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ABSTRACT

This paper proposes a dynamic theory of capital budgeting and managerial compensa-

tion when the manager has private information about the arrival time and quality of

investment projects and the manager can obtain private benefits from inefficient alloca-

tion of capital. The firm may forgo projects with positive net present value, and distort

pay-performance sensitivity and capital allocation downwards. The paper shows that

agency costs and firm policies vary monotonically with financial slack. The distortions

are severe when manager performs poorly in the past. As the firm accumulates more

financial slack, fewer projects will be forgone, and the optimal contract will provide

steeper incentives and allocate capital more efficiently to the projects selected. All

the distortions vanish when the firm has enough financial slack. Finally, the optimal

project selection, capital allocation, and compensation can be implemented by a simple

budgeting account mechanism.
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Corporate investment is financed overwhelmingly out of internal funds1. The most pervasive

and important frictions affecting capital allocation within firms include information asymme-

tries and agency problems (Stein [2003]). In large firms, investment is usually delegated to

division managers (DM) who have private information about projects2. Headquarters (HQ)

or CEOs potentially face adverse selection problems in allocating capital. In principle, HQs

could gather information, but when firms are large or complex this becomes quite costly 3.

Moreover, in large firms it is very costly to monitor the way DMs deploy capital. They may

be able to deploy capital inefficiently and gain private benefit,engendering moral hazard in

corporate investment. To ensure long-term health, firms must provide proper incentives for

truthful information about investment projects and deter inefficient utilization of resources.

Another important aspect of capital budgeting and the associated investment process

is their dynamic nature. While in practice HQ and DM always interact repeatedly over a

sequence of investment opportunities, the literature has mainly focused on static environ-

ments. For instance, Harris and Raviv [1996] study the capital allocation with manager

having “empire building” preference; Bernardo et al. [2004] analyze compensation and capi-

tal budgeting mechanisms when managers have private information on project quality. This

paper instead explores the optimal capital allocation and compensation in a dynamic setting.

In this dynamic model agency costs are endogenous and the past performance (or financial

slack) of a division determines the optimal mechanism. In particular, the paper analyzes

how (i) project choice, (ii) capital allocation rules, and (iii) performance-based pay vary with

investment quality and the division’s past performance.

To study these questions, this paper posits a simple environment with one risk-neutral

principal (HQ) and one risk-neutral agent (DM). The HQ has unlimited access to capital,

and investment opportunities arise stochastically over time. When the firm has a project, it

1Internal funds accounted for 70%-110% of total investment by U.S. nonfinancial corporations between
1994 and 2008 Brealey et al. [2011].

2Colom and Delmastro [2004] shows that in a sample of 438 Italian metalworking firms capital spending
decisions are mostly delegated to divisional managers, especially when the task is urgent. Graham et al.
[2014] survey more than 1000 CEOs and find that they delegate investment decisions more than any other
major corporate policies.

3For example, in the model of Aghion and Tirole [1997], more decision-making powers are delegated down
the corporate ladder when the principal is overloaded (such as when he manages a large firm).
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may invest in a value-enhancing technology that boosts the return. However, the HQ has no

information on whether or not the firm has a project to invest, or on project quality either.

The firm has to rely on the DM’s information to discover projects and their quality. When a

project is reported, the HQ allocates capital according to the report. But the deployment of

capital is under the DM’s control, and may be diverted for the latter’s personal consumption.

With asymmetric information and moral hazard, the capital budgeting process faces

the trade-off between raising investment efficiency and reducing compensation (information

rent). Since project quality is private information, the DM can always misreport it downward

and then appropriate part of the capital. Hence, greater investment in any project requires

increasing the compensation of the DM who runs all the higher quality projects. Compared

with the frictionless benchmark, the optimal contract provides flatter incentives and induces

lower investment level. This intuition mimics the classic agency problem in Laffont and

Tirole [1986]4.

When the budgeting process is repeated, the agency conflicts will be endogenous and will

vary over time. The intuition is as follows. In the dynamic setting, the HQ has flexibility

to pay over time. The contract compensates the DM for information rents by promised

future payments until his continuation value is sufficiently high. Continuation value is the

present value of promised future payments to the DM which summarizes the division’s past

performance. Though the DM has to be compensated for information rents at the time

when investment takes place, the HQ can form expectations of future information rents and

extract them from the DM’s continuation value. Only the unexpected part is compensated.

In this sense, compensation over time relaxes the constraint on investment and incentive

provision imposed by information rents.

However, adjusting compensation over time increases the risk of the division being liqui-

dated. The DM is “punished” during the no-investment period by deducting his continuation

value. And since the DM can only be “punished” to the extent that limited liability is bind-

ing, the agency conflicts will not disappear. Significantly, limited liability implies that the

continuation value determines the severity of the agency issues, and hence the optimal policy.

4The agent in Laffont and Tirole [1986] exerts unobservable but costly effort. The incentive to shirk in
their paper is analogous to the incentive to divert capital here.
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After periods of good performance, the continuation value will be accumulated to a high level

and the division is far from liquidation. It is optimal to design contracts with high-powered

incentives, since the liquidation risk is low and a steeper contract induces more efficient in-

vestment both in the extensive and the intensive margin. The extreme case is at the payout

boundary, where investment distortions disappear for all project types. After periods of bad

performance (e.g. no investment return), the continuation value will be significantly lowered

and the division is close to liquidation. It is optimal to design a contract with low-powered

incentives, which determines that investment will be severely distorted. The extreme case is

that low quality projects will be completely excluded from capital allocation.

The optimal contract can be implemented by a capital budgeting account mechanism with

observable balance. Moral hazard means that the DM can either use the funds to invest or

divert funds for personal consumption. The mechanism provides incentives by replenishing

and depleting this account at designed rates so that its balance mimics the continuation

value. Then the DM won’t divert funds and will reveal truthful project information. In this

sense, the continuation value that shapes the optimal contract can be measured by either

financial slack or past performance.

The key feature of this model is that the agency cost varies with project types and

financial slack. Consequently, the optimal capital allocation and pay-performance sensitivity

exhibit monotone properties over these two dimensions under the technology and distribution

assumptions. The paper has the following empirical implications for capital budgeting and

incentive provisions. First, the DM is given a steeper incentive scheme and allocated more

capital either when she reports a higher quality project or when the division has more

financial slack. Second, with poor performance in the past and little financial slack, the

division may forgo low-quality projects even when they have positive NPV. Third, when the

DM receives cash compensation, capital allocations resume efficient levels for all projects.

Using 4080 DM compensation contracts from ExecuComp, Alok and Gopalan [2013] finds

that the DM pay is less sensitive to the performance of his division during periods of industry

distress. This empirical finding is consistent with the implications of our model.

The paper proceeds as follows. Section 2 reviews the literature. Section 3 sets up the
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model. Section 4 summarizes the optimal contract in a frictionless environment. Section

5 provides necessary conditions for incentive compatibility (IC). Section 6 first derives the

optimal contract heuristically under the obtained necessary conditions and then verifies that

the proposed contract does maximize the HQ’s expected payoff and satisfies IC. Section 7

characterizes the evolution of the DM’s continuation value and the dynamic properties of

optimal policies. Section 8 implements the contract using budgeting account mechanism.

Section 9 concludes the paper.

1 The Literature

The static trade-off between private information and moral hazard is studied in Laffont

and Tirole [1986]. They consider ways of providing incentives to regulate a monopoly con-

tractor with unobserved cost efficiency and unobserved effort. They show that inducing

greater effort in order to lower production cost (solving moral hazard problem) will make

it more costly to induce information revelation (aggravating adverse selection). Effort in

Laffont and Tirole [1986] is analogous to physical investment in this model. Adopting a

dynamic framework, we show that this basic trade-off is endogenously determined and dy-

namically evolving, since the severity of the agency conflict is affected by the limited liability

constraint.

Laffont and Tirole [1988] apply a two period auction model to analyze the regulation of

an incumbent monopoly that could be replaced by another in the second period. Investment

efficiencies are private information of the firm and are independent and identically distributed

draws. Laffont and Tirole [1988] focus on how to design the selection rule and the incumbent’s

intertemporal incentive scheme in order to lower regulation costs. Depending on whether

investments are transferable between the two firms, the optimal selection rule could favor

either the incumbent or the entrant, and the optimal slope of the incumbent’s incentive

scheme could either be front-loaded or time invariant. Although this paper adopts similar

information frictions and is also an i.i.d. model, we focus on how the agent’s accumulative

past performance changes optimal project selection, capital allocation and incentive slope.
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More importantly, this paper shows that delaying payments, which is not considered in

Laffont and Tirole [1988], is an important mechanism for easing information frictions.

This paper relates to the continuous-time dynamic contracting literature. While previous

works mostly focus on moral hazard, this paper broadens the framework by considering both

hidden action and hidden information. The key friction in the existing literature,, moral

hazard, is exogenous and constant. For instance, the agent’s ability to steal cash flows in

DeMarzo and Sannikov [2006], or the private benefit of shirking in Biais et al. [2010] is

an exogenous parameter. And these models mainly consider contracts implementing the

first best action 5. By contrast, in the present model the agency problem is endogenously

determined by the level of the agent’s continuation value. Therefore, optimal incentive and

investment are time-varying, and investment is distorted below the first best level. The

hidden information adds another dimension of dynamics over project quality, and generates

interesting interactions with the dynamics of investment over time. Using the martingale

representation approach over time dimension and the mechanism design approach (as in

Myerson [1981]) over quality dimension, we have a rich setting to explore the dynamic

implications.

This paper also relates to the literature on dynamic mechanism design. Malenko [2013]

studies a dynamic capital budgeting model with costly state verification. The DM in his

model has private investment information and empire-building preference. The HQ can ver-

ify the DM’s reports at a fixed cost. High-quality projects are monitored and financed by

the HQ, while the low quality projects are not monitored and financed out of the division’s

own budgeting account. The present model differs from Malenko [2013] chiefly in the pos-

sibility that the DM can also divert capital. Instead of monitoring, the HQ will design a

compensation scheme to resolve the agency problems. This paper, unlike Malenko [2013],

can characterize how capital allocation policy and the slope of compensation vary over time.

Eso and Szentes [2013] analyze a discrete-time dynamic auction where agent or buyer

type is private information and types are correlated over time. They show that any fea-

5Exceptions include Zhu [2012] where the optimal contract can implement shirking either as a reward or
punishment mechanism, and the moral hazard models with risk averse agent, for example, Sannikov [2008]
or Gryglewicz and Hartman-Glaser [2013].
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sible allocation gives the seller the same expected revenue as where the seller can observe

orthogonalized agent types beyond the first period. So from the perspective of revenue, what

matters is only the initial hidden information and its persistence; any subsequent orthogonal

information is not compensated with information rents. Garrett and Pavan [2012] analyze

a dynamic contracting model where a firm’s cash flow is determined by its manager’s hid-

den type (productivity), hidden effort, and an i.i.d. noise. The manager’s various levels

of productivity are correlated over time. In this setting, the dynamics of optimal policy

are driven entirely by the persistence of the manager’s initial private information, which is

characterized by an impulse response function.

Although in this paper investment information is not persistent, the model clearly shows

that all the orthogonalized future information must be remunerated by information rents.

This key difference derives from the assumption of limited liability. In the mechanism posited

by Eso and Szentes [2013], the buyer must make a large payment equal to all future expected

payments in the case in which all future orthogonalized information can be observed. The

implicit assumption is that the buyer has deep enough pockets to make this payment upfront.

In the optimal contract of Garrett and Pavan [2012], the conditional information rents in

all future periods are subtracted from the current-period compensation. If the manager is

not patient enough or his outside option is not large enough, he could actually get negative

cash payments. This paper makes the natural assumption that the DM is subject to limited

liability. That is, negative cash payments are never possible. On this hypothesis, financial

slack is crucial and investment and compensation policies are monotonically varying with

the division’s financial slack.

2 The Model

The model studies a large firm that consists of a HQ and a DM. The firms’ investment

decisions are delegated to the DM. Time is continuous and the horizon is infinite. Both the

HQ and the DM are risk neutral. The HQ discounts the future cash flows at rate r. The

DM is more impatient and he discounts future consumptions at rate γ > r.
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2.1 Investment Opportunity

A distinct feature in this model is that the division’s investment opportunities are sparse,

arriving stochastically over time 6. In particular, the projects arrive according to a Poisson

process {πt : t ≥ 0} with intensity λ, where πt is the total number of projects arrived before

time t. The division only obtains an opportunity to invest when a project arrives. Another

feature is that projects are heterogenous in quality which determines investment returns. We

use the random variable Jn (n ∈ N) to characterize the quality of the nth arrived project.

The qualities {Jn, n ∈ N} are i.i.d and uniformly distributed over the interval Θ = [θ, θ̄] with

θ > 0. Moreover, project arrival is independent of project quality. The accumulated project

quality Xt =
∑πt

n=1 Jn is therefore a Compound Poisson process with dXt ∈ {0} × Θ. In

short, the evolution of investment opportunities is summarized by dXt: if no project arrives

at time t, then dXt = 0; and if a project with quality θ arrives at time t, then dXt = θ.

When a project of quality θ arrives at time t, the firm will have the opportunity to

invest kt ≥ 0. This investment will increase the project return through a value enhancing

technology R : R+ → R+. The total return obtained from this project is θ +R(kt). Capital

kt depreciates completely at time t. After time t, the firm has to wait until next project

arrives to make another investment. In short, the investment return during the infinitesimal

time interval (t, t+dt], denoted by dYt, is determined by project arrival, project quality, and

investment level in the relation of

dYt = (dXt +R(kt))dπt (1)

The value enhancing technology R exhibits decreasing return to scale, that is, R′ > 0,

R′′ < 0. Moreover, to guarantee an interior optimal investment in the frictionless case, we

also assume R(0) = 0, limk↓0R
′(k) = ∞, and limk↑∞R

′(k) = 0. It is easy to see that the

first best investment k∗ satisfies R′(k∗) = 1.

6In discrete time models, for example Clementi and Hopenhayn [2006], firms are assumed to have invest-
ment opportunity every period.
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2.2 Information Frictions and Mechanism Design

The agency issues arise due to two reasons. First, the DM has private information about

the arrival time of projects and their qualities. The information about project arrival is

crucial because the firm can discover an investment opportunity only if the DM reveals any

arrived project. If the DM does not reveal an arrived project to the HQ, then firm won’t

get any return from such project and has to wait for future projects. The information about

project quality is also important because the DM can potentially obtain private benefit from

misreporting project quality. Second, the HQ can not observe the investment level in each

project. Once the capital is allocated to the DM , he can either invest it in projects or

divert it for personal consumption. These agency issues are modeled in a principal-agent

contracting environment.

Because the HQ can use more accounting or real data to review the performance of in-

vestments, we adopt the assumption that all investment returns are observable 7. By the

revelation principle, it suffices to restrict attention to the truth-telling direct mechanisms.

Because investment information can be backed out from the reported quality and the ob-

served return, it is sufficient to consider only the mechanisms in which the DM reports

whether a project arrives or not and the project quality if there is one. And the optimal

mechanism is designed to induce truthful report.

A contract specifies capital allocation, compensation to the DM, and termination deci-

sions as functions of the history of past reports and investment returns. We let a nonnegative

and increasing process K = {Kt}t≥0 describe the accumulative capital allocation 8. Because

of limited liability, the process I = {It}t≥0, which describes the accumulative payments to

the DM, also has to be nonnegative and increasing. In formulating and deriving the optimal

contract, we assume that the DM cannot save. He will consume any cash immediately when-

ever it is paid. We show later that given the optimal contract, the DM optimally chooses

not to save even if he is allowed to do so as long as the interest rate of saving is smaller

than γ. The time at which liquidation of the division occurs is denoted as τ . At any time t

7Return observability rules out the case where the DM lies about project arrival and invests by himself.
8To ease notation, we denote the increment of the process {Kt}t≥0 by kt, i.e., kt := dKt.
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Figure 1: Timing

prior to liquidation, the sequence of events during the infinitesimal period [t, t + dt] can be

described as the following.

• The DM observes the project information dXt, and makes a report dX̂t ∈ {0} ×Θ.

• If no project is reported, no investment action will be taken, and no return will be

generated.

• If any project is reported, then

– the HQ decides the capital allocation dKt to the division;

– the DM makes an investment dK̂t ∈ [0, dKt]
9;

– the investment return [dXt +R(dK̂t)]dNt is observed.

• The DM receives a nonnegative payment dIt.

• The division is either liquidated or continued.

Formally, let us denote the probability space as (Ω,F , P ), and denote the filtration

generated by {Xt}t≥0 as {Ft}t≥0. Then the process of accumulative payments I is a F -

adapted process and τ is an F -stopping time. The process K is F -predictable. In particular,

the capital allocation policy is a function Kt : Ω × R+ × Θ → R+ which is F -predictable

with its first two arguments. Because the capital allocation affects the DM’s deviation

9No saving directly implies that dK̂t ≤ dKt.
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payoff, it has to be specified before the DM reports project information. So the process K

and its increments dK is designed as F -predictable. The DM’s reporting strategy X̂ and

investment strategy K̂ are F -adapted, since the DM makes these decisions after obtaining

project information.

Given a history of the DM’s report, the capital allocation, and the realized return, the

HQ can detect if the DM misreported project qualities and if the DM reported a project but

none actually arrived. If the DM has never been detected a lie at termination, he receives

an outside value zero. However, if the DM has ever been detected a lie, his outside option at

termination will be dropped by c > k∗. This punishment reflects the fact that any detected

lie will be a public record for the DM, making it harder for him to find a new job if the

current contract is terminated. Let C be a random variable that equals c if a lie is ever

detected and 0 otherwise. Once the contract is terminated, the HQ receives a liquidation

value L ≥ 0.

Given a contract {K, I, τ}, a reporting strategy X̂, and an investment strategy K̂, the

DM’s expected payoff at time 0 is:

W0 = E

[∫ τ

0

e−γt
(
dIt + dKt − dK̂t

)
− e−rτC

]
The HQ’s expected payoff at time 0 is:

P0 = E

[∫ τ

0

e−rt(dYt − dKt − dIt) + e−rτL

]
The expectation E is taken with respect to the measure P . Moreover, we assume that

terminating the contract is inefficient. This means rL < λ[(θ + θ̄)/2 +R(k∗)− k∗].

3 Frictionless Benchmark

Before investigating the optimal policies in the frictional environment, let us consider the

first best case with no information friction. That is the HQ knows the arrival of projects

and their qualities. Also, the HQ is able to implement any investment level. The frictionless

contract has a simple form and is described in the following result.
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PROPOSITION 1. In the frictionless contract {K, I, τ} that delivers W0 ≥ 0 to the DM:

(a) investment is constant: dKt = k∗ when there is a project, where R′(k∗) = 1.

(b) all compensation is paid out at time zero: dI0 = W0, dIt = 0 for t > 0.

(c) the division of the firm will run without liquidation: τ =∞.

4 Continuation Value and Incentive Compatibility

The technology and information structures imply that incentives in this model have the

following features. First, no misreport of project information will be detected in equilibrium.

To provide maximum punishment and relaxes the incentive constraints, the contract will be

immediately terminated with zero payment issued to the DM if the HQ ever detects any

misreport. And if his misreport is ever detected, the DM also has to bear the cost c, drop in

his outside option. Since the largest private benefit from any possible misreporting cannot

exceed k∗ which is smaller than c, it is never optimal for the DM to choose a reporting

strategy in which any deviation can be detected.

Second, the DM tends to misreport project quality downward. Because the HQ does not

observe either the project quality or the investment level, the DM can potentially report

a lower quality and divert part (or all) of the allocated capital without being detected.

Consider the case in which the DM reports a project of quality θ to be θ′. According to the

contract, capital kt(θ
′) is allocated to the DM. The misreport won’t be detected if the DM

chooses an investment dK̂t that satisfies θ+R(dK̂t) = θ′+R(kt(θ
′)). Denote the investment

level in this deviation as

kt(θ
′; θ) := dK̂t = R−1[θ′ +R(kt(θ

′)− θ] (2)

For a downward misreport (θ′ < θ), we have kt(θ
′; θ) < kt(θ

′). Hence the DM obtains

a private benefit of kt(θ
′) − kt(θ

′; θ) from this deviation. Third, the DM always obtains

nonnegative information rent from any report. This is because the DM can always report

no project and not be detected.
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The challenge in the dynamic setting is the complexity of the contract space. The contract

can depend on the entire path of reported project information and observed returns. As noted

in the literature of dynamic contracting, the DM’s continuation value is a sufficient statistic.

It can help analyze the agency issues in a tractable way. In this section, we first use the

martingale techniques to characterize the continuation value. Then we identify the necessary

conditions for any incentive compatible mechanism.

When making a report at time t < τ , the DM considers how his decision will affect his

utility promised by the contract. Define this continuation value Wt(X̂, Y ) after a history of

reports and observed returns {(X̂s, Ys), 0 ≤ s ≤ t} to be the total expected payoff that the

DM receives if he tells the truth after time t:

Wt(X̂, Y ) = E

[∫ τ

t

e−γ(s−t)dIs

∣∣∣∣Ft] (3)

Recall from (2) that if the DM truthfully reports project information, he will invest all

the allocated capital (dK̂t = dKt) and get zero private benefit. So the DM’s continuation

value is only determined by payments from the contract. To characterize how the DM’s

continuation value evolves over time, it is useful to consider his lifetime expected utility,

evaluated conditional on the information available at time t ≤ τ , if the reports reveal true

project information, i.e., X̂ = X:

Vt(X, Y ) = E

[∫ τ

0

e−γsdIs

∣∣∣∣Ft]
=

∫ t

0

e−γsdIs + e−γtWt(X, Y ) (4)

Because Vt is the expectation of a given random variable conditional on Ft, the process

V = {Vt(X, Y )}t≥0 is an F -martingale. Using the martingale property, we now seek an

alternative way to represent Vt(X, Y ). Define the number of projects that arrived before

time t and have quality located in the interval U = [a, b] as

N(t, U) =
∑

0≤s≤t

1U(dXs) (5)

where a, b are arbitrary values satisfying θ ≤ a ≤ b ≤ θ̄. The differential term N(dt, dθ) then
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indicates the number of projects that arrived in the time interval [t, t+ dt] and have quality

within [θ, θ+ dθ]. Correspondingly, N̂(dt, dθ) denotes the reported number. The martingale

representation theorem for marked point process then implies the following result.

LEMMA 1. There exists a function β : Ω×R+ × [θ, θ̄]→ R+, which is F-predictable with

its first two arguments, such that at any moment t ≤ τ

Vt = V0 +

∫ t

0

∫ θ̄

θ

e−γsβ(ω, s, θ)

[
N(ds, dθ)− λ

∆
dsdθ

]
(6)

Note that Wt(X̂, Y ) is also the DM’s continuation value if X̂s, 0 ≤ s ≤ t, were the true

information and the DM reports truthfully. Therefore, without loss of generality we can

derive the evolution of continuation value for the case in which the DM reports truthfully,

i.e., X̂ = X, and hence, N(dt, dθ) = N̂(dt, dθ). To ease notation, we use βt(θ) to denote

the predictable function β(ω, t, θ), and use β′t(θ) to denote the partial derivative of β(ω, t, θ)

with respect to θ if it exists. Equations (4) and (6) together imply that the continuation

value evolves as

dWt = γWtdt− dIt +

∫ θ̄

θ

βt(θ)

[
N̂(dt, dθ)− λ

∆
dtdθ

]
(7)

According to (7), βt(θ) is the sensitivity of the DM’s continuation value to project quality.

If no project arrives during the time interval [t, t+ dt], this continuation value will have zero

jump. If a project of quality θ is reported, this continuation value will jump by the magnitude

of βt(θ). Because project qualities reflect the performance of the division, we interpret βt as

the DM’s pay-performance sensitivity. A key feature of this model is that the optimal pay-

performance sensitivity is not constant but contingent on project type and the performance

history of the division. The following Lemma characterizes the properties of pay-performance

sensitivity over the dimension of project qualities. It also characterizes the trade-off between

investments and information rents.

LEMMA 2. In any incentive compatible contract, the pay for performance sensitivity βt

and the capital allocation kt satisfy (t ≤ τ):

(a) βt(θ) is strictly increasing at θ̂ < θ̄, if kt(θ̂) > 0.
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(b) β′t(θ̂) ≥ 1/R′(kt(θ̂)) at θ̂ < θ̄, if kt(θ̂) > 0 and βt(θ) is differentiable at θ̂.

(c) βt(θ) ≥ 0.

Part (a) of Lemma 2 states that the pay-performance sensitivity is monotone over project

qualities. This is because a higher quality project can generate the same return as a lower

quality project with less investment. The DM who is reporting a project with higher quality

must obtain a larger compensation. Part (b) states that the marginal increase in pay-

performance sensitivity has a lower bound which is determined by the capital allocation.

This condition corresponds to the envelope condition that usually arises in mechanism design

problems. By reporting a marginally lower type the DM can divert the amount 1/R′(kt(θ))

from the allocated capital. So any incentive compatible contract must compensate the DM

at least this amount in order to induce truth-telling. Part (c) is implied by the fact that the

DM can always get zero compensation by reporting no project.

Recall that if the DM misreports project quality θ to be θ′, he has to invest kt(θ
′; θ)

as in (2). Because the DM has no savings, the investment kt(θ
′; θ) has to be smaller than

the allocated capital kt(θ
′). Equation (2) then implies that θ′ ≤ θ, meaning only downward

reporting is feasible. Moreover, since investment kt(θ
′; θ) is nonnegative, we must have

θ′ ≥ θ − R(kt(θ
′)) from (2). Accordingly, the feasible set of misreports is Γ(θ, kt) =: {θ′ ∈

Θ : θ−R(kt(θ
′)) ≤ θ′ ≤ θ}. It is easy to see from this feasible set that the DM can possibly

report a lower quality only if the lower quality project receives positive capital allocation.

Therefore, the monotonicity of βt(θ) and the envelope condition hold only when capital

allocation is positive.

5 Optimal Contract

In this section, we derive the firm policy that maximizes the HQ’s value when the DM

has private information about investment opportunities. The HQ’s value is a function of the

the DM’s continuation value which is denoted by P (W ). We use the dynamic programming

approach to determine the most profitable way to deliver the promised value to the DM.
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5.1 Optimal Payment

Since the HQ can always provide the DM with a lump-sum cash, the marginal cost of

compensating the DM can never exceed the marginal cost of immediate cash payment. So

the value function must satisfy P ′(W ) ≥ −1 at any W . The cash payment boundary W̄ is

the smallest value such that P (W̄ ) = −1. In deriving the optimal contract, we assume that

P (.) is concave and strictly concave when W < W̄ , which we will show in the verification

section.

The twin assumptions that (i) DM is risk neutral, and (ii) terminating the division is

inefficient jointly determine that cash payments are postponed until the continuation value

reaches the threshold W̄ . The DM is compensated purely through promised future values

before W̄ .

LEMMA 3. When Wt < W̄ , no cash payment is issued, i.e., dIt = 0. When Wt ≥ W̄ , cash

payment dIt = Wt − W̄ is immediately issued, and P (Wt) = P (W̄ )− (Wt − W̄ ).

Different from the Brownian models, e.g. DeMarzo and Sannikov [2006], the payment

issuance in this model is determined by the jumps in DM’s continuation value. Equation

(7) has shown that the DM’s continuation value immediately jumps to a new level when a

project arrives. According to Lemma 3, cash payment will be issued to the DM if this new

level of continuation value achieves the threshold W̄ .

5.2 A Heuristic Derivation

In the interior region Wt ∈ (0, W̄ ), the HQ holds all the investment returns. The HQ’s

flow payoff consists of two parts: the net expected return of investment and the expected

change in value function induced by the variation in Wt. The net expected return of invest-

ment at time t is:

E[(dYt − kt)dπt] =
λdt

∆

∫ θ̄

θ

[θ +R(kt(θ))− kt(θ)]dθ

The left limit Wt−(X̂, Y ) = lims↑tWs(X̂, Y ) is the DM’s continuation utility evaluated before

project information is reported. So the process {Wt−(X̂, Y )}t≥0 is F -predictable. To ease

16



notation, Wt is generally used to denote Wt− throughout the paper. The HQ’s expected

change in contract value is given by:

E[dP (Wt)] =

[
γWtdt−

λdt

∆

∫ θ̄

θ

βt(θ)dθ

]
P ′(Wt)

+
λdt

∆

∫ θ̄

θ

[P (Wt + βt(θ))− P (Wt)]dθ

Because at the optimum the HQ should earn an instantaneous return of rP (Wt), the Hamilton-

Jacobi-Bellman(HJB) equation has the form:

rP (Wt) = max
kt≥0,βt≥0

λ

∆

∫ θ̄

θ

[θ +R(kt(θ))− kt(θ)]dθ (HJB)

+

(
γWt −

λ

∆

∫ θ̄

θ

βt(θ)dθ

)
P ′(Wt) +

λ

∆

∫ θ̄

θ

[P (Wt + βt(θ))− P (Wt)] dθ

The optimization in (HJB) has to satisfy the incentive compatibility constraint

βt(θ) ≥ βt(θ̂) + kt(θ̂)− kt(θ̂; θ), ∀θ̂ ∈ Γ(θ, kt) (IC)

The conditions that pin down the value function P and the payout boundary W̄ are

P (0) = L, P ′(W̄ ) = −1 (BC)

The incentive compatible constraint and the constraint of βt ≥ 0 guarantee that the DM

truthfully reveals project information. To solve this problem, we use the first order approach

that is typically applied in mechanism design issues. In particular, we consider a relaxed

problem by replacing (IC) with the envelope condition. We then show that the policy derived

from this relaxed problem actually satisfies (IC).

Recall from Lemma 2 that the envelope condition holds only when capital allocation

is positive. However, as we will show later the HQ may exclude the project from capital

allocation if the agency cost is too high. The difficulty in relaxing the (HJB) is to find out

which projects are excluded from capital allocation. We handle this issue in two steps. First,

we consider the case where no project is excluded, i.e., kt(θ) > 0 for all θ, for any fixed value

of Wt. This is true if the spread of project qualities (∆) is sufficiently small, because the
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information asymmetry is not severe. In the case of ∆ ≈ 0, the HQ almost knows the true

project quality even without DM’s report. So the DM is paid little information rent. The

infinite marginal return of value enhancing technology at zero (R′(0) =∞) then implies that

no project will be excluded from capital allocation. Second, we show that as the spread of

project quality increases, projects with bottom qualities are possibly forgone.

5.3 Policy without Project Exclusion

When no project is excluded, we can get a relaxed problem by replacing (IC) by the

envelope condition β′t(θ) ≥ 1/R′[kt(θ)]. From the optimality of the relaxed problem we can

derive the following necessary condition that characterizes the policy of capital allocation

and pay-performance sensitivity.

LEMMA 4. In the interior region (Wt ∈ (0, W̄ )), if no project is excluded from capital

allocation, then the optimal policy satisfies:

R′(kt(θ))− 1 =
R′′(kt(θ))

[R′(kt(θ))]2

∫ θ̄

θ

[P ′(Wt + βt(u))− P ′(Wt)] du (8)

Moreover, capital allocation kt(θ) increases in project quality θ.

Lemma 4 characterizes the distortion in investment due to agency issues. The left-hand

side of (8) is the net return of marginally raising investment in type θ project. The strict

concavity of the value function P and the technology R together implies that the right-hand

side of (8) is positive and represents the agency cost. It is easy to see that investment in

any project is lower than the first best level k∗. Investment distortion in any project arises

from the information rents paid to the DM reporting projects of higher qualities. As project

quality decreases, more information rent is paid to the DM, and therefore investment is more

downward distorted.

An important feature is that the agency cost in capital budgeting is endogenous. The

information rents are costly to the firm because they induce positive jumps in DM’s con-

tinuation value when projects arrive, and induce downward drifts when no project arrives.

These variations in continuation value exacerbate liquidation of the division. In particular,
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the increase in agency cost from a marginal information rent i n project θ is measured by

P ′(Wt +βt(θ))−P ′(Wt). So the curvature of the value function and the level of the continu-

ation value together determine the magnitude of the agency cost. And both the curvature of

the value function and the continuation value are endogenous elements. In this respect, this

model is very different from static problems such as Laffont and Tirole [1986], and Myerson

[1981]. In those static models, the agency costs are always exogenously related to the inverse

hazard ratio.

5.4 Policy with Project Exclusion

The optimal contract distorts investment downward to economize on information rents.

As the spread of project quality increases, investments are severely distorted. When the

agency cost is sufficiently high, the extreme strategy is to forgo positive NPV investment

opportunities. If type θ project is reported but gets no capital allocation, then the DM

observing higher types will not be able to misreport project quality as θ. So excluding

projects from capital allocation relaxes the agency problems. We now examine the general

case where project exclusion possibly occurs.

PROPOSITION 2. There exists threshold project quality θct = θc(Wt) ≤ θ̄ such that

(a) Projects with reported quality above θct receive positive capital allocation and have posi-

tive pay-performance sensitivity: kt(θ) > 0, βt(θ) > 0, and β′t(θ) = 1/R′(kt(θ)) for any

θ > θct .

(b) Projects with reported quality below θct receives no capital allocation and has zero pay-

performance sensitivity: kt(θ) = βt(θ) = 0, for any θ < θct , if θct > θ.

Proposition 2 shows that the optimal exclusion strategy exhibits threshold property. If

project exclusion ever occurs, it is the projects with bottom qualities that gets no capital

allocation. Recall from Lemma 4 that the lowest quality project receives the smallest amount

of capital allocation when no project is excluded. If we keep the state variable Wt constant

but increase the spread of project quality ∆, then the capital allocation to the lowest quality

project will reach zero first.
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This project exclusion policy implies zero pay-performance sensitivity for projects with

quality lower than the threshold value θct . Because all projects with quality lower than θct

gets no capital allocation, it is not feasible for the DM observing a θ ≤ θct project to report

a lower quality. In other words, the only feasible report is the project’s true quality. So it is

optimal to offer no information rent to the DM. A positive pay-performance sensitivity only

adds variation to the DM’s continuation value and lowers the HQ’s expected value.

With this threshold exclusion policy, we can rewrite the relaxed problem as:

rP (Wt) = max
kt,βt,θct

λ

∆

[∫ θct

θ

θdθ +

∫ θ̄

θct

(θ +R(kt(θ))− kt(θ))dθ

]
(HJB’)

+

(
γWt −

λ

∆

∫ θ̄

θct

βt(θ)dθ

)
P ′(Wt) +

λ

∆

∫ θ̄

θct

[P (Wt + βt(θ))− P (Wt)] dθ

subject to the condition of β(θct ) ≥ 0 and the envelope condition of

β′t(θ) = 1/R′(kt(θ)), ∀θ ≥ θct (EN)

Note that (HJB’) has θct as an additional control. The objective of the (HJB’) is simply

obtained by setting kt(θ) = βt(θ) = 0 for θ ≤ θct in the objective of the (HJB). The threshold

θct is an endogenous object that is moving with the state Wt. This is exactly because the

agency cost itself is endogenous. When the endogenous agency cost is high, then only

marginal investment in higher quality project can balance this cost. So the threshold θct

takes a higher value. Similarly, when the endogenous agency cost is low, the threshold θct

takes a lower value.

Also note that for a given value of θct problem (HJB’) has the same structure as the

relaxed problem considered in Lemma 4. Hence, the optimal policy above the threshold

quality θct must satisfy (8) and the envelope condition β′t(θ) = 1/R′(kt(θ)). Using these

conditions, we can obtain the following characterizations of the optimal policy.

PROPOSITION 3. The optimal capital allocation and pay-performance sensitivity satisfy:

(a) The highest quality project has first best investment before liquidation:

kt(θ̄) = k∗ when Wt > 0
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Figure 2: Policy Dynamics Over Project Qualities

(b) Underinvest in all other projects before payout:

kt(θ) < k∗, ∀ θ < θ̄ when 0 < Wt < W̄

(c) At the payout boundary, investments in all projects resume first best:

θct = θ, kt(θ) = k∗, ∀ θ when Wt ≥ W̄

(d) Investment and pay-performance sensitivity are both increasing in project quality

Figure 2 plots the optimal kt and βt through a numerical example in which W̄ = 0.75, and

k∗ = 0.5. It reflects all the properties in Proposition 3. First, the right panel shows at the

payout boundary W̄ investment in all projects resumes the first best level k∗. Second, along

any curve (fix continuation value) the policy is increasing in project quality. Third, when

fixing a level of θ and considering a higher curve, we can see that the policy is increasing in

continuation value.

The “no distortion at top” result in this model coincides with that in Mussa and Rosen

[1978]. Surprisingly, this model characterizes an additional no-distortion dimension: “no

distortion for all types” at the highest continuation value level (W̄ ). In other words, the

policy reaches first best at either the highest project quality or the highest continuation

value. This is due to the endogenous agency cost in this model.
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The level of continuation value indicates the tightness of the limited liability constraint.

When the continuation value is close to the liquidation boundary, the limited liability con-

straint is very tight. As the continuation value goes up, the limited liability constraint relaxes

and the liquidation concern decreases. At the payout boundary W̄ , the liquidation concern

disappears. Moreover, the liquidation concern determines the trade-off between investment

efficiency and information rents. To induce larger investment, the contract has to design

larger pay-performance sensitivities, lowering the drift of DM’s continuation value. When

the liquidation concern is sever, it is optimal to lower pay-performance sensitivities which

severely distorts capital allocation. When the liquidation concern is low, it is not very costly

to design large pay-performance sensitivities. So the optimal contract induces more efficient

investments.

Proposition 2 concludes that if the HQ decides to exclude any positive NPV investment,

the exclusion must occur to the bottom quality projects. Now we explore under what condi-

tion project exclusions will ever happen in the optimal contract. It depends on two driving

forces: (i) the marginal return of investment at k = 0, and (ii) the agency cost induced

by this marginal investment. According to the envelope condition, a marginal investment

in project θ will increase the slope of the pay-performance sensitivity at θ by limk↓0
R′′(k)

[R′(k)]2
,

which makes the (IC) constraints tighter for all types above θ. This effect will induce the

agency cost to increase by limk↓0
µt(θ)R′′(k)

[R′(k)]2
, where µt(θ) is the multiplier of (IC) at type θ.

The optimal contract trades off these two competing forces in determining project exclusion.

LEMMA 5. The optimal project exclusion has the following property:

(a) If the investment technology satisfies limk↓0
R′′(k)

[R′(k)]3
= 0, then no project will be excluded

(θct = θ) at any state before liquidation (Wt > 0).

(b) If the investment technology satisfies limk↓0
R′′(k)

[R′(k)]3
< 0, then depending on the value

of the state variable Wt, projects with bottom qualities will possibly be excluded, i.e.,

θct > θ.

Lemma 5 illustrates that if the marginal return dominates the agency cost induced by the

marginal investment as capital allocation converges to zero, then exclusion will not happen
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at any state. However, if the agency cost induced by the marginal investment dominates the

marginal return as capital allocation converges to zero, then exclusion of investment possibly

occurs, depending on the state Wt.

5.5 Verification

The results so far only relies on the necessary conditions of (HJB’), i.e., condition (8)

and β′t(θ) = 1/R′(kt(θ)). However, applying these conditions may not allow us to pin down

a unique policy of kt and βt. To guarantee (HJB’) has a unique solution, we impose a

technology assumption: R′′′R′ ≤ 3(R′′)2. In the case of Cobb-Douglas technology, i.e.,

R(k) = akα, this assumption is equivalent to α ≤ 0.5. It’s shown in the Appendix that this

technology assumption is sufficient to guarantee a unique optimal contract.

Now we verify in the following two steps that the relaxed problem from the heuristic

characterization does correspond to the optimal contract. First, we verify that the optimal

policy derived from the relaxed problem actually satisfies (IC).

LEMMA 6. The policy (kt(θ), βt(θ)) that satisfies

1. condition (8) and the envelope condition β
′
t(θ) = 1/R′(kt(θ)), when θ ≥ θct ;

2. βt(θ) = 0, when θ ≤ θct ;

3. kt(θ) = 0, when θ ≤ θct and θct > θ

is the optimal solution of (HJB).

In the no exclusion region (θ > θct ), the monotonicity of capital allocation implies that

the envelope condition is sufficient for incentive compatibility. In the exclusion region (θ ≤
θct ), because the DM cannot misreport as lower types, zero pay-performance sensitivity is

sufficient.

Second, following the standard argument in optimal control, we show that HQ’s value

from any incentive compatible mechanism that delivers the DM continuation value W0 is at

most P (W0), which is the HQ’s expected payoff from the conjectured mechanism.
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PROPOSITION 4. The contract (K, I, τ) that maximizes the HQ’s expected profit and

delivers value W0 ∈ [0, W̄ ] to the DM has the following form:

1. Wt evolves according to (7), where βt(θ) =
∫ θ
θ

1
R′(kt(u))

du.

2. When Wt ∈ [0, W̄ ), dIt = 0; When Wt = W̄ , payments dIt cause Wt to reflect at W̄ .

3. Liquidation of the division occurs when Wt reaches 0.

4. The HQ’s expected payoff P (Wt): matches the objective of the (HJB) evaluated at

(kt(θ), βt(θ)) on interval [0, W̄ ]; satisfies P ′(Wt) = −1 when Wt ≥ W̄ , and P (0) = L.

5. The value function P (Wt) is globally concave and strictly concave when Wt < W̄ .

5.6 Private Savings

So far, we restrict the DM from saving, hence he cannot overreport project qualities.

We now relax this restriction. In particular, we assumes that the DM can save in a private

account at interest rate ρ ≤ r. But the balance of this account has to be nonnegative. The

contract (K, I, τ) in Proposition 4 remains incentive compatible even if we allow the DM

to save. The intuition is that the envelope condition and the monotonicity of kt(θ) imply

that the DM has no incentive to over-report project qualities. So the marginal benefit of

consuming cash is constant over time. Given that private savings grow at rate ρ < γ, there

is no incentive to save.

PROPOSITION 5. Suppose a contract (K, I, τ) satisfies kt(θ) increases in θ. Also suppose

that the process Wt ≥ 0 evolves according to (7) with βt(θ) =
∫ θ
θ

1
R′(kt(u))

du until the stopping

time τ = min{t|Wt = 0}. Then the DM earns a payoff of at most W0 from any feasible

strategy. The expected payoff W0 is obtained if the DM reports project information truthfully

and maintains zero savings.

6 Dynamics of the Optimal Contract

The previous analysis shows that the optimal investment and compensation exhibit differ-

ent properties at different levels of continuation value. Investments are distorted downward
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in general, but the distortions disappear when the DM’s continuation value reaches its upper

bound. This clearly shows that the severity of the agency issues are endogenous and therefore

the optimal policy should be designed to vary with the state of the contract. In this section,

we will characterize how the continuation value evolves under the optimal compensation.

We will also show that the optimal policy exhibit monotone properties. These properties

sharpen the intuition that as continuation value goes up, the agency cost falls. Accordingly,

the HQ allocates capital more efficiently and the DM gets higher compensation when the

division accumulates more financial slack in the past.

6.1 Liquidity Evolution

The evolution of the agent’s continuation value reflects how the firm’s liquidity varies

over time. Because of agency issues, the firm has to pay information rent to the DM if it

decides to invest in the value-enhancing technology. When a project above the exclusion

threshold arrives, the DM’s continuation value will immediately jump up to reflect this

positive compensation. However, the expected amount of future compensations will be taken

out from the DM’s continuation value at other times, as long as the division is not liquidated.

This mechanism poses a downward force to the continuation value when no project arrives
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or a project below the exclusion threshold arrives. In this sense the contract “punishes” the

DM at the time of no capital allocation. This mechanism is feasible under limited liability

simply because the DM is “punished” by the promised payments not immediate transfers.

The following result formally shows this intuition.

PROPOSITION 6. Firm liquidity (continuation value) jumps up when projects above the

exclusion threshold arrives and it drifts downward during other times.

Figure 4 shows a simulated path of continuation value. The continuation value keeps

drifting down in the no project periods and jumps up when a project arrives. We can also see

that the jump size becomes larger as the continuation value level increases. Cash payments

will be issued when the continuation value jumps beyond the payout boundary. In Figure 4,

the red bars on the horizontal axis reflect cash payments which drive the continuation level

immediately back to the payout boundary.

6.2 Monotone Policies

As the DM’s continuation value varies, there is a feedback mechanism at play. On one

hand, the pay-performance sensitivity affects the agency cost and hence the optimal capital

allocation. On the other hand, the capital allocation imposes constraint on pay-performance
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sensitivity through the incentive compatibility condition. So in general, it is hard to pin

down the complete policy dynamics. We proceed with the characterization in two steps.

First, we examine investment dynamics around the payout boundary. Second, we restrict

attention to the Cobb-Douglas technology, but analyze the policy dynamics in more general

regions.

PROPOSITION 7. The capital allocation kt(θ) and the pay-performance sensitivity βt(θ)

are both increasing in firm liquidity (Wt) for all θ. The exclusion threshold θct is decreasing

in liquidity (Wt).

Proposition 7 implies that there is a uniform lower bound of continuation value for all

projects beyond which capital allocation becomes more efficient (at both the extensive and

the intensive margins) and compensation becomes larger as continuation value increases.

More importantly, Proposition 7 offers sufficient conditions that allow us to quantify the

cutoff value W 1. When either the investment efficiency is high or the project quality spread

is low, the cutoff W 1 becomes very small, meaning the optimal policy is monotone over a

very large range of the domain (0, W̄ ].

7 Implementation

The foregoing results characterize the properties of the optimal contract in a principal-

agent setting. To understand the capital budgeting process in practice, in this section we

show in this section how the optimal contract so derived can be implemented using a simple

budgeting account mechanism.

To facilitate the investments and to deal with the agency problems, the HQ fixes a

budgeting account for the division. Given moral hazard, the HQ cannot determine the

actual use of the funds by the DM. In other words, at any time the DM can withdraw funds

at his discretion to either invest or issue compensation. What the HQ can observe and

control is the evolution of the account balance. Based on project reports, the HQ can either

deplete or replenish the budgeting account. If it sets the right depleting and replenishment

rates, it can give the DM the incentive to invest as in the optimal contract. Let (kt, βt, θ
c
t )
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be the optimal policy derived as above. The budgeting account mechanism includes the

following key elements:

• The budgeting account is set up with an initial balance M0.

• The account is constantly depleted by the rate q(Mt) = λ
∆Mt

∫ θ̄
θ
βt(θ)dθ − γ.

• If a project of quality θ > θct is reported, the account is replenished by kt(θ), and then

by βt(θ) if investment return θ +R(kt(θ)) is futher observed.

• Investment and cash compensation are paid from the budgeting account balance, and

are at the discretion of the DM.

• The division is liquidated when the account balance reaches 0.

By this mechanism, the budgeting account balance is raised by βt(θ) when a project of

quality θ ≥ θct arrives at time t, and evolves as dMt = −q(Mt)Mtdt at other times. The HQ

can adjust the initial balance and cash payout boundary appropriately to induce truth-telling

of project information and implement the optimal contract.

PROPOSITION 8. In the capital budgeting mechanism with initial account balance M0 =

W0, it is incentive compatible for the DM to report project information truthfully, and not to

steal funds. The division issues cash compensation {Mt− W̄ , 0}. Moreover, this mechanism

implements the optimal contract.
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Under this mechanism, the DM has the freedom to pay out the entire budgeting account

balance Mt− as cash compensation and thus have the division liquidated at any time t. But

it is obviously not optimal for the HQ. How can we ensure that the DM does not opt for this

deviation? This payoff from waiting until the account balance reaches M̄ to receive payment

is also Mt−. This is because by construction the evolution of the budgeting account balance

mimics that of the continuation value in the optimal contract. So the DM has no incentive

to take cash compensation before the account balance reaches M̄ . Moreover, when a project

θ arrives at time t, the funds replenished to the budgeting account raise the balance by βt(θ)

and the DM’s expected payoff increases by the same amount, which satisfies (IC). So the

DM will report project information truthfully.

Through an numerical example, we now illustrate how optimal policies vary with the

budgeting account balance. In figure 5, we can see the exclusion boundary is above zero at

a low account balance but it decreases as account balance becomes large which means that

the fewer projects are excluded. And the exclusion boundary stays at zero, i.e., no project is

excluded, when account balance is above some threshold. In figure 6, we fix project quality

at various levels and plot how investment and pay-performance sensitivity vary with account

balance. We can see that they are both increasing in account balance at all levels of project

quality.
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8 Conclusion

Using a dynamic principal-agent model with continuous time and continuous project

quality levels, this paper shows how capital budgeting and managerial compensation con-

tracts can be jointly designed to mitigate two important agency problems in large firms:

asymmetric investment information and capital diversion. The trade-off for the headquar-

ter between getting truthful information from the division manager and inducing efficient

investment is shown to be time-varying and endogenously determined by the financial slack

of the division. When there is little financial slack, the model predicts that the optimal con-

tract will have low pay-performance sensitivity and allocate much less than efficient capital

to the DM. It may also be optimal to exclude positive NPV projects when the division is

in financial distress. The high liquidation risk constrains the extent of the compensation

contract to provide incentive. So extracting information will be costly and the problem of

underinvestment will be severe. When financial slack is substantial, the model predicts that

the optimal contract will have high pay-performance sensitivity and will allocate capital

more efficiently in both extensive and intensive margins. These policies are monotonically

increasing as financial slack accumulates. Investments in every type of project are shown to

reach the first best level when the DM starts getting cash compensation. Finally, the HQ

can implement the optimal policies by appropriately adjusting the balance of a budgeting

account through which the DM gets funds for investment and compensation.
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A Appendix

In our notation, kt(θ) and k(θ,Wt) are equivalent. Also, βt(θ) and β(θ,Wt) are equivalent.

We will use them interchangeably in different contexts.

Proof of Proposition 1. Since both the project information and the investment amount are

observable, there will be no information rent paid to the DM. So it is always optimal to

invest the first best level for any project. And k∗ can be implemented by a forcing contract.

Given any mechanism, DM’s discounted future compensation will be constant over time and,

therefore, the division of the conglomerate will never be liquidated. Finally, no liquidation

means delay payment to the DM is not optimal, since the DM is more impatient. So the

optimal contract will payout W0 immediately and always enforce the first best investment.

Proof of Lemma 1. A basic result from the point process theory is that the compensated

point process defined by

Z(t, U) = N(t, U)− λt(b− a)

∆
(A.9)

is an F -martingale. The differential form of this martingale is dZ = N(dt, dθ)− λ
∆
dtdθ.

The predictable representation (6) of the martingale V follows from Last and Brant [1995]

(Chapter 1, page 25-26). The factor e−γs is just a convenient rescaling.

Proof of Lemma 2. Part (a): Take any θ̂ ∈ [θ, θ̄) such that kt(θ̂) > 0. There exists suffi-

ciently small ε > 0 such that θ̂+ε−R(kt(θ̂)) ≤ θ̂ and θ̂+ε ≤ θ̄. This means θ̂ ∈ Γ(θ̂+ε, kt).

By misreporting project quality of θ̂+ ε as θ̂, the DM gets βt(θ̂) in promised utility which is

implied by (7) and diverts capital kt(θ̂)− kt(θ̂; θ̂ + ε). If the DM reports truthfully, he gets

only βt(θ̂) in promised utility. Incentive compatibility then implies:

βt(θ̂ + ε) ≥ βt(θ̂) + kt(θ̂)− kt(θ̂; θ̂ + ε)

So we get

βt(θ̂ + ε)− βt(θ̂) ≥ kt(θ̂)−R−1[R(kt(θ̂))− ε] > 0 (A.10)
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The first inequality is from (2). Therefore, βt(θ) is strictly increasing at θ̂.

Part (b): Take any θ̂ ∈ [θ, θ̄) such that kt(θ̂) > 0 and β′t(θ̂) exists. Equation (A.10)

implies that

β′t(θ̂) = lim
ε↓0

βt(θ̂ + ε)− βt(θ̂)
ε

≥ lim
ε↓0

kt(θ̂)−R−1[R(kt(θ̂))− ε]
ε

= 1/R′(kt(θ̂))

Part (c): If βt(θ) < 0 for any θ ∈ Θ, then the DM’s continuation value will jump

downward when he reports a project of quality θ. However, the DM is better off by not

revealing such project, because his continuation value will have a zero jump if he reports no

project. To induce truthful information about project arrival, it is necessary to set βt(θ) ≥ 0

in any contract.

Proof of Lemma 3. The concavity of the value function and the definition of W̄ implies:

P ′(Wt) > −1 when Wt < W̄ and P ′(Wt) = −1 when Wt ≥ W̄ . In the region Wt < W̄ ,

the marginal cost of compensating the DM through continuation value is lower than the

immediate payment. So dIt = 0. In the region Wt ≥ W̄ , the marginal costs of compensating

the DM are the same through continuation value or immediate payment. Since the DM is

more impatient, an immediate payment dIt = Wt−W̄ will be mad. The immediate payment

will cause Wt to reflect at W̄ . So P (Wt) = P (W̄ )− (Wt − W̄ ).

Proof of Lemma 4. Since kt(θ) > 0 for all θ, Lemma 2 implies that βt(θ) is strictly increasing

over [θ, θ̄). So βt(θ) is differentiable a.e. Then Lemma 2 future implies β′t(θ) ≥ 1/R′(kt(θ))

a.e. Using this envelope condition to replace (IC) in Problem (HJB), we know the optimal

policy (kt, βt) solves

max
kt,βt

λ

∆

∫ θ̄

θ

[θ +R(kt(θ))− kt(θ)]dθ (P1)

+
λ

∆

∫ θ̄

θ

[P (Wt + βt(θ))− P (Wt)− βt(θ)P ′(Wt)]dθ

s.t. β′t(θ) ≥ 1/R′(kt(θ)), βt(θ) ≥ 0
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Differentiate the objective in Problem (P1) with respect to βt(θ) to get

λ/∆[P ′(Wt + βt(θ))− P ′(Wt)] ≤ 0 (A.11)

Since P is strictly concave when Wt < W̄ , (A.11) holds as strict inequality when βt(θ) > 0.

So the constraints in Problem (P1) must hold as equality at optimal, i.e., β′t(θ) = 1/R′(kt(θ))

and βt(θ) = 0.

Then (P1) can be viewed as an optimal control problem. From the view of optimal

control theory, kt(θ) is the “control” and βt(θ) is the “state” of this problem. Moreover, the

initial state βt(θ) is given as zero; and the terminal state βt(θ̄) is a free value. To apply the

Maximum Principal in optimal control theory, we define the Hamiltonian at Wt as:

Ht(θ, kt, βt, µt) =λ/∆[θ +R(kt(θ))− kt(θ)]

+ λ/∆[P (Wt + βt(θ))− P (Wt)− βt(θ)P ′(Wt)] +
µt(θ)

R′[kt(θ)]
(A.12)

By the Maximum Principal, the necessary conditions of problem (P1) are:

µ′t(θ) = −∂Ht

∂βt
=
λ

∆
[P ′(Wt)− P ′(Wt + βt(θ))] (A.13)

kt(θ) = arg max
k≥0

{gt(k; θ)} (A.14)

where gt(k; θ) := λ/∆[R(k) − k] + µt(θ)
R′(k)

. Moreover, µt(θ̄) = 0 by the fact βt(θ̄) is free.

Integrate (A.13) to get

µt(θ) =
λ

∆

∫ θ̄

θ

[P ′(Wt + βt(u))− P ′(Wt)]du (A.15)

Since kt(θ) > 0 by assumption, the maximizer of (A.14) must satisfy

λ

∆
[R′(kt(θ))− 1]− µt(θ)R

′′(kt(θ))

[R′(kt(θ))]2
= 0 (A.16)

Combining (A.15) and (A.16), we conclude that the optimal policy satisfies (8).

Now we show the monotonicity of kt(θ). Note that gt(k; θ) satisfies the single crossing

property. Since µ′t(θ) > 0 and R′′(k) < 0, we know that −µ′t(θ)R
′′(k)

[R′(k)]2
> 0. Hence, g′t(k; θ)

is strictly increasing in θ. Then (A.14) implies that the optimal capital allocation kt(θ) is
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increasing in θ.

LEMMA A.1. If the capital allocation policy satisfies kt(θ) > 0 at some θ < θ̄, then for

any arbitrarily small ε > 0 there must exist θ̂ ∈ (θ, θ + ε) such that kt(θ̂) > 0.

Proof of Lemma A.1. Let (kt, βt) be the optimal policy at time t, and let θ2 be any type that

satisfies kt(θ2) > 0. Suppose there exists some sufficiently small ε > 0 such that kt(θ) = 0

for any θ ∈ (θ2, θ2 + ε). We will show in the following steps that we can find an alternative

capital allocation k′t that satisfies k′t(θ̂) = k̂ > 0 for some θ̂ ∈ (θ2, θ2 + ε) and k′t(θ) = kt(θ)

for θ 6= θ̂ such that (k′t, βt) is incentive compatible. Hence, we reach a contradiction because

(k′t, βt) gives a larger objective in (HJB) than the proposed optimal policy (kt, βt).

Let θ̂ ∈ (θ2, θ2 + ε) be any project type that satisfies θ̂ − θ2 < R[kt(θ2)]. Let cl[Γ(θ, kt)]

denote the closure of the feasible set Γ(θ, kt). Let kt(θ
+) and kt(θ

−) denote the right and

left limit of kt(θ) if they exist. From (HJB) we get

βt(θ̂) = sup
θ∈Γ(θ̂,kt)

{
βt(θ) + kt(θ)−R−1[θ +R(kt(θ))− θ̂]

}
So there exist θ1 ∈ cl[Γ(θ̂, kt)] and k1 := max{kt(θ1), kt(θ

+
1 ), kt(θ

−
1 )} such that βt(θ̂) =

βt(θ1) + k1 −R−1[θ1 +R(k1)− θ̂].
First, we show that θ̂ < θ1 +R(k1). Suppose not. Then θ1 +R(k1) ≤ θ̂ < θ2 +R(kt(θ2)).

The second inequality is from the construction of θ̂. This relation plus the fact that θ̂ > θ2

imply that R(kt(θ2)) > max{θ1 + R(k1) − θ2, θ2 + R(kt(θ2)) − θ̂}. Because R−1(.) is strict

convex, we obtain

1

2
R−1[R(kt(θ2))] +

1

2
R−1[θ1 +R(k1)− θ̂]

>
1

2
R−1[θ1 +R(k1)− θ2] +

1

2
R−1[θ2 +R(kt(θ2))− θ̂] (A.17)

Moreover, we know Γ(θ̂, kt) ⊆ Γ(θ2, kt) because kt(θ) = 0 for θ ∈ (θ2, θ̂]. So θ1 ∈ cl[Γ(θ2, kt)].

From (IC) we get

βt(θ2) ≥ βt(θ1) + k1 −R−1[θ1 +R(k1)− θ2] (A.18)
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And because θ2 ∈ Γ(θ̂, kt), we get

βt(θ̂) ≥ βt(θ2) + kt(θ2)−R−1[θ2 +R(kt(θ2))− θ̂]

≥ βt(θ1) + k1 −R−1[θ1 +R(k1)− θ2] + kt(θ2)−R−1[θ2 +R(kt(θ2))− θ̂]

> βt(θ1) + k1 −R−1[θ1 +R(k1)− θ̂]

which is a contradition. The second line is from plugging in (A.18). The third line is from

plugging in (A.17). Hence, we must have θ̂ < θ1 +R(k1). Then there exists k̂ > 0 such that

θ̂ + R(k̂) < θ1 + R(k1). To show that (k′t, βt) satisfies (IC), we only need to consider types

in the range (θ̂,max{θ̂ + R(k̂), θ̄}] because the incentive compatible constraints of all other

types will be the same as under (kt, βt). Let θ̃ be any type in this range.

Second, we show that the following relation holds

β(θ̃) ≥ β(θ1) + k1 −R−1[θ1 +R(k1)− θ̃] (A.19)

By construction, we know that θ̃ ≤ θ̂ + R(k̂) < θ1 + R(k1). If k1 = kt(θ1), then θ̃ <

θ1 + R(kt(θ1)), which implies that θ1 ∈ Γ(θ̃, kt). So (A.19) holds by (IC) under (kt, βt). If

k1 = kt(θ
+
1 ), then there must exist an sufficiently small η > 0 such that θ̃ < θ +R(kt(θ)) for

any θ ∈ (θ1, θ1+η). Then (IC) under (kt, βt) implies β(θ̃) ≥ β(θ)+kt(θ)−R−1[θ+R(kt(θ))−θ̃]
for any θ ∈ (θ1, θ1 + η). Continuity then implies (A.19) holds. Similar argument shows that

(A.19) holds if k1 = kt(θ
−
1 ).

Third, the strict convexity of R−1(.) and the relation θ1 + R(k1) − θ̂ > max{R(k̂), θ1 +

R(k1)− θ̃} implies

1

2
R−1[θ1 +R(k1)− θ̂] +

1

2
R−1[θ̂ +R(k̂)− θ̃]

>
1

2
R−1[R(k̂)] +

1

2
R−1[θ1 +R(k1)− θ̃] (A.20)

Combining (A.19) and (A.20), we get

βt(θ̃) > βt(θ1) + k1 −R−1[θ1 +R(k1)− θ̂] + k̂ −R−1[θ̂ +R(k̂)− θ̃]

= βt(θ̂) + k̂ −R−1[θ̂ +R(k̂)− θ̃] (A.21)

Hence, (k′t, βt) satisfies (IC). Then we get a contradiction because (kt, βt) is not optimal.
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Proof of Proposition 2. Part (a): Let (k∗t , β
∗
t ) be the optimal policy at time t. Define the

lowest quality project with positive capital allocation as θct = inf{θ ≤ θ ≤ θ̄ : k∗t (θ) > 0}.
Let us consider θct < θ̄ since conclusion only applies to this case. If k∗(θct ) > 0, then Lema

A.1 implies that there must exist an interval (θct , θ
c
t + ε) over which k∗t (θ) > 0. If k∗(θct ) = 0,

then the definition of θct also implies that such an interval of positive capital allocation exists.

Suppose there are θ1, θ2 such that k∗t (θ) > 0 for θ ∈ (θct , θ1) and k∗t (θ) = 0 for θ ∈ (θ1, θ2).

Then by Lemma 2, β∗
′
t (θ) ≥ 1/R′(k̂t(θ)) for θ ∈ (θct , θ1). Then (k∗t (θ), β

∗
t (θ)) must solve the

following problem for θ ∈ (θct , θ1):

max
kt,βt

λ

∆

∫ θ1

θct

[θ +R(kt(θ))− kt(θ)]dθ (P2)

+
λ

∆

∫ θ1

θct

[P (Wt + βt(θ))− P (Wt)− βt(θ)P ′(Wt)]dθ

s.t. β′t(θ) = 1/R′(kt(θ)), βt(θ
c
t ) = β̂t(θ

c
t )

This is because the objective of (P2) is part of the objective of (HJB). Note that problem

(P2) has the same structure as problem (P1). If we consider (P2) and (P1) as optimal

control problems, then they differ only by initial states, and the starting and ending points.

The same procedure as in Lemma 4 shows that k∗t (θ) increases over (θct , θ1). Hence, we get

k∗t (θ1) > 0 and k∗t (θ) = 0 for all θ ∈ (θ1, θ2). This is a contradiction with Lemma A.1. So we

must have k∗t (θ) > 0 for θ > θct . Hence, k∗t (θ) > 0, β∗t (θ) > 0, and β∗
′
t (θ) = 1/R′(k∗t (θ)) for

θ > θct .

Part (b): The conclusion applies only to the case θct > θ. By the definition of θct , we know

k∗t (θ) = 0 for θ < θct . Since projects below θct do not get capital allocation, Γ(θ, k∗t ) = ∅ if

θ < θct . Therefore, the optimal contract will set β∗(θ) = 0 for θ < θct .

With the threshold property in Proposition 2, we can simplify (HJB) to be (HJB’). To

36



characterize the optimal policy, we define the following two auxiliary problems:

Qt(θ
c
t ) = max

kt,βt

λ

∆

∫ θ̄

θct

[θ +R(kt(θ))− kt(θ)]dθ (P3)

+
λ

∆

∫ θ̄

θct

[P (Wt + βt(θ))− P (Wt)− βt(θ)P ′(Wt)]dθ

s.t. β′t(θ) = 1/R′(kt(θ)), βt(θ
c
t ) = 0

and

max
θ≤θct≤θ̄

λ

∆

∫ θct

θ

θdθ +Qt(θ
c
t ) (P4)

We can solve (HJB’) in two steps: (i) given θct , we find the optimal kt and βt that solves

(P3); and (ii) given the value function Qt from (P3), we find the optimal threshold θct that

solves (P4). Note that the first step simply repeats the procedure of solving (P1). We will

use the same notations as before and focus on deriving the optimal θct . Let ηt ≥ 0 and δt ≥ 0

be the Lagrangian multipliers of the constraints θct ≥ θ and θct ≤ θ̄ respectively in (P4). The

necessary condition of (P4) is:

λ

∆
θct +Q′(θct ) = −ηt + δt (A.22)

Moreover,

Q′(θct ) = −Ht(θ
c
t , kt, βt, µt) (A.23)

Combine (A.23) and (A.22), and apply the constraint of βt(θ
c
t ) = 0 to obtain:

ηt − δt =
λ

∆
[R(kt(θ

c
t ))− kt(θct )] +

µt(θ
c
t )

R′(kt(θct ))

= gt(kt(θ
c
t ); θ

c
t ) (A.24)

Proof of Lemma 5. Part (a): if limk↓0
R′′(k)

[R′(k)]3
= 0, then we get

lim
k↓0

g′t(k; θct ) = lim
k↓0

λR′(k)

∆

[
1− 1

R′(k)
− ∆µt(θ

c
t )R

′′(k)

λ[R′(k)]3

]
=∞

since µt(θ
c
t ) is finite. From (A.14), we know gt(kt(θ

c
t ); θ

c
t ) > limk↓0 gt(k; θct ) = 0. Then (A.24)
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implies ηt > δt ≥ 0. Hence, θct = θ by complementary slackness.

Part (b): if limk↓0
R′′(k)

[R′(k)]3
< 0, then we have

lim
k↓0

λ[R′(k)− 1][R′(k)]2

∆R′′(k)
= lim

k↓0

λ[R′(k)]3

∆R′′(k)
> −∞

By continuity, there exists a < 0 such that

0 ≥ λ[R′(k)− 1][R′(k)]2

∆R′′(k)
≥ a (A.25)

for any k ∈ (0, k∗]. Suppose that θct = θ. Then the optimal kt(θ) > 0 for any θ > θ.

Depending on the level of Wt, we possibly have µt(θ) < a. In that case, there exists θ̂ > θ

such that µt(θ̂) < a. Then from (A.25),

µt(θ̂) <
λ[R′(k)− 1][R′(k)]2

∆R′′(k)

for any x ∈ (0, K∗]. This implies the problem maxk≥0 gt(k; θ̂) has no interior solution.

Hence, we must have kt(θ̂) = 0, a contradiction. Therefore, when |µt(θ)| is sufficiently large,

exclusion possibly occurs.

Proof of Proposition 3. Part (a): From equation (8), it is easy to get R′(kt(θ̄))− 1 = 0.

Part (b): Take any θct ≤ θ < θ̄ and 0 < Wt < W̄ . Since P (Wt) and R are strictly concave,

and βt(θ̂) > 0 for all θ̂ > θ, we know the right-hand side of (8) is positive. This implies

R′(kt(θ)) < 1.

Part (c): Take any θ and Wt ≥ W̄ . Since P ′(Wt) = P ′(Wt + βt(θ̂)) = −1 for any θ̂ ≥ θ,

we know the right-hand side of (8) is zero. This implies R′(kt(θ)) = 1. Since θ is arbitrary

and kt(θ) > 0, we must have θct = θ.

LEMMA A.2. Under the assumption R′R′′′ ≤ 3(R′′)2, equation g′t(k; θ) = 0 has at most

one solution of k given any value of µt(θ) < 0.
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Proof of Lemma A.2. Define h(k) = (R′(k)−1)R′(k)2

R′′(k)
and we have,

h′(k) =
R′(k)

R′′(k)2

[
(3R′(k)− 2)R′′(k)2 − (R′(k)− 1)R′(k)R′′′(k)

]
>
R′(k)(R′(k)− 1)

R′′(k)2

[
3R′′(k)2 −R′(k)R′′′(k)

]
≥ 0

when k < k∗. The last inequality is because R′(k) > 1 and R′R′′′ ≤ 3(R′′)2. Note that

g′t(k; θ) = 0 if and only if h(k) = ∆µt(θ)
λ

. For a given µt(θ) < 0, g′t(k̂; θ) = 0 implies that

k̂ < k∗. Since h(·) is strictly monotone over [0, k∗), the equation h(k) = ∆µt(θ)
λ

has at most

one solution of k.

Corollary A.1. Take any Ŵ , W̃ ≤ W̄ and Ŵ 6= W̃ . In the optimal contract, k(θ, Ŵ ) >

k(θ, W̃ ) if and only if µ(θ, Ŵ ) > µ(θ, W̃ ). Moreover, if k(θ, Ŵ ) = k(θ, W̃ ) and kθ(θ, Ŵ ) >

kθ(θ, W̃ ), then µθ(θ, Ŵ ) > µθ(θ, W̃ )

Proof. From Lemma A.2, we know in the optimal contract h[k(θ,W )] = ∆µ(θ,W )
λ

. Hence, the

first part of the result is directly implied by the strict monotonicity of h(·). Moreover, since

h′[k(θ,W )]kθ(θ,W ) = ∆µθ(θ,W )
λ

, h′(·) > 0 also implies the second part of the result.

LEMMA A.3. Under the technology assumption R′′′R′ ≤ 3(R′′)2, the problem (HJB’) has

a unique solution (kt, βt, θ
c
t ).

Proof. Part(a): we show that the capital allocation policy kt(θ) is continuous in θ. When

θ > θct , kt(θ) > 0 by Proposition 2. So kt(θ) satisfies (A.16). From Lemma A.2, kt(θ) is the

unique solution of g′t(k; θ) = 0. Since g′t(k; θ) is continuous in k and θ, we must have kt(θ) is

continuous in θ.

Now let us consider the continuity at θct . Let k̂t = limθ↓θct kt(θ). We first show that

kt(θ
c
t ) = k̂t meaning kt(θ) is right continuous at θct . It obviously holds if kt(θ

c
t ) > 0 by

the argument above. Suppose kt(θ
c
t ) = 0 < k̂t. By continuity from θ > θct , we know that

g′t(k̂t; θ
c
t ) = 0. By Lemma A.2, either g′t(k; θct ) > 0 for all k < k̂t or g′t(k; θct ) < 0 for all k < k̂t.

The former case implies that gt(k̂t; θ
c
t ) > 0 = gt(kt(θ

c
t ); θ

c
t ), contradicting with kt(θ

c
t ) being

optimal. The latter case implies that gt(k̂t; θ
c
t ) < 0. However, we know from (A.14) that

gt(kt(θ); θ) ≥ limk↓0 gt(k; θ) = 0 for all θ. So by continuity gt(k̂t; θ
c
t ) ≥ 0, a contradiction.
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If θct = θ, then right continuity means that kt(θ) is continuous for all θ. If θct > θ, then

complementary slackness means that ηt = 0. From (A.24), gt(kt(θ
c
t ); θ

c
t ) = −δt ≤ 0. So we

must have gt(kt(θ
c
t ); θ

c
t ) = 0. Suppose kt(θ

c
t ) > 0, then g′t(kt(θ

c
t ); θ

c
t ) = 0. Lemma A.2 implies

that either g′t(k; θct ) > 0 for all k < kt(θ
c
t ) or g′t(k; θct ) < 0 for all k < kt(θ

c
t ). So we have

either gt(kt(θ
c
t ); θ

c
t ) > 0 or gt(kt(θ

c
t ); θ

c
t ) < 0, a contradiction. Therefore kt(θ

c
t ) = 0, implying

that kt(θ) is continuous at θct when θct > θ.

Part(b): we show that (HJB’) has a unique optimal policy. Suppose kt(θ), βt(θ) and

k̂t(θ), β̂t(θ) are both optimal and βt(θ) 6= β̂t(θ). Since βt(θ) = β̂t(θ) = 0, we know there

exists some θ̃ < θ̄ such that: (1) βt(θ̃) = β̂t(θ̃), and (2) either βt(θ) ≥ β̂t(θ) in the interval

[θ̃, θ̄] or βt(θ) ≤ β̂t(θ) in the interval and strict for some θ > θ̃. Without loss of generality,

we assume βt(θ) ≥ β̂t(θ) in the interval [θ̃, θ̄] and strict for some θ. From (A.14) and (A.15),

we can derive that kt(θ) ≤ k̂t(θ) for all θ ∈ [θ̃, θ̄]. This is because larger β leads to smaller

multiplier µ and hence smaller k. However, the envelope condition implies that:

βt(θ) = βt(θ̃) +

∫ θ

θ̃

1

R′(kt(u))
du

≤ β̂t(θ̃) +

∫ θ

θ̃

1

R′(k̂t(u))
du = β̂t(θ)

for any θ > θ̃, a contradiction. So the optimal βt(θ) is unique. Moreover, given any optimal

βt(θ), Lemma A.2 and the continuity of kt(θ) in θ together imply that the optimal kt(θ) is

uniquely determined. Therefore, (HJB’) has a unique optimal policy.

Proof of Lemma 6. First, we need to show the necessary condition (8) for θ ≥ θct is sufficient

for (P3). Let us define H0
t (θ, βt, µt) = maxkt≥0Ht(θ, βt, kt, µt). Because P (W ) is concave, it

is easy to see from (A.12) that Ht is concave in βt. Also from (A.12), the optimal kt that

maximizes Ht does not depend on the value of βt. Hence, H0
t (θ, βt, µt) is a concave function

of βt for any given µt. By Arrow Theorem (see P.222 of Kamien and Schwartz [1991]), the

policy kt(θ) and βt(θ) will maximize (P3).

Second, we need to show the proposed policy (kt, βt) satisfies (IC). Note that Γ(θ, kt) 6= ∅
only if θ > θct . Take any θ > θct and θ̂ ∈ Γ(θ, kt). We know θ̂ ≤ θ. Because kt(θ) is increasing
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in θ, we know θ̂ +R(kt(θ̂)) ≤ R(kt(x)) + x for any x ∈ [θ̂, θ]. Let us define

bt(x) =

∫ x

θ̂

1/R′(kt(u))du− kt(θ̂) + kt(θ̂;x)

It is easy to see that bt(θ̂) = 0 and b′t(x) = R−1′ [R(kt(x))] − R−1′ [θ̂ + R(kt(θ̂)) − x] ≥ 0.

The last inequality is because R−1′(.) is increasing which is implied by the concavity of R.

Hence, bt(θ) ≥ 0. Using the envelope condition β′t(x) = 1/R′(kt(x)), we can rewrite bt(θ) as

bt(θ) = βt(θ)− βt(θ̂)− kt(θ̂) + kt(θ̂; θ) ≥ 0. Therefore, (IC) is satisfied.

Proof of Proposition 4. Following the standard argument in optimal control theory, we show

that HQ’s value from any incentive compatible mechanism that delivers DM continuation

value W0 is at most P (W0), which is HQ’s expected payoff from the conjectured mechanism.

Let us define

Gt =

∫ t

0

e−rs[(dXs +R(ks)− ks)dNs − dIs] + e−rtP (Wt)

In any incentive compatible contract, Wt evolves according to (7) with N̂(dt, dθ) = N(dt, dθ).

By Ito’s Lemma,

ertEt(dGt) =
λ

∆

∫ θ̄

θ

(θ +R(kt(θ))− kt(θ))dθdt

+

[
γWt −

λ

∆

∫ θ̄

θ

βt(θ)dθ

]
P ′(Wt)dt

+
λ

∆

∫ θ̄

θ

[P (Wt + βt(θ))− P (Wt)] dθdt− rP (Wt)dt

− (1 + P ′(Wt))dIt

Since P (Wt) is constructed from the optimal policies k∗t (θ), β
∗
t (θ), the first three lines

must be less than or equal to zero. Moreover, P ′(Wt) ≥ −1 implies the last line is also

less than or equal to zero. So, Gt is a supermartingale. It is a martingale if and only if

kt(θ) = k∗t (θ), βt(θ) = β∗t (θ), and dIt ≥ 0 only when Wt ≥ W̄ .

Now we evaluate the time zero expected payoff of the HQ from an arbitrary incentive
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compatible mechanism:

E

[∫ τ

0

e−rs((dXs +R(ks)− ks)dNs − dIs) + e−rτL

]
=E

[
Gt∧τ + 1t≤τ

(∫ τ

t

e−rs((dXs +R(ks)− ks)dNs − dIs) + e−rτL− e−rtP (Wt)

)]
=E(Gt∧τ )− e−rtE[1t≤τP (Wt)]

+ e−rtE

{
1t≤τ

[
Et

(∫ τ

t

e−r(s−t)((dXs +R(ks)− ks)dNs − dIs) + e−r(τ−t)L

)]}
≤G0 + e−rtE

[
1t≤τ

(
λ[E(θ) +R(k∗)− k∗]

r
−Wt − P (Wt)

)]
≤P (W0) + e−rtE

[
1t≤τ

(
λ[E(θ) +R(k∗)− k∗]

r
− L

)]
The first inequality is from: (1) Gt is a supermartingale; (2) HQ’s expected payoff from time

t on is smaller than the first best surplus minus continuation value. The second inequality

is from the fact that total surplus at any time is at least as large as liquidation value L.

Therefore, as t→∞, the second piece in the last line converges to zero. And by definition,

G0 = P (W0). So we get

E

[∫ τ

0

e−rs((dXs +R(ks)− ks)dNs − dIs) + e−rτL

]
≤ P (W0)

Therefore, HQ’s expected payoff under any incentive compatible mechanism is at most the

expected payoff obtained from the mechanism in the proposition.

In the following, we first show that the value function P is concave, and then show that

there exists a continuation value W̄ > 0 such that P (Wt) is strictly concave when Wt < W̄

and P ′(Wt) = −1 when Wt ≥ W̄ . To ease notation, we define

f(βt,Wt) =
λ

∆

∫ θ̄

θ

[P (Wt + βt(θ))− P (Wt)− βt(θ)P ′(Wt)]dθ
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Let us consider any incentive compatible policy (kt, βt) at Wt. From the objective of (HJB),

λ

∆

∫ θ̄

θ

[θ +R(kt(θ))− kt(θ)]dθ + f(βt,Wt)

≤rP (Wt)− γWtP
′(Wt)

≤rP (Wt) + γWt

≤ λ
∆

∫ θ̄

θ

[θ +R(kt(θ))− kt(θ)]dθ (A.26)

The second inequality is from P ′(Wt) ≥ −1. The last inequality is because the sum of HQ’s

flow profit and DM’s flow utility should be less than the expected cash flow. Therefore,

f(βt,Wt) ≤ 0. Note that for any sufficiently small ε > 0 the following policy is incentive

compatible: kt(θ) = 0, βt(θ) = ε, for all θ at Wt. Under this policy,

f(βt,Wt) = λ[P (Wt + ε)− P (Wt)− εP ′(Wt)] ≤ 0 (A.27)

which implies that P (.) is concave at Wt since ε is arbitrarily small.

Since the DM is more impatient, the optimal contract cannot delay cash payment for

ever. There must exist a W such that P ′(W ) = −1. We define W̄ = minW≥0{P ′(W ) = −1}.
Suppose that W̄ = 0. Since P is concave and P ′(W ) ≥ −1, P has to be a straight line with

slope −1. From the necessary condition (8), capital allocation is always first best. Also, the

objective of (HJB) can be simplified as

rP (Wt) = −γWt + λ[E(θ) +R(k∗)− k∗]

which contradicts with the assumption that P ′(Wt) = −1, because r < γ. Hence, W̄ > 0.

And by concavity of P , we know that P ′(Wt) = −1 when Wt ≥ W̄ and P ′(Wt) < −1 when

Wt < W̄ .

We now show that P (Wt) is strictly concave when Wt < W̄ . Suppose not. Then there

exists Ŵt < W̄ and sufficiently small η > 0 such that P ′(Wt) is constant over [Ŵt, Ŵt + η].

Since P ′(Ŵt) > −1, (A.26) implies that f(βt, Ŵt) < 0 for any incentive compatible policy

(kt, βt). As before, we can find a incentive compatible policy such that (A.27) holds at Ŵt

for any sufficiently small ε > 0. However, when ε < η, (A.26) implies that f(βt, Ŵt) = 0, a
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contradiction.

Proof of Proposition 5. Denote dCt as the DM’s consumption and St as the DM’s saving

account balance which evolves according to

dSt = ρSt + dIt +

∫ θ̄

θ

[kt(θ)− k̂t(θ)]N̂(dt, dθ)− dCt

We show that for any feasible strategy (C, X̂, K̂) of the DM, V̂t =
∫ t

0
e−γsdCs+e−γt(St+Wt)

is a supermartingale. To see this,

eγtdV̂t = dCt − γ(St +Wt)dt+ dSt + dWt

= (ρ− γ)Stdt+

∫ θ̄

θ

βt(θ)

[
N̂(dt, dθ)− λ

∆
dtdθ

]
+

∫ θ̄

θ

[kt(θ)− k̂t(θ)]N̂(dt, dθ)

The envelope condition and the monotonicity of kt(θ) imply that βt(θ) ≥ βt(θ̂) + kt(θ̂) −
R−1[θ̂ +R(kt(θ̂))− θ] for feasible θ′ 10. Hence,∫ θ̄

θ

[βt(θ) + kt(θ)− k̂t(θ)]N̂(dt, dθ) ≤
∫ θ̄

θ

βt(θ)N(dt, dθ) (A.28)

which implies V̂t is a supermartingale because ρ < γ and N(dt, dθ)− λ
∆
dtdθ is a martingale.

If the DM reports truthfully so that (A.28) holds as equality, and if there is no savings

(St = 0), then V̂t is a martingale. So we know,

W0 = V̂0 ≥ E(V̂τ ) = E

[∫ τ

0

e−γsdCs + e−γτSτ

]
with equality only if the DM reports truthfully and does not save.

Proof of Proposition 6. Consider any W ∈ (0, W̄ ). Suppose that Wt = W and γWt −
λ
∆

∫ θ̄
θ
βt(θ)dθ ≥ 0. Then dIt = 0 by Lemma 3. Then dWt ≥ 0 by (7), because βt(θ) ≥ 0 for

all θ. In addition, from (7) we know that Wt cannot jump downward when Wt ∈ (W, W̄ ).

So if the contract starts at W0 ≥ W , then the continuation value will never drop below

W > 0, which means liquidation never occurs (i.e., τ = ∞). Then kt(θ) = k∗ for all t, a

contradiction.

10Here θ̂ is possibly greater than θ since the DM has savings.
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LEMMA A.4. There exits Ŵ < W̄ such that P ′′(·) strictly increases over [Ŵ , W̄ ).

Proof. Suppose such Ŵ does not exist. Then because of continuity, the value function

determined by (HJB) will have negative second derivative for a small neighborhood above

W̄ . Hence,
∫ θ̄
θ
P (W̄− + β(θ, W̄−)) − P (W̄−) − β(θ, W̄−)P ′(W̄−)dθ < 0, where W̄− indicates

the left limit of W̄ . Then (HJB) implies

λ[E(θ) +R(k∗)− k∗] > rP (W̄−)− γW̄P ′(W̄−) = rP (W̄ ) + γW̄

The second equality is because P ′(W̄−) = −1 by (BC). This forms a contradiction.

Define W l := infW{P ′′(·) strictly increases over (W, W̄ ]}. Now we show in the following

two results that the optimal policies are monotone when continuation value is above W l.

LEMMA A.5. Take any W l ≤ W1 < W2 and θ1 < θ2. Suppose k(θ,W1) > k(θ,W2) for

all θ ∈ (θ1, θ2), k(θ2,W1) = k(θ2,W2), and kθ(θ2,W1) < kθ(θ2,W2). Then µθ(θ1,W1) <

µθ(θ1,W2).

Proof. From Lemma A.1, we know µθ(θ2,W1) < µθ(θ2,W2). Since P ′(W1) ≥ P ′(W2), (A.15)

implies taht −P ′(W1 + β(θ2,W1)) < −P ′(W2 + β(θ2,W2)). This further implies that W1 +

β(θ2,W1) < W2 + β(θ2,W2). Hence, we know W2 + β(θ2,W2) > max{W1 + β(θ2,W1),W1 +

β(θ1,W1),W2 + β(θ1,W2)}. Moreover, we know from the envelop condition (EN) that[
W1 + β(θ1,W1) +W2 + β(θ2,W2)

]
−
[
W1 + β(θ2,W1) +W2 + β(θ1,W2)

]
=−

∫ θ2

θ1

(
1

R′(k(θ,W1))
− 1

R′(k(θ,W2))

)
dθ < 0 (A.29)

Since P ′(·) is strictly convex and decreasing over (W l, W̄ ), we have

P ′(W1 + β(θ1,W1)) + P ′(W2 + β(θ2,W2)) > P ′(W1 + β(θ2,W1)) + P ′(W2 + β(θ1,W2))
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which further implies that

µθ(θ1,W1)− µθ(θ1,W2)

=
λ

∆

[
P ′(W1)− P ′(W2) + P ′(W2 + β(θ1,W2))− P ′(W1 + β(θ1,W1)

]
<
λ

∆

[
P ′(W1)− P ′(W2) + P ′(W2 + β(θ2,W2))− P ′(W1 + β(θ2,W1))

]
= µθ(θ2,W1)− µθ(θ2,W2) < 0

LEMMA A.6. The optimal policies k(θ,W ), β(θ,W ) are increasing in W over (W l, W̄ )

for all θ.

Proof. Take W1 ≥ W l and W2 = W1 + ε. Suppose k(θ̂,W1) > k(θ̂,W2) for some θ̂. Then

there must exist θ2 > θ̂ such that k(θ2,W1) = k(θ2,W2) and kθ(θ2,W1) < kθ(θ2,W2). This is

because k(θ̄,W1) = k(θ̄,W2). There are two possible cases.

First, suppose there also exists θ1 < θ̂ such that k(θ1,W1) = k(θ1,W2). Then we must

have kθ(θ1,W1) > kθ(θ1,W2). Without loss of generality, we can assume k(θ,W1) > k(θ,W2)

for all θ ∈ (θ1, θ2). Lemma A.5 implies µθ(θ1,W1) < µθ(θ1,W2). However, by Lemma A.1

we must also have µθ(θ1,W1) > µθ(θ1,W2), a contradiction.

Second, suppose k(θ,W1) < k(θ,W2) for all θ < θ̂. Then Lemma A.5 implies µθ(θ,W1) <

µθ(θ,W2). This also forms a contradiction because µθ(θ,W1) = µθ(θ,W2) = 0 by β(θ, ·) = 0.

Hence, k(θ,W1) ≤ k(θ,W2) for all θ. By (EN) we know β(θ,W1) ≤ β(θ,W2) for all θ.

To ease notation in the following proof, we define

n(β,W ) = P (W + β)− P (W )− βP ′(W ), m(θ,W ) = n(β(θ,W ),W ) (A.30)

LEMMA A.7. If W l > 0, then limw↑wl kw(θ,W ) ≤ 0.

Proof. Since W l > 0, we can define W = infW{P ′′(·) strictly decreases over (W,W l)}. Take

any sufficiently small ε, η > 0 such that W+ε+η < W l. Also, take any W1 ∈ (W,W l−ε−η).

Let W2 = W1 + ε and Let θ̂ be the project type that satisfies β(θ̂,W1) = η. Consider the

46



following program:

max
k,β

λ

∆

∫ θ̂

θ

[
θ +R(k(θ))− k(θ) +m(θ,W2)

]
dθ (P4)

s.t. β′(θ) ≥ 1/R′(k(θ)), β(θ) ≥ 0, β(θ̂) ≤ η

Let k(θ), β(θ) be the optimal policy of (P4). Suppose k(θ) > k(θ,W1). Then we must

have k(θ) > k(θ,W1) for all θ ≤ θ̂. Suppose not. Then there must exist θ̃ < θ̂ such that

k(θ) > k(θ,W1) for all θ ∈ (θ, θ̃), k(θ̃) = k(θ̃,W1), and kθ(θ̃) < kθ(θ̃,W1). By Corollary A.1,

µθ(θ̃) < µθ(θ̃,W1).

From the envelop condition (EN),

β(θ̃)− β(θ̃,W1) =

∫ θ̃

θ

(
1

R′(k(θ))
− 1

R′(k(θ,W1))

)
dθ > 0

Since P ′(·) is strictly concave and decreasing over (W,W l) and W2 + β(θ̃) < W2 + η < W l,

P ′(W1) + P ′(W2 + β(θ̃)) < P ′(W1 + β(θ̃,W1)) + P ′(W2)

Rearrange the above relation to get µθ(θ̃,W1) < µθ(θ̃), a contradiction. Hence, k(θ) >

k(θ,W1) for all θ ≤ θ̂. But this implies β(θ̂) > β(θ̂,W1) = η, a contradiction. Therefore,

k(θ) ≤ k(θ,W1). The above argument also implies k(θ) < k(θ,W1) over some interval (θ, θh)

with θh < θ̂.

By continuity of β(·, ·) over W , the optimal policy β(θ̂,W2) is sufficiently close to η =

β(θ̂,W1), since ε is sufficiently small. This means k(θ), the solution of (P4), is also sufficiently

close to k(θ,W2) when θ ∈ (θ, θh). Hence, we must have k(θ,W1) > k(θ,W2) for θ ∈ (θ, θh).

This further means k(θ,W1) ≥ k(θ,W2) by continuity of k(·, ·) over θ. Then the result follows

from the arbitrary pick of W1.

Proof of Proposition 7. Let θc = θc(W l) and Ŵ = W l + ε for any sufficiently small ε >

0. First, we show that k(θc,W l) < k(θc, Ŵ ). Note by Lemma A.6 it suffices to show

k(θc,W l) 6= k(θc,W l + ε). Suppose not. By the convexity of P ′(·) over [W l, W̄ ), we know

P ′(W l) + P ′(Ŵ + η) > P ′(W l + η) + P ′(Ŵ ) for any η > 0. Hence, there exists θ̂ (very close

to θc) such that P ′(W l) + P ′(Ŵ + β(θ, Ŵ )) > P ′(W l + β(θ,W l)) + P ′(Ŵ ) for θ ∈ (θc, θ̂).
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This means µθ(θ,W
l) > µθ(θ, Ŵ ) for θ ∈ (θc, θ̂). Moreover, because µ(θc,W l) = µ(θc, Ŵ ),

we must have µ(θ̂,W l) > µ(θ̂, Ŵ ) implying k(θ̂,W l) > k(θ̂, Ŵ ). This forms a contradiction

with Lemma A.6. Since ε is arbitrarily small, we have limw↓wl kw(θc,W ) > 0.

If W l > 0, then Lemma A.7 implies limw↑wl kw(θc,W ) ≤ 0. This forms a contradic-

tion with the fact that kw(·, ·) is continuous in W . Hence, W l = 0. Or in other words,

P ′′(·) strictly increases over (0, W̄ ). Therefore, Lemma A.6 implies k(θ,W ) and β(θ,W ) are

increasing in W for all θ and all interior W .

Proof of Proposition 8: Let Comt be an increasing process denoting the cash compensation.

The budgeting account balance evolves according to:

dMt = −e(Mt)Mtdt+

∫ θ̄

θ

βt(θ)N̂(dt, dθ)dθ − dComt

= γMtdt +

∫ θ̄

θ

βt(θ)

[
N̂(dt, dθ)− λ

∆
dtdθ

]
− dComt

Since the DM can issue all the account balance as cash compensation at any time, Mt is the

continuation value of the DM. Proposition 5 implies that DM always reports project infor-

mation truthfully since the envelope and monotonicity conditions are satisfied. Moveover,

no cash compensation is issued until Mt reaches M̄ , because Proposition 5 shows that DM

at most earns payoff M0 under any Com process.
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