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Abstract

Mimicking portfolios for factors are often used in asset pricing studies. Current

practice has generally ignored the impact of estimation errors on the weights of the

mimicking portfolios. We show that such a practice can lead to gross understatement

of the standard errors of the estimated risk premia associated with the mimicking

portfolios, especially when the factors are not highly correlated with the returns on the

test assets. In this paper, we present a methodology that properly takes into account

the impact of the estimation errors of the mimicking portfolios on the standard error of

estimated risk premia. In empirical applications, we report that the outcome of asset

pricing tests can vary significantly, depending on whether the estimation errors on the

weights of the mimicking portfolios are accounted for. Our findings thus cast doubt

on existing empirical studies that use mimicking portfolios but ignore the estimation

error problem.
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1 Introduction

A large body of the asset pricing literature relies on the usage of mimicking portfolios, see,

e.g., Breeden (1979) for the early discussion. These portfolios are constructed by mimicking

the risk factors for asset returns, and are commonly used in asset pricing tests. Examples

of the practical usage of mimicking portfolios can be found in, e.g., Chen et al. (1986),

Breeden et al. (1989), Ferson and Harvey (1991), Pástor and Stambaugh (2003), Ang et al.

(2006), Muir et al. (2013), etc.

Although risk factors and their mimicking portfolios co-exist in asset pricing studies,

there are empirical as well as theoretical reasons that favor mimicking portfolios over fac-

tors. One of the reasons, for instance, concerns data availability, i.e., economic risk factors

are usually only observable at a low frequency and/or within limited time periods, while the

constructed mimicking portfolios for such factors could be available at higher frequencies and

in extended time periods (see, e.g., Ang et al., 2006). In addition, given mimicking portfo-

lios are constructed with assets, their returns are more closely correlated with asset returns

than risk factors in finite sample applications. This statistical quality is crucial for the infer-

ence on risk premia, since Kan and Zhang (1999), Kleibergen (2009) and Gospodinov et al.

(2014) have warned that weak correlation of factors and returns induces spurious results that

incorrectly favor weak or even useless factors in the Fama and MacBeth (1973) two-pass pro-

cedure.1 In terms of testing, Huberman et al. (1987) show that mimicking portfolios can be

used to test additional asset pricing restrictions that can not be tested with factors. See

also Gibbons et al. (1989). Furthermore, mimicking portfolios could also be used to hedge

against economic risks, see, e.g., Lamont (2001). Finally, since mimicking portfolios reflect

the excess returns on zero-cost portfolios, an advantage of using mimicking portfolios rather

than risk factors lies in that the estimation outcome can be straightforwardly interpreted

from the investment perspective. See, e.g., Brennan et al. (1998) and Avramov and Chordia

1On the other hand, Shanken (1992), Balduzzi and Robotti (2008) and Chordia et al. (2013) suggest that
the inference on risk premia could be improved with the usage of mimicking portfolios.
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(2006).

Unlike the advantages listed above, the downside of using mimicking portfolios for asset

pricing, however, is rarely discussed. Furthermore, the methods of constructing mimicking

portfolios vary, and it is not clear yet which method provides the best finite sample perfor-

mance. For example, Huberman et al. (1987) provide three different ways to generate mim-

icking portfolios. Lehmann and Modest (1988) propose a weighted least squares procedure as

well as a minimum idiosyncratic risk procedure. In the empirical literature, Breeden et al.

(1989), Lamont (2001), Vassalou (2003), Avramov and Chordia (2006), Kapadia (2011),

Menkhoff et al. (2012) and Muir et al. (2013) construct mimicking portfolios by projecting

factors to a set of portfolios which approximately span the space of returns. On the other

hand, Pástor and Stambaugh (2003), Ang et al. (2006) and Chang et al. (2013) form factor

mimicking portfolios by using the difference in return of the portfolio with highest correlation

and the one with lowest correlation with factors.2

Our paper is motivated by the simple fact that the weights of mimicking portfolios are

unknown and thus have to be estimated, no matter which construction method is adopted.

Consequently, mimicking portfolios used in practice are contaminated by the estimation

errors on their weights, which could potentially affect asset pricing tests that rely on mim-

icking portfolios. This downside of mimicking portfolios thus calls for the investigation of

the estimation errors occurred during their construction, and the impact of these errors on

subsequent tests.

In this paper, we derive the limiting behavior of the risk premium estimator using mim-

icking portfolios in the Fama and MacBeth (1973) two-pass procedure. In particular, we

take the estimation errors on the weights of maximum correlation portfolios into account.

We find that ignoring the errors could substantially understate the standard errors of risk

premia, particularly when the risk factors are only weakly correlated with returns. In or-

2Mimicking portfolios that are generated by sorting on firm characteristics such as market equity and
book-to-market ratio can be also considered as in this category if we assume the characteristics are correlated
with their loadings of the undying factors as in Chan et al. (1998).
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der to correct for this problem, we provide the asymptotic standard error of estimated risk

premia that properly takes into the estimation errors of mimicking portfolios. Simulation

evidence suggests that our asymptotic results provide a reasonable approximation in finite

samples. We apply our methodology to analyze asset pricing models in Cochrane (1996),

Li et al. (2006) and Muir et al. (2013). Interestingly, we find that once estimation errors

of mimicking portfolios are accounted for, standard errors of risk premia increase around

50%−100% in most cases. Our findings thus indicate that estimation errors associated with

mimicking portfolios are important, and put into question the existing studies that ignore

them.

The remainder of this paper is organized as follows. Section 2 presents our setup and

analytical results. Section 3 contains the simulation outcome as well as the empirical appli-

cation. Section 4 concludes. The proofs and technical details are included in the Appendix.

2 Setup and Analysis

2.1 Setup

Consider the vector Yt, which consists of the K × 1 vector ft for risk factors and the N × 1

vector Rt for asset returns:

Yt =



ft

Rt


 (1)

where stationarity and ergodicity of Yt are assumed, and N ≥ K + 1.

The mean and variance of Yt read:

µ = E[Yt] =



µf

µR


 , V = Var[Yt] =




Vf VfR

VRf VR


 , (2)

where V is assumed to be positive definite, and both µ and V can be consistently estimated

by their sample counterparts based on T observations of Yt, t = 1, ..., T :
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µ̂ =



µ̂f

µ̂R


 =

1

T

T∑

t=1

Yt, V̂ =




V̂f V̂fR

V̂Rf V̂R


 =

1

T

T∑

t=1

(Yt − µ̂)(Yt − µ̂)′. (3)

Let M be the N × K full rank matrix with the columns being the weights of the K

mimicking portfolios. Huberman et al. (1987) show that M is factor mimicking if and only

if

M = V −1
R VRfL (4)

where L is any nonsingular K × K matrix. The returns for the corresponding mimicking

portfolios are then given by

gt =M ′Rt, (5)

with mean and variance

µg =M ′µR, Vg =M ′VRM, (6)

respectively.

2.2 Mimicking Portfolios in CSR with Given Weights

Recently, Kan et al. (2013) provide the asymptotic distribution of the risk premium estimator

in the two-pass cross-sectional regression (CSR, see, e.g., Fama and MacBeth 1973), when

the linear factor model made of ft and Rt is allowed to be potentially misspecified. We

extend Kan et al. (2013)’s results for factors to mimicking portfolios. As a starting point,

we consider the ideal scenario that the matrix of the weights of mimicking portfolios, denoted

by M , is given.

In Theorem 1, we first list Kan et al. (2013)’s results (part 1 for factors ft), then extend

these results to mimicking portfolios (part 2 for mimicking portfolios gt).

Theorem 1. Let β̂ ≡ V̂Rf V̂
−1
f , X̂ ≡ [1N , β̂]. Similarly for mimicking portfolios, β̂g ≡

V̂RM(M ′V̂RM)−1, X̂g ≡ [1N , β̂g]. W is a positive definite weighting matrix.
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1. For factors (see Kan et al. 2013):

(i) If W is known, the asymptotic distribution of γ̂ = (X̂ ′WX̂)−1X̂ ′Wµ̂R is given by
√
T (γ̂ − γ)

A∼ N(0, Vγ̂), where Vγ̂ =
∑

∞

j=−∞
E[hth

′

t+j ], with

ht = (γt − γ)− (φt − φ)wt +Hzt. (7)

(ii) For the feasible GLS case with W = V −1
R , which is estimated by V̂ −1

R , the asymp-

totic distribution of γ̂ = (X̂ ′V̂ −1
R X̂)−1X̂ ′V̂ −1

R µ̂R is given by
√
T (γ̂−γ) A∼ N(0, Vγ̂),

where Vγ̂ =
∑

∞

j=−∞
E[hth

′

t+j ], with

ht = (γt − γ)− (φt − φ)wt +Hzt − (γt − γ)ut. (8)

For both (i) and (ii), γt = [γ0,t, γ
′

1,t]
′ = ARt, γ = [γ0, γ

′

1]
′ = AµR, A = HX ′W , H =

(X ′WX)−1, X = [1N , β], β = VRfV
−1
f , φt = [γ0,t, (γ1,t − ft)

′]′, φ = [γ0, (γ1 − µf)
′]′,

wt = γ′1V
−1
f (ft − µf), ut = e′W (Rt − µR), e = µR −Xγ, zt = [0, ut(ft − µf)

′V −1
f ]′.

2. For mimicking portfolios with given weights:

(iii) If W is known, the asymptotic distribution of γ̂g = (X̂ ′

gWX̂g)
−1X̂ ′

gWµ̂R is given

by
√
T (γ̂g − γg)

A∼ N(0, Vγ̂g), where Vγ̂g =
∑

∞

j=−∞
E[hg,th

′

g,t+j] with

hg,t = (γg,t − γg)− (φg,t − φg)wg,t +Hgzg,t (9)

(iv) For the feasible GLS case with W = V −1
R , which is estimated by V̂ −1

R , the asymp-

totic distribution of γ̂g = (X̂ ′

gV̂
−1
R X̂g)

−1X̂ ′

gV̂
−1
R µ̂R is given by

√
T (γ̂g − γg)

A∼

N(0, Vγ̂g), where Vγ̂g =
∑

∞

j=−∞
E[hg,th

′

g,t+j ] with

hg,t = (γg,t − γg)− (φg,t − φg)wg,t +Hgzg,t − (γg,t − γg)ug,t (10)
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For both (iii) and (iv), γg,t = [γg0,t, γ
′

g1,t]
′ = AgRt, γg = [γg0, γ

′

g1]
′ = AgµR, Ag =

HgX
′

gW , Hg = (X ′

gWXg)
−1, Xg = [1N , βg], βg = VRM(M ′VRM)−1, φg,t = [γg0,t, (γg1,t−

gt)
′]′, φg = [γg0, (γg1 − µg)

′]′, wg,t = γ′g1V
−1
g (gt − µg), ug,t = e′gW (Rt − µR), eg =

µR −Xgγg, zg,t = [0, ug,t(gt − µg)
′V −1
g ]′.

It is easy to check that (i)(ii) in Theorem 1 coincide with (iii)(iv), if we replace each object

for factors in (i)(ii) with its counterpart in (iii)(iv) resulting from mimicking portfolios. As

a result, in the ideal scenario that the weights of mimicking portfolios are given, mimicking

portfolios can be treated in the same manner as factors in CSR.

2.3 Mimicking Portfolios in CSR with Estimated Weights

In practice, the weights of mimicking portfolios are unknown and must be estimated. Em-

pirical researchers thus have to work with

ĝt = M̂ ′Rt (11)

where M̂ is an estimator of M . Consequently, mimicking portfolios used in practice are

contaminated by the estimation error on their weights. In many situations, M̂ is a consistent

estimator ofM , so using ĝt instead of gt does not impact the consistency of the estimated risk

premia. Nevertheless, the estimation error of M̂ has a first order impact on the asymptotic

variance of the estimated risk premia and its impact cannot be ignored, especially when the

factors are poorly mimicked by the returns on the assets.

In order to explicitly analyze the asymptotic variance of the risk premium estimator under

estimated mimicking portfolios, we focus on the case of maximum correlation portfolios,

which corresponds to M = V −1
R VRf , i.e., L = IK , so:

3

gt = VfRV
−1
R Rt, ĝt = V̂fRV̂

−1
R Rt. (12)

3Other types of mimicking portfolios, such as those suggested by Huberman et al. (1987), can be consid-
ered as linear transformations of maximum correlation portfolios, so can be analyzed in a similar manner.
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These mimicking portfolios are obtained by projecting ft on Rt and a constant term:

ft = µf − VfRV
−1
R µR + VfRV

−1
R Rt + ηt = µf − µg + gt + ηt (13)

where ηt = (ft − µf) − (gt − µg) is uncorrelated with Rt, and we denote its variance by

Vη = Vf − VfRV
−1
R VRf .

In Theorem 2, we provide the asymptotic distribution of the risk premium estimator,

when the betas with respect to ĝt = V̂fRV̂
−1
R Rt are used in CSR.

Theorem 2. Let β̂ĝ ≡ V̂Rf (V̂fRV̂
−1
R V̂Rf )

−1, X̂ĝ ≡ [1N , β̂ĝ], W is a positive definite weighting

matrix. If W is known, the asymptotic distribution of γ̂ĝ = (X̂ ′

ĝWX̂ĝ)
−1X̂ ′

ĝWµ̂R is given by
√
T (γ̂ĝ − γg)

A∼ N(0, Vγ̂ĝ), where Vγ̂ĝ =
∑

∞

j=−∞
E[hĝ,th

′

ĝ,t+j ] with

hĝ,t =




1 0′K

0K VgV
−1
f


ht +




0
[
VηV

−1
f (ft − µf)(ft − µf)

′ − ηtη
′

t

]
V −1
f γ1


 (14)

and ht is provided in (7), Vg = VfRV
−1
R VRf . In addition, when W is unknown, (14) similarly

holds for the asymptotic distribution of γ̂ĝ = (X̂ ′

ĝV̂
−1
R X̂ĝ)

−1X̂ ′

ĝV̂
−1
R µ̂R with ht provided in (8).

As in Theorem 2, hĝ,t can be written as the scaled ht in (i)(ii) of Theorem 1 plus an

extra term that depends on ηt, the error in the construction of mimicking portfolios by the

time series regression approach. In particular, Theorem 2 coincides with (i)(ii) of Theorem

1 when ηt equals zero.

When ηt is nonzero but sufficiently small (i.e., ηt ≈ 0K , so Vη ≈ 0K×K, Vg ≈ Vf), (14)

suggests that the results for factors in Theorem 1 and those for mimicking portfolios in

Theorem 2 are almost identical. From this perspective, it is not completely unreasonable to

treat mimicking portfolios in the same manner as factors in CSR, assuming that the error

in mimicking portfolio construction is small. This treatment, however, is expected to be

problematic when the error is substantial, as shown below.
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2.4 Consequence of Ignoring the Estimation Error on the Weights

Consider the following scenario: with the data of ft andRt, a researcher constructs mimicking

portfolios ĝt = V̂fRV̂
−1
R Rt. After construction, the researcher treats the constructed ĝt in the

same manner as gt. By doing so, the researcher ignores the estimation error and effectively

turns to hg,t in (iii)(iv) of Theorem 1 to derive standard errors of risk premia, instead of hĝ,t

in Theorem 2.

To highlight the difference between hg,t and hĝ,t, we rewrite hĝ,t as follows.

Corollary 2.1. Consider mimicking portfolios under L = IK . If W is known, hg,t in (9)

and hĝ,t in (14) satisfy:

hĝ,t = hg,t + δt (15)

where

δt = −(φg,t − φg)γ
′

g1V
−1
g ηt +Hg




0

ug,tV
−1
g ηt


+




0

ηt


 γ′g1V −1

g (gt − µg).

In addition, (15) also holds for the hg,t and hĝ,t corresponding to feasible GLS.

In the theorem below, we continue to compare the variances of the risk premium estimator

corresponding to hĝ,t and hg,t, under the joint elliptical distribution assumption of Yt.

Theorem 3. If Yt is i.i.d. and follows the elliptical distribution, then Corollary 2.1 implies:

E[hĝ,th
′

ĝ,t] = E[hg,th
′

g,t] + E[δtδ
′

t] (16)

where
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E[δtδ
′

t]

=(1 + κ)


AgVRA′

g −




0 0′K

0K Vg





 (γ′g1V

−1
g VηV

−1
g γg1)

+ (1 + κ)Hg




0 0′K

0K V −1
g VηV

−1
g


Hg(e

′WVRWe) + (1 + κ)




0 0′K

0K Vη


 (γ′g1V

−1
g γg1)

with κ the kurtosis parameter of the elliptical distribution.4

Theorem 3 indicates that ignoring estimation error of mimicking portfolios in CSR could

effectively under-estimate the variance of the risk premium estimator, since E[hg,th
′

g,t] ≤

E[hĝ,th
′

ĝ,t].

In addition, the cost of ignoring estimation error is reflected by E[δtδ
′

t], which increases in

Vη. For factors that are minorly correlated with returns, Vη tends to be large. Consequently,

the variance of the risk premium estimator is more likely to be severely under-estimated for

mimicking portfolios on such factors.

Corollary 3.1. In the special case that K = 1 (i.e., there is only one factor considered

for asset pricing), under the i.i.d. and joint elliptical distribution of Yt, variances of γ̂ĝ in

Theorem 2 and γ̂ in Theorem 1 satisfy:

Vγ̂ĝ =




1 0′K

0K VgV
−1
f


Vγ̂




1 0′K

0K VgV
−1
f




′

(17)

When K = 1, Corollary 3.1 suggests that the variance of the risk premium estimator

under mimicking portfolios equals the scaled version of its counterpart under original factors.

4The expression of E[hg,th
′

g,t] results from replacing each object in Lemma 1, 2 of Kan et al. (2013) with
its counterpart from mimicking portfolios.
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2.5 Further Discussion

In this part, we briefly discuss several issues that are related to our analysis above.

2.5.1 Beta, Risk Premia, Pricing Error for Factor and Mimicking Portfolios

Firstly, we relate the beta, risk premia and pricing error for original risk factors denoted by

ft to their counterparts resulting from mimicking portfolios denoted by gt:

βg = βVfLV
−1
g , γg =




1 0′K

0K VgL
−1V −1

f


 γ, eg = e (18)

where β, γ, e and βg, γg, eg have been used in Theorem 1.

A subtle point in (18) is that pricing errors that use original risk factors and mimicking

portfolios are identical. From this perspective, there is little advantage of using the pricing

error under mimicking portfolios in specification tests.

In addition, when L = IK , γg =




1 0′K

0K VgV
−1
f


 γ. This result, together with Corollary

3.1 above, suggests that there does not appear to be advantage of using mimicking portfolios

over factors under K = 1, since the t-ratios in the two setup are identical if estimation error

of mimicking portfolios is correctly accounted for.

2.5.2 Factors and Mimicking Portfolios in CSR

Secondly, we explore the scenario that factors and mimicking portfolios are simultaneously

used in CSR, which is not uncommon in practice. The asymptotic distribution of the risk

premium estimator in this scenario is thus of practical importance. For brevity, we provide

the result in the appendix.
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2.5.3 An Alternative Scheme

Finally, we consider an alternative scheme for forming mimicking portfolios that are often

used in the empirical literature. As will be shown below, the alternative scheme nests our

setup above as a special case.

Let Rt be the returns on N test assets at time t, rt be the returns on L benchmark assets

at time t, and ft be the realizations of K factors at time t, where we assume N ≥ K + 1

and L ≥ K. Instead of projecting ft on Rt to form mimicking portfolios, researchers often

project ft on rt to obtain the mimicking portfolios. Let

Yt =




ft

rt

Rt



, (19)

and the mean and covariance matrix of Yt is defined as

µ = E[Yt] =




µf

µr

µR



, V = Var[Yt] =




Vf Vfr VfR

Vrf Vr VrR

VRf VRr VR



. (20)

The returns on the mimicking portfolios obtained by projecting ft on rt are given by

g̃t = VfrV
−1
r rt, (21)

with mean and variance

µg̃ = VfrV
−1
r µr, Vg̃ = VfrV

−1
r Vrf , (22)

respectively. Note that g̃t coincides with gt in (12), if rt = Rt.
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It follows that the beta of Rt with respect to g̃t is

βg̃ = Cov[Rt, g̃
′

t]Var[g̃t]
−1 = VRrV

−1
r Vrf(VfrV

−1
r Vrf)

−1. (23)

Let Xg̃ = [1N , βg̃]. The pseudo parameters for risk premia in the two-pass CSR (with

weighting matrix W ) are then given by

γg̃ =



γg̃0

γg̃1


 = (X

′

g̃WXg̃)
−1X

′

g̃WµR. (24)

We provide the asymptotic distribution of the estimator for γg̃, when the feasible version

of g̃t, ˆ̃gt = V̂frV̂
−1
r rt, is used in the two-pass CSR.

Theorem 4. Let β̂ˆ̃g = V̂RrV̂
−1
r V̂rf(V̂frV̂

−1
r V̂rf)

−1, X̂ˆ̃g = [1N , β̂ˆ̃g], W is a positive definite

weighting matrix.

(i) If W is known, the asymptotic distribution of γ̂ˆ̃g = (X̂
′

ˆ̃g
WX̂ˆ̃g)

−1X̂
′

ˆ̃g
Wµ̂R is given by

√
T (γ̂ˆ̃g − γg̃)

A∼ N(0, Vγ̂ˆ̃g), where Vγ̂ˆ̃g =
∑

∞

j=−∞
E[hˆ̃g,th

′

ˆ̃g,t+j
] with

hˆ̃g,t = (γg̃,t − γg̃)− (φg̃,t − φg̃)wg̃,t +Hg̃zg̃,t + δ̃t (25)

(ii) For the feasible GLS case with W = V −1
R , which is estimated by V̂ −1

R , the asymptotic

distribution of γ̂ˆ̃g = (X̂
′

ˆ̃g
V̂ −1
R X̂ˆ̃g)

−1X̂
′

ˆ̃g
V̂ −1
R µ̂R is given by

√
T (γ̂ˆ̃g−γg̃)

A∼ N(0, Vγ̂ˆ̃g), where

Vγ̂ˆ̃g =
∑

∞

j=−∞
E[hˆ̃g,th

′

ˆ̃g,t+j
] with

hˆ̃g,t = (γg̃,t − γg̃)− (φg̃,t − φg̃)wg̃,t +Hg̃zg̃,t − (γg̃,t − γg̃)ug̃,t + δ̃t (26)

For both (i) and (ii), γg̃,t = [γg̃0,t, γ
′

g̃1,t]
′ = Ag̃Rt, γg̃ = [γg̃0, γ

′

g̃1]
′ = Ag̃µR, Ag̃ = Hg̃X

′

g̃W ,

Hg̃ = (X
′

g̃WXg̃)
−1, Xg̃ = [1N , βg̃], βg̃ = VRrV

−1
r Vrf(VfrV

−1
r Vrf)

−1, φg̃,t = [γg̃0,t, (γg̃1,t− g̃t)′]′,

φg̃ = [γg̃0, (γg̃1 − µg̃)
′]′, wg̃,t = γ

′

g̃1V
−1
g̃ (g̃t − µg̃), ug̃,t = e

′

g̃W (Rt − µR), eg̃ = µR − Xg̃γg̃,
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zg̃,t = [0, ug̃,t(g̃t − µg̃)
′V −1
g̃ ]′, and δ̃t = −




Ag̃VRrV

−1
r (rt − µr)−




0

g̃t − µg̃







r
′

g̃1V
−1
g̃ η̃t +

Hg̃




0

V −1
g̃ η̃t


 e′g̃WVRrV

−1
r (rt − µr) +




0

η̃t


wg̃,t, with η̃t = (ft − µf)− (g̃t − µg̃).

It is easy to verify that when rt = Rt (i.e., benchmark assets are also used as test assets),

δ̃t reduces to δt in Corollary 2.1, and Theorem 4 and Theorem 2 coincide. Put differently,

Theorem 4 nests Theorem 2, by allowing test assets and benchmark assets to be different.

Furthermore, when rt = Rt and η̃t = 0K (i.e., estimation error of mimicking portfolios

is negligible), δ̃t reduces to zero, and Theorem 4 coincides with (iii)(iv) of Theorem 1 under

maximum correlation portfolios.

3 Simulation and Application

3.1 Simulation Evidence

To investigate the finite sample performance of the asymptotic results in Section 2, we

conduct a simulation experiment.

3.1.1 D.G.P.

In the data generation process (D.G.P.), Yt = (f ′

t , R
′

t)
′, t = 1, ..., T , is independently drawn

from a multivariate normal distribution, whose mean and variance are calibrated from real

data sets as follows.

For returns, we set N = 25, and employ the commonly used 25 size and book-to-market

sorted portfolios for the calibration of mean and variance. For factors, we set K = 3 and

consider two three-factor models for comparison. One model (denoted by M-S in Table 1

and 2) consists of three statistically strong factors whose mean and variances are calibrated

from Fama and French (1993) factors. In contrast, the other three-factor model (denoted
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by M-W ) consists of factors that are only weakly correlated with returns, and we calibrate

the mean and variance for these factors from the data set of Lettau and Ludvigson (2001),

where consumption wealth ratio, consumption growth and the interaction of these two serve

as the three factors. The covariance of factors and returns, which reflects whether factors

and returns are strongly or weakly correlated, is thus calibrated from the data for factors

and returns described above, using the same time period as in Lettau and Ludvigson (2001).

Note that in the above D.G.P., the model specification error is not necessarily equal to

zero. In order to explore the case that this error is zero so there is no model misspecification,

we also consider the setup that µR = X̂γ̂ in D.G.P., where X̂ and γ̂ result from estimation

using the data of Lettau and Ludvigson (2001).5

After the data is generated, we regress the simulated factors on the simulated returns to

derive the weights of mimicking portfolios. By replacing factors with constructed mimicking

portfolios in the two models above, we compute risk premia and the associated standard

errors by both OLS (W = I) and GLS (W = V −1
R ) in the Fama and MacBeth (1973) two-

pass procedure. The number of Monte Carlo replications we use is 2000, and the reported

standard errors in Table 1 for OLS and Table 2 for GLS result from these replications. In

both tables, we consider T = 500, which is close to the typical sample size in practice,

as well as T = 2000 to facilitate comparison. Finally, the two cases depending on model

misspecification exists or not are both presented.

3.1.2 Results

We present the OLS outcome in Table 1 and the GLS result in Table 2. In each table, we

report three types of standard errors of risk premia. In the column of var(γ̂ĝ)
1/2, we report

the standard error of the risk premium estimator using constructed mimicking portfolios:

we compute the estimator 2000 times and report the sample standard error. Since these

reported numbers result from a large number of replications, they can be considered as real

5See also Kan et al. (2013) for the similar treatment.
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standard errors of risk premia. Under v̂ar(γ̂ĝ)
1/2, we report two more standard errors by the

asymptotic theory in Section 2: in particular, in the column of hg,t, the estimation error of

mimicking portfolios is ignored; under hĝ,t, the estimation error is accounted for. Note that

these notations are also used in Section 2. The reported numbers under hg,t and hĝ,t result

from the average of 2000 replications.

When factors are only weakly correlated with returns (Model M-W ), Table 1 shows

that ignoring the estimation error in mimicking portfolios (columns of hg,t) could severely

underestimate the standard errors of risk premia by OLS. In contrast, the standard error

that accounts for estimation error in mimicking portfolios (columns of hĝ,t) provides good

approximations to actual standard errors.

Nevertheless, when factors are strongly correlated with returns (Model M-S), ignoring

the estimation error in mimicking portfolios does not appear to severely underestimate the

standard errors of risk premia, as standard errors corresponding to hg,t and hĝ,t are close to

each other in Table 1.

The above findings remain unaffected, no matter whether model misspecification exists or

not. In particular, when there is no model misspecification but factors are minorly correlated

with returns, Table 1 still suggests that taking account of estimating error of mimicking

portfolios can cause substantial differences in standard errors of risk premia.

Overall, the findings in Table 1 are consistent with our analytical results in Section 2.

These findings also remain qualitatively similar, when GLS is used as the estimation method

for risk premia in Table 2.

3.2 Empirical Application

To illustrate how the adjustment for estimation errors on the weights of mimicking portfolios

affects the outcome of asset pricing tests in CSR, we consider three empirical examples, which

are adopted from Cochrane (1996), Li et al. (2006) and Muir et al. (2013) respectively.

The factors considered in our empirical application include the residential investment
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growth △IRes and nonresidential investment growth △INres in Cochrane (1996), the invest-

ment growth rate in the financial cooperations Finan, the nonfinancial corporate business

Nfinco, and the household sector Hholds in Li et al. (2006), the funding liquidity Lev in

Muir et al. (2013).

To construct mimicking portfolios, we regress the factors above on the 25 Fama-French

size and book-to-market sorted portfolios using the time period 1973Q1-2009Q4, during

which both factors and returns have quarterly data available.

With the constructed mimicking portfolios, we estimate risk premia by the two-pass

procedure of Fama and MacBeth (1973) and compute the associated standard errors. The

OLS and GLS results are reported in Table 3 and 4, respectively. In particular, we compute

four standard errors corresponding to the methods in Fama and MacBeth (1973), Shanken

(1992), Jagannathan and Wang (1996) and Kan et al. (2013). Finally, we also compute

two standard errors according to our proposed approach that accounts for errors-in-weights

(EIW): for EIW (c) , we assume the model is correctly specified; in contrast, for EIW (m),

we allow for model misspecification.

As shown by Table 3, once we account for the estimation error of mimicking portfolios,

the outcome of t-test in CSR for risk premia can be substantially altered. For example, in

both Cochrane (1996) and Li et al. (2006), we find the evidence that risk premium that was

significant at 5% when ignoring estimation error becomes insignificant, after this error is

accounted for. Similarly in Muir et al. (2013), significance at 1% reduces to 5%, if we take

estimation error of mimicking portfolios into consideration.

Overall, it is commonplace in Tables 3 and 4 that the standard error associated with the

estimate of risk premium increases by a big margin (i.e., in most cases, around 50% ∼ 100%),

once estimation error of mimicking portfolios as well as model misspecification are accounted

for. Therefore, estimation errors on the weights of the mimicking portfolios are of first order

importance and should not be ignored. For improved statistical inferences, we recommend

researchers to adopt our new standard error to compute the standard errors for estimated
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risk premia associated with mimicking portfolios.

4 Conclusion

This paper targets a common practice in asset pricing studies: using mimicking portfolios

constructed from original risk factors for asset pricing tests without taking into account the

estimation errors on their weights. We suggest a methodology for computing the standard

error of the estimated risk premia, which takes into account the estimation errors of the

mimicking portfolios as well as potential model misspecification. Our empirical evidence

shows that the suggested adjustment on standard error is statistically relevant (in most of

the cases that we study, the increase in the standard error is more than 50%). In many

cases, the estimated risk premium associated with the mimicking portfolios become statisti-

cally insignificant once we take into account the estimation error associated with mimicking

portfolios. Consequently, our findings cast doubt on the reliability of existing empirical asset

pricing studies that rely on the use of mimicking portfolios but fail to take into account of

the impact of the estimation errors on the mimicking portfolios.
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Appendix

Proofs as well as some additional results are contained in the appendix. Omitted proofs for
the results in the paper can be derived straightforwardly.

A: Preliminary

In order to simplify the derivation in the appendix, the result and notation below will be
used.

1. Define ψ =

[
µ

vec(V )

]
, ψ̂ =

[
µ̂

vec(V̂ )

]
, then by the conventional GMM results under

just-identification:

√
T (ψ̂ − ψ)

A∼ N(0(N+K)×(N+K+1),

∞∑

j=−∞

E(ζtζ
′

t+j))

where

ζt =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]

2. Define the matrix C and its inverse C−1:

C =

[
1 0′K
0K VgL

−1V −1
f

]
, C−1 =

[
1 0′K
0K VfLV

−1
g

]

In particular, when L = IK :

C =

[
1 0′K
0K VgV

−1
f

]
, C−1 =

[
1 0′K
0K VfV

−1
g

]

B: Proof for Theorem 1

Proof. We consider two cases, depending on W is given or not.

W is known

Since γ̂g = (X̂ ′

gWX̂g)
−1X̂ ′

gWµ̂R is a smooth function of µ̂ and V̂ , we only need to derive ∂γg
∂ψ′

and then apply the Delta method for hg,t. That is,

hg,t =
∂γg

∂ψ′
ζt

with
∂γg

∂ψ′
=

(
∂γg
∂µ′

f

∂γg
∂µ′

R

∂γg
∂vec(V )′

)

where ∂γg
∂µ′

f

= 0(K+1)×K ,
∂γg
∂µ′

R

= Ag = (X̂ ′

gWX̂g)
−1X̂ ′

gW . So only ∂γg
∂vec(V )′

needs to be derived.
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Given γg = (X ′

gWXg)
−1X ′

gWµR = HgX
′

gWµR, we use the product rule:

∂γg

∂vec(V )′
= (µ′

RWXg ⊗ IK+1)
∂vec(Hg)

∂vec(V )′
+ (µ′

RW ⊗Hg)
∂vec(X ′

g)

∂vec(V )′

where

(µ′

RWXg ⊗ IK+1)
∂vec(Hg)

∂vec(V )′
= −(µ′

RWXg ⊗ IK+1)(Hg ⊗Hg)
∂vec(H−1

g )

∂vec(V )′

= −(γ′g ⊗Hg)

[
(X ′

gW ⊗ IK+1)
∂vec(X ′

g)

∂vec(V )′
+ (IK+1 ⊗X ′

gW )
∂vec(Xg)

∂vec(V )′

]

= −(Hg ⊗ γ′gX
′

gW )
∂vec(Xg)

∂vec(V )′
− (γ′g ⊗HgX

′

gW )
∂vec(Xg)

∂vec(V )′

(µ′

RW ⊗Hg)
∂vec(X ′

g)

∂vec(V )′
= (Hg ⊗ µ′

RW )
∂vec(Xg)

∂vec(V )′

Combining the pieces above, with eg = µR −Xgγg:

∂γg

∂vec(V )′
= (Hg ⊗ e′gW )

∂vec(Xg)

∂vec(V )′
− (γ′g ⊗HgX

′

gW )
∂vec(Xg)

∂vec(V )′

Note that

∂vec(Xg)

∂vec(V )′
=
∂vec(Xg)

∂vec(βg)′
∂vec(βg)

∂vec(V )′

= ([0K , IK ]
′ ⊗ IN)

∂vec(βg)

∂vec(V )′

Hence what remains to be derived is ∂vec(βg)
∂vec(V )′

.

In order to derive ∂vec(βg)

∂vec(V )′
, and notice that βg = VRM(M ′VRM)−1, and

VR = [0N×K , IN ]V [0N×K , IN ]
′,
∂vec(VR)

∂vec(V )′
= [0N×K , IN ]⊗ [0N×K , IN ]

Given these results, we apply the product rule to ∂vec(βg)

∂vec(V )′
:

∂vec(βg)

∂vec(V )′
= [(M ′VRM)−1M ′ ⊗ IN ]

∂vec(VR)

∂vec(V )′
+ (IK ⊗ VRM)

∂vec((M ′VRM)−1)

∂vec(V )′

where

[(M ′VRM)−1M ′ ⊗ IN ]
∂vec(VR)

∂vec(V )′
= [(M ′VRM)−1M ′ ⊗ IN ]([0N×K , IN ]⊗ [0N×K , IN ])

= [0K×K, (M
′VRM)−1M ′]⊗ [0N×K , IN ]
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and

(IK ⊗ VRM)
∂vec((M ′VRM)−1)

∂vec(V )′

=− (IK ⊗ VRM)[(M ′VRM)−1 ⊗ (M ′VRM)−1]
∂vec(M ′VRM)

∂vec(V )′

=− [(M ′VRM)−1 ⊗ βg]
∂vec(M ′VRM)

∂vec(V )′

=− [(M ′VRM)−1 ⊗ βg](M
′ ⊗M ′)

∂vec(VR)

∂vec(V )′

=− [0K×K, (M
′VRM)−1M ′]⊗ [0N×K , βgM

′]

Combining these pieces, we get:

∂vec(βg)

∂vec(V )′
=[0K×K, (M

′VRM)−1M ′]⊗ [0N×K , IN − βgM
′]

and

∂vec(Xg)

∂vec(V )′
=
∂vec(Xg)

∂vec(βg)′
∂vec(βg)

∂vec(V )′

= ([0K , IK ]
′ ⊗ IN)([0K×K , (M

′VRM)−1M ′]⊗ [0N×K , IN − βgM
′])

= [0K , IK ]
′[0K×K , (M

′VRM)−1M ′]⊗ [0N×K , IN − βgM
′]

Recall that:

∂γg

∂vec(V )′
= (Hg ⊗ e′gW )

∂vec(Xg)

∂vec(V )′
− (γ′g ⊗Ag)

∂vec(Xg)

∂vec(V )′

where Ag = HgX
′

gW .

For (Hg ⊗ e′gW )∂vec(Xg)
∂vec(V )′

, it can be simplified by using β ′

gWeg = 0:

(Hg ⊗ e′gW )
∂vec(Xg)

∂vec(V )′
=

[
0(K+1)×K , Hg[0N ,M(M ′VRM)−1]′

]
⊗ [0′K , e

′

gW ]

For (γ′g ⊗ Ag)
∂vec(Xg)
∂vec(V )′

:

(γ′g ⊗ Ag)
∂vec(Xg)

∂vec(V )′
=

[
0′K , γ

′

g[0N ,M(M ′VRM)−1]′
]
⊗ [0(K+1)×K , Ag − AgβgM

′]

Combining these pieces, ∂γg
∂vec(V )′

thus has two terms:

∂γg

∂vec(V )′
=
[
0(K+1)×K , Hg[0N ,M(M ′VRM)−1]′

]
⊗ [0′K , e

′

gW ]

−
[
0′K , γ

′

g[0N ,M(M ′VRM)−1]′
]
⊗ [0(K+1)×K , Ag − AgβgM

′]
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With ∂γg
∂vec(V )′

above, we derive hg,t as follows.

hg,t =
∂γg

∂ψ′
ζt

=
(

0(K+1)×K Ag
∂γg

∂vec(V )′

)(
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

)

= Ag(Rt − µR) +
∂γg

∂vec(V )′
vec((Yt − µ)(Yt − µ)′ − V )

By plugging in ∂γg
∂vec(V )′

, we end up with that hg,t consists of the terms below.

The term Ag(Rt − µR) can be rewritten as:

Ag(Rt − µR) = γg,t − γg

For the pieces caused by the two terms in ∂γg
∂vec(V )′

, we report them one by one.

First of all,
[
0(K+1)×K , Hg[0N ,M(M ′VRM)−1]′

]
⊗ [0′K , e

′

gW ]vec((Yt−µ)(Yt−µ)′−V ) can
be rewritten as:

[
0(K+1)×K , Hg[0N ,M(M ′VRM)−1]′

]
⊗ [0′K , e

′

gW ]vec((Yt − µ)(Yt − µ)′ − V )

=vec([0′K , e
′

gW ] ((Yt − µ)(Yt − µ)′ − V )

[
0K×(K+1)

(Hg[0N ,M(M ′VRM)−1]′)′

]
)

=vec(e′gW ((Rt − µR)(Rt − µR)
′ − VR)[0N ,M(M ′VRM)−1]H ′

g)

=Hg[0N ,M(M ′VRM)−1]′((Rt − µR)(Rt − µR)
′ − VR)Weg

=Hg[0N ,M(M ′VRM)−1]′(Rt − µR)ug,t

=Hgzg,t

where ug,t = e′gW (Rt − µR), zg,t = [0, ug,t(gt − µg)
′(M ′VRM)−1]′.

Secondly,
[
0′K , γ

′

g[0N ,M(M ′VRM)−1]′
]
⊗[0(K+1)×K , Ag−AgβgM ′]vec((Yt−µ)(Yt−µ)′−V )

can be rewritten as:

[
0′K , γ

′

g[0N ,M(M ′VRM)−1]′
]
⊗ [0(K+1)×K , Ag − AgβgM

′]vec((Yt − µ)(Yt − µ)′ − V )

=[0(K+1)×K , Ag −AgβgM ]((Yt − µ)(Yt − µ)′ − V )

(
0K

(γ′g[0N ,M(M ′VRM)−1]′)′

)

=(Ag − AgβgM
′)[(Rt − µR)(Rt − µR)

′ − VR]M(M ′VRM)−1γg1

=(γg,t − γg)(gt − µg)
′(M ′VRM)−1γg1 − Agβg(gt − µg)wg,t

=(γg,t − γg)wg,t − Agβg(gt − µg)wg,t

=(φg,t − φg)wg,t

where wg,t = (gt − µg)
′(M ′VRM)−1γg1, φg,t = [γg0,t, (γg1,t − gt)

′]′, φg = [γg0, (γg1 − µg)
′]′.

As a result, hg,t consists of three terms:

hg,t =(γg,t − γg)− (φg,t − φg)wg,t +Hgzg,t
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W is unknown

Since γ̂g = (X̂ ′

gV̂
−1
R X̂g)

−1X̂ ′

gV̂
−1
R µ̂R is also a smooth function of µ̂ and V̂ , we only need to

derive ∂γg
∂ψ′

. Given γg = (X ′

gV
−1
R Xg)

−1X ′

gV
−1
R µR = HgX

′

gV
−1
R µR, we use the product rule:

∂γg

∂vec(V )′
= (µ′

RV
−1
R Xg⊗IK+1)

∂vec(Hg)

∂vec(V )′
+(µ′

RV
−1
R ⊗Hg)

∂vec(X ′

g)

∂vec(V )′
+(µ′

R⊗HgX
′

g)
∂vec(V −1

R )

∂vec(V )′

where

(µ′

RV
−1
R Xg ⊗ IK+1)

∂vec(Hg)

∂vec(V )′

=− (µ′

RV
−1
R Xg ⊗ IK+1)(Hg ⊗Hg)

∂vec(H−1
g )

∂vec(V )′

=− (γ′g ⊗Hg)

[
(X ′

gV
−1
R ⊗ IK+1)

∂vec(X ′

g)

∂vec(V )′
+ (X ′

g ⊗X ′

g)
∂vec(V −1

R )

∂vec(V )′
+ (IK+1 ⊗X ′

gV
−1
R )

∂vec(Xg)

∂vec(V )′

]

=− (Hg ⊗ γ′gX
′

gV
−1
R )

∂vec(Xg)

∂vec(V )′
+ (γ′gX

′

gV
−1
R ⊗HgX

′

gV
−1
R )

∂vec(VR)

∂vec(V )′
− (γ′g ⊗HgX

′

gV
−1
R )

∂vec(Xg)

∂vec(V )′

and

(µ′

RV
−1
R ⊗Hg)

∂vec(X ′

g)

∂vec(V )′
= (Hg ⊗ µ′

RV
−1
R )

∂vec(Xg)

∂vec(V )′

(µ′

R ⊗HgX
′

g)
∂vec(V −1

R )

∂vec(V )′
= −(µ′

RV
−1
R ⊗HgX

′

gV
−1
R )

∂vec(VR)

∂vec(V )′

Combining the pieces above, with eg = µR −Xgγg:

∂γg

∂vec(V )′
= (Hg ⊗ e′gV

−1
R )

∂vec(Xg)

∂vec(V )′
− (γ′g ⊗HgX

′

gV
−1
R )

∂vec(Xg)

∂vec(V )′
− (e′gV

−1
R ⊗HgX

′

gV
−1
R )

∂vec(VR)

∂vec(V )′

Compared to the case W is given, the difference is that we have the third term.

−(e′gV
−1
R ⊗Ag)

∂vec(VR)

∂vec(V )′
= −[0′K , e

′

gV
−1
R ]⊗ [0(K+1)×K , Ag]

This further induces the extra term −(γg,t − γg)ug,t for hg,t:

− [0′K , e
′

gV
−1
R ]⊗ [0(K+1)×K , Ag]vec((Yt − µ)(Yt − µ)′ − V )

=− [0(K+1)×K , Ag]((Yt − µ)(Yt − µ)′ − V )

(
0K

V −1
R eg

)

=− Ag[(Rt − µR)(Rt − µR)
′ − VR]V

−1
R eg

=− (γg,t − γg)ug,t
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C: Proof for Theorem 2

Proof. We can show that (under L = IK , see (18))

γg =

[
γ0

VgV
−1
f γ1

]
= Cγ, γ̂g =

[
γ̂0

V̂gV̂
−1
f γ̂1

]
.

We already know the explicit expression of

ht ≡
∂γ

∂ϕ′
ζt.

We are interested in obtaining

hĝ,t =
∂γg

∂ϕ′
ζt

= C
∂γ

∂ϕ′
ζt +

[
0′(N+K)+(N+K)2

(γ′1 ⊗ IK)
∂vec(VgV

−1

f
)

∂ϕ′

]
ζt

= Cht +

[
0

(γ′1 ⊗ IK)
∂vec(VgV

−1

f
)

∂vec(V )′
vec((Yt − µ)(Yt − µ)′)

]
.

where

(γ′1 ⊗ IK)
∂vec(VgV

−1
f )

∂vec(V )′
= (γ′1V

−1
f ⊗ IK)

∂vec(Vg)

∂vec(V )′
− (γ′1V

−1
f ⊗ VgV

−1
f )

∂vec(Vf )

∂vec(V )′

= (γ′1V
−1
f ⊗ IK)

(
[0K×K, VfRV

−1
R ]⊗ [IK , 0K×N ]

+[IK , −VfRV −1
R ]⊗ [0K×K, VfRV

−1
R ]

)

− (γ′1V
−1
f ⊗ VgV

−1
f )([IK , 0K×N ]⊗ [IK , 0K×N ]).

It follows that

hĝ,t = Cht+

[
0

(ft − µf)(gt − µg)
′V −1
f γ1 + (gt − µg)η

′

tV
−1
f γ1 − VgV

−1
f (ft − µf)(ft − µf)

′V −1
f γ1

]

After simplification, we can also write this as

hĝ,t = Cht +

[
0

[VηV
−1
f (ft − µf)(ft − µf)

′ − ηtη
′

t]V
−1
f γ1

]
.
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D: Proof for Corollary 2.1

Proof. For convenience, define:

△t ≡
[

0[
VηV

−1
f (ft − µf)(ft − µf)

′ − ηtη
′

t

]
V −1
f γ1

]

With △t above, ht and hĝ,t are related as follows (W is given):

hĝ,t = Cht +△t

= C(γt − γ)− C(φt − φ)wt + CHzt +△t

= (γg,t − γg)− (φg,t − φg)wt −
[

0
gt − µg

]
wt + C

[
0

ft − µf

]
wt +HgC

−1′zt +△t

= hg,t − (φg,t − φg)η
′

tV
−1
f γ1 +Hg

[
0

ug,tV
−1
g ηt

]
+△t −

[
0

gt − µg

]
wt + C

[
0

ft − µf

]
wt

Plug in the expression of △t to get

△t −
[

0
gt − µg

]
wt + C

[
0

ft − µf

]
wt =

[
0
ηt

]
γ′g1V

−1
g (gt − µg)

As a result:

hĝ,t = hg,t − (φg,t − φg)η
′

tV
−1
f γ1 +Hg

[
0

ug,tV
−1
g ηt

]
+

[
0
ηt

]
γ′g1V

−1
g (gt − µg)

and note that γ′g1V
−1
g = γ′1V

−1
f , so we may also write:

hĝ,t = hg,t − (φg,t − φg)η
′

tV
−1
g γg1 +Hg

[
0

ug,tV
−1
g ηt

]
+

[
0
ηt

]
γ′g1V

−1
g (gt − µg)

The proof for the feasible GLS case is similar and thus omitted.

E: Proof for Theorem 3

Proof. We first show E(hg,tδ
′

t) = 0(K+1)×(K+1), where:

hg,t = (γg,t − γg)− (φg,t − φg)wg,t +Hgzg,t

or
hg,t = (γg,t − γg)− (φg,t − φg)wg,t +Hgzg,t − (γg,t − γg)ug,t

and

δt = −(φg,t − φg)γ
′

g1V
−1
g ηt +Hg

[
0

ug,tV
−1
g ηt

]
+

[
0
ηt

]
γ′g1V

−1
g (gt − µg)

Note that γg,t − γg, φg,t − φg, wg,t, ug,t, γ
′

g1V
−1
g ηt, ηt and γ

′

g1V
−1
g (gt − µg) are all jointly

elliptically distributed with zero expectations.
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Below we discuss the interaction of the terms in hg,t with δt, one by one.
γg,t − γg: The interaction of γg,t − γg and δt is made of third moments, thus has zero

expectation.
(φg,t − φg)wg,t: Both φg,t − φg and wg,t are uncorrelated with ηt. Thus the interaction of

(φg,t − φg)wg,t and δt has zero expectation.
Hgzg,t: zg,t contains ug,t and gt− µg, both are uncorrelated with ηt. Thus the interaction

of Hgzg,t and δt has zero expectation.
(γg,t − γg)ug,t: Both γg,t − γg and ug,t contain Rt − µR, which is uncorrelated with ηt.

Thus the interaction of (γg,t − γg)ug,t and δt has zero expectation.
With the four pieces above, we have E(hg,tδ

′

t) = 0(K+1)×(K+1).
Recall that δt contains three parts

δt = −(φg,t − φg)γ
′

g1V
−1
g ηt +Hg

[
0

ug,tV
−1
g ηt

]
+

[
0
ηt

]
γ′g1V

−1
g (gt − µg)

By the property of the elliptical distribution, the interaction terms of the three parts in δt
all have zero expectations, so E(δtδ

′

t) reduces to the sum of three variances below:

(1 + κ)

(
AgVRA

′

g −
[

0 0′K
0K Vg

])
· (γ′g1V −1

g VηV
−1
g γg1)

(1 + κ)Hg

[
0 0′K
0K V −1

g VηV
−1
g

]
Hg · (e′WVRWe)

(1 + κ)

[
0 0′K
0K Vη

]
· (γ′g1V −1

g γg1)

which correspond to the three parts in δt, respectively.

F: Derivation of Equation (18)

Proof. βg corresponding to gt now reads:

βg = cov(Rt, gt)var(gt)
−1

= VRM(M ′VRM)−1

= βVfLV
−1
g

which implies that Xg = [1N , βg] = [1N , β]C
−1 = XC−1.

The risk premium γg corresponding to βg is thus:

γg = (X ′

gWXg)
−1X ′

gWµR

= Cγ

=

[
γ0

VgL
−1V −1

f γ1

]

In addition, the pricing errors are given by eg = µR −Xgγg = µR −XC−1Cγ = e.
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G: Proof for Theorem 4

Proof. Given γg̃ = (X ′

g̃V
−1
R Xg̃)

−1X ′

g̃V
−1
R µR = Hg̃X

′

g̃V
−1
R µR, we use the product rule:

∂γg̃

∂vec(V )′
= (µ′

RV
−1
R Xg̃⊗IK+1)

∂vec(Hg̃)

∂vec(V )′
+(µ′

RV
−1
R ⊗Hg̃)

∂vec(X ′

g̃)

∂vec(V )′
+(µ′

R⊗Hg̃X
′

g̃)
∂vec(V −1

R )

∂vec(V )′

where

(µ′

RV
−1
R Xg̃ ⊗ IK+1)

∂vec(Hg̃)

∂vec(V )′

=− (µ′

RV
−1
R Xg̃ ⊗ IK+1)(Hg̃ ⊗Hg̃)

∂vec(H−1
g̃ )

∂vec(V )′

=− (γ′g̃ ⊗Hg̃)

[
(X ′

g̃V
−1
R ⊗ IK+1)

∂vec(X ′

g̃)

∂vec(V )′
+ (X ′

g̃ ⊗X ′

g̃)
∂vec(V −1

R )

∂vec(V )′
+ (IK+1 ⊗X ′

g̃V
−1
R )

∂vec(Xg̃)

∂vec(V )′

]

=− (Hg̃ ⊗ γ′g̃X
′

g̃V
−1
R )

∂vec(Xg̃)

∂vec(V )′
+ (γ′g̃X

′

g̃V
−1
R ⊗Hg̃X

′

g̃V
−1
R )

∂vec(VR)

∂vec(V )′
− (γ′g̃ ⊗Hg̃X

′

g̃V
−1
R )

∂vec(Xg̃)

∂vec(V )′

and

(µ′

RV
−1
R ⊗Hg̃)

∂vec(X ′

g̃)

∂vec(V )′
= (Hg̃ ⊗ µ′

RV
−1
R )

∂vec(Xg̃)

∂vec(V )′

(µ′

R ⊗Hg̃X
′

g̃)
∂vec(V −1

R )

∂vec(V )′
= −(µ′

RV
−1
R ⊗Hg̃X

′

g̃V
−1
R )

∂vec(VR)

∂vec(V )′

Combining the pieces above, with eg̃ = µR −Xg̃γg̃:

∂γg̃

∂vec(V )′
= (Hg̃ ⊗ e′g̃V

−1
R )

∂vec(Xg̃)

∂vec(V )′
− (γ′g̃ ⊗Hg̃X

′

g̃V
−1
R )

∂vec(Xg̃)

∂vec(V )′
− (e′g̃V

−1
R ⊗Hg̃X

′

g̃V
−1
R )

∂vec(VR)

∂vec(V )′

Compared to the case W = V −1
R is given, the difference is that we have the third term.

−(e′g̃V
−1
R ⊗ Ag̃)

∂vec(VR)

∂vec(V )′
= −[0′K+L, e

′

g̃V
−1
R ]⊗ [0(K+1)×(K+L), Ag̃]

This further induces the extra term −(γg̃,t − γg̃)ug̃,t for hˆ̃g,t:

− [0′K+L, e
′

g̃V
−1
R ]⊗ [0(K+1)×(K+L), Ag̃]vec((Yt − µ)(Yt − µ)′ − V )

=− [0(K+1)×(K+L), Ag̃]((Yt − µ)(Yt − µ)′ − V )

(
0K+L

V −1
R eg̃

)

=− Ag̃[(Rt − µR)(Rt − µR)
′ − VR]V

−1
R eg̃

=− (γg̃,t − γg̃)ug̃,t
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For
∂vec(Xg̃)

∂vec(V )′
, we derive

∂vec(βg̃)

∂vec(V )′
first:

∂vec(βg̃)

∂vec(V )′
=[0K×K, V

−1
g̃ VfrV

−1
r , 0K×N ]⊗ [−βg̃, 0N×L, IN ]

+[V −1
g̃ ,−V −1

g̃ VfrV
−1
r , 0K×N ]⊗ [0N×K , VRrV

−1
r − βg̃VfrV

−1
r , 0N×N ]

∂vec(Xg̃)

∂vec(V )′
=
∂vec(Xg̃)

∂vec(βg̃)′
∂vec(βg̃)

∂vec(V )′

= ([0K , IK ]
′ ⊗ IN )

∂vec(βg̃)

∂vec(V )′

= [0K , IK ]
′[0K×K, V

−1
g̃ VfrV

−1
r , 0K×N ]⊗ [−βg̃, 0N×L, IN ]

+ [0K , IK ]
′[V −1

g̃ ,−V −1
g̃ VfrV

−1
r , 0K×N ]⊗ [0N×K , VRrV

−1
r − βg̃VfrV

−1
r , 0N×N ]

Consequently:

(Hg̃ ⊗ e′g̃W )
∂vec(Xg̃)

∂vec(V )′
= Hg̃[0K , IK ]

′[0K×K , V
−1
g̃ VfrV

−1
r , 0K×N ]⊗ [0′K , 0

′

L, e
′

g̃W ]

+Hg̃[0K , IK ]
′[V −1

g̃ ,−V −1
g̃ VfrV

−1
r , 0K×N ]⊗ [0′K , e

′

g̃WVRrV
−1
r , 0′N ]

and

Hg̃[0K , IK ]
′[0K×K , V

−1
g̃ VfrV

−1
r , 0K×N ]⊗ [0′K , 0

′

L, e
′

g̃W ]vec((Yt − µ)(Yt − µ)′ − V )

=vec(e′g̃W (Rt − µR)(rt − µr)
′ − VRr)V

−1
r VrfV

−1
g̃ [0K , IK ]Hg̃)

=Hg̃[0K , IK ]
′V −1
g̃ (g̃t − µg̃)ug̃,t

=Hg̃zg̃,t

Hg̃[0K , IK ]
′[V −1

g̃ ,−V −1
g̃ VfrV

−1
r , 0K×N ]⊗ [0′K , e

′

g̃WVRrV
−1
r , 0′N ]vec((Yt − µ)(Yt − µ)′ − V )

=vec(e′g̃WVRrV
−1
r ((rt − µr)(ft − µf)

′ − Vrf)V
−1
g̃ [0K , IK ]Hg̃

− e′g̃WVRrV
−1
r ((rt − µr)(rt − µr)

′ − Vr)V
−1
r VrfV

−1
g̃ [0K , IK ]Hg̃)

=vec(e′g̃WVRrV
−1
r (rt − µr)η̃

′

tV
−1
g̃ [0K , IK ]Hg̃)

=Hg̃

[
0

V −1
g̃ η̃t

]
(rt − µr)

′V −1
r VrRWeg̃

In addition:

− (γ′g̃ ⊗ Ag̃)
∂vec(Xg̃)

∂vec(V )′

=[0′K , r
′

g̃1V
−1
g̃ VfrV

−1
r , 0′N ]⊗ [Ag̃βg̃, 0(K+1)×L,−Ag̃]

+ [r′g̃1V
−1
g̃ ,−r′g̃1V −1

g̃ VfrV
−1
r , 0′N ]⊗ [0(K+1)×K , Ag̃βg̃VfrV

−1
r − Ag̃VRrV

−1
r , 0(K+1)×N ]
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and

[0′K , r
′

g̃1V
−1
g̃ VfrV

−1
r , 0′N ]⊗ [Ag̃βg̃, 0(K+1)×L,−Ag̃]vec((Yt − µ)(Yt − µ)′ − V )

=− Ag̃((Rt − µR)(rt − µr)
′ − VRr)V

−1
r VrfV

−1
g̃ rg̃1

+ Ag̃βg̃((ft − µf)(rt − µr)
′ − Vfr)V

−1
r VrfV

−1
g̃ rg̃1

=− (γg̃,t − γg̃)wg̃,t + Ag̃βg̃(ft − µf)wg̃,t

[r′g̃1V
−1
g̃ ,−r′g̃1V −1

g̃ VfrV
−1
r , 0′N ]⊗ [0(K+1)×K , Ag̃βg̃VfrV

−1
r − Ag̃VRrV

−1
r , 0(K+1)×N ]

vec((Yt − µ)(Yt − µ)′ − V )

=(Ag̃βg̃VfrV
−1
r − Ag̃VRrV

−1
r )((rt − µr)(ft − µf)

′ − Vrf)V
−1
g̃ rg̃1

− (Ag̃βg̃VfrV
−1
r −Ag̃VRrV

−1
r )((rt − µr)(rt − µr)

′ − Vr)V
−1
r VrfV

−1
g̃ rg̃1

=Ag̃βg̃(g̃t − µg̃)η̃
′

tV
−1
g̃ rg̃1 −Ag̃VRrV

−1
r (rt − µr)η̃

′

tV
−1
g̃ rg̃1

We derive hˆ̃g,t as follows.

hˆ̃g,t =
∂γg̃

∂ψ′
ζt

=
(

0(K+1)×(K+L) Ag̃
∂γg̃

∂vec(V )′

)(
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

)

= Ag̃(Rt − µR) +
∂γg̃

∂vec(V )′
vec((Yt − µ)(Yt − µ)′ − V )

By plugging in the pieces for
∂γg̃

∂vec(V )′
above (i.e., (Hg̃⊗e′g̃V −1

R )
∂vec(Xg̃)

∂vec(V )′
, −(γ′g̃⊗Ag̃)

∂vec(Xg̃)

∂vec(V )′
,

−(e′g̃V
−1
R ⊗Ag̃)

∂vec(VR)
∂vec(V )′

), we end up with

hˆ̃g,t

=(γg̃,t − γg̃) +Hg̃zg̃,t +Hg̃

[
0

V −1
g̃ η̃t

]
(rt − µr)

′V −1
r VrRWeg̃ − (γg̃,t − γg̃)ug̃,t − (γg̃,t − γg̃)wg̃,t

+ Ag̃βg̃(ft − µf)wg̃,t + Ag̃βg̃(g̃t − µg̃)η̃
′

tV
−1
g̃ rg̃1 − Ag̃VRrV

−1
r (rt − µr)η̃

′

tV
−1
g̃ rg̃1

=(γg̃,t − γg̃)− (φg̃,t − φg̃)wg̃,t +Hg̃zg̃,t − (γg̃,t − γg̃)ug̃,t + δ̃t

where δ̃t is defined as

Hg̃

[
0

V −1
g̃ η̃t

]
(rt−µr)′V −1

r VrRWeg̃+

[
0
η̃t

]
wg̃,t+{

[
0

g̃t − µg̃

]
−Ag̃VRrV −1

r (rt−µr)}r′g̃1V −1
g̃ η̃t.
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H: Factors and Mimicking Portfolios in CSR

Consider
f ct = [f ′

1t, g
′

2t]
′

where f1t is the K1 × 1 vector of factors with K1 ≤ K, g2t is the (K − K1) × 1 vector of
mimicking portfolios, with ft = [f ′

1t, f
′

2t]
′, gt = [g′1t, g

′

2t]
′.

Note that if K1 = K, then f ct reduces to ft; in contrast, if K1 = 0, then f ct reduces to gt.
In general, f ct consists of factors as well as mimicking portfolios.

As in the main text, we consider mimicking portfolios resulting from the time series
regression approach, i.e., g2t = Vf2RV

−1
R Rt, where Vf2R denotes the covariance of f2t and Rt.

In addition, since estimation error of mimicking portfolios is not necessarily negligible, we
focus on the feasible version of f ct , denote by

f̂ ct = [f ′

1t, (V̂f2RV̂
−1
R Rt)

′]′

The theorem below provides the asymptotic distribution of the risk premium estimator,
when f̂ ct is used in CSR.

Theorem 5. Let β̂c ≡ V̂Rf V̂
−1
fc , X̂c ≡ [1N , β̂

c], W is a positive definite weighting matrix. If

W is known, the asymptotic distribution of γ̂c = (X̂c′WX̂c)−1X̂c′Wµ̂R is given by:

√
T (γ̂c − γc)

A∼ N(0, Vγ̂c)

where Vγ̂c =
∑

∞

j=−∞
E[hcth

c′

t+j ] with

hct =

[
1 0′K
0K VfcV

−1
f

]
ht +

[
0

[(Vf − Vfc)V
−1
f (ft − µf)(ft − µf)

′ + Sηtη
′

tS − ηtη
′

t]V
−1
f γ1

]

and ht is provided in (7), Vfc =

[
Vf1 Vf1RV

−1
R VRf2

Vf2RV
−1
R VRf1 Vf2RV

−1
R VRf2

]
, γc =

[
1 0′K
0K VfcV

−1
f

]
γ,

S =

[
IK1

0K1×(K−K1)

0(K−K1)×K1
0(K−K1)×(K−K1)

]
. Similarly, the asymptotic distribution result above

holds for γ̂c = (X̂c′V̂ −1
R X̂c)−1X̂c′V̂ −1

R µ̂R, with ht in (8).

When f̂ ct only contains factors (i.e., K1 = K), it is easy to see that hct reduces to ht,
so Theorem 5 coincides with Theorem 1. In contrast, when f̂ ct only contains mimicking
portfolios constructed by the time series regression approach (i.e., K1 = 0), Theorem 5
coincides with Theorem 2.

If traded factors denoted by the K1 × 1 vector g1t are simultaneously used with the
(K − K1) × 1 vector of mimicking portfolios ĝ2,t = V̂f2RV̂

−1
R Rt in CSR, the asymptotic

distribution of the risk premium estimator is similarly provided by Theorem 5, if we replace
the objects corresponding to f1t with the counterparts resulting from g1t.
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Table 1: Standard Errors of Risk Premia - OLS

Panel A: Correct specification

Model M -W

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.0674 0.0495 0.0631 0.0313 0.0248 0.0316

2 0.0222 0.0151 0.0200 0.0103 0.0075 0.0100
3 0.0043 0.0031 0.0039 0.0020 0.0016 0.0020

Model M -S

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.8483 0.9001 0.9015 0.4391 0.4502 0.4509

2 0.2666 0.2627 0.2629 0.1283 0.1314 0.1315
3 0.2387 0.2355 0.2359 0.1199 0.1177 0.1179

Panel B: Mis-specification

Model M -W

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.0712 0.0511 0.0675 0.0338 0.0255 0.0337

2 0.0262 0.0165 0.0239 0.0123 0.0083 0.0119
3 0.0046 0.0032 0.0044 0.0022 0.0016 0.0022

Model M -S

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 1.0994 1.1830 1.1882 0.5835 0.5909 0.5935

2 0.2669 0.2629 0.2631 0.1283 0.1315 0.1316
3 0.2400 0.2366 0.2371 0.1201 0.1183 0.1185

Note: Model M -W uses mimicking portfolios from three weak factors, while Model M -S uses mimicking
portfolios from three strong factors. var(γ̂ĝ)

1/2 stands for the standard error of the risk premium estimator
obtained by Monte Carlo replications; v̂ar(γ̂ĝ)

1/2 stands for the standard error of the risk premium
estimator by the asymptotic theory: under hg,t, the estimation error of mimicking portfolios is ignored;
under hĝ,t, the estimation error is accounted for. The reported numbers result from 2000 replications.
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Table 2: Standard Errors of Risk Premia - GLS

Panel A: Correct specification

Model M -W

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.0343 0.0315 0.0330 0.0168 0.0158 0.0165

2 0.0122 0.0104 0.0111 0.0057 0.0052 0.0055
3 0.0021 0.0020 0.0020 0.0010 0.0010 0.0010

Model M -S

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.6183 0.6377 0.6380 0.3182 0.3188 0.3189

2 0.2588 0.2597 0.2598 0.1267 0.1299 0.1300
3 0.2296 0.2307 0.2309 0.1178 0.1153 0.1154

Panel B: Mis-specification

Model M -W

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.0520 0.0396 0.0552 0.0269 0.0198 0.0276

2 0.0184 0.0126 0.0184 0.0092 0.0063 0.0092
3 0.0030 0.0024 0.0032 0.0016 0.0012 0.0016

Model M -S

T = 500 T = 2000

var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2 var(γ̂ĝ)
1/2 v̂ar(γ̂ĝ)

1/2

hg,t hĝ,t hg,t hĝ,t
Factor 1 0.8880 0.9643 0.9678 0.4783 0.4815 0.4832

2 0.2992 0.3051 0.3056 0.1486 0.1525 0.1528
3 0.2722 0.2717 0.2726 0.1344 0.1358 0.1363

Note: Model M -W uses mimicking portfolios from three weak factors, while Model M -S uses mimicking
portfolios from three strong factors. var(γ̂ĝ)

1/2 stands for the standard error of the risk premium estimator
obtained by Monte Carlo replications; v̂ar(γ̂ĝ)

1/2 stands for the standard error of the risk premium
estimator by the asymptotic theory: under hg,t, the estimation error of mimicking portfolios is ignored;
under hĝ,t, the estimation error is accounted for. The reported numbers result from 2000 replications.
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Table 3: Estimation of Risk Premia in CSR with Mimicking Portfolios - OLS

Model Const. △INres △IRes Const. Hholds Nfinco F inan Const. Lev

risk premium 0.8155 0.0029 0.0091 0.7459 0.0094 0.0077 0.0004 0.6856 3.0366

standard error

FM 0.7348 0.0023 0.0036 0.7596 0.0032 0.0053 0.0025 1.0106 0.9758
Shanken 0.7975 0.0025 0.0038 0.8522 0.0035 0.0057 0.0028 1.1129 1.0452

JW 0.8411 0.0028 0.0040 0.8904 0.0038 0.0064 0.0031 1.1995 1.0067
KRS 0.8828 0.0023 0.0044 0.9552 0.0045 0.0060 0.0044 1.2135 1.0426

EIW(c) 1.1237 0.0028 0.0052 1.2294 0.0048 0.0070 0.0034 1.7071 1.3196
EIW(m) 1.1243 0.0035 0.0056 1.3399 0.0067 0.0098 0.0085 1.7160 1.3097

t-ratio

FM 1.11 1.27 2.53 0.98 2.96 1.46 0.15 0.68 3.11
Shanken 1.02 1.19 2.39 0.88 2.71 1.34 0.14 0.62 2.91

JW 0.97 1.04 2.26 0.84 2.50 1.20 0.12 0.57 3.02
KRS 0.92 1.26 2.09 0.78 2.09 1.28 0.09 0.56 2.91

EIW(c) 0.73 1.04 1.74 0.61 1.95 1.10 0.11 0.40 2.30
EIW(m) 0.73 0.85 1.62 0.56 1.41 0.78 0.04 0.40 2.32

Note: The test assets are the 25 Fama-French size and book-to-market sorted portfolios and the
sample period covers 1973Q1-2009Q4. The three models are adopted from Cochrane (1996),
Li et al. (2006), and Muir et al. (2013), respectively. Estimates of risk premium are calculated by
OLS in the Fama and MacBeth (1973) two-pass procedure using mimicking portfolios. Six types
of standard errors (and thus six t-ratios) of risk premia are provided: FM-Fama and MacBeth
(1973), Shanken-Shanken (1992), JW-Jagannathan and Wang (1998), KRS-Kan et al. (2013) and
our proposed EIW (errors-in-weights) standard error. EIW(c) assumes correct model
specification, while EIW (m) allows for model misspecification.
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Table 4: Estimation of Risk Premia in CSR with Mimicking Portfolios - GLS

Model Const. △INres △IRes Const. Hholds Nfinco F inan Const. Lev

risk premium 1.7012 −0.0017 0.0029 1.7563 0.0025 0.0018 −0.0032 1.9723 0.8374

standard error

FM 0.5338 0.0009 0.0020 0.5299 0.0017 0.0027 0.0014 0.5225 0.5875
Shanken 0.5486 0.0009 0.0020 0.5469 0.0017 0.0027 0.0014 0.5267 0.5883

JW 0.5498 0.0009 0.0020 0.5325 0.0017 0.0027 0.0014 0.5244 0.5832
KRS 0.6113 0.0009 0.0021 0.5990 0.0017 0.0027 0.0014 0.5933 0.5960

EIW(c) 0.6013 0.0011 0.0023 0.5514 0.0019 0.0027 0.0015 0.5413 0.5786
EIW(m) 0.7304 0.0018 0.0038 0.6646 0.0032 0.0045 0.0026 0.6842 1.1483

t-ratio

FM 3.19 −1.79 1.46 3.31 1.47 0.66 −2.38 3.77 1.43
Shanken 3.10 −1.79 1.46 3.21 1.46 0.66 −2.37 3.74 1.42

JW 3.09 −1.79 1.47 3.30 1.47 0.66 −2.39 3.76 1.44
KRS 2.78 −1.80 1.44 2.93 1.44 0.66 −2.39 3.32 1.41

EIW(c) 2.83 −1.55 1.27 3.19 1.29 0.67 −2.18 3.64 1.45
EIW(m) 2.33 −0.95 0.77 2.64 0.78 0.40 −1.27 2.88 0.73

Note: The test assets are the 25 Fama-French size and book-to-market sorted portfolios and the
sample period covers 1973Q1-2009Q4. The three models are adopted from Cochrane (1996),
Li et al. (2006), and Muir et al. (2013), respectively. Estimates of risk premium are calculated by
GLS in the Fama and MacBeth (1973) two-pass procedure using mimicking portfolios. Six types
of standard errors (and thus six t-ratios) of risk premia are provided: FM-Fama and MacBeth
(1973), Shanken-Shanken (1992), JW-Jagannathan and Wang (1998), KRS-Kan et al. (2013) and
our proposed EIW (errors-in-weights) standard error. EIW(c) assumes correct model
specification, while EIW (m) allows for model misspecification.
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