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1 Introduction

It is well known that volatility is time-varying, mean-reverting, and clustering. However,

the 2008 global financial crisis and the recent European debt crisis in 2010-2012 reminds

us of the importance to better understand the behavior of equity volatility during stressed

times. Recent empirical studies find that a big jump in asset prices tends to be associ-

ated with an abrupt move in asset volatility, indicating co-jumps of prices and volatility

(Eraker, Johannes, and Polson, 2003; Eraker, 2004; Jacod and Todorov, 2010; Todorov

and Tauchen, 2011). It is also found that an extreme movement in markets tends to be

followed by another extreme movement, resulting in self-exciting jump clustering (Carr

and Wu, 2011; Äıt-Sahalia, Cacho-Diaz, and Laeven, 2013; Fulop, Li, and Yu, 2014).1

Furthermore, the literature documents that affine processes for volatility are misspeci-

fied (Jones, 2003; Ait-Sahalia and Kimmel, 2007; Christoffersen, Jacobs, and Mimouni,

2010).2

To accomodate these stylized facts, empirical researchers are resorting to ever richer

frameworks for equity and volatility dynamics. At the same time, the development of

derivatives markets provide us with rich information on volatility dynamics, which is

very helpful to identify the parameters of such complex models. However, while rich

model structure and introduction of derivatives data are useful, they also make model

estimation a non-trivial undertaking, as one needs to simultaneously deal with multiple

dynamic latent states following complex non-Gaussian processes and the fixed parameters

1Carr and Wu (2011) investigate a model in which diffusion volatility follows a square-root process
and the jump intensity is self-exciting using both the underlying stock prices and options. They find
strong evidence of the self-excitation. Ait-Sahalia, Cacho-Diaz, and Laeven (2013) propose a model
that allows for the jump intensity following a Hawkes process while the diffusion volatility following a
square-root process using the stock price data alone. They also find evidence of self-excitation. Fulop,
Li, and Yu (2014) allow for jumps in diffusion volatility and self-excitation in the jump intensity. Using
the stock price data alone, they find that the evidence of co-jumps of prices and volatility is quite robust.
However, even though the data call for the self-exciting jump intensity, the self-exciting parameters are
still hard to be pinned down.

2Jones (2003) investigates a constant elasticity of variance (CEV) model and find that the non-affine
CEV model is favorable over the Heston stochastic volatility model. Ait-Sahalia and Kimmel (2007)
find that the Heston model is misspecified, but the nature of the misspecification and the empirical
findings are different from those found in Jones (2003). Christoffersen, Jacobs, and Mimouni (2010)
provide a comprehensive investigation of alternatives to the Hestion model, by comparing its empirical
performance with that of five different but equally parsimonious stochastic volatility models. They find
that the best volatility specification is one with linear rather than square root diffusion for variance.
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driving the dynamics and embedded in the nonlinear pricing functions linking the latent

states to the observed asset prices.

In this paper, we take a parametric Bayesian approach to the problem. Our purpose is

two-fold. First, we propose a feasible way to estimate a rich dynamic asset pricing model,

which allows for co-jumps of prices and volatility, self-exciting jump clustering, and non-

affine volatility. Second, we investigate new features of volatility dynamics and variance

risk premia. The specification is quite general and includes many models used in literature

as special cases. Furthermore, it has closed-form conditional expectations of volatility

components, making it convenient to use in volatility forecasting and pricing volatility

derivatives. In a Bayesian context, Gibbs-type Markov chain Monte Carlo (MCMC)

methods have been used to estimate jump-diffusion stochastic volatility models where

the dynamic latent states and the fixed parameters are iteratively sampled assuming the

other quantity is known (Eraker, Johannes, and Polson, 2003; Eraker, 2004; Johannes and

Polson, 2009; Li, Wells, and Yu, 2008; Yu, Li, and Wells, 2011). However, such approaches

can be hard to implement when the model structure becomes complex and derivative data

are included in the dataset. First, the derivatives are very informative on the hidden states

given the parameters and vice-versa, hence introducing strong correlation in the MCMC

chain. This leads to a very slow convergence. Second, due to the complicated nonlinear

derivative pricing functions, sufficient statistics for the conditional distributions of the

parameters are hard to obtain and further the posteriors of the individual parameters can

be highly correlated. Hence, it is hard to design efficient proposal distributions for the

parameters. Particle Markov chain Monte Carlo (PMCMC) methods (Andrieu, Doucet,

and Holenstein, 2010) could partially solve the problem of high correlation. However,

they are hard to be parallelized and render very high computational cost, especially

when derivatives data are introduced. Hence, these methods are not practically feasible

for models in which we are interested in this paper.

In this paper, we propose a particle-based Bayesian method that aims to overcome

the above-mentioned issues. First, we rely on pseudo-marginalization approach (Andrieu

and Roberts, 2008; Andrieu, Doucet, and Holenstein, 2010) to break the correlation
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between the the hidden states and the fixed parameters. We marginalize out the former

using particle filters (PF) and then run a simulation routine targeting at the marginal

distribution of the fixed parameters. In our case, the key to the successful application

of such a method is the control of the estimation noise in the estimate of the likelihood

of the data given the parameters. We find that with derivatives data a particle filter

that uses the optimal proposal provides likelihood estimates that are too noisy for our

purposes. Therefore, we instead propose the use of an approximate Rao-Blackwellized

particle filter (RBPF) that aims to reduce the likelihood estimation noise. Second, to

design efficient proposals targeting at the marginal distribution of the parameters, we

employ the marginalized density-tempered sequential Monte Carlo sampler based on Del

Moral, Doucet, and Jasra (2006) and Duan and Fulop (2014). This method represents

the target with a simulated set of points and allows one to adapt the proposals to the

simulation output in an iterative manner. More importantly, it allows a massively parallel

implementation that helps to make this approach computationally feasible through the

use of graphical processing units (GPUs).

We implement extensive Monte Carlo studies to check the accuracy, efficiency, and

stability of the proposed approach. First, we show that our approximate RBPF performs

quite similar to the exact particle filter in filtering the state variables. However, the

noise of the likelihood estimate from the approximate RBPF is reduced by at least an

order of magnitude with comparison to the exact particle filter. For example, with a

small number of particles, M = 64, the standard deviation of the likelihood estimate in

the approximate RBPF is only 0.29. However, even with a large number of particles,

M = 2, 048, the standard deviation of the likelihood estimate in the exact PF is as

large as 2.9. Second, our particle-based Bayesian approach can accurately and efficiently

identify most of the model parameters as their means are quite close to the true values

and the root mean square errors (RMSEs) are small.

We estimate the model using the proposed particle-based Bayesian method on daily

S&P 500 index returns and variance swap rates with fixed maturity 1-, 6-, and 12-month

ranging from January 2, 2001 to July 15, 2013. First, an interesting question unex-
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plored so far in the literature is whether non-affineness and self-excitation are substitutes

to each other given that both are channels to allow for sudden bursts of volatility and

extreme events. To investigate this issue, we compare the full model to nested specifi-

cations where we switch down non-affineness, self-excitation or both. Extending most

of the extant literature that have used affine specifications (Carr and Wu, 2011; Fu-

lop, Li, and Yu, 2014; Andersen, Fusari, and Todorov, 2014; Li and Zinna, 2014), we

find support for self-excitation even when non-affineness is allowed for. Second, we find

that non-affine specifications decisively beat affine ones. Furthermore, we find that the

model with the CEV-type specification for diffusion volatility and jump intensity per-

forms the best. These results resoundingly reinforce what have found by Jones (2003),

Ait-Sahalia and Kimmel (2007), and Christoffersen, Jacobs, and Mimouni (2010) in our

more flexible framework. Third, an important feature of the Bayesian approach is that

we can easily quantify the statistical uncertainty about any quantity of interest, among

else the dynamic variance risk premia (VRP). The variance risk premium provides an

intuitive and straightforward measure of investors’ risk aversion (Bekaert and Hoerova,

2014). Bollerslev, Tauchen, and Zhou (2008) show that the VRP is an important factor

for short-term stock return predictability. Li and Zinna (2014) show that separate use

of the VRP components further improves the short-term predictability. We find that

investors’ risk attitude is quite different between the diffusion variance risk and jump

variance risk. The 90% credible interval is almost negative for the jump variance risk

premia, no matter whether the short maturity (1-month) or the long maturity (1-year) is

considered, whereas the upper 5% quantiles of the diffusion variance risk premia are al-

ways positive for all maturities considered. Furthermore, we find that despite our efficient

likelihood-based inference approach, the variance swap data are not enough to reliably

pin down these risk premia. Hence, either more informative priors or more derivatives

data in the form of option panels are needed to precisely estimate the jump and diffusion

risk premia.

The rest of the paper is organized as follows. Section 2 builds a parametric model that

allows for co-jumps of prices and volatility, self-excitation, and non-affineness, and dis-
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cusses pricing of variance swaps. Section 3 presents our particle-based Bayesian method

and implement Monte Carlo studies. Section 4 implements model estimation using the

real data on S&P 500 index returns and variance swap rates, and investigates the volatility

dynamics and variance risk premia. Finally, Section 5 concludes the paper.

2 Model Setup

2.1 Stock Price and Volatility Dynamics

Under a given probability space (Ω,F, P ) and the complete filtration {Ft}t≥0, the stock

price, St, is modeled as follows

dSt/St = µtdt+
√

VtdWt +

∫

R

(ex − 1)π̃(dx, dt), (1)

where µt is the instanteneous mean rate, Wt is a standard Brownian motion, Vt captures

instantaneous diffusion variance, and the last term accounts for any price jumps with the

return jump size, x, defined in the real line, R, through a compensated jump measure,

π̃(dx, dt) = π(dx, dt) − νt(dx)dt, in which π(dx, dt) is a random counting measure and

νtdt its compensator.

Equation (1) indicates that the stock price change consists of two orthogonal mar-

tingales: a purely continuous component and a purely discontinuous jump component.

The jump component is important for generating the return non-normality and captur-

ing short-maturity implied volatility smile/skew. We assume that the jump compensator

takes the form of νt(x) =
λt√
2πσJ

exp{− (x−µJ )
2

2σ2
J

}, indicating that the jump component fol-

lows a Compound Poisson process, where the number of jumps, Nt, arriving at any time

interval, t, follows a Poisson process with the intensity λt, and the jump size, Xt, is

identically and independently normally distributed with mean µJ and variance σ2
J , i.e.,

Xt ∼ N(µJ , σ
2
J).

Moreover, we propose to model the instantaneous diffusion variance, Vt, and the jump
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intensity, λt, as follows,

dVt = κv(θv − Vt)dt+ σvV
ξ1/2
t dZv,t + dJv,t, (2)

dλt = κλ(θλ − λt)dt+ σλλ
ξ2/2
t dZλ,t + βdNt. (3)

Equation (2) indicates that the diffusion variance follows a mean-reversion jump diffusion

process, where Zv,t is a standard Brownian motion and is allowed to be correlated with

Wt in Equation (1), E[dWt, dZ
v
t ] = ρdt, to accommodate the diffusion leverage effect,

and Jv,t is a compound Poisson process whose Lévy density is given by νv,t(x) = λt
e−x/µv

µv
,

indicating that the diffusion volatility jumps at the same time as stock returns with the

same jump intensity, λt, and its jump size is independently exponentially distributed with

mean µv. The jump intensity, λt, follows a self-exciting process, as indicated in Equation

(3), where Zλ,t is an independent standard Brownian motion, and Nt is the same Poisson

process as in the stock price jump and the diffusion volatility jump.

The above model (hereafter Model I) has some new features and can accommodate

recently observed empirical facts of stock return volatility:

• Co-jumps of stock prices and volatility: Recent empirical studies find that a big

jump, especially a big negative jump, in stock prices, tends to be associated with

an abrupt move in variance (Eraker, Johaness, and Polson, 2003; Eraker, 2004;

Jacod and Todorov, 2010; Todorov and Tauchen, 2011).

• Self-exciting jump clustering: A further intriguing empirical observation is that

market turmoils seem to tell that an extreme movement in markets tends to be

followed by another extreme movement (Carr and Wu, 2011; Ait-Sahalia, Cacho-

Diaz, and Laeven, 2014; Fulop, Li, and Yu, 2014).

• Non-affineness: Jones (2003), Ait-Sahalia and Kimmel (2007), and Christoffersen,

Jacobs, and Mimouni (2010) argue that the affine volatility models are misspecified.

The model has analytical conditional expectations of the variance components. The
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conditional expectation of the jump intensity (3) can be found as follows

E[λt|F0] = e−(κλ−β)tλ0 + (1− e−(κλ−β)t)
κλθλ
κλ − β

, (4)

from which its long-run mean can be obtained by letting t → +∞,

λ̄ =
κλθλ
κλ − β

. (5)

Solutions (4) and (5) indicate that the conditional expectation of the jump intensity

is a weighted average between the current intensity, λ0, and its long-run mean, λ̄, and

the speed of mean-reversion is controlled by κλ − β. Using (4) and (5), the conditional

expectation of diffusion variance (2) can also be found

E[Vt|F0] = e−κvtV0 + (1− e−κvt)θv + µv

[1− e−κvt

κv
λ̄+

e−(κλ−β)t − e−κvt

κλ − β − κv
(λ̄− λ0)

]

, (6)

and its long-run mean is given by

V̄ = θv +
µv

κv
λ̄. (7)

The conditional expectation of the diffusion variance consists of two parts, one arising

from the continuous part (the first two terms on the right-hand side in (6)) and the other

from the jump component (the last term on the right-hand side in (6)).

The central questions we are concerned about in the present paper are the dynamic

structures of jumps in stock returns and volatility. In order to explore these issues, we

also investigate the following restricted models:

• Model II: both the diffusion variance and the jump intensity follow non-affine spec-

ifications, but there is no self-exciting effect, i.e., β = 0.

• Model III: both the diffusion variance and the jump intensity follow affine specifi-

cations, and there is a self-exciting effect, i.e., ξ1 = ξ2 = 1.

• Model IV: both the diffusion variance and the jump intensity follow affine specifi-
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cations, and there is no self-exciting effect, i.e., ξ1 = ξ2 = 1, and β = 0.

2.2 Pricing Kernel and Variance Swap Valuation

A variance swap is a type of derivative that allows investors to trade variance as an asset

class. At maturity, one leg of the swap pays an amount based upon realised variance

(RV), and the other leg pays a fixed amount, which is called the variance swap rate,

quoted at the inception. This contract has zero market value at entry and the payoff at

maturity of the long position is equal to the difference between realized variance and the

variance swap rate. Therefore, under the no-arbitrage condition, the variance swap rate

should be the expected value of realized variance under the risk-neutral measure Q,

V St,T =
1

T − t
EQ[RVt,T |Ft]. (8)

The no-arbitrage condition indicates that there exists at least one almost surely pos-

itive process, Mt, with M0 = 1, such that the discounted gains process associated with

any admissible trading strategy is a martingale (Harrison and Kreps, 1979). Mt, which

is assumed to be a semimartingale, is the so-called stochastic discount factor, or the

pricing kernel. If the market is complete, Mt is unique, otherwise there may exist many

different pricing kernels. Following Pan (2002), Eraker (2004), and Broadie, Chernov,

and Johannes (2007), we employ a class of models for the stochastic discount factor, Mt,

such that the change-of-measure does not alter the model structure. Specifically,

Mt = exp
(

−
∫ t

0

rsds
)

E

(

−
∫ t

0

γW (s)dWs

)

E

(

−
∫ t

0

γv(s)dZv,s

)

E

(

−
∫ t

0

γλ(s)dZλ,s

)

Nt
∏

j=1

exp

{

µ2
J − (µQ

J )
2

2σ2
J

+
µQ
J − µJ

σ2
J

Js,j +
µQ
v − µv

µvµ
Q
v

Jv,j

}

, (9)

where rt is the risk-free rate of interest, and E(·) denotes the stochastic (Doleans-Dade)

exponential operator. The prices for diffusive risks, Zv,t and Zλ,t, are assumed to take

the forms of γv(t) = γvV
1−ξ1/2
t and γλ(t) = γλλ

1−ξ2/2
t , respectively, where γv and γλ

are constants. For the jump components, the above change of measure indicates that
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νQ
t (dx) = λt√

2πσJ
exp{− (x−µQ

J )2

2σ2
J

} and νQ
v,t(x) = λt

e−x/µ
Q
v

µQ
v

. In contrast, we leave γW (t)

unspecified as our main purpose in this paper is to investigate volatility dynamics and

variance risk premium. We therefore have the following risk-neutral model,

dSt/St = rtdt+
√

VtdW
Q
t +

∫

R

(ex − 1)π̃Q(dx, dt), (10)

dVt = κQ
v (θ

Q
v − Vt)dt+ σvV

ξ1/2
t dZQ

v,t + dJQ
v,t, (11)

dλt = κQ
λ (θ

Q
λ − λt)dt+ σλV

ξ2/2
t dZQ

λ,t + βdNt, (12)

where κQ
v = κv + σvγv, θ

Q
v = κvθv/κ

Q
v , κ

Q
λ = κλ + σλγλ, and θQλ = κλθλ/κ

Q
λ . The risk-

neutral model has exactly the same structure as the objective one. We therefore can

also obtain conditional expectations of Vt and λt in closed form similar to equations (6)

and (4) under the risk-neutral measure. In particular, their risk-neutral long-run means

become

V̄ Q = θQv +
µQ
v

κQ
v

λ̄Q, λ̄Q =
κQ
λ θ

Q
λ

κQ
λ − β

. (13)

The above risk-neutral model implies that realized variance, which can be approxi-

mated by quadratic variation, can be obtained as follows

RVt,T
.
= QVt,T =

∫ T

t

Vsds+

∫ T

t

∫

R

x2π(ds, dx)

=

∫ T

t

Vsds+

∫ T

t

∫

R

x2νQ(dx)ds+

∫ T

t

∫

R

x2π̃Q(ds, dx). (14)

Taking expectation to equation (14) under the risk-neutral measure Q and plugging

it into equation (8), we have the following variance swap pricing formula,

V St,T =
1

T − t

∫ T

t

EQ[Vs|Ft]ds+
1

T − t

(

(µQ
J )

2 + σ2
J

)

∫ T

t

EQ[λs|Ft]ds. (15)

Similar to (6) and (4), the risk-neutral specifications of diffusion variance and the jump

arrival rate result in the tractable conditional expectations of EQ[Vs|Ft] and EQ[λs|Ft].
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We therefore have the following variance swap pricing formula:3

V St,T = A(τ) +B(τ)Vt + C(τ)λt, (16)

where τ = T − t, A(τ) = A1(τ) + A2(τ) + A3(τ), C(τ) = C1(τ) + C2(τ), and

A1(τ) =
(

1− B(τ)
)

θQv , A2(τ) =
(

(µQ
J )

2 + σ2
J

)(

1−H(τ)
)

λ̄Q,

A3(τ) = µQ
v

[

1−B(τ)

κQ
v

+
H(τ)− B(τ)

κQ
λ − β − κQ

v

]

λ̄Q,

C1(τ) = −µQ
v

H(τ)−B(τ)

κQ
λ − β − κQ

v

, C2(τ) =
(

(µQ
J )

2 + σ2
J

)

H(τ),

B(τ) =
1− e−κQ

v τ

κQ
v τ

, H(τ) =
1− e−(κQ

λ −β)τ

(κQ
λ − β)τ

.

3 A Particle-based Bayesian Method

Our model can be cast into a state-space model framework. After discretizing the re-

turn process for a small time interval τ using the Euler method, we have the following

observation equation for stock prices

lnSt = lnSt−1 +
(

µ− 1

2
Vt−1 − k(1)λt−1

)

τ +Xt∆Nt +
√

τVt−1wt (17)

where k(1) = eµJ+σ2
J/2 − 1 is the convexity adjustment for the jump component, wt is a

standard normal noise, andXt is the return jump size, which follows a normal distribution

with mean µJ and variance σ2
J . According to the existing literature, we approximate

the increment in the jump counter by a Bernoulli variable, i.e., ∆Nt ≡ Nt − Nt−1 ∼

Bernoulli(λt−1τ).

The variance swap rates also enter into the observation equations. By assuming

3Following Britten-Jones and Neuberger (2000), Jiang and Tian (2005), and Carr and Wu (2009), the
value of the variance swap can be synthesized from options as follows, 2

T−t

∑

i e
r(T−t) ∆Ki

K2

i

O(Ki, T − t),

where O(Ki, T − t) is an out-of-the-money put or call S&P 500 index option price with time to maturity
T − t and strike Ki. As shown in Carr and Wu (2009), when the underlying price contains jumps, this
replication does not hold exactly. However, based on their numerical experiments, they conclude that
the error is negligible.
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that the variance swap rates are collected with measurement errors, we have additional

observation equations

lnV SO
t,T = lnV SM

t,T + ǫt, (18)

where V SO
t,T is the market observed variance swap rate at time t with maturity T , and

V SM
t,T is the corresponding rate computed using the formula (16). The measurement

errors, ǫt, are assumed to be i.i.d normal with a mean vector of zero and a variance-

covariance matrix of σ2
ǫ In, where In is an n × n identity matrix and n is the number of

maturities. σǫ provides a measure of the degree of mispricing of variane swaps.

We have two state variables, which are the diffusion variance, Vt, and the jump inten-

sity, λt. The discretized state equations are

Vt = Vt−1 + κv(θv − Vt−1)τ + σvV
ξ1/2
t−1

√
τzv,t +Xv,t∆Nt, (19)

λt = λt−1 + κλ(θλ − λt−1)τ + σλλ
ξ2/2
t−1

√
τzλ,t + β∆Nt, (20)

where zv,t is a standard normal noise, which is correlated to wt in the return process

(17) with a correlation parameter ρ, Xv,t is the diffusion variance jump size, which is

exponentially distributed with mean parameter µv, and zλ,t is an independent standard

normal noise.

Denote the set of model parameters as Θ, and all observations and the latent states

up to time t as y1:t = {lnSs, lnV Ss}ts=1, and x1:t = {Vs, λs,∆Nt, Jv,t}ts=1, respectively.

Our aim is to find the joint posterior distribution of the parameters and the latent states,

p(Θ, x1:T |y1:T ), which can be decomposed into

p(Θ, x1:T |y1:T ) = p(x1:T |Θ, y1:T )p(Θ|y1:T ), (21)

where p(x1:T |Θ, y1:T ) solves the state filtering issue, and p(Θ|y1:T ) addresses the parameter

inference problem.

Bayesian Markov chain Monte Carlo (MCMC) methods could be used to estimate

the above joint posterior distributions (Eraker, Johannes, and Polson, 2003; Eraker,
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2004; Johannes and Polson, 2009; Li, Wells, and Yu, 2008; Yu, Li, and Wells, 2011).

Typically, these algorithms use Gibbs sampling to move the latent states conditionally on

the fixed parameters and vice-versa. While derivatives data are informative on the latent

states, they pose problems to such MCMC methods. In particular, derivative observations

introduce a tight link between the dynamic states and the fixed parameters, leading to

high autocorrelation in the chain and very slow mixing. Furthermore, the variance swap

rate pricing function is a complicated non-linear function of the parameters, leading to

a loss of sufficient statiscs and extra dependence between parameters. Hence, a generic

good proposal over the parameters is hard to design.

In what follows, we come up with a particle-based Bayesian method, which aims to

solve these issues. The key to successful application of this method is the control of the

standard deviation of the likelihood estimate from a particle filter. We first propose an

efficient Rao-Blackwellized particle filter for state filtering and likelihood estimation in

Subsection 3.1. Then in Subsection 3.2, we tackle the issue of parameter estimation by

relying on a sequential Monte Carlo sampler, which allows us to use the simulation output

to adapt the proposal to our target in a principled way. Importantly, our method can be

easily parallelized, making it computationally feasible and convenient to use in practice.

3.1 A Rao-Blackwellized Particle Filter

The above state-space model is clearly non-linear and non-Gaussian. State filtering can

therefore be efficiently implemented using particle filters given the static parameters.

For notational convenience, dependence on Θ is suppressed in most of this subsection.

Particle filters are a class of recursive algorithms that can be interpreted as simulation-

based extensions of the Kalman Filter. The basic idea is to represent distributions of

all random variables with a number of particles drawn directly from the state space and

to approximate the posterior density p(xt|y1:t) with the empirical point-mass estimate

p̂(xt|y1:t)

p̂(xt|y1:t) =
M
∑

i=1

w̃
(i)
t δ

(

xt − x
(i)
t

)

(22)
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where w̃
(i)
t is the normalized importance weight for each particle, x

(i)
t is the state particle,

and δ(·) denotes the Dirac delta function.

Particle filters provide an estimate of the likelihood of the observations

p̂(y1:t|Θ) =
t

∏

l=2

p̂(yl|y1:l−1,Θ)p̂(y1|Θ), (23)

where

p̂(yl|y1:l−1,Θ) =
1

M

M
∑

i=1

w
(i)
l . (24)

Importantly, the likelihood estimate (23) approximated by particle filters is unbiased,

E[p̂(y1:t|Θ)] = p(y1:t|Θ), where the expectation is taken with respect to all the random

quantities used in particle filters (Del Moral, 2004).

The most commonly used particle filter is the bootstrap filter of Gordon, Salmond,

and Smith (1993), which simply takes the state transition law as the proposal density.

However, the bootstrap filter is known to perform poorly when the observation is in-

formative on the hidden states. Our model has this feature as derivatives contains rick

information on volatility, and when we observe a large move in asset price, the jump can

be largely pinned down by this observation. Alternatively, similar to Li (2011), we can

design a more efficient filter that take the new observations into account in the proposal

densities. However, in Monte Carlo studies below, we find that even such a particle filter

leads to a large Monte Carlo noise in the likelihood estimates, p̂(y1:T ), causing a break-

down in the parameter estimation algorithm proposed in Subsection 3.2. Hence, in order

to decrease Monte Carlo noise in the likelihood estimates, we propose an approximate

Rao-Blackwellized particle filter (RBPF) where the continuous states, zt = {Vt, λt}, are

dealt with analytically using the unscented Kalman filter (UKF) and the discrete particle

filter is used over the jump variables, ct = {∆Nt, Xv,t}.

The first fact to note is that conditional on the path of the jump variables, c1:t, the

states, zt, follow multivariate constant elasticity of variance (CEV) processes. In such

a system, the only feature that preempts the use of analytic filtering recursions is the

nonlinearity in the transition and measurement equations. However, for similar settings,
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it has been documented that in the presence of observations that are highly informative

over the states, the unscented Kalman Filter provides a very good approximation to the

true filtering densities (Li, 2013; Christoffersen et al., 2014). Given that derivatives are

highly informative on the underlying hidden states, we are in exactly such a context

and hence we use the UKF to provide us with an approximate analytic filter over zt,

conditionally on c1:t. As a result, we can use particles over a lower dimensional system,

solely tracking ct while analytically marginalizing out zt. Such a dimensional reduction

approach can lead to a substantial decrease in the Monte Carlo noise (Chopin, 2004).

Second, we approximate the volatility jumps, Xv,t, with a discrete random variable and

apply the discrete particle filter (DPF) of Fearnhead (1998) to track the resulting discrete

ct. This approach avoids sampling from ct by branching out all potential successor states

and can outperform considerably alternative Rao-Blackwellized particle filters (Fearnhead

and Clifford, 2003).4

The detailed algorithm of the proposed filter with M particles consists of the fol-

lowing steps. To simplify notation, when we write a superscript i, we always mean

i = 1, 2, . . . ,M .

Initialization . At time t = 0, set the initial discrete jump states to ci0 and the mean and

covariance matrix of (z0 | ci0) to µi
z,0 and V i

z,0, respectively, and give each set of particles

a weight wi
0 = 1/M ;

Time Recursion . For t = 1, 2, . . . , T ,

• Step 1: we make the following two approximations to our system

– Approximation 1: The jump counter depends on the filtered mean of the

jump intensity, λ̂t−1 = E(λt−1 | c0:t−1, y1:t−1), i.e., we have

∆Nt ∼ Bernoulli(λ̂t−1τ) (25)

– Approximation 2: Approximate the continuous volatility jumps ∆Jv,t with

4For previous use of the DPF in particle MCMC, see Whiteley et al. (2010, 2011)
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a discrete random variable with equal weights on K support points,

Xv,t ∈
{

ExpCDF−1
µv

( j

K + 1

)}

, j = 1, . . . , K, (26)

where ExpCDF−1
µv

denotes the inverse CDF of the exponential distribution

with mean parameter µv.

• Step 2: Now from each particle we branch out all K+1 possible successor particles,

leading to M×(K+1) particles overall. First, all successor particle inherit the past

discrete states ci,k1:t−1 = ci1:t−1 and hence the conditional moments of the continuous

states: µi,k
z,t−1 = µi

z,t−1 and V i,k
z,t−1 = V i

z,t−1. The weights and values of the new

discrete states of the successor particles are

– For k = 1: ∆N i,k
t = 0; Xk

v,t = 0; wi,k
t−1 =

1
M
(1− λ̂i

t−1τ);

– For k = 2, . . . , K+1: ∆N i,k
t = 1; Xk

v,t = ExpCDF−1
µv

( k−1
K+1

); wi,k
t−1 =

1
M×K

λ̂i
t−1τ .

• Step 3: Now we include the observations and update the continuous hidden states

using the UKF:

– Approximation 3: (yt, zt | c1:t, y1:t−1) is jointly normal and its moments are

obtained by a UKF recursion starting from µz,t−1 and Vz,t−1

This approximation allows us to update the weights to include the information in

the new observation:

wi,k
t = f(yt | ci,k1:t, y1:t−1)× wi,k

t−1 (27)

where f(yt | ci,k1:t, y1:t−1) is the marginal normal density of the new observation

implied by the UKF.

• Step 4: Approximate the likelihood of the new observation as follows

p̂(yt | y1:t−1) =
M
∑

i=1

K+1
∑

k=1

wi,k
t . (28)
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Further, the UKF also provides the updated conditional moments of the continuous

hidden states, µi,k
z,t and V i,k

z,t .

• Step 5 (Stratified Resampling): Resample M new particles out of the M ×

(K+1) proportional to normalized weights πi,k wi,k
t

p̂(yt|y1:t−1)
. This produces M equally

weighted particles, {ci1:t, µi
z,t, V

i
z,t}. Notice that to iterate the algorithm forward,

only {µi
z,t, V

i
z,t} needs to be kept in the memory.

The importance of the first approximation is to make the jump probability measurable

with respect to c0:t−1 such that zt can be marginalized out. The second approximation

allows us to work on the marginalized discrete state space over ct and to use the discrete

particle filter. Our justification for Approximation 1 is that the observations are infor-

mative about λt−1, hence using the conditional expected value may not result in serious

biases. In practice, the potential bias due to the discretization of the volatility jumps

(Approximation 2) is easy to control as we simply increase the number of discretization

points, K, in some preliminary runs until no significant change is observed in the results.

In our applications, a small K suffices.5 Last, the results in Li (2013) and Christoffersen

et al. (2014) suggest that the UKF gives a very good analytic approximation to filtering

CIR/square-root hidden states with informative observations, hence Approximation 3

seems also quite reasonable.

3.2 Parameter Inference

We now move to the parameter inference issue. According to the Bayes rule, the posterior

distribution of the model parameter is given by

p(Θ|y1:T ) ∝ p(y1:T |Θ)p(Θ), (29)

where the first term on the righ-hand side is the likelihood and the second one is simply

the prior. The decomposition suggests a hierarchical framework to the problem that

5A potential alternative to discretization would be to do stratified sampling over the continuous Jv,t.
This would likely lead to similar results but would not introduce a bias to the algorithm.
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targets at the posterior distribution of the fixed parameters—for a given set of model

parameters proposed from some proposal, we can run a particle filter, which delivers

the estimate of the likelihood, p(y1:T |Θ), and empirical distribution of the hidden states,

p(x1:T |Θ, y1:T ). This opens a way to use the pseudo-marginal approach of Andrieu and

Roberts (2008) and Andrieu, Doucet, and Holenstein (2010).

The main idea of this approach is as follows. Define an auxiliary variable ut, which

include all the random variables produced by a particle filter at time t such as the state

particles and resampling index, and denote the joint posterior distribution of auxiliary

variables and the fixed parameters, Θ, as p̃(Θ, u1:T |y1:T ). The unbiasedness property of

the likelihood estimate from a particle filter indicates that this joint posterior distribution

admits the target, p(Θ|y1:T ), as a marginal

∫

u1:T

p̃(Θ, u1:T |y1:T )du1:T = p(Θ|y1:T ). (30)

Now instead of p(Θ|y1:T ), we focus on the joint posterior distribution p̃(Θ, u1:T |y1:T ).

In a recent paper, building on the tempered sequential Monte Carlo samplers of Del Moral,

Doucet, and Jasra (2006), Duan and Fulop (2014) suggest a new sequential importance

sampling algorithm targeting at p̃(Θ, u1:T |y1:T ). The key point is to begin with an easy-

to-sample distribution and traverse through a sequence of densities to the ultimate target.

For our case, we construct a sequence of I densities between the extended prior π1(Θ, u1:T )

and the posterior πI = p̃(Θ, u1:T |y1:T ) using a tempering sequence ξi, i = 1, 2, . . . , I, for

ξ1 = 0, ξI = 1, and

πi(Θ, u1:T ) =
γi(Θ, u1:T )

Zi
, (31)

γi(Θ, u1:T ) = p̂i(y1:T |Θ)ξi p̃i(u1:T |Θ, y1:T )p(Θ), (32)

where Zi =
∫

γi(Θ, u1:T )d(Θ, u1:T ) is a normalized constant, p̂i(y1:T |Θ) is the estimated

likelihood from the particle filter, and p̃i(u1:T |Θ, y1:T ) is the empirical distribution of the

auxiliary variables.

Moving from πi(Θ, u1:T ) to πi+1(Θ, u1:T ) can be implemented by reweighting each
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parameter particle by [p̂i(y1:T |Θ(n))]ξi+1−ξi , for n = 1, . . . , N . The tempering coefficients

ξi can be chosen adaptively to ensure satisfactory particle diversity. Following Del Moral

et al. (2012), we set the value of ξi to ensure that the effective sample size (ESS) stays

close to some constant. This can be done by a simple grid search, where ESS is evaluated

at the grid points of ξi and the one with the ESS closest to this constant is chosen.

With repeatedly reweighting and resampling, the support of the parameter particles

would gradually deteriorate, leading to the well-known particle impoverishment problem.

To solve this problem, periodically boosting the support becomes a must. Del Moral et

al. (2006) suggest to first sample N points from γ1(Θ, u1:T ), which is the prior, and then

recursively sample from γi(Θ, u1:T ) by moving these points using some MCMC kernels

with the stationary distribution being γi(Θ, u1:T ). The efficiency of the move step is

measured by the acceptance rate, which captures how probable the proposed parameter

set is accepted over the current set. Readers are referred to Del Moral et al. (2006) and

Duan and Fulop (2014) for more detailed discussions.

Given that the likelihood function from the particle filter takes a complicated nonlin-

ear function of the fixed parameters in this approach, conjugate priors are not available.

Therefore, in this paper, we simply assume normal distributions for the priors, and sim-

ulation from the priors becomes straightforward. However, if a parameter under consid-

eration has a finite support, we take a truncated normal as its prior. Furthermore, we

take a normal mixture fitted on the particle population as the proposal and use the par-

ticle Marginal Metropolis-Hastings moves discussed in Andrieu, Doucet, and Holenstein

(2010). Notice that fitting the proposal distribution using the information in the target

is a key to the efficiency in our algorithm and is a key advantage of the SMC framework.

The marginal likelihood of the model can be computed as follows

p(y1:T ) =

∫

p(y1:T |Θ)p(Θ)dΘ

=

∫

p̂(y1:T )p̃(u1:T |Θ, y1:T )p(Θ)d(u1:T ,Θ)

=

I
∏

i=2

[Zi/Zi−1], (33)
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which can be used to construct the Bayes factor for model comparison. For any two

models, Mi and Mj, the Bayes factor is given by the ratio of their marginal likelihoods,

i.e.,

BFi,j =
p(y1:T |Mi)

p(y1:T |Mj)
, (34)

which, different from the standard classical tests, does not rely on asymptotic distribution

theory and provides an intuitive approach to evaluating the relative merits of competing

models. It is important to note that the Bayes factor can be used to compare both nested

and non-nested models, and furthermore it does not necessarily favor more complex

model, as it contains a penalty for using more parameters due to its marginal nature.

This algorithm basically entails running N particle filters in parallel, each with M

particles. It can be shown that the algorithm provides consistent inference to the extended

target p̃(Θ, u1:T |y1:T ) as N goes to infinity (Del Moral, Doucet, and Jasra, 2006). Given

that the target is a marginal of the extended density, in the spirit of Andrieu and Roberts

(2008), it also provides consistent inference to p(Θ|y1:T ) for any given number of state

particles, M , as the number of parameter particles, N , goes to infinity. The algorithm

can be easily parallelized in the parameter dimension. This is an important feature as it

allows us to fully use the computational power of the modern graphical processing units

(GPUs), resulting in a low computational cost.

3.3 Monte Carlo Studies

In this part, we implement three Monte Carlo studies. The first is to ascertain that

the bias due to approximations in the proposed particle filter is indeed small for rele-

vant parameter values. We compare the filtering performance of our approximate Rao-

Blackwellized particle filter to an exact particle filter. This latter is similar in spirit to

the approximate RBPF with two important differences: First, instead of using a discrete

approximation to volatility jumps, it draws directly from the exponential density of the

jumps, Xv,t ∼ Exp(µV ). Second, it keeps the state variables, λt and Vt, in the state pace

of the particle filter and uses the UKF to generate proposals over these variables. See

Appendix for the detailed algorithm. The output of this PF converges to the optimal
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filtering densities, and hence it can allow us to evaluate how far our approximate RBPF

is from optimal filtering.

Table 1 reports results from a Monte Carlo exercise where we simulate 100 samples of

length 4,000 from the model. We take the most general model, Model I, as our example.

The true parameter values are chosen such that they are close to the empirical estimates

in Section 4. As in the real data application, we use the underlying data and variance

swaps with fixed maturities of 1-, 6-, and 12-month. For each simulated data sample, we

run both the exact PF with the number of particles, M , equal to 512 and the approximate

RBPF withM = 64. Then for each quantity of interest, we compute the root mean square

errors (RMSEs) in the given sample between the true quantity and its filtered mean. The

mean and interquartile range (IQR) of these RMSEs across the 100 samples are reported

for both filters. The first two rows in the table show the results for the state variables, Vt

and λt. One can see that while the performance of the two filters is virtually identical for

filtering the jump intensity, λt, there seems to be a slight advantage from using the exact

particle filter for filtering diffusion volatity, Vt. The main reason of this difference is that

the diffusion volatility is much more variable and less persistent in the data generating

process compared to the jump intensity. The larger local range of possible changes means

that the UKF does a somewhat worse job in accounting for the underlying non-linearity

for the diffusion compared to the jump intensity for the parameter configuration we use

to generate the data. In addition to filtering the latent states, it is also of importance

to see how well the different filters can identify variance swaps implied by these states.

Hence row 3 to row 5 of Table 1 report the RMSE’s over the three variance swap series.

We can observe that the fitting performance of the two filters is almost identical across

all maturities. Overall our results show that our approximate filter does a good job

in approximating the optimal filtering recursion. This is in accord with the results in

Christoffersen et al. (2014) who show that the UKF does a good job in approximating

the full particle filter in affine term structure models at a much lower computational

cost. Our approximate filtering procedure essentially extends those results to models

also driven by discrete Poisson jumps.
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— Table 1 around here —

As explained earlier, lots of recent estimation routines of the fixed parameters, Θ,

necessitate estimates of the likelihood of the data, p(y1:T |Θ). Hence, in addition to

filtering the dynamics states, it is also crucial to investigate the likelihood estimates,

p̂(y1:T |Θ), implied by a given filtering routine. Table 2 sheds light on the performance

of the full particle filter and the approximate Rao-Blackwellized particle filter from this

angle. We simulate 20 data samples of length 4,000 from the model and run both filters

on the each dataset at the fixed parameters we used to generate the data. The fixed

parameters we use are identical to what we have used in the Monte Carlo exercise for

filtering previously. For each data set, we run 256 independent filters at different number

of particles. We use particle numbers M = 512, 1,024, 2,048 in the full particle filter and

M = 64, 128, 256 particles in the approximate Rao-Blackwellized particle filter. These

particle numbers are chosen to have roughly comparable computing times across the two

filters. The first row reports the average estimate of the log likelihood of the data across

the 20 data samples and 256 filtering runs per data samples. As expected, we can see

that the exact particle filter using the true model delivers somewhat higher likelihood

estimates compared to our approximate RBPF. While the difference in the loglikelihood

values is visible, the almost identical filtering performance we saw in Table 1 gives rise

to hope that it should not lead to large biases in the resulting parameter estimates.

— Table 2 around here —

The second row reports the averages across the 20 data samples of the standard de-

viations of the log likelihood estimates from both filters, where each time the standard

deviation is computed as the sample standard deviation across the 256 filtering runs.

One can directly see that the approximate filter has an order of magnitude smaller Monte

Carlo noise at comparable computational cost. The recent literature on simulation-based

inference routines that target at the fixed parameters, Θ, and use an estimate of the like-

lihood, p(y1:T |Θ), makes it clear that controlling the Monte Carlo noise of the likelihood

estimates is key for the successful implementation of these routines. For example, for par-

ticle MCMC algorithms, Doucet et al. (2014) advise a standard deviation estimate of the
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likelihood estimate of around 1.2-1.3 for general targets and proposal distributions in the

MCMC. Looking at the second row of Table 2, we find that the approximate RBPF easily

keeps the estimation noise below this value even for M = 64. In contrast, the standard

deviation of the exact particle filter is well above this value, 2.9, even with M = 2, 048

particles. The usual asymptotic results posit that the variance of the loglikelihood esti-

mate decreases linearly with the number of particles, M (Cerou et al., 2011). Using this

asymptotic argument, the number of particles necessary to achieve a standard deviation

of 1.3 in the exact particle filter would be approximately M = 2048 × (2.9
1.3

)2 ≈ 10, 000,

an order of magnitude larger than the case for the approximate RBPF. Let us further

note that as in this simulation we have run the particle filters at the parameters used to

generate the data, it provides a best-case scenario for the filters. The estimation noise

tends to increase both when the filters are run at parameter values not describing the

data dynamics well, a must in the course of any parameter estimation routine, or when

the data contains outliers which is a prevalent feature of real derivatives data. We have

found that the approximate RBPF provides stable estimates of the loglikelihood, while

the full particle filter can give rise to impractically large estimation noise. As a result,

we can reliably use the former to do parameter estimation even with a small number

of M , while with the latter the simulation routines over Θ tend to get stuck even with

thousands of particles.

We now move to the third Monte Carlo study, which aims to show that our proposed

particle-based Bayesian method delivers reliable and efficient parameter estimates. This

particle-based Bayesian method is initialized by the prior distributions or initial beliefs.

As discussed above, in general, we assume (truncated) normal distributions for the priors.

The choice of the hyper-parameters of the prior distributions is based on calibration using

a training sample on S&P 500 index and VIX from January 1999 to December 2000. The

training-sample approach is widely used to calibrate the objective prior distributions

(O’Hagan, 1994). Notably, we find that most of parameters are not so sensitive to

the selection of the priors. Therefore, we give quite flat priors to most of the model

parameters. Table 3 presents the exact functional form, the support, and the hyper-

23



parameters for the prior distribution of each parameter. The same priors are used both

in the simulation study below and in empirical investigations in the next section.

— Table 3 around here —

We implement a Monte Carlo simulation study to check accuracy, efficiency, and

stability of the proposed econometric method. We take the most general model, Model I,

as our example. The true values of model parameters are the same as those used in the

above studies. We generate 30 sequences of daily observations on the underlying stock

price and variance swap rates with maturity 1-, 6-, and 12-month, and then we run our

particle-based Bayesian method for each simulated dataset. As before, the sample size is

equal to 4,000.

In the implementation, we set the number of state particles, M , equal to 64 and the

number of parameter particles, N , equal to 2,048. The number of discretization points

for the variance jumps is chosen to be K = 5. Furthermore, we set the number of

move step to 5. These tuning-parameters are chosen such that the acceptance rate is

relatively high, the effective sample size fluctuates around N/2, and the computational

cost is reasonable. To take advantage of the parallelisation property of our algorithm, we

use graphical processor-based parallel architectures (GPUs) to speed up computations.6

The priors for model parameters are the same as those in Table 3. Any values outside

the support of a parameter are automatically discarded in simulations.

Table 4 presents the results of the simulation study. Means and RMSE’s of the

posterior means of the model parameters across 30 runs are reported. We find that the

proposed particle-based Bayesian method can accurately and efficiently identify most of

the model parameters, as for these parameters, their mean values are quite close to the

true values, and their RMSE’s are small. The only noticeable bias can be observed for

the variance jump size parameters µV and µQ
V . One potential reason for this is that we

have chosen K that is too small, hence leading to insufficient coverage of the right tail of

the variance jump distribution.

6We program in MATLAB the main algorithm and offload the computational bottleneck of the al-
gorithm, the particle filter, to the GPU, coded in CUDA. Relying on a Nvidia Titan Black GPU, our
Bayesian algorithm is quite fast. Each run takes about 2/3 day.
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— Table 4 around here —

4 Estimation and Empirical Results

In this section, we implement model estimation using the proposed particle-based Bayesian

method on S&P 500 index returns and variance swap rates. The same M , N , and the

priors as in Subsection 3.3 are used. Furthermore, we set the number of move steps equal

to 10 and K = 10 in order to stabilize our estimates. Subsection 4.1 describes the data

we use for model estimation; Subsection 4.2 implements statistical analysis and diag-

nosis; Subsection 4.3 discusses the volatility dynamics; and Subsection 4.4 investigates

parameter uncertainty and variance risk premia.

4.1 The Data

The data used for estimation are S&P 500 index returns and variance swap rates with

fixed maturity at 1-, 6-, and 12-month, ranging from January 2, 2001 to July 15, 2013 for

a total of 3,148 business days. S&P 500 index values are obtained from Datastream, and

the variance swap rates are provided by an investment bank. Notably, the data cover the

market turmoils such as the 2002 dot-com bubble burst, the 2008 global financial crisis,

and the recent European debt crisis of 2010-2012.

Table 5 reports the summary statistics of index returns and variance swap rates. We

see that the annualized mean of index returns is about 6.9%, and the historical volatility

is about 18.3%. The index returns are clearly left-skewed and leptokurtic as the skewness

is negative (-0.24) and the kurtosis is by far larger than three (11.67). They are weakly

autocorrelated with the first autocorrelation being about -0.09.

The mean values of variance swap rates increase with respect to maturity. In volatility

measure, they are 21.2% at 1-month maturity, 22.5% at 6-month maturity, and 22.9% at

12-month maturity. In contrast, the standard deviations decrease with respect to matu-

rity. Furthermore, the variance swap rates have positive skewness and excess kurtosis,

both of which decrease with respect to maturity. The variance swap rates are highly
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persistent. The first autocorrleation is 0.982 for 1-month maturity, 0.994 for 6-month

maturity, and 0.996 for 12-month maturity.

— Table 5 around here —

Figure 1 presents the time series of index returns and the variance swap rates. The

long-maturity variance swap rate is higher than the short-maturity rate when the market

is tranquil. However, during the period of market turmoil, the term structure of variance

swap rates reverts: the short-maturity variance swap rate move up quickly to even higher

level than the long-matiruty rate. This evidence is quite clear during the recent global

financial crisis.

— Figure 1 around here —

4.2 Statistical Analysis and Diagnosis

Two main statistics in our particle-based Bayesian method are the effective sample size

(ESS) and the acceptance rate, as discussed in Section 3. Figure 2 presents the acceptance

rate (the left panel) and ESS (the right panel) for each model. There are a number of

notable features.

First, for each of the four models, the acceptance rate remains high (above 30%) before

the tempering coefficient, ξi, reaches the level of about 0.35. Then, it slowly goes down

below 10%. This indicates that with respect to the tempering procedure, the information

contained in the data is slowly absorbed. When the tempering goes to the end (i.e., ξi is

reaching the level of 1) and the full information in the dataset is included in the target

density, the shape is becoming more complicated, making it harder to fit the proposal

which in turn leads to lower acceptance probabilities.

— Figure 2 around here —

Second, when the tempering goes to the end, our estimates arrive at their posterior

distributions. Figure 3 presents the tempering procedure for some selected parameters

in Model I. The posterior means and (5, 95)% quantiles are plotted. We can see that
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in the beginning when the tempering coefficient equal to 0, we only have the prior in-

formation, and the prior distributions have quite large dispersions. However, when the

tempering procedure goes on, the information contained in the data is slowly reflected

in the estimates. This can be see from the shrinkage of the (5, 95)% credible intervals.

In the end when the tempering coefficient reaches one, the parameter estimates arrive at

their posterior distributions. Basically, for all these selected parameters, they have quite

narrow posterior (5, 95)% credible intervals.

— Figure 3 around here —

4.3 Volatility Dynamics

We now move to discuss volatility dynamics, which are quite important for risk manage-

ment and derivatives pricing. Table 6 presents the log Bayes factors for model comparison,

from which we have two important findings.

First, the non-affine models (Model I and Model II) perform much better than the

affine models (Model III and Model IV). For example, the log Bayes factor between

Model I and Model III (Model IV) is as large as 666.3 (759.1), and the log Bayes factor

between Model II and Model III (Model IV) is about 593.0 (685.8). This result indicates

that the usually used affine models are clearly misspecified, and non-affine specification

needs to be used to capture volatility dynamics. With parsimoneous stochastic volatility

specifications, Jones (2003), Ait-Sahalia and Kimmel (2007), and Christoffersen, Jacobs,

and Mimouni (2010) also argue that affine models are misspecified.

— Table 6 around here —

Second, the jump intensity follows self-exciting dynamics. No matter whether non-

affine specifications or affine specifications are concerned, the model with the self-exciting

jump intensity always performs better than that excluding self-excitation. For example,

for the non-affine models, the log Bayes factor between Model I and Model II is about 73.3,

and for the affine models, the Bayes factor between Model III and Model IV is about 92.8,

indicating that the self-excitation is an important feature in volatility dynamics. Under
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affine specifications, Carr and Wu (2011), Ait-Sahalia, Cacho-Diaz, and Laeven (2014),

and Fulop, Li, and Yu (2014) find evidence for the self-exciting jump intensity. Our

investigation further indicates that even though both non-affineness and self-excitation

are channels for sudden burst of volatility and extreme events, they are not substitues to

each other.

The above two findings can be also found from variance swap pricing errors, which

are provided in the Internet Appendix. We find that in general the non-affine models

result in smaller pricing errors than the affine models. However, the difference between

Model I and Model II is not as big as that indicated by the Bayes factor.

The above model comparison indicates that we need to take into account both non-

affineness and self-excitation in order to accurately capture volatility dynamics. Panel

A of Table 7 presents the parameter estimates for Model I. There are several notable

findings. First, the coefficients, ξ1 and ξ2, which control the non-affineness in diffusion

volatility and jump intensity, respectively, are well identified. Their posterior means are

1.97 and 2.19, respectively, and their posterior standard deviations are quite small, 0.03

and 0.10, respectively.

— Table 7 around here —

Second, the jump intensity is much more persistent than diffusion volatility because

the estimated κλ is smaller that the estimated κv (1.16 and 4.76, respectively). The

long-run mean of the jump intensity in Model I is given by formula (5), which is about

8.98. This value indicates that there are about 9 jumps, on average, in each year. The

long-run mean of diffusion volatility is given by formula (7). According to our estimates,

it is about 0.028.

Third, the parameter β controls the self-excitation of the jump intensity. Its posterior

mean is about 1.09, and its posterior standard deviation is about 0.10. These values

indicate that β is well identified and self-excitation is a key feature of the jump dynamics.

Fourth, the filtered diffusion volatility and jump intensity accounting for parameter

uncertainty are plotted in Figure 4. The posterior means and (5, 95)% quantiles are

presented. We can clearly see that diffusion volatility can be well identified, as the (5,
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95)% credible intervals are quite narrow both in calm periods and in turmoil periods.

However, the jump intensity has large credible intervals. This is particularly obvious

during periods of market crash. The non-affineness and self-excitation mainly affect

the estimates of the jump intensity as we see that all the four models result in very

similar estimates of diffusion volatility, but the estimated jump intensities are different

(see Internet Appendix).

— Figure 4 around here —

We have seen that the estimates of ξ1 and ξ2 are quite close to 2 in Model I. Hence,

we further investigate a model with the restriction ξ1 = ξ2 = 2 (hereafter Model CEV).

Using the same estimation method, we find from Panel B of Table 7 that the parameter

estimates are quite similar to those of Model I. Furthermore, from the last row of the

table, we find that even though the pricing performance of Model I and Model CEV

is quite similar, the log Bayes factor between Model I and Model CEV is about -3.5,

indicating that the restricted model, Model CEV, is more capable of capturing the stock

price and variance swap dynamics. Therefore, we conclude that the best model is the

one with the self-exciting jumps and the CEV-type non-affine specification for diffusion

volatility and jump intensity.

4.4 Parameter Uncertainty and Variance Risk Premia

We implement the model estimation jointly using the underlying stock price data and the

VIX data. Therefore, both the objective and the risk-neutral parameters can be obtained.

The estimates of γv, γλ, µ
Q
J , and µQ

v in Table 7 indicate that there could be significant

variance risk premia embedded in the data. The variance risk premium provides an

intuitive and straightforward measure of investors’ risk aversion (Bekaert and Hoerova,

2014). Recent empirical studies show that the variance risk premium is an important

factor for short-term stock return predictability (Bollerslev, Tauchen, and Zhou, 2008;

Drechsler and Yaron, 2011; Li and Zinna, 2014). Therefore, investigation of its properties

and accurate measure are paramount for empirical study on return predictability.
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Formally, the variance risk premium is defined as the difference between the expected

objective and risk-neutral quadratic variations,

V RP (t, T ) =
1

T − t
Et

[

QV (t, T )
]

− 1

T − t
EQ

t

[

QV (t, T )
]

. (35)

The randomness of quadratic variation can either be induced by the randomness of the

conditional future diffusion variance or by the jumps (with the random arrival rate) or

by both.7 We can thus decompose the variance risk premium into

V RP (t, T ) = V RPD(t, T ) + V RPJ(t, T ), (36)

where the first term in equation (36) is due to variance risk from the diffusion,

V RPD(t, T ) =
1

T − t
Et

[

∫ T

t

V1,sds
]

− 1

T − t
EQ

t

[

∫ T

t

V1,sds
]

, (37)

and the second term in equation (36) reflects the compensation for variance risk due to

the jump component,

V RPJ(t, T ) =
1

T − t
Et

[

∫ T

t

∫

R−

x2π(ds, dx)
]

− 1

T − t
EQ

t

[

∫ T

t

∫

R−

x2π(ds, dx)
]

. (38)

Both components in Equations (37) and (38) can be analytically computed under our

model specifications in Section 2. By varying the maturity T , we can also obtain the

term structures of variance risk premium and its components.

Here we focus on Model CEV. Table 8 presents summary statistics of the time series of

the posterior means of variance risk premium and its components. The time-series average

of the total variance risk premia is negative and it has a downward-sloping term structure.

The negative sign of variance risk premia is in line with empirical findings in Bakshi and

Kapadia (2003), Bollerslev, Gibson, and Zhou (2011), and Carr and Wu (2009). Ait-

7The jump component in our model is time-inhomogeneous, indicating that it contributes to the
randomness of quadratic variance in two ways, one due to the jump size risk and the other due to risk
related to the time-varying jump intensity. This is very different from the continuous diffusion, whose
quadratic variation is random only because its variance is stochastic.
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Sahalia, Karaman, and Mancini (2014) and Li and Zinna (2014) follow similar parametric

approach and also find the downward-sloping term structure. The negative values of the

total variance risk premia indicate that investors in the market dislike variance risk and

they are willing to pay a premium to hedge against this risk. The longer the time horizon

is, the larger such a premium is: investors’ aggregate risk aversion is increasing with

respect to the time horizon. The variance risk premium varies drastically. The variation

of the total variance risk premium is increasing with respect to the maturity.

The total variance risk premium can be decomposed into diffusion variance risk pre-

mium and jump variance risk premium. Similar to the total variance risk premium, its

components are also negative and has downward-sloping term structure. However, we

can see that the jump variance risk premium has amuch flatter term structure than the

diffusion variance risk premium. We quantify the jump contribution to the total variance

risk premium. It is found that for the one-month maturity, the jump contribution is as

large as about 80%, and it is decreasing with respect to maturity, only about 34% at the

one-year maturity. The jump contribution is quite stable, as its standard deviation is

relatively small at each maturity.

— Table 8 around here —

Figure 5 plots the time series of the posterior means and (5, 95)% quantiles for the total

variance risk premium and its components at maturity one-month and one-year acounting

for parameter uncertainty. There are some interesting findings. First, no matter which

maturity is concerned, the posterior means of the total variance risk premium and its

components are always negative. This result is in contrast to the mode-free estimates,

which could take positive values at times (Bekaert and Hoerova, 2014). Second, we

find that during calm periods, the variance risk premium is quite small, whereas during

the market crash, it drops to large values (in absolute). For example, after the Lehman

Brothers’ bankruptcy in September 2008, the variance risk premium (and its components)

suddenly increases to very large values (in absolute).

Third, the 90% credible interval provides a measure of uncertainty of variance risk

premium estimate. For the total variance risk premium, at one-month maturity, investors
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seem to be quite certain on which sign it should take before the recent global financial

crisis, as the 95% quantile is quite close to zeros and the 5% quantile is negative. However,

after this crisis, even though investors’ aversion becomes stronger, their uncertainty also

becomes large, as now the 95% quantile can take positive values and the 5% quantile takes

even small negative values. At one-year maturity, investors become even more uncertain,

as the 90% credible interval become wider, and the 95% quantile always takes positive

values. The longer the time horizon is, the more uncertain investors are.

— Figure 5 around here —

Fourth, when we compare the diffusion variance risk premium and the jump variance

risk premium, we find that no matter which maturity is concerned, the 95% quantile of

the diffusion variance risk premium always takes positive values, and this is particularly

the case after the Lehman Brothers’ bankruptcy. However, for the jump variance risk

premium, its 95% quantile is quite close to zeros and its 5% quantile takes negative values

for both one-month and one-year maturities. This indicates that investors are much more

risk-averse of jump variance risk than diffusion variance risk. Furthermore, we find that

the jump variance risk premium responds the market crash earlier, more quickly, and

more dramatically than the diffusion variance risk premium. Putting all together, these

results indicate that the jump variance risk premium measures investors fear of a market

crash.

5 Concluding Remarks

In this paper, we propose a particle-based Bayesian method to estimate a rich asset

pricing model that allows for co-jumps of prices and volatility, self-excitation, and non-

affineness jointly using underlying and derivatives information. For efficient filtering, we

use the UKF to analytically marginalize the Gaussian state variables, while using particle

filtering to deal with the discrete jump variables. Crucially, the resulting approximate

Rao-Blackwellized particle filter provides a low-variance estimate of the likelihood of the

data given the fixed parameters. Then using this approximated likelihood, we run a
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tempered sequential Monte Carlo routine targeting at posterior distribution of the fixed

parameters. We provide extensive simulation evidence that our approach provides reliable

and efficient inference over the model parameters.

We implement our methodology on daily S&P 500 return data and variance swap

data at multiple maturities between 2001-2013. We have a few important substantive

findings. First, we find there is evidence in the data for self-exciting jump behavior even

when non-affineness is allowed for. Second, we reinforce the existing evidence that non-

affine specifications dominate affine ones in a more flexible framework. Third, we find

that despite using an efficient likelihood-based estimation method there is a large amount

of uncertainty left about the variance risk premia.

There are interesting future research avenues that our results open up. First, we

believe that the pseudo-marginalized Bayesian method based on the approximate Rao-

Blackwellized particle filter is readily applicable to a wide range of dynamic asset pricing

models with discrete jumps and informative derivatives data. Term structure models with

jumps (Johannes, 2004; Piazzesi, 2005; Feldhutter et al, (2009); Jiang and Yan, 2009; Li

and Song, 2013) or commodity and energy markets are interesting potential candidates.

Second, an in-depth empirical study of diffusion and jump variance risk premia using op-

tion panels (Andersen, Fusari, and Todorov, 2014) and/or more informative economically

motivated priors (Timmermann, Pettenuzzo, and Valkanov, 2014) would be insightful.
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Table 1: Monte Carlo on Filtering

Full PF Approximate RBPF

Mean of RMSEs IQR of RMSEs Mean of RMSEs IQR of RMSEs

Vt 0.0008 0.0005 0.0010 0.0006

λt 0.1525 0.1027 0.1534 0.1037

lnV S1M 0.0262 0.0009 0.0267 0.0012

lnV S6M 0.0130 0.0012 0.0133 0.0012

lnV S1Y 0.0121 0.0025 0.0122 0.0025

Note: This table compares the filtering performance of a full particle filter with the approximate Rao-
Blackwellized particle filter proposed in this paper. We simulate 100 data samples of length 4, 000 from
the model and run both filters on the each dataset at the fixed parameters we used to generate the
data. We use M = 512 particles in the full particle filter and M = 64 particles in the approximate
Rao-Blackwellized particle filter. For each filter and each time point we compute the filtered mean of the
state variables, Vt and λt, and also the filtered means of the log variance swap observations implied by
the state variables. Then, for each dataset and filter, we compute the root mean square error (RMSE)
of each filtered estimate versus the true counterpart. The first column report the mean RMSE for the
full particle filter across the data sets and the second column the inter-quartile range (IQR) of the
RMSE’s across the 100 simulations. The third and fourth columns report the analogous quantities for
the approximate Rao-Blackwellized particle filter.
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Table 2: Monte Carlo on Likelihood Estimation

Full PF Approximate RBPF

M 512 1,024 2,048 64 128 256

Mean of ln p̂i(y1:T |Θ) 27,339 27,343 27,345 27,218 27,218 27,218

Std of ln p̂i(y1:T |Θ) 5.11 3.67 2.90 0.29 0.20 0.16

Computational time 0.19 0.37 0.74 0.22 0.44 0.90

Note: This table compares the performance of a full particle filter with the approximate Rao-
Blackwellized particle filter proposed in this paper to estimate the marginal log likelihood of the data.
We simulate 20 data samples of length 4, 000 from the model and run both filters on the each dataset
at the fixed parameters we used to generate the data. The fixed parameters we use are identical we
use for Table 1. For each data set we run 256 independent filters at different number of particles. We
use particle numbers M = 512, 1,024, 2,048 in the full particle filter and M = 64, 128, 256 particles
in the approximate Rao-Blackwellized particle filter. The first row reports the average estimate of the
marginal log likelihood of the data across the 20 data samples and 256 filtering runs per data samples.
The second row reports the average across the 20 data samples of the standard deviation estimate of
the log likelihood estimate, where each time the standard deviation is computed as the sample standard
deviation across the 256 filtering runs. The third row reports the computing time per filtering run. Here
we run the 256 runs in parallel in one batch on an Nvidia Titan Black GPU, coded in CUDA. If the
timing of such a run is T , we report the average across the 20 data samples of T/256 to get a sense of
the computational cost of evaluating the log likelihood for one parameter set and one run of the particle
filter.
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Table 3: The Prior Distributions

Θ F. Form Support (µ0, σ0) Θ F. Form Support (µ0, σ0)

µ Normal (−∞,∞) (0.03, 0.10) κλ Tr. Normal (0,∞) (1.50, 6.00)

µJ Normal (−∞,∞) (-0.01, 0.05) θλ Tr. Normal (0,∞) (2.00, 6.00)

σJ Tr. Normal (0,∞) (0.01, 0.05) σλ Tr. Normal (0,∞) (0.50, 5.00)

κv Tr. Normal (0,∞) (8.00, 15.0) ξ2 Tr. Normal (0,∞) (1.50, 3.00)

θv Tr. Normal (0,∞) (0.01, 0.05) β Tr. Normal (0,∞) (0.80, 5.00)

σv Tr. Normal (0,∞) (3.00, 6.00) µQ
J Normal (−∞,∞) (-0.01, 0.05)

ξ1 Tr. Normal (0,∞) (1.50, 3.00) µQ
v Tr. Normal (0,∞) (0.02, 0.06)

ρ Tr. Normal [−1, 1] (-0.50, 1.00) γv Normal (−∞,∞) (-8.00, 15.0)

µv Tr. Normal (0,∞) (0.02, 0.05) γλ Normal (−∞,∞) (-0.50, 5.00)

Note: The table presents the functional form, its support, and the hyper-parameters of the prior dis-
tribution for each parameter. A normal distribution is usually assumed for the prior. However, if a
parameter has a finite support, a truncated normal prior is attached to this parameter.
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Table 4: Monte Carlo on Parameter Estimation

Θ True Value Mean RMSE Θ True Value Mean RMSE

µ 0.050 0.049 0.011 κλ 1.500 1.454 0.148

µJ -0.015 -0.017 0.004 θλ 0.500 0.491 0.102

σJ 0.010 0.013 0.005 σλ 0.350 0.339 0.067

κv 5.000 4.825 0.691 ξ2 2.000 2.152 0.421

θv 0.015 0.017 0.003 β 1.000 0.823 0.195

σv 2.500 2.554 0.208 µQ
J -0.025 -0.024 0.004

ξ1 2.000 2.004 0.038 µQ
v 0.015 0.021 0.007

ρ -0.700 -0.703 0.009 γv -1.500 -1.190 0.390

µv 0.015 0.020 0.017 γλ -0.500 -0.605 0.218

Note: This table present the results of a small Monte Carlo study on parameter estimation using the
approximate Rao-Blackwellized particle filter proposed in this paper. We simulate 30 dataset of length
T = 4000 using the parameters reported in the table. Then, for each dataset we run the proposed
particle-based Bayesian method to estimate the fixed parameters. We use N = 2048 fixed parameter
particles, M = 64 state particles, and after each resampling of the parameters, we use 5 move steps
with an independent mixture of normal proposal. The parameter estimates are taken to be the posterior
means. The table reports the mean parameter estimates across the simulation runs together with the
root mean square errors of these estimates around the true values. A Nvidia Titan Black GPU is used.
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Table 5: Summary Statistics

Mean Std. Max. Min. Skew. Kurt. ACF

Returns 0.019 0.211 0.110 -0.095 -0.185 11.08 -0.092

VS1M 0.212 0.093 0.801 0.094 1.908 8.460 0.982

VS6M 0.225 0.073 0.614 0.123 1.345 5.735 0.994

VS1Y 0.229 0.067 0.536 0.130 1.013 4.453 0.996

Note: The table presents the summary statistics of the data used for model estimation. The data include
S&P 500 index returns and variance swap rates with fixed maturity at 1-, 6-, and 12-month, ranging
from January 2, 2001 to July 15, 2013, in total, 3,148 business days. Variance swap rates are reported
in volatility measure.
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Table 6: The Log Bayes Factors

Model 1 Model 2 Model 3 Model 4

Model I 0.00 — — —

Model II 73.3 0.00 — —

Model III 666.3 593.0 0.00 —

Model IV 759.1 685.8 92.8 0.00

Note: The table presents the log Bayes factor of the column model to the row model. For any two

given models, M1 and M2, if the value of the log Bayes factor is between 0 and 1.1, M1 is barely worth

mentioning; if it is between 1.1 and 2.3, M1 is substantially better than M2; if it is between 2.3 and 3.4,

M1 is strongly better than M2; if it is between 3.4 and 4.6, M1 is very strongly better than M2; and if

it is larger than 4.6, M1 is decisively better than M2.
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Table 7: Parameter Estimates

Θ Mean Std 90% C.I. Θ Mean Std 90% C.I.

Panel A: Free ξ1 and ξ2

µ 0.040 0.008 (0.026, 0.054) κλ 1.156 0.107 (0.973, 1.336)

µJ -0.015 0.001 (-0.017, -0.013) θλ 0.544 0.108 (0.358, 0.724)

σJ 0.002 0.001 (0.000, 0.004) σλ 0.351 0.065 (0.255, 0.470)

κv 4.761 0.146 (4.583, 5.041) ξ2 2.185 0.104 (2.008, 2.355)

θv 0.009 0.001 (0.007, 0.011) β 1.086 0.104 (0.912, 1.250)

σv 2.620 0.121 (2.433, 2.823) µQ
J -0.016 0.001 (-0.018, -0.014)

ξ1 1.965 0.027 (1.922, 2.011) µQ
v 0.010 0.001 (0.008, 0.012)

ρ -0.827 0.007 (-0.838, -0.815) γv -0.069 0.053 (-0.171, -0.008)

µv 0.010 0.001 (0.008, 0.013) γλ -0.156 0.116 (-0.395, -0.024)

Panel B: ξ1 = ξ2 = 2

µ 0.039 0.008 (0.025, 0.052) κλ 1.244 0.126 (1.037, 1.454)

µJ -0.015 0.001 (-0.017, -0.013) θλ 0.522 0.103 (0.352, 0.693)

σJ 0.002 0.001 (0.000, 0.003) σλ 0.474 0.016 (0.447, 0.501)

κv 4.787 0.169 (4.585, 5.121) ξ2 2.000 — —

θv 0.011 0.001 (0.009, 0.012) β 1.165 0.122 (0.973, 1.368)

σv 2.753 0.045 (2.680, 2.830) µQ
J -0.016 0.001 (-0.018, -0.014)

ξ1 2.000 — — µQ
v 0.010 0.001 (0.008, 0.012)

ρ -0.829 0.007 (-0.840, -0.818) γv -0.075 0.058 (-0.191, -0.009)

µv 0.010 0.001 (0.008, 0.013) γλ -0.132 0.097 (-0.317, -0.021)

Model I vs. Model CEV -3.53

Note: The table presents the parameter estimates for Model I and Model CEV. For each parameter,
the posterior mean, the posterior standard deviation, and the 90% credible interval (in brackets) are
reported. The last row presents the log Bayes factor between Model I and Model CEV. The models are
estimated using the particle-based Bayesian method discussed in Section 3. The data used for estimation
are S&P 500 index returns and variance swap rates with fixed maturity 1-, 6-, and 12-month, ranging
from January 2, 2001 to July 15, 2013, in total, 3,148 business days.
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Table 8: Variance Risk Premia

VRP Mean St. Dev. Max Min

Total VRP VRPT1M -0.139 0.102 -0.027 -0.803

VRPT6M -0.253 0.179 -0.060 -1.466

VRPT1Y -0.350 0.227 -0.088 -1.520

Diff. VRP VRPD1M -0.030 0.041 0.000 -0.468

VRPD6M -0.139 0.111 -0.035 -1.115

VRPD1Y -0.229 0.149 -0.064 -1.149

Jump VRP VRPJ1M -0.109 0.074 -0.021 -0.431

VRPJ6M -0.115 0.077 -0.022 -0.452

VRPJ1Y -0.122 0.082 -0.024 -0.477

Jump Ctr. JCtr1M 0.800 0.114 1.000 0.220

JCtr6M 0.454 0.072 0.591 0.124

JCtr1Y 0.340 0.035 0.399 0.148

Note: The table reports the time-series properties of the total variance risk premia (Total VRP), the

diffusion variance risk premia (Diff. VRP), and the jump variance risk premia (Jump VRP), as well

as the jump contribution to the total variance risk premia (Jump Ctr.), which is computed as Jump

VRP/Total VRP.
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Figure 1: S&P500 Index Returns and Variance Swap Rates

Note: The figure plots the S&P500 index returns and variance swap rates with the fixed maturity 1-,
6-, and 12-month. The data range from January 2, 2001 to July 15, 2013, in total, 3,148 business days.
Variance swap rates are presented in volatility measure.
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Figure 2: Acceptance Rate and Effective Sample Size

Note: The figure plots the acceptance rates and effective sample sizes (ESS) with respect to ξi for the
four models considered. In our algorithm, ξi is automatically select. At each ξi, the algorithm computes
the acceptance rate and effective sample size.
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Figure 3: Bridging the Priors and the Posteriors

Note: The figure plots the tempering procedure for selected parameters in Model I. At each tempering
stage, the mean and (5, 95)% quantiles of each of selected parameters are reported. The initial stage
corresponds to the prior, and the last stage corresponds to the posterior.
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Figure 4: Filtered Diffusion Volatility and Jump Intensity

Note: The figure plots the filtered diffusion volatility and the filtered jump intensity in Model I using
the real data on S&P 500 index returns and variance swap rates with the fixed maturity 1-, 6-, and
12-month, ranging from January 2, 2001 to July 15, 2013 for a total of 3.148 business days. At each time
point, the mean and (5, 95)% quantiles are reported.
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Maturity: 1 Month
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Maturity: 1 Year
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Figure 5: Parameter Uncertainty and Variance Risk Premia

Note: The figure plots the time series estimates of the total variance risk premia, the diffusion variance
risk premia, and the jump variance risk premia for maturity 1 month and 1 year in Model CEV using
the real data on S&P 500 index returns and variance swap rates with the fixed maturity 1-, 6-, and
12-month, ranging from January 2, 2001 to July 15, 2013 for a total of 3.148 business days. At each time
point, the mean and (5, 95)% quantiles are reported.
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