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Abstract

We study the impact of market liquidity risk on the stock market index by estimating a

continuous-time model with time-varying volatility and crash risks. We find that mar-

ket illiquidity dominates other factors in explaining time-varying market crash risk; it

explains 61% of jumps in the S&P 500 index. While we find that the crash probability

significantly varies through time, its dynamic depends only weakly on return variance

once we include market illiquidity as an economic variable in the model. This finding

suggests the relationship between variance and crash probability found in the literature

is largely due to their common exposure to market liquidity risk. Our study highlights

the importance of market-trading friction in index return dynamics and explains why

prior studies find that crash risk increases with market uncertainty level.
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1 Introduction

Market liquidity, defined as the ease with which securities can be bought or sold without

significant price impact, has become an increasing concern in financial markets. This is evi-

denced, for example, by the “flash crash” of May 2010, when major US stock indices fell by

almost 10%, before recovering quickly. Similarly, market-wide trading halts on August 24th,

2015 generated spikes in asset price volatility across financial markets. These two incidents

were quickly identified as symptoms of market illiquidity because they occurred in the ab-

sence of major news about fundamentals. Unlike the funding liquidity squeeze witnessed in

2007–2008, current market liquidity risk stems not from the banking industry, but perhaps

from its absence. In an effort to diminish the chances of reliving the 2008 crisis, regulators

and politicians have been working to reduce the role of banks in financial markets, thereby

lowering the amount of securities held on bank balance sheets. While this may limit the

chances of a subprime crisis repeat, it has the potential to cause investors to increasingly bear

the risk borne from financial markets’ trading frictions, e.g, market liquidity risk.1 As a result,

the influence of market liquidity on the economy appears to be increasing in importance.

This paper examines the impact of market liquidity risk on the volatility and crash prob-

ability of the aggregate stock market — proxied by the S&P 500 index. Our approach is to

estimate a continuous-time model with stochastic volatility and dynamic crash probability.

The innovation of our method is the introduction of market liquidity risk as an economic factor

driving the dynamics of volatility and jump intensity. We measure daily market liquidity risk

(or “market illiquidity”) using average bid-ask spreads of securities constituting the S&P 500

index, where individual stocks’ effective bid-ask spreads are estimated from high-frequency

trades.2 We estimate the model over 2004–2012 using daily S&P 500 index options, realized

spot variance, and market illiquidity, and find that 61% of the time-varying crash risk is due

to the stock market’s exposure to market illiquidity. The influence of market illiquidity domi-

nates other factors including the market’s spot variance. During the 2008 crisis, the influence

of spot variance dominates and the contribution of market illiquidity falls to about 30%.

Market crashes refer to large, unexpected drops in asset prices. Crashes can occur in the

presence of information asymmetry about fundamentals, as well in their absence. In the latter

case, market liquidity risk is often the culprit. For instance, Huang and Wang (2008) show

in an equilibrium framework that when market participation is costly, potential traders are

deterred from being in the market constantly. This causes them to enter the market only when

1Chung and Chuwonganant (2014) find that regulatory changes in the US markets have increased the role
of public traders in liquidity provision, which has strengthened the relationship between volatility and market
liquidity.

2This measure is motivated by Ait-Sahalia and Yu (2009), and Goyenko, Holden, and Trzcinka (2009) who
find strong empirical supports for using intraday bid-ask as the measure for market illiquidity.
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large trading-needs arise, which are often on the selling side.3 Although there exists empirical

evidence suggesting that crashes are often driven by market illiquidity, they are typically

anecdotal (e.g. “flash crash”) or indirect. For instance, Lee (2012) and Bradley et al. (2014)

find that up to 70% of jumps in equity prices cannot be explained by salient news arrivals,

suggesting that trading frictions must play an economically large role in causing stock price

jumps.4

There also exists an extensive literature on index return models which unanimously agrees

that index prices “jump”.5 In this case, crashes are large and rare jumps in index returns that

cannot be captured by the index’s volatility level. More recently, several studies have advocated

that the probability of observing jumps (or “crashes”) is time-varying.6 A typical approach is

to let the jump arrival rate increase with the level of a stock return variance.7 Although this

modeling framework is parsimonious, it is inconsistent with the notion that crashes are sudden

price drops unexplainable by the current volatility level. Therefore, while recent studies in

this literature agree that crash risk is time-varying, they are silent on the economic variables

driving its dynamic. Our study hopes to contribute by providing economic underpinnings to

models with time-varying crash risk, and showing that much of the variations in jump intensity

is driven by trading frictions, i.e. illiquidity.

In order to motivate our subsequent modeling framework, we first apply logistic regression

analysis linking our market illiquidity measure to a non-parametrically estimated jump prob-

ability (e.g., Huang and Tauchen, 2005). We find that market illiquidity significantly increases

the ex-post probability of observing jumps in the next day S&P 500 return, and that its effect

crowds out the influence of realized variance on the jump probability. We confirm this finding

by running predictive OLS regressions on daily realized skewness and find a negative and sig-

nificant relationship between market illiquidity and next day’s realized skewness. Armed with

this evidence, we estimate a continuous-time model similar to the stochastic volatility with

jump model (SVJ) studied by Pan (2002) and Bates (2006), among others. In this model,

the jump arrival rate is affine in return variance. We extend this framework in two aspects.

First, we let market illiquidity enter into the dynamic of return variance. Second, we let

the time-varying jump intensity dynamic be a function of return variance, market illiquidity,

and a latent-state variable. We estimate the model by extracting information embedded in

3In an earlier study, Gennotte and Leland (1990) develop a rational expectation model explaining why a
large price drop can occur when there is relatively small amount of selling in the market.

4See also Jiang, Lo and Verdelhan (2011) who study jumps in the Treasury market.
5This literature is too large to cite in full, for some evidence, see Maheu and McCurdy (2004), Andersen,

Bollerslev and Lund (2002), Eraker (2004), and Broadie, Chernov and Johannes (2009).
6See for examples, Pan (2002), Eraker (2004), Bates (2006, 2012), Christoffersen, Jacobs and Ornthanalai

(2012), Ornthanalai (2014), and Andersen, Fusari and Todorov (2015).
7Santa-Clara and Yan (2010) is a notable exception for which they model jump intensity as a quadratic

function of state variables
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index options and intraday trades. We apply the unscented Kalman filter to extract daily

latent-state variables in the model. This filtering method allows for sequential learning in

the dynamics of latent jump intensity, variance, and illiquidity processes, as well as providing

errors in the measurement equation for constructing the model’s log-likelihood.

We refer to the most general model that we study as the SJVI. In this model, the jump

intensity dynamic, λt, is stochastic and affine in the spot variance (Vt), market illiquidity

level (Lt), and latent-state variable (Ψt). For comparisons, we estimate two other benchmark

models with stochastic jump intensity — the SJ and SJV models. The jump intensity dynamic

in the SJ model is solely driven by the latent-state variable, while in the SJV model it depends

on the spot variance and the latent-state variable. To summarize, the three models that we

estimate are characterized by their jump intensity dynamics as follows:

SJ : λt = Ψt

SJV : λt = Ψt + γV Vt

SJVI : λt = Ψt + γV Vt + γLLt.

In all specifications, we model the spot variance, Vt, as a two-factor square-root process

(Heston, 1993) with market illiquidity being one of the factors. Our estimation results show

a strong contemporaneous relationship between market illiquidity and spot variance. On av-

erage, a one-standard-deviation increase in the level of market illiquidity increases the spot

variance by about 12%. This finding lends support to previous studies documenting the posi-

tive relationship between return volatility and trading activity (e.g. Lamoureux and Lastrapes,

1990; Chae, 2005).

We find that the nature of jumps that we estimate from the three models reflects stock mar-

ket crash risk. When a jump occurs, its average size is about −3.7% in return units. Therefore,

jumps that we estimate represent large drops in the index price, “crashes,” and not market

surges. We find that jump intensity dynamics in the SJ model is extremely volatile. The

average jump probability of this model is 3.1 jumps per year with an annualized standard

deviation of 12.6. The jump component in the SJ model significantly dominates the diffusive

variance component in the index return dynamic, particularly during the 2008 crisis where

the ex-ante jump probability rises to 60 jumps per year. On the other hand, when we include

the spot variance as a variable in the time-varying jump probability, e.g., the SJV and SJVI

models, the jump intensity dynamic becomes significantly smoother and less volatile. For

instance, the average jump probability levels for the SJV and SJVI models, respectively, are

2.5 and 2.9 per year with annualized standard deviations of 3.3 and 2.2.

Looking at the models’ in-sample fit, we find the log-likelihood value from the SJ model

is significantly lower (by about 10%) than those from the SJV and SJVI models. Further,
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the filtered spot variances from the SJ model are significantly downward-biased relative to

the realized variance levels calculated from high-frequency data because variations in index

returns are dominated by jumps. We believe that the relatively lower log-likelihood value and

the volatile nature of jumps observed in the SJ model is due to the difficulty of identifying the

latent stochastic jump intensity dynamic in the absence of economic covariates. Estimation

of the time-varying jump intensity dynamic is generally difficult, and we refer to Bates (2006)

for a brief literature review. This is because jumps, and particularly crashes, are rare events.

Therefore, the estimation of time-varying jump dynamics requires that econometricians ex-

tract their information from various information-rich sources. Our findings support this view

by showing the importance of modeling jump intensity as a function of economic covariates

that can be reliably identified from the data, e.g., realized variance or market illiquidity.

We find strong evidence that during our sample period, crash risk in the S&P 500 index

mostly reflects investors’ fear of market illiquidity. We arrive at this conclusion by examining

the contribution of market illiquidity to the jump intensity dynamic in the SJVI model and

find a strong contemporaneous positive relationship (t-stat of 13.87). On the other hand,

estimation results show the relationship between jump probability and spot variance is positive

but statistically weak (t-stat of 1.61). This finding differs from our estimates for the SJV model

where market illiquidity is absent in the jump intensity dynamic for which the spot variance

level significantly increases with jump intensity (t-stat of 2.17). Collectively, these results

show that market illiquidity is the main economic factor driving crash risk and not the level

of market’s spot variance (e.g., Christoffersen, Jacobs and Ornthanalai, 2012) and support

our preliminary evidence found using regression analyses. Further, our results suggest that

previous studies find that jump intensity increases with the level of spot variance because of

the strong positive relationship between variance and market illiquidity.

In terms of economic magnitude, we find that market illiquidity explains more than half

of the S&P 500 index’s crash probability during our sample (about 61% on average). On the

contrary, the market spot variance’s contribution to the jump intensity dynamic is only about

15%, with the remaining 24% coming from the latent jump-intensity-specific factor. However,

during the six-month period after the Lehman Brothers’ collapse, we find that the market

spot variance dominates other factors in explaining the time-varying crash probability, with

the contribution as high as 70%. This finding suggests that investors’ fear of crash risk during

the sub-prime crisis reflects uncertainty about the market’s fundamentals, while outside the

crisis period, crash risk mostly reflects investors’ fear of market illiquidity.

We emphasize that our findings on the relationship between market illiquidity and time-

varying volatility and crash risks are not due to market micro-structure noise. This is because

the market illiquidity proxy that we use is derived from effective spreads of 500 firms constitut-

ing the S&P 500 index and not from trades on its ETFs nor its futures contracts. Therefore,
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the relationship between market illiquidity and index return dynamics that we document is

not mechanically generated from market-microstructure noises.

Overall, the findings in this paper emphasize the importance of market liquidity risk in

explaining time-varying volatility and crash risks, which is largely missing from prior empirical

studies examining index return dynamics. We confirm that our main conclusions hold using

various robustness checks. For instance, we show that our estimation results are qualitatively

similar before and after the implementation of the “circuit breaker” in 2010. We also re-

estimate the models using a different market illiquidity measure besides the effective bid-asks

spreads, e.g., Amihud’s (2002) measure, and obtain the same conclusions.

The remaining parts of this paper proceed as follows. Section 2 describes the data, sample

selection, and reports preliminary evidence. Section 3 describes the model and estimation

procedure. Section 4 discusses estimation results and interpretations of our findings. Section

5 demonstrates the robustness of our findings. Finally, Section 6 concludes.

2 Data and Preliminary Evidence

The sample period that we study is from January 1, 2004 through December 31, 2012. We

focus on the recent period because the global financial market has gone through a drastic trans-

formation, e.g., new banking regulations, proliferation of algorithmic trading and exchanged-

traded funds. Such recent changes has strengthened the relationship between market liquidity

and stock market volatility as documented in Chung and Chuwonganant (2014).

The remaining parts of this section describes the construction of main variables that we

use and report preliminary evidence found using regression analyses.

2.1 Market Illiquidity

We construct a time-series measure of market liquidity risk at the daily level. Although differ-

ent illiquidity measures have been proposed in the literature, they do not always capture the

same type of market frictions. In this paper, we focus on the trading friction associated with

the cost of participating in the stock market. We measure it using effective bid-ask spreads

following Goyenko, Holden and Trzcinka (2009) who find strong empirical supports for using

intraday bid-ask spreads as the measure of market illiquidity.

We obtain obtain all transactions recorded on securities constituting the S&P 500 index

from the TAQ database. Then, for each stock i on day t, we calculate the effective spread of

its kth trade as

ILQi
t,k =

2|Si,Pt,k − S
i,M
t,k |

Si,Mt,k
, (1)
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where Si,Pt,k is the price of the kth trade of stock i on day t, and Si,Mt,k is the mid-point of the

best prevailing bid and ask at the time of the kth trade. The daily effective spread of stock

i on day t is then computed as the dollar-volume weighted average effective spreads over all

trades happened during the day

ILQi
t =

∑K
k=1DolV ol

i
t,kIL

i
t,k∑K

k=1DolV ol
i
t,k

, (2)

where DolV olit,k is the dollar trading volume of the kth trade. Lastly, we aggregate the effective

spreads of firms constituting the S&P 500 index on each day by equally weighting their daily

illiquidity measures. This procedure results in a daily market illiquidity measure for the

aggregate stock market on day t:

ILQt =
1

N

N∑
i=1

ILit. (3)

We compute the daily market illiquidity measure from January 2, 2004 to December 31,

2012. This results in 2,262 observation-days. The bottom panel of Figure 1 plots the time

series of market illiquidity. We see the market illiquidity measure rises significantly during the

financial crisis period, but stays relatively stable during other periods, with an occasional few

spikes. We also see a sharp spike on May 6, 2010, which is associated with the “flash crash”

incident. All numbers reported in 1 are annualized thus 20% of market illiquidity translates

to about 0.08% trading cost at the daily level.

2.2 Realized Return Moments

The second set of data we construct is the daily realized variance measure calculated using

intraday S&P 500 cash index returns obtained from TickData. Using the latest observation

at each minute, we construct a grid of one-minute intraday returns starting from 9:30 am and

ending at 4:30 pm. This gives us 390 observations per trading day. After, the daily realized

variance is calculated using the MinRV estimator of Andersen, Dobrev, and Scaumburg (2012)

as follows

MinRVN
t =

π

π − 2
(

N

N − 1
)
N−1∑
i=1

min(|ri,t|, |ri+1,t|)2, (4)

where N denotes the number of observations on each day and ri,t denotes the 1-minute log

return at ith interval of date t. As the number of interval N goes to infinity, this estimate

converges to the diffusive part of the quadratic variation, thus resulting in a jump-robust
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estimate of the daily variance.

We calculate the daily realized variance measure, RV, constructed as the sum of squared

1-minute log returns: RV N
t =

∑N
i=1 r

2
i,t. This method measures the total quadratic variation

in returns that are to the diffusive component, measured by MinRV, and the jump component.

We use this RV measure to perform ex-post daily jump detection in the next section. We

construct the daily realized skewness, RSkew, and realized kurtosis, RKurt, measure following

the method in Amaya, Christoffersen, Jacobs, and Vasques (2015). These realized higher

moments are calculated using 1-minute log returns data as follows:

RSkewNt =

√
N
∑N

i=1 r
3
i,t

(RV N
t )3/2

(5)

RKurtNt =
N
∑N

i=1 r
4
i,t

(RV N
t )2

, (6)

where N is the number of time intervals in a trading day. As N goes to infinity, the above

two measures converge to the cubic and quadratic variations of jump component in the daily

return, i.e., the diffusive component is excluded in their measurement.

We emphasize the market illiquidity proxy that we use is computed from effective spreads

of 500 firms constituting S&P 500 index while all realized return moments are constructed

from the 1-minute log returns of the S&P 500 cash index. Therefore, these two sets of measure

are derived from transactions of securities traded under different names in the stock exchanges.

This makes our subsequent analyses free from the concern that market illiquidity and realized

return moments are endogenously related due to common market micro-structure noises.

2.3 Predicting Ex-post Jumps

Ex-post jump detection using intraday returns has been studied extensively in the recent

literatures.8 Following the conventional approaches, we detect jumps in daily index returns

using the test statistics constructed from the difference between RVt and MinRVt. We label

each day as a “jump day” if the test statistic, which asymptotically converges to a standard

normal distribution, falls beyond the 99.9% critical value. Out of 2,262 sample days, we find

that 538 days (23.75%) are classified as jump days. We note that this method is an ex-post

detection of a jump because it informs us that a jump has occurred after we have already

observed return on that day.

Using results from the daily jump detections, we run a predictive logit regression model

examining to which variables successfully predict the occurrence of jumps the next day. We

examine three variables of interest and their combinations, namely the market illiquidity

8See Huang and Tauchen (2005) for concise summary.
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measure ILQt, the diffusive quadratic variation measure MinRVt, and the realized skewness

measure RSkewt. The most general logit regression includes all three variables as specified

below:

Pr(Jt+1) = logit(β0 + β1MinRVt + β2ILQt + β3RSkewt), (7)

where Jt+1 is an indicator variable equal to one if a jump is detected on day t + 1, and zero

otherwise. All other variables are as defined in previous sections.

Table 1 summarizes the logit regression results. We report the estimated coefficients and

their t-stats in parentheses. When each variable is regressed individually, it appears statis-

tically significant in predicting the occurrence of jumps the next day. Columns (1)–(3) in

Table 1 show that both MinRVt and ILQt are positive and statistically significant at the

99% level, while RSkewt is significant at 95% level. Also, both MinRVt and ILQt have

positive coefficient loading where RSkewt has a negative coefficient. The positive coefficients

on MinRVt and ILQt confirm the intuition that jumps are more likely going to occurred

following on a day of more volatile and illiquid market conditions. On the other hand, the

negative coefficient on RSkewt is consistent with the well-documented evidence that jump

arrivals cluster in time. A jump in index return is generally on the negative side and therefore

is associated with a negative skewness in the index return distribution. Overall, the negative

coefficient on RSkewt in column (3) is an evidence of jumps clustering.

Columns (4)–(7) report results found on various combinations of the independent variables

of interest. Strikingly, when more than one variables are included in the logit regression,

we find the market illiquidity measure ILQt dominates in the predictive power while other

variables lose their predictive ability. Importantly, we find the coefficient estimate on MinRVt

turns negative in columns (4) and (7), although not statistically significant, whenever the

market illiquidity proxy is included. Lastly, we find that RSkewt plays no role in predicting

ex-post jump probability when all three independent variables are included.

Overall, simple logistic regression analyses indicate the importance of market illiquidity in

explaining the time-varying jump probability of index returns. Further, it shows that omission

of the market illiquidity measure can lead to a different conclusion on the role of spot variance,

MinRVt, in predicting jumps probability.

2.4 Predicting Realized Higher Moments

As an additional analysis, we estimate predictive OLS regressions on the realized higher mo-

ments. As discussed previously, the realized skewness and realized kurtosis measures are

proxies for the fat-tailed characteristics of the index return distributions. However, they pro-

vide an informative way to identify a crash from a stock market surge.
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Because crashes are large sudden drops in asset prices, the more negative the realized

skewness signals the higher probability that a crash has occurred. On the other hand, we

expect the realized kurtosis measure to increase with the probability that either a crash or a

surge in the stock market has occurred. Therefore, if market illiquidity is a strong predictor of

the stock market crashes, we expect that ILQt would negatively predict the realized skewness

measure. On the other hand, if market illiquidity does not predict the stock market surges,

we expect that ILQt would not positively predict the realized kurtosis measure. Based on

this intuition, we estimate the following two regression models:

RSkewt+1 = α + β1MinRVt + β2ILQt + β3RSkewt + ε1t+1 (8)

RKurtt+1 = α + β1MinRVt + β2ILQt + β3RSkewt + ε2t+1. (9)

Table 2 reports the results. Consistent with previous findings, Panel A shows that MinRVt

positively predicts the skewness while ILQt negatively predicts the realized skewness. A nega-

tive coefficient on ILQt indicates that market illiquidity positively predicts a more downward

jump probability in index returns. Panel B shows the results from a predictive regression

model on realized kurtosis. We find that MinRVt strongly predicts the realized kurtosis while

ILQt now loads negatively. This finding supports our conjecture that market illiquidity does

not predict the stock market surges. We further note that the reported t-stats in Table 2 are

quite small because daily realized returns moments are known to be noisy variables.

Overall, evidence from Sections 2.3 and 2.4 suggest that market illiquidity is an important

economic predictor forthe stock market crashes. On the other hand, the diffusive variance

component does not strongly predict negative jumps in index returns.

Motivated by the above non-parametric evidence, we develop a continuous-time model

that captures the importance of market illiquidity in explaining the time-varying volatility

and crash risks. We discuss this in the next section.

3 Model and Estimation

3.1 The SJVI Model

We begin by specifying the processes governing the log stock price, spot variance, spot illiq-

uidity, and latent component of jump intensity dynamic under the risk-neutral measure (Q).

We use the notations St and Vt to denote stock price and spot variance at time t. We let Lt

represent the spot market illiquidity which measures the liquidity risk of the stock market at

time t, with a higher value indicating a more illiquid market. We include a stochastic process

Ψt that is designed to capture the latent time-varying jump intensity in index returns. Thus,
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the model consists of the four factors that fully describe the return dynamics under Q:

d log(St) = (r − 1

2
Vt − ξλt)dt+

√
Vt(
√

1− ρ2dW 1
t + ρdW 2

t ) + qtdNt (10)

dVt = κV (θV − Vt)dt+ γdLt + ξV
√
VtdW

2
t (11)

dLt = κL(θL − Lt)dt+ ξL
√
LtdW

3
t (12)

dΨt = κΨ(θΨ −Ψt)dt+ ξΨ

√
ΨtdW

4
t , (13)

where r denotes the risk-free rate and all Brownian motions dW i
t , for i = 1 to 4, are indepen-

dent to each other.

We assume the market illiquidity process, Lt, and the latent jump intensity process, Ψt,

in equations (12) and (13) follow the standard square-root process with long-run mean levels

of θL and θΨ, respectively. The variance dynamic in equation (11) is almost identical to the

Heston’s (1993) square-root process with an exception of an additional term γdLt. Equation

(11) shows the evolution of spot variance depends on its own mean-reverting drift, the diffusive

component, and the market illiquidity process Lt. The long-run mean of the spot variance,

as we will later show, is equal to θV , and the mean-reversion speed to the long-run variance

is denoted by κV .

The log stock price dynamic described in equation (10) follows a standard jump-diffusion

process where qtdNt denotes the discontinuous jump component. Following the extant litera-

ture on index return models, we assume that jumps follow a compound Poisson process with

intensity λt and each individual jump is i.i.d. normal with the jump mean size θ and the jump

size standard deviation δ. In order to ensure the discounted log stock price is martingale, we

include the jump compensation term ξ = e(θ+ δ2

2
)− 1 in equation (10). Lastly, to complete the

model, we specify the dynamic of the time-varying jump intensity λt as follows:

SJVI model: λt = Ψt + γV Vt + γLLt. (14)

The above specification for jump intensity is motivated by numerical tractability and for ease

of interpreting results. Equation (14) shows the time-varying jump arrival rate is determined

jointly by the levels of spot variance Vt, spot market illiquidity Lt, and state variable Ψt. The

state variable Ψt is designed to capture the portion of jump intensity dynamic not explained

by the covariates Vt and Lt.

Our jump intensity specification is more general than those examined in prior studies

which estimated a continuous-time model with time-varying jump intensity that is affine in

the level of spot variance (e.g. Andersen, Benzoni and Lund, 2002; Pan, 2002; Eraker, 2004;

Bates, 2006). The model stays in the class of affine jump diffusion models. We therefore have

the closed-form solution to the characteristic function of log stock price using the results in
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Duffie, Pan and Singleton (2000).

The variance dynamic that we consider in equation (11) also falls into the class of two-factor

stochastic volatility models, which have been shown to effectively explain the term structure

of index option prices.9 Our model differs from the existing two-factor volatility literature in

that we allow the expected future variance to depend on the levels of spot variance, Vt, and

spot market illiquidity, Lt, as shown in the equation below:

Et[VT ] = θV + (Vt − θV )e−κV (T−t) + [(Lt − θL)
γκL

κV − κL
](e−κV (T−t) − e−κL(T−t)). (15)

The above equation shows the current level of market illiquidity positively affects the shape

of the expected term structure of variance. However, its impact dissipates as the horizon

increases. This is seen from the third term on the right-hand side of equation (15), which

coverges to 0 as time T goes to infinity. Without the market illiquidity term γLt, the spot

variance process reduces to the Heston’s (1993) model, and the expected future variance is

given by the first two terms on the right-hand side of equation (15).

For the remaining parts of this paper, we refer to the general model that we introduced as

the stochastic jump with variance and illiquidity (SJVI) model.

3.2 Benchmark Models

We consider two nested specifications of the SJVI model. In the first specification, we shut

off the influence of the illiquidity channel in the time-varying jump intensity dynamic, i.e. by

setting γL = 0 in equation (14). As the result, the probability of observing jumps depends on

the level of spot variance and the latent state component as follows

SJV model: λt = Ψt + γV Vt. (16)

We refer to the model with jump intensity specification described in equation (16) as the

stochastic jump intensity with variance (SJV) model. This functional form of jump intensity

specification is nests the affine jump intensity dynamic, λt = γ0 + γV Vt, that is commonly

adopted in the time-varying jump studies (e.g. Pan, 2002; Bates, 2006; Ornthanalai, 2014).

Equation (16) shows that when we let Ψt be a constant, the jump intensity dynamic becomes

affine in the spot variance.

The second nested specification we study shuts off the impact of both market illiquidity

as and the spot variance from influencing jump probability. That is, we set γV and γL equal

9See for examples, Christoffersen et al. (2008), Christoffersen, Heston and Jacobs (2009), Egloff et al.
(2010), Bates (2012), and Andersen, Fusari and Todorov (2015).
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to zero in equation (14). This yields

SJV model: λt = Ψt, (17)

which is simply the latent stochastic process Ψt. We refer to the model with the jump intensity

specification in equation (17) as the stochastic jump intensity model (SJ).

Besides the jump intensity specification, we keep all other aspects of the three models that

we study identical. This approach allows us to focus solely on the role of market illiquidity

and spot variance in determining the time-varying jump risk.

3.3 Filtering

As in all continuous-time stochastic volatility models, the model that we study features unob-

served state variables to be filtered. All the three models we study contain three latent state

variables: Vt, Lt. and Ψt. This section describes the filtering method that we use.

We extract the latent state variables using the square-root Unscented Kalman Filter (UKF)

of Van der Merwe and Wan (2001). We apply the UKF method because the observed data,

including option prices, that we fit the models to are highly non-linear in the state variables.

The UKF method has been shown to perform well for solving non-linear filtering and has been

applied widely in the finance literature.10 We refer to Christoffersen et al. (2012) for technical

details and comparison between different filtering methods.

As the state variables in the filtering equations evolve under the physical probability (P)

measure, we need to define their under the physical measure. We do not impose any risk

premiums on the Lt and Ψt processes for simplicity and also because the literature has not yet

provided a clear guidance on how to model their risk premiums. As a result, there is no change

to these two processes from the Q to P measures. We apply the commonly used functional

form of the variance price of risk to the spot variance process, which given by νV
√
Vt as in

Heston (1993). This price of risk specification shifts the Brownian shock in equation (11) by

dW 2,P
t = dW 2

t − νV
√
Vtdt, where superscript P denotes that it is evaluated under the physical

probability measure. Applying this transformation, the resulting variance process under the

P-measure can be written as

dVt = κPV (θPV − Vt)dt+ γdLt + ξV
√
VtdW

2,P
t , (18)

where we have the following parameter mappings κPV = κV − νV ξV and θPV = θV κV /κ
P
V .

We discretize the P-measure state dynamics using the conventional Euler scheme at the

10For recent papers using UKF as the filtering method, see Bakshi, Carr, and Wu (2008) and Filipović,
Gourier, and Mancini (2015)
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daily interval. The evolution of the full state-space system in the discretized form can be

written as follows

Vt+1 = Vt + κPV (θPV − Vt)∆t+ γκL(θL − Lt)∆t+ ξV
√
Vtε

1
t+1 + γξL

√
Ltε

2
t+1 (19)

Lt+1 = Lt + κL(θL − Lt)∆t+ ξL
√
Ltε

2
t+1 (20)

Ψt+1 = Ψt + κΨ(θΨ −Ψt)∆t+ ξΨ

√
Ψtε

3
t+1, (21)

where all error terms εit+, for i = 1 to 3, are i.i.d. standard normal. In the above state-space

system, we set the time step ∆t = 1/252 to reflect the daily discretization interval. In order

to keep our notations to minimum, we apply the superscript P only to parameters under the

physical measure that differ in values from their corresponding risk-neutral parameters.

We next describe the functional relationships linking the latent state variables to the

observed data used in the estimation. The first observable is the illiquidity measure denoted

by ILQt, which we introduced earlier in Section 2. We recall that it is is calculated as the

daily aggregate effective spreads of S&P 500 constituents, i.e., weighted sum of relative bid-ask

spreads of all trades occurred during the day. The other observables that we filter the state

variables from are daily at-the-money (ATM) and out-of-the-money (OTM) S&P 500 index

options. These three sets of observables are used in the measurement equations in the UKF

procedure. We write the system of measure equations as follows

log(ILQt+1) = log(Et[

∫ t+1

t

Lsds]) + u1
t+1 (22)

ATMO
t+1 = ATMM

t+1(Vt+1, Lt+1,Ψt+1) + u2
t+1 (23)

OTMO
t+1 = OTMM

t+1(Vt+1, Lt+1,Ψt+1) + u3
t+1, (24)

where measurement errors uit+1, for i = 1 to 3, are independent normal random variables with

constant variances. The above filtering equations are applied to all trading days from January

2, 2004 to December 31, 2012 which results in 2,262 days of observations.

The latent spot illiquidity process in the state-space dynamic describes the instantaneous

level of illiquidity at each moment and not at the aggregated daily level. In order to filter Lt

from the daily observed measure of market illiquidity, we integrate the spot illiquidity process

over the day as shown in equation (22). The spot illiquidity measure follows a square-root

process. Integrating Lt from over day t + 1 shows that the equation for filtering the spot

illiquidity, Lt, can be written as

log(ILQt+1) = log

[
θL∆t+ (Lt − θL)(− 1

κL
(e−κL∆t − 1)

]
+ u1

t+1. (25)
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We use the log of effective spread instead in the measurement equation because the empirical

distribution of effective spreads is close to being a log-normal.

Following Pan (2002), we collect two time-series of closing mid-price of options quotes

which we label ATM and OTM. ATM refers to the price of the call option that has the

moneyness, defined as the ratio of forward-to-strike price, being closest to 1.00. Similarly,

OTM refers to the price of the put option that has the moneyness closest to 0.95. Both

options are chosen to have time to maturity as close as possible to 30 calendar days. Figure

2 plots daily Black-Scholes option-implied volatilities calculated from the ATM and OTM

contracts that we use in our study. As argued by Pan (2002), it is important to use OTM

options in the measurement equation as it provides the richest information about investors’

expectation of the crash probability of the stock market.

We follow Trolle and Schwartz (2009) and use Black-Scholes vega-weighted price as the

functional form in the measurement equations for options fitting; see equations (23)–(24).

This method scales the value of options across time making their prices more comparable,

which in turn, facilitates the assumption of the normally distributed errors in the measure

equations. Therefore, ATMO
t+1 and OTMO

t+1 in equations (23)–(24) represent the scaled ATM

and OTM option prices observed at the end of day t. Similarly, the variables ATMM
t+1 and

OTMM
t+1 denote the model-implied option price scaled by the market Black-Schole vega. The

model-implied option price is a function of the three state variables Vt+1, Lt+1, and Ψt+1, as

well as the model parameters, which are simultaneously estimated. All measurement errors

are assumed to be uncorrelated.

The models that we study in this paper fall under the affine jump-diffusion framework.

Therefore, the conditional characteristic function of log stock price is available in an exponen-

tial affine form. Following Duffie, Pan, and Singleton (2000), we derive the log affine functional

form of the characteristic function in Appendix B. The coefficients in the characteristic func-

tion are not all available in terms of elementary functions, thus, we solve for them numerically

in the Ricatti system of equations. The fact that we must solve the coefficients in the char-

acteristic function numerically together with the large sample period of 2,262 days pose some

computational challenge for evaluating option prices using the commonly used numerical in-

tegration technique. In addition, the UKF method that we apply the filter state variables

require that option prices are calculated each day sequentially. To facilitate the computa-

tional challenge, we use the Fast Fourier Transform (FFT) approach first developed by Carr

and Madan (1999).

Lastly, at this stage, we do not need to specify the risk premiums associated with the first

Brownian motion, dW 1
t , and the compound Poisson jumps, qdNt because they only alter the

drift term of returns dynamics that is not part of the estimation. We will return to discuss

the specification of the equity and jump risk premium in the later section where they are
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estimated using a time-series of daily index returns.

3.4 Estimation

We estimate the models by maximizing the log-likelihood function resulting from the UKF

step. We assume the measurement errors are conditionally normal, therefore, the time t con-

ditional log-likelihood takes the following form:

lt(Θ) = −3

2
log(2π)− 1

2
log(det |Ωt|)−

1

2
(Yt − Ȳt)T (Ωt)

−1(Yt − Ȳt), (26)

where Ȳt and Ωt denote the ex-ante forecasts of the mean and covariance conditional on

time t − 1 information of observables Yt. We let Θ denotes the set of all parameters to be

estimated. All vectors are 3 dimensional and matrices are 3-by-3 symmetric matrix.

In addition to the log-likelihood resulting from the measurement error equations, we follow

Andersen, Fusari, and Todorov (2015) and add a penalization term that compares the filtered

spot variance component, Vt, to the model-free estimates of spot variance calculated from

the high-frequency data. Incorporating this penalizing term, the conditional log-likelihood

function that we estimate at time t is

Lt(Θ) = lt(Θ) + ω log( (
√
V n
t −

√
Vt)

2 ), (27)

where lt(Θ) is given in equation (26), V n
t is the realized spot variance computed using 1-

minute grid returns from S&P 500 index and Vt is the filtered spot variance from the UKF

procedure. We describe the construction of the realized spot variance measure in more details

in Appendix C.

The tuning parameter ω in equation (27) is set equal to 0.05 following Andersen, Fusari,

and Todorov (2015). This parameter determines to weight of the penalization term from the

fitting the realized spot variance. As a robustness check, we verify that our main results

remain virtually unchanged when picking different values of ω. The model parameters are

then estimated by maximizing the sum of conditional log-likelihoods over the sample period

from January 2, 2004 to December 31, 2012.

4 Results

4.1 MLE Estimates

Table 4 reports parameter estimates for the three models. The first, second and third columns

report results for the SJ, SJV and SJVI models, respectively. We report log-likelihood values
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of the three models in the bottom row.

We find that parameters governing the square-root dynamic of spot variance are well es-

timated. Their parameter estimates are fairly consistent across the models. The correlation

estimates of the two Brownian shocks in return and spot variance, ρ, are about −35% confirm-

ing the asymmetric return-variance relationship found in the extant literature. We find that

the spot market illiquidity level, Lt, significantly impacts the level of spot variance, Vt. This is

seen from the estimates of γ which measure the contemporaneous relationship between mar-

ket illiquidity and spot variance. We find that across the three models, the estimates γ are

about 0.12. This suggests that a one-standard deviation increase in the spot market illiquidity,

Lt, would increase the spot variance level by about 12% after controlling for the persistence

dynamic of the variance process.

The strong relationship we find between market illiquidity and return variance lends sup-

port to previous studies examining the relationship between return volatility and market

liquidity. In particular, motivated by the mixture of distribution hypothesis (MDH), which

assumes that volatility and volume simultaneously depends on a latent information process,

past research effort has been devoted to studying the relationship between stock return volatil-

ity and trading volume (e.g., Clark 1973; Epps and Epps, 1976; Tauchen and Pitts, 1983).

Nevertheless, the findings in this literature have been mixed and the understanding of rela-

tionships between information flows and trading activity has been an on-going active research

area. For instance, Lamoureux and Lastrapes (1990) estimates a GARCH volatility model

and find that trading volume is the main driver of stock return volatility and that past stock

return innovations became insignificant once trading volume is included in the model.11 While

we find that market illiquidity significantly drives the dynamic of spot variance, its effect does

not eliminate the strong persistence in the variance dynamic. Further, the recent literature

agrees that trading volume is an inadequate measure of market liquidity.12 Given the recent

availability of intraday trading data, we can more precisely measure market liquidity risk by

calculating the cost of participating in the stock market (i.e., transaction cost). Our results

estimated using a continuous-time model documenting a strong relationship between market

illiquidity and return variance therefore contribute to this stream of literature.

Estimates of the jump-size mean, θ, and the jump-size standard deviation, δ, in Table

4 are very similar across the three models. This finding shows that the nature of jump size

identified by the three models are similar in magnitude. The average jump mean size is about

0.37. This suggests that the jump we identify corresponds to a drop of 3.7% in daily S&P 500

index returns, indicating a crash in the stock market index.

11In contrary, several studies find evidence conflicting with the MDH specification. These studies include
Heirnstra and Jones (1994), Lamoureux and Lastrapes (1994), Richardson and Smith (1994), Anderson (1996).

12See for examples, Lee, Mucklow, and Ready (1993), Jones (2002), Fleming (2003), Fujimoto (2004).
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We next examine parameter estimates governing the time-varying jump intensity. First,

we look at the dynamic of the latent jump-intensity specific factor, Ψt. Table 4 shows the

magnitude of parameters driving the Ψt dynamic in the SJ model differs significantly from

those in the other two models. For instance, the long-run mean θΨ, the mean-reversion speed

κψ, and the volatility ξΨ of the jump-intensity specific factor are significantly larger for the SJ

model. These findings are expected because in the SJ model, jump intensity dynamic solely

depends on the latent state variable Ψt. Further, these results confirm that the dynamic of

jump intensity is time-varying and follows mean-reverting process.

Table 4 shows that when we add covariates to the jump intensity dynamic, e.g., the

SJV and SJVI models, the log-likelihood values of the model fit increases substantially. The

improvement is large with an increase of about 10% relative to the SJ model. We therefore

find a strong support for modeling jump intensity as a function of economic covariates. We

further discuss the sources of improvement in the model fit in a later section. Looking at

the SJV model, we find the impact of spot variance on jump intensity, γV , is positive and

statistically significant at the five percent level (t-stat is 2.17). This finding is consistent with

Pan (2002), Bates (2006), and Andersen, Fusari and Todorov (2015).

For the SJVI model, we find that when we add market illiquidity to the jump intensity

specification, the estimate of γV substantially decreases in magnitude and its statistically

significance drops to 0.11 in term of p-value (t-stat is 1.61). On the other hand, the impact of

spot market illiquidity loads very strong (t-stat is 13.87). This finding shows that the inclusion

of market illiquidity as an economic covariate significantly weakens the relationship between

jump intensity and spot variance. This finding is consistent with our conclusions from Table

1 which we obtained using regression analyses on non-parametrically estimated jumps.

4.2 Time-varying Volatility and Crash Risks

This section examines the time-series dynamics of market spot volatility and jump intensity

that we estimated. Table 5 report descriptive statistics of the daily jump intensity, λt, spot

variance, Vt, and spot illiquidity, Lt, dynamics that we obtained using the UKF from 2004–

2012. We find that the time-series statistics of the spot illiquidity are almost identical across

the three models. This suggests that its dynamic is well identified when we extract their

information from the daily market illiquidity measure ILQt calculated using intraday bid-ask

spreads.

We find some distinct differences across the spot variance and jump intensity dynamics in

Table 5. To facilitate the visualization, we plot their annualized time-series dynamics. Figures

3 and 4 plot the daily annualized spot volatility and jump intensity, respectively, for the three

models. We find that the spot volatilities filtered from the SJ model are smaller in magnitude
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relative those from the SJV and SJVI models. On the other hand, the jump intensity dynamic

of the SJ model is very volatile relative to the other two models. For instance, looking at the

time-series statistics of λt in Table 5, we find the average expected number of jumps implied by

this model is 3.13 per year, but with a median of 0.67 and a standard deviation of 12.62. This

shows that the distribution of jump intensities filtered from the SJ model is highly skewed and

dispersed. This finding is confirmed when looking at the top panel in Figure 4 which shows

the expected number of jumps in the SJ model tremendously increase during the 2008–2009

crisis period. The volatile nature of jump risk estimated from the SJ model explains why

its filtered spot volatility dynamic are relatively smaller in magnitude (see Figure 3) than in

other two models — because variations in index price dynamics are predominantly captured

by jumps.

We find the jump intensity dynamic estimated from the SJV and SJVI models are rela-

tively smooth with the annualized jump-size standard deviation of 3.35 and 2.73, respectively.

In these two models, the levels of jump intensity are relatively stable before mid-2007, but

increasingly rises after and peaks in the fall of 2008. We believe the relatively stable jump

intensity dynamics observed in the SJV and SJVI models are due to the improved identifica-

tions resulting from the use of covariates in the jump intensity specification. This argument is

supported by looking at the models’ log-likelihood performance, which is substantially worse

under the SJ model where there is no covariate in the jump intensity specification. We there-

fore find support for the modeling approach of letting jump intensity be a function of economic

covariates that can be identified using observable data.

We next examine the economic contribution of the spot variance and market illiquidity

to the jump intensity dynamics. Figure 5 plots the decomposition of daily jump intensity

dynamics. Here, we decompose daily jump intensities filtered from the SJV model (top panel)

and from the SJVI model (bottom panel) into their respective components.

For the SJV model, the top panel of Figure 5 shows that the market’s spot variance is the

main component driving jump intensity dynamic. This corresponds to the γV Vt in the jump

intensity dynamic. In order the see how much each component contributes through time, we

plot their daily percentage contributions in Figure 6. We find that on average, more than half

the jump intensity level is explained by the market’s spot variance. The time-series average

of its contribution is about 61.55%. We find the jump-intensity-specific factor Ψt explains a

substantially large portion of time-varying jump intensity. Its average contribution is about

38%, which is two-third in importance relative to the spot variance. This finding shows that a

non-trivially large portion of jump intensity cannot be explained by the dynamic of market’s

spot variance.

The bottom panel of Figure 5 shows the decomposition of daily jump intensities estimated

from the SJVI model. Here, we find the jump intensity dynamic is heavily dominated by
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its co-movement with the spot market illiquidity. We plot daily percentage contributions of

each jump intensity component in Figure 7. The results shown are largely consistent with the

findings in the bottom panel of Figure 5. We find that, on average, the market illiquidity factor

explains about 61% of jump probability in the SJVI model. In contrast to our findings for the

SVJ model in Figure 6, we find the market’s spot variance explains, on average, only 15%,

with the remaining 24% contribution coming from the jump intensity factor, Ψt. Therefore,

the market’s spot variance is the least important factor in explaining the jump intensity

dynamic for the SJVI model. This shows that the explanatory power of return variance in

time-varying jump risk mostly comes from its relationship with market illiquidity. Once we

control for market illiquidity as an economic variable driving time-varying jump risk, the

relative contribution of spot variance diminishes.

The above findings offers important insights to the existing literature on index return

models which has increasingly documented the importance of time-varying crash risk (e.g.

Bates, 2006, 2012; Christoffersen et al., 2012). The common practice in this literature is to let

jump intensity be an affine function of spot variance. This modeling approach is appealing

because it is parsimonious. It identifies time-varying jump intensity as a constant multiple of

the spot variance, thereby eliminating the need to introduce an additional state variable to

the model. We find that our estimation results for the SVJ model provide some support for

this modeling approach. However, we emphasize that the key economic variable that matters

most from our results for modeling jump intensity dynamics is not the market spot variance,

but the market illiquidity factor. Lastly, our findings suggest the reason previous studies find

a positive relationship between the stock market’s time-varying crash risk and spot variance

is because of their common exposure to market liquidity risk.

4.3 Option Fits

We also compare the three models based on their in-sample option fits. We define in-sample

option pricing error as the sum of squared errors (SSE) in fitting the observed Black-Scholes

vega-weighted option prices obtained from the UKF procedure as shown below

SSE(ATM) =
T∑
t=1

(ATMO
t+1 − ¯ATM

M
t+1)2, (28)

where ¯ATM
M
t+1 denotes the ex-ante forecast of vega-weighted ATM option price at time t+ 1.

Option pricing error for OTM options are computed in a similar way.

Table 6 reports the in-sample option pricing errors of three models. As expected, the SJ

model performs poorly in fitting both ATM and OTM options, having the largest pricing errors

of all three. Both SJV and SJVI models produce superior option price fits with comparable
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magnitude. Pricing errors of ATM options are very similar in magnitude between SJV and

SJVI models and the difference is quite small. However, the improvement in fitting OTM

options is much larger using the SJVI model suggesting that its jump intensity specification

is more well-suited for capturing the jump intensity dynamic embedded in the index options.

4.4 Risk Premiums

So far, we have focused on the risk-neutral estimates. The UKF estimation procedure that we

use does not rely on daily returns data. Therefore, we did not have to assume a specific risk

premium specification for the jump and the diffusive components in the return dynamic. This

section describes the procedure for extracting the jump and diffusive risk premiums from our

models and discuss the findings.

Using the risk-neutral parameter estimates in Table 4 and daily filtered states variables

{V̂t, L̂t, Ψ̂t} estimated previously, we infer the risk premium parameters. This is done by

estimating the model on daily S&P 500 index returns from 2004–2012, and keeping the pa-

rameters that are not affected by the change of probability measures fixed. This approach of

identifying risk premiums was also employed in Andersen, Fusari, and Todorov (2015).

We assume the conventional form of the pricing kernel that preserves the affine structure

of the model under the physical measure. The prices of risk associated with the four Brownian

motions are given by

dW 1,P
t = dW 1

t − ν1

√
Vtdt (29)

dW 2,P
t = dW 2

t − νV
√
Vtdt (30)

dW 3,P
t , dW 4,P

t = dW 3
t , dW

4
t . (31)

The parameter ν1 in equation (29) corresponds to the price of risk parameter for the first

Brownian innovation in the return process. We recall that νV is the price of risk parameter

for the volatility innovation which we estimated from options and realized spot variance as

part of the UKF steps. Its estimate is report in Table 4. We recall that we do not impose

any risk premium assumptions on the third and fourth Brownian motions corresponding to

the liquidity and latent jump intensity innovation, respectively.

We follow Pan (2002) and assume the difference between jump distributions under the

physical and risk-neutral measures derives from the jump-size risk premium, νθ, defined as

the difference between jump-size means, θP − θ. The dynamic of log-stock price under the
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physical probability measure can be written as

d log(St) = (r − 1

2
Vt − ξPλt + (

√
1− ρ2ν1 + ρνv)Vt)dt+√

Vt(
√

1− ρ2dW 1,P
t + ρdW 2,P

t ) + qtdN
P
t (32)

where ξP = exp(θP + 1
2
δ2) is the jump compensator under the physical measure. Comparing

the P-measure return dynamic in equation (32) to the Q-measure return dynamic in equation

(10) shows that the equity risk premium, πt, can be written as

πt = (ξP − ξ)λt + (
√

1− ρ2ν1 + ρνV )Vt (33)

= (ξP − ξ)λt + νSVt, (34)

where we define νS =
√

1− ρ2ν1 + ρνv in equation (34).

Using the filtered state variables, {V̂t, L̂t, Ψ̂t}, we apply daily discretization to the return

process and estimate the risk premium parameters νθ and νS using MLE while fixing all other

parameters. The estimate for ν1 are then inferred from νS. Section C in the Appendix shows

the discretization of the continuous-time model, and presents the log-likelihood function for

fitting the return process.

Table 7 reports estimation results of the risk premium parameters. We find that the

jump risk premium parameter νθ is well identified in all models. The estimates for νθ are

reported with statistical significant of one percent or greater. On the other hand, estimates

of the diffusive risk premium parameter νS are marginally significant. These findings are

consistent with Pan (2002) who find that jump risk premium is easily identified from index

options data, while risk premiums associated with the diffusive and variance risks are more

difficult to precisely estimate. Table 7 also reports estimates for the price of risk coefficient

ν1 associated with the first Brownian motion. They are inferred from their corresponding

estimates of νS in Table 7, and νV in Table 4. Because ν1 is indirectly inferred, we do not

report its t-statistic. This parameter can be usefully thought as the price risk for exposure to

the diffusive component in index return.

Using the estimates reported in Tables 7 and 4, we quantify the economic magnitude of

each risk premium component in terms of annualized excess returns. Equation (34) shows that

the equity risk premium can be decompose into two main components. The first component

represents the compensation for bearing the stock market’s crash risk, (ξP − ξ)λt. The second

component represents the compensation for bearing the stock market’s diffusive return and

variance risks, νSVt. For brevity, we refer to νSVt as the diffusive risk in the equity risk

premium.

We first look at the compensation for bearing the stock market’s crash risk. For each model,
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we calculate the long-run jump risk premium level (ξP −ξ)λ̄t, where λ̄t is the annualized time-

series mean of the jump intensity dynamic reported in Table 5. We find the compensation for

bearing the market’s crash risk for the SJ, SJV and SJVI models are 8.04%, 5.42%, 4.91% in

annualized excess returns, respectively. The jump risk premium implied by the SJ model is

relatively high. This is likely because jump intensities from the SJ model are more volatile

and larger in magnitude than in the other models. We find that jump risk premium estimates

implied by the SJV and SJVI models are mostly consistent with prior studies that estimated

a time-varying jump risk model the on S&P 500 index. Pan (2002) estimates the jump risk

premium using index options over the 1989–1996 period and find that it is about 3.5% in

annualized excess return. In a more recent study, Ornthanalai (2014) estimates the jump risk

premium implied by the compound Poisson jump process over the 1996–2012 period and finds

that its magnitude is 4.52% per year.

We next look at the compensation for bearing the stock market’s diffusive risk. This is

calculated as νSV̄t, where V̄t is the time-series mean of the annualized variance reported in

Table 5. We find the compensation for bearing the diffusive risk for the SJ, SJV and SJVI

models are 8.11%, 7.31%, 8.60% in annualized excess returns, respectively. The magnitudes

of the diffusive risk premiums are fairly stable across the three models. They are relatively

higher than the magnitude of 4.7% reported in Ornthanalai (2014). However, we recall that

estimates of νS are marginally significant as shown in Table 7, suggesting that the diffusive

risk premiums of the three models have reasonably large standard errors.

The realized equity premium calculated using daily index returns data over the 2004–2012

period is 8.7% per year. The total equity premiums that we find for the SJ, SJV and SJVI

models are 16.15%, 12.73% and 13.60%, in annualized returns, respectively. Our estimates of

the total equity premium are larger than the value calculated using daily returns data. This

finding is expected as the total equity risk premiums that we find are estimated from option

prices. They represent investors’ ex-ante demand for bearing risks after taking into account

which their risk aversion. We conclude that the magnitudes of equity risk premium implied

by our estimates are economically plausible.

5 Robustness

5.1 Circuit Breakers

Following the Flash Crash incident on May 6, 2010, the SEC has installed a “circuit breakers”

on 404 NYSE-listed S&P500 stocks on June 16, 2010 to halt the trading for 5 minutes if any

stock experiences more than 10 percent movement, either up or down, in a 5-minute period.

This new trading rule potentially affects our aggregate illiquidity measure constructed from
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individual firm’s effective spreads, and hence alters the impact of market illiquidity on jump

probability. We test whether this change in the market-trading rules alter our findings on the

impact of market illiquidity on jump intensity dynamic.

We take June 16, 2010 as the date of exogenous shift in the market structure. Specifically,

we allow the parameter γL to be different prior to and after the implementation date of the

circuit breaker as below:

λt = Ψt + γV Vt + 1Before · γbLLt + 1After · γaLLt, (35)

where 1Before is an indicator function equal to one for all dates t before June 16, 2010, and

zero otherwise. Similarly, 1After is an indicator function equal to one for all dates on and after

June 16, 2010, and zero otherwise.

We re-estimate the SJVI model using the above augmented jump intensity specification

using the identical procedure on the same dataset. Our objective is the test whether γbL
significantly differs from γaL. If the circuit breaker has any material impact on the relationship

between market illiquidity and the market’s jump probability, then we would expect to see a

difference between these two coefficients. Below equation summarizes the estimation results

from estimating this augmented SJVI model. For brevity, we only report estimates for γaL and

γbL in the jump intensity specification. The t-stat for each parameter is reported in parentheses

underneath its estimate.

λt = Ψt + γV Vt + 1Before· 9.72 Lt + 1After· 8.91 Lt.
(7.44)∗∗∗ (3.31)∗∗∗

We find the estimate of γaL is slightly lower, being 8.91, relative to the estimate of 9.72 for

γbl . Thus, introduction of circuit breakers has slightly reduced the impact of market illiquidity

on jump intensity by eliminating possible sudden movements but does materially impact the

importance of the illiquidity channel. Both coefficients are statistically significant at 99% level

with a lower t-stat for γaL because of the much smaller sample size (2010–2012) in period after

the circuit breaker implementation.

5.2 Alternate Iliquidity measure

We have so far defined market illiquidity as an aggregate effective spreads of S&P 500 con-

stituents. This measure captures the aggregate transaction cost of participating in the stock

market and has been shown in Ait-Sahalia and Yu (2009), and Goyenko, Holden, and Trzcinka

(2009) to be a good proxy for market illiquidity. This section tests whether our results are

robust to other ways of defining market illiquidity.
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We construct a daily market illiquidity measure in the spirit of Amihud (2002). On each

day t, we compute the Amihud illiquidity measure for each firm i constituting the S&P 500

index as a fraction of absolute return, |ri|, over dollar trading volume, DV oli,t, per that day.

ALIQi,t =
N∑
i=1

|ri,t|
DV oli,t

. (36)

The daily Amihud market illiquidity measure for the stock market is then calculated as an

equally-weighted average of individual firms’ Amihud illiquidity measure.

Figure 8 plots the market Amihud illiquidity measure in comparison to the effective spread

measure. Both measures are normalized to have the same mean over the sample period. This

normalization method does not impact our results because the absolute level does not matter

for our specification. We immediately see that the Amihud illiquidity measure is much noisier

than the effective spread measure. Therefore, we expect the structural estimation exercise

using the Amihud illiquidity measure to be very sensitive to the filtering of spot illiquidity

level Lt, as well as its measurement error variance. Consequently, a direct comparison between

the two measures via statistical inference is not straightforward.

We reestimate the SJVI model using the market Amihud illiquidity measure and report

the results in Table 8. Interestingly, the jump intensity contribution from the spot variance

Vt almost disappears while the market illiquidity component dominates. The estimated co-

efficient γV is small in magnitude is not statistically significant. Meanwhile, the estimated

coefficient γL is now much larger and remains statistically significant. Accordingly, mean jump

size parameter θ is estimated to be roughly 1% lower than the original case indicating that

Amihud measure results in more frequent jumps with smaller magnitude. In-sample option

pricing errors reported in the bottom panel of Table 8 are also lower using the Amihud illiq-

uidity measure with a notable improvement in fitting OTM option prices. We believe that

these findings are influenced by the noisiness of the raw Amihud Illiquidity measure, thus, the

filtering estimation favors the frequent small-sized jumps in the return process.

Overall, our main conclusions remain the same, or perhaps, even stronger with the alter-

native definition of market illiquidity measure constructed in the spirit of Amihud (2002). We

conclude our main results are robust to a differing definition of market illiquidity.

6 Conclusion

We study the role of market illiquidity in explaining the time-varying market volatility and

crash risk in the S&P 500 index. We estimate a continuous-time model with stochastic volatil-

ity and crash probability. We introduced market liquidity as an observable variable to the
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model by allowing it to affect the dynamics of spot variance and jump risk intensity. We

follow the recent empirical literature in market illiquidity risk (e.g. Ait-Sahalia and Yu, 2009;

Goyenko, Holden and Trzcinka, 2009) and measure the daily stock market illiquidity level

using volume-weighted intraday bid-ask spreads of all securities constituting the S&P500 in-

dex. We estimate the model over 2004–2012 using daily S&P 500 index options, realized

spot variance and market illiquidity measure, and find that 61% of time-varying crash risk is

due to the stock market’s exposure to market illiquidity. The influence of market illiquidity

dominates other factors that we examined including the market’s spot variance. This is with

an exception of the 2008 crisis period when the influence of spot variance dominates and the

contribution of market illiquidity falls to about 30%. Overall, our paper highlights the impor-

tance of market-trading frictions in index return models and suggests that the time-varying

crash risk mostly reflects investors’ fear of market illiquidity.

25



7 Appendix

A High Frequency Measures

Following Andersen, Fusario, and Todorov (2015) and Mancini (2009), we construct the con-
sistent estimator of spot variance at the end of each trading day using the 1-minute grid of
S&P 500 futures returns as follows.

V̂
(n,mn)
t =

n

mn

n∑
i=n−mn+1

(ri,t)
2I(|ri,t| ≤ αn−ω)

We use 1-minute-grid returns over 6.5 hours in a trading day, thus resulting in n = 390
observations. The value of mn is set to be 75% of n for each day. Other tuning parameters
are set as follows: α = 4

√
BPVt and ω = 0.49 where BPV denotes the bi-power variation of

day t computed using full 1-minute grid of returns.

B Affine Coefficients in the Characteristic Function

Since our model is casted in affine form, the conditional characteristic function is exponential
affine in the state variables following Duffie, Pan, and Singleton (2000).

Et[exp(iφ log(ST ))] = exp(α(τ) + β0(τ) log(St) + β1(τ)Vt + β2(τ)Lt + β3(τ)Ψt)

We use the notation τ = T − t for simplicity. The coefficients satisfy following system of
Ricatti ODE with the boundary conditions β0(0) = iφ and α(0) = β1(0) = β2(0) = β3(0) = 0

dβ0

dτ
= 0

dα

dτ
= irφ+ (κV θV + γκLθL)β1 + κLθLβ2 + κΨθΨβ3

dβ1

dτ
=

1

2
ξ2
V β

2
1 + (ξV ρiφ− κV )β1 + (

1

2
(iφ)2 − (

1

2
+ γvξ)iφ+ γvθu)

dβ2

dτ
=

1

2
ξ2
Lβ

2
2 + (γξ2

Lβ1 − κL)β2 + (
1

2
γ2ξ2

Lβ
2
1 − γκLβ1 − γlξiφ+ γlθu)

dβ3

dτ
=

1

2
ξ2

Ψβ
2
3 − κΨβ3 + θu − ξiφ

where θu = (eθiφ+ 1
2
δ2(iφ)2 − 1). Equations for β0, β1, and β3 can be solved analytically in terms

of elementary functions while α and β2 need to be solved numerically. We employ 4th order
Runge-Kutta method with the step size of ∆t = 1/252.

C Discretization of daily returns and estimation

We apply daily discretization to the physical return process in (32). This yields
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rt+1 ' (r + (νS −
1

2
)V̂t − ξP λ̂t)∆t+

√
V̂t
√

∆tεt +
Nt∑
i=1

yi,t, (32)

where νS =
√

1− ρ2ν1 + ρνv, and εt is the standard normal innovation. The jump component

is represented a compound Poisson process
∑Nt

i=1 yi,t, where Nt is the number of jump arrival
with intensity lambdat on day t, and yi,t is i.i.d. normal with mean θP and variance δ2.
Conditional on the number of jumps Nt = j, we can write the likelihood as conditionally
normal, thus, the daily return likelihood can be analytically computed.
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Table 1: Logit Regression Results on Non-parametrically detected Jumps

Probability of observing a jump the next day
(1) (2) (3) (4) (5) (6) (7)

MinRV 2.17 −1.43 2.10 −1.44
(1.91)∗ (−1.24) (1.85)∗ (−1.25)

ILQ 3.66 4.82 3.60 4.77
(3.54)∗∗∗ (3.32)∗∗∗ (3.48)∗∗∗ (3.29)∗∗∗

RSkew −0.02 −0.02 −0.02 −0.02
(−1.07) (−0.77) (−0.91) (−0.78)

The t-stats are in parenthesis.

Notes: We report estimated coefficients and t-stats from the predictive logit regression on
non-parametrically detected jumps from daily S&P 500 index returns. The sample period is
from January 2, 2004 to December 31, 2012. The dependent variable is an indicator function
that is equal to one on day t if jump is detected, and zero otherwise. The independent variables
include lagged realized variance estimator, MinRV, from Andersen, Dobrev, and Scaumburg
(2012); market illiquidity proxy, ILQ, measured by daily averaged effective spreads across
firms in the S&P 500 constituents; and realized skewness measure, RSkew, calculated following
Amaya, Christoffersen, Jacobs, and Vasquez (2015). All indepdent variables are expressed in
annualized terms by multiplying their daily values by 252. Ex-post daily jumps are detected
at the 99.9% confidence level. Year and day-of-the week fixed effects are included. We report
robust t-statistic in bracket below each parameter estimate. ***, **, * indicates statistical
significance at the one, five, and ten percent confidence levels.
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Table 2: OLS regression results on daily realized skewness and kurtosis

Panel A. Realized skewness: RSkewt+1

(1) (2) (3)
MinRVt −0.15 1.29

(−0.16) (1.12)

ILQt −1.17 −2.34
(−1.46) (−1.91)∗

RSkewt −0.05 −0.05 −0.05
(−1.85)∗ (−1.94)∗∗ (−1.97)∗∗

Returnt −7.31 −7.36 −7.10
(−2.05)∗∗ (−2.06)∗∗ (−1.97)∗∗

Intercept 0.35 0.49 0.72
(3.30)∗∗∗ (0.55)∗∗ (3.27)∗∗∗

Panel B. Realized kurtosis: RKurtt+1

(1) (2) (3)
MinRVt 0.73 8.13

(0.19) (1.84)∗

ILQt −4.55 −11.81
(−1.21) (−2.10)∗∗

RKurtt −0.04 −0.04 −0.04
(−1.80) (−1.82)∗ (−1.88)∗

Returnt 11.45 9.93 11.10
(0.80) (0.71) (0.797)

Intercept 11.70 12.50 13.52
(20.70)∗∗∗ (14.48)∗∗∗ (12.85)∗∗∗

Notes: We report predictive OLS estimates on daily realized skewness (Panel A) and realized kurtosis
(Panel B) measures of S&P 500 index returns. The sample period is from January 2, 2004 to Decem-
ber 31, 2012. Daily measures of realized skewness, RSkewt+1, and realized kurtosis, RKurtt+1, are
constructed from high-frequency data following the method in Amaya et al. (2015). The independent
variables include lagged realized variance estimator, MinRV, from Andersen, Dobrev, and Scaumburg
(2012); market illiquidity proxy; ILQ, measured by daily averaged effective spreads across firms in
the S&P 500 constituents; Return, log S&P 500 return. Lagged dependent variable is also included
in each regression. Day-of-the week fixed effects are included. We report robust t-statistic clustered
in bracket below each parameter estimate. ***, **, * indicate statistical significance at the one, five,
and ten percent confidence levels.
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Table 3: ARMA regresion model on change in realized skewness and kurtosis

Panel A. Realized skewness: ∆RSkewt+1

(1) (2) (3)
∆MinRVt 0.30 2.04

(0.37) (1.90)∗

∆ILQt −1.91 −4.29
(−1.68)∗ (−2.53)∗∗

∆RSkewt −0.08 −0.08 −0.08
(−3.83)∗∗∗ (−3.89)∗∗∗ (−3.89)∗∗∗

Returnt −0.15 −0.57 −0.90
(−0.35) (−1.33) (−1.91)∗

AICC 1.566 1.564 1.563

Panel B. Realized kurtosis: ∆RKurtt+1

(1) (2) (3)
∆MinRVt 1.48 5.87

(0.37) (1.06)

∆ILQt −6.29 −14.75
(−0.89) (−1.38)

∆RKurtt −0.10 −0.10 −0.10
(−4.84)∗∗∗ (−4.82)∗∗∗ (−4.78)∗∗∗

Returnt −0.44 −3.22 −4.44
(−0.14) (−0.85) (−1.05)

AICC 4.767 4.794 4.795

Notes: We report predictive regression results on daily changes in realized skewness (Panel A), and
changes in realized kurtosis (Panel B) measures of S&P 500 index returns. Each specification is
estimated using MLE assuming a ARMA(1,1) structure in the residuals. The sample period is from
January 2, 2004 to December 31, 2012. Daily changes in realized skewness, ∆RSkewt+1, and daily
changes in realized kurtosis, ∆RKurtt+1, are constructed from high-frequency data following the
method in Amaya et al. (2015). The independent variables include lagged change in realized variance
estimator, ∆MinRV , from Andersen, Dobrev, and Scaumburg (2012); change in market illiquidity
proxy; ∆ILQ, measured by daily averaged effective spreads across firms in the S&P 500 constituents;
Return, log S&P 500 return. Lagged dependent variable is also included in each regression. We report
Heteroskedasticity-adjusted t-statistic below each parameter estimate. ***, **, * indicate statistical
significance at the one, five, and ten percent confidence levels.

34



Table 4: Maximum Likelihood Estimates: 2004–2012

(1) SJ Model (2) SJV Model (3) SJVI Model
λt = Ψt λt = Ψt + γV Vt λt = Ψt+γV Vt+γLLt

Parameter Estimate Estimate Estimate
κV 3.5792 3.5652 3.5490

(9.97) (8.39) (4.73)
θV 0.0311 0.0309 0.0312

(11.94) (11.00) (5.66)
ξV 0.3431 0.3425 0.3456

(59.84) (22.97) (42.49)
κL 2.3767 2.3445 2.3532

(3.69) (1.27) (4.61)
θL 0.1829 0.1822 0.1709

(7.90) (5.16) (6.69)
ξL 0.1543 0.1510 0.1583

(38.50) (6.10) (36.80)
κΨ 1.6727 0.6606 0.6616

(3.71) (0.83) (2.25)
θΨ 2.1142 0.1022 0.1014

(3.50) (3.34) (1.66)
ξΨ 0.4038 0.2036 0.2037

(4.23) (7.22) (1.79)
ρ -0.3505 -0.3511 -0.3527

(17.88) (2.90) (5.92)
θ -0.0368 -0.0367 -0.0373

(12.03) (10.41) (26.28)
δ 0.0368 0.0318 0.0314

(19.59) (13.48) (29.84)
γ 0.1151 0.1167 0.1180

(7.06) (3.52) (7.95)
νV 1.5961 1.5592 1.5536

(1.34) (0.42) (0.71)
γV 52.7228 18.3801

(2.17) (1.61)
γL 9.2590

(13.87)

Log-Likelihood: 7,085.19 7,641.24 7,707.29

The t-stats are in parenthesis.

Notes: We report MLE estimates of the three time-varying jump models: (1) SJ, (2) SJV, and (3)
SJVI. The sample period is from January 2, 2004 to December 31, 2012. Each model is estimated
using daily out-of-the-money (OTM) and at-the-money (ATM) S&P 500 index options, averaged
effective spreads of S&P 500 constituents, and spot variance estimated from 1-minute high-frequency
S&P 500 futures data. We maximize the log likelihood function in equation (27) where the state
variables are estimated using the Unscented Kalman Filter (UKF). We report t-statistic calculated
following the BHHH method using the outer product of the gradient in bracket below each parameter
estimate.
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Table 5: Descriptive statistics of filtered jump intensities and spot variances

(1) SJ Model (2) SJV Model (3) SJVI Model
λt = Ψt λt = Ψt + γvVt λt = Ψt + γvVt + γlLt

Panel A. Jump intensity λt

Mean 3.1296 2.5273 2.9172

Median 0.6732 1.6013 2.3124

Std. Dev. 12.6212 3.3500 2.1723

25 percentile 0.3261 0.9441 1.8025

75 percentile 1.2662 2.7791 3.2946

Panel B. Spot variance Vt

Mean 0.0211 0.0290 0.0316

Median 0.0155 0.0156 0.0146

Std. Dev. 0.0178 0.0429 0.0561

25 percentile 0.0098 0.0095 0.0086

75 percentile 0.0267 0.0297 0.0273

Panel C. Spot illiquidity Lt

Mean 0.1681 0.1681 0.1681

Median 0.1539 0.1539 0.1538

Std. Dev. 0.0558 0.0557 0.0558

25 percentile 0.1374 0.1375 0.1374

75 percentile 0.1741 0.1742 0.1742

Notes: We report the descriptive statistics of filtered jump intensities, λt, spot variances, Vt, and spot
illiquidity, Lt for three models: SJ, SJV, and SJVI. The variables are reported in annualized term
by multiplying their daily values with 252. We obtain the filtered state variables from Unscented
Kalman Filter (UKF) step in the MLE estimation. Models’ parameter estimates are reported in
Table 4.
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Table 6: Option Pricing Errors of Different Models

(1) SJ Model (2) SJV Model (3) SJVI Model
λt = Ψt λt = Ψt + γvVt λt = Ψt + γvVt + γlLt

Option moneyness Estimate Estimate Estimate

OTM 288.30 227.34 208.87

ATM 216.63 153.39 150.53

Notes: We report the in-sample option pricing errors of three models estimated from the MLE.
Numbers reported are sum of squared errors (SSE) from the measurement equations in the UKF
step. The sum of squared errors for ATM options is calculated as shown below

SSE(ATM) =

T∑
t=1

(ATMO
t+1 − ¯ATM

M
t+1)2

where ¯ATM
M
t+1 denotes the ex-ante forecast of vega-weighted ATM option price at time t + 1, and

ATMO
t+1 denotes the vega-weighted ATM option price observed in the data. The sum of squared

errors for OTM options is computed in a similar way.
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Table 7: Risk Premium Parameters Estimated from daily Returns: 2004–2012

(1) SJ Model (2) SJV Model (3) SJVI Model
λt = Ψt λt = Ψt + γvVt λt = Ψt + γvVt + γlLt

Parameter Estimate Estimate Estimate

νs =
√

1− ρ2ν1+ρνv 3.842 2.519 2.750
(1.89) (1.39) (1.54)

νθ 0.0263 0.022 0.017
(11.76) (4.23) (2.24)

ν1 3.505 2.105 2.353

Log-Likelihood: 7,093.69 7,197.63 7,204.14

The t-stats are in parenthesis.

Notes: We report MLE estimates of the risk premium parameters for the three time-varying jump
models: (1) SJ, (2) SJV, and (3) SJVI. Each model is fitted to daily S&P 500 return daily returns
data from January 2, 2004 to December 31, 2012. We obtain daily state values Vt, Lt, and Ψt,
as well as Q-measure parameters from the first-stage estimation results reported in Table 4. The
parameter νθ is the difference between jump-size means under the physical and risk-neutral measures,
i.e., θP − θ. The parameter ν1 corresponds the price of risk coefficient associated with the Brownian
innovation in the return process; see equation (29). To facilitate econometric identification, we
estimate νs =

√
1− ρ2ν1 + ρνV from daily returns MLE and later infer ν1 from its estimate, and

using the value of νV reported in Table 4.
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Table 8: Parameter Estimates using Liquidity, Options, and SpotVariance. 2004–2012

(1) SJVI : Amihud-ILQ (2) SJVI : ES-ILQ
Parameter Estimate Estimate

κV 4.0642 3.5490
(1.52) (4.73)

θV 0.0303 0.0312
(2.09) (5.66)

ξV 0.3273 0.3456
(10.03) (42.49)

κL 2.5795 2.3532
(2.28) (4.61)

θL 0.1057 0.1709
(2.42) (6.69)

ξL 0.2636 0.1583
(9.16) (36.80)

κΨ 1.5589 0.6616
(1.23) (2.25)

θΨ 1.1071 0.1014
(1.21) (1.66)

ξΨ 0.1177 0.2037
(1.57) (1.79)

ρ -0.3679 -0.3527
(1.12) (5.92)

θ -0.0277 -0.0373
(5.60) (26.28)

δ 0.0278 0.0314
(6.93) (29.84)

γ 0.0993 0.1180
(1.77) (7.95)

νv 1.5752 1.5536
(0.22) (0.71)

γV 3.5039 18.3801
(0.05) (1.61)

γL 235.5151 9.2590
(9.40) (13.87)

Option moneyness Option pricing error
OTM 186.00 208.87

ATM 143.84 150.53

The t-stats are in parenthesis.

Notes: We report the parameter estimates, t-stats, and option pricing errors of SJVI models esti-
mated using daily OTM and ATM options, spot variance estimated from 1-min grid of high-frequency
returns data, and two different measures of illiquidity, for the period starting January 2, 2004 and
ending December 31, 2012. The first column reports the estimation result using Amuihud illiquidity
measure while the second column reports the result using effective spread as a measure of illiq-
uidity. Amuhud illiquidity measure is computed as the equally weighted average of all individual
firm’s Amihud illiquidity measure that constitutes S&P500 index each day. Individual firm’s daily
Amihud illiquidity measure is defined by its absolute daily return divided by daily dollar volume,
|ri,t|/DVoli,t. All models are estimated by maximizing log likelihood from Unscented Kalman Filter
(UKF). T-stats are computed following the BHHH method using the outer product of the gradient.
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Figure 1: S&P 500 returns, Spot Variance, and Market Illiquidity
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Notes: In the top panel, we plot the daily returns on the S&P 500 index from January 2, 2004 to
December 31, 2012. In the middle panel, we plot the annualized spot variance estimates computed
using the 1-minute grid of returns following the approach of Andersen, Fusari, and Todorov (2015).
In the bottom panel, we plot the illiquidity measure defined by equally weighted average of annualized
effective spread from all firms constituting S&P 500 index each day.
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Figure 2: Implied volatilities of OTM and ATM options

2005 2006 2007 2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8
Implied Volatilities of OTM Options 2004-2012

2005 2006 2007 2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8
Implied Volatilities of ATM Options 2004-2012

Notes: In the top panel, we plot the daily implied volatilities of out of the money (OTM) options
written on S&P500 index from January 2, 2004 to December 31, 2012. In the bottom panel, we plot
the implied volatilities of at the money (ATM) options for the same underlying. Both options are
chosen to have the time to maturity to be closest to 30 calendar days. OTM options are chosen to
have forward price to strike ratio to be closest to 0.95 while ATM options have the same ratio being
closest to 1.

41



Figure 3: Filtered Spot Volatility
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Notes: We plot the daily annualized spot volatility
√
Vt filtered from three models we consider from

January 2, 2004 to December 31, 2012. The top panel corresponds to SJ model that has jump
intensity purely driven by latent stochastic jump intensity process, the middle panel corresponds to
SJV model that has jump intensity being driven by latent stochastic jump intensity and variance,
and the bottom panel corresponds to SJVI model that has jump intensity being driven by latent
stochastic jump intensity, variance, and illiquidity.
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Figure 4: Filtered Jump Intensity λt
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Notes: We plot daily annualized jump intensities λt filtered for the three models that we study from
January 2, 2004 to December 31, 2012. The jump intensity specifications in the three models can be
summarized as follows:

SJ : λt = Ψt

SJV : λt = Ψt + γV Vt

SJVI : λt = Ψt + γV Vt + γLLt.

The top panel corresponds to the SJ model that has jump intensities solely driven by a latent jump-
intensity term, the middle panel corresponds to SJV model that has jump intensity being driven by
latent stochastic jump intensity and variance, and the bottom panel corresponds to SJVI model that
has jump intensity being driven by latent stochastic jump intensity, variance, and illiquidity.
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Figure 5: Decomposition of Jump Intensity λt: SJV vs. SJVI
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Notes: We plot the decomposition of daily annualized jump intensities λt filtered from the SJV model
(top panel) and the SJVI model (bottom panel) from January 2, 2004 to December 31, 2012. The
top panel decomposes daily jump intensity dynamics of the SJV model into the portion coming from
the latent stochastic jump-intensity term, Ψt, and the portion that is due to the daily spot variance,
γV Vt. In the bottom panel, we decompose daily jump intensity dynamics of the SJVI model into the
portion coming from the latent stochastic jump-intensity specific term Ψt, the portion that is due to
the daily spot variance, γV Vt, and the portion that is due to daily spot market illiquidity, γLLt.

44



Figure 6: Relative Contribution (%) to Jump Intensity λt: SJV Model
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Notes: We plot the breakdown of daily annualized jump intensity, λt = Ψt + γV Vt, filtered from
the SJV model from January 2, 2004 to December 31, 2012. The top panel plots the percentage
contribution coming from the latent stochastic jump intensity term, Ψt/λt, while the bottom panel
plots the contribution coming from the variance term, γV Vt/λt.
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Figure 7: Relative Contribution (%) to Jump Intensity λt: SJVI Model
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Notes: We plot the breakdown of daily annualized jump intensity, λt = Ψt + γV Vt + γLLt, filtered
from the SJVI model from January 2, 2004 to December 31, 2012. The top panel plots the percentage
contribution coming from the latent stochastic jump intensity term, Ψt/λt. The middle panel plots
the contribution coming from the variance term, γV Vt/λt. The bottom panel plots the contribution
coming from the illiquidity term, γlLt.
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Figure 8: Time Series of Liquidity Measures
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Notes: We plot the alternative measure of daily market illiquidity from January 2, 2004 to December
31, 2012. The top panel plots the annualized effective spread measure and the bottom panel plots
the Amihud’s (2002) illiquidity measure. We compute the daily Amuhud illiquidity measure for the
aggregate stock market as the equally-weighted average Amihud illiquidity measure of all securities
constituting the S&P 500 index on each day. An individual firm’s daily illiquidity measure is cal-
culated as the absolute daily return divided by the daily dollar volume, |ri,t|/DVoli,t. We normalize
the Amuhud illiquidity measure to have same in-sample mean as the illquidity measure that we
calculated using intraday effective spreads.
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Figure 9: Model-implied Variance Risk Premium
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Notes: We plot the model-implied one-month variance risk premium (1M VRP) from January 2, 2004
to December 31, 2012. 1M VRP is computed as the model implied difference between expected total
quadratic variation under P and Q measures (1M VRP = (EP

t [QVt,t+1M ]−EQ
t [QVt,t+1M ])×12×100).

All numbers are annualized then multiplied by 100.
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