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1. Introduction 

General purpose technologies (GPTs) refer to a class of inventions that are widely used in 

many productive activities and generate pervasive impacts on the aggregate economy (Bresnahan 

and Trajtenberg 1995).1  Major GPTs since the industrial revolution include the steam engine, 

electricity, computers, and internet, among others (Lipsey, Carlaw, and Clifford 2005).  As a 

prominent example, information technologies, encompassing electronics, computers, 

communications, and the internet, have revolutionized production processes and reshaped the 

global economy since the 1960s and are regarded as the major GPT in recent decades 

(Greenwood and Jovanovic 1999; Brynjolfsson and Hitt 2000; Hobijn and Jovanovic 2001; 

Jovanovic and Rousseau 2005). 

Through international technology diffusion (Grossman and Helpman 1991; Howitt 2000; 

Keller 2004), GPTs developed in one country can also impact the aggregate productivity and 

consumption of other countries.  Developed economies such as G-7 have been the major driving 

force for technology changes due to their higher R&D investments and more supportive 

institutional environments; for the rest of the world, foreign sources of technologies contribute to 

90 percent or more of domestic productivity growth (Keller 2004).  Through cross-border 

spillovers, GPTs play an important role in the dynamics of cross-country productivity, economic, 

and income growth (Aghion and Howitt 1998; Keller 2002; Jones 2005). 

In this paper, we propose and empirically test the hypothesis that GPTs are a source of 

non-diversifiable risk to U.S. and global investors.  Given the wide uses of GPTs in productive 

activities and their pervasive impacts on the aggregate economy, existing asset pricing theory 

provides economic intuition for the pricing of GPT risk in stock returns.  The investment-based 

                                                        
1 See Helpman (1998), Jovanovic and Rousseau (2005), Lipsey, Carlaw, and Clifford (2005), and Bresnahan (2010) for surveys 
of the literature on GPTs. 
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asset pricing model of Cochrane (1996) shows that the stochastic discount factor is a function of 

aggregate investment return.  The pervasive effects of GPTs suggest that their shocks drive 

aggregate productivity and aggregate investment return to vary over time.  In consumption-based 

asset pricing models (e.g., Breeden 1979, Hansen and Singleton 1982, and Breeden, Gibbons, 

and Litzenberger 1989), the pricing kernel is a function of consumption growth.  A positive 

relation between GPTs and aggregate consumption arises because GPTs generate persistent 

effects on aggregate productivity, and persistent technology growth leads to higher consumption 

(Campbell 1994).  Furthermore, through technology spillovers, GPTs developed in one economy 

may increase the aggregate productivity and consumption in another economy.  Taken together, 

both investment- and consumption-based asset pricing models suggest that GPT risk should be 

priced, i.e., exposure to GPT risk should be compensated, in both U.S. and international stock 

markets.   

We construct empirical GPT risk factors using U.S. patent data, and use standard two-

stage cross-sectional regressions to estimate the risk premiums for GPT risk in stock portfolios.2  

The estimated risk premiums range from about 15% per year in U.S. stock returns for the period 

of 1963-2006 to about 4% to 8% per year in international stock returns for the period of 1991-

2006 (the shorter international sample is a result of data availability).  We also evaluate the 

contribution of GPT risk in explaining the cross section of stock returns.  Exposure to GPT risk 

accounts for a substantial fraction of the cross-sectional variation in stock returns — more than 

75% for U.S. stock returns, and between 50% and 80% for international stock returns. 

Our empirical GPT risk factors are based on the number of patents granted by the U.S. 

Patent and Trademark Office (USPTO) each year for the period 1963-2006.  Our approach 

                                                        
2 Our test assets are Fama-French portfolios formed on size and the book-to-market ratio, which are readily available for both the 
U.S. (Fama and French 1993) and the international stock markets (Fama and French 2012).  These portfolios exhibit substantial 
dispersion in average returns and have been extensively used in asset pricing tests. 
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follows the view in the literature that U.S. patent data reflect the accumulation of important 

technologies in both the U.S. and the rest of the world (e.g., Griffith, Harrison, and Van Reenen 

2006; Acharya and Subramanian 2009; Hsu, Tian, and Xu 2014).  This view seems reasonable 

because the U.S. has been the largest market for high-tech products over the past half century, 

and, due to the territoriality principle in patent laws, foreign inventors who want to protect their 

inventions in the U.S. must file for U.S. patents. 

All the patents are classified by Hall, Jaffe and Trajtenberg (2001) into six technology 

categories: (1) chemical, (2) computer and communications, (3) drugs and medical, (4) electrical 

and electronic, (5) mechanical, and (6) others.  Following the consensus in the literature, we 

define categories 2 and 4 as GPT patents, and categories 1, 3, 5, and 6 as specific purpose 

technology (SPT) patents.  The growth rates of GPT and SPT patents are positively correlated.  

This is consistent with innovation complementarity, another defining feature of GPTs 

emphasized in the literature, which suggests that GPTs enable innovations in application 

technologies and vice versa (Bresnahan and Trajtenberg 1995).  In contrast to GPTs, SPTs 

influence a narrower range of sectors and their shocks are likely diversifiable.  Thus, the positive 

correlations between GPT and SPT growth rates suggest that part of the variations in GPT patent 

growth rates are driven by SPT shocks and are diversifiable. 

Based on these observations, we construct an empirical proxy for non-diversifiable GPT 

risk as the difference between the average of the two GPT patent growth rates and the average of 

the four SPT patent growth rates.  We find that this empirical GPT factor is highly and 

significantly positively correlated with the GPT patent growth rates, but almost uncorrelated with 

the SPT patent growth rates.  In addition, this GPT factor is pro-cyclical: it is positively 

correlated with U.S. consumption, GDP, and industrial production growth.  Further, it forecasts 
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the cumulative growth rates of U.S. consumption, GDP, and industrial production over horizons 

of the following three years.  These findings are consistent with the intuition of the investment- 

and consumption-based asset pricing models, and provide support to the proposed GPT factor as 

reflecting non-diversifiable GPT risk.3  The empirical GPT factor is also positively correlated 

with all Fama-French (1993) three factors of U.S. stock returns, suggesting the possibility that 

the Fama-French factors may capture non-diversifiable technology risk. 

We then conduct asset pricing tests to examine whether the GPT factor is priced in the 

cross section of U.S. stock returns over the sample period of 1963-2006.  For the Fama-French 

25 portfolios formed on size and the book-to-market ratio, the single GPT factor model is able to 

explain the cross section of average excess returns with an R2 of 75.8%.  The estimated factor 

risk premium is 14.8% per year and is strongly significant.  The null hypothesis that all pricing 

errors are jointly zero is not rejected.  The GPT betas of the Fama-French 25 portfolios match the 

well-known size and value premiums: small firms have higher GPT betas than large firms, and 

value (high book-to-market ratio) firms have higher GPT betas than growth (low book-to-market 

ratio) firms.  The performance of the single GPT factor is almost comparable to the R2 of 82.7% 

generated by the Fama-French three-factor model.  Furthermore, when we estimate a model that 

includes both the GPT factor and the Fama-French three factors, the GPT factor remains 

significantly priced.  Hence, the GPT factor captures information and contributes explanatory 

power above and beyond conventional return-based factors. 

Overall, our results point to the economic significance of the GPT factor, which is 

significantly priced in and accounts for a substantial fraction of the cross-sectional variation of 

U.S. stock returns.  The asset pricing performance of the GPT factor is noteworthy given that it is 

                                                        
3 The differencing approach also mitigates the effects of potential regulation and institutional changes that affect the growth rates 
of patents in all technology categories. 
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not a return-based factor, and its construction using the patent data is unrelated with how the test 

portfolios are formed. 

The U.S. patents are granted to both U.S. and non-U.S. originated inventions.  We 

investigate whether the origins of technologies affect their pricing in U.S. stock returns.  We 

separate all patents into two groups, U.S. and non-U.S., by the nationality of inventors and, using 

the aforementioned approach, construct the respective GPT factors as the difference between the 

average GPT patent growth and the average SPT patent growth in each group.  We find that GPT 

risks from both U.S. and non-U.S. inventions are priced in U.S. stock returns, suggesting that 

“imported” technologies play an important role in the U.S. economy and stock market. 

In the second part of our empirical analysis, we extend the scope of our study to 

international asset pricing and examine whether GPT risk is priced in global and regional stock 

portfolios constructed in Fama and French (2012) based on size and book-to-market sorts.  

During the sample period 1991-2006 of our international analyses, almost half of U.S. patents 

are granted to non-U.S. inventors.  As already noted, the literature has commonly viewed U.S. 

patent data as representative of important inventions from all over the world.  Following this 

view, we separate the patents in each technology category by the country of inventors, and form 

the global GPT factor and the regional GPT factors for Japan and Europe using the same 

approach defined earlier. 

We find that the global GPT factor is significantly priced in the Fama-French global 

portfolios.  When we replace the global factor by the U.S. and non-U.S. GPT factors, both 

factors are priced in global stock returns as well.  Finally, we report an interesting contrast 

between Japanese and European stock returns: the U.S. GPT factor is more significantly priced 

than the Japanese GPT factor in the Fama-French Japanese portfolios, while the Europe factor, 
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but not the U.S. factor, is significantly priced in the Fama-French European portfolios. 

Taken together, our international analyses provide strong out-of-sample support to the 

evidence obtained from U.S. stock returns.4  Since the U.S. GPT factor is priced in U.S. stock 

returns, the results suggest that in pricing technology risk, there is a higher degree of financial 

market integration between the U.S. and Japan than between the U.S. and Europe.  Thus, our 

analyses contribute to a central question in international asset pricing on whether securities are 

priced globally in an integrated market or locally in segmented markets (Karolyi and Stulz 2003; 

Bekaert, Harvey, and Ng 2005; Bekaert, Harvey, Lundblad, and Siegel 2007).  Moreover, our 

results suggest technology risk as a potential economic mechanism underlying market 

integration.  This study also contributes to the literature on international technology diffusion by 

highlighting the systematic risk associated with cross-border technology spillovers in 

international stock markets. 

Our study is complementary to but also distinct from existing studies in several 

dimensions: we focus on the role of GPTs and spillovers in cross-sectional asset pricing; we use 

patent data to measure GPT risk; we consider not only U.S. but also international stock 

portfolios; and our results point to asset pricing implications of innovation spillovers.  

Greenwood and Jovanovic (1999), Hobijn and Jovanovic (2001), and Laitner and Stolyarov 

(2003) propose a time-series relation between information technologies and aggregate stock 

market value.  We focus on the cross-sectional variation of stock returns, i.e., how GPTs explain 

the returns from different stocks over the same period.  Pastor and Veronesi (2009) and Garleanu, 

Stavros, and Yu (2012) develop and calibrate models to show that wide adoption of new 

technologies leads to systematic risks.  We undertake an empirical approach to show that patent-

                                                        
4 Our paper is also related with the literature that uses international data to reexamine the cross-sectional stock return patterns 
originally documented in the U.S. and provides new insights based on country-specific characteristics (e.g., McLean, Pontiff, and 
Watanabe 2009, Hou, Karolyi, and Kho 2011, Fama and French 2012, and Watanabe, Xu, Yao, and Yu 2012, among others). 
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based measures of GPT risk are priced in stock portfolios.  Kogan and Papanikolaou (2010) and 

Papanikolaou (2011) examine the differential effects of investment and consumption 

technologies on stock returns and construct a mimicking portfolio whose returns track 

investment-specific technology shocks.  We focus on GPTs that influence all sectors and spill 

over to other countries, and our empirical GPT factor is based on technology information 

contained in patent data. 

The rest of the paper is organized as follows. We discuss the theoretical motivation of 

GPT risk and our empirical methodology in Section 2.  We describe the data in Section 3 and the 

construction of the GPT factor in Section 4.  Section 5 presents the empirical results on the 

pricing of GPT risk in U.S. stock returns.  Section 6 extends the analysis to global and regional 

portfolios.  Section 7 concludes the paper. 

 

2. Theoretical motivation and empirical methodology 

The pervasive impact of GPTs on the macroeconomy suggests that GPT shocks are most 

likely non-diversifiable even if investors hold diversified portfolios of assets.  In contrast, SPTs 

influence a narrower range of sectors and investors may be able to diversify away SPT shocks by 

holding stocks across different industries.  The GPT shocks, therefore, represent a source of 

systematic risk.  Asset pricing theory suggests that investors demand compensation for bearing 

GPT risk, and stocks with higher exposure to GPT risk earn higher expected returns.  In this 

section, we discuss two asset pricing models that provide intuition for priced GPT risk.  Then we 

present a linear factor model and discuss our estimation methodology. 

 

2.1. Investment-based asset pricing 
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The investment-based asset pricing model of Cochrane (1996) suggests that the stochastic 

discount factor is a function of aggregate investment return.  Since GPTs generate pervasive 

impacts on productive activities economy-wide, and a positive productivity shock implies an 

unexpectedly high investment return, shocks to GPTs drive aggregate productivity and 

investment return to vary over time, which, in turn, drives the pricing kernel.   

The positive relation between GPTs and aggregate productivity is also consistent with a 

large literature in macroeconomics suggesting that technology changes drive aggregate 

productivity to vary over time.  The real business cycle models, starting with Kydland and 

Prescott (1982) and Long and Plosser (1983), emphasize technology shocks in explaining 

business cycles.  Prescott (1986) suggests that technology shocks explain more than half of the 

post-war U.S. economic fluctuations.  More recently, Basu and Fernald (2002) and Basu, 

Fernald, and Kimball (2006) provide empirical evidence that pure technology growth has a 

significantly positive effect on aggregate productivity.  Consistent with these studies, we find that 

our empirical GPT risk factor is positively correlated with contemporaneous U.S. industrial 

production growth, and positively predicts future U.S. industrial production growth rates. 

Moreover, through channels such as research collaboration, human capital mobility, and 

foreign direct investment (Keller 2004), technologies developed and adopted in one economy 

spill over globally and can increase the R&D, the innovation output, and the productivity in other 

economies (Coe and Helpman 1995; Branstetter 2001; Keller 2002).  As a result, when GPTs 

from one country transfer to another, they may give rise to priced systematic risk in foreign stock 

returns. 

In summary, the investment-based asset pricing model suggests that GPT risk is priced in 

both U.S. and international stock markets.  

 



10 
 

2.2. Consumption-based asset pricing 

In consumption-based models (e.g., Breeden 1979, Hansen and Singleton 1982, and 

Breeden, Gibbons, and Litzenberger 1989), the pricing kernel is a function of consumption 

growth.  A number of existing studies provide economic intuition suggesting that aggregate 

consumption increases with GPTs.  Campbell (1994) shows that persistent technological growth 

leads to higher consumption.  The models of Pastor and Veronesi (2009) and Garleanu, Panageas, 

and Yu (2012) indicate that once a new technology is widely adopted, it improves both aggregate 

productivity and consumption.  In addition, Greenwood, Hercowitz, and Krusell (1997) argue 

that technological development makes new equipment either less expensive or more efficient 

than old equipment, which improves productivity and increases consumption.  These studies 

suggest that GPTs drive up consumption by raising aggregate productivity and market wealth. 

More directly, Greenwood and Jovanovic (1999), Hobijn and Jovanovic (2001), and 

Jovanovic and Rousseau (2005) present empirical evidence showing that the success of the 

information technology revolution, owing to the introduction and the wide adoption of 

microprocessors, encourages consumption growth.  We also find that the empirical GPT factor in 

our study is positively correlated with contemporaneous U.S. consumption growth.  Further, the 

GPT factor predicts future U.S. consumption growth with positive slopes, suggesting that a 

positive shock to GPTs is associated with persistent consumption growth.5 

Through technology spillovers, GPTs invented in one economy can increase the 

aggregate productivity and thus consumption in another economy.  In addition, through 

international trade, consumption and equipment goods produced using advanced technologies in 

one economy can also increase consumption and wealth in other economies (Gong and Keller 

                                                        
5 Given the predictive relation between the GPT factor and future consumption growth, our asset pricing results are consistent 
with the findings in Parker and Julliard (2005) that ultimate consumption risk, or consumption growth cumulated over 3 years, 
explains a large fraction of the cross section variation of stock returns. 
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2003; Keller 2004).  Therefore, when GPTs from one country diffuse to another, they may 

become a source of priced risk in foreign stock markets. 

In summary, the consumption-based asset pricing model also implies that GPT risk is 

priced in both U.S and international stock returns. 

 

2.3. Linear GPT factor model 

Motivated by the economic intuition discussed above, we empirically test if GPT risk is 

priced in the cross section of stock returns.  We include an empirical GPT factor (more details on 

the construction of the factor are provided in Section 4) in a multi-factor model for excess 

returns: 

 

ri,t – rf,t = αi + βiGPT GPTt + βi1 F1,t + ... +  βiK FK,t+ ei,t . 

 

Our tests use annual data, and following the standard practice in the literature to minimize 

estimation errors, we use stock portfolios instead of individual stocks in testing the model.  

Hence, ri,t is the return for stock portfolio i in year t, rf,t is the risk-free rate known at the 

beginning of year t, GPTt is the GPT factor, F1,t to FK,t are other systematic risk factors, αi is a 

constant, βiGPT is the exposure (i.e., beta) of the excess return of asset i to the GPT factor, βi1 to 

βiK are the exposures to the other factors, and ei,t is the residual.  The model implies a relation 

between the expected excess return and the betas: 

 

E[ri,t – rf,t ] = λ0 + λGPT βi,GPT  + λ1 βi1 + ... + λK βiK , 
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where λ0 is the zero-beta rate, λGPT is the risk premium of the GPT factor to compensate the 

exposure to GPT risk, and λ1 to λK are the risk premiums to compensate for other risks. 

In estimating the model, we follow the standard two-stage cross-sectional regression 

approach.  The first stage estimates betas (βiGPT and βi1 to βiK) as slope coefficients in the time-

series regression of excess returns of each asset on factors over the entire sample period, while 

the second stage estimates factor risk premiums (λGPT and λ1 to λK) as slope coefficients in cross-

sectional regressions of average excess returns on betas across all portfolios.  We use OLS in 

both stages,6 and compute the standard errors of the estimated factor risk premiums using two 

methods.  In the first method, following Fama and MacBeth (1973), in each time period we run a 

cross-sectional regression of realized excess returns on betas.  By construction, the time-series 

averages of these slope coefficients are the same as the estimated factor risk premiums.  The 

time-series standard errors of the average slope coefficients are used as the standard errors of the 

estimated factor risk premiums.  In the second method, we follow Jagannathan and Wang (1998) 

and also incorporate Newey-West (1987) adjustment, and the resulting standard errors are robust 

to heteroskedasticity and time-series correlations in stock returns, and also account for the 

sampling errors in the betas estimated in the first stage. 

To assess the model performance in fitting the cross section of stock returns, we report 

two goodness-of-fit measures.  We compute the pricing error as the difference between the 

realized and the model-predicted average excess returns, and report the mean absolute pricing 

error (MAPE) as the average of the absolute values of the pricing errors across the portfolios.  

We also report the R2 of the second-stage cross-sectional regression.  For formal statistical 

inference, we report the F statistic suggested in Shanken (1985) and the associated p value on the 

                                                        
6 As pointed out in Cochrane (2005, Chapter 12), while generalized least squares can potentially improve efficiency, OLS is more 
robust, especially when the cross section is large (i.e., there are many test portfolios). 
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null hypothesis that all pricing errors are jointly zero.  This statistic accounts for the sampling 

errors in the betas estimated in the first stage as well as the small sample bias. 

 

3. Data 

We use the National Bureau of Economic Research (NBER) patent database, which 

covers the patents granted by the U.S. Patent and Trademark Office (USPTO) each year for the 

period of 1963-2006. 7  The construction of the database is documented in Hall, Jaffe, and 

Trajtenberg (2001). 

The U.S. patents are granted to assignees (i.e., patent owners) both in the U.S. and from 

worldwide.  Due to the territoriality principle, inventors who want to secure the business value of 

their inventions in the U.S. must file for U.S. patents.  Since the U.S. boasts the largest economy 

and probably the highest demand for advanced technologies, inventors from other countries have 

strong incentives to file for U.S. patents.  The U.S. patents as issued by the USPTO pursuant to 

common patent standards are also more homogenous in quality.  As a result, the literature has 

commonly viewed U.S. patent data as representative of important inventions from all over the 

world (e.g., Griffith, Harrison, and Van Reenen 2006; Acharya and Subramanian 2009; Hsu, 

Tian, and Xu 2014).  The country locations of patent assignees are reported in the database, 

allowing us to identify the origin of technology changes, and in particular, to measure GPT risk 

and conduct asset pricing tests for the international setting. 

Based on the technology classes assigned by the USPTO, Hall, Jaffe, and Trajtenberg 

(2001) classify each patent into one of six major technological categories: (1) chemical, (2) 

computer and communications, (3) drugs and medical, (4) electrical and electronic, (5) 
                                                        
7 The original database constructed by Hall, Jaffe and Trajtenberg for patents granted in the period 1963-1999 is available at 
http://www.nber.org/patents/, and the updated database for patents granted in the period 1976-2006 is available at 
https://sites.google.com/site/patentdataproject/Home.   

http://www.nber.org/patents/
https://sites.google.com/site/patentdataproject/Home
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mechanical, and (6) others.  We define categories 2 and 4 as GPTs, and the remaining four 

categories — 1, 3, 5, and 6 — are SPTs.  Our definition of GPTs follows the consensus in the 

literature.  As noted in Greenwood and Jovanovic (1999), Brynjolfsson and Hitt (2000), Hobijn 

and Jovanovic (2001), and Jovanovic and Rousseau (2005), electricity is a major GPT since late 

19th century, and over the past several decades, information technology is the most prominent 

example of GPTs.  In additional analyses (Section 5.2), we also investigate the two categories 

separately and obtain similar empirical results. 

For our baseline specification, we construct an empirical GPT factor using all the patents 

granted by the USPTO to both U.S. and non-U.S. inventors.  We document the relation between 

this GPT factor and U.S. macroeconomic variables, and study the pricing of the factor in the U.S. 

stock market.  The sample period is 1963-2006.  The inclusion of the patents by non-U.S. 

inventors is motivated by the intuition that technologies invented outside the U.S. but patented in 

the U.S. also contribute to U.S. productivity growth and thus should impact the U.S. stock 

market.  This is supported in Section 5.2, in which we separate patents by the country of 

assignees, construct the U.S. and non-U.S. GPT factors, and show that both factors are priced in 

U.S. stock returns.  In Section 6, we further extend the analysis to the international setting.  We 

separate patents by the country of inventors, construct the global and regional (i.e., Japanese and 

European) GPT factors, and study whether they are priced in global and regional stock 

portfolios. 

For U.S. macroeconomic variables, consumption is per capita real expenditures on 

nondurable goods and services, and GDP is per capita real gross domestic product.  Both are 

obtained from the Bureau of Economic Analysis.  The U.S. industrial production index is from 

the Federal Reserve. 
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We obtain asset pricing data from Kenneth French’s online data library.8  We use Fama-

French portfolios and factors based on size and book-to-market sorts, which are readily available 

for both the U.S. (Fama and French 1992) and the international setting (Fama and French 2012), 

and have been extensively used in asset pricing tests.  Specifically, for the tests with U.S. stock 

returns, we use the Fama-French 25 portfolios sorted on size and the book-to-market ratio as the 

test portfolios and the Fama-French three factors (i.e., market excess return, the small-minus-big 

size spread, and the high-minus-low book-to-market spread) as common risk factors (Fama and 

French 1992 and 1993).  For international asset pricing tests, we use the portfolios and factors 

formed on size and book-to-market constructed by Fama and French (2012) based on the 

accounting information and stock returns from 23 countries with developed stock markets.  The 

data include the Fama-French 25 portfolios and the Fama-French factors for four regions — 

Europe, Japan, Asia Pacific excluding Japan, and North America — and the global portfolios and 

factors for all the 23 countries in the four regions combined.9  All the returns and the factors are 

in U.S. dollars, and excess returns are obtained by subtracting the U.S. risk-free rates.  

Intersecting the sample period of the international asset pricing data with that of the patent 

database yields a sample period of 1991-2006.  The time span limits the number of portfolios we 

can include in the cross section.10  We select 9 of the 25 portfolios, formed as intersections of 

size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5.11  The inclusion of the extreme 

quintiles 1 and 5 well preserves the range of the average return variation across the 25 portfolios, 
                                                        
8 The online data library is at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html . 
9 The European factors and portfolios cover Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the 
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.  The Asia Pacific factors and portfolios 
cover Australia, Hong Kong, New Zealand, and Singapore.  The North American factors and portfolios cover Canada and the 
United states. 
10 If the number of portfolios N is greater than the number of time periods T, then at most T portfolios’ returns are linearly 
independent, while the remaining portfolios’ returns are redundant. 
11 Here “quintiles” are used in a loose sense.  As discussed in Fama and French (2012), the size breakpoints for a region are the 
3rd, 7th, 13th, and 25th percentiles of the region’s aggregate market capitalization. The book-to-market breakpoints for all stocks 
in a region are the 20th, 40th, 60th, and 80th percentiles of the book-to-market ratio for the big (top 90% of market cap) stocks of 
the region.  The global portfolios use global size breaks, but the book-to-market breakpoints for each region to allocate the 
region’s stocks to the global portfolios. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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and the selection of size quintile 2 and book-to-market quintile 3 helps achieve an evenly 

distributed coverage. 

 

4. GPT factor 

For each of the six technology categories, we use the number of patents granted (i.e., 

approved) every year as the measure of technology innovations in that category.12  We use the 

grant year rather than the application year because GPT patents diffuse and become widely 

adopted in the whole economy mainly after their technical contents are disclosed to the public on 

their grant dates.  We compute patent growth as the first difference of log number of patents in 

each category to measure the respective innovation growth. 

Panel A of Table 1 presents key summary statistics for patent growth rates.  The top three 

fastest growth rates are for categories 2, 3, and 4, which are generally viewed as high 

technologies.  Both GPT categories are in the top three: patents in category 2, computer and 

communications, grow at 7.71% per year, which is the fastest among all six categories; patents in 

category 4, electrical and electronic, grow at 4.17% per year, which is the third fastest.  The only 

SPT category whose patents grow fast is category 3, drugs and medical, with an average growth 

rate of 5.92% per year.  The patent growth rates for categories 2, 3, and 4 are also more volatile.  

For the remaining three SPT categories, the average patent growth rates are below 2%, and the 

growth rate volatilities are also lower.  Overall, GPT patent growth rates are higher and more 

volatile than SPT patent growth rates.  Panel B of Table 1 shows that the six patent growth rates 

are all positively correlated.  The correlation between the two GPT growth rates is 0.899.  In 

                                                        
12 Kamien and Schwartz (1975) review related literature and conclude that the number of patents granted serves as an appropriate 
proxy for innovation output.  Although patents vary in their economic impacts and business values, we resort to the ‘‘law of large 
numbers’’ argument and treat all patents as random samples from one identical distribution (Scherer 1984 and Griliches 1990).  
Thus, using the total number of patents in each category every year is expected to average out idiosyncratic variations in 
individual patents. 
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addition, GPT patent growth rates are also correlated with SPT patent growth rates. 

These empirical properties are consistent with two other defining characteristics of GPTs 

emphasized in the literature: potential for continued improvement and innovation 

complementarity (Bresnahan and Trajtenberg 1995).  The fast growth of GPT patents signifies 

continued improvement.  Innovation complementarity implies the spillover effects between GPTs 

and application technologies — GPTs enable innovations in other technologies, and vice versa.  

The large and positive correlations between GPT and SPT patent growth rates are consistent with 

such innovation spillovers.  As a result, the GPT patent growth rates are not simply equated with 

non-diversifiable GPT risk, since the positive correlations imply that part of the variations in 

GPT patent growth rates are driven by diversifiable SPT shocks. 

We propose an empirical proxy for non-diversifiable GPT shocks as the difference 

between the average of the two GPT patent growth rates and the average of the four SPT patent 

growth rates.  Such a differencing approach also helps to remove the effects of any regulation 

changes in U.S. patent laws and institutional changes in the USPTO that most likely affect all 

patents.  Fig. 1 presents the time series variation of the factor.  As reported in Panel A of Table 2, 

the GPT factor has a mean of 3.47% and a volatility of 7.92%.  In addition, the GPT factor is 

serially uncorrelated, with an insignificant autocorrelation coefficient of 0.06.  Panel B of Table 2 

reports the correlations between the GPT factor and the six patent growth rates.  The correlations 

between the GPT factor and the two GPT patent growth rates are highly positive and significant 

— 0.567 with category 2 patent growth and 0.508 with category 4 patent growth.  In contrast, the 

correlations between the GPT factor and the four SPT patent growth rates are small in 

magnitudes and insignificant.  In other words, the GPT factor captures a large part of the 

variations in the GPT patent growth rates, but is almost orthogonal to the SPT patent growth 
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rates.  These results suggest that our GPT factor is most probably highly correlated with non-

diversifiable GPT shocks but almost uncorrelated with diversifiable SPT shocks. 

Panel A of Table 2 also displays the summary statistics for the Fama-French factors for 

the U.S. stock market and several U.S. macroeconomic variables.  Over the sample period, the 

average risk premium for the aggregate U.S. stock market (MKT) is 6.35%, the size factor SMB 

has a mean of 3.88%, and the value factor HML has a mean of 6.32%.  All return factors are very 

volatile.  The U.S. nominal risk-free rate (Rf) is 5.81% over the sample period.  Among the 

macroeconomic variables, consumption growth (∆C) is 2.27% on average and appears to be 

smooth, with a standard deviation of only 1.16%; GDP growth (∆GDP) is 2.24% on average, and 

its volatility is 1.97%; industrial production growth (∆IP) is 3.00% on average, and its volatility 

is 4.00%. 

Panel B of Table 2 also indicates that the GPT factor is positively correlated with all three 

Fama-French factors of U.S. stock returns.  The correlation with HML is the largest and also 

highly significant.  These positive correlations suggest the possibility that the Fama-French 

factors may capture non-diversifiable technology risk.  The GPT factor is also positively 

correlated with U.S. consumption, GDP, and industrial production growth.  While these 

correlations are not significant at conventional levels, the results suggest that the GPT factor 

varies pro-cyclically over time — it is high during good times, and low during bad times. 

In Panel C of Table 2 we investigate whether the GPT factor exhibits any predictive 

power for future macroeconomic variables.  The results show that the GPT factor forecasts the 

cumulative growth rates of consumption, GDP, and industrial production with positive slopes 

over horizons of 1 to 3 years.  The statistical significance of the slopes, based on Newey-West 

(1987) standard errors, increases substantially with the horizon, and the results are strongly 
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positive for horizons of 2 and 3 years.  The magnitudes of the slopes and the R2 values also 

increase with the horizon.  These results are notable, in particular because the predictive variable, 

the GPT factor, is serially uncorrelated.  More importantly, these results provide support to the 

theoretical motivation discussed in Section 2 for the pricing of GPT risk in asset returns. 

 

5. GPT risk and U.S. stock returns 

In this section we investigate whether the GPT factor is priced in U.S. stock returns.  We 

also evaluate the contribution of the GPT factor in explaining the cross section of U.S. stock 

returns. 

 

5.1. Fama-French 25 portfolios 

We use the Fama-French 25 portfolios for the U.S. stock market, which are the 

intersections of 5 portfolios formed on size and 5 portfolios formed on the ratio of book equity to 

market equity.  These portfolios exhibit a large dispersion in average returns and have been 

extensively used in asset pricing tests.  They highlight the size effect — firms with small market 

capitalization have on average higher returns — and the value effect — firms with high book-to-

market have on average higher returns.  The results are reported in Table 3. 

Column 1 estimates a model with the GPT factor as the single factor.  The model delivers 

a remarkable performance — a single GPT factor can explain the cross section of average excess 

returns with an R2 of 75.8% and an average pricing error of 1.37% per year.  The estimated risk 

premium for the GPT factor is 14.8% per year, which is strongly significant.  In addition, in the 

second-stage cross-sectional regression, the intercept is small and statistically insignificant.  The 

large p value of 86.5% for the F statistic of 0.617 suggests that the null hypothesis of zero pricing 



20 
 

errors is not rejected. 

In Column 2, we include the market excess returns (MKT) as the second factor.  In this 

two-factor model, the risk premium for the GPT factor rises slightly to 15.5% and remains highly 

significant.  The risk premium estimated for the market factor is 8.2% but insignificant, 

consistent with Fama and French (1992).  The two-factor model slightly improves the R2 to 

76.9% and lowers the average pricing error to 1.35%.  The null hypothesis of zero pricing errors 

is again not rejected. 

As comparison, we estimate in Column 3 the three-factor model of Fama and French 

(1993), which has been shown to perform well in explaining the returns of size and book-to-

market sorted portfolios.  The estimated risk premium is negative and insignificant for the 

market factor.  For the size factor SMB, the risk premium is 3.9% and significant.  For the value 

factor HML, the risk premium is 6.5% and highly significant.  The Fama-French three-factor 

model attains a high R2 of 82.7% and an average pricing error of 1.16%, although the intercept in 

the second stage regression is large and significant.  The p value of 30.2% for the F test suggests 

that the null of zero pricing errors is not rejected. 

To visualize the goodness of fit, Panel A of Fig. 2 plots the average realized excess 

returns of the Fama-French 25 portfolios with respect to those predicted by the single GPT factor 

model.  Following the convention in the literature, we denote a portfolio by the rank of its size 

and then the rank of its book-to-market ratio.  For example, portfolio 15 contains the smallest 

quintile of stocks by size and the largest quintile of stocks by book-to-market.  If the model made 

perfect predictions, then all the points would lie on the 45 degree diagonal line.  Confirming the 

R2 of 75.8%, the points are located close to the 45 degree line.  The three largest pricing errors 

occur with portfolios 42 (size quintile 4 and book-to-market quintile 2), 52, and 14.  For 
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comparison, Panel B of Fig. 2 plots the results obtained with the Fama-French three-factor 

model.  The three largest pricing errors are for portfolios 51, 15, and 41. 

Finally, we estimate a four-factor model that includes the GPT factor and the Fama-

French three factors.  The risk premium for the GPT factor reduces to 7.2% but remains 

significant.  The risk premiums for the Fama-French three factors are largely unchanged.  The R2 

increases to 86.1%, and the pricing error drops to 1.05%.  Hence, the GPT factor contains 

additional information and contributes explanatory power above and beyond conventional return 

factors. 

Overall, in explaining the average returns of the Fama-French 25 portfolios, the GPT 

factor performs comparably to the Fama-French three-factor model.  In addition, the GPT factor 

remains significantly priced even after controlling for the Fama-French factors.  The 

performance of the GPT factor is noteworthy in that it is derived from the patent data.  In 

particular, unlike other return-based factors, the GPT factor is not related with the construction of 

the test portfolios.  In unreported results, we also find that the GPT factor substantially 

outperforms the models using consumption growth or industrial production growth as factors. 

To further understand the asset pricing performance of the GPT factor, Table 4 reports the 

average excess returns for the Fama-French 25 portfolios in Panel A and the betas from 

regressing the excess portfolio returns on the GPT factor in Panel B.  Panel A confirms the value 

premium: in each size quintile, high book-to-market firms (i.e., value firms) earn higher returns 

than low book-to-market firms (i.e., growth firms).  The betas in Panel B demonstrate a 

corresponding pattern — high book-to-market firms have higher betas than low book-to-market 

firms.  Panel A also largely confirms the size effect — in all but the lowest book-to-market 

quintile (i.e., the extreme growth quintile), small firms earn higher returns than large firms.  In 
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Panel B, small firms have higher betas than large firms.  Overall, the betas are positively 

correlated with average excess returns, with a high correlation coefficient of 0.87. 

 

5.2. Additional analyses 

So far, in our baseline specification, the empirical GPT factor is the difference between 

the average of the two GPT (categories 2 and 4) patent growth rates and the average of the four 

SPT (categories 1, 3, 5 and 6) patent growth rates.  In Panel A of Table 5, we investigate the 

robustness of the asset pricing results to alternative construction of the GPT factor.  The test 

assets are the Fama-French 25 portfolios sorted on size and book-to-market for the U.S. stock 

market. 

In line 1, we focus on category 2, computer and communications, as the GPT, and 

calculate the GPT factor as the difference between the growth of category 2 patents and the 

average SPT patent growth.  The single GPT factor model achieves an R2 of 63.2%, lower than 

that obtained by the GPT factor in the baseline specification.  The estimated risk premium is 

13.3%, slightly lower than that for the baseline GPT factor.  In line 2, we focus on category 4, 

electrical and electronics, as the GPT, and calculate the GPT factor as the difference between the 

growth of category 4 patents and the average SPT patent growth.  The resulting R2 value of 

65.5% is also lower than that obtained by the baseline GPT factor.  The estimated risk premium 

is 16.2%, slightly higher than that for the baseline GPT factor.  Overall, these results suggest that 

both GPT categories are important in order to achieve the best cross-sectional explanatory 

power. 

Recent decades have also witnessed the fast growth of and the intensifying public 

attention on biotechnologies.  To investigate whether biotechnologies have gained the GPT status 
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in the context of the asset pricing tests, we construct a factor as the difference between the patent 

growth of category 3 (drugs and medical) patents and the average of the patent growth rates of 

categories 1, 5, and 6.  Line 3 reports that the factor based on biotechnologies does a poor job in 

explaining the cross section of stock returns.  In addition, the estimated factor risk premium is 

essentially 0. 

The baseline GPT factor is constructed using all patents in the database, which include 

both U.S. and non-U.S. inventions.  During the first few years of the 1963-2006 sample period, 

the patents granted to non-U.S. inventors make up about 20% of all the granted patents each 

year.  By early 1980s, the fraction of U.S. patents granted to non-U.S. inventors each year has 

increased to about 45%, and remains around this level through the end of the sample period.  

Altogether, during 1963-2006, about 42% of U.S. patents are granted to non-U.S. inventors.  

The inclusion of non-U.S. inventions in the GPT factor is motivated by the intuition that 

technologies invented outside the U.S. but patented in the U.S. also contribute to U.S. 

productivity growth and impact the financial markets.  This appears reasonable from the 

perspective of patent applicants — the fact that foreign inventors seek U.S. patent protection 

suggests that they expect their intellectual property to be valuable to users of technologies in 

U.S. economy.  Furthermore, given the substantial fraction of non-U.S. inventions included in 

the U.S. patent database and thus incorporated in the construction of the GPT factor, the asset 

pricing performance reported thus far suggests that GPT risk due to non-U.S. inventions is most 

probably priced in the U.S. stock market. 

To provide further confirmation, we separate the patents in each technology category by 

the country of assignees.  Using only the patents granted to U.S. inventors, we construct a U.S. 

GPT factor as the difference between the average GPT and SPT patent growth rates.  Using only 
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the patents granted to non-U.S. inventors, we construct a non-U.S. GPT factor.  These two 

factors represent GPT risks originated from U.S. and non-U.S. inventions, respectively.  In 

unreported tables, we find that the two GPT factors are positively correlated, with a correlation 

of 0.70.  Both factors are positively correlated with the Fama-French U.S. factors, and the 

correlations are higher for the U.S. GPT factor.  Both factors predict future growth rates of U.S. 

consumption, GDP, and industrial production, and the results are stronger for the U.S. GPT 

factor. 

Panel B of Table 5 reports the asset pricing results for a two-factor model with U.S. and 

non-U.S. GPT factors, and the test assets are the Fama-French 25 portfolios for the U.S. stock 

market.  Both factors are significantly priced, and the estimated factor risk premiums are similar 

to that for the GPT factor constructed using all the patents.  The two-factor model achieves an R2 

of 78.3%, higher than that obtained by the GPT factor constructed using all the patents.  The null 

hypothesis of zero pricing errors is not rejected. 

Altogether, these findings — foreign technologies predict U.S. macroeconomic variables 

and are priced in U.S. stock returns — provide direct validation for the inclusion of non-U.S. 

inventions in the baseline GPT factor.  The results also suggest that technology spillovers are 

priced by investors in the U.S. stock market. 

 

6. GPT risk and international stock returns 

In this section, we turn to the international setting and study the pricing of GPT risk in the 

global stock portfolios and the regional stock portfolios of Japan and Europe.  This is a natural 

extension of the previous investigation, which finds that GPT risk originated from non-U.S. 

inventions is priced in U.S. stock returns.  There are two additional motivations for the 



25 
 

investigation.  First, international asset pricing results are out-of-sample tests on the robustness 

of the results obtained using U.S. stock portfolios.  Second, and perhaps more importantly, our 

international results contribute to a central question in the international asset pricing literature on 

whether securities are priced locally in segmented markets or globally in an integrated market 

(Karolyi and Stulz 2003; Bekaert, Harvey, and Ng 2005; Bekaert, Harvey, Lundblad, and Siegel 

2007).  The extant empirical evidence appears to support an intermediate case between the polar 

extreme of full integration or full segmentation.  Most studies addressing the question use factors 

based on returns and firm characteristics.  Our analysis using patent-based factors highlights 

technology spillovers and innovation complementarities across borders as potential economic 

mechanisms driving market integration and systematic risk. 

As described in Section 3, the international asset pricing data are the global and regional 

Fama-French portfolios and factors formed on size and book-to-market (Fama and French 2012).  

The sample period is 1991-2006, and for test assets, we select 9 out of 25 portfolios, formed as 

intersections of size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5. 

Panel A of Table 6 reports the average fractions of the patents by the region of assignees 

during the period 1991-2006.  We follow the definition of the four regions in the asset pricing 

data, except that we split North America into the U.S. and Canada.  The results show that U.S. 

originated patents account for about 53.5% of all patents granted by the USPTO.  This suggests 

that almost half of patents granted in the U.S. are “imported” inventions.  Specifically, about 

21.2% of the patents are granted to Japanese assignees, about 16.9% to European assignees, and 

inventors from the rest of the world claim the remaining 8.4%. 

Using the U.S. patent database, we form regional and global GPT factors, corresponding 

to the regional and global portfolios and factors.  Specifically, for each region, using only the 
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patents granted to inventors in that region, we form the regional GPT factor as the difference 

between the average GPT growth rates and the average SPT growth rates.  We combine the 

patents granted to assignees of all the 23 countries, and form the global GPT factor.13 

We investigate whether these GPT factors are priced in the global and regional stock 

portfolios.  Among the four regions, we focus on Japan and Europe for their prominent presence 

in the U.S. patent database.  The Asia Pacific region defined in the asset pricing data, which 

covers the four developed stock markets (Hong Kong, Singapore, Australia, and New Zealand), 

appears not representative of the technological developments in that region: these four 

economies claim less than 1% of the U.S. patents, while Taiwan and South Korea claim 4.2%.  

The North America region contains only the U.S. and Canada, but Canada only holds 2.1% of the 

U.S. patents. 

Panels B and C in Table 6 report key summary statistics of the regional and global GPT 

factors.  All GPT factors are positively correlated with each other.  The correlations between the 

GPT factors of non-overlapping regions, such as the U.S., Japan, and Europe, are consistent with 

technology spillovers and innovation complementarities across borders.  In particular, the 

correlation between the U.S. and Japanese GPT factors is 0.794, higher than the correlation of 

0.697 between the U.S. and European factors. 

 

6.1. Global stock portfolios 

Table 7 reports the asset pricing results with the Fama-French global portfolios.  Columns 

1 and 2 show that the global GPT factor is significantly priced, with and without the global 

market factor.  When the global GPT factor is the only factor, it explains 49.7% of the cross-
                                                        
13 The global GPT factor is slightly different from the baseline GPT factor constructed in Section 3, which is used for the U.S. 
stock portfolios in Section 4.  Here, the global GPT factor is based on the patents granted to inventors in the 23 countries, which, 
according to Panel A of Table 6, hold about 95% of the U.S. patents.  The baseline GPT factor is constructed using all the patents 
granted by the USPTO.  As can be expected, the two factors are highly correlated: the correlation is 0.993 during 1991-2006. 
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sectional variation of stock returns.  The R2 achieved by the two-factor model with the global 

GPT and market factors is 69.6%, higher than the R2 of 64.1% reported in Column 5 by the 

Fama-French global three-factor model.  To visualize the goodness-of-fit, Fig. 3 plots the 

realized average excess returns with respect to those predicted by the single global GPT factor 

model, as compared with the plot for the Fama-French global three-factor model. 

To further understand the pricing of GPT risk in global portfolios, we replace the global 

GPT factor by the U.S. and non-U.S. GPT factors.  Columns 3 and 4 of Table 7 suggest that both 

factors are priced.  The statistical significance is stronger for the non-U.S. factor.  Thus, 

inventions generated in and outside of the U.S. are both relevant for global stock returns.  This 

finding also complements the result reported in Section 5.2 that both the U.S. and non-U.S. 

factors are priced in the U.S. stock market. 

The results from different models point to similar estimates between 5% and 7% per year 

for the risk premiums of the GPT factors.  The intercepts are insignificant, and the lowest R2 is 

about 50%.  Thus, a substantial fraction of the cross-sectional variation of global stock returns is 

accounted for by the GPT factors, and both the U.S. and non-U.S. innovations are important in 

global asset pricing.  The results support integrated financial markets among developed 

countries, and suggest that a potential channel for integrated pricing of stocks is technology risk 

driving common variations in global stock returns.  The results also support the common view 

held by the literature that the U.S. patent database captures important inventions from 

worldwide.  Furthermore, the results provide out-of-sample support for the results using the U.S. 

stock portfolios. 

 

6.2. Regional stock portfolios 
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We then study the pricing of GPT risk in two regional portfolios – those of Japan and 

Europe.  Besides regional GPTs, we also include the U.S. GPT factor so as to test whether 

financial markets are integrated in pricing technology risk.  The results are presented in Table 8. 

We first study the pricing of GPT risk in the Fama-French portfolios of Japanese stocks.  

A model with the single Japanese GPT factor can explain about 56.8% of the cross-sectional 

variation of average excess stock returns, and the estimated GPT factor risk premium is 4.8%.  

Further including the U.S. GPT factor improves the R2 to 60.9%.  The estimated risk premium is 

4.2% for the U.S. GPT factor.  The risk premium for the Japanese GPT factor lowers to 4.1%, 

and the statistical significance is weaker than that for the U.S. GPT factor.  In both models, the 

intercepts in the second-stage regressions are insignificant.  As comparison, the model using the 

Fama-French Japanese three factors achieves an R2 of 93.0%, and the intercept is significantly 

negative.  The goodness-of-fit plots for the single Japanese GPT factor and the Fama-French 

three-factor model are presented in Fig. 4. 

Overall, both local and U.S. GPT risks are priced in Japanese stock returns.  Section 5 has 

already reported that the U.S. GPT factor is priced in U.S. stock returns.  Together, these results 

corroborate a considerable degree of the financial market integration between the U.S. and Japan 

in pricing technology risk.  This is perhaps not surprising — over the sample period of 1991-

2006, the U.S. and Japan are the top two largest economies in the world, with enormous flows of 

both goods and capital between these two countries.  Japan is also one of the most innovative 

countries, as evidenced in its holding of 21.2% of U.S. patents. 

Table 8 also reports the pricing of GPT risk in the Fama-French portfolios of European 

stocks.  The model with the single European GPT factor achieves an R2 of 77.2%.  The European 

GPT factor risk premium is 8.1% with statistical significance.  When we further include the U.S. 
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GPT factor, the R2 increases to 87.4%.  The European GPT factor remains significantly priced 

and the risk premium drops slightly to 7.8%.  The U.S. GPT factor carries a small risk premium 

of 1.5%, which is statistically insignificant.  As comparison, an R2 of 91.6% is obtained by the 

Fama-French European three-factor model.  The goodness-of-fit plots for the single European 

GPT factor and the Fama-French three-factor model are presented in Fig. 5. 

Hence, unlike in Japan, European stock markets are more affected by locally originated 

technology risk than that from the U.S.  During the sample period, four of the 13 European 

countries — Germany, France, UK, and Italy — are ranked among the top 10 economies by 

GDP, and as a whole, the European region forms a larger economy than Japan.  However, the 

European countries hold 16.9% of the U.S. patents, about 80% of those granted to Japan.  In 

addition, as noted earlier, the correlation between the U.S. and European GPT factors (which is 

0.697) is lower than that between the U.S. and Japanese GPT factors (which is 0.794).  In terms 

of pricing technology risk, the European stock markets appear to be less integrated with the U.S. 

stock market. 

 

7. Concluding remarks 

In this paper we propose that, due to their pervasive impacts on the macroeconomy, GPTs 

are a plausible source of non-diversifiable, systematic risk.  We construct an empirical GPT 

factor using U.S. patent data, and find that the GPT factor is positively related with an array of 

pro-cyclical U.S. macroeconomic variables and U.S. return-based factors.  We report significant 

and robust results showing that the GPT factor is priced with a risk premium of about 15% per 

year in the cross section of U.S. stock returns. 

We then extend the analysis to global and regional portfolios and find that GPT risk is 
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also significantly priced in international stock portfolios. The U.S. GPT factor helps explain the 

cross-sectional variations in global and Japanese stock portfolios, suggesting technology risk as a 

potential economic mechanism driving financial market integration.  In addition, the finding that 

the non-U.S. GPT factor is priced in the U.S. and the U.S. GPT factor is priced in Japan provides 

evidence for technology spillovers from a financial markets perspective.  

As in prior studies (e.g., Cochrane 1996; Lettau and Ludvigson 2001; Bansal, Dittmar, 

and Lundblad 2005, among others), we test the existence of a particular type of macroeconomic 

risk, and do not have any prior on individual test assets’ factor exposure.  Our findings suggest 

that, compared to large and growth stocks, exposure to GPT risk is higher for small and value 

stocks.  This pattern of GPT betas provides a potential explanation for the size and the value 

effects, and also raises an interesting question on how this pattern arises from firms’ investment 

and production processes.  This exploration is beyond of the scope of the current paper and 

merits a separate study in the future. 

Overall, our paper adds to the growing literature on GPTs and investment-based asset 

pricing, and highlights the role of global and regional technology risks in the cross section of 

stock returns. 
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Table 1. Patent growth of six technology categories 
 
For each technology category, patent growth is the annual log growth rate of the number of granted 
patents classified into that category.  Panel A reports the means and the standard deviations.  Panel B 
reports the correlations.  The sample period is 1963-2006 for the number of patents, and thus 1964-2006 
for patent growth. 
 

A. Descriptive statistics 
 

 Category Mean (%) Std Dev (%) 
1 Chemical 1.44 12.71 
2 Computer and communications 7.71 14.26 
3 Drugs and medical 5.92 14.08 
4 Electrical and electronic 4.17 13.26 
5 Mechanical 1.59 11.85 
6 Other 0.92 11.88 

 
 

B. Correlations 
 

Category 2 3 4 5 6 
1 0.582 0.697 0.602 0.683 0.700 
2  0.589 0.899 0.807 0.768 
3   0.546 0.613 0.683 
4    0.887 0.860 
5     0.923 
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Table 2. GPT factor and U.S. macroeconomic variables and return factors 
 
The general purpose technology (GPT) factor is the difference between the average of the two GPT patent 
growth rates and the average of the four specific purpose technology (SPT) patent growth rates.  The two 
GPT patent categories are category 2, computer and communications, and category 4, electrical and 
electronic.  The four SPT patent categories are category 1, chemical, category 3, drugs and medical, 
category 5, mechanical, and category 6, others.  For each category, patent growth is the annual log growth 
rate of the number of granted patents classified into that category.  MKT, SMB, and HML are annual 
Fama-French factors of U.S. stock returns.  U.S. consumption growth, ∆C, is the annual log growth rate 
of per capita real expenditures on nondurables and services.  U.S. GDP growth, ∆GDP, is the annual log 
growth rate of per capita real gross domestic product.  U.S. industrial production growth, ∆IP, is the 
annual log growth rate of industrial production index.  Rf is the U.S. annual nominal risk-free rate.  The 
sample period is 1963-2006.  
 
Panel A reports the means and the standard deviations of the variables.  Panel B reports the correlations 
between the GTP factor and other variables.  Panel C reports the slope coefficients and the R2 values of 
the predictive regressions of cumulative growth rates of Y on the GPT factor, 
 

Yt+1 + ... + Yt+h = ah + bh GPTt + et+h , 
 
where h = 1, 2, 3 is the horizon in years, and Y is consumption growth, GDP growth, or industrial 
production growth.  The estimates are obtained with GMM.  Standard errors, reported in parentheses, are 
Newey-West (1987) adjusted with 5 lags. 
 
 

A. Descriptive statistics 
 

 Mean (%) Std Dev (%) 
GPT factor 3.47 7.92 

MKT 6.35 17.29 
SMB 3.88 14.88 
HML 6.32 14.21 

Rf 5.81 2.77 
∆C 2.27 1.16 

∆GDP 2.24 1.97 
∆IP 3.00 4.00 
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B. Correlations 

 
 Patent growth of technology categories 

 1 2 3 4 5 6 
GPT factor -0.202 0.567 -0.223 0.508 0.202 0.107 

 (0.159) (0.098) (0.120) (0.139) (0.173) (0.171) 
 
 

 MKT SMB HML ∆C ∆GDP ∆IP 
GPT factor 0.189 0.051 0.261 0.130 0.046 0.039 

 (0.174) (0.156) (0.103) (0.133) (0.183) (0.171) 
 
 
 

 
C. Predictive regressions by GPT factor 

 
Horizon  ∆C ∆GDP ∆IP 

1 Coeff 0.016 0.048 0.110 
 Std Err (0.025) (0.037) (0.075) 
 R2 0.012 0.037 0.047 
     

2 Coeff 0.040 0.117 0.192 
 Std Err (0.027) (0.050) (0.093) 
 R2 0.030 0.092 0.061 
     

3 Coeff 0.062 0.177 0.318 
 Std Err (0.037) (0.053) (0.095) 
 R2 0.042 0.146 0.124 
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Table 3. Two-stage cross-sectional regressions with the Fama-French U.S. 25 portfolios 
 
The test assets are the Fama-French U.S. 25 portfolios formed on size and book-to-market.  GPT is the 
empirical GPT factor, and MKT, SMB, and HML are the Fama-French factors for the U.S. stock market.  
The sample period is 1963-2006. 
 
Each column reports the slope coefficients, the intercept, and the R2 obtained from the second stage of the 
two-stage cross-sectional regressions.  Standard errors are reported in parentheses: those in the first row 
are obtained with the Fama-MacBeth method, while those in the second row follow Jagannathan and 
Wang (1998) and also incorporate Newey-West (1987) adjustment with 5 lags.  Pricing error is the 
difference between the realized and the model-predicted average excess returns.  The mean absolute 
pricing error, MAPE, is the average of the absolute pricing errors across all test portfolios.  F and p value 
are the F statistic (Shanken 1985) and the associated p value on the null hypothesis that the pricing errors 
are jointly zero. 
 
 

 1 2 3 4 
 0.148 0.155  0.072 

GPT (0.040)  
(0.056) 

(0.044)  
(0.061)  (0.022)  

(0.036) 
     
  0.082 -0.039 -0.024 

MKT  (0.068)  
(0.137) 

(0.053)  
(0.042) 

(0.052)  
(0.065) 

     
   0.039 0.035 

SMB   (0.023)  
(0.027) 

(0.023)  
(0.026) 

     
   0.065 0.069 

HML   (0.022)  
(0.012) 

(0.022)  
(0.015) 

     
 0.021 -0.002 0.098 0.088 

Const (0.035)  
(0.081) 

(0.057)  
(0.125) 

(0.045)  
(0.051) 

(0.045)  
(0.076) 

     
R2 0.758 0.769 0.827 0.861 

MAPE (%) 1.37 1.35 1.16 1.05 
F 0.617 0.683 1.271 0.925 

p-value 0.865 0.806 0.302 0.569 
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Table 4. Average excess returns of the Fama-French U.S. 25 portfolios and betas on the GPT factor 
 
Panel A reports the average excess returns of the Fama-French U.S 25 portfolios formed on size and 
book-to-market.  Panel B reports the betas obtained by regressing the portfolio excess returns on the GPT 
factor in time series.  The sample period is 1963-2006. 
 
 

A. Average excess returns (%) 
 

 Low 2 3 4 High 
Small 5.48 11.67 12.47 15.26 17.30 

2 5.45 9.02 12.59 13.77 14.53 
3 5.38 9.79 9.83 12.18 14.63 
4 6.79 6.79 9.94 12.11 11.99 

Big 5.71 6.27 6.28 7.85 8.49 
 
 

B. GPT factor betas 
 

 Low 2 3 4 High 
Small 0.289 0.604 0.712 0.681 0.987 

2 0.233 0.376 0.586 0.646 0.792 
3 0.223 0.486 0.505 0.713 0.731 
4 0.208 0.551 0.691 0.827 0.515 

Big 0.226 0.507 0.323 0.477 0.586 
 
 
 
 
  



40 
 

Table 5. Further analyses 
 
The test assets are the Fama-French U.S. 25 portfolios formed on size and book-to-market.  The sample 
period is 1963-2006. 
 
Each line in Panel A reports the GPT factor risk premium and the R2 obtained from the second stage of 
the two-stage cross-sectional regressions.  Standard errors are reported in parentheses: those in the first 
row are obtained with the Fama-MacBeth method, while those in the second row follow Jagannathan and 
Wang (1998) and also incorporate Newey-West (1987) adjustment with 5 lags.  The GPT factor is: in line 
1, the difference between the patent growth of category 2 and the average patent growth of categories 1, 
3, 5, and 6; in line 2, the difference between the patent growth of category 4 and the average patent 
growth of categories 1, 3, 5, and 6; in line 3, the difference between the patent growth of category 3 and 
the average patent growth of categories 1, 5, and 6. 
 
Panel B reports the slope coefficients, the intercept, and the R2 obtained from the second stage of the two-
stage cross-sectional regressions.  The U.S. GPT factor is constructed using only the patents granted to 
U.S. assignees.  The non-U.S. GPT factor is constructed using only the patents granted to non-U.S. 
assignees.  Standard errors are reported in parentheses: those in the first row are obtained with the Fama-
MacBeth method, while those in the second row follow Jagannathan and Wang (1998) and also 
incorporate Newey-West (1987) adjustment with 5 lags.  Pricing error is the difference between the 
realized and the model-predicted average excess returns.  The mean absolute pricing error, MAPE, is the 
average of the absolute pricing errors across all test portfolios.  F and p value are the F statistic (Shanken 
1985) and the associated p value on the null hypothesis that the pricing errors are jointly zero. 
 
 

A. Performance of alternative GPT factors 
 

 GPT SPT Risk R2 
 categories categories premium  

1 2 1,3,5,6 
0.133 

(0.042) 
(0.062) 

0.632 

     

2 4 1,3,5,6 
0.162 

(0.048) 
(0.066) 

0.655 

     

3 3 1,5,6 
0.007 

(0.051) 
(0.052) 

0.002 

 
 
  



41 
 

 
B. Two-stage cross-sectional regression with U.S. and non-U.S. GPT factors 

 
 

 0.156 
Non-U.S. 

GPT 
(0.043)  
(0.065) 

  
 0.151 

U.S. GPT (0.040)  
(0.058) 

  
 0.019 

Const (0.030)  
(0.084) 

  
R2 0.783 

MAPE (%) 1.30 
F 0.623 

p-value 0.857 
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Table 6. Descriptive statistics of international variables 
 
Panel A reports the time-series averages of the percentages of the patents granted to assignees in various 
regions.  Panel B reports the means and the standard deviations of the various GPT factors.  For each 
region, the regional GPT factor is constructed using only the patents granted to assignees in that region.  
The global GPT factor is constructed using the patents granted to assignees in all the 23 countries 
included in forming global stock portfolios.  Panel C reports the correlations between the various GPT 
factors. The sample period is 1991-2006 for the number of patents, and thus 1992-2006 for patent growth. 
 
 

A. Percentage of patents assigned to various regions (%) 
 

U.S. Japan Europe Canada Asia Pacific 
(ex Japan) Other 

53.5 21.2 16.9 2.1 0.8 5.5 
 
 

B. Descriptive statistics 
 

GPT factor Mean (%) Std Dev (%) 
Global 6.29 5.77 
U.S. 6.40 5.94 

Non-U.S. 6.30 6.47 
Japan 6.23 5.79 

Europe 7.32 8.65 
 

 
C. Correlations between GPT factors 

 
 U.S. Non-U.S. Japan Europe 

Global 0.946 0.934 0.923 0.843 
U.S.  0.770 0.794 0.697 

Non-U.S.   0.953 0.895 
Japan    0.777 
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Table 7. Two-stage cross-sectional regressions with the Fama-French global portfolios 
 
The test assets are 9 of the Fama-French global 25 portfolios formed on size and book-to-market, selected 
as intersections of size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5.  For each region, the 
regional GPT factor is constructed using only the patents granted to assignees in that region.  The global 
GPT factor is constructed using the patents granted to assignees in all the 23 countries included in 
forming global stock portfolios.  Global MKT, SMB, and HML are the Fama-French factors for the global 
stock market.  The sample period is 1991-2006. 
 
Each column reports the slope coefficients, the intercept, and the R2 obtained from the second stage of the 
two-stage cross-sectional regressions.  Standard errors are reported in parentheses: those in the first row 
are obtained with the Fama-MacBeth method, while those in the second row follow Jagannathan and 
Wang (1998) and also incorporate Newey-West (1987) adjustment with 2 lags.  Pricing error is the 
difference between the realized and the model-predicted average excess returns.  The mean absolute 
pricing error, MAPE, is the average of the absolute pricing errors across all test portfolios.  F and p value 
are the F statistic (Shanken 1985) and the associated p value on the null hypothesis that the pricing errors 
are jointly zero. 
 
  



44 
 

 
 

 1 2 3 4 5 
 0.066 0.061    

Global GPT (0.033)  
(0.029) 

(0.033)  
(0.023)    

      
   0.068 0.065  

Non-U.S. GPT   (0.034)  
(0.037) 

(0.034)  
(0.029)  

      
   0.052 0.053  

U.S. GPT   (0.032)  
(0.029) 

(0.030)  
(0.040)  

      
  -0.005  -0.010 -0.040 

Global MKT  (0.065)  
(0.024) 

 (0.059)  
(0.033) 

(0.052)  
(0.057) 

      
     0.031 

Global SMB     (0.025)  
(0.029) 

      
     0.065 

Global HML     (0.039)  
(0.039) 

      
 0.010 0.076 0.045 0.079 0.109 

Const (0.053)  
(0.072) 

(0.049)  
(0.077) 

(0.036)  
(0.049) 

(0.040)  
(0.075) 

(0.030)  
(0.032) 

      
R2 0.497 0.696 0.527 0.698 0.641 

MAPE (%) 2.48 2.09 2.46 2.06 2.25 
F 3.169 3.799 3.986 5.172 11.075 

p-value 0.076 0.052 0.047 0.026 0.003 
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Table 8. Two-stage cross-sectional regressions with the Fama-French regional portfolios 
 
For each region, the test assets are 9 of the Fama-French regional 25 portfolios formed on size and book-
to-market, selected as intersections of size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5.  
For each region, the regional GPT factor is constructed using only the patents granted to assignees in that 
region.  Regional MKT, SMB, and HML are the Fama-French factors for regional stock markets.  The 
sample period is 1991-2006. 
 
Each column reports the slope coefficients, the intercept, and the R2 obtained from the second stage of the 
two-stage cross-sectional regressions.  Standard errors are reported in parentheses: those in the first row 
are obtained with the Fama-MacBeth method, while those in the second row follow Jagannathan and 
Wang (1998) and also incorporate Newey-West (1987) adjustment with 2 lags.  Pricing error is the 
difference between the realized and the model-predicted average excess returns.  The mean absolute 
pricing error, MAPE, is the average of the absolute pricing errors across all test portfolios.  F and p value 
are the F statistic (Shanken 1985) and the associated p value on the null hypothesis that the pricing errors 
are jointly zero. 
 
 

Region  Japan   Europe  
 0.048 0.041  0.081 0.078  

Regional GPT  (0.038)  
(0.022) 

(0.045)  
(0.029)  (0.040)  

(0.041) 
(0.039)  
(0.032)  

       
  0.042   0.015  

U.S. GPT  (0.031)  
(0.023)   (0.026)  

(0.020)  

       
   0.160   0.139 

Regional MKT   (0.098)  
(0.064)   (0.093)  

(0.096) 
       
   0.011   0.002 

Regional SMB   (0.031)  
(0.035)   (0.026)  

(0.025) 
       
   0.031   0.083 

Regional HML   (0.054)  
(0.043)   (0.036)  

(0.037) 
       
 -0.061 -0.054 -0.138 0.054 0.119 -0.063 

Const (0.063)  
(0.060) 

(0.075)  
(0.051) 

(0.060)  
(0.075) 

(0.055)  
(0.044) 

(0.053)  
(0.076) 

(0.080)  
(0.137) 

       
R2 0.568 0.609 0.930 0.772 0.874 0.916 

MAPE (%) 1.74 1.69 0.72 1.83 1.22 1.03 
F 1.265 1.579 0.255 2.187 2.366 2.155 

p-value 0.382 0.281 0.924 0.162 0.142 0.172 
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Fig. 1. GPT factor 
 
The general purpose technology (GPT) factor is the difference between the average of the two GPT patent 
growth rates and the average of the four specific purpose technology (SPT) patent growth rates.  The two 
GPT patent categories are category 2, computer and communications, and category 4, electrical and 
electronic.  The four SPT patent categories are category 1, chemical, category 3, drugs and medical, 
category 5, mechanical, and category 6, others.  For each category, patent growth is the annual log growth 
rate of the number of granted patents classified into that category.  The sample period is 1963-2006 for 
the number of patents, and thus 1964-2006 for patent growth. 
 
 
 

 
 
 
 
  

Mean = 3.47% 
Std Dev = 7.92% 
AC(1) = 0.06 
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Fig. 2. Realized and model-predicted average excess returns for the Fama-French U.S. 25 portfolios 
 
In Panel A the model includes only the GPT factor.  In Panel B the model includes only the Fama-French 
three factors for the U.S. stock market.  Each two-digit number represents a portfolio. The first digit is the 
size quintile (1 being the smallest and 5 being the largest), and the second digit is the book-to-market 
quintile (1 being the lowest and 5 being the highest).  The sample period is 1963-2006. 
 
 
                                            A. GPT                                                B. Fama-French three factors 
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Fig. 3. Realized and model-predicted average excess returns for the Fama-French global portfolios 
 
The test assets are 9 of the Fama-French global 25 portfolios formed on size and book-to-market, selected 
as intersections of size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5.  In Panel A the 
model includes only the global GPT factor.  In Panel B the model includes only the Fama-French global 
three factors.  Each two-digit number represents a portfolio. The first digit is the size quintile (1 being the 
smallest and 5 being the largest), and the second digit is the book-to-market quintile (1 being the lowest 
and 5 being the highest).  The sample period is 1991-2006. 
 
 
 
 
                                    A. Global GPT                                       B. Fama-French global three factors 
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Fig. 4. Realized and model-predicted average excess returns for the Fama-French Japanese 
portfolios 
 
The test assets are 9 of the Fama-French Japanese 25 portfolios formed on size and book-to-market, 
selected as intersections of size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5.  In Panel A 
the model includes only the Japanese GPT factor.  In Panel B the model includes only the Fama-French 
Japanese three factors.  Each two-digit number represents a portfolio. The first digit is the size quintile (1 
being the smallest and 5 being the largest), and the second digit is the book-to-market quintile (1 being 
the lowest and 5 being the highest).  The sample period is 1991-2006. 
 
 
 
 
                                  A. Japanese GPT                                    B. Fama-French Japanese three factors 
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Fig. 5. Realized and model-predicted average excess returns for the Fama-French European 
portfolios 
 
The test assets are 9 of the Fama-French European 25 portfolios formed on size and book-to-market, 
selected as intersections of size quintiles 1, 2, and 5 and book-to-market quintiles 1, 3, and 5.  In Panel A 
the model includes only the European GPT factor.  In Panel B the model includes only the Fama-French 
European three factors.  Each two-digit number represents a portfolio. The first digit is the size quintile (1 
being the smallest and 5 being the largest), and the second digit is the book-to-market quintile (1 being 
the lowest and 5 being the highest).  The sample period is 1991-2006.  
 
 
                                  A. European GPT                                   B. Fama-French European three factors 

 

       
 
 
 

 


