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Optimal Portfolio Selection with and without Risk-free Asset

In this paper, we consider optimal portfolio problems with and without risk-free asset, taking

into account estimation risk. For the case with a risk-free asset, we derive the exact distribution

of out-of-sample returns of various optimal portfolio rules, including the two-fund and three-fund

rules suggested by Kan and Zhou (2007), and compare their out-of-sample performance with the

equally weighted portfolio (i.e., 1/N rule). We find that the dominance of the 1/N rule over

various optimal portfolio rules as documented by DeMiguel, Garlappi, and Uppal (2009) was due

in part to the exclusion of risk-free asset in their construction of optimal portfolios, even though

those optimal portfolio rules were designed to include the risk-free asset. In order to have a direct

comparison with the 1/N rule of risky assets only, we also consider an optimal portfolio problem

without risk-free asset and develop a new portfolio rule that is designed to mitigate estimation risk

in this case. We show that our new portfolio rule performs well relative to the 1/N rule in both

calibrations and real datasets.



1. Introduction

Although many sophisticated portfolio selection models have been developed since Markowitz’s

(1952) seminal paper, the mean-variance framework is still the major model used in practice today

in asset allocation and active portfolio management.1 One main reason is that many implementa-

tion issues, such as factor exposures and trading constraints, can be easily accommodated within

this framework which allows for analytical insights and fast numerical solutions. Another reason

is that the intertemporal hedging demand is found typically small so that independent returns over

time is a workable assumption in the real world. However, to apply the mean-variance framework

in practice, the true parameters are unknown and have to be estimated from data. When estimated

parameters instead of true parameters are used in an optimal portfolio rule, there can be a sub-

stantial deterioration of performance. Brown (1976), Bawa, Brown, and Klein (1979), and Jorion

(1986) are examples of earlier work that provide sophisticated portfolio rules to mitigate the es-

timation risk. Recently, Kan and Zhou (2007), and Tu and Zhou (2011), among others, provide

explicit portfolio rules that are designed to reduce the impact of estimation risk.

In a thought provoking paper, DeMiguel, Garlappi, and Uppal (2009, DGU hereafter) compare

the equally weighted portfolio (1/N rule) with the sample-based mean-variance portfolio rule as

well as a host of more sophisticated rules. They find that

Based on parameters calibrated to the US equity market, our analytical results and

simulations show that the estimation window needed for the sample-based mean-

variance strategy and its extensions to outperform the 1/N benchmark is around 3000

months for a portfolio with 25 assets and about 6000 months for a portfolio with 50

assets. This suggests that there are still many “miles to go” before the gains promised

by optimal portfolio choice can actually be realized out of sample.

Note that there is an important condition for the above statement to hold, that is, the 1/N rule has a

Sharpe ratio that is close to the true optimal. For example, the above statement was obtained under

the assumption that the Sharpe ratio of the true optimal portfolio is 0.15, whereas the Sharpe ratio

of the equally weighted portfolio is 0.12. In their simulations, the parameters were chosen such
1See Grinold and Kahn (1999), Litterman (2003), Meucci (2005), Qian, Hua, and Sorensen (2007) for practical

applications of the mean-variance framework.
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that the Sharpe ratio of the true optimal portfolio is 0.1477, whereas the Sharpe ratio of the equally

weighted portfolio ranges from 0.1356 to 0.1466. However, such condition does not always hold in

actual data. Therefore, it is surprising that DGU find outperformance of the 1/N rule even in some

datasets where such condition does not seem to hold. It turns out that DGU are in fact comparing

the 1/N rule with optimal portfolios that are normalized to be fully invested in the risky assets.

This makes the comparison inappropriate because the optimal portfolio rules that they considered

were derived under the assumption that the investor has access to a risk-free asset in addition to

the risky assets. We show in this paper that the out-of-sample returns of these normalized version

of optimal portfolios actually have no finite moments. This explains why the normalized optimal

portfolios have poor out-of-sample performance. If the risk-free asset is allowed, we show that the

optimal portfolios perform significantly better and they beat the 1/N rule in many cases.

However, there are situations where one is interested in fully investing in risky assets, especially

in the context of delegated portfolio management because mutual funds and institutional equity

funds are often required to be fully invested in the equity market. As a result, we are interested

in comparing the out-of-sample performance of 1/N rule with optimal portfolios which are based

on just risky assets. Instead of simply rescaling an optimal portfolio designed for the case with

risk-free asset as done in DGU, we consider in this paper the optimal portfolio choice problem

for the case without a risk-free asset, and provide a portfolio rule that mitigates the impact of

estimation risk. Specifically, instead of plugging in the sample mean and covariance matrix into

the optimal portfolio formula, we adjust the portfolio by a suitable function of the data designed

in such a way to optimally account for the estimation risk. We derive the exact distribution of the

out-of-sample return of an implementable version of this optimal portfolio rule. Under reasonable

length of estimation window used in practice, we find that our new rule performs well. It dominates

the plug-in rule which can perform quite poorly. In addition, we show that our new portfolio rule

outperforms the 1/N rule in our calibrations. Moreover, for the same empirical datasets used by

DGU, our new rule also outperforms the 1/N rule in most cases. While insights from DGU cast

some doubt on the value of existing investment theory, our paper re-affirms the usefulness of a host

of portfolio rules that take into account of the impact of estimation risk.

The remainder of the paper is organized as follows. Section 2 considers optimal portfolio rules

for the case with a risk-free asset. Section 3 provides an analysis of the optimal portfolio rules for
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the case without a risk-free asset. Section 4 concludes.

2. Portfolio Rules with a Risk-free Asset

In this section, we discuss the portfolio choice problem for a mean-variance investor when both

risky assets and a risk-free asset are available. In particular, we present the exact distribution of the

out-of-sample returns and an analysis of the out-of-sample performance of various portfolio rules

in the presence of estimation risk.

2.1 The Setup

Consider the standard portfolio choice problem in which an investor chooses his optimal port-

folio among N risky assets and a risk-free asset. Denote the excess returns (in excess of risk-free

rate) of the N risky assets at time t by rt , with mean µ and covariance matrix Σ. Let w be the

weights of a portfolio on the N risky assets, and 1− 1′Nw is invested in the risk-free asset, where

1N stands for the N×1 vector of ones. Under the standard mean-variance framework, the investor

chooses an optimal portfolio to maximize the following utility function

U(w) = w′µ− γ

2
w′Σw, (1)

where γ is the coefficient of risk aversion. Practitioners (see, e.g., Qian, Hua, and Sorensen (2007))

often use this utility set-up because of its convenient interpretation that U(w) is the risk-adjusted

return (certainty equivalent).

When µ and Σ are known, it is straightforward to show that the optimal portfolio has the

following weights on the risky assets

w∗ =
1
γ

Σ
−1

µ, (2)

and the utility of holding this optimal portfolio is

U(w∗) =
θ 2

2γ
, (3)

where θ 2 = µ ′Σ−1µ is the squared Sharpe ratio of the tangency portfolio of the N risky assets.

2.2 Optimal Portfolio Rules with Estimation Risk
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In reality, µ and Σ are unknown to investors, and they need to be estimated. We assume an

investor estimates µ and Σ using an estimation window of h periods of historical return data, where

h > N. For analytical tractability, we make the common assumption that rt is independent and

identically distributed over time, and has a multivariate normal distribution. Under this assumption,

the maximum likelihood estimators of µ and Σ at time t are given by

µ̂t =
1
h

t

∑
s=t−h+1

rs, (4)

Σ̂t =
1
h

t

∑
s=t−h+1

(rs− µ̂t)(rs− µ̂t)
′. (5)

The simplest way to estimate w∗ is to replace µ and Σ in (2) by µ̂t and Σ̂t to obtain

ŵt =
1
γ

Σ̂
−1
t µ̂t . (6)

Since ŵt is a maximum likelihood estimator of w∗, we call ŵt the maximum likelihood (ML) rule.

The expected out-of-sample utility of the ML rule is defined as

E[U(ŵt)] = E[ŵ′t µ]−
γ

2
E[ŵ′tΣŵt ]. (7)

Since ŵt 6= w∗ with probability one, we have E[U(ŵt)] < U(w∗). Specifically, Kan and Zhou

(2007) show that when h > N +4,

E[U(ŵt)] =
k1θ 2

2γ
− Nh(h−2)

2γ(h−N−1)(h−N−2)(h−N−4)
, (8)

where

k1 =

(
h

h−N−2

)[
2− h(h−2)

(h−N−1)(h−N−4)

]
< 1. (9)

Although conditional on ŵt , the out-of-sample return of the ML rule at time t + 1 (i.e., ŵ′trt+1)

is normally distributed, its unconditional distribution is not normally distributed. The exact un-

conditional distribution of the out-of-sample return of the ML rule is presented in Kan and Wang

(2015).

Due to estimation errors in µ̂t and Σ̂t , the utility loss from the ML rule can be significant,

especially when N is large relative to h. In order to mitigate the impact of estimation risk, Kan

and Zhou (2007) propose two alternative portfolio rules. The first one is a two-fund rule that is
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optimal in the class of portfolio rules with weights cΣ̂
−1
t µ̂t/γ , where c is a scalar. They show that

the optimal c is given by

c∗ =
k3θ 2

θ 2 + N
h
, (10)

where

k3 =
(h−N−1)(h−N−4)

h(h−2)
. (11)

Since c∗ < 1, the optimal two-fund rule calls for less investment in the sample tangency portfolio.

This is because with estimation errors, the sample tangency portfolio involves more risk than the

true tangency portfolio, making it less attractive. Note that θ 2 is unobservable to investors, so the

optimal two-fund rule with weights c∗Σ̂−1
t µ̂t/γ is not attainable. Kan and Zhou (2007) suggest an

implementable version of the optimal two-fund rule

ŵII
t =

ĉt

γ
Σ̂
−1
t µ̂t , (12)

where

ĉt =
k3θ̂ 2

a,t

θ̂ 2
a,t +

N
h

, (13)

and

θ̂
2
a,t =

(h−N−2)θ̂ 2
t −N

h
+

2(θ̂ 2
t )

N
2 (1+ θ̂ 2

t )
− h−2

2

hB
θ̂ 2

t /(1+θ̂ 2
t )
(N/2,(h−N)/2)

, (14)

with θ̂ 2
t = µ̂ ′t Σ̂

−1
t µ̂t being the maximum likelihood estimator of θ 2 at time t, and

Bx(a,b) =
∫ x

0
ya−1(1− y)b−1dy (15)

being the incomplete beta function. Given that θ̂ 2
a,t is a function of θ̂ 2

t , we can define a function of

θ̂ 2
t ,

g1(θ̂
2
t ) =

θ̂ 2
a,t

θ̂ 2
a,t +

N
h

, (16)

and then write the rule as

ŵII
t =

k3g1(θ̂
2
t )

γ
Σ̂
−1
t µ̂t . (17)
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The second portfolio rule that Kan and Zhou (2007) consider is a three-fund rule. When the

parameters are known, a mean-variance investor should only be interested in investing in the risk-

free asset and the tangency portfolio. However, when the parameters are unknown, there are good

reasons to move away from the sample tangency portfolio. The three-fun rule that Kan and Zhou

(2007) consider takes the form of (cΣ̂
−1
t µ̂t +dΣ̂

−1
t 1N)/γ , i.e., a combination of the risk-free asset,

the sample tangency portfolio, and the sample global minimum-variance portfolio. The sample

global minimum-variance portfolio is attractive because it does not require the estimation of µ and

may have less estimation risk than the sample tangency portfolio. Kan and Zhou (2007) show the

optimal choice of c and d for the three-fund rule are given by

c∗∗ =
k3ψ2

ψ2 + N
h
, (18)

d∗∗ =
k3(N/h)
ψ2 + N

h
µg, (19)

where µg = 1′NΣ−1µ/(1′NΣ−11N) is the expected excess return of the global minimum-variance

portfolio and ψ2 = µ ′Σ−1µ − (1′NΣ−1µ)2/(1′NΣ−11N) is the squared slope of the asymptote to

the ex ante minimum-variance frontier, which is a measure of the cross-sectional difference of

expected returns across the N assets. The optimal three-fund rule requires the knowledge of µg

and ψ2, but they are unobservable to investors. As a result, Kan and Zhou (2007) suggest the

following implementable version of the optimal three-fund rule:

ŵIII
t =

c̃t

γ
Σ̂
−1
t µ̂t +

d̃t

γ
Σ̂
−1
t 1N , (20)

where

c̃t =
k3ψ̂2

a,t

ψ̂2
a,t +

N
h
, (21)

d̃t =
k3(N/h)
ψ̂2

a,t +
N
h

µ̂g,t , (22)

with µ̂g,t = 1′NΣ̂
−1
t µ̂t/(1′NΣ̂

−1
t 1N) being the maximum likelihood estimator of µg and

ψ̂
2
a,t =

(h−N−1)ψ̂2
t − (N−1)

h
+

2(ψ̂2
t )

N−1
2 (1+ ψ̂2

t )
− h−2

2

hB
ψ̂2

t /(1+ψ̂2
t )
((N−1)/2,(h−N +1)/2)

, (23)
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with ψ̂2
t = µ̂ ′t Σ̂

−1
t µ̂t − (1′NΣ̂

−1
t µ̂t)

2/(1′NΣ̂
−1
t 1N) being the maximum likelihood estimator of ψ2.

Given that ψ̂2
a,t is a function of ψ̂2

t , we can define a function of ψ̂2
t ,

g2(ψ̂
2
t ) =

ψ̂2
a,t

ψ̂2
a,t +

N
h
, (24)

and write

ŵIII
t =

k3

γ

[
g2(ψ̂

2
t )Σ̂
−1
t (µ̂t−1N µ̂g,t)+ µ̂g,t Σ̂

−1
t 1N

]
. (25)

In order to evaluate the out-of-sample performance of the implementable version of the opti-

mal two-fund and three-fund rules, we need to compute their expected out-of-sample utility, i.e.,

E[U(ŵII
t )] and E[U(ŵIII

t )]. Kan and Zhou (2007) rely on simulations to approximate the expected

out-of-sample utilities of these two rules. Besides being time consuming, simulation does not tell

us the parameters that determine the out-of-sample performance. To overcome these problems, we

present below the exact unconditional distributions of the out-of-sample returns of these two rules

as well as the explicit expressions of their out-of-sample utilities in terms of a one-dimensional

integral.

To facilitate our presentation, we use G δ
m,n to stand for a random variable y = x1/x2 where

x1 ∼ χ2
m(δ ) and x2 ∼ χ2

n , independent of each other.2

Proposition 1: Suppose N > 1. Let b∼ Beta((h−N +1)/2,(N−1)/2) and u1 ∼ χ2
h−N , indepen-

dent of each other. Conditional on b, let z0 ∼N (
√

hθ
√

b,1) and ũ∼ χ2
N−1(hθ 2(1−b)), and they

are independent of each other and u1.3 Then, the distribution of θ̂ 2
t is given by

θ̂
2
t =

z2
0 + ũ
u1

, (26)

and the joint distribution of the conditional mean and variance of the out-of-sample return of the

two-fund rule can be obtained using

µII,t ≡ ŵII
t
′
µ =

k3g1(θ̂
2
t )
√

hθz0

γu1
√

b
, (27)

2Note that G δ
m,n = (m/n)F δ

m,n, where F δ
m,n is a noncentral F-distribution with m and n degrees of freedom, and a

noncentrality parameter of δ . The density function of F δ
m,n can be computed using the Matlab function ncfpdf.

3If we set b = 1 and ũ = 0 for N = 1, then the results in Proposition 1 also hold for the case of N = 1.
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σ
2
II,t ≡ ŵII

t
′
ΣŵII

t =
k2

3g2
1(θ̂

2
t )hθ̂ 2

t

γ2u1b
. (28)

The expected out-of-sample utility of the two-fund rule is given by

E[U(ŵII
t )] =

k3hθ 2

γ(h−N−2)
E[g1(q1)]−

k3(h−N−4)
2γ(h−N−2)

E[g1(q2)
2q2] (29)

when h > N +4, where g1(·) is the function defined in (16) and q1 ∼ G hθ 2

N+2,h−N−2, q2 ∼ G hθ 2

N,h−N−2.

Proposition 2: Suppose N > 3. Let z1 ∼N (
√

hθg,1), z2 ∼N (
√

hψ,1), u0 ∼ χ2
N−2, v1 ∼ χ2

h−N ,

v2 ∼ χ2
h−N+1, w1 ∼ χ2

h−N+3, w2 ∼ χ2
h−N+2, s1 ∼ χ2

N−4, s2 ∼ χ2
N−3, x11 ∼N (0,1), x21 ∼N (0,1),

a∼N (0,1), b∼N (0,1), c∼N (0,1), and they are independent of each other,4 where θg is the

Sharpe ratio of the global minimum-variance portfolio. Then, the distribution of ψ̂2
t is given by

ψ̂
2
t =

z2
2 +u0

v2
. (30)

Define

y1 =
x11√
w1

+
bx21√
w1w2

+
ax21√
v2w2

, (31)

y2 =
c
√

w1
+

b
√

s2√
w1w2

+
a
√

s2√
v2w2

, (32)

y3 =
aψ̂t + z1

v1
. (33)

The joint distribution of the conditional mean and variance of the out-of-sample return of the

three-fund rule can be obtained from

µIII,t ≡ ŵIII
t
′
µ =

√
hk3

γ

[
ψg2(ψ̂

2
t )

v2

(
x21
√

u0√
w2

+ z2

)
+θgy3 +

ψy3

ψ̂t

(√
u0y1√
v2

+
az2

v2

)]
, (34)

σ
2
III,t ≡ ŵIII

t
′
ΣŵIII

t =
hk2

3
γ2

[(
1+

s1

w1

)
y2

3 +

(
ay3 +g2(ψ̂

2
t )ψ̂t√

v2

)2

+

(
y1y3 +

x21g2(ψ̂
2
t )ψ̂t√

v2w2

)2

+

(
y2y3 +

√
s2g2(ψ̂

2
t )ψ̂t√

v2w2

)2]
. (35)

4If we set u0 = 0, x11 = 0, x21 = 0, s1 = 0, s2 = 0, and c = 0 when N = 2, and set s1 = 0, s2 = 0, and c = 0 when
N = 3, then the results in Proposition 2 also hold for the cases of N = 2 or N = 3.
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The expected out-of-sample utility of the three-fund rule is given by

E[U(ŵIII
t )] =

k3

(h−N−2)γ

[
hθ 2

g

2
+

hψ2

h−N−1
− h−4+hψ2

2(h−N−3)

]

+
k3hψ2

(h−N−1)γ
E[g2(q3)]−

k3(h−N−4)
2(h−N)γ

E
[(

2g2(q4)

h−N−2
+g2(q4)

2
)

q4

]
(36)

when h>N+4, where g2(·) is the function defined in (24) and q3∼G hψ2

N+1,h−N−1, q4∼G hψ2

N−1,h−N−1.

Propositions 1 and 2 show that the conditional mean and variance of the two-fund and three-

fund rules can be obtained by simulating a small number of random variables. Once we obtain

the conditional mean and variance of the two-fund rule, we can simulate its out-of-sample return

at time t + 1 using µ̂II,t + σ̂II,ty, where y ∼N (0,1) and it is independent of µ̂II,t and σ̂II,t . The

out-of-sample return of the three-fund rule can also be simulated in a similar fashion. In addition,

Propositions 1 and 2 show that besides N, h, and γ , the unconditional distribution of the out-of-

sample return and the out-of-sample utility of the two-fund rule only depend on θ 2, whereas those

of the three-fund rule only depend on θ 2
g and θ 2 (because ψ2 = θ 2−θ 2

g ). Thus, there is no need

to specify µ and Σ for computing the return distributions and the utilities for these two rules.

Moreover, the two Propositions express the out-of-sample portfolio returns in terms of a set of

univariate random variables and the expected out-of-sample utilities in terms of a one-dimensional

integral, providing a fast way of simulating the return distributions and computing the utilities of

the two-fund and three-fund rules.

2.3 Combining the 1/N Rule with a Risk-free Asset

The 1/N rule refers to the portfolio strategy with equal weights in the N risky assets. However,

when a risk-free asset is also available, how to allocate weights between the risk-free asset and

the equally weighted portfolio of N risky assets is not entirely clear. One approach is to optimally

allocate the weights between the risk-free asset and the equally weighted portfolio of risky assets,

and DGU adopted this approach in their analytical section (i.e., Section 4).5 Note that this is

basically a portfolio choice problem with a risk-free asset and a single risky portfolio (i.e., the

5In their analysis based on empirical data (Section 3) and simulated data (Section 5), optimal portfolios are nor-
malized to be fully invested in risky assets. The performance of these normalized optimal portfolios is compared to
that of the portfolio with equal weights in the N risky assets.
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equally weighted portfolio of risky assets). Denote the mean and variance of the excess return

of the equally weighted portfolio of risky assets as µew = 1′N µ/N and σ2
ew = 1′NΣ1N/N2. It is

straightforward to show that the optimal weight allocated to the equally weighted portfolio of risky

assets is w∗ew = µew/(γσ2
ew) and 1−w∗ew is invested in the risk-free asset. The resulting utility of

this optimal choice is θ 2
ew/(2γ) where θew = µew/σew is the Sharpe ratio of the equally weighted

portfolio of risky assets.

However, µew and σ2
ew are unknown to investors in reality, so w∗ew is also unknown.6 An

implementable version is to replace µew and σ2
ew with their sample counterparts, µ̂ew,t = 1′N µ̂t/N

and σ̂2
ew,t = 1′NΣ̂t1N/N2, to obtain

ŵew,t =
1
γ

µ̂ew,t

σ̂2
ew,t

, (37)

which is basically the ML rule for the case with a risk-free asset and one risky asset. Using (8), we

obtain the expected out-of-sample utility of this portfolio rule as

E[U(ŵew,t)] =
h[(h−10)θ 2

ew−1]
2γ(h−3)(h−5)

. (38)

Another approach is to combine the risk-free asset and the equally weighted portfolio of risky

assets using the implementable optimal two-fund rule of Kan and Zhou (2007). Using (12) and

(13), we have

ŵII
ew,t =

1
γ

(
h−5

h

)(
θ̂ 2

ew,a,t

θ̂ 2
ew,a,t +

1
h

)
µ̂ew,t

σ̂2
ew,t

, (39)

where

θ̂
2
ew,a,t =

(h−3)θ̂ 2
ew,t−1

h
+

2θ̂ew,t(1+ θ̂ 2
ew,t)

− h−2
2

hB
θ̂ 2

ew,t/(1+θ̂ 2
ew,t)

(1
2 ,

h−1
2

) (40)

with θ̂ 2
ew,t = µ̂2

ew,t/σ̂2
ew,t . Using the results of Proposition 1, the expected out-of-sample utility of

portfolio ŵII
ew,t is given by

E[U(ŵII
ew,t)] =

(h−5)θ 2
ew

γ(h−3)
E[g̃1(q̃1)]−

(h−5)2

2γh(h−3)
E[g̃1(q̃2)

2q̃2] (41)

6In their analysis, DGU assume that investors are able to hold w∗ew, and compare the performance of w∗ew with that
of the sample-based mean-variance portfolio to obtain the number of estimation months required for the sample-based
mean-variance portfolio to outperform the 1/N rule.
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for h > 5, with q̃1 ∼ G
hθ 2

ew
3,h−3, q̃2 ∼ G

hθ 2
ew

1,h−3, and

g̃1(θ̂
2
ew,t) =

θ̂ 2
ew,a,t

θ̂ 2
ew,a,t +

1
h

. (42)

2.4 Comparison of Portfolio Rules: Analytical Results

The results from the previous subsection make it easy to compute the expected out-of-sample

utility of the ML rule, the two-fund rule, the three-fund rule, and the 1/N rule. In this subsection,

we first compare the expected out-of-sample utilities of these portfolio rules based on parameters

calibrated to empirical data. We then examine the condition under which the 1/N rule outperforms

various optimal portfolio rules.

In Figure 1, we plot the expected out-of-sample utilities of portfolios ŵt , ŵII
t , ŵIII

t , ŵew,t , and

ŵII
ew,t as a function of the length of estimation window (i.e., h), with parameters calibrated using

monthly excess returns of the 10 momentum portfolios from January 1927 to December 2014.

Sample estimates based on this set of 10 risky portfolios give θ = 0.268, ψ = 0.176, and θew =

0.107. To gauge the effect of estimation errors, we also include in Figure 1 the utilities of portolios

w∗ and w∗ew. Note that the relative rankings of various portfolio rules do not depend on the value

of γ , and we assume γ = 3 in the figure.

First, comparing the performance of the three versions of the 1/N rule (i.e., ŵew,t , ŵII
ew,t , and

w∗ew), we find that the performance of the two implementable versions (i.e., ŵew,t and ŵII
ew,t) are

almost identical except that ŵII
ew,t outperforms ŵew,t slightly when the estimation window is short

(e.g., h = 60). This is because given only one risky asset, the estimation errors involved in ŵew,t are

relatively small, and the two-fund rule (i.e., ŵII
ew,t) does not generate significant improvement over

the ML rule (i.e., ŵew,t). In addition, we observe noticeable difference between the performance of

the non-implementable version (i.e., w∗ew) and that of the two implementable versions, especially

for relatively short estimation window. This suggests that assuming investors know the true values

of µew and σ2
ew overstates the performance of the 1/N rule. Hence we focus below on ŵII

ew,t to

understand the performance of the 1/N rule.

Next, comparing the performance of portfolios ŵt (ML rule), ŵII
t (two-fund rule), and ŵIII

t

(three-fund rule) with that of the true optimal portfolio w∗, we can see that portfolio ŵt performs
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poorly especially for short estimation window. This is due to the significant estimation errors

involved in the ML rule. By taking into account of the estimation errors, we see that the two-fund

and three-fund rules both outperform the ML rule, and the performance improvement is significant

when h is small.

Finally, comparing the performance of the three optimal portfolio rules (i.e., ŵt , ŵII
t , and ŵIII

t )

with that of the 1/N rule (i.e., ŵII
ew,t), we can see that portfolio ŵt needs an estimation window of at

least h = 198 months to outperform the 1/N rule due to the significant estimation errors involved

in this portfolio rule. Portfolios ŵII
t and ŵIII

t , taking into account the effect of estimation errors,

both outperform the 1/N rule even with an estimation window as short as h = 60 months. These

findings are inconsistent with the conclusion drawn in DGU that thousands of estimation months

are needed for the sample-based mean-variance strategy and its extensions to outperform the 1/N

benchmark.

Figure 2 presents similar plots with parameters calibrated to the monthly excess returns of the

Fama-French 25 size and book-to-market ranked portfolios over January 1927 to December 2014.

This choice gives θ = 0.301, ψ = 0.258, and θew = 0.128. The pattern in Figure 2 is similar to

that in Figure 1. However, given a larger number of risky assets N = 25, more estimation errors

are involved in portfolios ŵt , ŵII
t , and ŵIII

t . As a result, a longer estimation window is required

for these portfolios to outperform the 1/N rule. The minimum length of estimation window for

portfolios ŵt , ŵII
t , and ŵIII

t to outperform the 1/N rule are h = 432 months, h = 94 months, and

h = 93 months, respectively.

To understand why DGU’s conclusion is so different from the results in Figures 1 and 2, we

next examine the required length of estimation window for portfolios ŵt , ŵII
t , and ŵIII

t to outperform

the 1/N rule for different values of θ and θew. DGU conducted similar analysis for portfolio ŵt

but did not provide an analysis for the two-fund and three-fund rules.7 It turns out that the results

of the two-fund and three-fund rules are very different from that of the ML rule.

We consider two levels of θ (θ = 0.4, 0.2) and three levels of θew/θ (θew/θ = 0.25, 0.50, 0.75),

similar to the choice in DGU. In addition, we set the value of θg = θ/2, which leads to ψ = 0.346

when θ = 0.4 and ψ = 0.173 when θ = 0.2. This choice of θg/θ is close to the sample estimate

7One minor difference between DGU’s analysis and ours is that DGU uses portfolio w∗ew to represent the perfor-
mance of the 1/N rule, and we use portfolio ŵII

ew,t instead.
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in Figure 2 (0.515) but is lower than that in Figure 1 (0.754). Note that given the same level of

θ , changing the value of θg only affects the performance of portfolio ŵIII
t . A higher θg leads to a

better performance of the three-fund rule. Therefore, our choice of θg tends to underestimate the

performance of the three-fund rule relative to the sample estimates.

Figure 3 plots the number of estimation months required as a function of the number of risky

assets N, and the six panels are for different combinations of θ and θew/θ .8 First, it is obvious

from Figure 3 that the required length of estimation window of the two-fund and three-fund rules

are significantly shorter than that of the ML rule. For example, in panel (a) (θ = 0.4 and θew = 0.1),

the required length of estimation window when N = 100 is 1055 months for the ML rule, and that

of the two-fund and three-fund rules are 162 and 153 months, respectively. This is because the

ML rule contains significant estimation errors, and the two-fund and three-fund rules mitigate the

effect of estimation risk.

Second, Figure 3 shows that all else equal, the higher θew/θ , the longer estimation window is

required. For example, given the level of θ = 0.4, the required length of the estimation window

when N = 100 are 1037 and 908 months for the two-fund and three-fund rules, respectively, when

θew/θ = 0.75 (i.e., panel (e)), but when θew/θ = 0.25 (i.e., panel (a)), the numbers are only 162

and 153 months. Similar pattern can also be observed when θ = 0.2 (i.e., panels (b), (d), (f)).

These results are intuitive. A high value of θew relative to θ indicates that the 1/N portfolio is

close to the true optimal portfolio, and therefore, it is difficult for the optimal portfolio rules to

beat the 1/N rule.

Third, we can see from Figure 3 that a longer estimation window is required when θ is lower,

ceteris paribus. For example, given θew/θ = 0.25, the required estimation window for ŵII
t and ŵIII

t

to outperform the 1/N rule when N = 100 are 343 and 281 months when θ = 0.2 (i.e., panel (b)),

and the numbers are 162 and 153 months when θ = 0.4 (i.e., panel (a)). These results are due to the

fact that when θ is low, the benefit of optimization is small relative to the cost of estimation errors.

Therefore, a longer estimation window is needed for the optimal portfolio rules to outperform the

1/N rule.

In summary, Figure 3 suggests that the required length of estimation window for the optimal

8As the expected out-of-sample utility of all portfolio rules are proportional to 1/γ , the required length of estimation
window for the two-fund and three-fund rules to outperform the 1/N rule is independent of the choice of γ .
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portfolio rules to outperform the 1/N rule crucially depends on the values of θ and θew.9 A low

θ together with a high θew/θ will lead to a long required estimation window. This insight helps

us to understand the surprising findings in DGU. Their conclusion from the analytical section

that 3000 (6000) months are required for the ML rule to outperform the 1/N rule when N = 25

(N = 50) is based on the assumption that θ = 0.15 and θew = 0.12. In their simulation study,

they set θ = 0.1477 and θew = 0.1356, 0.1447, 0.1466 for N = 10, 25, 50 respectively. Given

these parameter values, it is not surprising to find that extremely long estimation windows are

required for the optimal portfolio rules to outperform the 1/N rule. However, such condition (i.e.,

low θ and high θew/θ ) does not always hold in real data. It is interesting that DGU also identify

outperformance of the 1/N rule in some empirical data sets where the condition does not seem to

hold. To further understand the issue, we examine portfolio performance using similar empirical

data in the next subsection.

2.5 Comparison of Portfolio Rules: Empirical Results

In this subsection, we compare empirically the performance of various portfolio rules across six

empirical datasets which are also used in DGU. The six datasets are: i) monthly excess returns of

the standard 10 industry portfolios: Consumer-Discretionary, Consumer-Staples, Manufacturing,

Energy, High-Tech, Telecommunication, Wholesale and Retail, Health, Utilities, and Others, plus

the US equity market portfolio; ii) monthly excess returns on eight international equity indices:

Canada, France, Germany, Italy, Japan, Switzerland, the UK, and the US, as well as the MSCI

(Morgan Stanley Capital International) World index; iii) monthly excess returns of the Fama-

French three factors, MKT, SMB and HML; iv) monthly excess returns of the Fama-French 20

portfolios sorted by size and book-to-market plus the market factor; v) monthly excess returns of

the Fama-French 20 portfolios sorted by size and book-to-market plus the Fama-French three fac-

tors; and vi) monthly returns of the Fama-French 20 portfolios sorted by size and book-to-market

plus the Fama-French three factors and the momentum factor. The 20 size and book-to-market

ranked portfolios are the Fama-French 5× 5 size and book-to-market ranked portfolios after re-

moving the five portfolios with the largest size. Except for the international data which is obtained

9In addition, for a given set of N base assets, we can construct a new set of N assets based on N linear combinations
of the original base assets. While the out-of-sample performance of the optimization based portfolio rules are invariant
to repackaging of the base assets, the 1/N rule is sensitive to such repacking, and its out-of-sample performance
critically depends on the choice of test assets.
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from MSCI and is only available from January 1970 to December 2014, all other datasets are ob-

tained from Kenneth French’s Web site and cover the period from January 1927 to December 2014.

The only dataset that DGU used but we do not is the one consisting of ten sector portfolios of the

S&P 500 as this dataset is not available to us.

Following DGU and Tu and Zhou (2011), we use a rolling estimation approach with an esti-

mation window of h months. Specifically, for each month t, we use the data in the most recent h

months up to month t to compute the weights of various portfolio rules, and obtain the associated

out-of-sample portfolio excess returns in month t +1. This practice generates T −h out-of-sample

portfolio excess returns where T stands for the length of the sample period for the data. Based on

these T −h out-of-sample portfolio excess returns, we obtain the sample mean (µ̂) and the sample

variance (σ̂2) for a portfolio rule, and compute its certainty-equivalent return (CEQ = µ̂− γ

2 σ̂2) as

well as its Sharpe ratio (S.R.= µ̂/σ̂ ).

We notice that in their empirical section, DGU adopt a different approach to compare the

performance of the optimal portfolio rules with that of the 1/N rule. Instead of optimally allocating

weights between the risk-free asset and the equally weighted portfolio with only risky assets to

construct the 1/N portfolio (such as in their analytical section), they choose to normalize those

optimal portfolios such that the weights on the risky assets sum up to one. Specifically, the weights

of the ML rule and the three-fund rule in DGU are given by10

ŵDGU
t =

ŵt

|1′Nŵt |
=

Σ̂
−1
t µ̂t∣∣1′NΣ̂
−1
t µ̂t

∣∣ , (43)

ŵDGU,III
t =

ŵIII
t

|1′NŵIII
t |

=
c̃t Σ̂
−1
t µ̂t + d̃t Σ̂

−1
t 1N∣∣c̃t1′NΣ̂

−1
t µ̂t + d̃t1′NΣ̂

−1
t 1N

∣∣ . (44)

In Table 1, we use data in the same sample period as in the empirical section of DGU (i.e.,

1963/7–2004/11), and construct portfolios following the normalization approach of DGU based

on the same parameter values (i.e., h = 120 and γ = 1). Panel A presents the CEQ results, and

Panel B presents the Sharpe ratio results. It should be emphasized that the rankings of the portfolio

rules based on the CEQ results are not necessarily the same as the rankings based on the Sharpe

ratio results. For performance comparison, the CEQ results are more relevant because it explicitly

10Note that with the normalization, the two-fund rule is identical to the ML rule, and as a result DGU did not present
the results for the two-fund rule.
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takes into account of the risk aversion coefficient of the investor, whereas the results of Sharpe

ratio are independent of γ . The first row, “MV (in-sample),” is the performance of the normalized

mean-variance optimal portfolio based on the in-sample estimates of mean and covariance matrix

of excess returns, which is basically the ex post tangency portfolio. The second row, “1/N,” is the

performance of the equally weighted portfolio with only risky assets. The rest of the table reports

the performance of the normalized ML and three-fund rules together with the one-sided p-values of

the performance difference between these rules and the 1/N portfolio. Consistent with the findings

in DGU, Table 1 shows dominance of the 1/N rule. Across all six datasets and based on either

CEQ or Sharpe ratio, the 1/N rule outperforms the ML rule. The three-fund rule (“KZ3”), taking

into account the effect of estimation risk, performs better than the ML rule, but still underperforms

the 1/N rule in general. The only exceptions are the CEQ of “FF+3-factor” and the Sharpe ratios

of “MKT/SMB/HML” and “FF+3-factor.” It is important to note that while the ex post tangency

portfolio maximizes the in-sample Sharpe ratio, it is in general not the portfolio that maximizes the

CEQ. This is evident for the cases of “FF+3-factor” and “FF+4-factor,” where we find the CEQ of

MV (in-sample) to be negative.

In Tables 2 and 3, we repeat similar analysis using data in the extended sample period (i.e.,

1927/1–2014/12) and for different combinations of h (120 or 240) and γ (1 or 3). Table 2 presents

the CEQ results, and Table 3 reports the Sharpe ratio results. We continue to observe the domi-

nance of the 1/N rule. When h = 120 months, the 1/N rule outperforms both the ML rule and

the three-fund rule in all cases except for the three-fund rule in the dataset of “FF 3-factor.” When

h = 240 months, the longer estimation window reduces the estimation risk and increases the per-

formance of the two optimal portfolio rules in most cases, but the optimal portfolio rules continue

to underperform the 1/N rule in general. These results suggest that the finding in DGU is not due

to specific sample period or parameter values.

However, the results in Tables 1-3 are inconsistent with the insight obtained from our analysis

in Subsection 2.4. In particular, the poor performance of the three-fund rule in the last three

datasets (i.e., FF+1-factor, FF+3-factor, and FF+4-factor) is surprising. For these datasets, we have

a relatively high Sharpe ratio of the tangency portfolio, θ , (0.3379–0.4433 in the extended sample

period) and a relatively low ratio of the Sharpe ratio of the equally weighted portfolio relative

to that of the tangency portfolio, θew/θ , (39%–44% in the extended sample period). Analytical
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results from Subsection 2.4 suggest that in these cases, the 1/N rule is less likely to outperform the

three-fund rule.

We find that the inconsistency between the empirical results in Tables 1-3 and the analytical

results in Subsection 2.4 is mostly due to the normalization on the optimal portfolios performed by

DGU. This process basically excludes the risk-free asset from those optimal portfolios, but those

optimal portfolio rules were derived under the assumption that the risk-free asset is available.

Therefore, after the normalization, those rules are no longer “optimal.” More importantly, it can be

shown that the out-of-sample returns of those normalized optimal portfolios do not have integral

moments, which contributes to their poor out-of-sample performance. To understand why the

moments do not exist for those normalized portfolios, notice that the denominator of ŵDGU
t and

ŵDGU,III
t in (43) and (44) have non-negligible density at zero, and a zero denominator will lead

to extreme positions in the risky assets, which results in very fat tails for the distribution of the

out-of-sample returns of the normalized portfolios. Under the normality assumption on rt , Okhrin

and Schmid (2006) prove that the expectations of the weights of the sample tangency portfolio do

not exist, so it is not surprising that its out-of-sample returns have no finite moments.11 Therefore,

to compare the performance of the normalized optimal portfolios with that of the 1/N rule does not

seem to be a proper practice. Kirby and Ostdeik (2012) also point out that the use of normalized

optimal portfolios is the main reason for the poor performance of the optimal portfolio rules in

DGU.

In Tables 4 and 5, we report the performance of the portfolios without normalization using the

same data as in Tables 2 and 3. Without normalization, the performance of the two-fund rule is

different from that of the ML rule, so we report results for the ML rule, the two-fund rule (i.e.,

“KZ2”), and the three-fund rule (i.e., “KZ3”). In addition, the MV (in-sample) in Tables 4 and 5

report the performance of the ex post mean-variance optimal portfolio, which is not normalized.

As a result, the MV (in-sample) portfolio in Tables 4-5 is not the same as the ex post tangency

portfolio as in Tables 1–3. For the 1/N rule given risk-free asset, the weights are based on ŵII
ew,t in

(39). The p-values are for the performance differences between the optimal portfolio rules and the

1/N rule.

11Note that the non-existence of integral moments of the out-of-sample return of a normalized portfolio does not
depend on the normality assumption. Under a general continuous distribution of rt , one can invoke a lemma due to
Sargan (1976) to show the non-existence of the moments.
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We can see from Tables 4 and 5 that the performance of the optimal portfolio rules improves in

general without the normalization. In addition, the two-fund and three-fund rules outperform the

1/N rule in terms of both CEQ and Sharpe ratio for all the combinations of the parameter values

in the three datasets with high θ and low θew/θ (i.e., “FF+1-factor”, “FF+3-factor”, and “FF+4-

factor”), consistent with the findings in Subsection 2.4. For the other three datasets, given a lower

θ and a higher θew/θ , it is more difficult for the two-fund and three-fund rules to outperform the

1/N rule. For the “Industry” dataset, the two-fund and three-fund rules underperform the 1/N rule

when h= 120 months but outperform it when h= 240 months. For the “MKT/SMB/HML” dataset,

the performance of the two-fund rule is slightly lower than that of the 1/N rule, but the three-fund

rule either outperforms or has similar performance as the 1/N rule. For the “International” dataset,

both the two-fund and three-fund rules underperform the 1/N rule.

In summary, results in Tables 4 and 5 support our argument that whether the 1/N rule can

outperform the optimal portfolio rules critically depends on the parameter values. A higher Sharpe

ratio of the tangency portfolio (i.e., θ ) suggests more gains from optimization. A lower Sharpe

ratio of the 1/N portfolio relative to the tangency portfolio (i.e., θew/θ ) indicates that the equally

weighted portfolio of risky assets is further away from the true optimal portfolio. As a result, it

is more difficult for the 1/N rule to beat the optimal portfolio rules for cases when θ is high and

θew/θ is low.

3. Portfolio Rules without Risk-free Asset

In this section, we consider the portfolio choice problem when the portfolio is restricted to

just risky assets. We first present the optimal portfolio when µ and Σ are known, then study

the properties of the portfolio obtained based on the ML rule to understand the estimation risk.

Armed with this understanding, we proceed to derive a new optimal portfolio rule to mitigate the

estimation risk. Finally, we compare the performance of the newly derived portfolio rule with that

of the ML rule and the 1/N rule in the case without risk-free asset.

3.1 The Setup

Suppose an investor considers a portfolio of only risky assets. As before, he chooses his port-
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folio weights w to maximize the mean-variance utility function

U(w) = w′µ− γ

2
w′Σw, (45)

where γ is the coefficient of risk aversion, but now there is an additional constraint of 1′Nw = 1. It

is easy to show that, when both µ and Σ are known, the weights of the optimal portfolio p∗ are

w∗ = wg +
1
γ

wz, (46)

where

wg =
Σ−11N

1′NΣ−11N
, (47)

wz = Σ
−1
(

µ−1N
1′NΣ−1µ

1′NΣ−11N

)
= Σ

−1 (µ−1N µg) . (48)

In the familiar mean-variance frontier, wg is the weights of the global minimum-variance portfolio,

and wz is the weights of a zero investment portfolio (i.e., 1′Nwz = 0). Equation (46) says that

holding the optimal portfolio is the same as investing into two funds, wg and wz. Investors always

hold 100% of wg, and depending on their degrees of risk aversion, their exposures to wz vary. It is

clear from (46) that any portfolio on the minimum-variance frontier is a linear combination of wg

and wz. As the risk aversion varies, the optimal portfolio from (46) will trace out the upper half of

the minimum-variance frontier.

Let rp∗,t+1 = w∗′rt+1 be the out-of-sample return of portfolio p∗. The mean and variance of

rp∗,t+1 are given by

µp∗ = µg +
ψ2

γ
, (49)

σ
2
p∗ = σ

2
g +

ψ2

γ2 , (50)

where ψ2 = µ ′Σ−1µ−(1′NΣ−1µ)2/(1′NΣ−11N). It follows that the utility from holding the optimal

portfolio is

U(w∗) = µg−
γ

2
σ

2
g +

ψ2

2γ
. (51)

This equation shows that w∗ outperforms wg by a certainty equivalent return of ψ2/(2γ), which is

coming from the exposure to the zero investment portfolio wz and is determined by the slope of the

asymptote to the ex ante minimum-variance frontier (ψ) and the risk aversion coefficient (γ).
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3.2 The ML Rule

In practice, however, the optimal portfolio weights, w∗, are not computable because µ and Σ

are unknown, and they need to be estimated. Similar to the case with risk-free asset, the maximum

likelihood estimator of w∗ at time t is given by

ŵt = ŵg,t +
1
γ

ŵz,t , (52)

where

ŵg,t =
Σ̂
−1
t 1N

1′NΣ̂
−1
t 1N

, (53)

ŵz,t = Σ̂
−1
t (µ̂t−1N µ̂g,t), (54)

with µ̂g,t = (1′NΣ̂
−1
t µ̂t)/(1′NΣ̂

−1
t 1N). We call ŵt the ML rule, and denote this portfolio as portfolio

p and its out-of-sample portfolio return as rp,t+1 = ŵ′trt+1. The following Proposition presents the

exact distribution of rp,t+1 and the expected out-of-sample utility of portfolio p.

Proposition 3: Let z2, u0, v2, w1, w2, s1, s2, x21, a, y1, y2 and ψ̂2
t be the set of random variables

defined in Proposition 2. Then, the conditional mean and variance of the out-of-sample return of

portfolio p are given by

µp,t = µg +
σgψ

ψ̂t

(√
u0y1√
v2

+
az2

v2

)
+

√
hψ

γv2

(
x21
√

u0√
w2

+ z2

)
, (55)

σ
2
p,t = σ

2
g

(
y2

1 + y2
2 +1+

s1

w1
+

a2

v2

)
+

hψ̂2
t

γ2v2

(
1+

x2
21 + s2

w2

)
+

2
√

hσgψ̂t

γ
√

v2

(
a
√

v2
+

x21y1√
w2

+

√
s2y2√
w2

)
. (56)

When h > N +3, the expected out-of-sample utility of portfolio p is given by

E[U(ŵt)] = µg−
γ(h−2)σ2

g

2(h−N−1)
+

h
γ(h−N−1)

[
ψ

2− (h−2)(hψ2 +N−1)
2(h−N)(h−N−3)

]
. (57)

Proposition 3 suggests that both the unconditional distribution and the out-of-sample utility

of portfolio p depend only on µg, σ2
g , ψ2, h, N, and γ . Therefore, there is no need to specify

µ and Σ when computing the distribution and the expected out-of-sample utility of the ML rule.
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In addition, Proposition 3 expresses the unconditional distribution of rp,t+1 in terms of a set of

univariate random variables, which provides a fast way of computing the distribution.

Figure 4 plots the density function of rp,t+1 for estimation windows of h = 60 and 120 months,

with parameter values calibrated using monthly excess returns of the ten momentum portfolios

from January 1927 to December 2014. The risk aversion coefficient is set to be γ = 3. For compar-

ison, we also include the density function of rp∗,t+1, the return of the true optimal portfolio (i.e.,

h = ∞). Relative to rp∗,t+1, Figure 4 shows that the return of the ML rule (i.e., rp,t+1) is much

more volatile than rp∗,t+1, which can be explained by the significant amount of estimation errors

involved in the ML rule. For a shorter estimation window (i.e., h = 60), there is more estimation

risk, and therefore, rp,t+1 becomes more volatile. Figure 5 presents similar plots but with pa-

rameters calibrated using monthly excess returns of the Fama-French 25 size and book-to-market

ranked portfolios from January 1927 to December 2014. With more risky assets (N = 25), the ML

rule involves more estimation errors. As a result, rp,t+1 becomes more volatile in Figure 5 than in

Figure 4.

Based on the results in Proposition 3, it is easy to obtain the unconditional mean and variance

of rp,t+1:

µp = E[µp,t ] = µg +
hψ2

γ(h−N−1)
for h > N +1, (58)

σ
2
p = E[σ2

p,t ]+E[µ2
p,t ]−E[µp,t ]

2

=
σ2

g (h+ψ2−2)
h−N−1

+
h(h−2)(h+1)ψ2

γ2(h−N)(h−N−1)(h−N−3)

+
h(h−2)(N−1)

γ2(h−N)(h−N−1)(h−N−3)
+

2h2ψ4

γ2(h−N−1)2(h−N−3)
for h > N +3. (59)

Comparing the unconditional mean and variance of portfolio p with those of the true optimal

portfolio p∗, we can see that µp > µp∗ for h > N +1 and σ2
p > σ2

p∗ for h > N +3.12 As h→ ∞, µp

converges to µp∗ , and σ2
p converges to σ2

p∗ . Moreover, it is easy to verify that both µp and σ2
p are

decreasing functions of h and increasing functions of N.

Comparing the expected out-of-sample utility of portfolio p with that of the true optimal port-
12When h > N +1, the coefficient of ψ2/γ in (58), h/(h−N−1)> 1, which results in µp > µp∗ . When h > N +3,

the coefficients of the first two terms in (59), (h+ψ2−2)/(h−N−1)> 1 and h(h−2)(h+1)
(h−N)(h−N−1)(h−N−3) > 1, and the last

two terms in (59) are positive, which leads to σ2
p > σ2

p∗ .
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folio p∗, we can figure out the utility loss due to the estimation errors involved in portfolio p:

L(ŵt , ŵ∗) =U(w∗)−E[U(ŵt)]

=
γσ2

g (N−1)
2(h−N−1)

+
k0ψ2

2γ
+

(N−1)h(h−2)
2γ(h−N)(h−N−1)(h−N−3)

, (60)

where

k0 =
(N +1)[h2 +(N +1)(h−N−3)]

(h−N−1)2(h−N−3)
. (61)

The first term in (60) captures the utility loss due to estimation errors of ŵg,t , and the remaining

two terms reflect the utility loss due to the estimation errors of ŵz,t . Both components decrease

with h and increase with N. As h→ ∞, both components go to zero.

3.3 The QL Rule

The ML rule involves estimation errors which could lead to significant utility loss. Next, we

derive an optimal portfolio rule that maximizes the expected out-of-sample utility, taking into

account the estimation risk. Specifically, we limit our attention to the class of portfolio rules that

have weights

ŵt(c) = ŵg,t +
c
γ

ŵz,t , (62)

where c is a constant scalar. The ML rule is a special case of this class with c = 1. When there

is estimation risk, it makes sense to allow for c to differ from one. We look for the optimal c to

maximize the expected out-of-sample utility

E[U(ŵt(c))] = E[ŵt(c)′µ]−
γ

2
E[ŵt(c)′Σŵt(c)]. (63)

Interestingly, the search for this optimal c is equivalent to finding the c that minimizes the standard

quadratic loss function on the estimated portfolio weights from statistical decision theory

L(ŵt(c),w∗) = E[(ŵt(c)−w∗)′Σ(ŵt(c)−w∗)]. (64)

To see this, we use (46) and expand the quadratic loss function as

L(ŵt(c),w∗) = E
[
ŵt(c)′Σŵt(c)−2w∗′Σŵt(c)+w∗′Σw∗

]
= E

[
ŵt(c)′Σŵt(c)−

21′Nŵt(c)
1′NΣ−11N

− 2
γ

ŵt(c)′(µ−1N µg)+w∗′Σw∗
]
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=
2
γ

E
[
−ŵt(c)′µ +

γ

2
ŵt(c)′Σŵt(c)

]
−2σ

2
g +

2µg

γ
+σ

2
g +

ψ2

γ2

=
2
γ
(U(w∗)−E[U(ŵt(c)]). (65)

The second last equality holds because ŵt(c)′1N = 1 and σ2
g = 1/(1′NΣ−11N), and the last equal-

ity follows from (51). It is then clear that maximizing E[U(ŵt(c))] is the same as minimizing

L(ŵt(c),w∗).13

Using the results in the proof of Proposition 3, it can be readily shown that the optimal c is

given by

c∗ =
k̃3ψ2

ψ2 + N−1
h

(66)

with

k̃3 =
(h−N)(h−N−3)

h(h−2)
. (67)

Note that c∗ < 1, so it is optimal to invest a smaller amount of investment in ŵz,t when there is

estimation risk. Equivalently, the investor chooses to hold a portfolio as if he had a higher risk

aversion coefficient. The out-of-sample utility given c∗ is

E[U(ŵt(c∗))] = µg−
γ

2
(h−2)σ2

g

(h−N−1)
+

hψ2k̃3

2γ(h−N−1)

(
ψ2

ψ2 + N−1
h

)
. (68)

Note that c∗ depends on ψ2 which is unknown to investors in practice. Therefore, ŵt(c∗) is not

attainable. Following Kan and Zhou (2007), an implementable version of this optimal two-fund

rule can be obtained as

ŵt(ĉt) = ŵg,t +
ĉt

γ
ŵz,t , (69)

with

ĉt =
k̃3ψ̂2

a,t

ψ̂2
a,t +

N−1
h

(70)

13The equivalence between these two objective functions applies to more general portfolio rules as well as to the
case with risk-free asset.
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where ψ̂2
a,t is defined in (23). Let g3 be a function of ψ̂2

t with

g3(ψ̂
2
t ) =

ψ̂2
a,t

ψ̂2
a,t +

N−1
h

, (71)

we have

ŵt(ĉt) = ŵg,t +
k̃3g3(ψ̂

2
t )

γ
ŵz,t . (72)

We call this portfolio rule the QL rule because of its quadratic loss motivation, and denote it

as portfolio q. Let rq,t+1 = ŵt(ĉt)
′rt+1 be the out-of-sample return of portfolio q at time t + 1.

The following Proposition presents the exact distribution of rq,t+1 and the expected out-of-sample

utility of portfolio q.

Proposition 4: Let z2, u0, v2, w1, w2, s1, s2, x21, a, y1, y2, and ψ̂t be the set of random variables

defined in Proposition 2. Then, the conditional mean and variance of the out-of-sample return of

portfolio q are given by

µq,t = µg +
σgψ

ψ̂t

(√
u0y1√
v2

+
az2

v2

)
+

√
hψ k̃3g3(ψ̂

2
t )

γv2

(
x21
√

u0√
w2

+ z2

)
, (73)

σ
2
q,t = σ

2
g

(
y2

1 + y2
2 +1+

s1

w1
+

a2

v2

)
+

hk̃2
3g2

3(ψ̂
2
t )ψ̂

2
t

γ2v2

(
1+

x2
21 + s2

w2

)
+

2
√

hσgk̃3g3(ψ̂
2
t )ψ̂t

γ
√

v2

(
a
√

v2
+

x21y1√
w2

+

√
s2y2√
w2

)
. (74)

The expected out-of-sample utility of portfolio q is given by

E[U(ŵt(ĉt)] = µg−
γ(h−2)σ2

g

2(h−N−1)
+

k̃3hψ2E[g3(q3)]

γ(h−N−1)
−

k̃3(h−N−3)E[g2
3(q4)q4]

2γ(h−N−1)
(75)

when h > N +3, where g3(·) is the function defined in (71), q3 ∼ G hψ2

N+1,h−N−1, q4 ∼ G hψ2

N−1,h−N−1.

Proposition 4 expresses the unconditional distribution of rq,t+1 in terms of a set of univariate

random variables and the out-of-sample utility of portfolio q in terms of a one-dimensional integral.

Similar to the ML rule, Proposition 4 suggests that both the unconditional distribution and the

expected out-of-sample utility of the QL rule depend only on µg, σ2
g , ψ2, h, N, and γ . Therefore,

there is no need to specify µ and Σ when computing the distribution and the out-of-sample utility.
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In Figures 6 and 7, we plot the density function of rq,t+1 for estimation windows of h = 60 and

120 months with parameters calibrated using monthly excess returns of the ten momentum portfo-

lios (Figure 6) or those of the Fama-French 25 size and book-to-market portfolios (Figure 7) in the

period from January 1927 to December 2014. For comparison, we also include the distribution of

rp∗,t+1, the return of the true optimal portfolio (i.e., h = ∞). The risk aversion coefficient is set to

be γ = 3.

Relative to the distribution of rp,t+1 in Figures 4 and 5, Figures 6 and 7 show that the distri-

bution of rq,t+1 is much less dispersed. Since ĉt < 1, the QL rule invests less in ŵz,t than the ML

rule. Because of the estimation errors involved in ŵz,t , a lower exposure to ŵz,t makes rq,t+1 less

volatile than rp,t+1. In addition, we can see from Figures 6 and 7 that unlike the ML rule, the mean

of rq,t+1 is lower than that of the true optimal portfolio. This is also due to the fact that ĉt < 1 and

the QL rule has less exposure to ŵz,t , which leads to a lower unconditional mean.

Based on the results in Proposition 4, we can show that the unconditional mean and variance

of rq,t+1 are given by:

µq = E[µq,t ] = µg +
k̃3hψ2

γ(h−N−1)
E[g3(q3)] for h > N +1, (76)

σ
2
q = E[σ2

q,t ]+E[µ2
q,t ]−E[µq,t ]

2

=
(h−2+ψ2)σ2

g

h−N−1
+

hk̃2
3(h−2+ψ2)E[g2

3(q4)q4]

γ2(h−N)(h−N−1)
−

h2k̃2
3ψ4E2[g3(q3)]

γ2(h−N−1)2

+
hk̃2

3ψ2 (E[g2
3(q5)]+hψ2E[g2

3(q6)]
)

γ2(h−N)(h−N−3)
for h > N +3, (77)

where q3 and q4 are defined in Proposition 2, q5 ∼ G hψ2

N+1,h−N−3 and q6 ∼ G hψ2

N+3,h−N−3.

Note that when N > 1, k̃3h/(h−N−1)< 1 and g3(·)< 1, and therefore µq < µp∗ . As h→ ∞,

µq converges to µp∗ . The relation between σ2
q and σ2

p∗ is not straightforward from (77), but it can

be shown that as h→ ∞, σ2
q converges to σ2

p∗ .

The utility loss of portfolio q relative to the optimal portfolio p∗ is

L(ŵt(ĉt),w∗) =U(w∗)−E[U(ŵt(ĉt))]

=
γσ2

g (N−1)
2(h−N−1)

+
ψ2

2γ

(
1− 2hk̃3E[g3(q3)]

h−N−1

)
+

k̃3(h−N−3)E[g2
3(q4)q4]

2γ(h−N−1)
. (78)
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The first term in (78) is the same as that in (60), which captures the utility loss due to estimation

errors of ŵg,t . The remaining two terms are the utility loss coming from estimation errors of ĉtŵz,t .

3.4 Comparison of Portfolio Rules: Analytical Results

In this subsection, we compare analytically the performance of the ML rule (i.e., portfolio p),

the QL rule (i.e., portfolio q), and that of the 1/N rule. Figure 8 plots the expected utility of these

portfolios using parameters calibrated to the monthly excess returns of the ten momentum portfolio

over the period 1927/1 – 2014/12. For comparison, we also include the utility of the true optimal

portfolio p∗. The risk aversion coefficient is set to γ = 3.

Figure 8 shows that as the estimation window increases, the out-of-sample utilities of both the

ML rule and the QL rule go toward the utility level of the optimal portfolio. However, due to the

significant estimation errors involved in the ML rule, the out-of-sample utility of the ML rule is

negative when h is small. A minimum estimation window of h = 168 month is required for the

ML rule to generate positive out-of-sample utility given the parameter values. The QL rule, taking

into account the estimation errors, performs much better than the ML rule, especially when the

estimation window is short. The QL rule generates positive expected out-of-sample utility even

with h = 60 months.

In the case without risk-free asset, the out-of-sample utility of the 1/N rule is constant and it is

equal to

U(wew) = µew−
γ

2
σ

2
ew. (79)

Let σ̃2
ew be the variance of the minimum-variance portfolio with mean µew, we can use the fact that

(see, for example, Eq.(29) in Kan and Smith (2008))

σ̃
2
ew = σ

2
g +

(µew−µg)
2

ψ2 , (80)

to decompose the utility loss of the 1/N rule into two components as

L(wew,w∗) =U(w∗)−U(wew)

= µg−µew +
γ

2
(σ2

ew−σ
2
g )+

ψ2

2γ

=
γ

2
(σ2

ew− σ̃
2
ew)+

γ

2ψ2

(
µew−µg−

ψ2

γ

)2
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=
γ

2
(σ2

ew− σ̃
2
ew)+

γ

2ψ2 (µew−µp∗)
2, (81)

where the last equation follows from (49). The first term in (81) captures the utility loss due to the

inefficiency of the 1/N rule. In other words, to what extent the variance of the 1/N rule (i.e., σ2
ew)

is larger than the minimum variance (i.e., σ̃2
ew) for a portfolio with expected return of µew. The

second term in (81) captures the utility loss coming from ignoring the risk aversion of the investor.

Note that when taking into account the risk aversion of the investor, the optimal level of expected

return is µp∗ instead of µew, so not adjusting the portfolio based on the risk aversion coefficient

imposes a utility loss to the investor. Given the parameter values in Figure 8, the utility loss due to

the first component is 0.1513 and that due to the second component is 0.8985.

Whether the ML and the QL rules can outperform the 1/N rule with a reasonable length of

estimation window depends on how close the utility level of the 1/N rule is to that of the true

optimal portfolio, which is ultimately determined by the two components in (81). The closer

the utility of the 1/N rule to the true optimal (i.e., smaller L(wew,w∗)), the longer the estimation

window is required for the ML and the QL rules to beat the 1/N rule. Given the parameter values in

Figure 8, the QL rule outperforms the 1/N rule even with an estimation window of h = 60 months.

The ML rule, with more estimation errors, needs a longer estimation window h = 182 months to

beat the 1/N rule.

Figure 9 presents similar plots with parameters calibrated to the monthly excess returns of the

25 Fama-French size and book-to-market portfolios in the period of 1927/1–2014/12. Given more

risky assets N = 25, there are more estimation errors involved in the ML and the QL rules. The

estimation window required for the ML rule to generate positive utility is now h= 382 months, and

that of the QL rule is h = 62 months. With the parameter values in Figure 9, the two components

in (81) are 0.4254 and 0.9157 respectively. Ignoring the risk aversion of the investor continues to

be the major determinant of the utility loss of the 1/N rule. Now, the QL rule needs an estimation

window of at least h = 77 months to outperform the 1/N rule, and that of the ML rule is h = 398

months.

In the case without risk-free asset, the relative rankings of the ML rule, the QL rule, and the

1/N rule are no longer invariant to the value of γ .14 In Figures 10 and 11, we plot the results
14The relative ranking of the ML rule and the QL rule is invariant to the value of γ because the first two terms in

(57) and (75) are the same. However, it is not the case when the 1/N rule is also considered.
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with a different risk aversion coefficient γ = 1. With parameters calibrated to the returns of the ten

momentum portfolios in Figure 10, the required estimation window for the QL and the ML rules

to outperform the 1/N rule are h = 63 months and h = 272 months, respectively, when γ = 1. In

Figure 11, with parameters calibrated to the returns of the 25 size and book-to-market portfolios

and γ = 1, the required estimation windows for the QL and the ML rules are h = 101 months and

h = 467 months, respectively.

To get a better understanding of the performance of the optimal rules (i.e., the ML and the

QL rule) relative to the 1/N rule, in Figure 12, we conduct analysis similar to Figure 3 in the

case without risk-free asset. Specifically, we present the required length of the estimation window

for the optimal rules to outperform the 1/N rule as a function of the number of assets (N). As

the relative performance of the optimal rules and the 1/N rule is not invariant to the value of γ

when a risk-free asset is not available, we report results for both γ = 1 and γ = 3. The parameters

in the six panels of Figure 12 are set in the same way as those in Figure 3, i.e., θ = 0.4 or 0.2,

θew/θ = 0.25, 0.50, or 0.75, and θg = θ/2. To obtain the expected utilities of the ML and the QL

rules, in addition to θ and θg, we also need to specify µg or σg. We set σg = 0.05, a value close

to the sample estimates as shown in Figures 8–11. We choose to specify σg instead of µg for a

given θg because the sample estimate of σg involves less estimation error compared to that of µg.

Similarly, we need to specify µew or σew to compute the expected utility of the 1/N rule. Based on

the sample estimates in Figures 8–11, we set σew = 0.065.

It can be seen that the results in Figure 12 are qualitatively very similar to those in Figure 3,

suggesting that the insights we obtain in the case with a risk-free asset also apply to the case without

a risk-free asset. First, Figure 12 shows that the QL rule significantly outperforms the ML rule in

all cases, and the required length of the QL rule is reasonable in general even for the case with

large N. For example, with θ = 0.4 and θew = 0.1 (i.e., panel (a)), even for the case of N = 100,

the required length for the QL rule is 147 months with γ = 1 and 163 months with γ = 3, while

the ML rule needs an estimation window of 1149 (γ = 1) and 1001 (γ = 3) months to beat the 1/N

rule. The long estimation window required for the ML rule is due to the severe estimation errors

involved. The QL rule, taking into account the estimation errors, improves the expected out-of-

sample utility significantly, and therefore, needs a much shorter estimation window to outperform

the 1/N rule.
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Second, Figure 12 suggests that a longer estimation window is required with a higher θew, all

else equal. For example, for the case of N = 100, the results in panels (a), (c), and (e) show that

the required length for the QL rule are 147 and 163 months with γ = 1 and γ = 3 when θew = 0.1,

and the numbers are 208 and 281 respectively when θew = 0.2 and 317 and 704 respectively when

θew = 0.3. Given the same σew, a higher θew means a higher out-of-sample utility of the 1/N rule,

and therefore, it is more difficult for the optimal rules to beat the 1/N rule.

Third, we can see from Figure 12 that a longer estimation window is required when θ is lower,

all else equal. For example, given the same θew/θ = 0.25, with a lower θ = 0.2 in panel (b), the

required length of estimation window for the QL rule are 251 and 209 months with γ = 1 and

γ = 3 for N = 100, compared to 147 and 163 months in panel (a). A lower θ reduces the benefit

of optimization relative to the cost of estimation errors, and therefore, a longer estimation window

is needed for the optimal rules to outperform the 1/N rule.

Finally, we explore the effect of γ on the required length of estimation window for the optimal

rules to outperform the 1/N rule. Results in Figures 12 indicates that whether the required h is

larger for γ = 1 or γ = 3 varies for different parameter values. But from Figure 12 we can see that

as θew increases, it is more likely for the case with γ = 3 to have a larger required h. This holds

for both the ML and the QL rule. For example, for the case with θ = 0.4 and N = 10, the required

h are 110 (γ = 1) and 96 (γ = 3) months for the ML rule given θew = 0.1. When θew = 0.2, the

required h are both 119 months, and when θew = 0.3, the required h for γ = 1 and γ = 3 are 131

and 164 months, respectively. In the case of the QL rule, the required h are 30 months (γ = 1) and

25 months (γ = 3) when θew = 0.1, 37 months (γ = 1) and 40 months (γ = 3) when θew = 0.2, and

47 months (γ = 1) and 83 months (γ = 3) when θew = 0.3. From (57), the difference between the

performance of the ML and the 1/N rules is given by

E[U(ŵt)]−U(wew) = µg−µew +
γ

2

(
σ

2
ew−

(h−2)σ2
g

h−N−1

)

+
h

γ(h−N−1)

[
ψ

2− (h−2)(hψ2 +N−1)
2(h−N)(h−N−3)

]
. (82)

We find that the terms involving γ are positive evaluating at the required h, but the terms involving

1/γ can be negative for small h and become positive for large h. In addition, the magnitude of the

terms involving 1/γ is larger than those involving γ . Notice that the terms involving 1/γ reflects
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the utility due to wz. Estimation errors can significantly deteriorate its utility when h is small.

Given a low level of θew, a small h is required for the optimal rules to outperform the 1/N rule. A

small h tends to make the terms involving 1/γ negative, and a higher γ will lead to a higher relative

performance for the ML rule, holding all other parameter values unchanged. Therefore, a lower h

is required for a higher value of γ when θew is low. As θew increases, a larger h is required, making

the terms involving 1/γ positive. In that case, a higher γ results in a lower relative performance for

the ML rule, and a higher h is required for the optimal rules to outperform the 1/N rule. Similar

logic also applies to the QL rule.

In summary, the results in this subsection suggest that in the case without risk-free asset, the

QL rule successfully mitigates the estimation errors involved in the ML rule, and significantly

improves the expected out-of-sample utility. In addition, we find that the QL rule outperforms the

1/N rule with reasonable length of the estimation window based on the parameters calibrated to

the real data.

3.5 Comparison of Portfolio Rules: Empirical Results

In this subsection, we compare empirically the performance of the ML rule, the QL rule, and

the 1/N rule using the same datasets as in Tables 4 and 5 for different combinations of h (120 or

240 months) and γ (1 or 3). Note that in the case without risk-free asset, the optimal portfolio p∗

is not the one with highest Sharpe ratio, and the Sharpe ratio of the optimal portfolio p∗ depends

on γ . Therefore, Sharpe ratio is not an appropriate measure of performance in the case without

risk-free asset, and we focus our attention to the certainty-equivalent returns.15

In Table 6, we report portfolio performance based on the certainty-equivalent returns. Results

in Table 6 are consistent with our findings from the analytical results from the previous subsection.

First, due to estimation errors, we can see that the ML rule has poor performance. Except for the set

“MKT/SMB/HML” with γ = 3, the ML performance is negative in all other cases. In addition, we

find that the ML performance improves, in general, with a higher risk aversion coefficient γ = 3

and a longer estimation window h = 240 months. A higher risk aversion coefficient leads to a

smaller exposure to ŵz,t , which lowers the effect of estimation errors. A longer estimation window

15Nevertheless, we also examine Sharpe ratios in untabulated results, and find similar pattern as that of the CEQ
results.
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helps to provide more accurate estimates of the parameters, which also reduces the influence of

estimation risk. As a result, the out-of-sample utility of the ML rule increases. Second, Table 6

shows that the QL rule outperforms the ML rule in all cases. This is because the QL rule takes into

account the estimation error.

Finally, comparing the performance of the optimal portfolio rules, in particular that of the QL

rule, with the performance of the 1/N rule, we find that the QL rule outperforms the 1/N rule in

most cases. In datasets “FF 1-factor”, “FF 3-factor”, and “FF 4-factor”, the QL rule outperforms

the 1/N rule for all combinations of h and γ . Note that in these three sets, the utility of the ex post

optimal portfolio (i.e., MV in-sample) is significantly higher than that of the 1/N rule, which ex-

plains the dominance of the QL rule. In the other three datasets, the utility level of the 1/N rule is

closer to that of the ex post optimal portfolio, which makes it more difficult for the QL rule to out-

perform the 1/N rule. In dataset “Industry,” the QL rule underperforms the 1/N rule when h = 120

months, and has similar or higher level of utility than the 1/N rule when h = 240 months. Sim-

ilar situation can be observed for the dataset “International.” For the dataset “MKT/SMB/HML,”

the QL rule outperforms the 1/N rule when h = 120 months but underperforms it when h = 240

months.

In summary, Tables 6, based on real datasets, confirms the findings from the analytical results

of the previous subsection. In the case without a risk-free asset, the newly proposed QL rule

can reduce the effect of estimation risk of the ML rule and significantly improve the portfolio

performance. In addition, the QL rule performs well relative to the 1/N rule.

4. Conclusion

In this paper, we analyze optimal portfolio problems with and without risk-free asset in the

presence of estimation risk. Our analysis explicitly takes into account the estimation errors in ex-

pected returns and covariance matrix of the risky assets. Instead of the usual plug-in portfolio rule

that replaces the population parameters by the sample estimates, we consider optimal portfolios

that are designed to mitigate the impact of estimation risk. Unlike earlier studies, such as Kan and

Zhou (2007) and Tu and Zhou (2011), which rely on simulations to compute the expected out-

of-sample utility of various sample optimal portfolio rules, we derive their out-of-sample utility

explicitly in terms of 1-dimensional integrals. Besides allowing for speedy computation, our ap-
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proach provides analytical insights to the problem and an understanding of what are the parameters

that are important in determining the out-of-sample performance of these portfolio rules.

We also conduct comparisons of various sample optimal portfolio rules with equally weighted

portfolio (1/N) rule. Specifically, we point out that the horse race conducted by DGU is somewhat

unfair to various sample optimal portfolio rules that are designed to invest in both risk-free asset

and risky assets. DGU normalize these optimal portfolio rules so that they invest in just risky

assets. Due to the non-existence of moments for the out-of-sample return of such normalized

portfolio rules, they have very poor out-of-sample performance and can be easily dominated by

the 1/N rule. In this paper, we conduct two comparisons of various optimal portfolio rules with

the 1/N rule. For the case with risk-free asset, we compare the optimal portfolio rules with the one

that optimally combines the risk-free asset and 1/N rule (on risky assets). For the case without

risk-free asset, we compare the 1/N rule with the optimal rules that are specifically designed for

the case without risk-free asset. In both cases and by using both analytical comparison as well as

actual data (using the same datasets in DGU), we find that the optimal portfolio rules that explicitly

take into account of estimation errors can in general do quite well relative to the 1/N rule.

While insights from DGU cast some doubt on the value of existing investment theory, our paper

re-affirms the value of the theory when used properly. Estimation risk is certainly a serious issue

in portfolio analysis, but the problem is not as hopeless as suggested by DGU, and further research

on this problem could generate portfolio rules with even better out-of-sample performance.
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Appendix A: Proofs

We first cite two simple lemmas from Kan and Wang (2015). Suppose z∼N (µ,1), w∼ χ2
m−1,

u∼ χ2
n , and they are independent of each other. It follows that v = z2+w∼ χ2

m(δ ), where δ = µ2.

Lemma 1: Let g(v) be a function of v. When the expectations exist, we have

E[g(v)z] = µE[g(v1)], (A1)

E[g(v)z2] = E[g(v1)]+δE[g(v2)], (A2)

where v1 ∼ χ2
m+2(δ ), v2 ∼ χ2

m+4(δ ).

Lemma 2: Let g(y) be a function of y = v/u∼ G δ
m,n. When the expectations exist, we have

E
[

g(y)
uk

]
=

E[g(y1)]

2k
(n

2 − k
)

k

for k < n
2 , (A3)

where y1 ∼ G δ
m,n−2k.

Proof of Proposition 1

Under the multivariate normality assumption on rt , it is well known that µ̂t and Σ̂t are indepen-

dent of each other, and they have the following distributions:

µ̂t ∼N (µ,Σ/h), (A4)

Σ̂t ∼WN(h−1,Σ/h), (A5)

where WN(h− 1,Σ/h) is a Wishart distribution with h− 1 degrees of freedom and covariance

matrix Σ/h. Let P be an N×N orthonormal matrix with its first column equals to η , P = [η , P1],

where

η =
Σ
− 1

2 µ

(µ ′Σ−1µ)
1
2
=

Σ
− 1

2 µ

θ
. (A6)

Define

z =
√

hP′Σ−
1
2 µ̂t ∼N

([ √
hθ

0N−1

]
, IN

)
, (A7)

W = hP′Σ−
1
2 Σ̂tΣ

− 1
2 P∼WN(h−1, IN), (A8)
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and they are independent of each other. Let z1 ∼N (
√

hθ ,1) be the first element of z, and z′z =

z2
1 +u0, where u0 ∼ χ2

N−1 and it is independent of z1. With the definition of z and W , we can write

θ̂
2
t = µ̂

′
t Σ̂
−1
t µ̂t = z′W−1z, (A9)

µII,t =
k3g1(θ̂

2
t )

γ

√
hθe′1W−1z, (A10)

σ
2
II,t =

k2
3g2

1(θ̂
2
t )

γ2 hz′W−2z, (A11)

where e1 = [1, 0′N−1]
′. Define an N×N orthonormal matrix Q= [z̃, Q1] with its first column equals

to z̃ = z/(z′z)
1
2 . Let

A = (Q′W−1Q)−1 =

[
z̃′W−1z̃ z̃′W−1Q1

Q′1W−1z̃ Q′1W−1Q1

]−1

=

[
A11 A12
A21 A22

]
∼WN(h−1, IN), (A12)

where A11 is the (1,1) element of A, and A is independent of z. Theorem 3.2.10 of Muirhead (1982)

suggests that

u1 ≡ A11·2 = A11−A12A−1
22 A21 ∼ χ

2
h−N , (A13)

and it is independent of A12 and A22. In addition, using the results of Dickey (1967), we can show

that

−A−1
22 A21 ∼

x
√

u2
, (A14)

where x ∼N (0N−1, IN−1), u2 ∼ χ2
h−N+1, and they are independent of each other and u1. Using

the partitioned matrix inverse formula, we can verify that

z̃′W−1z̃ = A−1
11·2 =

1
u1

, (A15)

Q′1W−1z̃ =−A−1
22 A21A−1

11·2 =
x

u1
√

u2
. (A16)

With these identities, we can write

z′W−1z =
z2

1 +u0

u1
, (A17)

z′W−2z = z′W−1(z̃z̃′+Q1Q′1)W
−1z =

z2
1 +u0

u2
1

(
1+

x′x
u2

)
. (A18)
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Without loss of generality, let the first column of Q1 be

ξ =
(IN− z̃z̃′)e1[

e′1(IN− z̃z̃′)e1
] 1

2
=

(IN− z̃z̃′)e1√
u0/z′z

. (A19)

From (A16), we get that

x1

u1
√

u2
= ξ

′W−1z̃ =
e′1W−1z− (z1/u1)√

u0
, (A20)

where x1 is the first element of x, and hence

e′1W−1z =
z1

u1
+

x1
√

u0

u1
√

u2
. (A21)

Using (A17), (A18), and (A21), we have

θ̂
2
t =

z2
1 +u0

u1
, (A22)

µII,t =
k3g1(θ̂

2
t )
√

hθ

γu1

(
z1 +

x1
√

u0√
u2

)
, (A23)

σ
2
II,t =

k2
3g2

1(θ̂
2
t )h

γ2

(
z2

1 +u0

u2
1

)(
1+

x′x
u2

)
=

k2
3g2

1(θ̂
2
t )hθ̂ 2

t

γ2u1

(
1+

x′x
u2

)
. (A24)

We now provide a further simplification of the joint distribution of µII,t and σ2
II,t when N > 1.

Define p1 = x1/
√

x′x and p2 = z2/
√

u0, where z2 ∼N (0,1) is the second element of z. It is well

known that p1 is independent of x′x and p2 is independent of u0 (see for example, Theorem 1.5.6

of Muirhead (1982)). As a result, p1, p2, u0 and x′x are independent of each other. Using the fact

that p1 and p2 have the same distribution, we have

x1
√

u0 = p1
√

x′x
√

u0
d
= p2
√

x′x
√

u0 = z2
√

x′x, (A25)

so x1
√

u0 has the same distribution as z2
√

x′x. Note that replacing x1
√

u0 in µII,t by z2
√

x′x does

not affect the joint distribution of µII,t and σ2
II,t because all the other terms in µII,t and σ2

II,t (i.e., z1,

x′x, u0, u1, and u2) are independent of p1 and p2. As a result, we can write

µII,t =
k3g1(θ̂

2
t )
√

hθ

γu1

(
z1 +

z2
√

x′x
√

u2

)
, (A26)

σ
2
II,t =

k2
3g2

1(θ̂
2
t )hθ̂ 2

t

γ2u1

(
1+

x′x
u2

)
. (A27)
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Let

b =
u2

x′x+u2
∼ Beta

(
h−N +1

2
,
N−1

2

)
. (A28)

Conditional on b, we have

z0 ≡
√

u2z1 +
√

x′xz2√
x′x+u2

=
√

bz1 +
√

1−bz2 ∼N (
√

hθ
√

b,1), (A29)

and we can decompose z′z as

z′z = z2
0 + ũ, (A30)

where

ũ∼ χ
2
N−1(hθ

2(1−b)), (A31)

and it is independent of z0. Using these results, we can write

θ̂
2
t =

z2
0 + ũ
u1

, µII,t =
k3g1(θ̂

2
t )
√

hθz0

γu1
√

b
, σ

2
III,t =

k2
3g2

1(θ̂
2
t )hθ̂ 2

t

γ2u1b
, (A32)

which are the expressions given in the Proposition. Applying Lemmas 1 and 2 to (A23) and using

the fact that x1 has zero mean and it is independent of z1, u0, u1, u2, we obtain

E[µII,t ] =
k3
√

hθ

γ
E
[

g1(θ̂
2
t )

z1

u1

]
=

k3hθ 2

γ(h−N−2)
E[g1(q1)], (A33)

where q1 ∼ G hθ 2

N+2,h−N−2. Given that x, z1, u1 and u2 are independent of each other, θ̂ 2
t ∼ G hθ 2

N,h−N ,

and applying Lemma 2 to (A24), we have

E[σ2
II,t ] =

k2
3h
γ2 E

[
g2

1(θ̂
2
t )

θ̂ 2
t

u1

]
E
[

1+
x′x
u2

]

=
k2

3h
γ2 E

[
g2

1(θ̂
2
t )

θ̂ 2
t

u1

]
h−2

h−N−1

=
k3(h−N−4)
γ2(h−N−2)

E[g2
1(q2)q2], (A34)

where q2 ∼ G hθ 2

N,h−N−2. With the above expressions of E[µII,t ] and E[σ2
II,t ], we obtain

E[U(ŵII
t )] =

k3hθ 2

γ(h−N−2)
E[g1(q1)]−

k3(h−N−4)
2γ(h−N−2)

E[g2
1(q2)q2]. (A35)

This completes the proof.
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Proof of Proposition 2

Let ŵz,t be the weights of a zero-investment portfolio

ŵz,t = Σ̂
−1
t (µ̂t−1N µ̂g,t), (A36)

and ŵg,t be the weights of the sample global minimum-variance portfolio

ŵg,t =
Σ̂
−1
t 1N

1′NΣ̂
−1
t 1N

. (A37)

We can write

ŵIII
t =

k3

γ
[g2(ψ̂

2
t )ŵz,t +1′NΣ̂

−1
t µ̂tŵg,t ]. (A38)

Then the conditional mean and variance of portfolio ŵIII
t can be written as

µIII,t =
k3

γ

[
g2(ψ̂

2
t )µz,t +

(
1′NΣ̂

−1
t µ̂t

)
µg,t
]
, (A39)

σ
2
III,t =

k2
3

γ2

[
g2

2(ψ̂
2
t )σ

2
z,t +

(
1′NΣ̂

−1
t µ̂t

)2
σ

2
g,t +2g2(ψ̂

2
t )
(
1′NΣ̂

−1
t µ̂t

)
σgz,t

]
, (A40)

where µz,t = ŵ′z,t µ , µg,t = ŵ′g,t µ , σ2
z,t = ŵ′z,tΣŵz,t , σ2

g,t = ŵ′g,tΣŵg,t are the conditional means and

variances of portfolios ŵz,t and ŵg,t , and σgz,t = ŵ′g,tΣŵz,t is the conditional covariance between

these two portfolios.

Let P = [ν , η , P1] be an N×N orthonormal matrix with its first two columns as

ν =
Σ
− 1

2 1N(
1′NΣ−11N

) 1
2
= σgΣ

− 1
2 1N , (A41)

η =
(IN−νν ′)Σ−

1
2 µ[

µ ′Σ−
1
2 (IN−νν ′)Σ−

1
2 µ

] 1
2
=

Σ
− 1

2 (µ−1N µg)

ψ
, (A42)

where µg = 1′NΣ−1µ/1′NΣ−11N and σ2
g = 1/1′NΣ−11N are the mean and variance of the global

minimum-variance portfolio. Define

z =
√

hP′Σ−
1
2 µ̂t ∼N

 √hθg√
hψ

0N−2

 , IN

 , (A43)

W = hP′Σ−
1
2 Σ̂tΣ

− 1
2 P∼WN(h−1, IN), (A44)
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and they are independent of each other. Let z1 ∼N (
√

hθg,1) and z2 ∼N (
√

hψ,1) be the first

two elements of z, we can then write z′z = z2
1 + z2

2 +u0, where u0 ∼ χ2
N−2 and it is independent of

z1 and z2. With the definition of z and W , we can write

ψ̂
2
t = z′W−1z−

(e′1W−1z)2

e′1W−1e1
, (A45)

1′NΣ̂
−1
t µ̂t =

√
h

σg
e′1W−1z, (A46)

µz,t =
√

hψ

(
e′2W−1z−

e′1W−1e2e′1W−1z
e′1W−1e1

)
, (A47)

µg,t = µg +σgψ
e′1W−1e2

e′1W−1e1
, (A48)

σ
2
z,t = hz′W−2z+

h(e′1W−1z)2e′1W−2e1

(e′1W−1e1)2 −
2h(e′1W−1z)(e′1W−2z)

e′1W−1e1
, (A49)

σ
2
g,t =

σ2
g e′1W−2e1

(e′1W−1e1)2 , (A50)

σgz,t =
√

hσg

[
e′1W−2z
e′1W−1e1

−
e′1W−2e1e′1W−1z
(e′1W−1e1)2

]
. (A51)

where e1 = [1, 0′N−1]
′ and e2 = [0, 1, 0′N−2]

′. Define an N×N orthonormal matrix Q = [e1, ξ , Q1]

with its first two columns being e1 and ξ , where

ξ =
(IN− e1e′1)z[

z′(IN− e1e′1)z
] 1

2
=

(IN− e1e′1)z√
z2

2 +u0

. (A52)

Let

A = (Q′W−1Q)−1 =

[
A11 A12
A21 A22

]
∼WN(h−1, IN), (A53)

where A11 is the upper left 2× 2 submatrix of A. Using Theorem 3.2.10 of Muirhead (1982), we

have

A11·2 ≡ A11−A12A−1
22 A21 ∼W2(h−N +1, I2), (A54)

vec(y)≡ vec(−A
− 1

2
22 A21)∼N (02N−4, I2N−4), (A55)

A22 ∼WN−2(h−1, IN−2), (A56)

and they are independent of each other. Based on the Bartlett decomposition, we can write

A11·2 =

[
v1 +a2 −a

√
v2

−a
√

v2 v2

]
, (A57)
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where v1 ∼ χ2
h−N , v2 ∼ χ2

h−N+1, and a ∼ N (0,1), all of which are independent of each other.

Taking the inverse of A11·2, we obtain

A−1
11·2 =

[ 1
v1

a
v1
√

v2
a

v1
√

v2
1
v2
+ a2

v1v2

]
. (A58)

It follows that

e′1W−1e1 =
1
v1
, (A59)

e′1W−1
ξ =

a
v1
√

v2
, (A60)

ξ
′W−1

ξ =
1
v2

+
a2

v1v2
. (A61)

Using the definition of ξ , we obtain

e′1W−1
ξ =

e′1W−1z− e′1W−1e1z1√
z2

2 +u0

=
a

v1
√

v2

⇒ e′1W−1z =
a
√

z2
2 +u0

v1
√

v2
+

z1

v1
, (A62)

and

ξ
′W−1

ξ =
z′(IN− e1e′1)W

−1(IN− e1e′1)z
z2

2 +u0
=

1
v2

+
a2

v1v2

⇒ z′W−1z =
z2

2 +u0

v2
+

1
v1

a
√

z2
2 +u0
√

v2
+ z1

2

. (A63)

Using (A59), (A62), and (A63), we get

ψ̂
2
t = z′W−1z−

(e′1W−1z)2

e′1W−1e1
=

z2
2 +u0

v2
, (A64)

1′NΣ̂
−1
t µ̂t =

√
h

σg
e′1W−1z =

√
hy3

σg
, (A65)

where

y3 = e′1W−1z =
aψ̂t + z1

v1
. (A66)
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Using the inverse of partitioned matrix formula, we obtain

Q′1W−1[e1, ξ ] =−A−1
22 A21A−1

11·2 = A
− 1

2
22 yA−1

11·2. (A67)

In addition, Theorem 3.1 and Corollary 3.1 in Dickey (1967) suggests that

A
− 1

2
22 y = xL−1, (A68)

where x ≡ [x1, x2] is an (N− 2)× 2 matrix of independent standard normal random variables, L

is a lower diagonal matrix such that LL′ ∼W2(h−N +3, I2), and x and L are independent of each

other. Using again the Bartlett decomposition, we can write

L =

[ √
w1 0
−b

√
w2

]
, (A69)

with w1 ∼ χ2
h−N+3, w2 ∼ χ2

h−N+2, and b ∼N (0,1), and they are independent of each other and

A11·2 (i.e., v1, v2, and a). Taking the inverse of L, we obtain

L−1 =

[
1√
w1

0
b√

w1w2
1√
w2

]
, (A70)

Without loss of generality, let the first column of Q1 be

ι =
(IN− e1e′1−ξ ξ ′)e2[

e′2(IN− e1e′1−ξ ξ ′)e2
] 1

2
=

(IN−ξ ξ ′)e2√
u0/(z2

2 +u0)
=

√
z2

2 +u0e2− z2ξ

√
u0

. (A71)

Let ε1 = [1, 0′N−3]
′, we have

[h1, h2]≡ ι
′W−1[e1, ξ ] = ε

′
1Q′1W−1[e1, ξ ] = ε

′
1xL−1A−1

11·2 = [x11, x21]L−1A−1
11·2, (A72)

with x11 ∼N (0,1) and x21 ∼N (0,1) being the first element of x1 and x2, respectively, and we

can express h1 and h2 as

h1 =
1
v1

(
x11√
w1

+
bx21√
w1w2

+
ax21√
v2w2

)
, (A73)

h2 =
a
√

v2
h1 +

x21

v2
√

w2
. (A74)

Using the definition of ι , (A59), (A60), (A61), and (A72), we have

e′2W−1e1 =

√
u0√

z2
2 +u0

h1 +
e′1W−1ξ√

z2
2 +u0

z2 =

√
u0√

z2
2 +u0

h1 +
az2

v1
√

v2

√
z2

2 +u0

, (A75)

40



e′2W−1z =
√

u0h2 + e′2W−1e1z1 +ξ
′W−1

ξ z2

=
a
√

u0√
v2

h1 +
x21
√

u0

v2
√

w2
+ e′2W−1e1z1 +

(
1
v2

+
a2

v1v2

)
z2. (A76)

Substituting these two expressions and (A59) in (A47) and (A48), we obtain

µz,t =

√
hψ

v2

(
x21
√

u0√
w2

+ z2

)
, (A77)

µg,t = µg +
σgψ√
z2

2 +u0

(
y1
√

u0 +
az2√

v2

)
. (A78)

where

y1 =
x11√
w1

+
bx21√
w1w2

+
ax21√
v2w2

, (A79)

In order to obtain those terms that involve W−2, we first write[
e′1W−2e1 e′1W−2ξ

e′1W−2ξ ξ ′W−2ξ

]
=

[
e′1
ξ ′

]
W−1

(
[e1, ξ ]

[
e′1
ξ ′

]
+Q1Q′1

)
W−1[e1, ξ ]

= A−2
11·2 +A−1

11·2(L
−1)′x′xL−1A−1

11·2. (A80)

Note that x′x can be written as

x′x =
[

x2
11 x11x21

x11x21 x2
21

]
+C, (A81)

where C ∼W2(N− 3, I2), and it is independent of x11 and x21. Using the Bartlett decomposition,

we can write

C =

[
s1 + c2 c

√
s2

c
√

s2 s2

]
, (A82)

where s1 ∼ χ2
N−4, s2 ∼ χ2

N−3, and c∼N (0,1), and they are independent of each other.16 Substi-

tuting (A58), (A70) and (A81) in (A80) and after simplification, we obtain

e′1W−2e1 =
1
v2

1

(
y2

1 + y2
2 +1+

s1

w1
+

a2

v2

)
, (A83)

ξ
′W−2

ξ =

(
ay1

v1
√

v2
+

x21

v2
√

w2

)2

+
a2

v2
1v2

(
1+

s1

w1

)
+

(
ay2

v1
√

v2
+

√
s2

v2
√

w2

)2

16Note that when N = 3, C is a zero matrix and we set s1 = 0, s2 = 0, and c = 0.
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+

(
1
v2

+
a2

v1v2

)2

, (A84)

e′1W−2
ξ =

a
v2

1
√

v2

(
y2

1 + y2
2 +1+

s1

w1
+

a2

v2

)
+

x21y1

v1v2
√

w2
+

√
s2y2

v1v2
√

w2
+

a

v1v
3
2
2

, (A85)

where

y2 =
c
√

w1
+

b
√

s2√
w1w2

+
a
√

s2√
v2w2

. (A86)

With these expressions, we can write

e′1W−2z =
√

z2
2 +u0(e′1W−2

ξ )+ z1(e′1W−2e1)

=
y3

v1

(
y2

1 + y2
2 +1+

s1

w1
+

a2

v2

)
+

ψ̂t

v1
√

v2

(
x21y1 +

√
s2y2√

w2
+

a
√

v2

)
, (A87)

z′W−2z = (z2
2 +u0)(ξ

′W−2
ξ )+2z1(e′1W−2z)− z2

1(e
′
1W−2e1)

=

(
1+

s1

w1

)
y2

3 +

(
ay3 + ψ̂t√

v2

)2

+

(
y1y3 +

x21ψ̂t√
v2w2

)2

+

(
y2y3 +

√
s2ψ̂t√
v2w2

)2

. (A88)

We then obtain

σ
2
g,t = σ

2
g

(
y2

1 + y2
2 +1+

s1

w1
+

a2

v2

)
, (A89)

σ
2
z,t =

hψ̂2
t

v2

(
1+

x2
21 + s2

w2

)
, (A90)

σgz,t =

√
hσgψ̂t√

v2

(
a
√

v2
+

x21√
w2

y1 +

√
s2√
w2

y2

)
. (A91)

Substituting (A65), (A77), (A78), (A89), (A90), (A91) in (A39) and (A40) and after simplification,

we obtain

µIII,t =

√
hk3

γ

[
g2(ψ̂

2
t )ψ

v2

(
x21
√

u0√
w2

+ z2

)
+θgy3 +

ψy3

ψ̂t

(√
u0y1√
v2

+
az2

v2

)]
, (A92)

σ
2
III,t =

hk2
3

γ2

[(
1+

s1

w1

)
y2

3 +

(
ay3 +g2(ψ̂

2
t )ψ̂t√

v2

)2

+

(
y1y3 +

x21g2(ψ̂
2
t )ψ̂t√

v2w2

)2

+

(
y2y3 +

√
s2g2(ψ̂

2
t )ψ̂t√

v2w2

)2]
. (A93)

Taking expectations and applying Lemmas 1 and 2 by using the fact that ψ̂2
t ∼ G hψ2

N−1,h−N+1, we

obtain

E[µIII,t ] =
k3
√

hψ

γ
E
[

g2(ψ̂
2
t )z2

v2

]
+

k3h
γ(h−N−2)

(
θ

2
g +

ψ2

h−N−1

)
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=
hψ2k3

γ(h−N−1)
E[g2(q3)]+

k3h
γ(h−N−2)

(
θ

2
g +

ψ2

h−N−1

)
, (A94)

E[σ2
III,t ] =

k3

γ2

[
hθ 2

g

h−N−2
+

h−4+hψ2

(h−N−2)(h−N−3)

+
(h−N−1)(h−N−4)

h−N
E
[

2g2(ψ̂
2
t )ψ̂

2
t

(h−N−2)v2
+

g2
2(ψ̂

2
t )ψ̂

2
t

v2

]]
=

k3

γ2

[
hθ 2

g

h−N−2
+

h−4+hψ2

(h−N−2)(h−N−3)

+
(h−N−4)

h−N
E
[(

2g2(q4)

h−N−2
+g2

2(q4)

)
q4

]]
, (A95)

where q3∼G hψ2

N+1,h−N−1 and q4∼G hψ2

N−1,h−N−1. With the above expressions of E[µIII,t ] and E[σ2
III,t ],

we can get

E[U(ŵIII
t )] =

k3

(h−N−2)γ

[
hθ 2

g

2
+

hψ2

h−N−1
− h−4+hψ2

2(h−N−3)

]
+

hψ2k3

(h−N−1)γ
E[g2(q3)]

− k3(h−N−4)
2(h−N)γ

E
[(

2g2(q4)

h−N−2
+g2

2(q4)

)
q4

]
. (A96)

This completes the proof.

Proof of Proposition 3

Note that

µp,t = µg,t +
1
γ

µz,t , (A97)

σ
2
p,t = σ

2
g,t +

2
γ

σgz,t +
1
γ2 σ

2
z,t , (A98)

where µg,t , µz,t , σ2
g,t , σ2

z,t are the conditional mean and variance of portfolios ŵg,t and ŵz,t , and

σgz,t is the conditional covariance of the two portfolios. The expressions of these conditional

mean, variance, and covariance are given in (A77), (A78), (A89), (A90), and (A91). Taking their

expectations, we obtain

E[µg,t ] = µg, (A99)

E[µz,t ] =
hψ2

h−N−1
, (A100)

E[σ2
g,t ] =

(h−2)σ2
g

h−N−1
, (A101)
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E[σ2
z,t ] =

h(h−2)(hψ2 +N−1)
(h−N)(h−N−1)(h−N−3)

, (A102)

E[σgz,t ] = 0. (A103)

It follows that

E[µp,t ] = µg +
hψ2

γ(h−N−1)
, (A104)

E[σ2
p,t ] =

(h−2)σ2
g

h−N−1
+

h(h−2)(hψ2 +N−1)
γ2(h−N)(h−N−1)(h−N−3)

, (A105)

which gives the expression of the expected out-of-sample utility of portfolio p. This completes the

proof.

Proof of Proposition 4

Note that

µq,t = µg,t +
k̃3g3(ψ̂

2
t )

γ
µz,t , (A106)

σ
2
q,t = σ

2
g,t +

k̃2
3g2

3(ψ̂
2
t )

γ2 σ
2
z,t +

2k̃3g3(ψ̂
2
t )

γ
σgz,t , (A107)

where µg,t , µz,t , σ2
g,t , σ2

z,t are the conditional mean and variance of portfolios ŵg,t and ŵz,t , and σgz,t

is the conditional covariance of the two portfolios. The expressions of these conditional mean,

variance, and covariance are given in (A77), (A78), (A89), (A90), and (A91). Plugging these

expressions in (A106) and (A107), we obtain the expressions of µq,t and σ2
q,t in the Proposition.

Take expectations and applying Lemmas 1 and 2, we get

E[µq,t ] = µg +

√
hψ k̃3

γ
E
[

g3(ψ̂
2
t )z2

v2

]
= µg +

hψ2k̃3

γ(h−N−1)
E[g3(q3)], (A108)

E[σ2
q,t ] =

(h−2)σ2
g

h−N−1
+

k̃2
3h(h−2)
γ(h−N)

E
[

g2
3(ψ̂

2
t )ψ̂

2
t

v2

]
=

(h−2)σ2
g

h−N−1
+

k̃3(h−N−3)E[g2
3(q4)q4]

γ(h−N−1)
,

(A109)

where q3 ∼ G hψ2

N+1,h−N−1, q4 ∼ G hψ2

N−1,h−N−1. Using these expressions, we obtain the expected out-

of-sample utility of portfolio q. This completes the proof.
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Table 1: Portfolio performance comparison for the case with risk-free asset using empirical data
over 1963/7–2004/11 (with normalization)

This table reports the empirical utility (in percentage points) and the Sharpe ratio of the ex post tangency portfolio (MV
in-sample), the equally weighted portfolio of risky assets (1/N), the normalized ML rule (ML), and the normalized
three-fund rule of Kan and Zhou (2007) (KZ3) for h = 120 and γ = 1, using the same six datasets as in DeMiguel,
Garlappi, and Uppal (2009). One sided p-values of the performance difference between the optimal portfolios and the
1/N rule are also reported.

Industry International MKT/SMB/HML FF+1-factor FF+3-factor FF+4-factor
N = 11 N = 9 N = 3 N = 21 N = 23 N = 24

A. CEQ
MV (in-sample) 0.0098 0.0082 0.0044 0.0296 −0.2075 −0.0752
1/N 0.0050 0.0051 0.0042 0.0073 0.0071 0.0072
ML −0.1191 −0.1344 0.0041 −0.6426 −0.0034 −0.0157
p-value 1.0000 1.0000 0.5448 1.0000 0.7692 0.8749
KZ3 −0.0508 −0.0013 0.0041 −0.0567 0.0143 −0.0025
p-value 0.9996 0.9770 0.5390 0.9998 0.0565 0.7429

B. Sharpe ratio
MV (in-sample) 0.2146 0.1969 0.2770 0.5231 0.5260 0.5591
1/N 0.1365 0.1375 0.2351 0.1628 0.1683 0.1761
ML −0.0152 −0.0372 0.2034 −0.0227 0.1240 0.1443
p-value 0.9757 0.9886 0.7254 0.9970 0.7393 0.6707
KZ3 −0.0093 0.0142 0.2420 0.0089 0.2218 0.1315
p-value 0.9722 0.9893 0.4349 0.9892 0.2202 0.7304
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Table 2: CEQ comparison for the case with risk-free asset using empirical data over 1927/1–
2014/12 (with normalization)

This table reports the empirical utility (in percentage points) of the ex post tangency portfolio (MV in-sample), the
equally weighted portfolio of risky assets (1/N), the normalized ML rule, and the normalized three-fund rule of Kan
and Zhou (2007) (KZ3) for different combinations of h (120 or 240) and γ (1 or 3), using the same six datasets as in
DeMiguel, Garlappi, and Uppal (2009) but over an extended sample period. One sided p-values of the performance
difference between the optimal portfolios and the 1/N rule are also reported.

Industry International MKT/SMB/HML FF+1-factor FF+3-factor FF+4-factor
N = 11 N = 9 N = 3 N = 21 N = 23 N = 24

A. h = 120 and γ = 1
MV (in-sample) 0.0092 0.0066 0.0043 0.0191 −0.0237 −0.0316
1/N 0.0059 0.0047 0.0038 0.0070 0.0067 0.0068
ML −0.2304 −3.6631 0.0027 −3.0487 0.0016 −0.0028
p-value 1.0000 1.0000 0.7061 1.0000 0.8058 0.8811
KZ3 −0.0584 −0.2733 0.0029 −0.4240 0.0073 0.0009
p-value 1.0000 1.0000 0.6982 1.0000 0.3978 0.8300

B. h = 120 and γ = 3
MV (in-sample) 0.0073 0.0046 0.0038 0.0152 −0.0278 −0.0371
1/N 0.0040 0.0024 0.0033 0.0036 0.0038 0.0041
ML −0.7309 −11.0738 −0.0013 −9.0334 −0.0293 −0.0604
p-value 1.0000 1.0000 0.9893 1.0000 1.0000 1.0000
KZ3 −0.1999 −0.8111 0.0001 -1.2344 0.0046 −0.0314
p-value 1.0000 1.0000 0.9733 1.0000 0.3678 1.0000

C. h = 240 and γ = 1
MV (in-sample) 0.0091 0.0129 0.0041 0.0197 −0.0109 −0.0160
1/N 0.0060 0.0034 0.0036 0.0069 0.0066 0.0067
ML 0.0062 0.0013 0.0038 −0.0561 −0.8185 −0.2734
p-value 0.4715 0.8254 0.3877 1.0000 1.0000 1.0000
KZ3 0.0063 0.0032 0.0033 0.0128 −0.5827 −0.1777
p-value 0.4336 0.5804 0.7679 0.0481 1.0000 1.0000

D. h = 240 and γ = 3
MV (in-sample) 0.0074 0.0089 0.0038 0.0166 −0.0116 −0.0172
1/N 0.0044 0.0011 0.0032 0.0043 0.0044 0.0047
ML 0.0004 −0.0017 0.0033 −0.2377 −2.5849 −0.9454
p-value 0.9148 0.8836 0.4843 1.0000 1.0000 1.0000
KZ3 0.0038 0.0014 0.0029 0.0031 −1.8555 −0.6327
p-value 0.6172 0.3877 0.7733 0.6291 1.0000 1.0000
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Table 3: Sharpe ratio comparison for the case with risk-free asset using empirical data over 1927/1–
2014/12 (with normalization)

This table reports the Sharpe ratio of the ex post tangency portfolio (MV in-sample), the equally weighted portfolio
of risky assets (1/N), the normalized ML rule, and the normalized three-fund rule (KZ3) of Kan and Zhou (2007) for
different combinations of h (120 or 240), using the same six datasets as in DeMiguel, Garlappi, and Uppal (2009) but
over an extended sample period. One sided p-values of the performance difference between the optimal portfolios and
the 1/N rule are also reported.

Industry International MKT/SMB/HML FF+1-factor FF+3-factor FF+4-factor
N = 11 N = 9 N = 3 N = 21 N = 23 N = 24

A. h = 120
MV (in-sample) 0.2332 0.1696 0.1982 0.3379 0.3401 0.3908
1/N 0.1573 0.1222 0.1791 0.1486 0.1506 0.1569
ML 0.0281 0.0155 0.0741 −0.0230 0.0970 0.1085
p-value 0.9956 0.9464 0.9966 0.9999 0.8860 0.8554
KZ3 0.0328 −0.0060 0.0818 −0.0208 0.1656 0.0950
p-value 0.9950 0.9767 0.9958 0.9999 0.3683 0.9107

B. h = 240
MV (in-sample) 0.2411 0.2354 0.2284 0.3827 0.3886 0.4433
1/N 0.1686 0.0950 0.2009 0.1612 0.1638 0.1714
ML 0.1197 0.0502 0.1806 0.0815 0.0487 0.0763
p-value 0.8556 0.8412 0.7700 0.9472 0.9888 0.9712
KZ3 0.1513 0.0967 0.1818 0.1796 0.0476 0.0738
p-value 0.6652 0.4708 0.7894 0.3404 0.9894 0.9742
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Table 4: CEQ comparison for the case with risk-free asset using empirical data over 1927/1–
2014/12 (without normalization)

This table reports the empirical utility (in percentage points) of the ex post optimal portfolio (MV in-sample), the
1/N rule constructed based on (39), the ML rule, the two-fund rule (KZ2), and the three-fund rule (KZ3) of Kan and
Zhou (2007) for different combinations of h (120 or 240) and γ (1 or 3), using the same six datasets as in DeMiguel,
Garlappi, and Uppal (2009) but over an extended sample period. One sided p-values of the performance difference
between the optimal portfolios and the 1/N rule are also reported.

Industry International MKT/SMB/HML FF+1-factor FF+3-factor FF+4-factor
N = 11 N = 9 N = 3 N = 21 N = 23 N = 24

A. h = 120 and γ = 1
MV (in-sample) 0.0272 0.0144 0.0196 0.0571 0.0578 0.0764
1/N 0.0116 0.0031 0.0130 0.0080 0.0081 0.0090
ML −0.0516 −0.0440 0.0065 −0.1721 −0.2158 −0.2526
p-value 1.0000 0.9996 0.8183 1.0000 1.0000 1.0000
KZ2 0.0043 −0.0060 0.0124 0.0281 0.0264 0.0350
p-value 0.8471 0.9635 0.5448 0.0647 0.0849 0.0415
KZ3 0.0073 −0.0060 0.0150 0.0304 0.0209 0.0313
p-value 0.7113 0.9520 0.3421 0.0492 0.1838 0.0768

B. h = 120 and γ = 3
MV (in-sample) 0.0091 0.0048 0.0065 0.0190 0.0193 0.0255
1/N 0.0039 0.0010 0.0043 0.0027 0.0027 0.0030
ML −0.0172 −0.0147 0.0022 −0.0574 −0.0719 −0.0842
p-value 1.0000 0.9996 0.8183 1.0000 1.0000 1.0000
KZ2 0.0014 −0.0020 0.0041 0.0094 0.0088 0.0117
p-value 0.8471 0.9635 0.5448 0.0647 0.0849 0.0415
KZ3 0.0024 −0.0020 0.0050 0.0101 0.0070 0.0104
p-value 0.7113 0.9520 0.3421 0.0492 0.1838 0.0768

C. h = 240 and γ = 1
MV (in-sample) 0.0291 0.0277 0.0261 0.0732 0.0755 0.0982
1/N 0.0043 0.0007 0.0127 0.0050 0.0055 0.0065
ML −0.0158 −0.0138 0.0093 −0.0333 −0.0430 −0.0354
p-value 0.9464 0.9638 0.7070 0.9339 0.9661 0.9089
KZ2 0.0044 −0.0030 0.0119 0.0231 0.0230 0.0402
p-value 0.4953 0.7894 0.5654 0.1153 0.1221 0.0292
KZ3 0.0052 −0.0018 0.0126 0.0248 0.0209 0.0385
p-value 0.4553 0.7356 0.5105 0.0878 0.1581 0.0382

D. h = 240 and γ = 3
MV (in-sample) 0.0097 0.0092 0.0087 0.0244 0.0252 0.0327
1/N 0.0014 0.0002 0.0042 0.0017 0.0018 0.0022
ML −0.0053 −0.0046 0.0031 −0.0111 −0.0143 −0.0118
p-value 0.9464 0.9638 0.7070 0.9339 0.9661 0.9089
KZ2 0.0015 −0.0010 0.0040 0.0077 0.0077 0.0134
p-value 0.4953 0.7894 0.5654 0.1153 0.1221 0.0292
KZ3 0.0017 −0.0006 0.0042 0.0083 0.0070 0.0128
p-value 0.4553 0.7356 0.5105 0.0878 0.1581 0.0382
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Table 5: Sharpe ratio comparison for the case with risk-free asset using empirical data over 1927/1–
2014/12 (without normalization)

This table reports the Sharpe ratio of the ex post optimal portfolio (MV in-sample), the 1/N rule constructed based
on (39), the ML rule, the two-fund rule (KZ2) and the three-fund rule (KZ3) of Kan and Zhou (2007) for different
combinations of h (120 or 240), using the same six datasets as in DeMiguel, Garlappi, and Uppal (2009) but over an
extended sample period. One sided p-values of the performance difference between the optimal portfolios and the
1/N rule are also reported.

Industry International MKT/SMB/HML FF+1-factor FF+3-factor FF+4-factor
N = 11 N = 9 N = 3 N = 21 N = 23 N = 24

A. h = 120
MV (in-sample) 0.2332 0.1696 0.1982 0.3379 0.3401 0.3908
1/N 0.1534 0.0812 0.1623 0.1277 0.1292 0.1359
ML 0.1371 0.0161 0.1738 0.2735 0.2684 0.3154
p-value 0.6793 0.9074 0.3159 0.0002 0.0004 0.0000
KZ2 0.1353 −0.0118 0.1637 0.2677 0.2629 0.2995
p-value 0.7049 0.9657 0.4759 0.0004 0.0008 0.0001
KZ3 0.1669 0.0491 0.1851 0.2843 0.2561 0.2961
p-value 0.3269 0.8369 0.1430 0.0000 0.0016 0.0001

B. h = 240
MV (in-sample) 0.2411 0.2354 0.2284 0.3827 0.3886 0.4433
1/N 0.1098 0.0611 0.1619 0.1096 0.1132 0.1214
ML 0.1448 0.0228 0.1648 0.2835 0.2822 0.3490
p-value 0.1806 0.8047 0.4550 0.0001 0.0001 0.0000
KZ2 0.1319 −0.0096 0.1596 0.2611 0.2606 0.3227
p-value 0.2798 0.9408 0.5340 0.0005 0.0007 0.0000
KZ3 0.1514 0.0631 0.1688 0.2699 0.2576 0.3209
p-value 0.1050 0.4673 0.3828 0.0000 0.0009 0.0000
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Table 6: CEQ comparison for the case without risk-free asset using empirical data over 1927/1–
2014/12

This table reports the empirical utility (in percentage points) for the ex post optimal portfolio, the equally weighted
portfolio of risky assets (1/N), the ML rule, and the QL rule for the case without a risk-free asset for different
combinations of h (120 or 240) and γ (1 or 3), using the same six datasets as in DeMiguel, Garlappi, and Uppal
(2009) but over an extended sample period. One sided p-values of the performance difference between the optimal
portfolios and the 1/N rule are also reported.

Industry International MKT/SMB/HML FF+1-factor FF+3-factor FF+4-factor
N = 11 N = 9 N = 3 N = 21 N = 23 N = 24

A. h = 120 and γ = 1
MV (in-sample) 0.0159 0.0079 0.0083 0.0442 0.0576 0.0761
1/N 0.0059 0.0047 0.0038 0.0070 0.0067 0.0068
ML −0.0588 −0.0394 −0.0020 −0.1284 −0.1876 -0.2251
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
QL −0.0028 −0.0023 0.0063 0.0216 0.0268 0.0361
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

B. h = 120 and γ = 3
MV (in-sample) 0.0080 0.0046 0.0045 0.0178 0.0191 0.0253
1/N 0.0040 0.0024 0.0033 0.0036 0.0038 0.0041
ML −0.0173 −0.0114 0.0010 −0.0392 −0.0628 −0.0753
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
QL 0.0014 0.0010 0.0037 0.0104 0.0088 0.0118
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C. h = 240 and γ = 1
MV (in-sample) 0.0164 0.0220 0.0095 0.0523 0.0743 0.0973
1/N 0.0060 0.0034 0.0036 0.0069 0.0066 0.0067
ML −0.0154 −0.0113 −0.0029 −0.0282 −0.0356 −0.0245
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
QL 0.0057 0.0013 −0.0000 0.0205 0.0232 0.0422
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D. h = 240 and γ = 3
MV (in-sample) 0.0082 0.0091 0.0050 0.0214 0.0247 0.0323
1/N 0.0044 0.0011 0.0032 0.0043 0.0044 0.0047
ML −0.0022 −0.0026 0.0006 −0.0047 −0.0121 -0.0084
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
QL 0.0046 0.0013 0.0016 0.0112 0.0076 0.0139
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 1: Expected out-of-sample utility of various portfolio rules for the case with a risk-free
asset and 10 risky assets
This figure plots the expected out-of-sample utilities (in percentage points) of portfolios ŵt , ŵII

t ,
ŵIII

t , ŵew,t , ŵII
ew,t , w∗ew, and w∗ as a function of the length of estimation window (h), with parameters

estimated using excess monthly returns of the 10 momentum portfolios over the period of 1927/1–
2014/12. The risk aversion coefficient is set to three (γ = 3).
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Figure 2: Expected out-of-sample utility of various portfolio rules for the case with a risk-free
asset and 25 risky assets
This figure plots the expected out-of-sample utilities (in percentage points) of portfolios ŵt , ŵII

t ,
ŵIII

t , ŵew,t , ŵII
ew,t , w∗ew, and w∗ as a function of the length of estimation window (h), with parameters

estimated using excess monthly returns of the Fama-French 5×5 size and book-to-market ranked
portfolios over the period of 1927/1–2014/12. The risk aversion coefficient is set to three (γ = 3).
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(a) θ = 0.4, θew = 0.1
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(b) θ = 0.2, θew = 0.05
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(c) θ = 0.4, θew = 0.2
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(d) θ = 0.2, θew = 0.1
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(e) θ = 0.4, θew = 0.3
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(f) θ = 0.2, θew = 0.15

Figure 3: Number of estimation months required to outperform the 1/N rule
This figure plots the required number of estimation months for various optimal portfolio rules (ML,
two-fund, and three-fund) to outperform the 1/N rule as a function of the number of risky assets
(N) when a risk-free asset is included in the optimal portfolios. The six panels report results for
different combinations of θ (0.4 or 0.2) and θew/θ (0.25, 0.5, or 0.75), with the Sharpe ratio of the
global minimum-variance portfolio (θg) set equal to θ/2 in each case.
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Figure 4: Unconditional distribution of out-of-sample return of the ML rule with 10 risky
assets
This figure plots the unconditional distribution of rp,t+1 for h = 60 months and 120 months with
parameters estimated using excess monthly returns of the 10 momentum portfolios over the period
of 1927/1–2014/12. The risk aversion coefficient is set to three (γ = 3). For comparison, the return
distribution of the true optimal portfolio is also reported.

56



-0.4 -0.2 0 0.2 0.4

rp,t+1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
µg = 0.00693, σg = 0.0449, ψ = 0.258

h = 60

h = 120

h = ∞

Figure 5: Unconditional distribution of out-of-sample return of the ML rule with 25 risky
assets
This figure plots the unconditional distribution of rp,t+1 for h = 60 months and 120 months with
parameters estimated using excess monthly returns of the Fama-French 5× 5 size and book-to-
market ranked portfolios over the period of 1927/1–2014/12. The risk aversion coefficient is set to
three (γ = 3). For comparison, the return distribution of the true optimal portfolio is also reported.
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Figure 6: Unconditional distribution of out-of-sample return of the QL rule with 10 risky
assets
This figure plots the unconditional distribution of rq,t+1 for h = 60 months and 120 months with
parameters estimated using excess monthly returns of the 10 momentum portfolios over the period
of 1927/1–2014/12. The risk aversion coefficient is set to three (γ = 3). For comparison, the return
distribution of the true optimal portfolio is also reported.
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Figure 7: Unconditional distribution of out-of-sample return of the QL rule with 25 risky
assets
This figure plots the unconditional distribution of rq,t+1 for h = 60 months and 120 120 months
with parameters estimated using excess monthly returns of the Fama-French 5×5 size and book-
to-market ranked portfolios over the period of 1927/1–2014/12. The risk aversion coefficient is
set to three (γ = 3). For comparison, the return distribution of the true optimal portfolio is also
reported.
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Figure 8: Expected out-of-sample utility of various portfolio rules for the case with 10 risky
assets
This figure plots the expected out-of-sample utility (in percentage points) of the true optimal port-
folio, the ML rule, the QL rule, and the 1/N rule as a function of the length of the estimation
window (h), with parameters estimated using excess monthly returns of the 10 momentum portfo-
lios over the period of 1927/1-2014/12. The risk aversion coefficient is set to three (γ = 3).
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Figure 9: Expected out-of-sample utility of various portfolio rules for the case with N = 25
risky assets
This figure plots the expected out-of-sample utility (in percentage points) of the true optimal port-
folio, the ML rule, the QL rule, and the 1/N rule as a function of the length of the estimation
window (h), with parameters estimated using excess monthly returns of Fama-French 5× 5 size
and book-to-market ranked portfolios over the period of 1927/1-2014/12. The risk aversion coeffi-
cient is set to three (γ = 3).
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Figure 10: Expected out-of-sample utility of various portfolio rules for the case with 10 risky
assets
This figure plots the expected out-of-sample utility (in percentage points) of the true optimal port-
folio, the ML rule, the QL rule, and the 1/N rule as a function of the length of the estimation
window (h), with parameters estimated using excess monthly returns of the 10 momentum portfo-
lios over the period of 1927/1-2014/12. The risk aversion coefficient is set to one (γ = 1).
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Figure 11: Expected out-of-sample utility of various portfolio rules for the case with 25 risky
assets
This figure plots the expected out-of-sample utility (in percentage points) of the true optimal port-
folio, the ML rule, the QL rule, and the 1/N rule as a function of the length of the estimation
window (h), with parameters estimated using excess monthly returns of Fama-French 5× 5 size
and book-to-market ranked portfolios over the period of 1927/1-2014/12. The risk aversion coeffi-
cient is set to one (γ = 1).
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(a) θ = 0.4, θew = 0.1
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(b) θ = 0.2, θew = 0.05
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(c) θ = 0.4, θew = 0.2
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(d) θ = 0.2, θew = 0.1
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(e) θ = 0.4, θew = 0.3
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(f) θ = 0.2, θew = 0.15

Figure 12: Number of estimation months required to outperform the 1/N rule
This figure plots the required number of estimation months for the ML and the QL rule to out-
perform the 1/N rule as a function of the number of risky assets (N) when a risk-free asset is not
available. The six panels report results for different combinations of θ (0.4 or 0.2) and θew/θ

(0.25, 0.5, or 0.75), with the Sharpe ratio of the global minimum-variance portfolio (θg) set equal
to θ/2 in each case. In addition, we assume σg = 0.05 and σew = 0.065.
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