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Abstract

We study the role of information quality in asset pricing models with heterogeneous

beliefs. We �nd that the equity premium, equity volatility, and trading volume are

bell-shaped functions of information quality. The bell-shape is driven by two opposite

e¤ects: while the speculation e¤ect suggests that a higher information quality makes

investors speculate more actively with a higher level of con�dence, the learning e¤ect

indicates that a higher information quality leads to less aggressive speculation due to a

lower level of heterogeneity in posterior beliefs. Consequently, signals with intermediate

precision are associated with high trading volume, high return volatility, and high risk

premium. Our model can help understand several challenges in �nance such as the

equity premium puzzle and the excess volatility puzzle. We calibrate the model to

fundamental data and show that our model is consistent with observations in �nancial

markets.

JEL Classi�cations: G12, G14, C1.

Keywords: Information quality, heterogeneous beliefs, the equity premium puzzle,

excess volatility, trading volume.



1 Introduction

Information quality is related to how new information is incorporated into stock prices

and trading. In modern �nancial markets, investors absorb a large amount of infor-

mation, which includes both precise information and noise information. Because infor-

mation of di¤erent quality has di¤erent implications for asset prices, investors have to

learn about information quality. Indeed, information quality is an important factor in

determining risk premia, as emphasized by Veronesi (2000), Easley and O�Hara (2004),

and Epstein and Schneider (2008).

Though a few studies (e.g., Veronesi, 2000; Ai, 2010; Li, 2005) have provided the-

oretical foundation for understanding the e¤ect of information quality on asset prices,

they usually assume that investors hold homogeneous beliefs about the underlying

state of the economy. While this representative agent paradigm with homogeneous

beliefs sheds light on the e¤ect of information quality on asset pricing, they fails to

take into account the speculative behavior of di¤erent investors in the economy. Our

insight is to recognize that heterogeneous beliefs have important implications for the

role of information quality on asset pricing. Speci�cally, we focus on several questions

arising regarding the role of information quality in asset pricing in the heterogenous be-

liefs framework: What are the general equilibrium implications of information quality

for asset prices? How does information quality a¤ect investors�speculating behavior?

What is the implication of information quality for trading volume?

Toward this end, we develop a theoretical asset pricing model to provide insights

on these questions. We build the model upon a continuous-time, general-equilibrium

Lucas exchange economy where rational agents have identical risk preferences and en-

dowments. In the model, stock dividends are stochastic and are generated by a di¤usion

process whose drift rate is unknown to investors. Economic agents hold heterogenous

priors about dividend growth. Agents update their beliefs about future dividend growth

by rationally using all available public information and using a Bayesian learning ap-
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proach.1 Due to heterogenous prior beliefs, agents obtain di¤erent posterior estimates

and "agree to disagree" about the state of the underlying economy. In our setting,

information quality naturally a¤ects the learning process and the resulting posterior

estimates.

In our model, information quality a¤ects asset pricing properties in two ways. The

speculation e¤ect suggests that more precise signals make investors speculate more

aggressively. The intuition is that precise signals make heterogenous investors more

con�dent on their respective posterior estimates of dividend growth. Naturally, higher

con�dence encourages heterogenous investors to speculate with each other more ag-

gressively. The learning e¤ect implies that accurate information makes heterogenous

investors to speculate less. Due to the improved e¢ ciency in learning, higher informa-

tion quality leads to a lower level of posterior heterogeneity. Accordingly, heterogenous

investors become more likely to share risks with each other and less likely to take bets

on their di¤erent beliefs.

The speculative behavior based on posterior beliefs changes as information quality

improves. In equilibrium, asset prices are determined by market clearing conditions.

We manage to solve the equilibrium in a closed form. Speci�cally, we derive the price

of stocks, the volatility of stock returns, and the trading volume of stocks as a function

of prior heterogenous beliefs and information quality.

The closed form solutions clearly indicate how information quality and heterogenous

prior beliefs a¤ect asset prices and trading. Given the level of prior heterogeneity, we

�nd that both trading volume, return volatility, and the equity premium are bell-shaped

functions of information quality. Initially, as signal precision increases, the speculation

e¤ect dominates the learning e¤ect. Note signal precision can be interpreted as a

proxy for the degree of investors�con�dence. As such, a high level of signal precision

makes investors speculate more aggressively and, equivalently, magni�es the e¤ect of

disagreement. The active speculation leads to a higher trading volume, a higher return

1Agents observe the same time series of public information. Because agents do not learn from each
other and adhere to di¤erent beliefs on growth rate of dividend, agents can "agree to disagree".
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volatility. Moreover, aggressive speculation also give rise to higher market prices of

risks, since investors may require additional compensation for bearing the risk that the

stock price moves more in line with the prediction of other agents than with their own.

As a result, speculation e¤ect leads to a higher equity premium.

Beyond some benchmark, the learning e¤ect dominates the speculation e¤ect. This

is because that as information quality improves, the level of disagreement in posterior

beliefs becomes lower. The speculative trading is at a low level. In addition, a low

level of posterior heterogeneity induced by precise signals implies lower prices of risks.

Overall, the trading volume, return volatility, and equity premium fall as information

quality improves. Therefore, we �nd that trading volume, return volatility, and equity

premium are bell-shaped functions of information quality. It is worth noting that the

slope of the bell-shape changes as the level of heterogenous prior beliefs varies.

To date, information quality and heterogenous beliefs are largely separately studied

in the asset pricing literature. On the theoretical side, we contribute to the literature

by incorporating disagreement and information quality into a single model. The model

provides new insights on asset pricing. First, we show that, due to the two opposite

e¤ects (the speculation e¤ect and learning e¤ect), the relationship between information

quality and the risk premium is nonlinear. We thus o¤er extensions of the existing

results (e.g., Veronesi, 2000, Ai, 2010) that suggest that a higher precision of signals

tends to increase the risk premium monotonically. Second, our model contributes to

resolves several well-known puzzles such as the equity premium puzzle and the excess

volatility puzzle. Third, our model can generate large trading volume, this contrasts

to asset pricing models with homogeneous beliefs.

We also make the empirical contribution to the literature. Since Mehra and Prescott

(1985) posed the equity premium puzzle, academics have recognized that asset pricing

anomalies are quantitative and an explanation must be consistent with observations in

�nancial markets. In this spirit, we evaluate the ability of our model to account for

asset prices and trading volume observed in the market. One of our main innovations
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is to use the inverse of analyst forecast error as a measure of signal precision2 and

run a threshold regression to recover the bell-shape function. Our empirical analysis

con�rms that signals with intermediate precision give rise to high trading volume, high

return volatility, and high risk premium.

In the spirit of Buraschi and Jiltsov (2006) and David (2008), we calibrate the

structural model using moment conditions on the dividend process and signal preci-

sion process. We use inverse of analyst forecast errors as a proxy for information quality

(e.g., Anderson, Ghysels, and Juergens, 2005; Armstrong, Banerjee, and Corona, 2010;

Loughran and Mcdonald, 2014). Our empirical analysis provides the supporting evi-

dence on the important link between information quality and (a) the stock volatility, (b)

the equity premium, and (c) the stock trading volume, as predicted by our analytical

analysis. Furthermore, the statistical test based on overidentifying pricing restrictions

cannot reject our model. Overall, our model is largely consistent with observations in

�nancial markets.

Our paper is also related to the literature on the relation between information

quality and asset prices. On the one hand, many studies suggest that increased public

information quality reduces informational asymmetry, which, in turn, increases liquid-

ity and reduces the expected return. Some examples include Diamond and Verrecchia

(1991) and Easly and O�hara (2004). On the other hand, the seminal work of Veronesi

(2000) builds a dynamic asset pricing model and investigates the relationship between

information quality and asset returns.3 He �nds that increased information quality

drives up the risk premium. Consequently, a number of studies, including Ai (2010),

Li (2005), Gollier and Schlee (2009), and Croce, Lettau, and Ludvigson (2009) ex-

tend the Veronesi (2000) model and further investigate the link between information

quality and asset pricing. While some of these studies suggest a positive relationship

2Barron, Kim, Lim, and Stevens (1998) use dispersion-adjusted forecast error as the measure of
information quality.

3Besides providing evidence on a negative or positive relationship between information quality and
asset prices, some studies (e.g., Botosan and Plumlee, 2002; Core, Guay, and Verdi, 2008; Duarte and
Young, 2009) �nd no signi�cant link between information quality and asset prices.
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between information quality and asset prices, others show a negative one. Our paper

contributes to this stream of literature by allowing information quality to a¤ect asset

prices through two opposite e¤ects: the speculation e¤ect and the learning e¤ect.

Our paper is also closely related to the recent literature on asset pricing models with

heterogenous beliefs.4 The literature typically suggests that a positive risk premium

should be associated with heterogenous beliefs.5 In addition, a number of studies have

looked at the link between heterogenous beliefs, price volatility, and trading volume.

Some examples include Banerjee and Kremer (2010), Carlin, Longsta¤, and Matoba

(2014), Harris and Raviv (1993), Kandel and Pearson (1995), and Shalen (1993). These

studies generally indicate a positive relation between heterogenous beliefs, trading vol-

ume, and price volatility. Our paper contributes to this strand of literature by taking

information quality into consideration.

Furthermore, our paper relates to Christensen and Qin (2014), Ottaviani and

Søensenz (2014), and Qin (2013), who propose some discrete-time asset pricing models

that take into account heterogeneous beliefs and information quality simultaneously.

We di¤er from these studies by proposing a continuous-time asset pricing model with

CRRA agents. More importantly, while Christensen and Qin (2014) and Qin (2013)

needs heterogenous beliefs on the second moment to generate multi-round trading, we

show that heterogenous beliefs on only the �rst moment allow sequential speculations.

In so doing, our model generates the speculation e¤ect and the learning e¤ect simul-

taneously. Our model thus allows us to obtain bell-shaped return volatility and risk

premium as functions of signal precision. In contrast, return volatility are largely ne-

4Some important examples include Anderson, Ghysels, and Juergens (2005), Bhamra and Up-
pal (2014), Buraschi and Jiltsov (2006), Constantinides and Du¢ e (1996), David (2008), Dumas,
Gallmeyer, and Holli�eld (2008), Dumas, Kurshev, and Uppal (2009), Ferson and Lin (2014), Jiang
and Sun (2014), Kogan, Wang, Ross, and Wester�eld (2006), Kurshev and Uppal (2009), Scheinkman
and Xiong (2003), Shefrin (2001), Xiong and Yan (2009). Basak (2005), Carlin, Longsta¤ and Matoba
(2014), and Jouini and Napp (2007) provide excellent reviews of the literature on asset pricing with
heterogenous beliefs.

5Another strand of literature suggests that short-sale constraints should lead to a negative relation
between heterogenous beliefs and expected returns. Some examples include Miller (1977), Chen, Hong,
and Stein (2002), and Yu (2011). However, some recent studies (e.g., Avramov, Chordia, Jostova, and
Philipov, 2009) argue that the negative relation could simply explained by �nancial distress risk.
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glected and the risk premium is independent of signal precision in Christensen and Qin

(2014).

The remainder of the paper is organized as follows: Section 2 presents the primi-

tives of the economy and establish the equilibrium. Section 3 discusses the e¤ects of

heterogenous beliefs and signal precision on asset pricing properties such as the equity

premium, volatility, trading volume, and the risk-free rate. Section 4 conducts the

empirical analysis based on the moment conditions implied by the general equilibrium

model. This section also reports the empirical results. Section 5 concludes the paper

and brie�y discusses future research.

2 The Model

We investigate an economy in which two types of in�nitely-lived agents are endowed

with shares in a production technology that generates a dividend �ow. Agents have

identical preferences and endowments but di¤er in their beliefs about the dividend

growth rate (see also Detemple and Murthy (1994)). This is a generalization of the

standard Lucas model.

2.1 Information Structure, Investors�Perceptions

The model uncertainty in our economy is represented by a �ltered probability space

(
;F ; fFtg; P ) on which we de�ne a two-dimensional Brownian motionB(t) = [BD; Be]
0
.

fFB
t g denotes the augmented �ltration generated by B(t), and ~ is a �-�eld indepen-

dent of FB
1. The �eld ~ whose role is to allow for heterogeneity in investors�priors

consists of all possible initial beliefs. The complete information �ltration fFtg is the

augmentation of the �ltration ~� fFB
t g.

Assumption 1 (Dividend and Signal Processes) Our economy is populated by

two sets of investors (i = 1; 2) who commonly observe the aggregate endowment and

the corresponding signal process. The exogenous aggregate endowment (or dividend)

6



process follows

dDt

Dt

=

�
� +

1

2
�2D

�
dt+ �DdBD(t)() d lnDt = �dt+ �DdBD(t); (1)

and the noisy signal follows

det = �dt+ �edBe(t): (2)

The dividend growth rate � is assumed to be a constant which is not observed by

the investors. The investors form optimal estimations of the growth rate by �ltering

the data of dividend Dt and signal et through the incomplete information �ltration

FB
t � Ft; t 2 [0;1]. Particularly, the prior beliefs about � at time t = 0 are het-

erogeneous for each investor and, thus, is ~-measurable. The beliefs of the investors

about � are updated in a Bayesian fashion, via mi
� = Ei [� jFt ] ; where Ei [�] denotes

the expectation relative to the subjective probability measure P i, which is equivalent

to the true measure P . Due to their heterogeneous priors, investors may draw di¤erent

inferences about � at all times6. In contrast, investors are aware of the volatility of

dynamics of dividend and signal, these assumptions capture the feature that expected

return are much more di¢ cult to estimate than volatilities7.

Although di¢ cult to estimate, dividend growth rate is of vital importance for the

calculation of fundamental value of stocks (Gordon, 1956). Financial analysts con-

tinuously actively produce forecasting reports about dividend growth rate or earning

growth rate of �rms, and the signal process in our model can be viewed as an analog

of these forecasting reports. Recent empirical evidence suggests that analysts usually

have some disagreements about expected dividend growth rate (e.g., Carlin, Longsta¤,

and Matoba, 2014; Jiang and Sun, 2014; Yu, 2011). Hence, it is reasonable to model

6Morris (1995) proposes a method to endogenize the di¤erence in beliefs and formulations. He
argues that it is fully consistent with rationality to have heterogeneous priors. We also note that since
investors have common and not asymmetric information, they are aware of each others�di¤erent in-
ferences, arising from their di¤erent priors. Under our heterogeneous beliefs formulation, the investors
agree to disagree.

7As Merton (1980) points out that even if the expected return on the market were known to be a
constant for all time, it would take a very long history of returns to obtain an accurate estimate, no
mention when the expected return is believed to be changing through time.
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heterogeneity in beliefs on the expected growth rate.

By (1) and (2), the innovation processes Bi
D and B

i
e induced by investor i�s beliefs

and �ltration are given by

dBi
D(t) =

1

�D

�
d lnDt �mi

�dt
�
; and dBi

e(t) =
1

�e
(det �mi

�dt): (3)

The innovation processes of each investor are such that given his perceived growth rate,

mi
�, the observed aggregate endowment obeys

d lnDt = mi
�dt+ �DdB

i
D(t); (4)

and the observed noisy signal follows

det = mi
�dt+ �edB

i
e(t): (5)

These individual perspective expressions of dividend and signal indicate that investors

may hold di¤erent opinions about the composition of the dividend and signal processes,

though agreeing with the processes they observe. By Girsanov�s theorem, Bi is a two

dimensional Brownian motion on the endowed probability space (
;F i; fF i
tg; P i) for

each investor.

Note the signal is the real drift plus a noise. The inverse of the di¤usion parameter,

he = 1=�e; re�ects the precision of the external signal. We say that investors have

precise signals when he is relatively high. Similarly, the precision of the �dividend

signal�is hD = 1=�D: Again, the investors are aware of the values of precision hD; he

and that the growth rate is a constant. With the knowledge of the dividend growth

rate model, they rationally estimate and update their beliefs using the information of

the dividend and signal processes according to some optimal �ltering equations which

is introduced in the following subsection.
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2.2 Investors�Learning Mechanism

In our economy, given the initial beliefs and the observed realizations of the dividend

process and signal, the investors rationally update the posterior estimates of the drift

of the dividend. In this section, we introduce the learning mechanism. We will show

that the learning play important role in determining the asset pricing properties. Using

standard results in �ltering theory (see Theorems 12.6 and 12.7 in Liptser and Shiryaev

(2001)), it is possible to prove the following results.

Lemma 1 (Learning): Let m(t) = E[�(t)jFt] and (t) = E[((�(t)�m(t))2 jFt].

Under some technical regularities, m(t) and (t) are unique, continuous Ft- measurable

for any t solutions of the system of equations

dm(t) = (t)
�
h2Dd lnDt + h2edet

�
� (t)

�
h2D + h2e

�
m(t)dt; (6)

_(t) = �
�
h2D + h2e

�
(t)2; (7)

with initial conditions m(0) = E[�jF0] and (0) = E[((� �m(0))2 jF0].

In our model, the investors hold homogeneous prior variance at time 0, (0).

The solution to the Riccati equation _(t) = � (h2D + h2e) (t)
2 is given as  (t) =

1=
�
�10 + (h2D + h2e) t

�
, and thus we obtain the following dynamics of the stochastic

mean as

dm(t) =
h2Dd lnDt + h2edet

�10 + (h2D + h2e) t
� (h2D + h2e)m(t)dt

�10 + (h2D + h2e) t
;

so the di¤erence in beliefs evolves according to a deterministic function8

m1
�(t)�m2

�(t) =
(m1

�(0)�m2
�(0))

0

1

�10 + (h2D + h2e) t
:

Intuitively, as time evolves the di¤erence in beliefs converges to zero, since the investors

tend to agree as information accumulate to a huge amount. Moreover, the di¤erence in

8Assumption of heterogeneous prior variances can lead to stochastic dynamic of di¤erence in beliefs.
Our assumption can simplify the analysis and highlight the impact of signal precision.
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beliefs decreases in the signal precision. Since investors learn faster with higher signal

precision and, thus, their beliefs converge at a higher speed.

2.3 Disagreement Process

In this section, we de�ne the disagreement processes which are important quantities

for characterizing the equilibrium. De�ne disagreement process scaled by dividend

precision as

 D (he) � ��1D
�
m1
� (t)�m2

� (t)
�
= hD

�
m1
� (t)�m2

� (t)
�
=

(m1(0)�m2(0))hD

0
�
�10 + (h2D + h2e) t

� ;
(8)

de�ne disagreement process scaled by signal precision as

 e (he) � ��1e
�
m1
� (t)�m2

� (t)
�
= he

�
m1
� (t)�m2

� (t)
�
=

(m1(0)�m2(0))he

0
�
�10 + (h2D + h2e) t

� : (9)
By (3), we have

dB2
D (t) = dB1

D (t) +  D (he) dt; dB2
e (t) = dB1

e (t) +  e (he) dt: (10)

The disagreement process scaled by signal precision (dividend precision) capture the

investors� disagreement on the mean of endowment growth rate, normalized by the

signal precision (dividend precision). When investor 1 is more �optimistic�,  e (he) and

 D (he) is positive, and conversely. Note  e (he) has already re�ected the two opposite

e¤ect of signal precision: The speculation e¤ect suggests that a signal precision he

leading to a higher value of  e (he) ; makes investors speculate more actively with a

higher level of con�dence, while the learning e¤ect indicates that higher information

quality he leading to a lower value of  e (he) ;makes investors speculate less aggressively

due to a lower level of heterogeneity in posterior beliefs. On the contrast,  D (he) only

re�ects the learning e¤ects. The impact of signal precision on these two quantities are

characterized by the following Proposition 1.
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Proposition 1 (Disagreement Process) At any time t, the di¤erence in investors�ex-

pected dividend growth rate, m1(t) �m2(t); decreases with respect to the signal preci-

sion. Consequently, the disagreement process weighted by dividend precision,  D (he) ;

decreases with respect to signal precision. While the disagreement process weighted

by signal precision,  e (he) ; is bell-shaped with respect to the signal precision. The

unique maximum for  e (he) is attained when the signal precision �he =
p
1= (0t) + h2D

and its minimum is attained for uninformative signal (he = 0) and for perfect signal

(he = +1). Moreover, at any �nite time for he = �he, the value of  e
�
�he
�
is always

higher than  D
�
�he
�
, i.e.,  e

�
�he
�
>  D

�
�he
�
; 0 � t < +1:

Note at any �nite time, the value of  e (he) can be always higher than  D (he) for

some intermediate signal precision, which indicates the investors can speculate more

aggressively based on imperfect signal than based on dividend. Moreover, a lower

prior variance 0, and shorter time of updating lead to stronger this kind of e¤ects.

This model property matches the fact that the dividend volatility is easy to estimate,

however, there can be much more disagreement about the analysts�forecasts of growth

rate based on which the speculation occurs. As a result, the investors may require

considerate risk premium from bearing uncertainty from the public signals. As we

will see in the following subsections, this behavior can contribute to explain not only

the equity premium puzzle, but also the well-known excess volatility of stock, since

speculative trading based imperfect signals can generate signi�cant extra volatility of

stock returns.

[Insert Figure 1 about Here]

Figure 1 illustrates the impact of signal precision on the disagreement processes

 D (he) and  e (he). It is evident that the impact of information quality on  e (he)

depends on the strength of the two opposite e¤ects, i.e., the speculation e¤ect and

the learning e¤ect. The learning e¤ect gradually dominates the speculation e¤ects as
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signal precision increases. Consequently, the counterbalancing result is that  e (he)

�rst decreases and then increases with signal precision and, thus,  e (he) is bell-shaped

with respect to the signal precision.

Even the impacts of uninformative signal and perfect signal on the disagreement

process weighted by signal precision are the same, however, the uninformative signal

and perfect signal a¤ect disagreement process weighted by dividend precision,  D (he) ;

di¤erently. With uninformative signal, term  D (he) ; attains its highest value. This

result indicates uninformative signal can generate more speculative activities than per-

fect signal, echoing with the �ndings (in following subsections) about the impacts of

signal precision on asset pricing properties: imperfect signal can facilitate speculation

at the highest level, uninformative signals have lower impacts, while perfect signals

have the lowest ability to facilitate side-betting.

2.4 The General Equilibrium

To verify the ability of our model to address to equity premium puzzle and the excess

volatility puzzle, we assume the investors have power utility functions.

Assumption 2 (Preferences): Two sets of constant relative risk aversion (CRRA)

agents act as in�nite lifetime utility maximizers, i.e.,

maxEi

24 1Z
t

e��t
ci(t)




dt
��F i

t

35 :

The two sets of agents di¤er in terms of their beliefs, which a¤ect their expec-

tations. Using martingale techniques (Cox and Huang, 1989; Karatzas et al., 1987),

we can express the intertemporal budget constraint in its martingale form for each

investor�s dynamic optimization problem given that investor�s individual-speci�c state

price density, �i

Ei

0@ 1Z
t

�ici(t)dt
��F i

t

1A = X i
t :
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The initial wealth is given by X i
t = eiP1(0); where ei is the number of stock units with

which agent i is initially endowed with and P1(t) is the (endogenous) stock price at

time zero. To focus on the impact of signal precision, we assume e1 = e2, i.e., the

investors have identical endowment.

To ensure a unique state price density for each investor, we assume that investor

can trade continuously in three long-lived securities, i.e., a stock, a consol bond and a

risk-free bond. Let r(t) be the equilibrium riskless rate and the stock price and consol

bond price evolve according to the general stochastic dynamics

dP (t) = P (t) [�P (t)dt+ �PD (t) dBD + �Pe (t) dBe] ;

dO(t) = O(t) [�O(t)dt+ �Oe (t) dBD + �Oe (t) dBe] ;

where r(t); �P (t); �PD (t) ; �Pe (t) ; �O(t); �OD (t) ; and �Oe (t) are endogenized in the

equilibrium. The consol bonds paying a continuous coupon of �c per instant. Consol

bonds is in zero net supply, while the stock is in positive net supply.

Note that the number of long-lived assets equals the number of stochastic shocks

driving the economy, so there exists a unique state price density process for each

investor �i, consistent with no-arbitrage, given by

d�i(t) = ��i(t)
�
r(t)dt� �iDdB

i
D(t)� �iedB

i
e(t)
�
;

where �i is the perceived market price of risk (or the Sharpe ratio) process and is

endognized in the equilibrium.

Let us de�ne �i(t) = (�i1(t); �i2(t)) as the number of consumption good units agent

i invests in the stock and consol bond. We de�ne the equilibrium concept as follows:

De�nition 2 (Equilibrium) : An equilibrium is a price system (r (t) ; P (t); O(t))

and consumption�portfolio processes (ci (t) ; �i (t)) such that: (i) investors choose their

optimal consumption�portfolio strategies given their perceived price processes in (
;F i; fF i
tg; P i)
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and (ii) goods and security markets clear, i.e.,

c1(t) + c2(t) = D(t);

�11(t) + �21(t) = 1;

�12(t) + �22(t) = 0:

To solve for the equilibrium, it is convenient to use the following aggregation tech-

nique of Cuoco and He (1994) and Karatzas and Shreve (1998) in which the repre-

sentative agent utility function is constructed by taking a (state-dependent) weighted

average of individual utilities:

U(c; �) = e��tmax
c1(t)+c2(t)=c

c1(t)



+ �t

c2(t)



;

with � > 0: The structure of the utility function of the representative investor re�ects

that each investor wants to maximize his own utility; the larger the weight � is, the

more pricing implication investor 2 has since he dominates the market more relative

to the investor 1.

The �rst-order conditions for the optimal consumption plan of agent i give ci(t) =�
yi�

i(t)
�1=(�1)

; where yi is the (constant) Lagrange multiplier associated with the

budget constraint. The consumption can be written in terms of the state price de�ator.

Thus, each agent�s Lagrange multiplier yi must satisfy

Ei

0@ 1Z
t

�i
�
yi�

i(t)
�1=(�1)

dt
��F i

t

1A = X i
0:

Imposing the market clearing condition c1(t)+ c2(t) = D(t), we obtain the equilibrium

consumption allocation of the two agents and the two stochastic discount factors. The

following proposition summarizes those results:

Proposition 3 (Equilibrium): In equilibrium, the individual state price densities
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are equal to:

�1(t) =
e��t

y1
(D(t))�1 �t(1 + �

1
�1
t )1�; �2(t) =

e��t

y2
(D(t))�1 (1 + �

1
�1
t )1�;

and the relative weight of the second agent �t is state dependent and equal to �t =

(y1=y2) �t; with �t = �1(t)=�2(t): The ratio of the two agents� state price densities

evolves according to

d�t
�t

=
d�t
�t
= � D (he) dB1

D(t)�  e (he) dB
1
e (t): (11)

Finally, the individual optimal consumption allocations are given by

c1(t) =
D(t)�

1
�1
t

1 + �
1

�1
t

; c2(t) =
D(t)

1 + �
1

�1
t

: (12)

Proof: See Appendix.

By (11) we have

�(s) = �(t)e�
R s
t  D(he;u)dB

1
D(u)�

R s
t  e(he;u)dB

1
e (u)�

R s
t (

1
2
( D(he;u))

2+ 1
2
( e(he;u))

2)du;

which shows that the heterogeneity in prior beliefs and the signal precision have di-

rect impact on the weight �t via the disagreement processes. Since the expected value

of �(s) decreases with the value of the disagreement processes, a relatively high �t

arises when investor 1�s prediction of mean growth has tended to be relatively poor in

the past or relatively unlucky in his prediction. Furthermore, investor 1�s consump-

tion level decreases as �t increases, in the limit lim�(t)!1c1(t) = 0; The intuition is

that a pessimistic investor save more for future consumption, since they think their

consumption level tends to be low in the future.
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3 Asset Pricing Properties

We are interested in how the informativeness of the public signal, i.e., the signal preci-

sion, a¤ects the asset pricing properties, equilibrium stock return volatility, equilibrium

equity premium, and the trading volume when the investors have heterogeneous prior

means. In this section, we provide analyze plots of comparative statics to address the

impact of information quality.

3.1 Equilibrium Asset Prices and Stock Return Volatility

Under the assumption of common prior variances, the di¤erence in beliefs follows an

ODE, and we can proof that the stochastic discount factor �1(t) is driven by two log-

normally distributed state variables, �(s) and D(s), for s > t: It is easy to simulate the

random paths the state variables and, thus, the distribution of the stochastic discount

factor �1(t). Therefore, we can directly price assets by the following proposition.

The equilibrium stock price is given by

P (t) =
1

�1(t)
E1t

0@ 1Z
t

�1(s)D(s)ds

1A :

Note although  D (he) and  e (he) are two important quantities that carry the im-

pacts of signal precision, these two disagreement processes cannot summarize all the

asset pricing implications of signal precision. Because  D (he) and  e (he) can only

describe the stochastic discount factor, while the distribution of future dividend is di-

rectly a¤ected by signal precision and priors, being independent of  D (he) and  e (he).

Therefore, to study the overall impacts of signal precision on asset pricing, we must

endogenize the asset prices with primitive assumptions of information system.

Let the stock price from the �rst agent�s perspective be

dP (t)=P (t) = �1p (t) dt+ �pD (t) dB
1
D (t) + �pe (t) dB

1
e (t) ;
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where

�pD (t) = (@P=@D)D (t)�D � (@P=@�) D(t)�(t); (13)

�pe (t) = (@P=@�) e(t)�(t): (14)

Thus, we have the following Proposition.

Proposition 4 In equilibrium, the total stock volatility is equal to

�2
�
dP (t)

P (t)

�
=

�
@P

@D
D(t)�D �

@P

@�
 D(t)�(t)

�2
+

�
@P

@�
 e(t)�(t)

�2
:

Note that the terms @P
@D
D(t)�D arise from the volatility of the dividend processes,

the fundamental volatility, while the term @P
@�
 D(t)�(t) and

@P
@�
 e(t)�(t) are from the

volatility from the process of state variable �(t). Asset prices and related derivatives

are deterministic integrals that can be computed at any desired level of accuracy using

Monte Carlo methods. See Appendix for a description of Monte Carlo methods to

calculate the prices and related derivatives. By endogenizing the stock price we are

able to show how the endogenous volatility of stock returns depends on the signal

precision.

[Insert Figure 2 about Here]

Figure 2 plots stock return volatility as a function of information quality. We can see

that the signal precision impacts the stock return volatility with two di¤erent e¤ects:

speculation e¤ect and the learning e¤ect. And these two countervailing e¤ects give rise

to that the stock return volatility is bell-shaped with respect to the signal volatility,

since with imperfect signal precision the investors speculate the stock market most

aggressively. Empirically, the high volatility of the stock price series combined with the

low volatility of the dividend series has suggested that prices may be "too volatile" to be
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consistent with a rational model. Our model help to explain the excess volatility, since

in our setting, model uncertainty of the expected dividend growth rate and di¤erence in

priors introduces an element of learning which generates the heterogeneity in posterior

beliefs and speculative trading. Speculations based on public signal and heterogeneous

beliefs can generate endogenous volatility, which is much higher than the volatility of

dividend.

Our results also help to understand the equity premium puzzle. Since, the combi-

nation of the low volatility of dividend and the high volatility associated with stock

returns is a fundamental element of the equity premium puzzle. Only can we explain

why equities are risky, we can hope to understand why they command a signi�cant

risk premium. As we can see in the following subsection, investor requires signi�cant

compensation of risk premium for bearing signal risk, arising from speculation.

3.2 Market Prices of Risk and Equity Premium

Since there are two di¤erent random sources in the information system, which are

captured by the volatility of dividend and the volatility of signal, the investors can

speculate with both kind of uncertainty and price the risks di¤erently. We obtain

analytical expressions market prices of risk.

Proposition 5 (Market Prices of Risk): In equilibrium, the agents are averse to

both dividend and signal shocks. The two agent-speci�c prices of risk are equal to

�1D(t) = (1� )�D(t) +
�

1
1�
t  D (he)

1 + �
1

1�
t

; �2D(t) = (1� )�D(t)�
 D (he)

1 + �
1

1�
t

;

�1e(t) =
�

1
1�
t

1 + �
1

1�
t

 e (he) ; �2e(t) = �
1

1 + �
1

1�
t

 e (he) :

Proof: See Appendix.
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The disagreement of the investors on the expected growth rate of dividend leads

to their di¤erence in the perceived market prices of risk. Under homogeneous beliefs,

investors would price risk equally. With heterogeneous beliefs, however, the more op-

timistic investor is willing to bear more risk than the pessimistic investor. Hence the

optimistic investor holds risky asset and price the signal risk positively. Furthermore,

from the expressions of the market prices of risk, we can see that the signal precision

a¤ects the market prices of risk through the disagreement process. With imperfect

signal, investors speculate actively and the optimistic investor perceive higher mar-

ket price of signal risk. The intuition is that when an agent is more optimistic and

speculates with long position in stock, he faces potentially a larger correction of prices

moving in line with the pessimistic�s beliefs. Hence, his market price of signal risk is

the highest with a imperfect public signal.

[Insert Figure 3 about Here]

With the expression of prices of risk, we can compute the required equity premium.

In equilibrium, the individually speci�c required excess return is an inner product of

the market prices of risk of that agent and endogenized equity volatility. For agent 1,

i.e.,

��1 = �pD (t)�
1
D (t) + �pe (t)�

1
e (t) ;

the expression of �pD (t) and �pe (t) are given by (13) and (14) in the subsection of

stock return volatility. We plot the agent 1�s equity premium as a function of signal

precision in Figure 3. We �nd that the risk premium inherits many of the features of

the prices of risk, stock return volatility: Intermediate signal precision give rise to the

highest stock volatility and the highest prices of risk for investor 1, which naturally

also yields a maximum point for the required premium for investor 1.
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3.3 Trading Volume

Trading volume is de�ned to measure the absolute value of the change in investors�

position in the risky asset. It is straightforward to measure trading volume in discrete

time model (e.g., Christensen and Qin, 2014). However, in continuous time model,

usually at each point of time, the change of position is in�nitesimal. Therefore, we fol-

low Xiong and Yan (2010) and turn to another proxy of trading volume: The volatility

of investors�position.

[Insert Figure 4 about Here]

The stock holding of investor 1 is given as (see Appendix for a proof)

�11 (t) =

�
@X1

@D

�
=

�
@P (t)

@D

�
;

and, thus, the volatility of �11 (t) is given as

�2�11 =

�
@�11
@D

�DD (t)�
@�11
@�

 D (he)� (t)

�2
+

�
@�11
@�

 e (he)� (t)

�2
=

�
 D (he)

2 +  e (he)
2��@�11

@�
� (t)

�2
:

See Appendix for the derivation of the expression of @�11
@D

and @�11
@�
. We plot the trading

volume as a function of signal precision in Figure 4. The �gure clearly shows that

trading volume is a bell-shaped function of information quality. This is consistent with

the combined e¤ect of the speculation mechanism and the learning mechanism.

4 Empirical Analysis and Calibration

In this section, we empirically test our model. Firstly, we describe the data and discuss

how to construct the signal precision index. Secondly, we run threshold regressions to
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recover the bell-shape. Thirdly, we present the GMMmethod for estimating parameters

with the moment conditions implied by the theoretical model. Empirically, we do

�nd that the equity premium and return volatility are bell-shaped functions of signal

precision. Moreover, with the calibrated parameters, we show that imperfect signal

can generate high level of return volatility and risk premium.

4.1 Data

The fundamental data set includes quarterly data series spanning from 1968:04 to

2013:04. The quarterly closing price for S&P 500 index, the cumulative dividend

payment within the last 12 months on that index are from Goyal�s website.9 We obtain

daily returns on S&P 500 index from CRSP and follow Chen and Petkova (2012) by

using within-quarter daily returns to compute quarterly realized variance:

Vi =

DiX
d=1

R2d + 2

DiX
d=2

RdRd�1;

where Di is the number of days in quarter i and Rd is the index�s return on day d.

The second term on the right-hand side adjusts for the autocorrelation in daily returns.

The daily trading volume on S&P 500 index is also obtained from CRSP. The quarterly

trading volume is computed as the sum of daily trading volume within that quarter.

[Figure 5 about Here]

For empirically testing our model, we need to measure signal precision process. For

this purpose, we use Survey of Professional Forecasters available at the Federal Reserve

Bank of Philadelphia. Reliable data start from 1968:04. For each quarter, private

sector economists are asked to forecast approximately 27 economic variables over the

subsequent �ve quarters. Let FDi(t; �) be the forecast of a variable � quarters ahead

9This is an extended data set used by Welch and Goyal (2008). We thank Amit Goyal for kindly
providing the data.

21



of time t by forecaster i, and let FD(t; �) be the mean of these forecasts. We focus on

corporate pro�ts after tax. We take the inverse of the absolute di¤erence between the

mean of forecasts FD(t; �) for this process and the realization of it at time t+ � as the

measure of signal precision. This measure is intuitive: High information quality should

lead to low average forecast errors. Figure 5 presents the signal process. It is evident

that the signal process is volatile. Interestingly, it becomes more volatile during crisis

periods, i.e. the early 1970s (the oil crisis), the early 2000s (dotcom bubble), and the

period between 2007-2009 (the subprime crisis). In addition, we use the inverse of the

historical volatility calculated from the dividend growth rate as the proxy for dividend

signal precision.

4.2 Threshold Regressions

The time variation in information quality generates endogenous equity premium, return

volatility, and trading volume. In particular, our model implies that these quantities are

bell-shaped functions of information quality. To investigate the economic signi�cance

of the link between these quantities and information quality, we run the following

threshold regression to uncover the bell-shape:

yt = (1� I(xt))(�1 +
X3

j=1
�1jXj;t�1 + 11xt�1 + 21x

2
t�1) +

I(xt)(�2 +
X3

j=1
�2jXj;t�1 + 12xt�1 + 22x

2
t�1), (15)

where yt is the equity premium, stock return volatility, or trading volume, Xt is a vector

of control variables, and xt is information quality. The control variables for the equity

premium include the dividend yield (DY), the Treasury bill rate (TBL), CAY (see also

Lettau and Ludvigson, 2001), which are widely believed to predict asset prices.10 The

control variables for trading volume (e.g., Kaniel, Ozoguz, Starks, 2012) have lagged

10We also tried to include the default premium, the yield spread, and in�ation in the threshold
regression. However, these variables are generally insigni�cant when the dividend yield, the short-
term interest rate, and CAY are included in the regression.

22



trading volume (TV), trading spread (TS), and lagged stock returns (SR). The control

variable for stock volatility includes lagged volatility (Vol) and stock returns. I(xt) is

an indicator variable with

I(xt) =

8<: 0 if xt � c

1 if xt > c
,

where c is the threshold value. In our setting, it is very natural to take information

quality (xt) as the threshold variable.

[Insert Table 1, Figure 6 about Here]

The intuition of threshold regression (15) is straightforward: if the e¤ect of xt�1 on

yt increases below c and decreases above c, the regression implies a bell-shape func-

tion. Empirically, we use the maximum likelihood method to estimate the threshold

regression. Table 2 reports the empirical results. When yt denotes the equity premium,

it is evident that yt is an increasing function of information quality initially, beyond

the benchmark c, yt is decreasing as information quality improves. If yt represents the

stock return volatility,11 the results also indicate a bell-shape. The threshold regression

therefore provides supporting evidence for the theoretical model. However, when yt is

trading volume, the evidence is not supportive. To recover the bell-shape from the

regression results, Panel A and B of Figure 6 respectively plot the equity premium and

stock return volatility against signal precision. The plots clearly show that the equity

premium and volatility are bell-shaped functions of information quality.

4.3 GMM Estimation and Endogenized Return Volatility and

Risk Premium

To verify the model�ability to generate high return volatility and high risk premium

with imperfect signal, we now calibrate the model to obtain the value of fundamental

11Because trading volume shows a upward-sloping trend, we add a time trend in the threshold
regression when the dependent variable is trading volume.
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parameters. With these parameters, we can endogenize the return volatility and risk

premium. Note the value of the signal volatility and the dividend volatility can be

easily estimated from the times series by de�nition, we only need to estimate three

parameters, i.e., prior beliefs (m1
�(0); m

2
�(0); and 0).

We estimate the prior beliefs by matching the generated dividend growth and sig-

nal process with observed ones. More speci�cally, let � = (m1
�(0);m

2
�(0); 0)

0 be the

vector of parameters to be estimated. We estimate � by minimizing a GMM quadratic

criterion de�ned in terms of the estimation errors for the dividend process and signal

process. The GMM objective function to be minimized is as follows:

min
TX
t=1

gt(�)Wt(�)gt(�),

where

gt(�) =

26666664

lnD1
t (�)

lnDt
� 1

lnD2
t (�)

lnDt
� 1

e1t (�)

et
� 1

e2t (�)

et
� 1

37777775
 Zt,

and Zt is a vector of instrumental variables. Di
t(�); i = 1 or 2; refers to the perceived

dividend process by investor 1 or 2; respectively12. Similarly, eit(�), i = 1 or 2; refers

to the perceived signal process by investor 1 or 2, respectively. The weighting matrix

is the Newey-West (1987) covariance matrix of the estimation errors. The details of

the GMM estimation procedure are presented in Appendix B.

Panel A of Table 2 reports the descriptive statistics for the quarterly data of div-

idend growth rate, stock returns, signal process, and trading volume (in log form). It

is obvious that dividend growth rate is compatible with stock returns, yet the later is

much more volatile than the former. The standard deviation for the dividend growth

rate is 2:1%; yet the standard deviation for stock returns is 8:4%: It seems that stock

12Investors perceive identical information, i.e., D1
t = D2

t : The superscripts indicate the investors
disagree about the component of the perceive dividend, i.e., they perceive di¤erent drift and di¤erent
shocks.
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returns are much more volatile than dividend growth is. This �nding is consistent with

previous studies (e.g., Shiller, 1981; Zhu, 2013).

[Insert Table 2 about here]

Panel B reports the GMM estimates for parameters.13 As we expect, the prior

belief of the dividend growth rate for investor 1, m1
�(0); and the prior belief for investor

2, m2
�(0) sandwich the mean of dividend growth rate from the data. m1

�(0) is larger

than 0:015; while m2
�(0) is smaller than 0:015: Since investor 1 has a higher prior belief

about the dividend growth rate, we call she as an optimistic investor. On the contrary,

we call investor 2 as the pessimistic investor for the similar reason. Also note that

0, the prior variance between these two types of investors, is much larger than the

realized volatility of the dividend growth rate. Both investors will update their belief

with the coming of new data.

With the calibrated values of parameters, our model can generate an annual risk

premium of 6.5% and an volatility of the stock return of 0.23. Our model shows

that speculations based on the imperfect signals can generate large amount of the

endogenized risk premium and the volatility of the stock return. The generated risk

premium and excess volatility are largely consistent with the observations in the stock

market.

5 Conclusions

In this paper, we investigate both theoretically and empirically the link between in-

formation quality and asset pricing with heterogeneous beliefs in a continuous-time

general equilibrium model. In our setting, di¤erences in beliefs have important impli-

cations for asset pricing and trading behavior. Information quality a¤ects asset prices

13To avoid the over-identi�cation problem, we also did the Hansen test for over-identi�cation re-
strictions. The result shows that we cannot reject the null.
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and trading volume by a¤ecting posterior heterogenous beliefs. In particular, infor-

mation quality has two opposite e¤ect: (a) the speculation e¤ect suggests that higher

information quality makes investors speculate more aggressively with a higher level

of con�dence; (b) the learning e¤ect indicates that higher information quality makes

investors speculate less actively due to a lower level of heterogeneity in posterior be-

liefs. Driven by the two e¤ects, we show that the equity premium, stochastic volatility,

and trading volume are bell-shaped functions of information quality. Our simulation

analysis replicates the bell shape and providing the supporting evidence for the model.

We then estimate and test the structural model. We construct an information qual-

ity index using survey data. We test the structural overidentifying pricing restrictions

of the model by using the GMM test. We cannot reject the model. More importantly,

our calibrated model can generate reasonable return volatility and equity premium.

Hence, our model help resolve several puzzles in �nance such as the equity premium

puzzle and the excess volatility. We also run a threshold regression and document

an empirical bell shape between information quality and the equity premium/trading

volume. This further provides the supporting evidence for our model.

The calibration and empirical analysis gives strong support to the role played by in-

formation quality and heterogenous beliefs in the dynamics of asset prices and volume.

We view our results as complementary to the line of research on information quality

(e.g., Veronesi, 2000; Ai, 2010) because our model sharpens our understanding on the

e¤ect of information quality on asset prices. In particular, we show that information

quality has two opposite e¤ect on asset prices, this contrasts to the previous literature,

which usually suggests a monotonic relation between information quality and asset

prices. We also view our results as complementary to the literature on heterogenous

beliefs by taking information quality into consideration. For future research, the role

of information quality on the pricing of �nancial derivatives is an interesting topic.
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Appendix A: Proofs

A.1. Derivation of Dynamics of Di¤erence in Beliefs

We have a matrix-form representation of the dividend and the signal as0@ d lnDt

det

1A =

0@ 1 0

0 1

1A0@ �t

�t

1A dt+

0@ �D 0

0 �e

1A0@ dBD(t)

dBe(t)

1A()

0@ d lnDt

det

1A =

0@ �t

�t

1A dt

0@ �DdBD(t)

�edBe(t)

1A()

0@ d lnDt

det

1A =

0@ �tdt+ �DdBD(t)

�tdt+ �edBe(t)

1A ;

hence, we can express the signal processes as0@ d lnDt

det

1A =

0@ 1 0

0 1

1A0@ �t

�t

1A dt+

0@ �D 0

0 �e

1A0@ dBD(t)

dBe(t)

1A :

According to the standard �ltering theory (see Theorems 12.6 and 12.7 in Liptser and

Shiryaev (2001)), the dynamics of the posterior mean follow

d

0@ m(t)

m(t)

1A
=

0@ (t) (t)

(t) (t)

1A0@ 1 0

0 1

1A0@ (�2D)
�1

0

0 (�2e)
�1

1A0@0@ d lnDt

det

1A�
0@ 1 0

0 1

1A0@ m(t)

m(t)

1A dt

1A
=

0@ (t) (t)

(t) (t)

1A0@ (�2D)
�1

0

0 (�2e)
�1

1A0@ d lnDt �m(t)dt

det �m(t)dt

1A
=

0@ (t) (t)

(t) (t)

1A0@ (�2D)
�1
(d lnDt �m(t)dt)

(�2e)
�1
(det �m(t)dt)

1A ;
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and dynamics of the posterior variance evolve according to0@ _(t) _(t)

_(t) _(t)

1A = �

0@ (t) (t)

(t) (t)

1A0@ 1 0

0 1

1A0@ (�2D)
�1

0

0 (�2e)
�1

1A0@ 1 0

0 1

1A0@ (t) (t)

(t) (t)

1A
= �

0@ (t) (t)

(t) (t)

1A0@ (�2D)
�1

0

0 (�2e)
�1

1A0@ (t) (t)

(t) (t)

1A :

Simplifying yields

d

0@ m(t)

m(t)

1A =

0@ (t) (t)

(t) (t)

1A0@ (�2D)
�1
(d lnDt �m(t)dt)

(�2e)
�1
(det �m(t)dt)

1A
=

0@ (t)
�
(�2D)

�1
(d lnDt �m(t)dt) + (�2e)

�1
(det �m(t)dt)

�
(t)

�
(�2D)

�1
(d lnDt �m(t)dt) + (�2e)

�1
(det �m(t)dt)

�
1A ;

and

_(t) = �

0@ (t) (t)

(t) (t)

1A0@ (�2D)
�1

0

0 (�2e)
�1

1A0@ (t) (t)

(t) (t)

1A
= �

0@ (t) (�2D)
�1

(t) (�2e)
�1

(t) (�2D)
�1

(t) (�2e)
�1

1A0@ (t) (t)

(t) (t)

1A
= �2(t)

��
�2D
��1

+
�
�2e
��1�0@ 1 1

1 1

1A :

Hence, we achieve the dynamics of the posterior beliefs as

dm(t) = (t)
��
�2D
��1

(d lnDt �m(t)dt) +
�
�2e
��1

(det �m(t)dt)
�
;

_(t) = �2(t)
��
�2D
��1

+
�
�2e
��1�

;
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which can be rewritten as

dm(t) = (t)
�
h2D (d lnDt �m(t)dt) + h2e (det �m(t)dt)

�
= (t)

�
h2Dd lnDt � h2Dm(t)dt+ h2edet � h2em(t)dt

�
= (t)

�
h2Dd lnDt + h2edet �

�
h2D + h2e

�
m(t)dt

�
= (t)

�
h2Dd lnDt + h2edet

�
� (t)

�
h2D + h2e

�
m(t)dt;

_(t) = �
�
h2D + h2e

�
2(t):

Therefore, the disagreement process follows

dm1(t)� dm2(t) = �(t)
�
h2D + h2e

� �
m1(t)�m1(t)

�
dt

_(t) = �
�
h2D + h2e

�
2(t):

Note that

d

dt
= �

�
h2D + h2e

�
2(t) =) d

2(t)
= �

�
h2D + h2e

�
dt =)

Z
1

2(t)
d =

Z
�
�
h2D + h2e

�
dt

=) �1

+
1

0
= �

�
h2D + h2e

�
t =)  (t) =

1

�10 + (h2D + h2e) t
;

hence, the disagreement process follows

d
�
m1(t)�m2(t)

�
= �(t)

�
h2D + h2e

� �
m1(t)�m2(t)

�
dt =)

d ln
�
m1(t)�m2(t)

�
= �(t)

�
h2D + h2e

�
dt =)

d ln
�
m1(t)�m2(t)

�
= � h2D + h2e

�10 + (h2D + h2e) t
dt = � 1

�10
h2D+h

2
e
+ t

dt =)

d ln
�
m1(t)�m2(t)

�
= � 1

�10
h2D+h

2
e
+ t

d

�
�10

h2D + h2e
+ t

�
=)

d ln
�
m1(t)�m2(t)

�
= �d ln

�
�10

h2D + h2e
+ t

�
=)
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ln
�
m1(t)�m2(t)

�
� ln

�
m1(0)�m2(0)

�
= ln

�
�10

h2D + h2e

�
� ln

�
�10

h2D + h2e
+ t

�
=)

ln
�
m1(t)�m2(t)

�
= ln

�
m1(0)�m2(0)

�
+ ln

0@ �10
h2D + h2e

1�
�10

h2D+h
2
e
+ t
�
1A =)

ln
�
m1(t)�m2(t)

�
= ln

0@(m1(0)�m2(0)) �10
h2D + h2e

1�
�10

h2D+h
2
e
+ t
�
1A =)

m1(t)�m2(t) =
(m1(0)�m2(0))

0

1

�10 + (h2D + h2e) t
:

A.2. Derivation of Stationary Point of Disagreement Process

Taking the �rst-order condition of the disagreement process weighted by signal precision

 e (he) gives
1

�10 + h2Dt+ h2et
� 2h2et�

�10 + h2Dt+ h2et
�2 = 0()

1

�10 + h2Dt+ h2et
=

2h2et�
�10 + h2Dt+ h2et

�2 ()
2h2et

�10 + h2Dt+ h2et
= 1() �10 + h2Dt+ h2et = 2h

2
et()

�10 + h2Dt = h2et()
�10 + h2Dt

t
= h2e ()

h2e =
�10
t
+ h2D () he =

r
�10
t
+ h2D:

Hence, maximum point is achieved at he =
q

�10
t
+ h2D; which is higher than the

dividend precision hD:

A.3. Proof of Proposition 2 (Equilibrium)

We now derive the di¤erence of the market prices of risk as functions of disagreement

processes. By simple substitution, the agent-speci�c Brownian motions are related to
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the true innovations as follows:

dBD (t) =
1

�D
(mi

� (t)� � (t))dt+ dBi
D (t) ;

dBe (t) =
1

�e
(mi

� (t)� � (t))dt+ dBi
e (t) :

Let asset prices follow the di¤usion processes

dPz (t) = Pz (t) [�z (t) dt+ �zD (t) dBD (t) + �ze (t) dBe (t)] ;

with P1(t) = P (t) and P2(t) = O(t). Substituting the agent-perceived Brownian

motions, we obtain

dPz (t) = Pz (t)
�
�iz (t) dt+ �zD (t) dB

i
D (t) + �ze (t) dB

i
e (t)

�
;

�iz (t) = �z (t) + (�zD (t) + �ze (t))
mi
� (t)� � (t)

�D
;

where �iz (t) is the expected instantaneous return for asset z from the perspective of

agent i. Thus, the di¤erence in expected returns from the perspective of two di¤erent

agents is given by

�1z (t)� �2z (t) = �zD (t)
m1
� (t)�m2

� (t)

�D
+ �ze (t)

m1
� (t)�m2

� (t)

�e
= �zD (t) D (he) + �ze (t) D (he) :

Let us de�ne �iD(t) to be agent i�s price of dividend risk and �
i
e(t) to be his price

of signal risk. By no-arbitrage, excess returns need to satisfy

�iz (t)� r (t) = �zD (t)�
i
D(t) + �ze (t)�

i
e(t):

From the previous two equations we have

�zD (t)
�
�1D(t)� �2D(t)

�
+ �ze (t)

�
�1e(t)� �2e(t)

�
= �zD (t) D (he) + �ze (t) D (he) :

31



Because the last equation has to hold for any �zD (t) and �ze (t), it follows that

�1D(t)� �2D(t) =  D (he) and �1e(t)� �2e(t) =  e (he) : (16)

The optimal program is

e��tmax
c1;c2; c1+c2=D

c1

+ �

c2

:

In equilibrium, u
0
1 (c1) = �u

0
2 (c2) ; i.e., c

�1
1 = �c�12 : Solving for the optimal

allocation of the aggregate consumption between the two agents, we obtain c1 =

D�
1

�1
t =(1 + �

1
�1
t ) and c2 = D=(1 + �

1
�1
t ): Substituting, we obtain the indirect utility

function

V (D;�) = e��t

0BB@ D�


�1
t�

1 + �
1

�1
t

�


+
�D�

1 + �
1

�1
t

�


1CCA = e��t
D



�
1 + �

1
�1
t

�� �
�+ �


�1
t

�

= e��t
D


�

�
1 + �

1
�1
t

�� �
1 + �


�1�1
t

�
= e��t

D


�

�
1 + �

1
�1
t

�1�
:

The �rst-order conditions of each agent require u
0
i (ci) = yi�

i and V
0
D(D;�) =

u
0
(c1) = �u

0
(c2) ; thus

�1(t) = e��t
1

y1
(D(t))�1 �t(1 + �

1
�1
t )1� and �2(t) = e��t

1

y2
(D(t))�1 (1 + �

1
�1
t )1�;

(17)

with �t = y1�
1(t)=

�
y2�

2(t)
�
= y1�t=y2, so that

c1(t) = D(t)
�

1
�1
t

1 + �
1

�1
t

; c2(t) = D(t)
1

1 + �
1

�1
t

:

The constants � (0) ; y1; and y2 solve the static individual �rst-order conditions and
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budget constraints Ei

�Z
V

0
D �
�
yi�

i(t)
�1=�1

dt jF i
t

�
= X i

0, which imply

E1

0@Z D(t) �

0@ �
1

�1
t

1 + �
1

�1
t

1A

dt
��F i

t

1A = X1
0 ;

E2

 Z
D(t)�t

 
1

1 + �
1

�1
t

!

dt
��F i

t

!
= X2

0 :

Using Ito�s rule, �t satis�es the di¤erential equation

d�t
�t

=
d�t
�t
= �(�1D � �2D)dB

1
D(t)� (�1e � �2e)dB

1
e (t):

thus, by Eq. (16) we retrieve

d�t
�t

= � D (he) dB1
D(t)�  edB

1
e (t):

A.4. Proof of Proposition 3 (Asset Prices and Return Volatil-

ity)

(a) Stock price: From the Euler equation, the stock price

P (t) =
1

�1(t)
E1t

0@ 1Z
t

�1(s)D(s)ds

1A :

Thus

P (t) =

E1t

0@ 1Z
t

(D(s))�1 �(s)(1 + �(s)
1

�1 )1�D(s)ds

1A
(D(t))�1 �(t)(1 + �(t)

1
�1 )1�

:

Note the dividend D(s) and the state variable �(s) are both lognormal distributed,

and the stock price can be calculated by Monte Carlo simulation. The distribution of

�s and D(t) are derived as follows.
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Marginal Distribution of �s

The dynamics of the di¤erence in beliefs process �t is given by

d�t
�t

= �hD
�
m1
� (t)�m2

� (t)
�
dB1

D(t)� he
�
m1
� (t)�m2

� (t)
�
dB1

e (t)

= � D(t)dB1
D(t)�  e(t)dB

1
e (t);

so that

�(s) = �(t) exp

�
�
Z s

t

 D(u)dB
1
D(u)�

Z s

t

 e(u)dB
1
e (u)�

Z s

t

�
1

2
( D(u))

2 +
1

2
( e(u))

2

�
du

�
:

(18)

Note that the Ito integrals are normal random variables because the subintegral

function is deterministic. Therefore, the values of the di¤erence in beliefs process at

time s conditional of time t can be presented as

�(s) = �(t) exp
�
M� (t; s)�

p
V� (t; s)Z�

�
; Z� � N (0; 1) ;

where the mean and variance are given by

M� (t; s) = �1
2
M�;e (t; s)�

1

2
M�;D (t; s) ;

V� (t; s) = V�;e (t; s) + V�;D (t; s) ;

and

M�;D (t; s) = V�;D (t; s)

=

Z s

t

( D(u))
2 du =

�
hD (m

1(0)�m2(0))

0

�2 Z s

t

�
1

�10 + (h2D + h2e)u

�2
du

=

�
m1(0)�m2(0)

0

�2
h2D

(h2D + h2e)

Z s

t

�
1

�10 + (h2D + h2e)u

�2
d
�
�10 +

�
h2D + h2e

�
u
�

=

�
m1(0)�m2(0)

0

�2
h2D

(h2D + h2e)

Z �10 +(h2D+h2e)s

�10 +(h2D+h2e)t

1

v2
dv
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=

�
m1(0)�m2(0)

0

�2
h2D

(h2D + h2e)

�
�1
v

�����10 +(h2D+h2e)s
�10 +(h2D+h2e)t

�
=

�
m1(0)�m2(0)

0

�2
h2D

(h2D + h2e)

�
1

�10 + (h2D + h2e) t
� 1

�10 + (h2D + h2e) s

�

=
h2D (m

1(0)�m2(0))
2

20 (h
2
D + h2e)

�
1

�10 + (h2D + h2e) t
� 1

�10 + (h2D + h2e) s

�
=

h2D (m
1(0)�m2(0))

2
(s� t)

20
�
�10 + h2D + h2e

�2
ts

M�;e (t; s) = V�;e (t; s)

=

Z s

t

( e(u))
2 du =

Z s

t

�
(m1(0)�m2(0))

0

he

�10 + (h2D + h2e)u

�2
du

=

�
(m1(0)�m2(0))

0

�2 Z s

t

�
he

�10 + (h2D + h2e)u

�2
du

=

�
(m1(0)�m2(0))

0

�2
h2e

Z s

t

�
1

�10 + (h2D + h2e)u

�2
du

=

�
(m1(0)�m2(0))

0

�2
h2e

(h2D + h2e)

�
1

�10 + (h2D + h2e) t
� 1

�10 + (h2D + h2e) s

�
=

h2e (m
1(0)�m2(0))

2

20 (h
2
D + h2e)

�
1

�10 + (h2D + h2e) t
� 1

�10 + (h2D + h2e) s

�
=

h2e (m
1(0)�m2(0))

2

20 (h
2
D + h2e)

 
�10 + (h2D + h2e) s� �10 � (h2D + h2e) t�
�10 + (h2D + h2e)

� �
�10 + (h2D + h2e)

�
ts

!
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=
h2e (m

1(0)�m2(0))
2

20 (h
2
D + h2e)

 
(h2D + h2e) (s� t)�

�10 + (h2D + h2e)
� �
�10 + (h2D + h2e)

�
ts

!

=
h2e (m

1(0)�m2(0))
2
(s� t)

20
�
�10 + (h2D + h2e)

� �
�10 + (h2D + h2e)

�
ts
=
h2e (m

1(0)�m2(0))
2
(s� t)

20
�
�10 + (h2D + h2e)

�2
ts

=
h2e (m

1(0)�m2(0))
2
(s� t)

(1 + 0 (h
2
D + h2e))

2
ts

=
h2e (m

1(0)�m2(0))
2
(s� t)

20
�
�10 + h2D + h2e

�2
ts

:

Marginal Distribution of D(s)

The dynamics of the dividend process D(s) under the perceptions of the �rst agent is

given by

d lnDt = m1
�dt+ �DdB

1
D(t);

Since

dmi(t) = (t)
�
h2Dd lnDt + h2edet

�
� (t)

�
h2D + h2e

�
mi(t)dt

=
h2Dd lnDt + h2edet

�10 + (h2D + h2e) t
� (h

2
D + h2e)m

i(t)dt

�10 + (h2D + h2e) t

=
h2D (m

i
�dt+ �DdB

i
D(t)) + h

2
e (m

i
�dt+ �edB

i
e(t))

�10 + (h2D + h2e) t
� (h

2
D + h2e)m

i(t)dt

�10 + (h2D + h2e) t

=
(h2D + h2e)m

i
�dt+ hDdB

i
D(t) + hedB

i
e(t)

�10 + (h2D + h2e) t
� (h

2
D + h2e)m

i(t)dt

�10 + (h2D + h2e) t

=
(h2D + h2e)m

i
�dt+ hDdB

i
D(t) + hedB

i
e(t)� (h2D + h2e)m

i(t)dt

�10 + (h2D + h2e) t

=
hDdB

i
D(t) + hedB

i
e(t)

�10 + (h2D + h2e) t

hence

dm1
� =  (t)hDdB

1
D +  (t)hedB

1
e :

so

m1
� (t) = m1

� (0) +  (t)hDB
1
D (t) +  (t)heB

1
e (t) :
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Thus,

d lnDt = m1
�dt+�DdB

1
D(t) =

�
m1
� (0) +  (t)hDB

1
D (t) +  (t)heB

1
e (t)

�
dt+�DdB

1
D(t);

therefore, the dynamics of the log-dividend process becomes

logD (s) = logD (t)+m1
� (0) (s� t)+

Z s

t

 (u)hDB
1
D (u) du+

Z s

t

 (u)heB
1
e (u) du+�DB

1
D(s�t):

(19)

Since

E

�Z s

t

 (u)hDB
1
D (u) du+

Z s

t

 (u)heB
1
e (u) du

�
= 0;

and we have

E

�Z s

t

 (u)hDB
1
D (u) du

�2
=

Z s

t

2 (u)h2DE
�
B1
D (u)

�2
du = h2D

Z s

t

2 (u)E
�
B1
D (u)

�2
du

since B1
D (u) � N (0; u) =

p
uN (0; 1) ; we have

E

�Z s

t

 (u)hDB
1
D (u) du

�2
= h2D

Z s

t

2 (u)udu = h2D

Z s

t

�
1

�10 + (h2D + h2e)u

�2
udu

=
h2D
2

Z s

t

1�
�10 + (h2D + h2e)u

�2du2;
note

d
�
�10 +

�
h2D + h2e

�
u
�2

= d
�
�20 +

�
h2D + h2e

�2
u2 + 2�10

�
h2D + h2e

�
u
�

=
�
h2D + h2e

�2
du2 + 2�10

�
h2D + h2e

�
du;

and

du2 =
d
�
�10 + (h2D + h2e)u

�2 � 2�10 (h2D + h2e) du

(h2D + h2e)
2 :
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Hence, we have

h2D
2

Z s

t

1�
�10 + (h2D + h2e)u

�2du2
=

h2D
2

Z s

t

1�
�10 + (h2D + h2e)u

�2 d
�
�10 + (h2D + h2e)u

�2 � 2�10 (h2D + h2e) du

(h2D + h2e)
2

=
h2D
2

Z s

t

1�
�10 + (h2D + h2e)u

�2 d
�
�10 + (h2D + h2e)u

�2
(h2D + h2e)

2

�h
2
D

2

Z s

t

1�
�10 + (h2D + h2e)u

�2 2�10 (h2D + h2e) du

(h2D + h2e)
2

=
h2D

2 (h2D + h2e)
2

Z s

t

1�
�10 + (h2D + h2e)u

�2d ��10 +
�
h2D + h2e

�
u
�2

� �10 h2D

(h2D + h2e)
2

Z s

t

1�
�10 + (h2D + h2e)u

�2d ��10 +
�
h2D + h2e

�
u
�

=
h2D

2 (h2D + h2e)
2

Z (�10 +(h2D+h2e)s)
2

(�10 +(h2D+h2e)t)
2

1

v
dv � �10 h2D

(h2D + h2e)
2

Z �10 +(h2D+h2e)s

�10 +(h2D+h2e)t

1

v2
dv

=
h2D

2 (h2D + h2e)
2 ln v

����(�10 +(h2D+h2e)s)
2

(�10 +(h2D+h2e)t)
2 +

�10 h2D

(h2D + h2e)
2

1

v

�����10 +(h2D+h2e)s
�10 +(h2D+h2e)t

=
h2D

2 (h2D + h2e)
2 ln

�
�10 + (h2D + h2e) s

�2�
�10 + (h2D + h2e) t

�2
+

�10 h2D

(h2D + h2e)
2

�
1

�10 + (h2D + h2e) s
� 1

�10 + (h2D + h2e) t

�

=
h2D

(h2D + h2e)
2 ln

�10 + (h2D + h2e) s

�10 + (h2D + h2e) t
+

�10 h2D

(h2D + h2e)
2

(h2D + h2e) (t� s)�
�10 + (h2D + h2e)

�2
ts

=
h2D

(h2D + h2e)
2 ln

�10 + (h2D + h2e) s

�10 + (h2D + h2e) t
+

�10 h2D
h2D + h2e

t� s�
�10 + (h2D + h2e)

�2
ts
:
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Similarly, we have

E

�Z s

t

 (u)heB
1
e (u) du

�2
=

h2e

(h2D + h2e)
2 ln

�10 + (h2D + h2e) s

�10 + (h2D + h2e) t
+

�10 h2e
h2D + h2e

t� s�
�10 + (h2D + h2e)

�2
ts
:

Hence the distribution of log(D(s)) is normal with

MD (t; s) = logD (t) +m1
� (0) (s� t) ;

VD (t; s) = �2D (s� t) +
1

h2D + h2e
ln
�10 + (h2D + h2e) s

�10 + (h2D + h2e) t
+

�10 (t� s)�
�10 + (h2D + h2e)

�2
ts
:

And we have

D(s) = D(t) exp
�
MD (t; s)�

p
VD (t; s)ZD

�
; ZD � N (0; 1) :

A.5. Stock Return Volatility and Asset Prices Sensitivity to

D(t) and �(t)

Since the stock price is a function of the state variables D(t) and �(t), applying Ito�s

Lemma yields

dP (t)�E
�
dP
��F i

t

�
=

�
@P

@D
�DD (t)�

@P

@�
 D (he)� (t)

�
dB1

D(t)�
@P

@�
 e (he)� (t) dB

1
e (t):

(20)

stock return volatility is equal to

�2
�
dP (t)

P (t)

�
=

�
@P

@D
D(t)�D �

@P

@�
 D(he)�(t)

�2
+

�
@P

@�
 e(he)�(t)

�2
:

The stock price sensitivities with respect toD(t) and �(t) are computed from the results

of Proposition 3. Let � (t; s; �(t)) = �1(s)

�1(t)
; hence P (t) = E1t

1Z
t

(� (t; s; �(t))D(s)ds),

39



from Fubini�s Theorem, the derivative of the stock price P (t) with respect to �(t) is

@P (t)

@� (t)
= E1t

1Z
t

@� (t; s; �(t))

@�(t)
D(s)ds

Similarly, the derivative of the stock price with respect to D(t) is

@P (t)

@D (t)
= E1t

1Z
t

� (t; s; �(t)) eMD(t;s)�
p
VD(t;s)ZDds

= E1t

1Z
t

� (t; s; �(t))
D(t)

D(t)
eMD(t;s)�

p
VD(t;s)ZDds = E1t

1Z
t

� (t; s; �(t))
D(s)

D(t)
ds;

Monte Carlo Simulation can be employed to calculate the above expectation: First,

we simulate two paths of two independent Brownian motions. Second, calculate the

value of D(s); and �(s) for s > t according to (19), (18) and the de�nition of stochastic

integration. Third, calculate the value of the integrand in @P (t) =@� (t) and, thus

the value the integration. Fourth, simulate n times of the paths of two independent

Brownian motions and obtain n di¤erence realizations of the value the integrations,

and the expectation equals to the sum of n integrations divided by n. Note all the

following related expectation can be calculated according to this algorithm.

The expression of @�(t;s;�(t))
@�(t)

can be derived as follows. Note

� (t; s; �(t)) =
�1 (s)

�1 (t)
=

1
y1
(D(s))�1 �s(1 + �

1
�1
s )1�

1
y1
(D(t))�1 �t(1 + �

1
�1
t )1�

=
(D(s))�1 �s(1 + �

1
�1
s )1�

(D(t))�1 �t(1 + �
1

�1
t )1�

;
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and note
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so that

@

@�(t)
� (t; s; �(t)) = eM�(t;s)�

p
V�(t;s)Z�

�
eMD(t;s)�

p
VD(t;s)ZD

��1
��

1
�1�1
t

�
1� e

1
�1

�
M�(t;s)�

p
V�(t;s)Z�

��

�

0@1 + � 1
�1
t e

1
�1

�
M�(t;s)�

p
V�(t;s)Z�

�
1 + �(t)

1
�1

�
1 + �(t)

1
�1

�21A�

:

A.6. Derivation of Market Prices of Risk

The di¤usion process for the sum of individual consumptions should be identical to the

di¤usion process for the dividend. Hence, the following restrictions follow. First,

� c1 (t)
 � 1�

1
D (t)�

c2 (t)

 � 1�
2
D (t) = �DD (t) :

From �1D(t)� �2D(t) =  D (he) ; the price of dividend risk is equal to

�1D(t) =

�
c1 (t)

 � 1 +
c2 (t)

 � 1

��1 �
�DD (t) +

 D (he)

1� 

�
:

Simplifying the terms and using the market clearing condition, we obtain the price of

the dividend risk for each agent as

�1D(t) = (1� )�D +  D (he)
c2 (t)

D (t)
; �2D(t) = (1� )�D +  D (he)

c1 (t)

D (t)
:

Substituting the solution for the individual consumptions, we obtain the solution

for the dividend price of risk

�1D(t) = (1� )�D +
 D (he)

1 + �
1

�1
t

; �2D(t) = (1� )�D �
 D (he)�

1
�1
t

1 + �
1

�1
t

:
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Second, for the individual price of signal risk the restriction is

c1 (t)

1� 
�1e (t) +

c2 (t)

1� 
�2e (t) = 0:

Because the di¤erence of the individual prices of signal risk is equal to �1e(t)� �2e(t) =

 e (he), the prices of signal risk are equal to

�1e(t) =  D (he)
c2 (t)

D (t)
; �2e(t) = � D (he)

c1 (t)

D (t)
:

Substituting the solution for individual consumptions into the equation above, we

obtain the solution for the signal price of risk

�1e(t) =
 e (he)

1 + �
1

�1
t

; and �2e(t) = �
 e (he)�

1
�1
t

1 + �
1

�1
t

:

A.7. Derivation of Trading Volume

The dynamic budget constraint satis�es the stochastic di¤erential equation

dX1 (t) = �c1 (t) dt+X1 (t) r (t) dt+�1 (t)
�
�1 (t)� r (t)

�
dt+�1 (t)� (t)

24 dB1
D (t)

dB1
e (t)

35 ;
(21)

where �1 (t) is the amount of wealth invested in stock. Given the equilibrium stochastic

discount factor, at any time t, the wealth level must also satisfy the static budget

constraint

X1 (t) =
1

�1 (t)
E1
�Z 1

t

c1 (s) �
1 (s) ds

��F i
t

�
:

Since c1 (t) and �
1 (t) are functions of the state variables D(t) and �(t), Ito�s Lemma

applied to the static budget constraint yields

dX1 (t)�E
�
dX1 (t)

��F i
t

�
=

�
@X1

@D
�DD (t)�

@X1

@�
 D (he)� (t)

�
dB1

D(t)�
@X1

@�
 e (he)� (t) dB

1
e (t):

(22)
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The stochastic di¤erential equations (21) and (22) are Ito representations of the same

wealth process with respect to the same vector of Brownian motions. Thus, the factor

loading on the Brownian motions must be identical in any state of the world. This

yields the following system of two equations with two unknowns:

�1 (t)
| � (t) =

�
@X1

@D
�DD (t)�

@X1

@�
 D (he)� (t) ,�

@X1

@�
 e (he)� (t)

�
;

where

� (t) =

24 @P (t)
@D

�DD (t)� @P (t)
@�

 D (he)� (t) ,�
@P (t)
@�

 e (he)� (t)

@O(t)
@D

�DD (t)� @O(t)
@�

 D (he)� (t) ,�
@O(t)
@�

 e (he)� (t)

35 ;
where O (t) is the price of the consel bond. However, as we can see later, it will not

have an impact on the trading volume.

Solving for the portfolio holding, we obtain the �rst agent�s optimal position as

�1 (t) = (� (t)
|)
�1

24 @X1

@D
�DD (t)� @X1

@�
 D (he)� (t)

�@X1

@�
 e (he)� (t)

35 ;
where
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24 �@O(t)
@�
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@�
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@D

�DD (t)� @P (t)
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35 ;
and
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�
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Hence, the dynamic of stock holding is given as
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Hence, the volatility of the portfolio in stock, �11; is given as

�2�11 =

�
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 D (he)� (t)
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�
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where the expression of @�11
@D

and @�11
@�

will be derived as follows.

Wealth dynamics sensitivity to D(t) and �(t)

Because X(t) = E1t

1Z
t

(� (t; s; �(t)) c(s)ds) and by Fubini�s Theorem, the derivative of

the wealth process X(t) with respect to �(t) is
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Similarly, the derivative of the wealth process with respect to D(t) is

@X (t)

@D (t)
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1Z
t

� (t; s; �(t))
�(t)e

1
�1

�
M�(t;s)�

p
V�(t;s)Z�

�

1� �(t)e
1

�1

�
M�(t;s)�

p
V�(t;s)Z�

� eMD(t;s)�
p
VD(t;s)ZDds

Moreover, note @ @X
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Appendix B: Moment Conditions

In this appendix, we provide moment conditions for the GMM estimation that uses

information in fundamentals like dividend growth rate, signal process, and a series of

forecasters�dispersion about future macro economics from the surveys to estimate the

parameter values.

The moment conditions that we �t jointly in the GMM procedure are as follows:

1. Di¤erence in belief evolves according to

m1(t)�m2(t) =
m1
�(0)�m2

�(0)

0
(t);

where (t) = 1
�10 +(h2D+h

2
e)t
.

2. From the perspective of investor 1, the log dividend evolves as a function of the

prior beliefs and signal precision

d lnDt = m1
�(t)dt+ �DdB

1
D(t)

= (m1
�(0) + (t)B1

D(t) + (t)heB
1
e (t))dt+ �DdB

1
D(t):

3. The observed signals evolves as a function of the prior beliefs and signal precision

det = m1
�(t)dt+ �edB

1
e (t)

= (m1
�(0) + (t)B1

D(t) + (t)heB
1
e (t))dt+ �edB

1
e (t):

4. From the perspective of investor 2, the log dividend evolves as a function of the

prior beliefs and signal precision

d lnDt = m2
�(t)dt+ �DdB

2
D(t)

= (m2
�(0) + (t)B2

D(t) + (t)heB
2
e (t))dt+ �DdB

2
D(t):
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5. The observed signals evolves as a function of the prior beliefs and signal precision

det = m2
�(t)dt+ �edB

2
e (t)

= (m2
�(0) + (t)B2

D(t) + (t)heB
2
e (t))dt+ �edB

2
e (t):

/ ADD MOMNET CONDITION FOR TRADING VOLUME HERE /

Use these conditions, we can form the GMM objective function and the apply the

standard GMM estimation procedure.
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Table 1: The Estimates of Threshold Regressions
equity premium volatility trading volume
i = 0 i = 1 i = 0 i = 1 i = 0 i = 1

�i;DY
0:076
(1:78)

0:039
(2:05)

� � � �

�i;TBL
�0:058
(�1:39)

�0:493
(�2:23) � � � �

�i;CAY
�0:113
(�0:89)

0:871
(3:74)

� � � �

�i;TV � � � � 1:004
(195:4)

0:973
(70:2)

�i;TS � � � � 0:002
(0:79)

�0:003
(0:65)

�i;SR � � �0:008
(�0:20)

�0:006
(�1:21)

0:156
(1:17)

�0:001
(�0:02)

�i;V ol � � 0:447
(1:29)

0:062
(2:87)

� �

i;1
3:72
(1:88)

�0:247
(�0:47)

0:231
(1:35)

�0:080
(�1:72)

�0:844
(�0:78)

�2:619
(�1:13)

i;2
�2:241
(�1:97)

�3:430
(�2:43)

�0:656
(�0:70)

0:097
(0:29)

�4:05
(�0:42)

8:11
(0:93)

The table reports the estimation results of the threshold regressions using quarterly
data. The threshold variable is signal precision. The depedent variables are respectively
the equity premium, stock return volatility, and trading volume. The data sample is
1968:01-2013:04. t-values are reported in parentheses.
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Table 2: Descriptive Statistics and Parameter Estimates
Panel A: Descriptive Statistics

Mean Maximum Minimum Std. Err.
Signal Process 0:066 0:277 0:01 0:048
Stock Returns 0:0278 0:228 �0:252 0:084

Stock Return Volatility 0:185 0:586 0:079 0:073
Equity Premium 0:0148 0:214 �0:272 0:084

Trading Volume (in logs) 14:1 17:5 11:1 2:0
Dividend Growth Rate 0:015 0:067 �0:076 0:021

Panel B: GMM Estimates
Parameter m1(0) m2(0) 0
Value 0:031�� 0:0041��� 0:14��

Std. Err. 0:012 0:0009 0:06

This table reports the descriptive statistics in Panel A for the quarterly dividend growth
rate, stock returns, signal process, riskfree rate, and trading volume for the period from
1968 : 04 to 2013 : 04. Panel B presents the GMM estimates for the parameters. �, ��,
��� represent the signi�ance level at 10%; 5%; and 1%; respectively.
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Figure 1: Disagreement Processes. The �gure plots the two dis-
agreement processes,  D and  e; as the functions of signal precision with
�D= 0:2;m

1(0) = 0:5;m2(0) = 0:1; t = 0:01: The scale on the axis of the public signal
precision is x = ln (1 + h") :
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Figure 2: The stock return volatility. The �gure plots the stock return volatil-
ity as a function of signal precision. The scale on the axis of the public sig-
nal precision is x = ln (1 + h"). The parameters used when plotting are as follow:
m1(0) = 0:04;m2(0) = 0:01;  = 0:5;�D = 0:03; 0 = 0:1: We use identical value of the
parameters for plotting other asset pricing properties throughout this section, and do not
repeat the parameter values again.
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Figure 3: The investor 1�s conditional equity premium. The �gure plots agent 1�s
equity premium as a function of signal precision. The scale on the axis of the public signal
precision is x = ln (1 + h").
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Figure 4: The trading volume. The �gure plots trading volume as a function of signal
precision. The scale on the axis of the public signal precision is x = ln (1 + h").
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Figure 5: The Di¤erence-in-Belief Index. This �gure plots the time series of the
Di¤erence-in-Belief (DiB) index from 1968:04 to 2013:04. The DiB index is obtained by
calculating the forecasters�dispersion on macroeconomic fundamental variables from
Survey of Professional Forecasters available at the Federal Reserve Bank of Philadel-
phia.
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Figure 6: The Bell-Shaped Functions. The �gure plots the threshold-regression-
implied equity premium (Panel A) and trading volume (Panel B) against information
quality (x-axis). The solid curves are a cubic spline implied by the data.
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