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Forecasting Corporate Bond Returns:

A Regressed Combination Approach

Using a comprehensive data set, we find that corporate bond returns are not only predictable by
traditional predictors (default spreads, term spreads, dividend yields, and issuer quality) but highly
predictable based on a new regressed combination model that combines information from an array
of 27 macroeconomic, stock and bond predictors. The predictive model based on the large set of
variables outperforms existing models substantially, and delivers out-of-sample forecasts that are
both statistically and economically significant and are closely linked to the real economy. Our
results suggest that stock market and macroeconomic variables contain important information for

future bond returns.
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There is a large body of literature on whether stock returns are predictable, and there is also an
equally impressive number of studies on government bond returns, but only a handful of research
on the predictability of corporate bond returnsE] Keim and Stambaugh (1986) conduct perhaps the
first major study on corporate bond return forecasting. Subsequently, Fama and French (1989) find
that default spreads, term spreads and dividend yields can predict corporate bond returns both in-
and out-of-sample. More recently, Greenwood and Hanson (2013) further identify issuer quality
and Lin, Wang and Wu (2014) use liquidity and forward rate factors as additional predictors for
corporate bond returns. The lack of studies on corporate bond return predictability is perhaps
due to the fact that the data of individual bonds were not as readily available as those of stocks
and government bonds. Recent availability of large publicly accessible corporate bond data offers
an excellent opportunity to revisit this issue. Given that the market size of corporate bonds is
almost as large as the stock market, it is important to understand their time-varying risk premia.
Moreover, corporate bond return predictability is of interest not only for asset pricing and portfolio
allocations, but also for understanding firms’ interest rate exposure, which is a substantial source

of financial risk to non-financial firms.

In this paper, we conduct a comprehensive study on the predictability of corporate bond returns
by focusing on four major questions. The first question is what economic variables can have
predictive power for corporate bond returns. The number of predictors used by Fama and French
(1989), Greenwood and Hanson (2013), among others, are admittedly few. While these studies
provide deep insights into why certain predictors should be looked at, they ignore other potentially
important predictors and hence may underestimate the true predictability. A particular concern
is that the economic value of a limited number of predictors prescribed by the existing studies is
not very significant. From the investment and risk management perspective, maximizing return

predictability is of great interest. In this paper, we consider three types of predictors which are

ISee, for example, Fama and Schwert (1977), Fama and French (1988), Campbell and Shiller (1988), Campbell,
Lo and MacKinlay (1997), Kothari and Shanken (1997), Pontiff and Schall (1998), Campbell and Vuolteenaho (2004),
Lettau and Ludvigson (2001), Ang and Bekaert (2007), Rapach, Strauss and Zhou (2010), Henkel, Martin and Nardari
(2011), Ferreira and Santa-Clara (2011) and Dangl and Halling (2012) for predicting stocks; and Fama and Bliss
(1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), Almeida, Graveline
and Joslin (2011) and Goh, Jiang, Tu and Zhou (2011) for predicting government bonds.



relevant in theory for corporate bond returns: stock market, Treasury market and corporate bond
market variables. We examine the predictive ability of these variables not only separately, but also
jointly with a total of 27 predictors. Indeed, as we shall demonstrate, this comprehensive set of
predictors improves the predictability of corporate bond returns dramaticallyE] Furthermore, the
analysis of subgroup predictors reveals important economic sources of return predictability for
bonds in different rating classes. For highly rated bonds, the Treasury market variables have the
highest predictive power while for junk-rated bonds, the stock market predictors and the variables
related to default premia are more powerful predictors. This finding suggests that expected returns
of highly rated bonds are primarily driven by term structure factors and expected returns of low
rated bonds are more closely linked to variables related to credit risk premia whose variations tied

strongly to long-term prospects of business conditions.

The second question is how to combine the information from a large set of predictors to obtain
optimal bond return forecasts. As shown by Welch and Goyal (2008) in the context of equity risk
premium forecasts, a naive multiple regression of asset returns on a large number of predictors
will over-parameterize the model and lead to poor out-of-sample forecasts. While the principal
component analysis (PCA) is a popular method in the literature for extracting information from
a large number of variables, the PCA in fact performs quite poorly out-of-sample too. A well-
known econometric tool (see, e.g., Timmermann, 2006) is a combination method. First, predictive
regressions are run on each predictor to obtain individual forecasts. Then a combination of the
individual forecasts, such as their mean, serves as the forecast. In macroeconomic forecasting,
Stock and Watson (2001) find that such a simple mean combination method is the favored strategy
rather than using dozens of individual predictive models. Consistent with their finding, Rapach,
Strauss and Zhou (2010) show that the mean combination method delivers a significant out-of-

sample forecast of the equity risk premium.

As a methodological contribution, we provide a simple, generic idea to improve combination

2In the stock market, Rapach, Strauss and Zhou (2010), and Kelly and Pruitt (2013) are examples of using large
sets of predictors to obtain significant predictability on the equity risk premium.



forecast methods. Motivated by Tu and Zhou’s (2011) study on improving the 1/N portfolio rule,
we consider an optimal portfolio of two forecasts, the sample mean and the combination forecast.
This method yields a new forecast which is simply a predictive regression on the combination
forecast. Since combination forecasts are widely used in econometrics and forecasting literature,
our new methodology potentially has much broader implications beyond the scope of this paper.
For simplicity, however, we shall focus on using two popular combination forecasts, the mean
forecast and Bates and Granger’s (1969) weighted-average forecast. We call the associate regressed
combination forecasts as the regressed mean combination (RMC) and the regressed weighted-

average combination (RWC) forecasts, respectively.

The RMC forecast has a close relationship to the partial least squares (PLS) forecast, which
was first proposed by Wold (1966) and has recently been developed further by Kelly and Pruitt
(2013, 2014). Kelly and Pruitt (2013) show that the PLS generates a powerful book-to-market
ratio predictor of the stock market, and Huang, Jiang, Tu and Zhou (2015) find that the PLS
provides a strong investor sentiment index for forecasting the equity risk premium. Interestingly,
the PLS and the RMC in fact belong to the same class of forecasters in the special case of linear
models, though the latter is more general and is applicable to nonlinear models as well. Hence, our
proposed methodology not only advances the literature on combination forecasts, but also provides
an alternative interpretation for the powerful PLS forecaster. Since our applications below show
that the RWC can improve the RMC further, the RWC forecaster will be of our focus throughout

this paper.

Empirically, we find that the RWC generates superior forecasts for corporate bond returns. For
example, the RWC delivers an in-sample average R*> of 11.22% at the monthly horizon across
bonds of different ratings and maturities, which is almost three times as large as the in-sample
average R” of 4% for the Fama-French model. In contrast, the popular PCA performs much worse,
with an in-sample average R” of only 0.25%. Further, the predictive power of the RWC tends to
increase with the return horizon locally. At the quarterly horizon, the in-sample R? of the RWC

forecast increases to 15.64%, whereas it is capped at 8.52% for the Fama-French model. In out-



of-sample forecasting, the RWC generates an average R> of 7.82% and 12.07% at monthly and
quarterly horizons, respectively, compared with 3.58% and 7.28% for the Fama-French model. The
results strongly suggest that the stock and bond market variables suggested in the recent literature
have significant incremental predictive power over and beyond the traditional predictors of Fama

and French (1989).

The third question is whether the predictability is of economic value. While Fama and French
(1989) and Greenwood and Hanson (2013) find that the predictability of corporate bond returns
is statistically significant, the issue of economic significance is not investigated. Considering an
investor who has a mean-variance utility with risk aversion, we find that the average utility gains
(annualized certainty equivalent returns) from ignoring the predictability completely to using the
predictability based on the RWC are 5.74% (2.55%) at the monthly (quarterly) horizon. In contrast,
the average gains are less than 1.58% for the best existing model, the Fama-French model, at both
monthly and quarterly horizons, which are not economically significant at the conventional 2%
cut-off point. Thus, our use of comprehensive bond and stock predictors and the new methodology
produces distinctly better out-of-sample forecasts, which are not only statistically but economically

significant.

The fourth question is what the economic sources are that drive the corporate bond return
predictability. Fama and French (1989) are the first to link variations in expected corporate bond
returns to business conditions. However, their inference is based only on in-sample forecasts. It
is unclear whether or not the out-of-sample forecasts are also tied to business conditions. Similar
to the case in the stock market (Henkel, Martin and Nardari, 2011), we find that corporate return
predictability varies over business cycles. The out-of-sample predictability tends to be higher in a
bad economy than in a good one. More importantly, we show that the RWC forecasts have strong
predictive power for future economic activity based on a number of macroeconomic measures.
This finding suggests that the primary source of the predictive power of this forecaster comes
from its ability to forecast the real economy and to capture fundamental macroeconomic and term

structure risks that drive the corporate bond risk premia.



Theoretically, Buraschi and Jiltsov (2007), and Joslin, Priebsch and Singleton (2014), among
others, demonstrate that macroeconomic factors contain important information on bond term struc-
ture, and Campbell and Cochrane (1999), Bansal and Yaron (2004), and Zhou and Zhu (2015) show
that macroeconomic factors drive the equity premium. To the extent that the corporate bond is a
mixture of the government bond and equity, the corporate bond risk premium should also vary
with macroeconomic conditions. Consistent with the existing theories, our results strongly suggest
that the superior performance of the RWC is for the most part due to its ability in forecasting the

changing macroeconomic conditions.

The remainder of the paper is organized as follows. Section I presents the methodology for
assessing the return predictability of corporate bonds. Section II discusses data and Section III
presents empirical results and robustness check. Section IV explores the economic sources of

predictability. Finally, Section V summarizes the findings and concludes the paper.

I. The Methodology

In this section, we first present the theoretical motivation to our study, then a new econometric
methodology that pools information from a large set of predictors, and finally a linkage with the

PLS forecaster recently advanced by Kelly and Pruitt (2013).

A. Asset Pricing Motivation

Asset pricing models can in general be summarized into the stochastic discount factor form,

1 :Et[rt+1mt+l]7 (1)

where m; . is the stochastic discount factor that discounts the future payoff back to the current

price, which is the return here once the current price is standardized as 1, and the expectation is



conditional on the information at time ¢. It is important to note that all state variables that enter
the pricing kernel m,| and all variables that are in the investor’s information set can forecast the
return, and it is just a matter of the degree of forecastability. Traditional term structure models al-
low some Treasury market variables and corporate bond market variables to enter m;1. Buraschi
and Jiltsov (2007), and Joslin, Priebsch and Singleton (2014), among others, consider macroeco-
nomic variables. Clearly, these variables are of relevance to corporate bond returns. Furthermore,
intuitively stock variables should matter as well because corporate bonds and stocks are claims on
the asset of the same firm and their returns should be driven by common fundamental factors (see
Fama and French, 1993). Therefore, stock variables should in theory be useful for forecasting bond
returns. While it is possible to conduct multiple regressions on each set of variables, in practicality
running regressions on all variables is not econometrically sensible as it will be either infeasible or

the model will perform poorly due to too many regressors. We address this issue in this paper.

B. Regressed Combinations

In forecasting future corporate bond excess returns, we use the standard predictive regression

model:

Fee1 = 00+ Brzis + Bozor + - + Byane + 41, (2)

where r; 11 is the return of a corporate bond in excess of the riskless rate, zj, is the j-th predictor at
timet (j=1,...,N), and & is an error term. For the Fama-French (1989, FF) model, N = 2 if

the predictors are term spreads and default spreads (or N = 3 if dividend yields are also included).

When N is large, the predictive regression model is generally poorly behaved because of limited
data in practice. For example, when N = 14, Welch and Goyal (2008) show that the “’kitchen
sink” regression with all predictors ends up with useless out-of-sample forecasts for the equity risk
premium. In our case with N = 27, the problem is further compounded. A possible solution is to

use forecast combination methods (e.g., Timmermann, 2006). The idea is first to run the predictive



regression on each predictor to obtain individual forecasts,

Fryr,j = 0+ Bjzji 3)

where &; and B ; are the regression coefficients from the individual predictive regression. Then a
combination of the N individual forecasts will be the forecast that utilizes the information of all
predictors,

Frog =wifrp1 +walrp1 o4+ Wl n, “4)

where w;’s are the combination weights which sum to one. The simplest method is the mean
combination with weights
1

W1:W2:---:WN:N.

Besides the mean combination or average forecast, the median and trimmed mean combinations
are also often used. Bates and Granger (1969) propose another simple combination method that
sets the weights to be inversely proportional to the estimated residual variances. This is known as

the weighted-average forecast and will be a focus of this paper.

We can improve the combination forecasts from the perspective of portfolio diversification,
an idea similar to that Tu and Zhou (2011) use to improve the well known 1/N portfolio rule.
Consider for simplicity in-sample forecasts. Let 7 be the historical sample mean and 77, | be the

combination forecast. We are interested in a combination of them,
Frp=(1=08)F+ 8 =F+8(f, —F), S)

where 0 is a constant to be estimated to minimize the forecasting error. This forecast will be
unbiased as long as 77, ; is unbiased. When 6 = 0, we use the sample mean forecast which is in
fact the benchmark forecast under the assumption that the return is a random walk. In practice,
this benchmark is not easy to beat. When 6 = 1, we rely on 77, ; completely. In general, unless

one of them dominates the other, the above combination rule should theoretically do better than



using either 7 or 77,

1~ This is similar to the portfolio choice of two assets, an optimal portfolio
will always do better than investing in each asset individually unless the two assets are perfectly

correlated.

Under the standard measure of mean-square forecasting error, & can be estimated from the

following regression,

Fp1 =00+ 6 (Fryy —F) +Urs1. (6)

This essentially says that, based on any combination forecast, we can simply regress the return on
it to get a regressed combination forecastE] When the combination forecast is the simple mean or
the weighted Bates and Granger (1969) combination, we call the resulting 7, ; with é estimated

from (6) the regressed mean or weighted combination forecast (RMC or RWC).

Obviously, either RMC or RWC defined above can also be applied to generate out-of-sample
forecasts. In this circumstance, the above regression, equation (0)), is run recursively. At time ¢,
only variables available at ¢t are used to forecast the return at # 4 1. In this way, the forecast will

not contain any future data and be out-of-sample.

To provide an intuitive explanation for why the regressed combination forecast can improve

the forecasting performance, assume that the true return follows

re+1 = 3%+0-0221t+0-0222t+8t+17 (7)

where z1; and zp; are the only two predictors that are independently distributed with mean zero and
variance 1. Suppose further that there are no estimation errors, then the individual forecasts are

given by

ft+1,1 = 3% +0.02zy;,

i;t+172 = 3%+0.02z,

3For in-sample forecast, it makes no difference if we replace (P —F) by 7f, ).



so that the mean combination forecast (as their simple average) is

P = 3%+ 0.02x T

This forecast has a variance of 0.022 /2. In contrast, the variance of the true forecast, the first three
terms of equation , is 2 x 0.022. This clearly shows that the mean combination forecast under-
estimates the true variance. In general, when there are N independently distributed predictors that
have the same betas, the variance of the true predictive component will be proportional to N, but
the variance of the mean combination is proportional to only to 1/N. The regressed combination

forecast method corrects this problem, and hence it can improve the forecasting performance.

In the econometrics literature, Capistran and Timmermann (2009) seems to be the first and only
study that considers a regression on the combination forecast, but their study differs from ours in
three major aspects. First, while their primary objective is to improve the average survey forecasts
in the presence of the frequent entry and exit of individual forecasters, we focus on refining com-
bination forecasts in predictive models. Second, they are interested in reducing bias, but we aim
at correcting the variance of the combination forecast, and our ultimate goal is to provide better
out-of-sample return forecasts in terms of the mean square error. Third, we shrink our forecast to

the historical average, which is the conventional benchmark for assessing predictability.

However, it should be pointed out that in practice J is estimated and the estimation errors are
sample dependent. Therefore, while 77, is expected to outperform 7 and 77, ; in most applications,
there is no guarantee that this will always be the case. This is because, when the sample size is
small or the system is highly unstable, the errors in estimating 0 can be large. Nevertheless, in
our applications, this issue will not cause a serious problem. As will be shown, the regressed

combination forecasts always outperform the initial combination forecasts substantially.



C. PLS and Beyond

Our paper differs from others by considering a large number of predictors that are related to
future stock and bond returns. To maximize the benefits from a wealth of data, we employ an effi-
cient method to extract the relevant information from this large set of predictors to obtain reliable
forecasts. In a separate vein, the partial least squares (PLS) forecast method, pioneered by Wold
(1966) and further developed by Kelly and Pruitt (2013, 2014), provides another powerful proce-
dure for abstracting information from the large set of predictors. Therefore, it will be enlightening

to compare our method with the PLS.

Interestingly, the regressed mean forecast, RMC, reduces to the PLS in the case of linear mod-
els, though the combination forecast applies to both linear and nonlinear models. To see this, recall

the PLS assumes that the predictors have the following factor structure,

Zir = Aio + Ai 1 Fi 4+ Ai 2B + €, ®)

where F; is the factor that contains relevant information for forecasting the corporate bond return,
E; is the common error component or non-informational factor that is irrelevant to the forecasting
and ¢&; is the idiosyncratic noise term associated with predictor i onlyﬁ For example, GDP and
inflation may share a common noise component E; that contains information important for foreign
exchange rates but unimportant for forecasting corporate bond returns. The novel idea of the PLS
is to estimate the latent factor F; efficiently while at the same time eliminating the common error
component E; and idiosyncratic noise &;. As a result, the PLS performs better than the widely
used principal component analysis (PCA), as shown empirically by Kelly and Pruitt (2013, 2014)
and others. Econometrically, the PCA captures the covariance among the predictive variables and
explains the largest faction of their total variations. However, by design it unfortunately contains
the common error component that is irrelevant to the forecasting, which is why the PCA underper-

forms the PLS.

“The PLS here is the popular one-factor PLS. If there are multiple factors, the RMC only reduces to the first factor.
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Mathematically, the PLS generates first an index of the predictors, PLS; = Zﬁvzl ;z;;, and then

forms the forecast from the following predictive regression

re+1 = a+ BprsPLS; +v; = a+ @1 Bprszi; + - - - + ONBprrszne + ;. )

Comparing this regression to (2), we have

B wi cov(7y11,2ir)

LA , (10)
Bj w; COV(’”z—Hath)

where the last equality follows from the PLS algorithm in computing the index. On the other hand,
it is straightforward to verify that the above equality also holds true for the RMC if the individual
forecasts are obtained from univariate predictive regressions on the standardized predictors. There-
fore, the two forecasters are analytically identical in the case of using univariate linear models in

the mean combination.

Clearly, there are many combination methods, such as the weighted-average combination method,
which will produce forecasts not the same as the PLS. For instance, the regressed weighted-average
combination, the RWC, will generate a forecast that is different from the PLS forecast. Thus, the

regressed combination method proposed in this paper is much more general than the PLS.

D. Out-of-sample Performance Measures

We conduct extensive out-of-sample analysis in addition to common in-sample studies (e.g.,
Greenwood and Hanson, 2013) in order to establish firmly the predictability of corporate bond re-
turns. The out-of-sample forecast is exactly the same as the in-sample forecast except that it is done
recursively. That is, if the out-of-sample forecast evaluation begins from time m, we use all avail-
able data or information up to time t = m — 1, to estimate the parameters of the predictive model to
construct the forecast of the excess return one period ahead, at time ¢ 4+ 1 = m. This recursive fore-

cast procedure applies to any future time until 7 — 1. Following Campbell and Thompson (2008)

11



and Pettenuzzo, Timmermann, and Valkanov (2014), we impose the economic restriction that the
risk premium must be positive to be consistent with theory. Econometrically, the sign restriction
can minimize the impact of volatile out-of-sample forecasts when a regression is estimated over a

short sample period. However, we note that our results are robust to this restriction.

Following the convention in return forecasting (Fama and French, 1989; Campbell and Thomp-
son, 2008), we evaluate the out-of-sample performance of the model relative to the updated histor-

ical average using the out-of-sample R> statistic:ﬂ

T—k L2
g=m Tqrk = Fgrk) (n
T—k 2

q=m (rq+k - 776]+k)

2
Ros =1~—

where 1, is the realized return at g +k, 7y (F444) is the out-of-sample forecast from the pre-
dictive regression model (historical average), ¢ is the time that the forecast is made, k denotes
the periods ahead in the forecast and T is the sample size. The out-of-sample R> gauges the im-
provement of the predictive regression model over the historical average forecast in terms of mean
square prediction errors (MSPE). When R20 ¢ > 0, the predictive regression forecast performs better
than the historical average forecast. We test the statistical significance of R%)S by the p-value of the
MSPE-adjusted statistic of Clark and West (2007), following the procedure in Rapach, Strauss and
Zhou (2010)@ For the forecast horizon longer than a month, we use the Hodrick (1992) method
to account for the effect of overlapping residuals on standard errors[] Moreover, to assess whether
adding variables significantly improves the predictive power of the model, we employ the test of
Harvey, Leybourne, and Newbold (HLN, 1998). This test statistic is used to assess if a set of fore-
casting variables contains additional information not already in another set of forecasting variables.

We use this method to test whether a predictive model encompasses another predictive model. If

3To our knowledge, Fama and French (1989) are the first to propose such a statistic, which are used by Welch
and Goyal (2008) and Campbell and Thompson (2008) and known subsequently in many predictability studies as
Campbell and Thompson out-of-sample R>.

®To perform the test, we first compute the following square error difference: Vgik = (rgtk f7q+k)2 -
[(rgsx — fq+k)2 — (Fgrk — qurk)z], and then regress Vg4 on a constant. The f-statistic of the constant term gives
the p-value for the one-sided (upper tail) test.

"Correction by the Newey-West (1987) method gives similar results.

12



the forecast of a model is encompassed by another model, we say the latter has more predictive

power than the former.

Following Campbell and Thompson (2008), we measure the economic significance of return
forecasts. The measure is based on realized utility gains for a mean-variance investor who switches
from ignoring predictability to using the predicted return calculated from the out-of-sample fore-
castﬂ The utility gain measure can also be interpreted as the fee investors being willing to pay to
obtain the forecast instead of using the historical average. The procedure of measuring economic
significance involves two steps. The first step is to determine the allocation of an investor’s port-
folio to risky bonds using the predictive model and the updated historical average. The proportion
of the portfolio allocated to risky bonds depends on risk aversion and the return-to-variance ratio
of the portfolio formed by the forecast of returns. The second step is to calculate the utility or cer-
tainty equivalent return from investing in the portfolio. Campbell and Thompson (2008) gives the
detailed procedure of calculating the utility gains. A utility gain of 2% or more by the predictive

model is usually considered to be economically significant.

II. The Data

Corporate bond data are collected from several sources: the Lehman Brothers Fixed Income
(LBFI) database, Datastream, the National Association of Insurance Commissioners (NAIC) database,
the Trade Reporting and Compliance Engine (TRACE) database and Mergent’s Fixed Investment
Securities Database (FISD). Using individual bond data to form portfolios, we examine return

predictability for bonds with different ratings, maturities and other bond characteristics.

The LBFI database covers monthly data for corporate bond issues from January 1973 to March
1998. The data include month-end prices, accrued interest, rating, issue date, maturity and other

bond characteristics. Datastream reports the daily corporate bond price averaged across all dealers

8 This method is used by a number of studies (see, for example, Marquering and Verbeek, 2004; Welch and Goyal,
2008; Campbell and Thompson, 2008; Wachter and Warusawitharana, 2009).

13



for that bond. We choose US dollar-denominated bonds with regular coupons and obtain the data
up to June 2012. The TRACE and NAIC databases contain transaction data for corporate bonds.
TRACE coverage begins in July 2002 and NAIC data start from January 1994. TRACE initially
covers only a subset of corporate bonds traded in the over-the-counter market and we supplement it
by NAIC, which covers transactions primarily by insurance companiesﬂ FISD provides issue- and
issuer-specific data such as coupon rate, issue date, maturity date, issue amount, rating, provisions
and other bond characteristics. We merge price data from all sources. Month-end prices are used

to calculate monthly returns. The monthly corporate bond return as of time ¢ is as follows:

(B +AL)+C— (P—1 +AL_)
P_1+AlL

; (12)

t:

where P; is the price, Al; is accrued interest and C; is the coupon payment, if any, in month t.
We discard the Datastream data if returns are available from other sources, and choose transaction-
based data whenever these data are available. We exclude bonds with maturity less than two years
and longer than 30 years and choose only straight bonds to evade confounding effects of embedded

options. The sample period runs from January 1973 to June 2012.

From the literature of equity return forecasts (Welch and Goyal, 2008), we consider the follow-

ing 14 variables as predictors.

1. Dividend-price ratio (log), D/P: Difference between the log of dividends paid on the S&P
500 index and the log of stock prices (S&P 500 index), where dividends are measured using
a one-year moving sum.

2. Dividend yield (log), D/Y: Difference between the log of dividends and the log of lagged
stock prices.

3. Earnings—price ratio (log), E/P: Difference between the log of earnings on the S&P 500 index

9The procedure of Bessembinder, Kahle, Maxwell, and Xu (2009) is used to filter out canceled, corrected and
commission trades and daily prices are trade size-weighted average of intraday prices over the day.

10 This return is transformed to the log return in the forecast, so that monthly log returns could be added together to
get a return of longer horizon conveniently.

14



10.
11.
12.
13.

14.

and the log of stock prices, where earnings are measured using a one-year moving sum.
Dividend—payout ratio (log), D/E: Difference between the log of dividends and the log of

earnings.

. Stock return variance, SVAR: Sum of squared daily returns on the S&P 500 index in a month.

Book-to-market ratio, B/M: Ratio of book value to market value for firms included in the

Dow Jones Industrial Average.

. Net equity expansion, NTIS: Ratio of the twelve-month moving sum of net issues by NYSE-

listed stocks to total end-of-year market capitalization of NYSE stocks.

. Treasury bill rate, TBL: Interest rate on a three-month Treasury bill (secondary market).

. Long-term yield, LTY: Long-term government bond yield.

Long-term return, LTR: Return on long-term government bonds.

Term spread, TMS: Difference between the long-term yield and the Treasury bill rate.
Default yield spread, DFY: Difference between BAA- and AAA-rated corporate bond yields.
Default return spread, DFR: Difference between long-term corporate bond and long-term
government bond returns.

Inflation, INFL: Calculated from the CPI (all urban consumers)m

In addition, we use a number of variables considered to be important for predicting bond returns

from the literature (see Collin-Dufresne, Goldstein and Martin, 2001; Baker, Greenwood and Wur-

gler, 2003; Cochrane and Piazzesi, 2005; Nas, Skjeltorp, and @degaard, 2011; Greenwood and

Hanson, 2013). We discuss each of these variables below.

Stock market returns and the aggregate leverage ratio

Collin-Dufresne, Goldstein and Martin (2001) show that stock returns and leverage are impor-

tant structural variables explaining yield spread changes. We use the S&P 500 index returns as a

measure of the equity market return. For leverage, we use two aggregate leverage measures. First,

' Data were downloaded from Amit Goyal’s website. These variables are used in Welch and Goyal (2008) and
Rapach, Strauss and Zhou (2010). Also, since inflation rate data are released in the following month, following Welch
and Goyal (2008), we use the one-month lag inflation data.
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we average the leverage ratios of individual stocks listed in NYSE to give a measure of market ag-
gregate leverage ratio (LEV1). The leverage ratio of an individual stock is measured by the book
value of debt divided by the sum of the book value of debt and market value of equity, where the
book value of debts is the sum of long-term debts and current liabilities obtained from COMPU-
STAT. Second, we use the ratio of the aggregate book value of debt to the sum of aggregate book
value of debt and market value of stocks listed in NYSE as another leverage measure (LEV?2). The
aggregate book value of debt and the aggregate market value of equity are the sum of book value of
debt and the sum of equity value for all stocks listed in NYSE As the COMPUSTAT data used
are quarterly, a linear interpolation is used to obtain monthly estimates (see also Collin-Dufresne,
Goldstein and Martin, 2001). The market value of equity is the product of share price and the

outstanding number of shares from the CRSP.
The Cochrane-Piazzesi term structure factor

Cochrane and Piazzesi (2005, hereafter CP) find that a single factor constructed from the full
term structure of forward rates has high predictive power on excess returns of Treasury bonds.
Lin, Wang and Wu (2014) find that the CP factor has predictive power for corporate bond returns.
Following CP, we use the Fama-Bliss data of one- through five-year zero-coupon bond prices
(available from CRSP) from 1973 to 2012 to estimate forward rates and their regression coefficients
in the CP model, and construct the CP 5-year forward rate factorm Besides the CP 5-year factor,
we construct a CP 10-year factor using the forward rates up to 10th year similar to Lin, Wang and

Wu (2014) to capture the information in distant forward rates.
The issuer quality factor

Greenwood and Hanson (2013) find that time-series variations in the average quality of debt
issuers are useful for forecasting excess corporate bond returns. We include this variable as a

predictor for bond returns. Similar to their study, we use the fraction of nonfinancial corporate

12 When calculating the aggregate leverage ratio, we only use the stocks in NYSE that have financial statement data
in COMPUSTAT.

B3Estimates of forward rate coefficients in the CP regression model are py = —1.52, p; = —1.59, p, = —0.09,
p3 =3.20, p4 = 0.81 and ps = —2.08. The adjusted R-squared is 25%.
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bond issuances in the last 12 months with a junk rating as the issuer quality factor,

j=1 .

— oj=l11 J=11 )
Zj:() Invest; j+ Zj:() Junk;

o

(13)

where Junk; is the par value of issuance with a speculative grade, and Invest; is the par value of
issuance with an investment grade in month . The monthly investment/junk bond issues for the
period 1973-1993 are obtained from the Warga tape, and the monthly investment/junk bond issues
for the period beginning from 1994 are obtained from FISD. High /Q; tends to be followed by low
corporate bond returns. For ease of interpretation, we add a negative sign to /Q, to convert it into a
bond quality measure, a higher value of which indicates better quality. This transformation makes

the predictive relationship positive between quality of issuers and bond returns.
The debt maturity factor

Baker, Greenwood and Wurgler (2003) find that the share of long-term debt issues in total debt
issues can predict government bond returns. It is possible that this predictor may also forecast
corporate bond returns. We obtain the outstanding amounts of annual long- and short-term debts
from the Federal Reserve Bank database and construct the monthly series of long- to short-term
debt ratios using a linear interpolation. Baker, Greenwood and Wurgler (2003) find that when the

share of long-term issues in the total debt issues is high, future bond returns are low.
The liquidity factor

The literature has documented a strong predictive relation between stock market liquidity and
business cycle (see, for example, Neas, Skjeltorp, and @degaard (2011)). Since asset risk premia are
related to business conditions, this finding implies that aggregate liquidity may predict corporate
bond returns. We consider different liquidity measures including monthly changes in total money
market mutual fund assets (AMMMEF), on-/off-the-run spreads (Onoff), and the effective cost (EC)
index of Hasbrouck (2009) for the stock market as predictors. Data for money market mutual fund
assets are obtained from the Federal Reserve Bank. The on-/off-the-run spread is taken from the

difference between the five-year constant-maturity Treasury rate from the Federal Reserve Bank
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and the five-year generic Treasury rate reported by Bloomberg system (see Pflueger and Viceira,
2011). The spread between on- and off-the-run bond yields captures the liquidity of the Treasury
bond market (Duffie, 1996; Longstaff, Mithal and Neis, 2005). The spread may also reflect the
financing advantage of on-the-run Treasury bonds in the special repo market (Jordan and Jordan,

1997; Buraschi and Menini, 2002; Krishnamurthy, 2002).

As liquidity has many dimensions, we use additional liquidity indices to capture more informa-
tion. Two widely used marketwide liquidity indices in the literature are Pastor-Stambaugh (2003,
PS) and Amihud (2002, Am) stock liquidity measures. The PS stock liquidity measure (PSS) is
available from WRDS. We construct the Amihud stock (AmS) measures using the methods sug-
gested by Acharya and Pedersen (2005). For ease of comparison with other illiquidity measures,
we add a negative sign to the PS liquidity measure to make it consistent with the on-/off-the-run
spread and Amihud measures, both are proxies for illiquidity. The converted PS index becomes a

measure of market illiquidity.
Portfolios’ yield spreads

Previous studies have found the bond yield contains important information for future bond re-
turns (see, for example, Keim and Stambaugh, 1986; Greenwood and Hanson, 2013). However, the
major information content of bond yields for expected corporate bond returns (or risk premiums)
should be associated with yield spreads. To see why this is the case, consider the pricing formula

of a corporate bond at time 7:

i=n
P(yi,1) = Y. Ce i) 4 pye T, (14)
=

1

where C is the periodic coupon payment, y; is the yield to maturity at time ¢, F'V 1s the face value,
and 7;,i = 1,...,n is the time of the ith payment. Using the Taylor expansion, we can approximate
the bond’s excess return by

re1 = —DyAyr -y — 1, (15)
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where Dy is the duration of corporate bond at time ¢. Results show that the portfolio’s yield spread
(PYS), yr — r}, is a predictor for corporate bond excess returns Therefore, we include the yield
spread as the predictor for bond returns. It is important to note that this predictor is distinguished
from the default yield spread (DFY) of Fama and French (1989). The yield spread variable consid-
ered here is bond-specific. In empirical investigation, we test the predictability of bond portfolio
returns. We hence calculate the yield spread for each rating and maturity portfolio for the predictive

regression but this spread variable is still portfolio-specific.

Using the above mentioned predictors (27 in total), we consider the following predictive re-

gressions:

1. The predictive regressions using the above individual predictors;

2. The predictive regressions using the combination and regressed combination predictors from
the 27 individual predictors;

3. The predictive regression using the first principal component (PC) of all individual predic-
tors;

4. The multiple predictive regression using term and default spreads as in Fama and French
(1989), and then adding Treasury bill rates, lagged high-yield bond returns and the issuer
quality factor as in Greenwood and Hansen (2013). In extended robustness analysis, we
also run multiple regressions with all predictors and subsets of predictors and compare their

performance with that of our regressed combination forecaster

Table 1 provides summary statistics for each predictive variable. We divide predictive variables
into three groups: stock market, Treasury market and corporate bond market variables. The stock
market variables include those predictors used in the equity return studies and liquidity indices con-

structed from stock transaction data. The Treasury bond market variables include those variables

14Lin, Wang and Wu (2014) also find that the duration-adjusted portfolio yield spread is useful for the prediction
of corporate bond returns but they did not provide a rationale why yield spreads have information for expected bond
returns.

ISWe have also examined other models used by Fama and French (1989) and found similar results which are avail-
able upon request.
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which have been shown to have predictive power for Treasury bond returns and the liquidity mea-
sures for this market. Finally, the corporate bond market variables include default yield spreads,
default return spreads, the issuance quality index and the debt maturity index. Previous studies
have shown that these predictive variables are closely related to credit risk premia. Using different
market variables in the regression allows us to see the role of each variable in the predictability of

corporate bond returns as a whole and for bonds with different ratings and maturities.

[Insert Table 1 about here]

Table 2 summarizes the distribution of corporate bond data. Panel A shows that the data sample
is well balanced across maturities and ratings. A-rated bonds assume the largest proportion, which
have 302,794 observations and account for 40% of the sample. The speculative-grade bonds ac-
count for more than 10% of the sample, with 86,441 bond-month observations. Across maturities,
long-term bonds (with maturity greater than 10 and less than 30 years) have the largest proportion.
Among the data sources, LBFI contributes the most to the data sample (261,821 observations), fol-
lowed by TRACE (261,063 observations), Datastream (147,486 observations) and NAIC (110,615

observations).

[Insert Table 2 about here]

We form bond portfolios by rating and maturity. To construct monthly returns of portfolios, we
calculate mean returns of bonds in each portfolio. In each month, we sort all bonds independently
into five rating portfolios and four maturity portfolios using the cut-off points of 5, 7 and 10 years,
resulting in 20 portfolios at the intersection of rating and maturity. The short-maturity portfolio is
constructed using the bonds with maturity less than five years, while the long-maturity portfolio is

constructed using the bonds with maturity more than 10 years.

Panel B of Table 2 reports summary statistics for rating and maturity portfolios. The left panel
reports the results of equal-weighted portfolios, while the right panel reports the results of value-

weighted portfolios. Both mean and standard deviation of excess returns increase as the rating
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decreases. Long-maturity portfolios have higher mean returns and standard deviation.

To bring out the dynamics of bond returns, we transform the excess return series into the index

(cumulative excess return) series by

L=k 1 (14n), (16)

where r; is the excess return of a corporate bond portfolio in month z. The initial value at time 1,
which is January 1973 in our paper, is set to be 100. Thus, when there is a decrease in the index in

month ¢, it means that the return of the portfolio is negative for that month.

Figure 1 plots the time series of the indices for all rating portfolios. The upper panel plots
the indices of equal-weighted portfolios, while the lower panel plots the indices of value-weighted
portfolios. There is an uptrend in these indices, suggesting that the investment in the corporate bond
markets provides positive excess returns. However, in times of stress (such as the internet bubble
in 2000, and the recent financial crisis in 2008—2009), the return drops substantially for junk bonds
but remains quite smooth for AAA bonds. This pattern is attributable to flight-to-quality during

the crisis period. In empirical tests, for brevity we only report results of value-weighted portfolios.

Our empirical tests are primarily based on the time series of corporate bond portfolio returns.
Using the returns of portfolios constructed from the database of individual bonds allows us to
control for the effects of bond provisions. We construct the portfolio return series by excluding
bonds with embedded options (e.g., callable, putable and sinkable) to avoid the confounding effects
associated with these options. Another advantage of using the return series constructed from the
database of individual bonds is that we are able to obtain a longer time span for the return series.
By contrast, existing indices of corporate bond returns do not have a unbroken long-span time
series. Older corporate bond indices such as Salomon Brothers indices were suspended in 2001
while newer indices such as Barclays corporate bond indices are available only starting in 1988.
The shorter time span of these index return series results in lower power in empirical tests. Also,
these publicly available indices do not control for the effects of bond provisions and so are subject

to the confounding effects of embedded options. Despite these drawbacks, we also report test
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results based on the Barclays index return series for comparative purposes and robustness check.
The bottom panel of Figure 1 plots the return series of the Barclays indices which are obtained
from the Bloomberg System. As shown, our portfolio returns exhibit a similar temporal pattern as

Barclays corporate bond index returns.

[Insert Figure 1 about here]

III. Empirical Results

A. In- and Out-of-sample Predictability

To understand the role of individual variables in return prediction, we first run regressions
of future returns of corporate bonds with different ratings against each predictor. The left panel
of Table 3 reports in-sample R> values of the predictive regressions for each predictor listed in
Table 1. The left side of the left panel reports results of monthly forecasts, and the right side
shows quarterly forecasts. The results indicate that a number of variables associated with the
stock and bond markets can predict corporate bond returns in-sample with a high R?. Besides
default spreads (DFY) and portfolios’ yield spreads (PYS), variables with predictive power include
term spreads (TMS), on-/off-the-run spreads (Onoff), and changes in money market mutual fund
flows (AMMMEF), long-term government bond returns (LTR), inflation rates (INFL), the Cochrane-
Piazzesi forward rate factors (CP5 and CP10), leverage ratio (LEV2), earning-price ratio (E/P),
dividend-payout ratio (D/E) and stock return variance (SVAR). These variables have R2s higher

than or comparable to that of default spreads.

Consistent with Joslin, Priebsch and Singleton (2014), we find that macroeconomic factors
contain important information for expected corporate bond returns. More importantly, predictive
variables vary in their ability to track bond returns of different rating classes. For AAA bonds,
Treasury market variables such as long-term government bond returns (LTR), term spreads (TMS),

Cochrane-Piazzesi forward rate factor (CP10), and on-/off-the-run spreads have good predictive
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power. In contrast, for speculative-grade bonds, stock market variables like E/P, D/E, and leverage
ratio (LEV?2), and default yield spreads (DFY) that are closely related to business and credit risks
have high predictive power. In addition, on-/off-the-run spreads also have high predictive power,
which appears to capture market liquidity conditions that affect all bonds. The main message we
get from this table is that the best predictors for high-quality bonds are those that forecast the term

structure whereas the best predictors for junk bonds are those that forecast credit risk premia.

[Insert Table 3 about here]

To see the individual relation between bond returns and predictors more closely, we report
the covariance of each standardized predictor with bond returns in the right panel of Table 3.
Since each predictor is standardized to have variance equal to one, the covariance is effectively the
slope coefficient of the regressor in the univariate regression. Furthermore, the covariance of each
predictor with bond returns reflects the weight or loading on each predictor when combining all
variables into a single forecaster using either the PLS or our RMC method. As shown in the table,

many of the predictive variables are significant (in boldface).

The results show that the traditional predictors, such as term spreads (TMS), default spreads
(DFY), and Treasury bill rates (TBL), are indeed closely related to expected bond returns. More
importantly, the stock market variables and other bond market variables also have high covariances
with bond returns. These include earning yields (E/P), dividend payout (D/E), leverage ratios
(LEV1 and LEV2), long-term government bond returns (LTR), inflation rates (INFL), CP factors
(CP5 and CP10), percentage changes in the money market mutual fund flows (AMMMEF) and on-
/off-the-run spreads (Onoff). For the monthly horizon, on average the on-/off-the run spread has
the largest covariance with returns. For the quarterly horizon, on average the portfolio yield spread
PYS has the largest covariance with returns, followed by the CP10 forward rate factor. The fact
that these variables are highly correlated with bond returns suggests that it is important to consider

other variables than traditional predictors in forecasting corporate bond returns.
A particularly interesting finding that has an important economic implication and interpreta-
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tion is that returns of low-grade bonds are more closely related with stock market variables. For
example, the covariances of returns with earning yields (E/P), dividend payout (D/E), stock re-
turn volatility (SVAR), S&P 500 index returns (S&P 500), aggregate leverage ratios (LEV1 and
LEV?2), and effective trading cost (EC) are all highest for junk bonds, suggesting that stock market
variables better track expected returns of these speculative bonds. This finding strongly supports
the traditional view that speculative-grade bonds behave like stocks. Moreover, low-grade bond
returns are closely linked to corporate bond market variables that are intimately related to credit
risk premia. The covariances (slopes) of returns with default yield spread (DFY), issuance quality
index (IQ), debt maturity index (DM) and portfolio yield spreads (PYS) are all highest (in absolute
terms) for speculative-grade bonds. These findings provide clear evidence that the expected return
of low-grade bonds contains a risk premium that is more strongly related to longer-term business

and credit market conditions.

The results in Table 3 reflect rational pricing in the corporate bond market. The sign of the
predictive variables is consistent with the risk premium theory. As shown, the slopes are positive
for term spreads, default spreads, and the CP forward rate factor. These variables are well known
measures of business cycles. The positive slopes of these variables capture the risk premia in bond
returns which increase with business and interest rate risks. In addition, stock market predictive
variables such as D/E, stock market volatility (SVAR), and leverage ratios (LEV) have positive
slopes and E/P has a negative slope. This pattern is consistent with the rational asset pricing theory
that when business-conditions risk is high or earnings are low, risk premia are high. Similarly, the
slopes of credit risk variables such as DFY, IQ, PYS are positive while that of DM is negative.
Consistent with the risk premium theory, the slope coefficients of all of these variables increase (in
absolute terms) from high-grade to low-grade bonds. This trend is in line with the intuition about
the credit risk of bonds, which is highly correlated with the business condition. Results show
that the sensitivity of bond returns to unexpected changes in business and credit risks increases as
the bond rating decreases. The slopes suggest that these predictive variables track components of

expected corporate bond returns that vary with business and credit risk conditions.
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The results in Table 3 show that individual predictors have varying predictive power and each
of these predictors seems to contain information in different dimensions for returns of bonds with
different quality and premium components (e.g., default and liquidity). This finding suggests that
there is considerable room for combining individual forecasts to increase the predictive power of
the model. The individual forecasts can be combined using the traditional methods such as mean,
median, trimmed mean and weighted average combination methods. However, as we demonstrated
earlier, the regressed combination method can substantially improve the performance of the pre-
dictive model. We next investigate this possibility based on the in- and out-of-sample results of

forecasts for corporate bond returns.

The left panel of Table 4 reports the results of in-sample predictions by using typical combina-
tion methods and our new regressed combination methods. Besides the mean combination (MC)
and the weighted-average combination (WC), we consider also the median combination (MD) and
trimmed mean combination (TC). Consistent with the forecasting literature, the four combination
forecasts are valuable in combining the information and produce in-sample R”s which are larger
than most of the individual forecasts reported in Table 3. Furthermore, the MC and WC appear to

perform the best among the four combination methods.

Better than expected, the regressed combination methods further improve drastically the al-
ready impressive in-sample combination forecasts. As shown in the right panel of the table, each
of the four regressed combination forecasts has substantially higher R? than its respective combi-
nation counterpart. For example, the in-sample R> of RWC for AAA bonds is 9.46, which is 4.6
times that of the WC. However, the RMD has much lower R? than that of the RWC, indicating
that the relative performance of the regressed combination forecasts is linked to the strength of
the underlying combination methods. Consistent with Kelly and Pruitt (2013), the RMC, which is
equivalent here to the PLS, is a powerful predictor. Nevertheless, the RWC improves even further,
and provides overall the best forecasts. All of the above results are robust to different ratings and

maturities.
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[Insert Table 4 about here]

We now compare the RWC forecast with three major alternative forecasts in the literature.
The first is the PCA forecast that is based on the first principal component of all the predictors.
The second is the Fama-French (1989, FF) model that uses default spreads and term spreads as
predictors. The third is the Greenwood-Hanson (2013, GH) model that uses the Treasury bill rates,

lagged high-yield bond returns and the issuer quality ratio as additional predictors.

The right panel of Table 4 compares the in-sample R?s for different models. The results cover
both the rating portfolios as well as the maturity portfolios in each rating category. The FF model
performs well with an average in-sample R? of 4% for the monthly forecast, and 8.52% for the
quarterly forecast. Though not reported in the table, the R?s are 7.07% and 13.02% over 1973—
1987, which covers part of the FF sample period, and 2.01% and 4.97% in the post-FF period
1988-2012, for monthly and quarterly forecast horizons, respectively. Although the predictability
degenerates somewhat since the publication of their paper, the FF variables do have significant

predictive power over time.

Surprisingly, GH performs worse than FF even in the in-sample forecast, though it has more
predictors. This finding echoes previous studies on stock predictability that show adding more vari-
ables will not necessarily improve forecasting performance (see, for example, Welch and Goyal,
2008). The reason is that, econometrically, the predictive multiple regression tends to perform

poorly with highly correlated regressors.

The principal component predictor PCA has the worst in-sample performance. All its Rs are
substantially below 1%. This level of predictability is not economically significant even in sample.
In contrast, both the FF and GH models provide much better predictions of bond returns than the
PCA. But the RWC outperforms all of them substantially while the FF model emerges as the distant

second best predictive model.

The last column (A) for each forecast horizon in the right panel reports the difference in the

R? values between the prediction using the RWC predictor and that using the FF model, to further
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highlight the improvement of the RWC. The differences are all positive, with the maximum value
equal to 10.48% for the monthly forecast and 10.53% for the quarterly forecast. The superior
performance of the RWC is robust across ratings and maturities. The results suggest that relying
on the FF model will substantially underestimate the true predictability, and that there is value of

using a large set of predictors.

It is known that good in-sample results do not warrant good out-of-sample forecasts. We next
investigate the out-of-sample forecasting ability of different models, which are considered to be
generally a more stringent test of return predictability. The left panel of Table 5 reports out-of-
sample R%s of the four forecasting combination methods and their regressed analogues. There
are several major findings. First, all of the combination methods deliver positive and statically
significant R%s, implying that they are indeed robust forecasting procedures that are able to predict
returns both in and out of sample. Second, the MD seems to have the worst performance among
the four combinations, suggesting that the forecasts across individual predictors are asymmetric.
Third, the regressed combinations improve their original combinations substantially. Although the
improvement is somewhat lower than the in-sample case, the RZs are often doubled. Overall, the
results strongly suggest that the regressed combination is a powerful method for obtaining more

efficient forecasts.
[Insert Table 5 about here]

To see how the regressed combinations improve their originals, Figure 2 plots the time series of
realized returns and the returns predicted by the WC and RWC for AAA bonds with long maturity
as an example (results for other ratings and maturities are similar). The result shows that the WC
produces forecasts which are too smooth compared with actual returns. In contrast, the RWC
method is able to track bond returns much better. In other words, the WC forecast considerably
underestimates the true variance of the bond return and misses out important short-term variations,
while the RWC corrects this problem. This is also true, though unreported here, for the MC and

RMC. The results are consistent with our earlier analysis that the combination forecast tends to
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have lower variance than the true one.
[Insert Figure 2 about here]

We next compare the out-of-sample performance of the RWC with the other three predictive
models, PCA, FF and GH. Note that when performing the out-of-sample forecast at time #, we only
use the available information up to time ¢ to perform forecasts. Hence, the principal component
analysis (PCA) method uses available information from all predictors only up to ¢, and the FF and

GH are based on recursively regressions.

The right panel of Table 5 compares the out-of-sample R? of the four predictive regression mod-
els. Similar to the in-sample results in Table 4, FF and GH have sizable out-of-sample predictive
ability. The out-of-sample R? for all bonds using the FF model is 3.58% for the monthly forecast,
and 7.28% for the quarterly forecast. The results for the GH model are much weaker but still
significant. The worst performer is the PCA. Most of the out-of-sample R?s of PCA are negative,

suggesting that the principal component analysis is a poor method for out-of-sample forecasting.

The RWC has the best out-of-sample predictive performance among the four models (see the
last column of the left panel and the first column of quarterly results in the right panel). All out-
of-sample R’s are significantly positive. For the monthly forecast, it can be as high as 11.98%
(AA short-maturity portfolio). The average out-of-sample R? of the RWC is 7.82% for all bonds
at the monthly horizon. For the quarterly forecast, the highest R? is 17.68% (AA short-maturity
portfolio) and the R? for all bonds is 12.07% for all bonds. Both are much higher than the out-of-
sample R”s of FF and GH. Interestingly, these out-of-sample R?s are substantially higher than those
for forecasting the stock risk premium. For example, Rapach, Strauss and Zhou (2010) report an
out-of-sample R? of only about 1% for the quarterly forecast during 1975-2005. Hence, the results

suggest that the corporate bond market is much more predictable than the stock market.

The last column (A) for each forecast horizon in the right panel reports the differences in out-
of-sample R? values between the RWC and FF. All of the differences are overwhelmingly positive,

indicating that the RWC model has a higher predictive power than the FF. The improvement of
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monthly forecasts by the RWC is greater than that of quarterly forecasts. Similar to in-sample
results, the improvement is quite robust across ratings and maturities, and is attributable to the

better use of the information in a large set of predictors.

B. Economic Significance

Table 6 reports results of economic significance measured by utility gains or certainty equiv-
alent returns (CER). The risk aversion coefficient is set equal to five and the optimal weight is
between zero (short-sales constraint) and ﬁvem The left panel reports the results of monthly fore-
casts, while the right panel reports quarterly forecasts. As in the case for the out-of-sample R>s,

we compare the four models: RWC, PCA, FF and GH
[Insert Table 6 about here]

Consistent with the out-of-sample R? values, the utility gains of the RWC are much larger than
those of the FF, which in turn are often much larger than those of the GH and PCA. The utility
gains of the RWC are all positive except for only one case for junk bonds with long maturity.
Even in this particular case, the RWC still performs the best among the four models at the monthly
forecast horizon. Across rating and maturity portfolios, the utility gains of the FF model are
mostly economically insignificant. Similar to the results based on R’s, the GH model performs
substantially worse than the FF model, while the PCA is the worst performer whose gains are all

negative except for BBB bonds with long maturity.

The last column in both panels of Table 6 reports the differences in utility gains between the
RWC and FF models. These differences are overwhelmingly positive for both monthly and quar-

terly forecast horizons. The improvement in economic value by the RWC is greater for the monthly

16Rapach, Strauss and Zhou (2010) assume a risk aversion coefficient of three and the optimal weight between zero
and three. Thornton and Valente (2012) assume a risk aversion coefficient of five and the optimal weight between
minus one and two. Goh, Jiang, Tu and Zhou (2011) assume a risk aversion coefficient of five and the optimal weight
less than eight.

17We have tried other risk aversion coefficients and other methods such as GISW (Goetzmann, Ingersoll, Spiegel
and Welch, 2007) and Sharpe ratio, and find that our results are robust to these different specifications
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forecast, and results are again robust across ratings and maturities.

Overall, results show that the gains of the out-of-sample forecasts by the RWC are not only sta-
tistically significant as shown before, but also economically significant. For the monthly forecast,
the utility gain is 5.74% for the sample that includes all bonds. For the quarterly forecast, the gain
is 3.77% for all bonds. The utility gains of the RWC are much larger than other models and also
considerably higher than those in the stock market reported by Rapach, Strauss and Zhou (2010),
suggesting there is substantial economic value of using a large set of predictors and the proposed

methodology.

C. [Forecast Encompassing Tests

To further evaluate the performance of different models, we conduct forecast encompassing
tests. If the RWC forecaster has successfully extracted all relevant information in individual pre-
dictors, then adding the variables in the Fama-French and Greenwood-Hanson models should not
improve the forecasting power of the RWC model. The encompassing test discriminates the per-

formance of competing models based on this criterion.

We calculate the HLN statistics of Harvey, Leybourne, and Newbold (1998) to test whether
the forecast by the RWC model encompasses the forecasts by the FF, GH and PCA models or
vice versa. Table 7 reports the results of encompassing tests based on monthly return forecasts
for different ratings and maturities. The null hypothesis is model 1 forecasts encompass model
2 forecasts against the one-side alternative hypothesis that the former does not encompass the
latter. As shown in the table, the RWC model encompasses the FF, GH, and PCA models. Results
suggest that the RWC is more efficient than the other three models in utilizing the information of
individual predictors. By contrast, the FF, GH and PCA models all fail to encompass the RWC
model. Results strongly suggest that the RWC model contains the information in the FF, GH and
PCA models. Unreported results show a similar finding at the quarterly forecast horizon. These

findings confirm the superiority of the RWC model and suggest that it provides the optimal forecast
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for corporate bond returns relative to other models.

[Insert Table 7 about here]

D. Predictions Using Treasury Market Variables vs. Other Market Variables

An important issue is about the roles of Treasury market variables versus other market variables
in predicting corporate bond returns. Safe bonds (e.g., AAA) behave more like government bonds
and risky bonds (e.g., junks) behave more like stocks. Intuitively, the former is likely to be affected
more by Treasury market variables (e.g., discount rates) and the latter by the variables of the stock
and other markets such as high-yield bonds. Thus, Treasury market variables are likely to track
the premia for safe bonds more closely, and stock market variables and credit risk variables in the
corporate bond market track the premia for risky bonds better. Table 3 has provided some evidence
supporting this hypothesis. In this section, we test this hypothesis more formally. We construct
the RWC predictor using only Treasury market variables and calculate its out-of-sample R? of cor-
porate bond return forecasts. The difference between the out-of-sample R? of the RWC predictor
extracted from Treasury market variables and that of the RWC predictor based on all variables,
including the stock, corporate bond and Treasury market variables, measures the contribution of

predictive variables other than the Treasury market variables.

We use alternative criteria to determine whether bonds have the characteristics of government
bonds or stocks. Besides the rating, we consider default risk measured by expected default fre-
quency (EDF) estimated from the Merton (1974) model, and stock market return betas. We em-
ploy the iterative procedure proposed by Bharath and Shumway (2008) and Gilchrist and Zakrajsek
(2012) to estimate the EDF from the Merton model. To estimate market return betas, we run regres-
sions of individual bond excess returns using a two-factor model with the term spread and stock
market returns. The term spread factor is measured by the return difference between long-term
government bond and one-month Treasury bill rates and the stock market factor is measured by

the excess return of S&P 500 index. The term spread captures the effect of interest rates whereas
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the S&P 500 index return captures the effect of the market factor. We use the beta of stock mar-
ket returns to sort the bonds into five beta portfolios. The portfolio return is the value-weighted
average of individual bond returns in a portfolio. Bonds in the portfolio with a high beta have
high sensitivity to stock market returns and so stock market variables should contribute more to
the forecast of these bond returns. Similarly, we use expected default frequency to sort bonds into
five EDF portfolios. As bonds in the portfolio with high EDF have high default risk, stock market
variables are likely to contain more information for these bonds. Conversely, bonds in the portfolio
with low EDF have low default risk and so Treasury market variables are likely to contain more

information for these safe bonds.

Table 8 reports results of out-of-sample forecasts using the RWC predictor for each portfolio
formed by the rating, beta and EDF. The percentage measure is the ratio between the out-of-
sample R? of the RWC predictor using Treasury market variables only and the out-of-sample R?
of the RWC predictor using all variables. Results strongly suggest that Treasury market variables
play a much more important role for the bonds that have a high rating (e.g., AAA), low default
risk and low beta. The ratios of the out-of-sample R-squares of the RWC predictor using Treasury
market variables to that of the RWC predictor using all variables have the highest value for these
bonds. Conversely, the ratios are the lowest for junk bonds and bonds with high EDF and betas.
Results support the hypothesis that Treasury market variables are better predictors for safe bonds,
and stock and other market variables are better predictors for risky bonds. Thus, Treasury and
other market variables track different components of expected returns for different types of bonds.
For high-quality bonds, the Treasury market variables track the term or maturity premium which is
the main component of expected returns of these safe bonds. For low-quality bonds, the stock and
corporate bond market track the credit risk premium which is the dominant component of expected

returns for these risky bonds.

[Insert Table 8 here]
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E. Longer Horizon Forecasts

We have shown thus far that corporate bond returns are highly predictable at monthly and
quarterly horizons. Predictability of corporate bond returns however goes beyond these horizons.
Table 9 reports return forecasts at longer horizons ranging from two quarters to one year. For
brevity, we report only the results for speculative-grade bonds as results for other ratings show
similar patterns. Results continue to show that returns are predictable at longer horizons. For
the in-sample forecasts, the RWC model continues to perform much better than the Fama-French
model. The improvement in in-sample R by the RWC over the FF model is quite substantial and
increases with the forecast horizon. The increase in R range from 15.3 percent to 20.5 percent for
the whole sample that includes all bonds. Similarly, the out-of-sample forecasts show predictability
at longer horizons. The RWC model consistently outperforms the FF model across all horizons.
The out-of-sample R> of the RWC are quite high, ranging from 23.5 percent to 28.1 percent from

two quarters to one year horizon.

The predictability of returns at longer horizons is also of economic significance. As shown
at the bottom panel of Table 9, the utility gains from using the RWC model are overwhelmingly
positive. For the whole sample including all bonds, the RWC model delivers higher economic
value than the FF model by a margin of 2.87 to 3.20 percent in terms of CER. Results show that
the economic value of using the RWC predictor is significant and much higher. Overall, there
is evidence that returns are predictable and return prediction is of economic value over various

forecast horizons out-of-sample.

[Insert Table 9 about here]

FE. Multiple Regressions

Recall that all together we have 27 predictors consisted of three types: stock, Treasury and

corporate bond market variables. In this subsection, we examine how well each set of variables
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fares with others in a multiple regression and with the RWC forecaster in terms of out-of-sample

forecasting performance.

We consider four multiple regression models using different sets of predictors in a horse race:
(1) stock market variables; (2) Treasury market variables; (3) corporate bond market variables; and
(4) all variables. The first two models enable us to see the natural economic relationship between
corporate bond returns and variables in the stock and Treasury markets. If the Treasury (stock)
market variables forecast AAA (junk) bonds better, the traditional multivariate regression should
naturally reveal this relationship. The remaining models give additional information about the role

of corporate bond market variables and important variables in the three markets.

We perform out-of-sample forecasts of these multiple regression models and compare their
performance with the RWC model in terms of R. Table 10 reports the improvement of the RWC
model over each multiple regression model. The improvement by the RWC is quite substantial
across most models. For example, in column 1, the RWC model outperforms the multiple regres-
sion model using stock market variables by 19.85 percent for the sample including all bonds. The
regressed weighted combination of all variables produces much higher predictive power than just
direct inclusion of stock variables across all ratings. Column 2 shows the improvement of the RWC
over the multiple regression model that includes only the Treasury bond market variables. Results
show that the improvement is much higher for speculative-grade bonds than for AAA bonds. Using
only the Treasury market variables as predictors thus underestimates the predictability of returns
more for low-grade bonds than for high-grade bonds. This result suggests that the Treasury market
variables forecast the return of AAA bonds much better than that of junk bonds, consistent with
the results in Table 8. Column 3 shows that the improvement of the RWC over the model with the
corporate bond market variables is fairly even across ratings suggesting that corporate bond market

variables are important predictors across bonds of different ratings.

A more surprising finding is in column 4 which uses all variables in the multiple regression.
Consistent with the finding of Welch and Goyal (2008), this “’kitchen sink” model performs much

worse than other multiple regression models using only a subset of variables. As demonstrated
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by Rapach et al. (2010), the “’kitchen sink” model performs worse because each variable contains
noise or false signals and the compounded errors from a large number of predictors can seriously
compromise the model’s forecasting ability for stock returns. Hence, it is suboptimal to include
all variables in the multiple regression model. Our results for corporate bond returns confirm this
prediction. As shown, the out-of-sample R-squares are considerably lower for the “’kitchen sink”

model by a huge margin of 32 to 43 percent across ratings compared to the RWC forecasts.

[Insert Table 10 about here]

G. Predictability on Hedged Returns and Index Returns

A potential concern is that corporate bond returns are predictable because the variables used in
our model largely forecast the term structure and the riskfree (Treasury) bond return is an impor-
tant component of the corporate bond return. In this subsection, we address this issue by directly
forecasting the hedged return in which we control for the return on US Treasuries over the same
maturity window. In essence, the hedged return is simply the return compensating investors for
taking credit risk. Moreover, we conduct forecasts using indexes of corporate bond returns to com-

pare with the results we have so far based on portfolios of individual bond returns for robustness.

To calculate the hedged return, we first obtain the price of the equivalent bond that has the
same coupon and maturity as the corporate bond by discounting the coupons with the Treasury
spot rates matching the time of each coupon and the principal payment. The spot rates are taken
from Gurkaynak, Sack and Wright (2007). We then subtract the return of this riskless equivalent
bond from the return of corporate bond to generate the hedged return (the corporate bond return
in excess of the riskfree bond return). Specifically, the hedged return is simply the return of the
portfolio with a long position in the corporate bond and a short position in a riskfree bond that
has the same coupon and maturity as the corporate bond. For the return based on the index, we
calculate the excess bond return by taking the difference between the Barclays corporate bond

index return and the one-month Treasury bill rate.
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Table 11 reports the results of in- and out-of-sample forecasts based on the hedged and excess
returns of corporate bonds. The upper panel reports the results for portfolios of individual bonds
and the lower panel reports results for index excess returns. Results continue to show that the
RWC has high predictive power for hedged returns. Thus, the predictive power of the model for
the corporate bond return is not derived from its predictive power for the Treasury return alone.

The RWC model again outperforms the FF model considerably both in- and out-of-sample.

The lower panel of Table 11 reports the in- and out-of-sample results of index excess return
forecasts. Results show that the RWC model performs quite well compared to the FF model.
The improvement by the RWC forecasts increases as the rating decreases. On average, the in-
and out-of-sample R-squares of the RWC are substantially higher those for the FF model. Thus,
the regressed combination forecast model appears to perform very well for both portfolio returns

generated from individual bond series and existing index returns complied by Barclays.

[Insert Table 11 about here]

IV. What Drives the Predictive Power?

The analysis above shows that bond and stock market variables contain important information
for expected corporate bond returns and the RWC is an effective method for extracting such useful
information from these variables. In this section, we investigate the performance of the RWC under
different economic regimes to see if the predictability is related to the change in macroeconomic
risks. Following this, we examine how the RWC predictor links to economic fundamentals to

understand more about the source of its predictive power.

A. Economic Regimes

Fama and French (1989) suggest that during economic downturns, income is low and so ex-

pected returns on corporate bonds should be high in order to provide an incentive to invest. In
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general, heightened risk aversion when economic conditions are poor demands a higher risk pre-
mium, thereby generating risk premium predictability. Consistent with this hypothesis, Rapach,
Strauss and Zhou (2010) find that the predictability of stock returns varies with business conditions
and risk premium forecasts are closely related to business cycles. Particularly, out-of-sample gains
for the market risk premium forecast are tied to business conditions and tend to be greater when

business conditions are poorer.

In light of the literature, we examine the predictability of corporate bond returns over periods
with different rates of economic growth. To accomplish this, following Rapach, Strauss and Zhou
(2010), we sort the sample period based on the real GDP growth rates and divide them into good,
normal and bad growth periods using the top, middle and bottom third sorted real growth rates,

and then examine the performance of the RWC in terms of out-of-sample R’s.

Table 12 reports the results of the out-of-sample performance during “good”, “normal” and
“bad” growth periods between 1983 and 2012. Results show that return predictability is much
stronger during the low-growth period than during the high-growth periodm This pattern is con-
sistent with the findings of Rapach, Strauss and Zhou (2010) and Henkel, Martin and Nardari
(2011) that stock returns are much more predictable during “bad” growth periods. Hence, it ap-
pears that across stocks and bonds, the return predictability is driven by the same fundamental
forces such as financial constraints and changing business conditions and risk aversion. Table 12
further shows that the discrepancy in the predictability between bad and good economies widens

for long-maturity lower-quality bonds which have higher exposure to business cycle.

[Insert Table 12 about here]

B. Links to the Real Economy

Cochrane (2007) suggests that return forecasts are more plausibly related to macroeconomic

risk if the return predictors also demonstrate an ability to forecast business cycle. The predictability

18 Unreported results show that similar results hold for Treasury bond returns in different economic regimes.
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can then be more credibly attributed to time-varying risk premiums due to changing risks or risk
aversion. In what follows, we examine whether the RWC predictor can forecast real economic

activity.

Consider the following predictive regression,

AYip1 = a+BXi + &1, (I7)

where AY;,; is the change in macroeconomic conditions in the next period, and X; is the RWC
predictor for a given bond portfolio in the current period. In this regression, we examine how the
RWC predictor is related to the future state of the economy. Since the PCA is widely used for
predicting returns, it is of interest to compare the RWC with the PCA in this context. To do so, we

simply run similar regressions with X; replaced by the PCA predictor.

We employ the following measures of ¥; | in the predictive regression:

1. Smooth recession probability (SRP). The data of smooth recession probability are obtained
from the Federal Reserve Bank of St. Louis. This recession probability is estimated by the
dynamic-factor Markov-switching model of Chauvet (1998) using four monthly coincident
variables: non-farm payroll employment, the index of industrial production, real personal
income excluding transfer payments, and real manufacturing and trade sales.

2. Industrial production growth (IPG). The production growth rate data are also obtained from
the Federal Reserve Bank of St. Louis.

3. Treasury bill rates (TBL).

4. Default yield spreads (DFY).

5. Implied volatility index (VIX). VIX is the implied volatility of S&P 500 index options, which
reflects the expectation of stock market volatility over the next 30-day period. It is widely
used as a gauge of fear (Remolona, Scatigna and Wu, 2008; Whaley, 2009). Longstaff, Pan,
Pedersen and Singleton (2011) use it to calculate the global risk premium. The data are

downloaded from Chicago Board Options Exchange (CBOE).
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6. Expected default frequency (EDF). The EDF is the mean of individual firms’ expected de-
fault frequencies calculated from the Merton (1974) model.

7. Chicago Fed National Activity Index (CFNAI). The CFNALI is a monthly index designed to
capture economic activity and inflationary pressure. It is similar to the index of economic
activity developed by Stock and Watson (1999). The CFNAI data are downloaded from the
Federal Reserve Bank of Chicago.

8. Aruoba, Diebold, and Scotti (2009) business conditions index (ADSI). This index tracks real
business conditions at high frequency. The economic indicators underlying this index are
initial jobless claims, monthly payroll employment, industrial production, personal income
less transfer payments, manufacturing and trade sales, and real GDP. The ADSI data are

downloaded from the Federal Reserve Bank of Philadelphia.

Table 13 reports results of the predictive regression in (17) at quarterly horizons The ¢-values
are calculated using the Newey-West (1987) adjusted standard errors. The results strongly indicate
that the RWC predictor has high predictive power for the future change in economic conditions.
Among all macroeconomic measures, only the results for Treasury bill rates (TBL) are not signifi-
cant. The predictive power of the RWC varies across bond ratings. The RWC predictor associated
with lower-grade bonds has much higher predictive power than that associated with higher-grade
bonds. For example, when forecasting the SRP (recession probability), the adjusted R? of the RWC
predictor of the BBB bond portfolio is 9.52%, while it is only 3.62% for the RWC predictor of the
AAA bond portfolio. The results for other macroeconomic variables show a similar pattern. These
findings suggest that the RWC predictor of lower-grade bonds contains substantially more infor-
mation for future economic growth than that of higher-grade bonds. Intuitively, economic growth
affects future cash flow, which is more important for the pricing of low-grade bonds than for the

pricing of high-grade bonds.

In contrast, none of the results using the PCA to predict future economic conditions is signifi-

cant and the adjusted R-squares are extremely low, suggesting that the PCA is not a good predictor

19We obtain similar results at monthly and yearly horizons.
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for the future economic condition. This finding sheds light on the reason why the PCA is a poor

predictor for bond risk premiums as shown earlier.

In summary, our empirical results strongly suggest that the predictive power of the RWC fore-
caster is derived from its ability to forecast future macroeconomic conditions. Economic funda-
mentals are the forces driving time variations in expected corporate bond returns and the RWC
does a good job in tracking the temporal movement of these forces. This explains why the RWC
predictor performs much better than the popular PCA factor in predicting bond returns. This evi-
dence further confirms that the RWC extracts the information from individual predictive variables

much more efficiently than the PCA.

[Insert Table 13 about here]

V. Conclusions

In this paper, we provide a comprehensive study on the predictability of corporate bond returns.
We consider a large number of individual predictors, including stock, Treasury and corporate bond
market variables to predict corporate bond returns, and propose a new method, the regressed com-
bination, to combine the information from a large set of predictors. We find that the model of the
regressed weighted-average combination (RWC) forecast performs substantially better than the
Fama-French (1989) model, the Greenwood-Hanson (2013) model, the traditional combination
forecasts, multiple regression models, and a predictor based on the principal component analysis
(PCA) in- and out-of-sample in terms of both statistical and economic significance. This finding
is robust to bonds with different ratings and maturities, and the data based on individual bond or

index returns and with and without controlling for the return on Treasuries.

The sign of the predictive variables is consistent with the risk premium theory. Predictive
variables capture the risk premia in corporate bond returns which increase with business, credit

and interest rate risks. The slopes of these predictors increase from high-grade to low-grade bonds.
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This pattern is in line with the intuition about the credit risk of bonds, that is, the sensitivity
of bond returns to unexpected changes in business and credit risks increases as the bond rating
decreases. Moreover, results show that the predictability of corporate bond risk premiums varies
with economic conditions. Corporate bond returns are more predictable in a bad economy than
in a good economy. Forecasts of the bond risk premium are strongly related to business cycles,
consistent with the hypothesis that high risk aversion during economic recession requires a large
compensation for risk bearing. Further analysis shows that the superior forecasting power of the

RWC predictor is derived from its ability to predict future economic performance.

Stock and bond market variables contain useful information for predicting corporate bond re-
turns. However, these variables must be carefully combined in order to preserve the valuable
information in them for return forecasts. Improper use of these variables by a naive multiple re-
gression or the principal component analysis destroys the value of these predictors. We show that
the proposed regressed combination method is capable of extracting the useful information by re-
ducing noise in individual predictors to obtain optimal forecasts. Using this method, we find that
the true predictability of corporate bond returns is considerably understated if the predictors are
restricted to only a few conventional variables. Results show that the expected returns of high-
grade (low-grade) bonds are more closely related to the Treasury (stock) market variables, which
is strongly consistent with the economic intuition that high-rated (low-rated) bonds behave more
like Treasury bonds (stocks). In addition, macroeconomic variables, such as inflation rates, interest
rates and liquidity factors, have predictive power for corporate bond returns. This finding is con-
sistent with recent empirical and theoretical studies that macroeconomic factors contain important

information for the term structure of bonds.

Our findings have important implications for corporate bond portfolio and risk management
and the credit default swap (CDS) pricing, and it will be fruitful to explore these issues in future
research. In addition, our proposed regressed combination approach can be an effective means for
predicting the returns on other asset classes or wherever forecasting is of concern in finance or

economics.
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Table 1. Summary statistics of predictors

This table reports the summary statistics of the predictors: the dividend-price ratio (D/P), divi-
dend yields (D/Y), the earnings-price ratio (E/P), the dividend-payout ratio (D/E), stock variance
(SVAR), the book-to-market ratio (B/M), net equity expansion (NTIS), S&P 500 index return
(S&P500), aggregate leverage ratios (LEV1 and LEV?2), effective cost (EC), Pastor-Stambaugh
stock liquidity (PSS), Amihud stock liquidity (AmS), Treasury bill rate (TBL), long-term yield
(LTY), long-term return (LTR), term spread (TMS), inflation rate (INFL), CP 5-year factor (CP5),
CP 10-year factor (CP10), percentage changes in the money market mutual fund flow (AMMME),
on-/off-the-run spread (Onoff), default yield spread (DFY), default return spread (DFR), issuance
quality index (IQ), debt maturity index (DM) and portfolio yield spread (PYS) computed as the
the mean yield spread of 20 corporate bond portfolios under investigation. p (1) and p (12) are the
autoregressive coefficients at lag 1 and 12 of monthly intervals.

Predictor Obs. Mean Std. p () p(12)

D/p 474  -360 045 099 092
D/Y 474 -359 045 099 092
E/P 474 -281 051 099 0.69
D/E 474  -079 035 098 0.2

SVAR (%) 474  0.26 051 046 0.03

B/M (%) 474 50.11 298 099 0.93

Stock market variables NTIS (%) 474 0.92 1.99 097 048
S&P 500 (%) 474 0.89 456 0.04 0.07

LEV1 (%) 474 3841 4.05 096 0.55

LEV2 (%) 474 4347 6.52 098 0.75

EC 396 -0.01 022 0.04 0.19
PSS 474 0.00 0.06 0.00 -0.02
AmS 456  0.00 021 -0.02 0.06

TBL (%) 474 537 330 099 0.84

LTY (%) 474  7.43 259 099 090

LTR (%) 474 077 3.16 0.05 0.00

TMS (%) 474  2.07 1.54 095 048

Treasury market variables INFL (%) 474 036 038 0.62 046
CP 5-year (%) 474 1.33 1.81 0.77 045

CP 10-year (%) 474 192 401 090 0.50

AMMMEF (%) 463 200 504 0.69 0.23

Onoff (Bps) 474 218 2290 0.18 0.03

DFY (%) 474 1.12 048 096 044

DFR (%) 474  -0.02 147 -0.04 -0.02

Corporate bond market variables 1Q (%) 426 -2549 2129 097 041
DM (%) 474 -6143 740 099 0.96

PYS (%) 474  3.04 1.65 081 0.37
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Table 2. Sample distribution and summary statistics

This table reports the sample distribution of the corporate bond data (Panel A) and the summary
statistics by rating and maturity (Pane B). The data are merged from different sources: the Lehman
Brothers Fixed Income (LBFI) database, Datastream, the National Association of Insurance Com-
missioners (NAIC) database, the Trade Reporting and Compliance Engine (TRACE) database,
and Mergent’s Fixed Investment Securities Database (FISD). The combined corporate bond data
are from January 1973 to June 2012. In each month, all bonds are sorted into five rating portfolios
and then four maturity portfolios. The cut-off values for maturity portfolios are 5 years, 7 years,
and 10 years.

Panel A. Sample distribution

Maturity AAA AA A BBB Junk All
Distribution by maturity
3 11,471 26,152 46,956 18,683 11,679 114,941
4 8,480 21,357 39,053 17,398 9,318 95,606
5 8,454 20,010 36,261 17,396 8,551 90,672
6 5,109 12,384 24,539 13,510 7,622 63,164
7 5,339 11,360 24,128 14,235 8,252 63,314
8 4,876 9,000 20,012 11,799 6,119 51,806
9 4,514 8,789 20,971 13,527 5,468 53,269
10 4,161 8,235 20,843 15,114 5,382 53,735
>10 11,818 25,981 70,031 62,598 24,050 194,478
All 64,222 143,268 302,794 184,260 86,441 780,985
Distribution by data source
Datastream 8,326 25,613 41,863 50,450 21,234 147,486
LBFI 15,539 42,180 115,257 65,312 23,533 261,821
NAIC 25,851 14,699 39,085 22,475 8,505 110,615
TRACE 14,506 60,776 106,589 46,023 33,169 261,063
All 64,222 143,268 302,794 184,260 86,441 780,985
Panel B. Summary statistics by rating and maturity
Equal weighted Value weighted
Rating Maturity Excess return S.D. Corr. with equity Excessreturn  S.D.  Corr. with equity
All 0.26 1.84 0.25 0.26 1.73 0.22
AAA Short 0.21 1.21 0.26 0.21 1.18 0.21
Long 0.36 292 0.23 0.38 2.95 0.21
All 0.27 1.76 0.33 0.26 1.68 0.31
AA Short 0.24 1.24 0.33 0.21 1.19 0.31
Long 0.40 2.54 0.29 0.39 2.55 0.27
All 0.28 1.89 0.35 0.30 1.84 0.35
A Short 0.25 1.38 0.34 0.24 1.36 0.33
Long 0.40 2.64 0.33 0.41 2.64 0.34
All 0.36 2.13 0.36 0.37 1.92 0.37
BBB Short 0.31 1.73 0.34 0.33 1.54 0.35
Long 0.45 2.90 0.32 0.39 2.89 0.34
All 0.52 2.13 0.44 0.62 2.30 0.45
Junk Short 0.35 2.16 0.34 0.48 2.29 0.38
Long 0.75 2.67 0.44 0.90 3.19 0.41
All 0.32 1.81 0.37 0.31 1.63 0.32
All Short 0.27 1.31 0.36 0.25 1.15 0.30
Long 0.45 2.50 0.35 0.44 2.31 0.30
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Table 6. Utility gains

This table reports the annualized utility gains of the RWC, the PCA, the Fama-French (1989, FF)
model and the Greenwood-Hanson (2013, GH) model. A is the difference between the utility gains
of the RWC and FF models.

Monthly(%) Quarterly(%)

Maturity Rating RWC PCA  FF GH A | RWC PCA FF GH A
AAA 6.10 -053 137 0.16 473 | 246 -0.74 175 0.01 0.72
AA 6.04 -028 233 -0.10 371 | 425 -0.53 289 165 1.35
A 594 -186 1.74 -1.11 420 3.04 -1.79 147 1.11 1.57
BBB 6.15 -1.73 131 -256 484 | 1.84 -1.73 082 -221 1.03
Junk 235 -1.73 -1.77 -3.69 4.12| 1.13 -195 055 050 0.58
All 574 -141 158 -038 416 | 3.77 -146 1.86 037 191
AAA 228 -290 -0.77 -0.38 3.05| 0.69 -224 0.17 -0.67 0.1
Short AA 432 -1.67 051 -035 381 | 346 -146 1.81 0.79 1.66
2 Yrs < A 354 -3.06 062 -1.02 292 | 227 -287 036 030 191
Mat. BBB 690 -236 1.14 -1.70 576 | 1.12 -3.12 -0.61 -3.35 1.73
<5 Yrs) Junk 428 -0.85 294 123 134 | 373 -0.76 3.10 228 0.62
All 286 -3.16 -0.85 -148 371 | 142 -281 -041 -1.06 1.83
AAA 515 -143 -1.58 -1.63 6.73 | 048 -141 -1.60 -0.80 2.08
AA 578 -0.10 1.75 -098 4.03| 354 -031 241 141 1.12
5 Yrs< A 328 -1.79 -0.53 -2.80 381 | 096 -1.67 043 140 0.53
Mat. BBB 4.81 -095 -1.56 -475 637 024 -1.14 -097 -4.01 1.20
<7Yrs Junk 223 -0.74 -1.11 -470 334 | 278 -098 1.08 -1.34 1.70
All 497 -1.73 105 -0.69 392 | 323 -1.51 130 -0.08 194
AAA 511 -094 -036 -0.56 547 | 215 -029 1.09 087 1.06
AA 7.66 -032 211 -098 555| 3.84 -0.58 242 123 142
7Yrs < A 574 -156 -029 -347 6.03| 254 -147 053 1.06 2.01
Mat. BBB 649 -144 273 -0.83 3.76| 253 -146 152 -1.02 1.00
<10Yrs Junk 578 -0.22 -1.72 -7.12 750 | 122 -094 -0.60 -5.19 1.82
All 6.93 -1.37 2.06 -043 487 | 431 -1.16 256 1.04 1.75
AAA 282 -0.67 -0.51 -230 333] 091 -023 155 -036 -0.64
AA 400 -0.06 146 -1.75 254 | 225 -028 239 1.26 -0.15
Long A 280 -092 -0.82 -3.00 3.62| 055 -095 1.18 034 -0.63
(Mat. BBB 3.60 0.15 -027 -4.11 3.87|-0.07 043 157 -2.00 -1.64
>10Yrs) Junk -0.60 -0.78 -435 -0.70 3.75| 1.85 -1.00 -2.70 222 455
All 642 -143 133 -254 5.09| 387 -1.08 224 0.14 1.63
Average 465 -126 032 -1.82 433 | 221 -1.25 1.01 -0.14 121

All
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Table 7. Forecast encompassing tests

This table reports the p-values of the Harvey, Leybourne and Newbold (1998) statistics for the null
hypothesis that the out-of-sample forecast of model 1 encompasses the out-of-sample forecast of
model 2 for bonds of different ratings and maturities.

Rating
Maturity Model 1 Model2 AAA AA A BBB Junk Al
RWC FF 023 033 042 038 051 033

RWC GH 038 051 071 0.68 045 0.74
RWC PCA 0.15 038 049 033 053 0.23

Al FF RWC 0.00 0.00 0.00 0.00 0.00 0.00
GH RWC 0.00 0.00 0.00 0.00 0.00 0.00

PCA RWC 0.00 0.00 0.00 0.00 0.00 0.00

RWC FF 005 020 043 048 031 0.12

RWC GH 025 063 075 085 029 0.60

Short RWC PCA 004 022 054 044 047 0.07
2 Yrs < FF RWC 0.00 0.00 0.00 0.00 0.00 0.00
Mat. GH RWC 0.00 0.00 0.00 0.00 0.02 0.00

<5 Yrs.) PCA RWC 0.00 0.00 0.00 0.00 0.00 0.00
MC RWC 0.00 0.00 0.00 0.00 0.00 0.00
RWC FF 033 017 032 015 030 0.23
RWC GH 034 029 052 036 028 0.61
5Yrs < RWC PCA 0.17 024 043 0.08 022 0.17

Mat. FF RWC 0.00 0.00 0.01 0.00 0.00 0.00
<7 Yrs. GH RWC 0.00 0.00 0.01 0.00 0.00 0.00
PCA RWC 0.00 0.00 0.00 0.00 0.00 0.00

RWC FF 008 0.18 022 0.05 052 0.19

RWC GH 008 032 040 030 087 042
7 Yrs < RWC PCA 008 023 031 0.13 038 0.20

Mat. FF RWC 0.00 0.00 0.00 0.01 0.00 0.00

< 10 Yrs. GH RWC 0.00 0.00 0.00 0.00 0.00 0.00
PCA RWC 0.00 0.00 0.00 0.00 0.00 0.00

RWC FF 0.11 0.17 0.18 0.14 044 0.23

RWC GH 0.14 0.08 026 0.04 048 043

Long RWC PCA 0.14 026 029 0.08 059 0.19
(Mat. FF RWC 0.03 0.01 0.03 0.01 0.01 0.00

> 10 Yrs.) GH RWC 002 0.01 002 0.05 0.02 0.00
PCA RWC 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8. Out-of-sample forecasts using the RWC of Treasury market variables

This table reports the out-of-sample R-squares (RZOS) of regressed weighted average combination
(RWC) forecast using only Treasury market variables for each portfolio formed by the rating,
beta and EDF. The percentage measure is the ratio between the out-of-sample R-squares of the
RWC using Treasury market variables only and that of the RWC using all variables including the
Treasury, corporate bond and stock market variables. Beta is the stock market return beta and
EDF is the expected default probability estimated from the Merton (1974) model. The statistical
significance of R205 is based on the p-value of the out-of-sample MSPE-adjusted statistic of Clark
and West (2007). ¢, b and ¢ denote the significance level of 1%, 5%, and 10%, respectively.

Monthly Quarterly

Rzos Percentage RZOS Percentage

AAA 5.76° 10836  3.57° 62.33

AA  8.10¢ 81.53 9.59¢ 61.49
Rating A  6.28% 73.34 5.77% 51.06
BBB 6.64¢ 68.62  7.19% 47.08

Junk 6.24¢ 55.03 591 34.81

Low 823% 10299  6.54¢ 59.66

2 5.00¢  101.27  0.94° 42.20

Beta 3 625 100.17  3.90° 39.57
4 527 70.27 5.284 39.19

High 2.91¢ 48.74 3.36" 36.47

Low 5.11¢ 11222  4.60° 56.99

2 7.64¢ 83.78 6.73b 43.84

EDF 3 9.24¢ 66.47 9.15¢ 50.16
4 4934 69.73 3.25b 50.47

High 8.44¢ 6920  7.44% 43.28
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Table 9. Forecasts at longer horizons
This table reports the results of longer horizon forecasts over two quarters, three quarters and
one year using the Fama-French (1989) model and the regressed weighted-average combination
(RWC) method for junk-rated bonds. A is the difference between the results of of the RWC and
FF models. The statistical significance of RZOS is based on the p-value of the out-of-sample MSPE-
adjusted statistic of Clark and West (2007). ¢, b and ¢ denote the significance level of 1%, 5%, and

10%, respectively.

Two quarter(%) Three quarter(%) One year(%)
Maturity FF RWC A FF RWC A FF RWC A
In-sample R squares

All 19.65 3496 1531 26.63 4493 18.29 30.78 5127 2049

Short 17.20 33.81 16.61 22.69 4197 19.28 2635 4850 22.15

5 Yrs<Mat<7 Yrs 20.50 3395 1345 27.04 4337 1633 29.73 4928 19.55
7 Yrs<Mat<10 Yrs 15.55 28.64 13.09 21.09 3732 1623 2491 4391 19.00
Long 17.34  31.27 1393 2449 4142 1694 29.68 4874 19.05

Out-of-sample R squares

All 15.88¢ 23.51¢ 7.63 21.73% 2478 3.05 26.46* 28.05" 1.59

Short 12.83¢ 18.42° 558 17.25¢ 19.96* 271 20.76¢ 23.13> 2.37

5 Yrs<Mat<7 Yrs 12.24¢ 19.23¢ 6.99 20.47¢ 23.72® 325 27.73% 29.18" 145
7 Yrs<Mat<10 Yrs 13.76* 20.31¢ 6.55 20.32¢ 2453 421 2507¢ 28.17° 3.10
Long 11.75¢ 17.08¢ 532 17.67% 20.54¢ 2.87 21.46% 24.89® 343

Utility gains

All -2.84 0.03 2.87 -2.48 0.72 3.20  -2.06 0.81 2.87

Short 0.52 3.55 3.03 0.45 2.81 236 0.63 2.51 1.87

5 Yrs<Mat<7 Yrs  -0.51 2.62 3.13 1.27 2.90 1.63 2.67 2.61  -0.06
7 Yrs<Mat<10 Yrs -1.26 -038 0.88 -1.69 -044 125 -0.19 0.27 0.46
Long -2.52 208 4.60 -1.00 2.69 3.69 -0.16 274  2.89
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Table 10. Comparisons between the RWC and multiple regression models

This table reports the difference between the results of the regressed weighted combination (RWC)
and multiple regression models. We consider four multiple regression models: (1) the multiple
regression model using stock market variables; (2) the model using Treasury market variables;
(3) the model using corporate bond market variables; and (4) the kitchen sink model using all
variables. Al, A2, A3, A4 measure the difference of out-of-sample R squares between the RWC
and the above four models.

Monthly(%) Quarterly(%)

Maturity Rating Al A2 A3 A Al A2 A3 A4
AAA 18.64 298 5.16 37.14 | 6446 9.64 4.66 63.95
AA 2280 720 939 4295|6399 16.10 10.60 64.01
A 17.51 7.15 933 3194 |55.14 12.60 10.30 56.56
BBB 2291 695 9.53 38.88 |48.25 1527 12.63 66.63
Junk  21.77 10.35 8.88 34.73 | 30.77 17.49 8.69 35.58
All 19.85 6.11 7.32 3736 |71.84 1591 792 70.22
AAA 1352 229 6.20 3252|6857 873 7.00 77.26
Short AA  19.07 921 1194 37.37|60.80 17.53 14.19 77.11
2 Yrs < A 19.34 10.83 10.60 35.84 | 57.24 1694 1090 66.20
Mat. BBB 17.70 10.06 1040 31.36|35.72 17.02 14.09 60.40
<5 Yrs) Junk 1645 9.03 722 2297|2238 11.51 9.01 24.01
All 17.32 7.06 824 3547 |70.66 16.73 9.85 75.56
AAA 1352 1.75 3.64 23.64 | 67.09 7.02 641 72.64
AA 17.11  8.11 7.57 30.07 | 61.94 1559 9.25 70.25
5 Yrs< A 16.03 9.57 722 3155|5994 1453 8.72 66.28
Mat. BBB 2037 839 557 4331|6448 17.39 7.09 81.02
<7Yrs Junk 1822 591 529 2422|6453 1728 539 56.93
All 1872 7.10 6.03 3553|7752 18.09 7.29 76.89
AAA 1949 134 203 3163 |76.16 936 -024 52.72
AA 19.60 443 7.81 40.10|60.38 1146 8.51 56.61
7Yrs < A 1694 5.03 809 3258|6372 11.55 840 6554
Mat. BBB 26.19 747 829 5149 |61.86 17.82 1246 83.21
<10Yrs Junk 24.60 4.76 7.73 4337|3325 1453 7.23 56.51
All 1744 477 589 3655|7824 1494 590 76.34
AAA 1280 449 206 2750 52.01 6.05 3.04 53.22
AA 1951 342 539 3863 |64.12 1260 721 51.09
Long A 13.64 538 598 2322|5125 849 846 5281
(Mat. BBB 19.25 17.09 4.10 46.60 | 66.70 2431 8.13 91.04
>10Yrs) Junk 1637 8.06 5.84 27.06|2230 1148 6.34 35.79
All 2137 455 536 39.71 | 67.34 10.59 7.23 5648
Average 18.60 6.69 694 3484 |59.09 1395 822 70.58

All
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Table 11. Forecasts of hedged returns and Barclays corporate bond index excess returns

This table reports the results of hedged returns and Barclays corporate bond index excess returns.
The hedged return is the return from a long position in corporate bonds and a short position in a
riskfree portfolio that has the same cash flow of the corporate bond. The price of riskfree portfolio
is determined by its future cash flows discounted using the zero-coupon yield curve from Gurkay-
nak, Sack and Wright (2007). The Barclays corporate bond index excess return is the difference
between the Barclays corporate bond index return and one month Treasury bill rate. The statistical
significance of R%)S is based on the p-value of the out-of-sample MSPE-adjusted statistic of Clark
and West (2007). ¢, %, and ¢ denote the significance level of 1%, 5%, and 10%, respectively.

Monthly(%) Quarterly(%)
FF RWC A FF RWC A
In-sample R squares
AAA 005 268 2.63 1.53 7.15 5.62
AA 315 999 6.83 930 18.18 8.88
Hedged return A 444 1207 7.63 12.11 1949 7.37
BBB 392 15.06 11.14 13.06 20.60 7.54
Junk 226 1046 8.21 597 15770 9.72
All 260 944 684 879 1686 8.07
Out-of-sample R squares
AAA -0.72 -1.16 -044 -198 050 248
AA  1.66° 446 280 4.54¢ 651 1.98
Hedged return A 1.32¢ 4884 356 433 7.18¢ 2.85
BBB -0.05 4.93° 498¢ 5314 7.68¢ 2.37
Junk 1.66° 4.34¢ 267 373 432¢ 0.59
All  -0.26 4.649 490 1.40¢ 838 6.97
In-sample R squares
AAA 1.04 6775 5.71 3.68 9.54 5.86
Barclays corporate bond AA  1.88 6.11 4.23 5.08 12.28 7.20
index excess return A 283 657 374 640 1265 6.25
BAA 6.57 1026 370 15.18 2043 5.25
Junk  4.04 1597 1193 1190 21.21 9.31
All 496 9.63 4.67 11.15 18.14 6.99
Out-of-sample R squares
AAA -222 -0.74 148 090 -130 -2.19
Barclays corporate bond AA  -0.60 0.11¢ 0.71 1.49° 504 355
index excess return A 132 225% 093 211° 5319 319
BAA 6.65¢ 8.37¢ 1.72 13.09 16914 3.82
Junk 3.66% 8.58¢ 492 5.53¢ 1256 7.04
All  398° 7.02¢ 3.04 948 15.87¢ 6.38
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Table 12. Out-of-sample forecasts under different economic regimes

This table reports the out-of-sample R-squares of monthly return forecasts using the RWC ap-
proach during good, normal and bad growth periods between 1983 and 2012. The statistical sig-
nificance of RZOS is based on the p-value of the out-of-sample MSPE-adjusted statistic of Clark and

West (2007). 4, b and ¢ denote the significance levels of 1%, 5%, and 10%, respectively.

Maturity GDP AAA AA A BBB Junk ALL
Good 4.16% 3.44¢ 460" 4.19° 639" 3507

All Normal 6.23¢ 13.53% 13.73% 16.38¢ 15.28¢ 12.12¢

Bad 6.19¢ 14.06" 8.85¢ 9.98* 11.77¢* 9.59¢

Good 5.03¢ 5.01¢ 9.04® 645" 3.17° 4.67°

Short Normal 3.77% 13.40¢ 11.31¢ 25.43¢ 19.71¢4 10.03¢
Bad  5.02¢ 17.53¢ 11.49¢ 9.07¢* 7.98¢ 8.30¢

Good 5.97° 4.06¢ 3.84> 1.75°  3.69¢ 4.07°

5Yrs<Mat.<7Yrs Normal 2.90° 10.82¢ 9.32¢ 15.68% 16.91¢ 10.02¢
Bad  6.45% 11.23% 10.56% 6.57° 3.74% 7.99%

Good 3.60° 3.44¢ 481 3950 3220  33¢°

7Yrs<Mat.<10Yrs Normal 3.14¢ 13.79¢ 15.14¢ 11.99 20.07¢ 14.17%
Bad 297° 939> 5287 942¢ 6.88¢ 5920

Good -0.26 4.24¢ 0.27¢ 0.75° 2750 2.33P

Long Normal 5.98% 10.96% 14.25% 6.75% 14.24¢ 11.88¢
Bad 1.79 3.01> 3.04 9.90° 5.320 395"
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Table 13. Future macroeconomic conditions and the forecasters
This table reports results of the predictive regression

AYii 1 = a+BX: + &1,

where AY;1 is the change in the recession probability (SRP), industrial production growth (IPG),
Treasury bill rate (TBL), default yield spread (DFY), implied volatility index (VIX), expected
default frequency (EDF), Chicago Fed National Activity Index (CFNAI), or the Aruoba-Diebold-
Scotti (2009) business conditions index (ADSI); X; is the RWC predictor for a given bond portfolio
or the PCA predictor. The forecast horizon is one quarter. The ¢-statistics are calculated using the
Newey-West (1987) adjusted standard errors.

X B t-stats R*(%)| B t-stats R*(%)
Y = SRP Y =IPG
AAA -0.81 -228 362 | 1.18 137 0.74
AA  -075 -3.16 7.3 | 125 223 215
RWC A -0.80 -3.69 921 | 133 263 282
BBB -0.64 -372 952 | 1.10 275 320
Junk -0.52 -344 863 | 0.88 252 278
PCA -0.64 -038 -0.11 |-048 -0.12 -0.21
Y =TBL Y = DFY
AAA -2.12 -1.08 075 |-056 -1.12 0.79
AA  -097 -0.83 024 |-067 -1.71 293
RWC A -100 -1.02 033 |-070 -193 3.78
BBB -0.52 -0.64 0.02 [-0.62 -222 478
Junk -0.68 -1.07 035 |-0.50 -1.95 434
PCA 477 -050 001 | 022 0.11 -021
Y =VIX Y = EDF
AAA -029 -1.63 197 |-026 -220 3.06
AA  -023 -238 423 |-020 -2.61 392
RWC A -020 -243 441 |-021 -299 4.87
BBB -0.16 -249 431 |-0.16 -2.80 443
Junk -0.14 -2.66 5.15 |-0.14 -3.07 5.0l
PCA 043 -0.52 -0.28 | -021 -048 -0.12
Y = CFNAI Y = ADSI
AAA 208 193 185 | 201 153 120
AA 207 288 435 | 202 248 298
RWC A 217 331 551 |216 298 394
BBB 1.84 362 644 | 1.79 320 444
Junk 142 315 530 | 146 3.04 4.09
PCA 097 -0.19 -0.19 | 1.06 0.18 -0.20

60



Figure 1. Bond cumulative returns
This graph plots the cumulative excess returns of rating portfolios and Barclays indicies.
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Figure 2. Realized returns and forecasts

This figure plots the realized monthly value-weighted portfolio returns and returns predicted by
weighted-average combination (WC) and regressed weighted-average combination (RWC) meth-
ods for the AAA long-maturity portfolio.
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