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Abstract

Recent empirical research �nds that the term structures of risk premia,
return volatilities and Sharpe ratios on dividend strips are all downward-
sloping (van Binsbergen et al. (2012)), but these observations cannot
be explained by most asset-pricing theories. In this paper, I resolve this
discrepancy using time-inconsistent risk preferences: agents' risk aversion
di�ers in the short-run from the long-run. I solve three variants of the
model: i) I allow the agent to commit to her future plan; assuming com-
mitting is not possible, I consider ii) a naive agent unaware of her time
inconsistency, and iii) a sophisticated agent aware of it. I show that the
naive agent case generates a �at term structure when endowment growth
is i.i.d., as with standard time-consistent preferences. In the commitment
and sophisticated agent cases, the term structures are downward-sloping
when the agent is less averse to immediate risks than to future risks. The
reasoning is that time inconsistency makes the state prices depend on the
current state of the economy. If the agent is less averse to immediate risk,
one-period future consumption is valued less if the current state is the
good state than if it is the bad state, which causes the payo� structure
of long-maturity dividend strips to become less risky than short-maturity
dividend strips, leading to a downward-sloping term structure.
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The equity market literature closely examines the dynamics of the value of

the aggregate stock market, which is computed as the sum of discounted future

dividend payments. The literature has focused less on the value of individual

terms in the sum, which can be viewed as separate assets known as dividend

strips. The term structure of dividend strips displays their risk premia, return

volatilities and Sharpe ratios across maturities. Are short-maturity dividend

strips discounted at the same rate as long-maturity dividend strips? Is the high

equity premium observed in many countries attributable to short-maturity divi-

dends or long-maturity dividends? These are interesting questions that can help

us better understand investors' risk preferences and stocks' dividend process.

The �rst empirical paper to study the pricing of dividend strips is van Bins-

bergen, Brandt and Koijen (2012), who recover the price of a short-term asset,

which is an asset that pays dividends up to a terminal date T and nothing there-

after. These authors �nd that the expected return, return volatility and Sharpe

ratio on the short-term asset are all higher than those on the stock index itself,

which implies a downward-sloping term structure of dividend strips.1 However,

these authors also show that the empirical pattern cannot be explained by many

leading asset-pricing theories, including Campbell and Cochrane (1999)'s habit

formation model, Bansal and Yaron (2004)'s long-run risk model and Gabaix

(2012)'s rare disaster model. My paper provides a general-equilibrium frame-

work that explains the downward-sloping term structure of dividend strips using

non-standard risk preferences.

Several researchers have worked to solve the puzzle raised by van Binsbergen

et al. (2012), and most have focused on altering the dividend process. In this

1Given that the sample only spans the January 1996-October 2009 period, the authors
cannot reject the null hypothesis that the average return on the dividend strategy is equal to
the average return on the index. The di�erence in the Sharpe ratios between the dividend
strategy and the index is also not statistically signi�cant. The authors can reject the null
hypothesis that the variance of the return on the dividend strategy is equal to the return
variance on the index at the 1% level.
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paper, I maintain a standard i.i.d. process for dividend growth, but instead

assume non-standard risk preferences. I develop a general-equilibrium model

that can explain the downward-sloping term structure of dividend strips by

assuming that investors' risk attitudes vary over the horizon of cash �ows. Thus,

the paper can be interpreted as an attempt to determine whether a particular

modi�cation of preferences can, alone explain the observed patterns. Because

the risk premium is mainly a function of risk aversion, it is natural to construct

a model in which investors have di�erent risk aversions toward short-run risk

and long-run risk. Such preferences are called �time-inconsistent� because what

is long-run risk for the agent today becomes short-run risk as time passes, such

that the agent has di�erent valuations of the same risky cash �ows at di�erent

time periods. Experimental evidence shows that risk aversion tends to vary with

the risk's temporal distance, but the conclusion on whether people are more or

less averse to immediate risks is mixed (see Noussair and Wu (2006), Abdellaoui,

Diecidue, and Onculer (2011), Ko and Huang (2012)). I consider both the case

in which the agent has a higher risk aversion to immediate risk than to future

risks, and the opposite case in which the agent is less averse to immediate risk.

When addressing time inconsistency, researchers often treat the investor at

di�erent time periods as di�erent intertemporal �selves�. There are generally

three ways to solve the model with time-inconsistent preferences. The �rst is to

assume a mechanism that allows the agent to commit to his plan of action. All

future selves must maximize the preferences of the current self who made the

commitment. In the models without commitment, the di�erent selves at each

point in time choose their own behavior to maximize their own preferences. Two

distinct cases emerge: the �naive agent case� and the �sophisticated agent case�,

depending on whether the agent has rational expectations of her future behav-

ior. The naive agent believes her future selves' preferences will be identical to
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those of her current self, not realizing that they will change as she moves closer

to executing decisions. She constantly modi�es her planned consumption and

investment choices. The optimal decision rule is a time-inconsistent strategy,

because future selves keep deviating from the initial plan. In contrast, the so-

phisticated agent knows exactly what her future selves' preferences will be. She

rationally predicts her future selves' behavior and takes these predictions into

account in her present-day optimization decision. Her objective is to ��nd the

best plan among those that she will actually follow� (Stroz (1956)). Therefore,

her optimal decision is a time-consistent strategy. Such an intertemporal deci-

sion problem can be transformed into an extensive game in which decisions are

taken sequentially by di�erent selves, and the solution should be constructed by

looking for the subgame perfect equilibrium.

I solve for the general equilibrium in an endowment economy for all three

cases and analyze their implications for the term structure of dividend strips. I

�rst present a two-period model to build intuition, and I then extend the model

to multiple periods using a recursive method. To isolate the e�ect of time-

inconsistent preferences on the term structure, I assume that the endowment

grows at an i.i.d. rate, which leads to a �at term structure under standard time-

consistent preferences. I do not intend to explain the term structure of Sharpe

ratios in my model. I assume that the endowment follows a binomial tree pro-

cess, so that the Sharpe ratios of dividend strips of all maturities are equal by

construction.2 I show that the naive agent case is observationally equivalent

to the standard case of time-consistent preferences and therefore generates a

�at term structure of dividend strips. In the commitment and sophisticated

agent cases, time-inconsistency induces a slope in the term structure. Some-

what surprisingly, short-maturity dividends have a higher risk premium and

2With a binomial tree process, the Sharpe ratio coincides with the price of risk, which is
the same across all assets.
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return volatility than long-maturity dividends when the investor is less averse

to immediate risk, implying a downward-sloping term structure. By contrast,

when the investor is more averse to immediate risk, the term structures for risk

premia and volatilities are both upward-sloping.

The naive agent case generates a �at term structure because, although she

plans ahead, she only implements her plan for the current period and replaces it

with a new plan in the next period. Hence, only short-run risk aversion matters

to the current period's decision. In essence, the naive agent behaves as if she

was forever young: she acts like a standard time-consistent agent with constant

short-run risk aversion. The equilibrium is also identical with the standard case

of time-consistent preferences.

The results for the commitment case and the sophisticated agent case go

against common intuition. When an investor is less risk-averse toward short-

run risk, she would be expected to require a lower risk premium for holding

short-maturity dividends. However, this is not the case in my model for the

following reasons. First, I am comparing the one-period risk premium on the

short-maturity dividend to the one-period risk premium on the long-maturity

dividend. I am not comparing the average returns on assets held to maturity,

which implies di�erent holding periods. Therefore, this is not simply a matter

of comparing short-run risk aversion with long-run risk aversion. Second, one

important feature of my model with time-inconsistent preferences-which di�ers

from the standard time-consistent preferences-is that the state prices become

dependent on the current state even with the i.i.d. growth assumption and isoe-

lastic utility. If short-run risk aversion is relatively lower, state prices decrease

with the consumption of the current state. One-period future consumption is

valued less if the current state is the good state than it is if the current state

is the bad state. This state dependency causes the long-maturity dividend to
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have a less risky payo� than the short-maturity dividend, which leads to a

downward-sloping term structure for dividend strips.

My research thus makes three contributions. First, it o�ers an explana-

tion for the downward-sloping term structure of dividend strips based on in-

vestors' preferences. Second, although there have been quite a few works on

time-inconsistent discounting, a model with time-inconsistent risk preferences

has not yet been solved dynamically. My solution method can also be applied

to other studies with dynamic inconsistency. Finally, the results from this study

help explain the �value premium� of the stock returns as well. Value stocks can

be considered as short-horizon equity because more cash �ows are expected to

be generated in the short run, whereas growth stocks are long-horizon equity

because much of the cash �ows are expected to be generated in the future. The

downward-sloping term structure of risk premia implies that the value stocks

will have a higher expected return than the growth stocks.

1 Related literature

Some theoretical work has already been performed in response to the puzzle

posed by van Binsbergen, Brandt and Koijen (2012). Belo, Collin-Dufresne and

Goldstein (2012) show that the discrepancy between the empirical evidence and

the two leading asset-pricing models (the habit-formation model and the long-

run risk model) can be reconciled if the dynamics of earnings before interest

and taxes (EBIT) are combined with a dynamic capital structure strategy that

generates stationary leverage ratios. This combination endogenously determines

dividend dynamics that are cointegrated with EBIT, implying that long-horizon

dividend strips are no riskier than long-horizon EBIT strips. Other studies,

such as Ai et al. (2012) and Favilukis and Lin (2013), focus on the production

side to explain the downward-sloping term structure of dividend strips. Muir
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(2013) constructs a model of a �nancial crisis and shows that the term struc-

ture of risky assets is time-varying and downward-sloping in bad times when

crisis probabilities are concentrated in the short term. Lettau and Wachter

(2011) explain simultaneously the upward-sloping yield curve for bonds and a

downward-sloping term structure of equity premia by exogenously specifying a

parsimonious stochastic discount factor for the economy, and their model is thus

not a general equilibrium model. An important feature of their model is that

shocks to expected and unexpected dividend growth are negatively correlated.

This relationship implies that long-maturity dividend strips are less risky than

short-maturity dividend strips on a per-period basis. Whereas the previous lit-

erature focuses on changing the dividend process, I study the problem from the

perspective of investor preferences.

There is also a stream of literature that studies time-inconsistent preferences.

In general, time-inconsistent preferences mean people's long-run preferences are

di�erent from their short-run preferences. One type of time-inconsistent pref-

erences which is well documented is hyperbolic discounting, with people having

di�erent time-discounting factors for the short-run consumption and long-run

consumption. Thaler (1981) provides the experimental evidence and several pa-

pers show its asset pricing implications. Harris and Laibson (2001) derive the

Euler equation for the hyperbolic discounting investor. Luttmer and Mariotti

(2003) obtain a continuous-time approximate solution for the risk-free rate and

the risk premium of stock in an exchange economy. They show that subjective

rates of time preference a�ect risk-free rates but not instantaneous risk-return

trade-o�s. Both papers examine only the value of stock but not on the term

structure of dividend strips. In fact, hyperbolic discounting cannot explain

the puzzle of downward-sloping term structure of dividend strips.3 Another

3I can show that the hyperbolic discounting preference generates a �at term structure with
an i.i.d. endowment growth rate. This structure is generated because the state prices of the
economy with hyperbolic discounting preferences do not depend on the current state, which
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equally interesting dimension to study time-inconsistent preferences is through

risk preferences. There have been experimental evidences showing that peo-

ple's risk attitudes are horizon dependent, and the reason is that people's de-

cision making with respect to immediate risk is easily a�ected by emotional

impulses, such as excitement or anxiety. However, the experimental results and

their psychological explanations vary in the literature. Noussair and Wu (2006)

and Baucells and Heukamp (2010) use the choice between two binary lotteries

to elicit people's risk aversions and they �nd that more subjects are more risk

averse for the present than for the future. The potential reason for the increased

aversion to immediate risk is that as the risk draws closer, people's emotional

reactions to risk such as fear can anxiety increase. Ko and Huang (2012) argue

that the previous studies use abstract choice between binary lotteries and do

not simulate actual portfolio allocation decisions over time. When they ask the

subjects to plan out all the contigent betting decisions in the initial session of

a multi-period game and later play the game in a second session, they �nd that

majority of subjects took more risk than they had planned, indicating a lower

risk aversion to present than to future. And their reasoning for the excessive

risk taking behavior is that the immediacy of payo�s drives people's emotional

impulse of excitement and greed. In my model, I do not take standpoint on the

psychological origin of the time-inconsistency. I take the revealed preferences

from these experiments as given and consider both the cases when the agent is

more or less averse to immediate risk than to future risks.

My work is most closely related to that of Eisenbach and Schmalz (2014),

and Andries, Eisenbach and Schmalz (2014), who also use time-inconsistent

preferences to explain the equity term structure. However, my results are oppo-

site to theirs. Using a static two-period model, Eisenbach and Schmalz (2014)

show that if the agent is an anxiety-prone investor who is more averse to im-

is an important di�erence from my model.
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mediate risk, then the term structure of risk premia is downward-sloping in

equilibrium. There are two di�erences between my model and that of Eisen-

bach and Schmalz (2014) that lead to di�erent results. First, their model is

static in which the decision is only made at time 0; thus, dynamic inconsistency

does not play a role. However, in my model, the agent can rebalance her port-

folio in every period. Second, the returns we compare are di�erent. Eisenbach

and Schmalz (2014) compare the returns of two dividend strips of di�erent ma-

turities by holding them to maturity. In my model, I compare the one-period

expected returns for the short-maturity dividend strip with those of the long-

maturity dividend strip, which is more comparable to the approach adopted by

van Binsbergen et al. (2012). Andries, Eisenbach and Schmalz (2014) extend

Eisenbach and Schmalz (2014) to a multi-period dynamic model that allows the

agent to re-trade. However, their result depends critically on the assumption of

the stochastic volatility of endowment growth. Their model cannot generate a

slope on the term structure with the assumption of time-inconsistent preferences

alone, without any additional structural assumption on the endowment.

2 Time-inconsistent risk preferences

The main di�erence between my model and the standard asset-pricing model

is that I use time-inconsistent risk preferences. I assume that the investor has

a di�erent risk aversion to short-run risks than to long-run risks. To simplify

the model, I assume that there are only two di�erent levels of risk aversion. In

the current period (with no risk) and the next one period, the agent has short-

run risk aversion γs, whereas in all other future periods, she has long-run risk

aversion γl. Mathematically, the agent maximizes her expected lifetime utility

U (ct) + Et
[
βU (ct+1) + β2V (ct+2) + · · ·+ βT−tV (cT )

]
(1)
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where I assume power utility,

U (ct) =
c1−γst

1− γs
, V (ct) =

c1−γlt

1− γl
, γs 6= γl. (2)

This form of the utility function is similar to that considered in the hyper-

bolic discounting preferences discussed in Harris and Laibson (2001). While the

authors use di�erent time-discounting factors in the short run and in the long

run, I focus on having di�erent risk aversion parameters. This type of utility

function is �time-inconsistent� because the agent making a decision in time t has

preferences that di�er from those at time t′ for his future consumption stream.

For example, at time t, the agent would use the long-run utility V (.) to evaluate

future cash �ows ct+2, whereas at time t + 1, the same investor would change

her preferences and use the short-run utility U (.) to evaluate the same cash

�ow. Such an agent has a self-control problem. What is long-run risk now will

become short-run risk as time passes, and the same risky cash �ow would be

evaluated di�erently by the same agent at di�erent time periods. Note that this

utility is not simply a time-changing utility because every period, the agent will

shift her entire sequence of utility functions one period forward, and the agent

who makes the decision always has the short-run utility U (.) for the current

period's consumption. It is like �resetting� time t to be the new time 0 in every

period, with the agent having the same sequence of utility functions to evaluate

future cash �ows according to their proximity to the current period.

Three cases to be considered generate di�erent consumption and portfolio

choices for the investors' dynamic optimization problem. For a committed agent,

her decision rule is a time-consistent strategy because her plan and the actual

behavior coincide. However, her plan is optimal only from the perspective of the

time-0 self and not for later selves. For a naive agent, the decision rule planned

is optimal from the current self's perspective, but the plan is only implemented
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by the current self, and the future self will modify the calculated choices for

the whole path in the next period. Therefore, the realized consumption path

is not optimal from the perspective of any period's self, and the decision rule

is generally time-inconsistent. For a sophisticated agent, the decision rule is

both optimal and time-consistent. The sophisticated agent takes into account

the preferences of all her future selves and forms a plan that is the best among

those that will actually be followed. Thus, the consumption path is optimal

from all selves' perspectives.

In the model, I assume a standard Lucas exchange economy. For analyti-

cal tractability, the aggregate endowment is assumed to follow a binomial-tree

process. This assumption allows for better intuition by comparing state prices

across di�erent states. The growth rate of aggregate endowment is assumed to

be i.i.d. The i.i.d. growth endowment process with the standard isoelastic util-

ity generates a �at term structure, which is a good benchmark for comparison

with the time-inconsistent case. The initial endowment is normalized to be 1,

i.e., δ0 = 1. At every node, the endowment has a probability 1
2 to go up with a

gross return of u and a probability 1
2 to go down with a gross return of d. The

time-discounting factor is denoted as β. The market is dynamically complete,

and three assets are traded: i) a riskless bond; ii) the stock, which is a claim

of all future aggregate endowment; and iii) the �rst dividend strip, which is a

claim of next period's aggregate endowment. Assume there is only one agent in

the economy who has time-inconsistent preferences shown in (1). She chooses

her consumption and portfolio in each period to maximize her expected util-

ity subject to budget constraints. Because there is only one investor, no-trade

equilibrium is obtained, in which equilibrium prices are such that the agent is

content with not trading.

In this paper, I solve all three cases and examine their implications for the
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term structure of dividend strips. The most interesting case is the sophisti-

cated agent case, but I start with the commitment case to provide an intuitive

explanation of the model. The comparison of the naive agent case with the

sophisticated agent case helps explain how investors' awareness of their own

time inconsistency a�ects equilibrium prices. I �rst solve the simplest version of

the model, in which T = 2, for the commitment case and the naive agent case,

and I then solve the model in which T = 3 for the sophisticated agent case.

I compare the risk premia and return volatilities of the �rst and the second

dividend strips and examine the intuition gathered from each case. With the

binomial-tree setting, the Sharpe ratios of the two strips coincide because their

payo�s at t = 1 are always perfectly correlated. Then, I extend the model to

the multi-period case with T ≥ 3 by means of a recursive method. I obtain a

general Euler condition for each case and show that the result that held for a

two-period model remains true.

3 The commitment case

The commitment case is easy to solve because the agent makes the plan for the

whole tree at t = 0, and all the future selves will follow this plan. Therefore, I

solve the equilibrium with only one optimization problem at the initial node. I

begin with a simple two-period model.

3.1 Two-period model

With a two-period model, there are three points in time: t = 0, 1, 2. The

optimization problem of the agent is
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Max U (c0) +
1

2
βU (cu) +

1

2
βU (cd) +

1

4
β2V (cuu) +

1

4
β2V (cud) +

1

4
β2V (cdu)

+
1

4
β2V (cdd)

where

U (ct) =
c1−γst

1− γs
, V (ct) =

c1−γlt

1− γl

subject to the dynamic budget constraint.

W0 = c0 + φuWu + φdWd,

Wu = cu + φuuWuu + φudWud,

Wd = cd + φduWdu + φddWdd

where {φu, φd, φuu, φud, φdu, φdd} are �rst-period and second-period state prices.

Furthermore, the Lagrangian is

L0 = U (c0) +
1

2
βU (cu) +

1

2
βU (cd) +

1

4
β2V (cuu) +

1

4
β2V (cud) +

1

4
β2V (cdu)

+
1

4
β2V (cdd) + λ0 (W0 − c0 − φuWu − φdWd) + λu(Wu − cu − φuuWuu

−φudWud) + λd (Wd − cd − φduWdu − φddWdd)

where {c0,Wu,Wd, cu,Wuu,Wud, cd,Wdu,Wdd} are decision variables and {λ0, λu, λd}

are Lagrangian multipliers. Taking �rst-order conditions, I obtain equilibrium
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state prices for the commitment case in the two-period model.

φu =
1

2
β
U ′ (cu)

U ′ (c0)
, φd =

1

2
β
U ′ (cd)

U ′ (c0)
,

φuu =
1

2
β
V ′ (cuu)

U ′ (cu)
, φud =

1

2
β
V ′ (cud)

U ′ (cu)
,

φdu =
1

2
β
V ′ (cdu)

U ′ (cd)
, φdd =

1

2
β
V ′ (cdd)

U ′ (cd)

The �rst-period state prices of the commitment case {φu, φd} are the same

as those in the standard time-consistent case and only depend on the aggregate

growth rate of the endowment. Unlike in the time-consistent case in which the

second-period state prices are independent of the state at t = 1 (i.e. φuu =

φdu, φud = φdd ), they now di�er from the time-1 states in the commitment

case. How they di�er depends upon the relationship between the short-run risk

aversion and the long-run risk aversion. To see this more clearly, I rewrite the

second period state prices as follows:

φuu =
1

2
β
V ′ (cuu)

U ′ (cu)
=

1

2
β
U ′ (cuu)

U ′ (cu)

V ′ (cuu)

U ′ (cuu)

φdu =
1

2
β
V ′ (cdu)

U ′ (cd)
=

1

2
β
U ′ (cdu)

U ′ (cd)

V ′ (cdu)

U ′ (cdu)

Thus, the second period state prices of the commitment case can be written

as the state prices of the standard time-consistent case ( 12β
U ′(c2)
U ′(c1)

) multiplied

by another term (V
′(c2)

U ′(c2)
), which I call the �time-inconsistent component�. This

time-inconsistent component measures the valuation di�erence on c2 between

time-0 and time-1 selves, because c2 is a long-run cash �ow for the time-0 self

but a short-run cash �ow for the time-1 self. And this term depends not only

on the aggregate consumption growth rate, but also on the consumption level

at t = 1. With U (.) and V (.) being isoelastic utility,
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U ′ (cuu)

U ′ (cu)
=
U ′ (cdu)

U ′ (cd)
= u−γs

V ′ (cuu)

U ′ (cuu)
= cγs−γlu uγs−γl

V ′ (cdu)

U ′ (cdu)
= cγs−γld uγs−γl

Suppose the agent is less averse to immediate risk, i.e.γs < γl, then

γs − γl < 0 and cu > cd

⇒ V ′ (cuu)

U ′ (cuu)
<
V ′ (cdu)

U ′ (cdu)

⇒ φuu < φdu

By the same argument,

φud < φdd

The second-period state prices are decreasing with consumption at t = 1 when

γs < γl. Similar to the opposite case in which γs > γl.

LEMMA 1: For the commitment case in a two-period binomial-tree setting,

if γs < γl, then φuu < φdu, φud < φdd; if γs > γl, then φuu > φdu, φud > φdd; if

γs = γl, then φuu = φdu, φud = φdd.

How does this state dependency of the second period's state prices a�ect

the term structure of dividend strips? I have the following Lemma 2. This

conclusion is not limited to the commitment case and holds for the naive agent

case and the sophisticated agent case as well. The proof is presented in the
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Appendix.

LEMMA 2: For an equilibrium two-period binomial-tree model with an i.i.d.

growth rate, if φuu < φdu, φud < φdd, then the �rst dividend strip has a higher

risk premium and higher return volatility than the second dividend strip. If

φuu > φdu, φud > φdd, then the �rst dividend strip has a lower risk premium and

lower return volatility than the second dividend strip. If φuu = φdu, φud = φdd,

then the �rst and second dividend strips have the same risk premium and return

volatility.

With Lemma 1 and Lemma 2, I immediately obtain the following proposition

regarding the term structure of dividend strips for the commitment case. R(n)

denotes the return for the n-th dividend strip, meaning the dividend to be paid

n periods later.

PROPOSITION 1: For a commitment agent with short-run risk aversion γs

and long-run risk aversion γl, there are three di�erent scenarios for the term

structures of risk premia and return volatilities, in a two-period binomial-tree

model with an i.i.d. growth rate:

(a) if γs < γl, then E
[
R(1)

]
− Rf > E

[
R(2)

]
− Rf , σ

(
R(1)

)
> σ

(
R(2)

)
. The

term structures of risk premia and return volatilities are downward-sloping.

(b) if γs > γl, then E
[
R(1)

]
− Rf < E

[
R(2)

]
− Rf , σ

(
R(1)

)
< σ

(
R(2)

)
. The

term structures of risk premia and return volatilities are upward-sloping.

(c) if γs = γl, then E
[
R(1)

]
− Rf = E

[
R(2)

]
− Rf , σ

(
R(1)

)
= σ

(
R(2)

)
. The

term structures of risk premia and return volatilities are �at.

The main reasoning for the commitment case is as follows. The risk premia of

dividend strips depend on the state prices and future payo�s. Because the �rst

period's state prices are the same for both dividend strips, the term structure

only depends on how the payo� structure of the second dividend strip di�ers

from that of the �rst dividend strip at t = 1. The payo� of the �rst dividend
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strip is exogenously given to be the aggregate endowment. The payo� of the

second dividend strip is its price at t = 1 and depends on the second period's

state prices. In the standard time-consistent case in which γl = γs, the state

prices depend only on the growth rate of aggregate endowment and are universal

in all one-period sub-trees, i.e., φu = φuu = φdu, φd = φud = φdd. The second

dividend strip is priced in the same manner as the �rst dividend strip; therefore,

the term structure is �at. When preferences are time-inconsistent, the second-

period state price becomes state-dependent. Speci�cally, when the agent is less

averse to immediate risk, the second-period state price is lower when time-1

state is the good state and higher when time-1 state is the bad state. This

relationship causes the return volatility of the second dividend strip to be lower

than that of the �rst dividend strip at t = 1. Because the price of risk is the

same for all assets with the binomial-tree assumption, the �rst dividend strip

has a higher risk premium than the second dividend strip. The same argument

applies to the opposite case when the agent is more averse to immediate risk:

the state dependency of the second-period state price increases the volatility

of the second dividend strip and makes it riskier than the �rst dividend strip,

leading to an upward-sloping term structure.

3.2 Multi-period model

Now, I extend the commitment case to a T -period model with T > 2. I obtain

the Euler condition with the recursive method and then present the results for

the term structure. I assume that the agent makes the commitment at time

t such that the Euler condition is comparable to the naive agent case and the

sophisticated agent case. The optimization of a committed agent at time t is

Zt(Wt) ,Max{ct,{θt}} U (ct) + βEt [Ft+1 (Wt+1)]
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subject to

Wt = ct +
∑N

i=1
θt,iSt,i,

Wt+1 =

N∑
i=1

θt,i (St+1,i + δt+1,i)

where Ft+1 (Wt+1) is the future continuation value function. It is the expecta-

tion, conditional on Wt+1, of the present discounted value of the utility stream

that begins in period t+ 1.

Ft+1 (Wt+1) = U (ct+1) + βEt+1 [Mt+2 (Wt+2)]

And

Mt+n (Wt+n) = V (ct+n) + βEt+2 [Mt+n+1 (Wt+n+1)] , for n = 2, 3, 4 . . .

where Mt+n (Wt+n) is the expectation of the present discounted value of the

utility stream that begins in period t+n. Taking �rst-order conditions, I obtain

the following proposition about the Euler condition of the commitment case.

The proposition is the Euler condition with the general utility form U (.) and

V (.) and the general endowment process.

PROPOSITION 2: If a committed agent has time-inconsistent preferences

with current and the next one period's utility U (.) and all future periods' utility

V (.), then the Euler conditions are

βEt

[
U ′ (ct+1)

U ′ (ct)
Rt,t+1

]
= 1

βEt+1

[
V ′ (ct+2)

U ′ (ct+1)
Rt+1,t+2

]
= 1

βEt+n

[
V ′ (ct+n+1)

V ′ (ct+n)
Rt+n,t+n+1

]
= 1 for n = 2, 3, 4 . . . (3)
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where Rt,t+1 denotes the return on asset from t to t+ 1.

Again, the second-period pricing kernel of the commitment case can be

rewritten as the product of two parts: the pricing kernel of the standard time-

consistent case and the time-inconsistent component:

mC
t+1,t+2 = β

V ′ (ct+2)

U ′ (ct+1)
= β

U ′ (ct+2)

U ′ (ct+1)

V ′ (ct+2)

U ′ (ct+2)
= mB

t+1,t+2

V ′ (ct+2)

U ′ (ct+2)

where mC
t+1,t+2 and mB

t+1,t+2 denote the second period pricing kernel of the

commitment case and the benchmark time-consistent case, respectively. The

time-inconsistent component measures the valuation di�erence on ct+2between

time-t and time-t+ 1 selves.

V ′ (ct+2)

U ′ (ct+2)
= cγs−γlt+2 = cγs−γlt+1 gγs−γl

When short-run risk aversion is lower than long-run risk aversion, this term is

smaller than 1 and is decreasing with the consumption level at time t, which

indicates that the larger the consumption level at time t is, the greater the

valuation di�erence between time-t and time-t+1 selves becomes. This reduces

the payo� volatility of the long-maturity dividend strips at time t + 1 while

the payo� of the �rst dividend strip is exogenously given and therefore not

a�ected by the time-inconsistent preferences. Thus, when the agent is less averse

to immediate risk, it produces a downward-sloping term structure of dividend

strips.

From time t+n onwards, the pricing kernels of the commitment case are the

same as those for the time-consistent case with the long-run utility V (.). There-

fore, all the long-maturity dividend strips with t > 2 will be priced similarly

to the second dividend strip, and the term structure of risk premia and return
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volatilities will be �at from t = 2 onwards. The pricing kernels in the �rst two

periods are the same as those in the two-period model. From Proposition 1, we

know that the �rst dividend strip will have a higher risk premium and return

volatility than the second dividend strip if γl > γs, and vice versa. The result

is stated in the following proposition.

PROPOSITION 3: For a committed agent with short-run risk aversion γs and

long-run risk aversion γl, there are three di�erent scenarios for the term struc-

ture of risk premia and return volatilities in a T -period binomial-tree model

with an i.i.d. growth rate:

(a) if γs < γl, then E
[
R(1)

]
− Rf > E

[
R(2)

]
− Rf = E

[
R(3)

]
− Rf = . . . =

E
[
R(T )

]
− Rf , σ

(
R(1)

)
> σ

(
R(2)

)
= σ

(
R(3)

)
= . . . = σ

(
R(T )

)
. The term

structures of risk premia and return volatilities are �rst downward-sloping and

then �at.

(b) if γs > γl, then E
[
R(1)

]
− Rf < E

[
R(2)

]
− Rf = E

[
R(3)

]
− Rf = . . . =

E
[
R(T )

]
− Rf , σ

(
R(1)

)
< σ

(
R(2)

)
= σ

(
R(3)

)
= . . . = σ

(
R(T )

)
. The term

structures of risk premia and return volatilities are �rst upward-sloping and

then �at.

(c) if γs = γl, then E
[
R(1)

]
− Rf = E

[
R(2)

]
− Rf = . . . = E

[
R(T )

]
−

Rf , σ
(
R(1)

)
= σ

(
R(2)

)
= . . . = σ

(
R(T )

)
. The term structures of risk pre-

mia and return volatilities are �at.

The main result obtained from the two-period model still holds with T >

2. When γl = γs, it corresponds to the standard time-consistent case, which

generates a �at term structure. When γl 6= γs, the term structure is non-�at.

Because there are only two di�erent risk-aversion levels in my model, all of the

long-term dividends have the same risk premia and return volatilities as the

second dividend strip. When the agent is less averse to immediate risk, the

term structures of risk premia and return volatilities on dividend strips are �rst
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downward-sloping and then �at. When the agent is more averse to immediate

risk, the term structures are �rst upward-sloping and then �at. To generate

a continuously downward-sloping term structure in the commitment case, the

further away the risk is, the more the agent must be risk-averse.

4 The naive agent case

In the naive agent case, the current self constructs the sequence of actions that

maximizes her own preferences. The current self then implements the �rst

action in that sequence, expecting future selves to implement the remaining

ones. However, those future selves conduct their own optimization and there-

fore implement actions that do not maximize earlier selves' preferences. In

other words, the naive agent constantly wants to commit her future selves but

then constantly fails. In solving the two-period model, I must construct a new

optimization problem at every node.

4.1 Two-period model

The optimization problem of the naive agent at t = 0 is the same as that in the

commitment case; thus, the Lagrangian is

L0 = U (c0) +
1

2
βU (cu) +

1

2
βU (cd) +

1

4
β2V (cuu) +

1

4
β2V (cud) +

1

4
β2V (cdu)

+
1

4
β2V (cdd) + λ0 (W0 − c0 − φuWu − φdWd) + λu(Wu − cu − φuuWuu

−φudWud) + λd (Wd − cd − φduWdu + φddWdd)

where {c0,Wu,Wd, cu,Wuu,Wud, cd,Wdu,Wdd} are decision variables and {λ0, λu, λd}

are Lagrangian multipliers. The solution is the same as that in the commitment

case. However, the naive agent only implements her plan for time-0's decision
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{c0,Wu,Wd}. Therefore, only the �rst period's state price will be realized.

φu =
1

2
β
U ′ (cu)

U ′ (c0)
, φd =

1

2
β
U ′ (cd)

U ′ (c0)

At t = 1, the naive agent constructs a new optimization according to her new

preferences. At the node-u, the Lagrangian is

Lu = U (cu) +
1

2
βU (cuu) +

1

2
βU (cud) + µu (Wu − cu − φuuWuu − φudWud)

where {cu,Wuu,Wud} are decision variables and µu is Lagrangian multiplier.

Taking �rst-order conditions and combining with the market clearing condition,

I obtain the second period's state prices.

φuu =
1

2
β
U ′ (cuu)

U ′ (cu)
, φud =

1

2
β
U ′ (cud)

U ′ (cu)

Similarly, for node-d, the second period's state prices are

φdu =
1

2
β
U ′ (cdu)

U ′ (cd)
, φdd =

1

2
β
U ′ (cdd)

U ′ (cd)

The state prices in the naive agent case are observationally equivalent to those

in the time-consistent case with constant short-run risk aversion γs. The naive

agent plans as a committed agent, but only the consumption and portfolio choice

of the current period are implemented. Therefore, the state prices in the naive

agent case should be equal to the �rst period's state prices of the commitment

case repeated for every period. The �rst period's state prices in the commitment

case are identical to those in the time-consistent case because only the short-run

utility is involved. Therefore, the naive agent acts like a time-consistent agent,

and the equilibrium prices are also the same. It follows that the term structure
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of the equity premia is �at, as in the standard time-consistent case with the

i.i.d. growth assumption.

PROPOSITION 4: For a naive agent with short-run risk aversion γs and long-

run risk aversion γl, the term structure of expected returns and return volatilities

are both �at in a two-period binomial-tree model with an i.i.d. growth rate. In

other words, the �rst dividend strip and the second dividend strip have identical

risk premia and return volatilities.

E
[
R(1)

]
−Rf = E

[
R(2)

]
−Rf

σ
(
R(1)

)
= σ

(
R(2)

)

4.2 Multi-period model

I �rst derive the Euler condition of the naive agent case using a recursive method

and then examine the term structure of dividend strips. In a T -period model,

the optimization of a naive agent at time t is

Zt (Wt) ,Max{ct,{θt}} U (ct) + βEt

[
F̂t+1 (Wt+1)

]
subject to

Wt = ct +
∑N

i=1
θt,iSt,i

Wt+1 =

N∑
i=1

θt,i (St+1,i + δt+1,i)

where F̂t+1 (Wt+1) is self t's perception of the future continuation value

function. From time-t self's perspective, this continuation value function should

be identical to that in the commitment case. Time-t self believes that all future

selves would choose consumption and portfolios such that the continuation value

23



function F̂t+1 (Wt+1) is maximized.

F̂t+1 (Wt+1) =Max{ĉt+1,{θ̂t+1}} u (ct) + βEt

[
F̂t+2 (Wt+1)

]
The hat symbol that is used in F̂t+1, ĉt+1 and

{
θ̂t+1

}
indicates that this is the

value that the naive agent at time t expects to be at time t+ 1 but will in fact

not be realized by time-t+ 1 self. By the Envelope Theorem,

F̂ ′t+1 (Wt+1) = U ′ (ct+1)

The following proposition provides the Euler condition for the naive agent case,

which is derived using the general utility form and the general endowment pro-

cess.

PROPOSITION 5: If a naive agent has time-inconsistent preferences with

the current and next period's utility U (.) and all future periods' utility V (.),

then the Euler condition between t and t+ 1 is

βEt

[
U ′(ct+1)

U ′(ct)
Rt,t+1

]
= 1 for t = 0, 1, 2 . . . (4)

where Rt,t+1 denotes the return on asset from t to t+ 1.

The equilibrium state prices in the naive agent case remain the same as

those in the time-consistent case with multi-period models. Therefore, the term

structures of dividend strips are �at with the T -period model, as stated in the

following proposition.

PROPOSITION 6: For a naive agent with short-run risk aversion γs and

long-run risk aversion γl, the term structures of the expected returns and return

volatilities are both �at in a T -period binomial-tree model with an i.i.d. growth

rate.

It can be observed that just in the two-period model, the one-period state
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prices in the naive agent case remain the same as in the time-consistent case

with a constant short-run utility function, and the equilibrium of the naive agent

case is identical to that of the time-consistent case. The main reasoning is as

follows. In every period, the naive agent would behave just like a committed

agent, expecting future selves to commit. However, in the naive agent case,

future selves fail to commit. The naive agent only implements her plan for one

period, and she will move to the next period and make a new plan on the tree.

Essentially, the manner in which the state prices are set in the naive agent case

is similar to taking the �rst period's state prices of the commitment case and

repeating them for every period. Therefore, only the short-run utility function

matters, and the long-run utility function V (.) does not enter into the one-

period state price. The naive agent is myopic in the sense that she does not

know that her plan of the future will never be implemented and she does not

learn from her mistakes. In every period, the agent has irrational expectations

for her future decisions, and she makes the same mistake again and again.

5 The sophisticated agent case

The sophisticated agent will take into consideration the way future selves react

to today's choice. From a game-theoretic point of view, we can consider this

intertemporal decision problem as a sequential game in which the decisions at

di�erent nodes are taken by di�erent selves of the decision maker sequentially.

Time t-self will take into account the reaction of all time t′-selves, for t′ > t.

Time t-self is the leader, and she looks for the best plan that will be coordinated

by all future selves as followers. Therefore, the solution should be constructed

by looking for the subgame perfect equilibrium of the corresponding sequential

game. Note that even though we consider the agent to be strategic in making

her own intertemporal consumption and portfolio choices, she is one of many in
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the �nancial market and remains to be competitive.

5.1 Three-period model

For the sophisticated agent case, I begin with T = 3 because in a two-period

model, the agent only has the short-run utility U (.) in her optimization at

t = 1 and will act like a time-consistent agent in the second period. The second

period's state price will be the same as that in the time-consistent case, and the

term structure will be �at according to Lemma 2.

To determine the subgame perfect equilibrium, I solve by backward induc-

tion. At t = 2, the optimization problem of the agent at the node-uu is

Max U (cuu) +
1

2
βU (cuuu) +

1

2
βU (cuud)

subject to the budget constraint

Wuu = cuu + φuuuWuuu + φuudWuud

Thus, the Lagrangian at the node-uu is

Luu = U (cuu)+
1

2
βU (cuuu)+

1

2
βU (cuud)+λuu (Wuu − cuu − φuuucuuu − φuudcuud)

where {cuu, cuuu, cuud} are decision variables and λuu is a Lagrangian multiplier.

Taking �rst-order conditions, I have the third-period state prices.

φuuu =
1

2
β
U ′ (cuuu)

U ′ (cuu)
, φuud =

1

2
β
U ′ (cuud)

U ′ (cuu)

Similarly, I can obtain the state prices at node-ud, node-du, and node-dd. The

last period's state prices are the same as those in the time-consistent case be-
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cause there is only short-run utility involved.

Now, moving back one period to t = 1, the optimization problem at the

node-u is

Max U (cu) +
1

2
βU (cuu (Wuu)) +

1

2
βU (cud (Wud)) +

1

4
β2V (cuuu (Wuu))+

1

4
β2V (cuud (Wuu)) +

1

4
β2V (cudu (Wud)) +

1

4
β2V (cudd (Wud))

subject to the budget constraint

Wu = cu + φuuWuu + φudWud

The Lagrangian at the node-u is

Lu = U (cu) +
1

2
βU (cuu (Wuu)) +

1

2
βU (cud (Wud)) +

1

4
β2V (cuuu (Wuu)) +

1

4
β2V (cuud (Wuu)) +

1

4
β2V (cudu (Wud)) +

1

4
β2V (cudd (Wud)) +

λu (Wu − cu − φuuWuu − φudWud)

where {cu,Wuu,Wud} are decision variables and λu is a Lagrangian multiplier.

cuu (Wuu) , cud (Wud) , cuuu (Wuu) , cuud (Wuu) , cudu (Wud) , cudd (Wud) are the de-

cision rules of the time-2 self solved at t = 2 optimization. As the leader, the

time-1 self takes into consideration how her choice in the next period's wealth

will a�ect time-2 self's optimal choices, and substitutes the reaction functions

of the followers into her own objective function. Similarly, I can write the La-
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grangian at the node-d. Taking the �rst order conditions,

φuu =
1

2
β
U ′ (cuu)

U ′ (cu)
c′uu (Wuu)+

1

4
β2V

′ (cuuu)

U ′ (cu)
c′uuu (Wuu)+

1

4
β2V

′ (cuud)

U ′ (cu)
c′uud (Wuu)

(5)

φud =
1

2
β
U ′ (cud)

U ′ (cu)
c′ud (Wud)+

1

4
β2V

′ (cudu)

U ′ (cu)
c′udu (Wud)+

1

4
β2V

′ (cudd)

U ′ (cu)
c′udd (Wud)

(6)

φdu =
1

2
β
U ′ (cdu)

U ′ (cd)
c′du (Wdu)+

1

4
β2V

′ (cduu)

U ′ (cd)
c′duu (Wdu)+

1

4
β2V

′ (cdud)

U ′ (cd)
c′dud (Wdu)

(7)

φdd =
1

2
β
U ′ (cdd)

U ′ (cd)
c′dd (Wdd)+

1

4
β2V

′ (cddu)

U ′ (cd)
c′ddu (Wdd)+

1

4
β2V

′ (cddd)

U ′ (cd)
c′ddd (Wdd)

(8)

At t = 1, time inconsistency and the agent's sophistication begin to play a

role. The state prices between t = 1 and t = 2 in the sophisticated agent case

contain not only the one-period marginal rate of substitution (MRS) between

t = 1 and t = 2 but also the two-period MRS between t = 1 and t = 3. Addition-

ally, there are derivative terms, which is a measure of how future consumption

choices will be a�ected by today's choice on the next period's wealth. Compared

with two other cases, only in the sophisticated agent case do all of the future

consumptions appear in the one-period Euler condition, which represents the

strategic component that comes into play.

Now, I proceed to the equilibrium analysis of the term structure of dividend

strips. Because the state price in the last period is the same as that in the

time-consistent case and only depends on the growth rate of the endowment,

the third dividend strip has a payo� that is proportional to the payo� of the

second dividend strip. Therefore, they have the same risk premium and return

volatility. The term structure between the �rst dividend strip and the second

dividend strip depends on the second-period state prices. I show that from the

�rst-order conditions of the t = 1 and t = 2 optimization, these derivative terms

of consumption with respect to wealth are independent of the wealth level and
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equal among all states, i.e.,

c′uu (Wuu) = c′ud (Wud) = c′du (Wdu) = c′dd (Wdd)

c′uuu (Wuu) = c′udu (Wud) = c′duu (Wdu) = c′ddu (Wdd)

c′uud (Wuu) = c′udd (Wud) = c′dud (Wdu) = c′ddd (Wdd)

The future selves will react the same way to time-1 self's decision on the

wealth level irrespective of what wealth level time-1 self chooses. Thus, the

one-period MRS between t = 1 and t = 2, U ′(c2)
U ′(c1)

, is not state-dependent and

the same across all states with power utility and an i.i.d. growth rate. The only

term left to compare is the two-period MRS between t = 1 and t = 3, which is

V ′(c3)
U ′(c1)

. This term will be either increasing or decreasing in c1 depending on the

relationship between γs and γl. When γs < γl,
V ′(c3)
U ′(c1)

is decreasing in c1, and

φuu < φdu, φud < φdd. By Lemma 2, the �rst dividend strip has a higher risk

premium and higher return volatility than the second dividend strip, and the

same argument applies to the opposite case. A detailed proof is presented in

the Appendix.

PROPOSITION 7: For a sophisticated agent with short-run risk aversion γs

and long-run risk aversion γl, there are three di�erent scenarios for the term

structure of risk premia and return volatilities in a three-period binomial-tree

model with an i.i.d. growth rate:

(a) if γs < γl, then E
[
R(1)

]
−Rf > E

[
R(2)

]
−Rf = E

[
R(3)

]
−Rf , σ

(
R(1)

)
>

σ
(
R(2)

)
= σ

(
R(3)

)
.

(b) if γs > γl, then E
[
R(1)

]
−Rf < E

[
R(2)

]
−Rf = E

[
R(3)

]
−Rf , σ

(
R(1)

)
<

σ
(
R(2)

)
= σ

(
R(3)

)
.

(c) if γs = γl, then E
[
R(1)

]
−Rf = E

[
R(2)

]
−Rf = E

[
R(3)

]
−Rf , σ

(
R(1)

)
=

σ
(
R(2)

)
= σ

(
R(3)

)
.

Because there is no dynamic inconsistency in the last period, we focus on
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the relationship between the �rst two dividend strips. The sophisticated agent

case shows a pattern similar to that of the commitment case: when the agent

is less averse to immediate risk, the short-maturity dividend strip has both

a higher risk premium and volatility than the long-maturity dividend strip.

The mechanism is also similar to that in the commitment case. Because the

state prices for calculating one-period returns are the same, the risk premium

depends on the payo� structure of the two assets at t = 1. The one-period state

prices become state-dependent in the sophisticated agent case, such that the

long-maturity dividend strip has a di�erent payo� structure at t = 1 from the

short-maturity dividend. When the agent is less risk averse toward immediate

risk, the next one-period consumption is valued lower if the current state is the

good state than if the current state is the bad state. The long-maturity dividend

becomes less risky than the short-maturity dividend, which creates a downward-

sloping term structure. In the opposite case when the agent is more averse to

immediate risk, the term structures of risk premia and return volatilities are

both upward-sloping.

5.2 Euler condition derived from the multi-period model

Because it is a special case for T = 3 that the derivative terms in the second-

period state price are equal and independent of wealth, I aim to determine

whether the result for the term structure still holds when T > 3. In fact, the

state prices in the three-period model can be generalized to the multi-period

model with T > 3. I �rst derive the Euler condition of the T -period model with

a recursive method. This part of the model is solved with the general utility

function form and the general endowment process. The optimization problem

of a sophisticated agent is
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Max U (ct) + Et
[
βU (ct+1) + β2V (ct+2) + · · ·+ βT−tV (cT )

]
subject to

ct +
∑N

i=1
θt,iSt,i =

N∑
i=1

θt−1,i (St,i + δt,i)

De�ne the value function Zt (Wt) as the maximum value of the agent's life time

utility. The optimization problem becomes

Zt (Wt) ,Maxct,{θt} U (ct) + βEt [Ft+1 (Wt+1)]

subject to

Wt = ct +
∑N

i=1
θt,iSt,i

Wt+1 =

N∑
i=1

θt,i (St+1,i + δt+1,i)

where Ft+1 (Wt+1) is the continuation value function at time t+ 1.

Ft+1 (Wt+1) = U (ct+1) + Et+1

[
βV (ct+2) + β2V (ct+3) + · · ·+ βT−t−1V (cT )

]
(9)

Take �rst-order conditions,

Et

[
β
F ′t+1 (Wt+1)

U ′ (ct)

St+1 + δt+1

St

]
= 1 (10)

So the pricing kernel between t and t+ 1 is

mS
t,t+1 = β

F ′t+1 (Wt+1)

U ′ (ct)
= β

U ′ (ct+1)

U ′ (ct)

F ′t+1 (Wt+1)

Z ′t+1 (Wt+1)
= mB

t,t+1

F ′t+1 (Wt+1)

Z ′t+1 (Wt+1)
(11)
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where mS
t,t+1 and mB

t,t+1 denote the pricing kernel of the sophisticated agent

case and the time-consistent case respectively. Equation (11) holds, because by

Envelope Theorem,

Z ′t (Wt) = U ′ (ct)

Just like the commitment case, the pricing kernel of the sophisticated agent case

is equal to the pricing kernel of the standard time-consistent case (mB
t,t+1) mul-

tiplied by a time-inconsistent component (
F ′

t+1(Wt+1)

Z′
t+1(Wt+1)

). The time-inconsistent

component measures the valuation di�erence on the consumption stream from

ct+1 onwards between time-t self and time-t+1 self. Compare Ft+1 in (9) with

Zt+1, the two selves disagree only on the valuation of ct+2.

Zt+1 (Wt+1) = U (ct+1) + Et+1

[
βU (ct+2) + β2V (ct+3) + · · ·+ βT−t−1V (cT )

]
If the agent has a higher risk aversion for the long run risk than the short run

risk, then F ′t+1 < Z ′t+1 so, mS
t,t+1 < mB

t,t+1. And the pricing kernel of the

sophisticated agent case will again be decreasing with the consumption level at

time t , as in the commitment case. This will decrease the price volatility of the

long-maturity dividend strips, making it less risky than the �rst dividend strip

and thus creating a downward-sloping term structure of dividend strips.

By substituting (9) into (10), I obtain the following proposition for the Euler

condition of the sophisticated agent case.

PROPOSITION 8: If a sophisticated agent has time-inconsistent preferences

with current utility and next period's utility U (.) and all future periods' utility

V (.), then the Euler condition between t and t+ 1 is
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Et[(β
U ′ (ct+1)

U ′ (ct)
c
′

t+1 (Wt+1) + β2V
′ (ct+2)

U ′ (ct)
c
′

t+2 (Wt+1) + · · ·

+βT−t
V ′ (cT )

U ′ (ct)
c
′

T (Wt+1))Rt,t+1] =1 (12)

where where Rt,t+1 denotes the return on asset from t to t+ 1.

Similar to the three-period model, the one-period Euler condition of the

sophisticated agent case between t and t+1 contains not only the MRS between

ct and ct+1, but also the MRS between ct and all future consumptions ct+n.

There are also derivative terms of future consumptions on tomorrow's wealth

c′t+n (Wt+1), which is a measure of how future selves will react to today's choice

regardingWt+1. The sophisticated agent is aware that by giving up consumption

today, she can increase tomorrow's wealth, which will a�ect all future selves'

consumption decisions. The equilibrium state prices are such that the utility

of consuming one unit less today is equal to the aggregate utility of all future

periods' increase in consumption. As in the three-period model, the state prices

will be state-dependent, which will lead to a non-�at term structure of dividend

strips.

The derivative terms c′t+n (Wt+1) in the Euler condition are di�cult to ob-

tain analytically; therefore, I resort to the numerical method. To simplify the

numerical process, I �rst simplify the Euler condition using the Envelope The-

orem.

Z ′t (Wt) = U ′ (ct)

The relation between Ft and Zt is

Ft = Zt − βEt [U (ct+1)− V (ct+1)]
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F ′t+1 (Wt+1) = Z ′t+1 (Wt+1)− βEt+1

[
(U ′ (ct+2)− V ′ (ct+2)) c

′
t+2 (Wt+1)

]
= U ′ (ct+1)− βEt+1

[
(U ′ (ct+2)− V ′ (ct+2)) c

′
t+2 (Wt+1)

]
By substituting the relation into the �rst-order condition, I obtain the simpli�ed

form of the Euler condition with the recursive method.

βEt

[(
U ′ (ct+1)

U ′ (ct)
−
βEt+1

[
(U ′ (ct+2)− V ′ (ct+2)) c

′
t+2 (Wt+1)

]
U ′ (ct)

)
Rt,t+1

]

= 1 (13)

Equation (13) is equivalent to the Euler condition (12) in Proposition 8. In

this equation, there are two parts in the pricing kernel. The �rst part is the

time-consistent part. The second part is the time-inconsistency part, and the

numerator only contains ct+2. This result is obtained because the time-t agent

rationally expects that time-t+ 1 self will have a di�erent valuation relative to

that of time-t self with respect to ct+2 only. When the long-run utility V (.) is

identical to the short-run utility U (.), the Euler condition of the sophisticated

agent case collapses to the standard time-consistent case with only U (.). I will

use equation (13) for the following numerical analysis.

5.3 Numerical results

In this section, instead of comparing the dividend strips with di�erent maturi-

ties, I compare the risk premia and return volatilities between the stock and the

�rst dividend strip, following van Binsbergen et al. (2012). I assume the ag-

gregate endowment follows a binomial-tree process in which the growth rate of
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Table 1: Choice of Parameter Values for the Model

the endowment is i.i.d.. The tree is assumed to be recombining. The parameter

values I use are listed below:

I assume the growth rate of endowment is i.i.d., with a probability
{

1
2 ,

1
2

}
to go to the up-node and the down-node. The magnitude of the gross rate of

growth is u = 1.06 for the up-node and d = 0.97 for the down-node. The mean

of the growth rate of endowment is therefore 1.5%, and the standard deviation is

4.5%, which is a reasonable assumption for the aggregate economy.4 I normalize

the initial endowment δ0 = 1. The time-discounting factor is β = 0.98. There

are �ve periods in total. The model still holds with more periods. Here, I

use the T = 5 case for a simple illustration. For the preference parameters,

it can be observed that when the long-run utility is the same as the short-run

utility, the second part of the pricing kernel in equation (10) becomes 0, and

the Euler condition is the same as that in the time-consistent case with utility

U (.). Therefore, it is natural to set the time-consistent case as the benchmark

and vary the long-run risk aversion to observe how it a�ects the equity term

4The historical record of the consumption growth rate from 1889 to 1978 in the U.S is
1.83% and the standard deviation is 3.57% (Mehra and Prescott (1985)).
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structure. I choose short-run risk aversion to be �xed at γs = 5 and vary the

long-run risk aversion γl from 1 to 10. This process provides an overview of how

the risk premia and return volatilities of the dividend strip and stock vary as a

function of time inconsistency. The numerical result serves only to demonstrate

how the term structure changes with the dynamic inconsistency and is not a

detailed calibration. The purpose is to demonstrate the direction of the slope of

the term structure, but not to explain the equity premium puzzle. The results

are as follows:

Table 2: Term Structure of Dividend Strips for the Sophisticated

Agent Case.
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Figure 1: Risk Premia of the Stock and the First Dividend Strip with

Di�erent Values of γl.

Figure 2: Return Volatilities of the Stock and the First Dividend

Strip with Di�erent Values of γl.
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From the graphs, it can be observed that the general pattern of the three-

period model still holds. First, the curves of stock and the �rst dividend strip

intersect at the point at which γl = γs = 5, which means that in the time-

consistent case, the dividend strip has the same risk premium and return volatil-

ity as the stock. Second, when γl > γs = 5, i.e. the agent is less averse to

immediate risk, the dividend strip has a higher risk premium and return volatil-

ity than the stock, which implies a downward-sloping term structure. Another

interesting �nding is that the stock can even have a negative risk premium when

the time inconsistency is su�ciently large. This negative value is obtained when

the stock price at t = 1 moves in the opposite direction from the endowment to

the extent that it o�sets the �rst dividend payment. The stock pays o� more

in the bad state than in the good state, and it has a negative risk premium.

Third, when γl < γs = 5, i.e. the agent is more averse to immediate risk, the

dividend strip has a lower risk premium and return volatility than the stock,

which implies an upward-sloping term structure. Fourth, the slope of the term

structure becomes steeper as the degree of the time inconsistency increases (i.e.,

there is a greater di�erence between γs and γl).

The reasoning is still the same. The one-period Euler condition of the so-

phisticated agent case depends on all future consumptions, and the state prices

become dependent on the current state. When the agent is less averse to imme-

diate risk, the state prices decrease with the consumption of the current state.

This state dependency changes the payo� structure of the long-maturity divi-

dend strips, making them less risky than the short-maturity ones and thereby

creating a downward-sloping term structure of dividend strips.
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6 Conclusion

In this paper, I construct a general equilibrium model in which the agent has

time-inconsistent risk preferences to study the term structure of dividend strips.

I solve the model in three di�erent cases. The naive agent case has the same

equilibrium prices as the standard time-consistent case and therefore leads to

a �at term structure. In the commitment case and the sophisticated agent

case, when the agent is less averse to immediate risk than to future risks, the

dividend strip has a higher risk premium and return volatility than the stock,

implying a downward-sloping term structure of equity returns. This result is

consistent with the empirical �ndings of van Binsbergen, Brandt and Koijen

(2012). I explain the mechanism of my model and show that the main reason

why the time inconsistency generates a downward-sloping term structure is that

the state prices become state-dependent and, in the case in which the agent is

less risk-averse to immediate risk, future cash �ows are valued higher when the

current state is the bad state than when the current state is the good state.

This e�ect reduces the return volatilities of the long-maturity dividend strips

and causes them to be less risky than the short-maturity dividend strips. One

limitation of the study is that the elasticity of intertemporal substitution also

plays a role with time-additive utility. In future work, I will extend the model

to the recursive utility case, in which I can separate risk aversion from the

elasticity of intertemporal substitution so that I can obtain a clear view of how

risk aversion alone a�ects the term structure of dividend strips.
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Appendix

Proof for Lemma 1:

Combining the F.O.C.s and the market-clearing conditions, I have

φuu =
β

2
uγs−2γl , φud =

β

2
uγs−γld−γl

φdu =
β

2
dγs−γlu−γl , φdd =

β

2
dγs−2γl

So

φuu
φdu

=
(u
d

)γs−γl
and

φud
φdd

=
(u
d

)γs−γl
u > 1 > d > 0, so u

d > 1.

If γs < γl, then γs − γl < 0, 0 < φuu

φdu
< 1 and 0 < φud

φdd
< 1. Therefore,

φuu < φdu, φud < φdd.

If γs > γl, then γs−γl > 0, φuu

φdu
> 1 and φud

φdd
> 1. Therefore, φuu > φdu, φud >

φdd.

If γs = γl, then γs−γl = 0, φuu

φdu
= 1 and φud

φdd
= 1. Therefore, φuu = φdu, φud =

φdd.

Proof for Lemma 2:

The �rst-period expected return and the return volatility of the �rst dividend

strip is

E
[
R(1)

]
=

1
2u+ 1

2d

φuu+ φdd

σ
(
R(1)

)
=

1
2u−

1
2d

φuu+ φdd

The �rst-period expected return and the return volatility of the second dividend
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strip are

E
[
R(2)

]
=

1
2P

(2)
u + 1

2P
(2)
d

φuP
(2)
u + φdP

(2)
d

σ
(
R(2)

)
=

1
2P

(2)
u − 1

2P
(2)
d

φuP
(2)
u + φdP

(2)
d

where

P (2)
u = φuuu

2 + φudud = u (φuuu+ φudd)

P
(2)
d = φduud+ φddd

2 = d (φduu+ φddd)

If φuu = φdu, φud = φdd, then φuuu + φudd = φduu + φddd, and
P (2)

u

P
(2)
d

= u
d .

The payo� of the second dividend strip at t = 1 is proportional to that of the

�rst dividend strip in both two states. Let P
(2)
u = ku, and P

(2)
d = kd for some

constant k. Therefore,

E
[
R(2)

]
=

1
2ku+ 1

2kd

φuku+ φdkd
=

1
2u+ 1

2d

φuu+ φdd
= E

[
R(1)

]
σ
(
R(2)

)
=

1
2ku−

1
2kd

φuku+ φdkd
=

1
2u−

1
2d

φuu+ φdd
= σ

(
R(1)

)

If φuu < φdu, φud < φdd, then φuuu + φudd < φduu + φddd, and
P (2)

u

P
(2)
d

< u
d .

The second dividend strip has a smaller payo� volatility at t = 1 than the �rst

dividend strip.
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E
[
R(2)

]
=

1
2P

(2)
u /P

(2)
d + 1

2

φuP
(2)
u /P

(2)
d + φd

=

1/2
φu

(
φu

P (2)
u

P
(2)
d

+ φd

)
+ 1

2 −
1
2
φd

φu

φu
P

(2)
u

P
(2)
d

+ φd

=
1/2

φu
− 1

2

φd

φu
− 1

φu
P

(2)
u

P
(2)
d

+ φd

<
1/2

φu
− 1

2

φd

φu
− 1

φu(
u
d ) + φd

= E
[
R(1)

]

Thus, the risk premium E
[
R(2)

]
−Rf < E

[
R(1)

]
−Rf .

σ
(
R(2)

)
=

1
2P

(2)
u /P

(2)
d − 1

2

φuP
(2)
u /P

(2)
d + φd

<
1/2

φu
− 1

2

φd

φu
− 1

φu(
u
d ) + φd

= E
[
R(1)

]

=

1/2
φu

(
φu

P (2)
u

P
(2)
d

+ φd

)
− 1

2 −
1
2
φd

φu

φu
P

(2)
u

P
(2)
d

+ φd

=
1/2

φu
− 1

2

φd

φu
+ 1

φu
P

(2)
u

P
(2)
d

+ φd

<
1/2

φu
− 1

2

φd

φu
+ 1

φu(
u
d ) + φd

= σ
(
R(1)

)

If φuu > φdu, φud > φdd, then φuuu + φudd > φduu + φddd, and
P (2)

u

P
(2)
d

> u
d .

The second dividend strip has a larger payo� volatility at t = 1 than the �rst

dividend strip. By the same argument, E
[
R(2)

]
− Rf > E

[
R(1)

]
− Rf and

σ
(
R(2)

)
> σ

(
R(1)

)
in this case.

Proof for Proposition 1:
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The conclusion for the risk premium and return volatility directly follows from

Lemma 1 and Lemma 2. For the Sharpe ratio,

E [mR] = 1

E [m]E [R] + Cov (m,R) = 1

E [m]E [R]− 1 = −ρm,Rσ(m)σ(R)

E [R]− 1

E [m]
= −ρm,Rσ(m)σ(R)

E [m]

E [R]−Rf
σ(R)

= −ρm,R
σ(m)

E [m]

On a binomial-tree with only two states, ρm,R = 1 for all assets. There-

fore the Sharpe ratio SR =
E[R]−Rf

σ(R) = −σ(m)
E[m] and is equal across all assets.

SR
(
R(1)

)
= SR

(
R(2)

)
.

Proof for Proposition 2:

Zt(Wt) = Max{θt} U(Wt −
N∑
i=1

θt,iSt,i) + βEt [Ft+1(θt,i(St+1,i + δt+1,i))]

Ft+1(Wt+1) = Max{θt+1} U(Wt+1 −
N∑
i=1

θt+1,iSt+1,i) +

βEt+1 [Mt+2(θt+1,i(St+2,i + δt+2,i))]

Mt+n(Wt+n) = Max{θt+n} V (Wt+n −
N∑
i=1

θt+n,iSt+n,i) +

βEt+n [Mt+n+1(θt+n,i(St+n+1,i + δt+n+1,i))] for n = 2, 3, 4 . . .
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F.O.Cs:

U ′ (ct) (−St,i) = βEt

[
F

′

t+1(Wt+1)· (St+1,i + δt+1,i)
]

U ′ (ct+1) (−St+1,i) = βEt+1

[
M

′

t+2(Wt+2)· (St+2,i + δt+2,i)
]

V ′ (ct+n) (−St+n,i) = βEt+n

[
M

′

t+n+1(Wt+n+1)· (St+n+1,i + δt+n+1,i)
]

By the Envelope Theorem,

F
′

t+1(Wt+1) = U ′ (ct+1)

M ′t+n(Wt+n) = V ′ (ct+n) for n = 2, 3, 4 . . .

By substituting this relation into the F.O.Cs, I obtain the Euler condition:

βEt

[
U ′ (ct+1)

U ′ (ct)
Rt,t+1

]
= 1

βEt+1

[
V ′ (ct+2)

U ′ (ct+1)
Rt+1,t+2

]
= 1

βEt+n

[
V ′ (ct+n+1)

V ′ (ct+n)
Rt+n,t+n+1

]
= 1 for n = 2, 3, 4 . . .

Proof for Proposition 3:

I �rst prove that when γl = γs, i.e in the time-consistent case, all the dividend

strips have the same payo� structure at t = 1. In other words,

P
(1)
u

P
(1)
d

=
P

(2)
u

P
(2)
d

= · · · = P
(T )
u

P
(T )
d

=
u

d
at t = 1

I use proof by induction to show that
P (t)

u

P
(t)
d

= u
d for all t . In the time-consistent
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case, the state prices are state-independent and universal at all nodes. At every

node, I have

φu =
1

2
βu−γ , φd =

1

2
βd−γ

When t = 1,
P (1)

u

P
(1)
d

= u
d , the conclusion holds.

When t = 2, P
(2)
u = φuu

2 + φdud = u (φuu+ φdd), P
(2)
d = φuud + φdd

2 =

d (φuu+ φdd),
P (2)

u

P
(2)
d

= u
d also holds.

Suppose that when t = n,
P (n)

u

P
(n)
d

= u
d holds. The payo� structure of the n-th divi-

dend strip at t = n in n+1 states is
{
un, un−1d, un−2d2, . . . , u2dn−2, udn−1, dn

}
.

The payo� structure of the (n+ 1)-th dividend strip at t = n in n+ 1 states is

{
φuu

n+1 + φdu
nd, φuu

nd+ φdu
n−1d2, . . . , φuu

2dn−1 + φdud
n, φuud

n + φdd
n+1
}

= (φuu+ φdd)
{
un, un−1d, un−2d2, . . . , u2dn−2, udn−1, dn

}
Thus, the payo� of the (n+1)-th dividend strip at t = n is proportional to that

of the n-th dividend strip in all n+1 states. One unit of the (n+1)-th dividend

strip pays (φuu+ φdd) times the payo� of the n-th dividend strip. Therefore,

the price of the (n + 1)-th dividend strip at t = 1 should also be (φuu+ φdd)

times the price of the n-th dividend strip.

P (n+1)
u = (φuu+ φdd)P

(n)
u

P
(n+1)
d = (φuu+ φdd)P

(n)
d

As a result,
P (n+1)

u

P
(n+1)
d

=
P (n)

u

P
(n)
d

= u
d holds true as well. By induction,

P (t)
u

P
(t)
d

= u
d

holds true for all t. Because all dividend strips have the same payo� structure

at t = 1, they should have the same risk premium and return volatility. Part
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(c) of the Proposition 3 is proved.

When γl 6= γs, the committed agent still acts like a time-consistent one with

constant risk aversion γl from t = 2 onwards. By the same argument, the payo�

structure of all the future dividend strips with t > 2 should be proportional to

that of the second dividend strip. The term structure is �at from t = 2 onwards.

The comparison of the second dividend strip with the �rst dividend strip is the

same as that in the two-period model. Part (a) and (b) of the proposition prove

to be true.

Proof for Proposition 5:

Zt(Wt) =Max{θt} U(Wt −
N∑
i=1

θt,iSt,i) + βEt

[
F̂t+1(θt,i(St+1,i + δt+1,i))

]

F.O.C.

U ′ (ct) (−St,i) = βEt

[
F̂ ′t+1(Wt+1)(St+1,i + δt+1,i)

]
By the Envelope Theorem,

F̂ ′t (Wt) = U ′(ct)

By substituting the relation into F.O.C., I obtain the Euler condition.

βEt

[
U ′(ct+1)

U ′(ct)
Rt,t+1

]
= 1

Proof for Proposition 7:

The last period's state price of the sophisticated agent case is the same as

that in the time-consistent case; therefore, the third dividend strip should have
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its payo� structure proportional to that of the second dividend strip at t = 1.

Therefore, the strips have the same risk premium and return volatility.

P
(3)
u

P
(3)
d

=
P

(2)
u

P
(2)
d

E
[
R(2)

]
= E

[
R(3)

]
σ(R(2)) = σ(R(3))

To compare the �rst and the second dividend strips, I must determine how the

second period's state prices depend on the state at t = 1 by Lemma 2. The

second period's state prices are listed in (5)-(8). With isoelastic utility and i.i.d.

growth endowment,

U ′ (cuu)

U ′ (cu)
=

U ′ (cdu)

U ′ (cd)
= u−γs ,

U ′ (cud)

U ′ (cu)
=

U ′ (cdd)

U ′ (cd)
= d−γs

Because cuu, cud, cdu, cdd are determined by the time-2 self and the optimization

contains only short-run utility U (.), the consumption rule should be identical to

that in the time-consistent case, with ct being proportional to Wt, and
ct
Wt

does

not depend on Wt. Therefore, c
′
uu (Wuu) = c′ud (Wud) = c′du (Wdu) = c′dd (Wdd).

From the Euler condition between t = 2 and t = 3,
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φuuu =
1

2
β

(
cuuu
cuu

)−γs
cuuu =

(
2φuuu
β

)−γs
cuu,

c′uuu(Wuu) =

(
2φuuu
β

)−γs
c′uu(Wuu),

similarly to other derivative terms. In equilibrium, φuuu = φudu = φduu =

φddu, φuud = φudd = φdud = φddd. Therefore,

c′uuu (Wuu) = c′udu (Wud) = c′duu (Wdu) = c′ddu (Wdd) ,

c′uud (Wuu) = c′udd (Wud) = c′dud (Wdu) = c′ddd (Wdd)

V ′(c3)

U ′(c1)
=
V ′(c3)

V ′(c1)

V ′(c1)

U ′(c1)
= g−γl1,2 g

−γl
2,3

V ′(c1)

U ′(c1)

where g1,2 and g2,3 are the growth rates in the �rst and second period respec-

tively.

γl > γs

⇒ −V
′(c1)

V ′(c1)
> −U

′(c1)
U ′(c1)

⇒ U ′(c1)V
′′(c1) < V ′(c1)U

′′(c1)

⇒ U ′(c1)V
′′(c1)−V ′(c1)U

′′(c1)
U ′(c1)2

< 0

⇒ (V
′(c1)

U ′(c1)
)′ < 0

Thus, if the long-run risk aversion is higher than the short-run risk aversion,

V ′(c1)
U ′(c1)

is decreasing in c1. Therefore,
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V ′(cuuu)

U ′(cu)
= u−2γl

V ′(cu)

U ′(cu)
< u−2γl

V ′(cd)

U ′(cd)
=
V ′(cduu)

U ′(cd)

V ′(cuud)

U ′(cu)
= u−γld−γl

V ′(cu)

U ′(cu)
< u−γld−γl

V ′(cd)

U ′(cd)
=
V ′(cdud)

U ′(cd)

I have φuu < φdu. Similarly, φud < φdd. By Lemma 2, E[R(1)]−Rf > E[R(2)]−

Rf , σ(R
(1)) > σ(R(2)). Part (a) of Proposition 7 is proved. By the same

argument, (b) and (c) also hold true.
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