.44%

Volume 232 306 385 430 396

Open interest 1846 1855 1798 1897 1885

Delta 0.68 0.61 0.53 0.45 0.38

Gamma 0.11 0.12 0.14 0.13 0.12

Vega 4.41 4.81 4.95 4.89 4.52

Panel B: Put Options

Return -0.137 -0.121 -0.100 -0.104 -0.087

30-day realized vol 45.86% 44.88% 45.51% 46.19% 47.62%

Implied vol 48.97% 47.29% 47.01% 47.24% 48.25%

Volume 318 359 340 278 207

Open interest 1875 1841 1672 1670 1563

Delta -0.33 -0.39 -0.47 -0.55 -0.61

Gamma 0.10 0.11 0.13 0.12 0.11

Vega 4.69 5.15 5.27 5.25 4.87
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Table 2: Cross-Sectional Option Returns Sorted on 30-day Realized Volatility

We report average returns for the time series of equal-weighted option portfolios sorted on 30-day

realized volatility, as well as the return di¤erences between the two extreme portfolios. Panel A

reports on call options and Panel B on put options. Panel C reports results for option returns

based on ask prices rather than the midpoint of bid and ask quotes. Every month, all available

one-month at-the-money options are sorted into �ve quintile portfolios according to their 30-day

realized volatility. Portfolio Low (High) contains options with the lowest (highest) underlying

volatilities. Newey-West t-statistics using four lags are reported in parentheses. The sample

period is from January 1996 to July 2013. Statistical signi�cance at the 10%, 5%, and 1% level

is denoted by *, **, and *** respectively.

Panel A: Call Option Portfolios

Low 2 3 4 High H-L

0:95 � K=S � 1:05 0.147 0.128 0.111 0.084 0.009 -0.138***

(-3.42)

0:975 � K=S � 1:025 0.155 0.145 0.120 0.094 0.017 -0.138***

(-3.50)

Panel B: Put Option Portfolios

Low 2 3 4 High H-L

0:95 � K=S � 1:05 -0.146 -0.153 -0.109 -0.077 -0.075 0.071**

(2.00)

0:975 � K=S � 1:025 -0.145 -0.157 -0.101 -0.065 -0.068 0.077**

(2.08)

Panel C: Using Ask Prices

Low 2 3 4 High H-L

Call Option Portfolios 0.048 0.045 0.033 0.012 -0.060 -0.108***

(-2.94)

Put Option Portfolios -0.209 -0.209 -0.165 -0.133 -0.133 0.076**

(2.30)
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Table 3: Portfolios Double-Sorted on Beta and Underlying Volatility

We report average equal-weighted returns on option portfolios sorted on beta and 30-day realized

volatility. Panel A reports on call options and Panel B on put options. Every month, all available

one-month at-the-money options are �rst ranked into �ve quintile portfolios according to the

underlying stocks�CAPM betas. Then, within each beta quintile, options are further sorted

into �ve portfolios based on 30-day realized volatility. Portfolio Low (High) contains options

with the lowest (highest) underlying volatility. CAPM beta is estimated using daily returns over

the past 30 days preceding the portfolio formation date. Newey-West t-statistics with four lags

are reported in parentheses. The sample period is from January 1996 to July 2013. Statistical

signi�cance at the 10%, 5% and 1% level is denoted by *, **, and *** respectively.

Panel A: Call Options

L 2 3 4 H H-L

1 0.16 0.13 0.10 0.07 -0.01 -0.17***

(-3.36)

2 0.17 0.15 0.15 0.14 0.06 -0.11**

Beta Quintiles (-2.20)

3 0.15 0.19 0.15 0.11 0.05 -0.10*

(-1.90)

4 0.11 0.13 0.11 0.11 0.03 -0.08**

(-2.03)

5 0.09 0.07 0.10 0.02 0.01 -0.09**

(-2.18)

Panel B: Put Options

L 2 3 4 H H-L

1 -0.15 -0.11 -0.12 -0.12 -0.11 0.04

(0.90)

2 -0.14 -0.16 -0.16 -0.11 -0.10 0.04

(0.90)

Beta Quintiles 3 -0.15 -0.20 -0.12 -0.07 -0.06 0.09**

(2.32)

4 -0.13 -0.12 -0.13 -0.07 -0.06 0.08*

(1.81)

5 -0.13 -0.11 -0.09 -0.06 -0.07 0.06*

(1.95)
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Table 4: Fama-MacBeth Regressions

We report results for the following Fama-MacBeth regression

Ri
t+1= 
0;t+
1;tV OL

i
t+�tZ

i
t+�

where Ri
t+1 is the return on option i from month t to month t+1, V OL

i
t is the underlying stock

volatility, and Zi
t is a vector of control variables that includes moneyness, the stock�s CAPM

beta (CAPM beta), �rm size (size) and book-to-market (btm). We consider three underlying

volatility measures: 30-day realized volatility, 60-day realized volatility, and 365-day realized

volatility. CAPM beta is estimated using daily returns over the 30 days preceding the portfolio

formation date. Size and btm are computed according to Fama and French (1992). Newey-West

t-statistics with four lags are reported in parentheses. The sample period is from January 1996

to July 2013. The sample consists of one-month at-the-money options. Statistical signi�cance

at the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.

Calls Puts

(1) (2) (3) (4) (5) (6)

Intercept -0.37 -0.374 -0.412 -0.643 -0.656 -0.690*

(-1.35) (-1.37) (-1.49) (-1.58) (-1.60) (-1.68)

30-day realized vol -0.254*** 0.105**
(-4.57) (2.28)

60-day realized vol -0.248*** 0.174***
(-3.88) (3.36)

365-day realized vol -0.183** 0.222***
(-2.39) (3.35)

CAPM beta 0.011 0.009 0.003 -0.004 -0.01 -0.011

(0.81) (0.72) (0.27) (-0.29) (-0.73) (-0.86)

Size -0.000 -0.000 -0.000 -0.001* -0.001 -0.000

(-0.46) (-0.40) (-0.31) (-1.96) (-1.64) (-1.24)

Btm 0.002 0.002 0.002 0.006 0.007 0.01

(0.82) (0.84) (0.75) (0.97) (1.11) (1.52)

Adjusted R-square 2.30% 2.40% 2.70% 2.80% 3.00% 3.30%
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Table 5: Expected Option Returns in the Heston Model

We report expected option returns in the Heston (1993) stochastic volatility model. The compu-

tations are based on the model parameters reported in Broadie, Chernov, and Johannes (2009),

which are calibrated from historical S&P 500 index return data. These parameters are reported

in Panel A. For simplicity, the dividend yield is set to zero. Expected option returns are com-

puted for di¤erent combinations of the expected stock return (�), the current stock variance (�),

and current stock prices (S). Panel B reports on moneyness K=S = 95=100 and Panel C on

K=S = 105=100.

Panel A: Parameters

r � � � � t � K

4.50% 0.15 5.33 0.14 -0.52 0.8333 0 100

Panel B: S = 95

�

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

8% 0.260 0.171 0.132 0.110 0.096 0.086 0.079 0.073 0.068

Calls � 12% 0.618 0.387 0.294 0.242 0.209 0.186 0.169 0.155 0.145

16% 1.055 0.635 0.473 0.386 0.331 0.293 0.265 0.243 0.225

8% -0.051 -0.046 -0.042 -0.039 -0.036 -0.034 -0.032 -0.030 -0.029

Puts � 12% -0.113 -0.101 -0.093 -0.086 -0.081 -0.076 -0.072 -0.069 -0.066

16% -0.173 -0.156 -0.143 -0.132 -0.124 -0.117 -0.112 -0.107 -0.102

Panel C: S = 105 �

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

8% 0.057 0.053 0.050 0.047 0.045 0.043 0.042 0.040 0.039

Calls � 12% 0.119 0.111 0.104 0.098 0.094 0.090 0.086 0.083 0.080

16% 0.181 0.169 0.159 0.150 0.143 0.137 0.131 0.126 0.122

8% -0.160 -0.119 -0.097 -0.083 -0.074 -0.066 -0.061 -0.056 -0.052

Puts � 12% -0.318 -0.244 -0.203 -0.175 -0.156 -0.142 -0.130 -0.121 -0.113

16% -0.448 -0.353 -0.297 -0.260 -0.233 -0.212 -0.195 -0.182 -0.171
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Table 6: Straddle Portfolio Returns Sorted on Volatility

We report average returns for �ve straddle portfolios sorted on the volatility of the underlying

stock. We use three samples of straddles based on moneyness: 0:95 � K=S � 1, 0:875 � K=S <

0:95, and 0:80 � K=S < 0:875. Each month, we select call and put options on the same stock

with the same strike price and maturity to form straddles. These straddles are then sorted

into �ve quintile portfolio based on the realized volatility over the preceding month. Portfolio

Low (High) contains straddles with the lowest (highest) underlying volatility. We report equal-

weighted and volume-weighed portfolio returns. Straddle volume is computed as the average

volume for the call and put options that form the straddle. The sample period is from January

1996 to July 2013. Statistical signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and

*** respectively.

Panel A: 0:95 � K=S � 1
Low 2 3 4 High H-L

Equal-weighted 0.028 0.010 0.022 0.014 -0.026 -0.054***

(-2.90)

Volume-weighted 0.026 -0.006 0.005 0.014 -0.037 -0.063**

(-2.14)

Panel B: 0:875 � K=S < 0:95

Equal-weighted 0.022 0.034 0.025 0.015 -0.033 -0.055***

(-3.25)

Volume-weighted 0.013 0.044 -0.01 0.003 -0.044 -0.057**

(-2.52)

Panel C: 0:80 � K=S < 0:875

Equal-weighted 0.020 0.013 0.014 0.000 -0.065 -0.085***

(-4.97)

Volume-weighted 0.021 0.001 -0.005 -0.021 -0.046 -0.067**

(-2.33)
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Table 7: Option Portfolio Returns Based on Alternative Volatility Measures

We report equal-weighted option portfolio returns sorted on di¤erent measures of underlying

volatility, as well as the return di¤erences between the two extreme portfolios. Panel A reports

on call options and Panel B reports on put options. We consider four volatility measures:

realized volatility over the previous 14 days, realized volatility over the previous 60 days, realized

volatility over the previous year, and option-implied volatility. Every month, all available options

are ranked into �ve quintile portfolios based on underlying volatilities. Portfolio Low (High)

contains options with the lowest (highest) underlying volatilities. Newey-West t-statistics with

four lags are reported in parentheses. The sample period is from January 1996 to July 2013. The

sample consists of one-month at-the-money options. Statistical signi�cance at the 10%, 5%, and

1% level is denoted by *, **, and *** respectively.

Low 2 3 4 High H-L

Panel A: Calls

14-day realized vol 0.146 0.122 0.114 0.081 0.016 -0.130***

(-3.54)

60-day realized vol 0.155 0.109 0.115 0.086 0.014 -0.141***

(-3.44)

365-day realized vol 0.130 0.104 0.117 0.084 0.044 -0.086*

(-1.80)

Implied vol 0.156 0.117 0.134 0.081 -0.010 -0.166***

(-3.60)

Panel B: Puts

14-day realized vol -0.146 -0.139 -0.103 -0.086 -0.087 0.059*

(1.77)

60-day realized vol -0.157 -0.151 -0.109 -0.084 -0.059 0.098**

(2.49)

365-day realized vol -0.170 -0.144 -0.120 -0.071 -0.053 0.117***

(2.82)

Implied vol -0.130 -0.143 -0.118 -0.087 -0.083 0.047

(1.13)
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Table 8: Option Portfolio Returns for Alternative Option Samples

We report equal-weighted option portfolio returns sorted on 30-day realized volatility, as well

as the return di¤erences between the two extreme portfolios. Di¤erent option samples are used:

two-month at-the-money (ATM) options, one-month in-the-money (ITM) options, two-month

ITM options, one-month out-of-the-money (OTM) options, and two-month OTM options. ATM

options are de�ned by moneyness 0:95 � K=S � 1:05, ITM options are de�ned by moneyness

0:80 � K=S < 0:95 for calls and 1:05 < K=S � 1:20 for puts, and OTM options are de�ned by

moneyness 1:05 < K=S � 1:20 for calls and 0:80 � K=S < 0:95 for puts. Newey-West t-statistics

with four lags are reported in parentheses. The sample period is from January 1996 to July 2013.

Statistical signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.

Low 2 3 4 High H-L

Panel A: Calls

Two-month ATM 0.144 0.135 0.112 0.035 -0.027 -0.171***

(-3.04)

One-month ITM 0.053 0.060 0.042 0.026 -0.025 -0.078***

(-3.68)

Two-month ITM 0.089 0.084 0.068 0.027 -0.067 -0.156***

(-5.22)

One-month OTM 0.055 0.049 0.077 0.048 -0.066 -0.121**

(-2.21)

Two-month OTM 0.132 0.088 0.098 0.022 -0.054 -0.186**

(-2.36)

Panel B: Puts

Two-month ATM -0.207 -0.149 -0.118 -0.079 -0.056 0.151***

(3.20)

One-month ITM -0.091 -0.069 -0.052 -0.043 -0.034 0.057***

(2.93)

Two-month ITM -0.127 -0.090 -0.055 -0.048 -0.023 0.105***

(3.63)

One-month OTM -0.309 -0.217 -0.193 -0.090 -0.131 0.178***

(2.76)

Two-month OTM -0.276 -0.197 -0.188 -0.118 -0.099 0.177**

(2.04)
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Table 9: Option Portfolio Returns Using Di¤erent Weighting Methods

We report di¤erences between extreme portfolio option returns for portfolios sorted on 30-day

realized volatility, for di¤erent option samples. Alternative weighting methods are used: volume

weighted, open interest weighted, and option value weighted. Option value is de�ned as the

product of option price and option open interest Newey-West t-statistics with four lags are

reported in parentheses. The sample period is from January 1996 to July 2013. Statistical

signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.

Volume Weighted Open Interest Weighted Option Value Weighted

Panel A: Calls

One-month ATM -0.182*** -0.133*** -0.107**

(-3.56) (-3.09) (-2.35)

Two-month ATM -0.204** -0.235*** -0.216***

(-2.40) (-3.64) (-2.89)

One-month ITM -0.113*** -0.060** -0.066***

(-3.98) (-2.51) (-2.65)

Two-month ITM -0.210*** -0.188*** -0.191***

(-3.93) (-4.33) (-4.46)

One-month OTM -0.171** -0.059 -0.137*

(-2.14) (-0.90) (-1.75)

Two-month OTM -0.242** -0.292** -0.438***

(-1.99) (-2.42) (-2.98)

Panel B: Puts

One-month ATM 0.073 0.089* 0.052

(1.43) (1.87) (1.06)

Two-month ATM 0.081 0.187*** 0.170**

(0.97) (2.97) (2.50)

One-month ITM 0.035 0.099*** 0.090***

(1.09) (3.68) (2.93)

Two-month ITM 0.154*** 0.134*** 0.134***

(3.45) (2.86) (2.90)

One-month OTM 0.268*** 0.278*** 0.274***

(3.45) (4.14) (3.48)

Two-month OTM 0.310*** 0.307*** 0.349***

(3.05) (2.93) (3.71)
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Table 10: Summary Statistics for S&P 500 Index Options

We report the means of monthly S&P 500 index option returns (return), implied volatility (im-

plied vol), option volume (volume), and option Greeks by moneyness. Panel A reports on calls

and Panel B reports on puts. We compute the monthly option return using the midpoint of

the bid and ask quotes. The sample consists of S&P 500 index options (SPX) with moneyness

0:90 � K=S � 1:10 and one-month maturity. The sample period is from January 1996 to July

2013.

Moneyness K=S [0:90�0:94] (0:94�0:98] (0:98�1:02] (1:02�1:06] (1:06�1:10]
Panel A: SPX calls

Return 0.027 0.057 0.060 -0.112 -0.617

Implied vol 27.30% 22.75% 19.68% 17.42% 17.28%

Volume 251 306 2029 2867 2156

Open interest 9679 11770 15236 15388 14807

Delta 0.88 0.76 0.51 0.20 0.06

Gamma 0.002 0.005 0.007 0.005 0.002

Vega 60.32 93.12 119.86 80.66 32.99

Panel B: SPX puts

Return -0.540 -0.406 -0.224 -0.133 -0.171

Implied vol 26.56% 22.87% 19.66% 18.20% 22.68%

Volume 3699 2662 2619 391 338

Open interest 19604 18649 14674 8992 12322

Delta -0.11 -0.23 -0.48 -0.75 -0.88

Gamma 0.002 0.005 0.007 0.006 0.003

Vega 55.13 90.56 119.80 93.61 53.04

43



Table 11: Regressions of Index Option Returns on Index Volatility

Using a pooled sample of S&P 500 index options (SPX) with 0:9 � K=S � 1 and one-month

maturity, we provide results for the regressions of monthly SPX option returns on index volatility:

Ri
t+1 = constant+ �1V OL

i
t + �2Moneynessit + �3Index_rett + �

where Ri
t+1 is the option return from month t to month t+ 1, Index_rett is the S&P 500 index

return in month t and V OLt is the index volatility. We consider four index volatility measures:

realized volatility over the previous 14 days, realized volatility over the preceding month, realized

volatility over the previous 60 days, and option-implied volatility. In addition, we run the same

regressions using only liquid SPX options, consisting of calls with 0:98 � K=S � 1:1 and puts

with 0:90 � K=S � 1:02. Newey-West t-statistics with four lags are reported in parentheses.

The sample period is from January 1996 to July 2013.

Panel A: SPX calls Full sample Only liquid options

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 4.09 4.18 4.28 7.11 9.27 9.21 9.13 10.85

(6.01) (6.37) (6.69) (14.00) (9.44) (9.31) (9.15) (11.93)

14 day realized vol -0.46 -0.19

(-1.92) (-0.55)

30 day realized vol -0.92 -0.86
(-3.79) (-2.52)

60 day realized vol -1.46 -1.62
(-4.80) (-3.77)

implied vol -3.70 -4.44
(-5.62) (-4.47)

Adjusted R-square 1.13% 1.22% 1.37% 2.01% 2.54% 1.73% 1.37% 2.01%

Panel B: SPX puts Full sample Only liquid options

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -4.24 -4.22 -4.22 -4.50 -6.32 -6.14 -6.07 -6.77

(-8.80) (-8.65) (-8.57) (-9.33) (-8.97) (-8.62) (-8.44) (-8.70)

14 day realized vol 2.11 2.66
(3.99) (3.88)

30 day realized vol 1.39 1.89
(2.99) (3.14)

60-day realized vol 1.070 1.580
(2.64) (2.98)

implied vol 0.26 0.92
(0.66) (1.73)

Adjusted R-square 2.70% 1.73% 1.46% 1.13% 3.18% 2.06% 1.76% 1.27%
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