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Abstract

This paper studies the determinants of the delta-hedged equity option returns both

theoretically and empirically. Under a Merton-type structural model with double-exponential

jump diffusion process, the expected return of delta-hedged equity option portfolio is de-

termined by two firm-level variables: financial leverage and asset volatility of the firm.

The result suggests that the determinants affect positive and negative delta-hedged option

returns differently and it is important to take into account the higher order polynomials

of the determinants. Empirically, we find that these two structural variables can explain

a large portion of the cross-sectional variation in the data and even subsume information

in other determinants documented in the literature, such as idiosyncratic volatility and

liquidity. The results from the double sorting portfolios are consistent with the theoret-

ical implications. The empirical evidence also supports the nonlinear relation between

the determinants and the delta-hedged equity option returns. These findings are robust

across calls, puts and different moneyness levels.
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1 Introduction

The notion that options are not redundant assets has been widely accepted in financial

economics (e.g. Buraschi and Jackwerth (2001) and Jones (2006)). In the past two decades,

the equity option market in the United States has experienced exponentially growth . Figure

1 shows that the average daily trading volume (open interest) of equity options has increased

from 0.79 (18.23) million in 1996 to 14.81 (263.57) million in 2015. In light of the tremendous

growth in this market, understanding the determinants of the equity option returns becomes

increasingly relevant. Recent studies find that several factors are related to the equity option

returns, e.g., the difference between historical realized volatility and at-the-money implied

volatility (Goyal and Saretto (2009)), idiosyncratic volatility of the underlying stock (Cao

and Han (2013)), option illiquidity (Christoffersen et al. (2014)) and volatility term structure

(Vasquez (Forthcoming)). In addition to these market-based factors, how does variables

suggested in the Merton-type structural model determine the equity option returns? Do

they play an additional, or even a more fundamental role in explaining the cross-sectional

variation of the equity option return? To answer these questions, this paper aims to identify

the determinants of equity option returns from the structural model, and then investigate

the explanatory power of these determinants using cross-sectional equity option data in the

US market.

In this paper, we consider the delta-hedged equity option portfolio, consisting of a long

option position, dynamically delta-hedged by a short position in the stock, such that the

portfolio is not sensitive to the small movements in the underlying stock. The portfolio is

not exposed to risks except for variance risk and jump risk. Bakshi and Kapadia (2003)

show that the sign and magnitude of this portfolio return are closely related to the variance

risk premium. While much of the existing knowledge about the variance risk premium is

based on the index options, e.g. Bakshi and Kapadia (2003), Todorov (2010) and Bollerslev

et al. (2009), the variance risk premium of the individual stocks is less well understood. A

natural question is, which firm characteristics are related to the variance risk premium of

the individual stocks? Structural models following Merton (1974) imply that all contingent

claims written on a single firm’s asset or cash flow should be priced according to the same
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source of risk factor. Hence, the theoretical determinants that affect equity risk or credit risk

of the firm, such as financial leverage and asset volatility, may also affect higher order risk

premium of the stock, i.e. the variance risk premium.

Consider two firms with the same asset processes, but different leverage ratios. They are

both exposed to the market volatility risk and/or market jump risk. The firm with higher

leverage ratio is more exposed to the market volatility and market jump risk, and has a

higher default probability than the firm with lower leverage ratio. If the price of volatility

risk and jump risk is negative, as suggested Bakshi and Kapadia (2003) and Carr and Wu

(2009), the delta-hedged option returns should on average be negative and more negative for

the firm with higher leverage ratio.

To formalize the idea, we derive the expected return of a delta-hedged option portfolio

based on the capital structure model developed by Chen and Kou (2009). In this model, the

dynamic of the asset value of a firm follows a double-exponential jump diffusion process. The

firm’s capital structure consists of equity and perpetual debt with constant coupon payments.

When the asset value hits a certain threshold, the firm declares bankruptcy. Based on this

framework, we find that the expected return of delta-hedged equity option portfolio relates

to several firm-level structural variables: the variance of the jump component in the asset

process, the leverage ratio of the firm and the level of bankruptcy trigger. The result implies,

after dynamically hedging out the option exposure to the underlying stocks, the portfolio

return is still driven by the determinants of the stock returns. The reason is that, due to the

exposure to variance risk or jump risk, the effect of the firms’ characteristics on the stock

returns is inherited to the variance risk premium of the firm. Furthermore, simulations of the

model show that the relation between the determinants and the portfolio returns is nonlinear.

This implies that it is important to take into account the higher order polynomials of the

determinants when we analyze the relation between the theoretical determinants and the

expected return of the delta-hedged option portfolios.

There are two common sources of variance risk: the presence of stochastic volatility and

the occurrence of unanticipated jumps. We use the jump diffusion-type of model instead of

the stochastic volatility model for several reasons. First, the two types of models explain the

expected delta-hedged return in different channels, but with similar implications. In both
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models, there is one extra stochastic component which cannot be hedged away by delta hedg-

ing. Disentangling the two sources is less important when we focus on the relation between

the theoretical determinants and the variance risk premium of the individual stocks. Second,

Todorov (2010) finds that jumps play a very important role in explaining the dynamics of

variance risk premium. Third, a closed form for the equity value of the firm is only possible

under the jump diffusion model when the jump size follows an exponential distribution. The

explicit form of joint distribution of default time and default trigger is not available under

the stochastic volatility model.

To study the variance risk premium of the individual stocks, we use the delta-hedged

option returns, instead of a more direct measure: the difference between the realized variance

and the implied variance. First, due to liquidity reason, the available number of equity

options for a firm is usually less than six in one day. Zhou and Xiao (2015) shows that the

approximation error of the risk neutral variance can be huge when the number options is

limited. The delta-hedged option portfolio only requires only one option for each stock on

the same day. Second, it is easier to implement trading strategies using delta-hedged equity

option portfolios, rather than trading directly on the variance risk premium of the individual

stocks.

To test the implications of the model, we examine cross-section of equity option returns in

the US market. We pick one call (or put) option on each optionable stock that has a maturity

about one month and evaluate the return of the portfolio that buys one call (or put) and

daily delta-hedges with the underlying stock. The empirical results are supportive of the

model implications. First, the delta-neutral strategy that buys equity options and hedges

with the underlying stock significantly underperforms zero. On average, the strategy loses

about 1.97% of the starting value of the portfolio. Second, after controlling for other firm

characteristics such as firm size, the delta-hedged option return is decreasing with leverage

ratio and asset volatility. The result of double sorting portfolios based on asset volatility

and leverage ratio shows that the returns from quintile 1 to quintile 5 along both sorting

criteria exhibit monotonic trend, which is consistent with the theory. Third, using short-term

debt ratio as a proxy of the level of the bankruptcy trigger, we find that the delta-hedged

option portfolios in firms with higher short-term debt ratio exhibit significantly more negative
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returns than those of firms with mainly long-term debt financing. Fourth, we find evidence

of the nonlinear relationship between the two determinants and the delta-hedged option

returns. The coefficients of the higher order polynomials of the determinants are statistically

significant in explaining the cross-sectional variation of delta-hedged option returns.

This paper contributes to several strands of the literature. First, it adds to a growing

literature that studies the cross section of delta-hedged equity option returns. Previous

papers have identified several market-based factors that affect the delta-hedged return in

the cross section of equity options1. Most results from this literature are motivated by

volatility-related option mispricing and option liquidity. However, how the underlying firm’s

characteristics affect the delta-hedged option return have not attracted sufficient attention.

My paper departs from these papers along several dimensions. First, my findings augment the

literature by showing that the financing decision of the firm plays a sizable role in generating

cross-section variations in delta-hedged equity option returns. To the best of my knowledge,

this paper is the first one to identify theoretical determinants of delta-hedged equity option

returns or the equity variance risk premium. Second, compared with the empirical research

in this field, this paper provides a framework to explain the proposed relation, such that the

interaction of the different structural parameters and the delta-hedged gain can be understood

in a structural model. Third, the results of the existing research generally cannot be explained

by usual risk factor models, whereas the theoretical model and the empirical results in this

paper are in general consistent within a risk-based framework.

Second, this paper contributes to the literature on the impact of leverage on the prices

or returns of different assets. The notion that equity is a call option on the firm’s asset goes

back to Merton (1974). Following this philosophy, Geske (1979) models equity options as

compound options on firm’s asset, but the firm is not allowed to declare bankruptcy before the

debt matures. Toft and Prucyk (1997) propose an equity option pricing model that allows for

taxes and bankruptcy and show that firm’s leverage and debt covenants affect option values

and implied volatility skew. Ericsson et al. (2009) show empirical evidence that leverage and

volatility are important determinants of credit default swap premia. More recently, Geske

1See Goyal and Saretto (2009), Cao and Han (2013), Vasquez (Forthcoming) and Christoffersen et al.
(2014).
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et al. (2014) study the impact of leverage on the pricing of equity options. They find that

considering the leverage reduces the pricing errors by 20% on average, compared to Black-

Scholes model. The models in these papers only assume one dimension of randomness in

the undelying asset. Hence, they cannot explain the negative delta-hedged option returns,

because Bakshi and Kapadia (2003) show that if the underlying price process follows a one-

dimensional Markov diffusion, then the delta-hedged gain is precisely zero. The model in this

paper differs from this stream of literature in that there are two independent randomnesses

in the underlying asset process, such that the delta-hedged gain of the equity option portfolio

is not zero.

Finally, this paper is related to two recent papers that study variance risk premium in the

cross-section of equity options. Vedolin (2012) provides a theoretical framework to explain the

volatility risk premia using a Lucas tree model with heterogeneous beliefs, stochastic macro-

economic uncertainty and default risk. My paper differs from this one in several aspects.

First, the model in my paper focuses more on the role of firm’s capital structure. It allows

firm to declare bankruptcy before the maturity of the corporate bond, and the equity holder

to determine the bankruptcy trigger endogenously by maximizing the firm value. Second,

we investigate the role of nonlinear relationship between leverage and variance risk premium,

which helps to explain the cross-sectional variation of the variance risk premium to a large

extent. Third, we construct the delta-hedged option portfolio to capture the volatility risk

premia, in which the relation between leverage and volatility risk premia can be translated

to trading strategies. The idea of my paper is also close to González-Urteaga and Rubio

(Forthcoming), who find that the market volatility risk premium and the default premium

are key determinants risk factors in the cross-sectional variation of average volatility risk

premium. However, they consider a representative set of portfolios rather than the equity

options on the individual stocks. The focus of my paper is different from theirs.

The remainder of the paper is organized as follows. Section 2 presents the capital structure

model, develops and interprets the pricing formulas for options on levered equity. Section 3

describes the data and the summary statistics. Section 4 presents empirical results of double

sorting portfolios and cross-sectional multivariate regressions that control for various firm-

specific variables including size, idiosyncratic volatility and liquidity. It also investigates time
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series properties of delta-hedged option returns.

2 Pricing Options on leveraged equity with endogenous de-

fault and jump risk

This section describes the pricing of options on leveraged equity. The relevant theory is

developed based on a two-sided jump model for credit risk proposed by Chen and Kou (2009),

which can accommodate optimal capital structure, credit spread and implied volatility in

a unified framework. Compared with Merton (1974)’s original work, this model has two

advantages. First, it allows a firm to declare bankruptcy before the maturity of the bond

and the shareholders can choose the optimal bankruptcy trigger endogenously. Second, it

introduces two independent randomnesses in the underlying asset process. Chen and Kou

(2009) show that the model is capable of generating realistic level of credit spread, optimal

leverage ratio and different shapes of implied volatility smile. This model is able to deliver

the explicit expression of expected delta-hedged option returns based on a capital structure

model, while preserving much of the richness to explore different features in the firm’s debt

structure.

In Section 2.1 and Section 2.2, we present a simplified version of Chen and Kou (2009)’s

model to price the equity value of the firm. Then, the expected return of the delta-hedged

equity option portfolio is derived in Section 2.3. The intuition of the propositions and nu-

merical examples are provided in Section 2.4 and Section 2.5. The implications of the model

are then used to motivate the empirical analysis.

2.1 Asset model

Consider a firm whose asset value Vt follows a double exponential jump-diffusion process

under the physical measure,

dVt

V −t
= µdt+ σdWt + d(

Nt∑
i=1

(Ji − 1)), (1)
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where dWt = ρ dW1t +
√

1− ρ2dW2t, ρ ∈ [0, 1), W 1
t and W 2

t are independent standard

Brownian processes, {Nt, t ≥ 0} is a Poisson process with jump intensity λ and and {Ji}

is a sequence of independent identically distributed nonnegative random variables such that

Y = ln(J) has a double-exponential density,

fY (y) = puηue
−ηuy1y≥0 + pdηde

ηdy1y<0, ηu > 1, ηd > 1, pu + pd = 1.

To be more specific, Y has a mixed distribution:

Y =


x+ with probability pu

−x− with probability pd.

where x+ and x− are exponential random variables with means 1
ηu

and 1
ηd

.

The solution of the stochastic differential equation in(1) is given by,

Vt = V0exp((µ−
1

2
σ2)t+ σWt)

Nt∏
i=1

Ji.

To derive the delta-hedged option gain, we need to use the physical distribution of the

asset value to derive the stock price process under the physical measure, and to use the risk

neutral process of the asset value to derive the value of option on levered equity. Due to the

jumps, the risk-neutral probability measure is not unique. In a typical rational expectations

economy as in Kou (2002), a representative investor maximizes a utility function of the

consumption process ct. Consider the utility function of the special form U(ct) =
cαt
α if

0 < α < 1 and U(ct) = log(ct) if α = 0. It can be shown that, when the consumption process

follows the jump diffusion process in equation 2, the equilibrium price of a derivative on this

asset is given by the discounted expectation of the payoff under the risk neutral measure:

dct
ct

= µ1dt+ σ1dW1t + d(

Nt∑
i=1

(Ji − 1)), (2)

where the jump component is the same as the one in the asset process of the firm and

all three randomnesses are independent. The implication is that the systematic jump and
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diffusion risks are priced in the asset returns. More generalized results can be obtained if we

assume that the jump component in the asset process has an idiosyncratic part which is not

correlation with the pricing kernel. Here we focus on the simplistic model setup.

The risk neutral measure is defined as: dQ/dP = Zt/Z0, where Zt = ertcα−1t . The asset

model in (1) satisfies equilibrium requirement if and only if,

µ = r + σ1σρ(1− α)− λ(ξ(α) − ξ(α−1)), (3)

where ξ(α−1) is given by

ξ(α) = E[Jα − 1] = E[eY (α) − 1] =
puηu
ηu − α

+
pdηd
ηd + α

− 1. (4)

If the drift term of Vt under the physical measure satisfies (3), then under the risk neutral

measure Q, the asset value of the firm follows:

dVt

V −t
= (r − λQ(EQ(Ji − 1)))dt+ σdWQ + d(

NQ
t∑

i=1

(JQi − 1)), (5)

where WQ
t is a new Brownian motion under Q, NQ

t is a new Poisson process with jump inten-

sity λQ = λ(ξ(α−1) + 1) and {JQi } are independent identically distributed random variables

with a new density under Q:

fQJ (x) =
1

1 + ξ(α−1)
xα−1fJ(x). (6)

2.2 Debt, equity and market value of the firm

The firm pays a nonnegative coupon, c, per instant of time when the firm is solvent. Let

VB denote the level of asset value at which bankruptcy is declared. The bankruptcy occurs

at time τ = inf{t ≥ 0 : Vt ≤ VB}. Upon default, the firm loses 1 − αd of Vτ , leaving debt

holders with value αdVτ and stockholders with nothing. Note that Vτ may not be equal to

VB due to jumps.

To compute the total debt and equity values, one needs to compute the distribution of
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the default time τ and the joint distribution of Vτ and τ . Kou and Wang (2003) show that

the analytical solutions for these distributions depend on the roots of the following equation:

r = −(r − 1

2
σ2 − λξ)x+

1

2
σ2x2 + λ(

puηu
ηu − x

+
pdηd
ηd + x

− 1),

which has exactly four roots γ1, γ2, −γ3 and −γ4, with

0 < γ1 < ηd < γ2, 0 < γ3 < ηu < γ4.

Based on the distribution of default time and the joint distribution of default threshold

and default time, the value of total asset, debt and equity value of the firm can then be

obtained. The total market value of the firm is the firm asset value plus the tax benefit

and minus the bankruptcy cost, which depend on the asset value of the firm V and the

bankruptcy threshold VB:

v(V, VB) = V + E[

∫ τ

0
κρPe−rtdt]− (1− αd)E[Vτe

−rτ ]

= V +
κc

r
(1− d1(

VB
V

)γ1 − d2(
VB
V

)γ2)− (1− αd)VB(c1(
VB
V

)γ1 + c2(
VB
V

)γ2),

where c1 = ηd−γ1
γ2−γ1

γ2+1
ηd+1 , c2 = γ2−ηd

γ2−γ1
γ1+1
ηd+1 , d1 = ηd−γ1

γ2−γ1
γ2
ηd

, and d2 = γ2−ηd
γ2−γ1

γ1
ηd

. The value of

total debt at time 0 is the sum of the expected coupon payment before bankruptcy and the

expected payoff upon bankruptcy:

D(V ;VB) = E[

∫ τ

0
e−rtcdt+ αde

−rτVτ ]

=
c

r
(1− d1(

VB
V

)γ1 − d2(
VB
V

)γ2) + αdVB(c1(
VB
V

)γ1 + c2(
VB
V

)γ2),

The total equity value is the difference between the total asset value and the total debt

value,

S(V ;VB) = v(V ;VB)−D(V ;VB) (7)

= V + aV −γ1 + bV −γ2 − (1− κ)c

r
, (8)
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where a = (1−κ)cd1
r V γ1

B − c1V
γ1+1
B and b = (1−κ)cd2

r V γ2
B − c2V

γ2+1
B .

The bankruptcy trigger VB is either exogenously given by a net worth covenant, i.e. a

covenant triggers bankruptcy when the asset value hits the threshold VB = c
rαd

, where αd

is the portion of asset value the debt holders can get upon default. The bankruptcy trigger

can also be determined endogenously if it is within the equity holder’s discretion to declare

banktuptcy. For a fixed coupon level c, Chen and Kou (2009) derived the optimal choice of

V ∗B by maximizing the total equity values:

V ∗B =
εc

r
, where ε =

(1− κ)(d1γ1 + d2γ2)

c1γ1 + c2γ2 + 1
. (9)

Whether the default trigger is determined exogenously (protected debt) or endogenously

(unprotected debt) has impact on the pricing of the firm’s equity value, and furthermore on

the pricing of options on the firm’s levered equity. Empirically, it is possible to use balance

sheet data to approximate the protective net-worth covenant. For instance, the term structure

of the firm’s debt can be used as a proxy for the existence of net worth hurdle. Leland (1994)

shows that the short term debt can be associated with an exogenous bankruptcy triger that

equals the market value of debt on the issue date. Long term debt results in an endogenous

trigger which is significantly below the previous one. This implies that a firm with a large

portion of long-term debt due in the immediate future faces a net-worth hurdle, Otherwise

they are not able to renew the credit line.

2.3 Delta-hedged returns of options on the levered equity

In this subsection, we turn to the valuation of options written on the levered equity and

the derivation of delta-hedged option returns. The value of an European option wittern on

equity S(V ;VB) at time 0 maturing at t, with strike price K can be expressed as:

O(0, t;K) = e−rtEQ[Payoff× 1τ≥t],

where τ is the stopping time when asset value of the firm hits the bankruptcy trigger the first

time and Q represents the risk neutral measure. The payoff for the call options at maturity

11



is max(St(Vt;VB)−K, 0) and max(K − St(Vt;VB), 0) for the put options.

To remove the impact of the underlying stock movement on the option returns, we consider

the return on a portfolio of a long position in an option, hedged by a short position in the

underlying stock, such that the portfolio is not sensitive to the movement of the underlying

stock prices. The delta-hedged gains, Π0,t, is defined as the gain or loss on a delta-hedged

option position, subtract the risk free rate earned by the portfolio:

Π0,t = Ot −O0 −
∫ t

0
∆udSu −

∫ t

0
r(Ou −∆uSu)du,

where ∆t = ∂Ot
∂St

, r is the constant risk free rate. By Ito’s lemma, under the physical distri-

bution, the option price can be written as,

Ot = O0 +

∫ t

0

∂O

∂u
du+

∫ t

0

∂Ou
∂Su

dScu +
1

2

∫ t

0

∂2Ou
∂S2

u

dScudS
c
u +

∑
0<u<t

(O(Su)−O(Su−)). (10)

where dScu is the continuous part of dSu. The last part in equation (10) sums up the movement

of the option price due to the discontinuous jumps from time 0 to t. O(Su) is the option

price evaluated at Su which is the stock price immediately after a jump and O(Su−) is the

option price evaluated just before the jump.

Since the equity value is a function of the asset value given by equation (8), the stochastic

process of the equity value can also be obtained by Ito’s lemma:

dS =
∂S

∂V
dV c +

1

2

∂2S

∂V 2
σ2V 2dt+ d

N∑
i=1

(S(V )− S(V−)),

where S(V )−S(V−) = (V Ji+a(V Ji)
−γ1 +b(V Ji)

−γ2)−(V +aV −γ1 +bV −γ2). The subscripts

of S and V are ignored for simplicity.

Under the risk neutral measure Q, the process of the equity value can be rewritten as,

dSQ = µQS dt+ σQS dW
Q
t + d

NQ∑
i=1

(S(V )− S(V−)),

On one hand, we can obtain µQS and σQS by substituting the risk neutral process of Vt, and

12



then µQS = (r − λQ(EQ(Ji − 1))) ∂S∂V Vt + 1
2
∂2S
∂V 2σ

2V 2
t , σQS = σVt

∂S
∂V . On the other hand, since

equity value is a convex function of the asset value, the discounted equity price process should

be a martigale under the risk neutral measure. Hence, µQS = rS − λQEQ[S(V ) − S(V−)].

The discounted option price process e−rtOt is also a martingale under Q, the integro-partial

differential equation of the option price Ot is:

rOt =
∂O

∂t
+
∂O

∂S
µQS +

1

2

∂2O

∂S2
(σQS )2 + λQEQ[O(S)−O(S−)]. (11)

Combining equations (10) and (11), the option price can be rewritten as,

Ot = O0 +

∫ t

0

∂O

∂S
dSc +

∫ t

0
(rO − ∂O

∂S
µQS − λ

QEQ[O(S)−O(S−)])dt+
∑

0<u<t

(O(Su)−O(Su−)).

Therefore, the expected delta-hedged gain is equal to:

E(Πt) = E(Ot −O0 −
∫ t

0

∂O

∂S
dSu −

∫ t

0
r(O − ∂O

∂S
Sdu)) (12)

=

∫ t

0
{−λQEQ[O(S)−O(S−)] + λQEQ[(S(V )− S(V−))

∂O

∂S
]

− λE[(S(V )− S(V−))
∂O

∂S
] + λE[O(S)−O(S−)]}dt.

The following proposition shows the relation between delta-hedged gains, the jump risk pre-

mium, and the option gamma. The proof of Proposition 1 is provided in Appendix A.1.

Proposition 1 Let the firm’s asset price process under the physical and risk neutral measures

follows the dynamics given in Equations (1) and (5), and the equity value of the firm is given

by Equation (8). Then, the expected delta-hedged gain is given by,

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

(
∂Su
∂Vu

)2(λE[Vu − Vu−]2 − λQEQ[Vu − Vu−]2)du. (13)

where ∂2O
∂S2 represents the gamma of the option, E[.] is the expectation operator under the

physical measure, and EQ[.] is the expectation operator under the risk neutral measure.

The expected delta-hedged gain E(Πt) is negative, if and only if pu
η3u
− pd
η3d
< 0. One sufficient

but not necessary condition is that the absolute value of the negative jump size is larger than
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the positive jump size on average, 1/ηd > 1/ηu, and the expected jump size is less than zero:

E[Y ] = pu
ηu
− pd

ηd
< 0.

The proposition states that, with continuous trading, the expected delta-hedged gain is

negative provided that the jump size is on average negative, and there are occasionally price

discontinuities (λ > 0). The results hold for both call options and put options. The intuition

will be explained in more details in Section 2.4. The expected gain is positively correlated

with option gamma, the second order derivarive of the option price over the underlying stock

price. For the options with the same underlying asset, this suggests that the expected delta-

hedged gain is the most negative for at-the-money options. Following the proof procedure

of Proposition 1 in Appendix A.1, we have the following proposition on the relation between

delta-hedged gain and financial leverage of the firm (Proof in A.2):

Proposition 2 (1) For options with the same gamma (∂
2O
∂S2 ) and asset value (V) , the abso-

lute value of the scaled delta-hedged gain E(Πt)/S
2 depends on firm’s debt level (c), tax rate

(τ), and variance of the jump component in the asset process (λE[J − 1]2) and risk aversion

coefficient of the representative investor (γ).

(2) The firm specific determinants: debt level and volatility of the jump component in the

asset process have an amplification effect on E(Πt)/S
2. The effect is not linear:E(Πt)/S

2 is

increasing in the determinants when it is positive; decreasing in the determinants when it is

negative.

(3) The absolute value of E(Πt)/S
2 is larger for a firm with bankruptcy trigger exoge-

nously determined by the net-worth covenants than that in a firm with bankruptcy trigger

endogenously determined by the equity holders.

2.4 Intuitions behind the Propositions

The expected delta-hedged gain can be understood in the framework of stochastic volatility

model, or jump diffusion model. Bakshi and Kapadia (2003) argue that when volatility is

stochastic and volatility risk is priced, in other words, the stochastic volatility is correlated

with the pricing kernel, the expected delta-hedged gain is negative because investors are

willing to pay a premium to hedge against the unfavorable volatility movement. Alternatively,
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the sign and magnitude of average delta-hedged gains can be explained by the jump diffusion

model.

Note that the call option price is a strictly convex function of the underlying stock price.

Consider an at-the-money call option at t0, the option price is C0. The underlying stock price

and the strike price are both 100. If the stock price suffers a negative jump at t1 from 100 to

92, then the option price drops from C0 to C1. However, the positive gain of the delta-hedge

position −∂C0
∂S0

(S1−S0) exceeds the loss in the option value, because option price is a convex

function of the underlying price. Similarly, after positive jumps, the gain of the delta-hedged

call option is positive. If the stock price change is small enough, and the stock return can

be approximated as a diffusion process, then the gain of delta-hedged option position should

be zero on average. However, if we assume that discontinuous jumps occur sometimes in

the stock return, then the movement of stock return cannot be hedged out completely. The

second order derivative of the option price over the underlying stock price leaves us with the

gamma risk.

The reasoning can also be applied to the put options. Therefore, the delta-hedged gains

for call and put option are both positive after unexpected jumps. If the negative jumps in

the stock prices are more frequent than the positive ones, and if the average absolute size

of negative jumps is larger than the positive ones, the gain of delta-hedged option position

is then negatively related to the underlying stock return. Usually, the stock returns comove

with the market return in the same direction, so the expected gain of the delta-hedged option

position is negative, as the investors pay a premium to hedge against the undesired jump

risk.

Furthermore, the delta-hedged option gain is related to the variance risk premium (VRP,

defined as the difference between variance of the stock return under the physical measure

and that under the risk neutral measure) (Proof in Appendix A.1):

E(Πt) ≈
1

2

∂2O

∂S2
× V RP × S2. (14)

There are two implications that follow from Equation (14). First, as the option gamma

is positive, a negative (positive) variance risk premium implies that E(Πt) will be negative
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(positive). A negative variance risk premium in the context is consistent with the notion that

volatility rises with the negative jumps. Bollerslev and Todorov (2011) show that realized

variance is priced due to its correlation with large negative jumps. The recent evidence in the

variance swap market documented by Dew-Becker et al. (2015) further confirms the finding.

The model framework in this paper is consistent with the recent findings. Second, as the

option gamma is the largest for at-the-money options, the absolute value of E(Πt) is also

the largest for the same underlying stock. However, after scaling the value of E(Πt) by the

initial investment O − ∂O
∂S S0, the absolute return may not be the highest for at-the-money

options. This may help to explain the empirical results in Section 4.

Proposition 2 states that even after controlling the impact of the underlying stock move-

ment by dynamic delta-hedging, the expected scaled option return is still related to the

structural characteristics of the underlying firm. From the derivation in Appendix A.2, we

know that the scaled return is linked to the firm’s characteristics through the variance risk

premium. For firms with the same asset processes, the variance risk premium is determined

by the sensitivity of the equity value with respect to the asset value, β = ∂S
∂V

V
S . In the model,

the equity beta β is expressed as:

β = 1 +
(1− κ)c

rS
− (γ1 + 1)SD1

S
− (γ2 + 1)SD2

S
,

Here, following Gomes and Schmid (2010), we use SD1 = aV −γ1 and SD2 = bV −γ2 to

denote the value of the default option. The second term comes from the discontinuous jump

term of the asset process. These two terms capture the effect of leverage on returns. If

the bankruptcy trigger is exogenously determined by the strict-worth covenant, a is less

than zero and decreases in the coupon value c. In this case, the equity risk is apparently

increasing in the leverage ratio. Furthermore, the default option increases the equity risk. If

the bankruptcy risk is endogenously determined by the equity holders, it is possible that a

is larger than zero and increases in the coupon value. The default option lowers down the

equity risk because the trigger is given by maximizing the equity value. However, the effect

is not large enough to compensate the effect on risk of levering up equity cash flow. Overall,

the risk of equity is increasing in firm’s leverage ratio.
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In reality, the relation between financial leverage and equity risk is more complex than

the linear form. Gomes and Schmid (2010) show that, in a world where both corporate

investment and financing decisions are endogenous, the relation between financial leverage

and equity risk also depends on investment opportunities available to the firm. In other

words, the mature firms tend to have higher leverage, but with fewer growth options. A

heuristic representation of this relation in the context of my model is that,

β = 1 +
(1− κ)c

rS
− (γ1 + 1)SD1

S
− (γ2 + 1)SD2

S
+

(γ0 + 1)SG

S
,

where SG represents the value of the growth option. Depends on the relative effects of

growth opportunity and leverage effect, mature firms may be less risky than the young firm.

As equity risk is linked to the expected gain of delta-hedged options, it is important to control

for growth option when examining the relation between leverage and expected delta-hedged

option return. In the empirical analysis, we find a reverse relation between leverage ratio

and the delta-hedged option return without controlling for firm characteristics. However, the

relation is consistent with the theoretical prediction after controlling the growth opportunity

such as firm size. Furthermore, the absolute value of delta-hedged option return is increasing

in the firm size, suggesting that the investment-based asset pricing literature also sheds light

on the pricing of equity options.

2.5 Simulations and implications of the model

In this subsection, we show the numerical results of this model and examine the relation

between the structural characteristic of the firm and the delta-hedged option returns. The

details of the simulation procedure are illustrated in Appendix A.3. Table 1 Panel A presents

the parameter sets used in the simulations.

Panel A shows the value of the common parameters. We use asset volatility σ = 0.25, the

median asset volatility of the US firms reported in Choi and Richardson (2015) and Correia

et al. (2014). a is the risk aversion coefficient in the representative investor’s utility function

(power function). The value of a is obtained from Bliss and Panigirtzoglou (2004), who

estimate the risk aversion coefficient of the power function from S&P 500 index options. The
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risk-free rate is assumed to be 4%, and the initial asset value is assumed to be 100. Panel

B and C shows the value of parameters in the jump component of the firm’s asset process.

pu is the probability that the asset return has a positive jump, pd is the probability that the

asset return has a negative jump, 1/ηu is the absolute mean of the upward jump size, and

1/ηd is the absolute mean of the downward jump size.

From Equation 13, we know that the sign of delta-hedged option gain depends on the

relative size of the positive and negative jumps. In Figure 2a, we assume that the stocks

have negative jumps on average (pu = 0.4, ηu = 8, ηd = 4). In Figure 2b, we assume that

the stocks have more positive jumps on average (pu = 0.4, ηu = 8, ηd = 4). The horizontal

axis shows levels of book leverage ratio c/rV . we compute the delta-hedged gains after one

month scaled by the square of the initial stock price, for different book leverage ratio and

for different jump intensities (λ = 0, 0.5, 1). The vertical axis shows the delta-hedged gains

scaled by the square of the initial stock price. In Figure 3, we show the delta-hedged gains

scaled by the initial investment. As these two figures show similar patterns, we scaled the

delta-hedged gains scaled by the initial investment in the empirical analysis to understand

better about the portfolio return.

Figure 2 and 3 show the nonlinear relationship between leverage and scaled delta-hedged

gain. The nonlinear relation is similar as the relation between leverage and stock return in

Doshi et al. (2015). When the jump size is on average negative (Panel (a)), the scaled delta-

hedged gain is negative and decreasing in leverage. In addition, the relationship between

these two variables becomes highly convex at high levels of leverage. Hence, it is important

to take this non-linearity into account when examining the effect of leverage on scaled delta-

hedged option gain. Furthermore, when the average jump size is positive (Panel (b)), the

scaled delta-hedged gain is on positive and increasing in leverage. In other words, the sign

of the effect of leverage on levered return depends on the sign of average jump size. In the

empirical part of this paper, we will consider these two patterns of non-linearity and show

that they play crucial roles when we examine the determinants of delta-hedged option return.

Based on the propositions and simulations, we form three hypotheses below and test them

in Section 4.

Hypothesis 1: After controlling for growth options of the firm, the delta-hedged equity
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option return is decreasing in financial leverage and asset volatility.

Hypothesis 2: After controlling for growth options, financial leverage and asset volatility,

the delta-hedged equity option return is decreasing in the covenant proxy: short-term debt

divided by total debt of the firm.

Hypothesis 3: Higher order polynomials of the financial leverage and asset volatility play

significant role in determining delta-hedged option returns.

3 Data

3.1 Option data and delta-hedged option return

The data on equity options are from the OptionMetrics Ivy DB database. The dataset con-

tains information on the entire U.S. equity option market except for the financial firms, from

January 1996 to August 2014. The data fields include daily closing bid and ask quotes,

trading volume, open interest, implied volatility and the option’s greeks computed by Op-

tionMetrics based on standard market conventions. The IVs and greeks are calculated using a

binomial tree model using Cox et al. (1979). Continuously-compounded zero-coupon interest

rates are also obtained from OptionMetrics as a proxy for the risk-free rate.

Several filters are applied to select the options. First, to mitigate the problem of early

exercise feature of American options, we select short-maturity options with expiration from

25 days to 35 days. Only at-the-money and out-of-the-money options are included. In

addition, the options are included only if the underlying stock does not pay dividends during

the remaining life of the option. Second, prices that violate arbitrage bounds are eliminated.

Third, all observations are eliminated if the following conditions apply: (i) the ask is lower

than or equal to the bid, (ii) the bid is equal to zero, (iii) the spread is lower than the

minimum tick size (equal to 0.05 for option trading below 3 and 0.10 in any other cases), (iv)

there is no volume or open interest.

After the filtering procedure, we select options under four categories: at-the-money

(ATM) call, out-of-the-money (OTM) call, ATM put and OTM put. For each month, we

select one option for each firm under each category, with moneyness closest to a specified

value and maturity closest to 30 days. The specified value is 1 for ATM call and put, 0.95
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for OTM call, and 1.05 for OTM put.

The delta-hedged option portfolio is constructed by holding a long position in an option,

hedged by a short position in the underlying stock, such that the exposure of the option

to the movement of the underlying stock is removed as much as possible. The definition of

delta-hedged option gain follows Bakshi and Kapadia (2003). Let Ct,t+τ represents the price

of an European call option at time t maturing at t + τ with strike price K. Denote the

corresponding option delta by ∆t,t+τ , and ∆t,t+τ =
∂Ct,t+τ
∂St

. The delta-hedged gains Πt,t+τ is

the gain or loss on a delta-hedged option position, deducting the risk-free rate earned by the

net investment. In continuous time, delta-hedged call option gain is,

Πt,t+τ = Ct+τ − Ct −
∫ t+τ

t
∆udSu −

∫ t+τ

t
ru(Cu −∆uSu)du.

where ru is the annualized risk-free rate at time u. Consider a portfolio of a call option that

is hedged discretely N times over the period [t, t+ τ ], where the hedged is rebalanced at each

dates tn, n = 0, 1, ...N − 1. The discrete delta-hedged call option gain up to the maturity

date t+ τ :

Πt,t+τ = max(St+τ −K, 0)− Ct

−
N−1∑
n=0

∆tn [Stn+1 − Stn ]−
N−1∑
n=0

rn(Ct −∆tnStn)
τ

N
. (15)

The definition for delta-hedged put option gains is similar as in Equation (15), except

that the option price and delta are for the put options and the payoff of the put options is

max(K − St+τ , 0). To make the delta-hedged gains comparable across stocks, we scale the

delta-hedged call option gain Πt,t+τ by ∆tSt − Ct and by Pt −∆tSt for the put options. In

section 4, we refer to the scaled delta-hedged option gain Πt,t+τ/(∆tSt − Ct) as the delta-

hedged call option return.

From Proposition 2, we know that one determinant of the delta-hedged option return

is the volatility of the jump component in the asset process. However, it is difficult to

disentangle the volatility of jump component and diffusion component of the asset process

using empirical data. Hence, we use asset volatility as a proxy. Following Correia et al.
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(2014), we define the asset volatility as implied volatility of the equity option × (1-leverage

ratio).

Christoffersen et al. (2014) document the illiquidity premia in the equity option market.

To control the effect of liquidity, we define the option illiquidity measure as the relative

bid-ask spread:

ILo =
2(Obid −Oask)
Obid +Oask

where Obid is the highest closing bid price and Oask is the lowest closing ask price.

3.2 Stock and balance sheet data

Stock prices and the realized volatility are retrieved from the OptionMetrics database. The

realized volatility is calculated over the past 30 calendar days, using a simple standard devi-

ation calculation on the logarithm of the close-to-close daily total return. The idiosyncratic

volatility is defined as the standard deviation of the error term of the Fama-French three-

factor model estimated using the daily stock returns over the previous month. The definition

follows Ang et al. (2006) and Cao and Han (2013).

The balance sheet data are obtained from Compustat database. Fama and French (1992)

suggests that size is a potential risk factor, and it is reasonable to control size in the cross

section of option returns. Firm size is defined as the natural logarithm of the firm’s asset

value on the balance sheet. The book leverage ratio is calculated as the sum of total debt

(data item: LTQ) and the par value of the preferred stock (data item: PSTKQ), minus

deferred taxes and investment tax credit (data item: TXDITCQ), divided by total asset

(data item: ATQ). The financial firms are excluded for that their financing decisions cannot

be explained by the conventional capital structure models.

Following Toft and Prucyk (1997), we use the maturity structure of the firm’s debt as a

proxy for the existence of net-worth hurdles, more specifically, the ratio of long-term debt due

in one year plus notes payable to total debt. Leland (1994) argues that short-term debt can

be associated with an exogenous bankruptcy trigger that equals the market value of debt.

Long-term debt results in an endogenous bankruptcy point which is below its exogenous
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counterpart. Intuitively, this indicates that firms with a large proportion of debt due in the

immediate future must pass a net-worth hurdle. Otherwise, they are unable to roll over their

debt. Firms primarily financed by long-term debt need not overcome such a strict net-worth

hurdle.

3.3 Summary statistics

After calculating the delta-hedged option returns, we merge the equity options data with

their underlying stock information and the balance sheet data. The final data sample have

221, 743 observations for ATM calls, 201, 474 for OTM calls, 183, 893 for ATM puts and

170, 716 for OTM puts. Table 2 shows that the means of the delta-hedged options for call

and put options are both −1.97% with a standard deviation 0.09. The average moneyness of

the chosen options is 0.98 with a standard deviation of 0.03. The days to maturity ranges from

26 to 33 days across different months, with an average of 31 days. The detailed information

for the delta-hedged option returns under the four categories are presented in Table 3.

4 Cross sectional analysis of delta-hedged option return

This section presents results of Fama-French regression results, tests several potential expla-

nation of the results and reports some robustness checks.

4.1 Average delta-hedged option return

Table 3 presents time series average of delta-hedged option returns for individual stocks. It

shows that the average delta-hedged return for ATM (OTM) call option is −1.72% (−2.25%)

and −1.76% (−2.20%) for ATM (OTM) put options. Table 3 also reports the results of t-test

for the time series mean of firms’ delta-hedged option returns. There are 5809 firms in the

ATM call option category. About 92% of them have negative average delta-hedged returns

and 13% of them have significantly negative delta-hedged returns. In contrast, only 5 out of

the 5809 firms have significantly positive delta-hedged returns. Results for the other three

categories shows similar patterns.
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4.2 Delta-hedged option returns, size and leverage

We study the relation between book leverage and delta-hedged option returns using monthly

Fama-Macbeth regressions. For Table 4 to 6, the dependent variable for month t is the

scaled return of delta-hedged ATM call option held until maturity, where the maturity of the

options is about one month. All independent variables in the regression are predetermined

at time t. The key variable of interest is the book leverage of the underlying firm. Table 6

provides robustness checks and results for the put options.

The univariate regression of delta-hedged option return on book leverage in Model 1 of

Table 4 shows that the relation between the two is positive. However, when the firm size

measured by asset value (Model 2) or by capitalization (Model 3) or implied volatility of the

underlying stock (Model 4) are controlled in the regression, the relation becomes significantly

negative. It confirms the theoretical finding that, the negative relation exists only in similar

firms in all respects except that their book leverages are different. For firms with similar

sizes, firms with higher leverage have lower delta-hedged returns. Compared to large firms,

smaller firms usually have lower leverage ratio and higher asset volatility, which may lead to

lower delta-hedged returns. This is one possible explanation why univariate regression shows

positive relation between the leverage ratio and the delta-hedged option returns.

The significant negative relation between delta-hedged option returns and the leverage

ratio is robust to different control variables. Note that when controlling for the asset volatility

instead of implied volatility, the average estimated coefficient of book leverage (-0.041 in

Model 5 and -0.042 in Model 6) and the corresponding t statistics are larger than that

in other regressions. Following Correia et al. (2014), the asset volatility is calculated as

IV ×(1−BL). The result that controlling for asset volatility is the most efficient to establish

the relation between the delta-hedged option return and book leverage also supports the

theoretical model.
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4.3 Controlling for volatility misestimation, idiosyncratic volatility and

option illiquidity

In the recent literature, several variables have been found to be important determinants of

delta-hedged option returns. Goyal and Saretto (2009) link the delta-hedged option returns to

the difference between historical realized volatility and at-the-money implied volatility. They

are motivated by the volatility misestimation and option mispricing. Cao and Han (2013)

find negative relation between the delta-hedged option returns to idiosyncratic volatility,

consistent with market imperfections and constrained financial intermediaries. In a recent

research, (Christoffersen et al., 2014) report that an increase in option illiquidity decreases

the current option price and predicts higher expected delta-hedged option returns. In Table

5, we control for the idiosyncratic volatility, option illiquidity and volatility deviation to

examine whether they can explain the negative relation between delta-hedged option returns

and book leverage. we find that the relation is robust after including different variables.

In Table 5, idiosyncratic volatility (IVol) is calculated as the standard deviation of the

residuals of Fama-French three factor model estimated using the daily return over the previous

month. Systematic volatility (SysVol) is the square root of (V ol2-IV ol2), where Vol is the

standard deviation of the stock return in the past month. Consistent with Cao and Han

(2013), we find a negative relation between delta-hedged option returns and idiosyncratic

volatility in Model 1 of Table 5. When both idiosyncratic volatility and systematic volatility

are included in the regression in Model 1, the idiosyncratic volatility plays a determinant

role, with estimated coefficient −0.025 and t statistics −10.34. In Model 2 of Table 5, after

controlling for the idiosyncratic volatility and systematic volatility, the estimated coefficient

of book leverage is negative and significant. It shows that the negative relation between book

leverage and delta-hedged option return cannot be explained by the limits to arbitrage or

market imperfections.

In Model 3 of Table 5, following Goyal and Saretto (2009), we measure the volatility

deviation as the log difference of historical volatility (Vol) and implied volatility (IV). This

variable has a significantly positive coefficient, which is consistent with Goyal and Saretto

(2009). More importantly, after controlling for this proxy of volatility-related option mispric-
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ing, the coefficient for book leverage remains statistically significant. Thus, volatility-related

mispricing does not explain the result.

Model 4 of Table 5 further controls for option illiquidity, measured as the difference

between bid and ask option price divided by the average of bid and ask price. The result

shows that on average, the coefficient of option illiquidity is significant and positive, consistent

with the illiquidity premia in the equity option market by Christoffersen et al. (2014). In the

presence of option illiquidity, the coefficient of book leverage is still negative and significant

in Model 4. Moreover, including the asset volatility (IVa) in Model 5 makes the magnitude

of the estimated coefficient and t statistics of book leverage larger, and that of idiosyncratic

volatility smaller. In addition, we control for the stock return during the life of the options

in Model 4 and Model 5. The coefficients of the stock return are not significant in both

regressions, suggesting that the implemented delta-hedging strategy is efficient and makes

the portfolio not sensitive to the underlying stock price movement.

4.4 Delta-hedged return and the covenant effect

The model of this paper predicts that the delta-hedged option return of a firm with protected

debt is more negative than that of a firm with unprotected debt. As suggested by (Toft and

Prucyk, 1997), the maturity structure of the firm’s debt can be used as a proxy for the

existence of net-worth hurdles. Leland (1994) argues that short-term debt can be associated

with an exogenous bankruptcy trigger Vb that equals the market value of debt on the issue

date. Long-term debt, on the other hand, results in an endogenous bankruptcy point which

is significantly below this value. Intuitively, this indicates that firms with a large proportion

of debt due in the immediate future must pass a net-worth hurdle. Otherwise they are unable

to roll over their debt. We, therefore, use the ratio of long-term debt due in one year to total

debt as the first covenant proxy, CVNT1. The ratio of long-term debt due within five years

to total debt is the second covenant proxy, CVNT5.

Table 6 reports the results of regressing the delta-hedged option return on the book

leverage (BL) and the covenant proxies (CVNT1 and CVNT5). The regressions are estimated

for four samples of delta-hedged option returns: at-the-money (ATM) call, out-of-the-money

(OTM) call, at-the-money (ATM) put and out-of-the-money put. First, we find that, in the
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four samples, the estimated coefficient of the covenant proxies are significantly less than zero

after controlling for book leverage (BL), the firm size, implied volatility and option illiquidity.

The estimated coefficients range from −0.004 to −0.013 and the t statistics range from −1.61

to −4.26.

Second, short-term covenant proxy (CVNT1) has a larger effect on the delta-hedged

option returns than the longer-term covenant proxy (CVNT5). This pattern shows in all

four samples, for instance, the estimated coefficient of cvnt1 (−0.010) is twice as large as

that of cvnt5 (−0.005) in the ATM call options category. This can be explained that long

term debt due in the nearer future places a more strict net-worth covenant than that due in

the further future. Thus, for firms with a similar leverage ratio and other characteristics, the

effect of cvnt1 on delta-hedged option returns is larger than that of cvnt5. In addition, the

magnitude of covenant proxy effect is larger for out-of-the-money options than at-the-money

options. This is true for both call and put options. (EXPLANATION) Overall, the results

present in Table 6 support the hypothesis predicted in the theoretical model.

4.5 The nonlinear effect of book leverage and asset volatility

Consider the mechanics of the model captured by Figure 2, which raises two important issues.

First, the relation between the determinants (leverage and asset volatility) and returns is

likely to be highly nonlinear. Any return regression that includes leverage as a regressor will

therefore need to specify higher-order polynomials of leverage. A second problem is that the

role of leverage differs on whether the delta-hedged option return is positive or negative. This

is evident from Figure 2. If the firm’s delta-hedged option return (variance risk premium) is

positive, leverage will increase the return, and the first-order leverage term will be estimated

with a positive coefficient, but if the delta-hedged option return is negative, higher leverage

will show up with a negative coefficient. If we ignore this and regress the resulting sample

of negative and positive levered returns on leverage, the resulting estimates may not be

informative regarding the role of leverage.

We explore these issues in Table 7, in which we regress the delta-hedged returns on lever-

age, asset volatility, interaction terms and higher order terms of these two determinants. The

two determinants are interacted with a dummy variable 1ret>0 (1ret<0), which is equal to one
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when the equity return is positive (negative). In Model 1, the coefficient of the interaction

term BL × 1ret>0 (BL × 1ret<0) is significantly positive (negative). After including the in-

teraction term of asset volatility with dummies in Model 2, the coefficients of all interaction

terms are consistent with the theory, as expected. In Model 3 and 4, we include higher order

interaction terms, which are all significant. The adjusted R2 also increases drastically from

about 10% in Table 5 to more than 40% in Model 4 Table 7. Interestingly, the size effect

remains statistically significant. The idiosyncratic volatility effect remains, but the magni-

tude decreases. The effect of option illiquidity does not exist after including the structural

variables, leverage and asset volatility.

5 Leverage-based trading strategy

We now investigate the cross-sectional relation between delta-hedged option returns using

portfolio sorting approach. This section confirms the Fama-Macbeth regression results in

the previous section, propose a leverage-based trading strategy and examine the impact of

trading cost on the profitability of the trading strategy.

As in Section 4, for each optionable stock, we choose an option with a time-to-maturity

closest to 30 days for each of the four option categories: ATM call, OTM call, ATM put

and OTM put. At the end of each month, we first sort stocks with traded options into five

quintiles based on their sizes, (or asset volatility) and then, within each size quintile, we

further sort the stocks by their book leverage ratio into five quintiles. In each size quintile,

the trading strategy buys the delta-hedged options on stocks ranked in the bottom leverage

quintile and sells the delta-hedged options on stocks ranked in the top leverage quintile. The

delta-hedged options are rebalanced every day based on their delta and held until maturity.

The delta-hedged option returns are calculated in the same way as in Section 4.

5.1 Double sorts on size and leverage

Table 8 reports the equal-weighted average return of 25 portfolios for delta-hedge call and

put options. Each portfolio consists of selling delta-hedged options on stocks located in a

given quintile sorted by size and leverage. Different from the summary statistics in Table 2
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and Table 3, the returns are positive on average in Table 8, because the short positions of the

delta-hedged options are considered in the trading strategy. Table 8 also reports in the “5-1”

column the difference in the average return of the top and bottom book leverage quintile in

each size quintile. The t-statistics for the time series of “5-1” portfolios are computed using

a Newey-West correction for serial correlation using 2 lags for monthly returns.

Panel A of Table 8 reports the results for monthly delta-hedged returns on ATM call

options. Panel A shows that the 5-1 portfolios which sell the delta-hedged calls with the

highest leverage ratio and buy the ones with the lowest leverage ratio earn a significant

positive return from size quintile 1 to size quintile 4. From Panel B to Panel D, all the

5-1 portfolios earn positive returns on average, with most of them statistically significant.

In general, the effect of book leverage on the delta-hedged option return is decreasing with

the firms’ asset sizes. As firms grow larger, they have better opportunities to issue more

debt. In that case, leverage ratio becomes a less important indicator for bankruptcy. If the

bankruptcy risk premium is considered as a dominant component in the delta-hedged option

return, the effect of book leverage is smaller in larger firms. Moreover, the effect of book

leverage on OTM delta-hedged options is stronger than that on ATM delta-hedged options.

For example, in the first size quintile, the average 5-1 portfolio return of delta-hedged ATM

call options is 0.44 with t statistics 2.78, while for OTM call options, the return is 0.88 with

t statistics 4.81.

Interestingly, Vedolin (2012) find relatively weak evidence for the relation between finan-

cial leverage and variance risk premium. One explanation is that the firm characteristics are

not controlled in the analysis. The implication of the theoretical model in this paper is that

for two otherwise same firms, higher leverage contributes to lower delta-hedged option re-

turns. Hence, controlling for the firm characteristics is essential for disentangling the relation

between leverage and delta-hedged option return.

5.2 Double sorts on asset volatility and leverage

In the previous section, we use Fama-Macbeth regressions to show that the negative relation

between delta-hedged option return and leverage ratio is more evident after controlling for

firms’ asset volatility. Table 9 uses the conditional double sort to confirm the finding. At
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the end of each month, we first sort the stocks into five quintiles by their asset volatility,

calculated as IV × (1−BL), where IV is the implied volatility and BL is the book leverage.

Within each asset volatility quintile, the stocks are further sorted into five quintiles by their

book leverage. The equal weighted average returns of selling the delta-hedged options on the

stocks in each quintile are reported in Table 9.

Table 9 shows that, in all 4 Panels of different option categories and all asset volatility

quintiles, selling delta-hedged options on high leverage stocks significantly outperforms selling

delta-hedged options on low leverage stocks. The average outperformance ranges from 0.85%

to 1.96%. Consistent with the theory, investors selling delta-hedged options with higher asset

volatility get higher returns than that with lower asset volatility. For instance, the delta-

hedged returns in the fifth asset volatility quintile are always larger than that in the first

asset volatility quintile in Panel A to Panel D. In addition, the effect of book leverage on

delta-hedged options is larger for OTM options than ATM options and larger for put options

than for call options.

6 Conclusion

How does the Merton-type structural model explain the cross-sectional variation of equity

option return? This paper argues in a jump-diffusion capital structure model that, firm’s

leverage ratio and asset volatility are two determinants of the expected return of delta-hedged

equity options. We first derive the expected return of the delta-hedged equity option based on

a capital structure model, in which the asset value of a firm is driven by a double exponential

jump-diffusion process. In the model, the expected return of the delta-hedged equity option

is closely linked to option gamma and the variance risk premium of the underlying firm,

which is related to firm’s financial characteristics. Furthermore, the theory suggests that the

relation between the determinants and the delta-hedged equity option returns is nonlinear.

Empirically we find that these two structural variables can explain a large portion of the

cross-sectional variation in the data and even subsume information in other determinants

documented in the literature, such as idiosyncratic volatility and liquidity. The results of

double sorting exercise are consistent with the theory. There is also evidence of the nonlinear
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relation between the determinants and the delta-hedged equity option returns: the determi-

nants affect positive and negative returns differently. These findings are robust across calls,

puts, and different moneyness levels.

Overall, this paper explores one channel, i.e. financial decision of the firm, that differen-

tiates the pricing of variance risk premium of individual stocks. The model indicates that the

first-order equity risk can transfer directly to higher-order risks such as the variance risk and

jump risk. There are at least two dimensions of research that can be explored in the future.

The first dimension is to consider the investment channel and the leverage channel simulta-

neously. The interaction of the two channels is able to explain more empirical patterns in

the equity option market. The second dimension for further research is to extend the model

and accommodate more complex capital structures, e.g. security provisions and conversion

rights. The extended model can examine how the heterogeneity of firm’s debt structure af-

fects firms’ default incentives and the expected return of delta-hedged equity options. These

questions are left for future research.
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A Appendix

A.1 Proof of Proposition 1

The first part in Equation (12) can be expanded using the Taylor expansion:

EQ[O(S)−O(S−)] ≈ EQ[
∂O

∂S
(S − S−) +

1

2

∂2O

∂S2
(S − S−)2]. (16)

Similarly, under the physical measure, we approximate the expected change of the option

price until the second order:

E[O(S)−O(S−)] ≈ E[
∂O

∂S
(S − S−) +

1

2

∂2O

∂S2
(S − S−)2]. (17)

Substituting Equation (16) and (17) into Equation (12), we get Equation (13) in Propo-

sition 1. Using Taylor expansion, the change of stock price in jump times can be further

expanded. The quadratic term in Equation (1) is approximately equal to,

(S(V )− S(V−))2 ≈ (
∂S

∂V
(V − V−) +

1

2

∂2S

∂V 2
(V − V−)2)2 (18)

There is quadratic, cubic and quatic terms in the above formula. Since higher order terms

play a less important role, we only consider the first order term such that Equation (13) is

simplified as,

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

(
∂Su
∂Vu

)2(λE[Vu − Vu−]2 − λQEQ[Vu − Vu−]2)du.

Note that the option price is a strictly convex function of the underlying asset price and

option gamma ∂2O
∂S2 is positive for both call and put options. ∂S

∂V is also positive because stock

price S is a call option on the firm’s asset V . Recall the expressions of the jump intensity

of the asset value under physical and risk neutral measure λ and λQ, and density of the

jump size under the physical and risk neutral measure in Section 2.1 and substitute them in
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Equation (13),

λE[V − V−]2 − λQEQ[V − V−]2 (19)

= λ(ξ(2) + ξ(0) − 2ξ(1) − (ξ(α+1)) + ξ(α−1) − 2ξ(α)))V 2
−. (20)

where ξ(x) is a function of x given in Equation (4) and α (0 < α < 1) is the risk aversion

coefficient in the utility function. Let f(x) = ξ(x). To show that (19) is less than zero, we

have to prove f ′(α+ 1) + f ′(α− 1)− 2f ′(α) < 0. In other words, f ′(x) is a concave function

for 0 < x < 1. To prove this, we calculate the third derivative of f(x) = ξ(x):

∂3f(x)

∂x3
=

6η4uη
4
d (pu/η

3
u − pd/η3d)

(ηu − α)4(ηd + α)4

If the parameters in the above equation satisfies the following two conditions, then f ′(x) is a

concave function of x. The first condition is that the absolute value of the negative jump size

is larger than the positive jump size on average, that is, 1/ηd > 1/ηu. The second condition

is that the expected jump size is less than zero: E[y] = pu
ηu
− pd

ηd
< 0. When the parameters

of the underlying asset process follows the above two conditions, the expected delta-hedged

option return is negative.

Next, we derive the relation between E(Πt) and the variance risk premium over the time

period 0 to t. The variance of log(St) is measured by its quadratic variation (QV). For a

period from time 0 to t, it is given by,

[log(S), log(S)](0,t] =

∫ t

0
(
∂Ss
∂Vs

Vs
Ss
σ)2ds+

∑
0<s≤t

(
Ss − Ss−

Ss
)2.

The randomness in QV generates variance risk. As the randomness in this model comes from

the jumps in the stock price, only the jump part contributes to the variance risk premium.

The variance risk premium (VRP) of the stock is defined as the wedge between the expected

quadratic variation under the physical measure and the risk neutral measure. Thus, the VRP
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over the time period (0, t] is,

V RP = EP [[log(S), log(S)](0,t]]− EQ[[log(S), log(S)](0,t]]

≈
∫ t

0
(

1

S
)2(

∂S

∂V
)2(λE[V − V−]2 − λQEQ[V − V−]2)dt.

The second step uses the Taylor expansion in Equation (18). If we ignore the movement in

the stock price S, the variance risk premium is related to the delta-hedged option return by:

E(Πt) =

∫ t

0

1

2

∂2O

∂S2

dV RP

dt
S2ds.

A.2 Proof of Proposition 2

If we ignore the movements in the stock price and the option gamma from time 0 to t, then

the relation between VRP and the expected delta-hedged gain can be rewritten as,

E(Πt)/S
2
0 ≈

1

2

∂2O

∂S2
× V RP.

The scaled delta-hedged gain E(Πt)/S
2
0 is related to the capital structure of the firm through

the variance risk premium, especially from the term: ( 1
S
∂S
∂V )2. We will prove that this term

is increasing in the coupon value (c) of the firm. If the book leverage ratio of the firm is

approximated as c
rV , then the absolute value of the scaled E(Πt) is increasing in the book

leverage, for the same level of asset value.

The partial derivative of the equity value S with respect to the asset value V is:

∂S

∂V
(V ;VB) = 1− aγ1V −γ1−1 − bγ2V −γ2−1, γ1 > 0, γ2 > 0,

in which a = (1−κ)cd1
r V γ1

B −c1V
γ1+1
B and b = (1−κ)cd2

r V γ2
B −c2V

γ2+1
B . The parameters c1, d1, c2,

d2, γ1 and γ2 given in Section 2.2 are only related to the parameters in the asset process, not

to the capital structure of the firm. As 1
S is increasing in c, 1

S
∂S
∂V will be definitely increasing
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in c, if ∂S
∂V is increasing in c,

∂S/∂V

∂c
= −γ1V −γ1−1

∂a

∂c
− γ2V −γ2−1

∂b

∂c
, (21)

The sign of the above expression depends on several factors. Two situations, whether the

firm faces an exogenous or endogenous trigger, are considered. In the first case, firm’s debt is

protected by a strict net-worth covenant. This covenant triggers bankruptcy when the asset

value V hits the threshold VB = c
rα . In the second case, the bankruptcy trigger is determined

endogenously by the debt holders. As showed in Equation (9),

V ∗B =
εc

r
, where ε =

(1− κ)(d1γ1 + d2γ2)

c1γ1 + c2γ2 + 1
. (22)

In both situations, VB = xc where x is a constant. Substituting into the expression of a, we

have,

∂a

∂c
= (

(1− κ)d1
r

− c1x)xγ1cγ1+1.

Note that Equation (21) mainly depends on the sign of the first term, because the second

term plays a less important role here (0 < γ1 < ηd < γ2). As VB > V ∗B and x > x∗, it follows

that,

∂S

∂V
(V ;VB) >

∂S

∂V
(V ;V ∗B),

∂S/∂V

∂c
(V ;VB) >

∂S/∂V

∂c
(V ;V ∗B).

Hence, the absolute scaled delta-hedged gain is higher for the firms with a strict net-

worth covenant than for those without it; after increasing the leverage ratio, the change

in the absolute scaled delta-hedged gain is also higher for the firms with strict net-worth

covenant.

From the above derivation, we know that the term 1
S
∂S
∂V for the firms with strict net-worth

covenant is more likely to increase with the coupon value c than those without. It can be

shown that even for firms with endogenous bankruptcy trigger, with reasonable parameter
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assumptions, the term 1
S
∂S
∂V is increasing in c. The proof is available upon request.

A.3 Details of the simulation procedure

Based on the parameters in Table 1, we first simulate the diffusion and the jump component of

the firm’s asset process under the physical measure and the risk neutral measure for 10, 000

times. Note that the volatility of the diffusion term is constant, and volatility risk is not

priced in this model. Hence, the diffusion terms are the same under the physical and the risk

neutral measure.

Second, starting from the initial asset value V0 = 100, we simulate 10, 000 paths of daily

returns. In each path, there are 21 daily returns, consisting of the daily returns in one month.

Third, for different level of leverage ratio, the equity value of the firm is then calculated

based on Equation 8. The daily value are available both under the physical and under the

risk neutral measure.

Fourth, the equity option values is the discounted average of the payoff of the option at

the end of the month under the risk neutral measure. In this numerical example, we only

consider at-the-money call option, i.e. the strike price of the option is equal to the initial

stock price.

Finally, we construct a portfolio consisting of buying a call equity option and daily delta-

hedging the underlying stock. The share of the stock is approximated as the delta, the first

order derivative of the option price with respect to the stock price under the Black-Scholes

model.
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Figure 1: Trading volume and open interest of equity options over time (Million)

Note: This figure shows daily average trading volume (the black line) and open interest (the dashed line) of
equity options in the US market from 1996 to 2015. The left axis is associated with trading volume and the
right axis is associated with open interest. Data source: The Options Clearing Corporaion.
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Figure 2: Leverage and scaled delta-hedged option gain
(Scaled by square of stock price)

(a) Negative jumps on average
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(b) Positive jumps on average
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Note: This figure shows the relation between leverage and scaled delta-hedged gain generated by the model
in Section 2.3, when the jump size is negative on average. The top panel presents scaled delta-hedged gain
generated from the model for different leverage and jump intensity
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Figure 3: Leverage and scaled delta-hedged option gain
(Scaled by the initial investment)

(a) Negative jumps on average
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(b) Positive jumps on average
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Note: This figure shows the relation between leverage and scaled delta-hedged gain generated by the model
in Section 2.3, when the jump size is positive on average. The top panel presents scaled delta-hedged gain
generated from the model for different leverage and jump intensity38



Figure 4: Average variance risk premium and average delta-hedged option return
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Note: This scatter plot shows the relation between average variance risk premium and average delta-hedged
option return. The scatter presents the relation for firms with more than 150 (out of 224 months) observations
of delta-hedged option return. The variance risk premium is calculated as the difference between realized
volatility in the previous month and the implied volatility of the at-the-money call option at the beginning of
the month.
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Table 1: Parameter sets used in the simulations

Panel A: Common Parameters

Parameters σ κ r α V0 ρ a σ1

Value 0.25 0.35 0.04 0.9 100 0.5 0.2 0.2

Panel B: Parameters in the jump component (More negative jumps)

Parameters pu pd ηu ηd λ

Value 0.4 0.6 8 4 0/ 0.5/ 1

Panel C: Parameters in the jump component (More positive jumps)

Parameters pu pd ηu ηd λ

Value 0.6 0.4 4 8 0/ 0.5/ 1

Note: This table presents parameters sets for simulating the delta-hedged option returns. Panel
A shows value of the common parameters. σ is the asset volatility of the firm, κ is the tax
rate, r is the risk free rate, α is the percentage of the asset value that the debt holders can get
upon bankruptcy, V0 is the initial asset value of the firm, ρ is the correlation between diffusion
terms in the asset process and in the consumption process, a is the risk aversion coefficient in the
representative investor’s utility function (power function). σ1 is the volatility of the consumption
process. Panel B and C shows value of parameters in the jump component of the firm’s asset
process. pu is the probability that the asset return has a positive jump, pd is the probability that
the asset return has a negative jump, 1/ηu is the absolute mean of the upward jump size, and
1/ηd is the absolute mean of the downward jump size.
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Table 2: Summary statistics of option data

Variable Mean
Std.
Dev.

10th
Pctl

25th
Pctl Median

75th
Pctl

90th
Pctl

Panel A: Call options

Delta-hedged return until maturity(%) -1.97 9.28 -9.31 -5.18 -2.03 0.52 4.40
Moneyness=S/K 0.98 0.03 0.94 0.96 0.98 1.00 1.01
Days to maturity 30.96 2.47 26 30 32 33 33
Relative bid-ask spread 0.21 0.20 0.05 0.09 0.15 0.26 0.43
Implied volatility (IV) 0.47 0.24 0.23 0.30 0.42 0.58 0.79
Delta 0.46 0.11 0.30 0.38 0.47 0.54 0.59

Panel B: Put options

Delta-hedged return until maturity(%) -1.97 7.91 -8.28 -4.70 -2.05 0.04 3.29
Moneyness=S/K 1.02 0.03 0.99 1.00 1.02 1.05 1.06
Days to maturity 30.89 2.49 26 30 32 33 33
Relative bid-ask spread 0.19 0.18 0.05 0.08 0.14 0.24 0.40
Implied volatility (IV) 0.49 0.25 0.24 0.31 0.43 0.60 0.81
Delta -0.40 0.10 -0.53 -0.47 -0.40 -0.32 -0.26

Panel C: Other variables

Book leverage (BL) 0.48 0.24 0.16 0.29 0.48 0.64 0.83
Size=log(asset value) 7.64 2.02 5.14 6.18 7.52 8.96 10.33
Long term debt due in one year 0.03 0.09 0.00 0.00 0.00 0.03 0.08
Long term debt due in five years 0.17 0.26 0.00 0.00 0.10 0.26 0.47
Realized volatility (RVol) 0.46 0.32 0.19 0.26 0.38 0.57 0.83
Idiosyncratic volatility (IVol) 0.38 0.28 0.14 0.20 0.31 0.48 0.71
VRP -0.03 2.79 -0.20 -0.04 0.02 0.07 0.17

Note: This table reports the descriptive statistics of delta-hedged option returns for the pooled
data. The data sample period is from January 1996 to August 2014. For call options, delta-hedged
return until maturity is calculated as delta-hedged gain scaled by (∆S−C), where ∆ is the Black-
Scholes option delta, S is the underlying stock price and C is the price of call option. For put
options, it is scaled by (P − ∆S). Delta-hedged gain is the change in the value of a portfolio
consisting of one long option position, daily hedged by the underlying stock, so that the portfolio
is not sensitive to the stock price movement. Moneyness is the ratio of stock price over option
strike price. Days to maturity is the calenda days until option expiration. Relative bid-ask spread
is the difference between bid and ask option price divided by the avereage of bid and ask price.
Implied volatility (IV), delta and vega are provided by OptionMetrics based on Black-Scholes
model. Realized volatility is the standard deviation of the daily stock return during the past 30
days. Idiosyncratic volatility (IVol) is the standard deviation of the residuals of Fama-French three
factor model estimated using the daily return over the previous month. Size is the logrithm of
the firm’s asset. Book leverage is the sum of total debt and the par value of the preferred stock,
minus deferred taxes and investment tax credit, divided by total asset.
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Table 3: Summary statistics of delta-hedged option returns

Obs. Mean Std.Dev. No. of firms mean < 0 t < −2 mean > 0 t > 2

Call ATM 221,743 -1.72 8.60 5809 5342 762 467 5
OTM 201,474 -2.25 9.96 5793 5255 726 538 8

Put ATM 183,893 -1.76 6.82 5807 5150 691 657 7
OTM 170,716 -2.20 8.93 5676 4991 728 685 6

Note: This table reports summary statistics of delta-hedged returns for call and put options under
the at-the-money (ATM) and out-of-the-money (OTM) categories. The third to sixth columns
represent number of observations, mean, standard deviation, and number of firms. The column
mean < 0(> 0) reports the number of firms with mean of the delta-hedged returns less (more)
than zero. The column t < −2(> 2) reports the number of firms with t statistics of delta-hedged
returns less (more) than two.

Table 4: Delta-hedged option returns and book leverage

MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

Intercept -0.020 -0.037 -0.032 0.008 0.022 0.011
(-9.77) (-13.34) (-12.86) (-4.43) (-9.17) (-2.94)

BL 0.005 -0.008 -0.007 -0.005 -0.041 -0.042
(-2.41) (-3.64) (-2.87) (-2.41) (-12.00) (-12.49)

SIZE A 0.003 0.001
(-13.03) (-5.33)

SIZE S 0.003
(-14.54)

IV -0.049
(-13.82)

IV a -0.078 -0.069
(-14.05) (-11.50)

Average adj. R2 0.004 0.013 0.015 0.038 0.032 0.035

Note: This table reports the average coefficients (t statistics) from monthly cross-sectional Fama-
MacBeth regressions of at-the-money delta-hedged call option returns. The sample period covers
data from January 1996 through August 2014. BL (Book leverage) is the sum of total debt and
the par value of the preferred stock, minus deferred taxes and investment tax credit, divided by
total asset. Size a is the logrithm of the firm’s asset. Size s is the logrithm of the firm’s market
capitalization. IV is the Black-Scholes option implied volatility. IV a is the firm’s asset volatility,
which is calculated as IV*(1-BL). Reported are coefficients and Dama-MacBeth t-statistics with
Newy-West correction for serial correlation.
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Table 5: Controling for idiosyncratic volatility and option illiquidity

MODEL1 MODEL2 MODEL3 MODEL4 MODEL5

Intercept -0.009 -0.023 -0.008 -0.048 0.003
(-7.62) (-9.47) (-2.33) (-4.56) (-0.3)

IVol -0.025 -0.018 -0.033 -0.001
(-10.34) (-7.65) (-10.13) (-0.46)

SysVol 0.003 0.002 -0.008
(-1.03) (-0.73) (-1.76)

Size A 0.002 0.001 0.003 0.001
(-7.55) (-3.29) (-13.26) (-5.31)

BL -0.006 -0.006 -0.009 -0.045
(-3.26) (-3.03) (-4.87) (-12.91)

Vol deviation 0.022
(7.09)

Option Illiquidity 0.016 0.008
(-3.01) (-1.68)

Stock return -0.005 -0.006
(-0.53) (-0.64)

IV a -0.073
(-12.26)

Average adj. R2 0.021 0.027 0.045 0.067 0.091

Note: This table reports the average coefficients (t statistics) from monthly cross-sectional Fama-
MacBeth regressions of at-the-money delta-hedged call option returns. The sample period covers
data from January 1996 through August 2014. Idiosyncratic volatility (IVol) is the standard
deviation of the residuals of Fama-French three factor model estimated using the daily return over
the previous month. Systematic volatility (SysVol) is the square root of (V ol2-IV ol2), where Vol
is the standard deviation of the stock return in the past month. Size a is the logrithm of the firm’s
asset. Book leverage (BL) is the sum of total debt and the par value of the preferred stock, minus
deferred taxes and investment tax credit, divided by total asset. Vol deviation is calculated as the
log difference between V oL and IV . OptionIll is the difference between bid and ask option price
divided by the avereage of bid and ask price. Stock return is the stock return of the underlying
firm until maturity. IV a is the firm’s asset volatility, which is calculated as IV*(1-BL). Reported
are coefficients and Dama-MacBeth t-statistics with Newy-West correction for serial correlation.
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Table 6: Delta-hedged return and the covenant effect

Call options Put options
ATM OTM ATM OTM

Intercept 0.003 0.004 -0.001 0 0.008 0.008 0.011 0.012
(-0.84) (-0.95) (-0.22) (-0.09) (-3.17) (-3.26) (-3.05) (-3.17)

BL -0.007 -0.006 -0.010 -0.009 -0.004 -0.004 -0.006 -0.005
(-3.29) (-2.99) (-4.06) (-3.79) (-2.60) (-2.32) (-2.19) (-2.01)

Size A 0.001 0.001 0.001 0.001 0 0 0 0
(-1.72) (-1.58) (-1.75) (-1.64) (-0.23) (-0.15) (-0.52) (-0.64)

IV -0.046 -0.046 -0.049 -0.050 -0.052 -0.052 -0.059 -0.059
(-10.29) (-10.40) (-10.39) (-10.49) (-17.67) (-17.94) (-14.77) (-15.35)

Option Illiquidity 0.002 0.002 0.005 0.006 0.002 0.003 0.002 0.002
(-0.43) (-0.48) (-1.65) (-1.81) (-0.68) (-0.82) (-0.53) (-0.64)

cvnt1 -0.010 -0.013 -0.007 -0.011
(-2.73) (-2.74) (-1.61) (-1.68)

cvnt5 -0.005 -0.006 -0.004 -0.005
. (-4.26) (-4.11) (-3.30) (-3.13)

Average adj. R2 0.043 0.043 0.036 0.036 0.056 0.056 0.044 0.044

Note: This table reports the average coefficients (t statistics) from monthly cross-sectional Fama-
MacBeth regressions of at-the-money delta-hedged call option returns. The sample period covers
data from January 1996 through August 2014. Book leverage (BL) is the sum of total debt and
the par value of the preferred stock, minus deferred taxes and investment tax credit, divided
by total asset.Size A is the logrithm of the firm’s asset. Implied volatility (IV) is provided by
OptionMetrics based on Black-Scholes model. Relative bid-ask spread is the difference between
bid and ask option price divided by the avereage of bid and ask price. Stock return is the stock
return of the underlying firm until maturity. CVNT1 is the ratio of long term debt due in one
year, divided by total long term debt. CVNT5 is the ratio of long term debt due within five years,
divided by total long term debt. Reported are coefficients and Dama-MacBeth t-statistics with
Newy-West correction for serial correlation.
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Table 7: The nonlinear effect of book leverage and asset volatility

MODEL1 MODEL2 MODEL3 MODEL4

IV a -0.077 -0.07
(-13.85) (-12.43)

BL× 1ret>0 0.067 0.017 0.238 -0.034
(19.21) (6.57) (20.96) (-5.60)

BL× 1ret<0 -0.084 -0.058 -0.167 -0.044
(-19.78) (-18.06) (-15.66) (-7.15)

IV a× 1ret>0 0.098 0.128
(12.79) (14.76)

IV a× 1ret<0 -0.14 -0.136
(-35.91) (-35.30)

BL2 × 1ret>0 -0.261 0.067
(-18.42) -8.8

BL2 × 1ret<0 0.117 -0.018
(11.98) (-3.67)

SIZE a 0.001 0.001
(6.03) (5.63)

Option Illiquidity -0.003 -0.001
(-0.76) (-0.19)

IVol -0.006
(-4.44)

Average adj. R2 0.256 0.402 0.315 0.409

Note: This table reports the average coefficients (t statistics) from monthly cross-sectional Fama-
MacBeth regressions of at-the-money delta-hedged call option returns. The sample period covers
data from January 1996 to August 2014. IV a is the firm’s asset volatility, which is calculated as
IV*(1-BL). BL is book leverage. 1ret<0 (1ret>0) is a dummy variable which is equal to one when
the stock return is positive (negative). Idiosyncratic volatility (IVol) is the standard deviation of
the residuals of Fama-French three factor model estimated using the daily return over the previous
month. Size a is the logrithm of the firm’s asset. Option Illiquidity is the difference between bid
and ask option price divided by the avereage of bid and ask price. Reported are coefficients and
Dama-MacBeth t-statistics with Newy-West correction for serial correlation.
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Table 8: Returns of selling delta-hedged options: Double sorting on size and leverage

1-BL 2 3 4 5-BL 5-1 t-stat
Panel A: ATM Call

1-size 2.28 2.44 2.32 2.41 2.72 0.44*** 2.78
2 1.68 1.61 1.72 2.05 2.1 0.42*** 4.19
3 1.64 1.53 1.38 1.69 2.03 0.39*** 4.16
4 1.45 1.38 1.32 1.64 1.66 0.22** 2.36
5-size 1.18 1.09 1.09 1.24 1.07 -0.1 0.8

Panel B: OTM Call

1-size 2.7 2.8 2.81 2.98 3.57 0.88*** 4.81
2 2.17 2.11 2.44 2.57 2.53 0.36** 2.56
3 2.08 1.92 2.01 2.28 2.57 0.49*** 4.01
4 1.93 1.68 1.96 2.27 2.38 0.45*** 3.87
5-size 1.66 1.64 1.64 1.65 1.78 0.12 0.89

Panel C: ATM Put

1-size 2.5 2.51 2.31 2.38 2.99 0.49*** 4.79
2 1.88 1.82 1.73 1.97 2.01 0.13 1.46
3 1.73 1.32 1.48 1.67 2.15 0.42*** 5.4
4 1.55 1.36 1.38 1.44 1.67 0.12 1.21
5-size 1.12 1.07 1.1 1.19 1.21 0.09 1

Panel D: OTM Put

1-size 2.85 2.8 2.79 2.86 3.61 0.76*** 5.25
2 2.01 2.02 1.99 2.34 2.36 0.35*** 2.83
3 2.13 1.75 1.81 2.09 2.61 0.48*** 3.83
4 1.94 1.55 1.71 1.8 2.28 0.34*** 3.35
5-size 1.51 1.55 1.54 1.69 1.76 0.24** 2.04

Note: This table reports the average returns pf delta-hedged options on stocks of different size
and leverage level. At the end of each month, the optionable stocks are first sorted into five
quintiles based on their asset size, and then within each size quintile, they are further sorted into
five quintiles by leverage ratio. The results for ATM call, OTM call, ATM put and OTM put are
presented in Panel A to Panel D. The t statistics are corrected for seriabl correlation (Newey-West
correction with 2 lags for monthly return). The sample dates from January 1996 to August 2014.
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Table 9: Returns of selling delta-hedged options: Double sorting on asset volatility and
leverage

1-BL 2 3 4 5-BL 5 1 t-stat
Panel A: ATM Call

1-Asset Vol 0.75 1.04 1.41 1.41 1.63 0.88*** 7.92
2 0.89 1.03 1.11 1.61 2.29 1.40*** 14.19
3 1.13 1.21 1.45 1.67 2.62 1.48*** 14.63
4 1.22 1.53 1.58 1.8 2.7 1.48*** 12.48
5-Asset Vol 2.26 2.44 2.22 2.48 3.23 0.98*** 6.69

Panel B: OTM Call

1-Asset Vol 1.25 1.45 2.07 2.15 2.28 1.03*** 8.55
2 1.17 1.5 1.73 2.22 2.83 1.66*** 10.07
3 1.62 1.85 2.05 2.4 2.99 1.36*** 10.17
4 1.74 1.98 2.1 2.31 3.24 1.50*** 10.6
5-Asset Vol 2.64 2.81 2.72 2.97 4.03 1.39*** 8.41

Panel C: ATM Put

1-Asset Vol 0.66 0.95 1.36 1.39 1.84 1.18*** 14.61
2 0.85 0.9 1.17 1.48 2.3 1.45*** 17.87
3 1.12 1.18 1.47 1.71 2.5 1.37*** 14
4 1.34 1.52 1.64 1.94 2.83 1.49*** 14.21
5-Asset Vol 2.48 2.57 2.4 2.59 3.33 0.85*** 5.96

Panel D: OTM Put

1-Asset Vol 1 1.3 1.85 2 2.37 1.36*** 12.9
2 1.35 1.35 1.48 1.97 2.87 1.53*** 14.91
3 1.54 1.52 1.87 2 2.82 1.29*** 9.52
4 1.52 1.66 1.99 2.08 3.48 1.96*** 14.66
5-Asset Vol 2.87 2.99 2.54 3.12 3.77 0.90*** 5.32

Note: This table reports the average returns pf delta-hedged options on stocks of different asset
volatility and leverage level. At the end of each month, the optionable stocks are first sorted into
five quintiles based on their asset volatility, and then for each size quintile, they are further sorted
into five quintiles by leverage ratio. The results for ATM call, OTM call, ATM put and OTM
put are presented in Panel A to Panel D. The t statistics are corrected for seriabl correlation
(Newey-West correction with 2 lags for monthly return). The sample dates from January 1996 to
August 2014.
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Table 10: Robustness Check: Double sorting on size and leverage

1-BL 2 3 4 5-BL 5 1 t-stat
Panel A: ATM Call

1-Asset Vol 0.75 1.01 1.36 1.32 1.38 0.63*** 5.23
2 0.91 1.01 1.08 1.59 2.14 1.23*** 12.35
3 1.14 1.21 1.44 1.63 2.53 1.39*** 14.05
4 1.19 1.52 1.56 1.73 2.63 1.45*** 11.59
5-Asset Vol 1.96 2.21 2.01 2.32 3.07 1.11*** 7.6

Panel B: OTM Call

1-Asset Vol 1.24 1.42 2.01 2.01 2.01 0.77*** 6.24
2 1.2 1.49 1.68 2.19 2.7 1.51*** 9.12
3 1.64 1.85 2.04 2.38 2.9 1.26*** 9.23
4 1.7 1.95 2.07 2.23 3.12 1.42*** 9.1
5-Asset Vol 2.34 2.62 2.44 2.79 3.81 1.48*** 8.21

Panel C: ATM Put

1-Asset Vol 0.66 0.91 1.28 1.28 1.62 0.96*** 11.29
2 0.87 0.89 1.18 1.47 2.22 1.35*** 16.38
3 1.14 1.19 1.45 1.69 2.43 1.29*** 13.44
4 1.3 1.48 1.61 1.92 2.74 1.44*** 12.3
5-Asset Vol 2.26 2.4 2.27 2.43 3.11 0.85*** 5.19

Panel D: OTM Put

1-Asset Vol 1.01 1.25 1.75 1.92 2.15 1.14*** 10.16
2 1.37 1.31 1.51 1.97 2.76 1.39*** 13.38
3 1.58 1.51 1.86 1.99 2.74 1.16*** 8.72
4 1.44 1.6 1.92 2.01 3.38 1.94*** 12.39
5-Asset Vol 2.68 2.84 2.4 2.93 3.46 0.77*** 3.79

Note: This table reports the average returns pf delta-hedged options on stocks of different asset
volatility and leverage level. At the end of each month, the optionable stocks are first sorted into
five quintiles based on their asset volatility, and then within each size quintile, they are further
sorted into five quintiles by leverage ratio. The results for ATM call, OTM call, ATM put and
OTM put are presented in Panel A to Panel D. The t statistics are corrected for seriabl correlation
(Newey-West correction with 2 lags for monthly return). The sample dates from January 1996 to
August 2014.
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