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Social Network, Herding and Competition

Abstract

We analyze conditions under which fund managers herd to acquire informa-

tion and trade on the same stock. This happens when fund managers have

highly complementary signals, that is each manager has very imprecise in-

formation but taken together they have perfect information. However, the

number of managers herding on the same stock cannot exceed three due to

competition. When information sharing in a social network is introduced

among managers, herding can occur for arbitrary number of managers and

the set of parameters under which herding occurs is strictly larger. The

benefit of social network increases with the social network size for highly

complementary information. The optimal social network size decreases with

the precision of managers’ signals. With social network, fund managers can

act in unison and maximize their combined profits. We then allow informa-

tion sharing to be noisy and show that noisy communication of signals can

be optimal and further expanding the set of parameters for herding to be

optimal. We extend our model to multi-period and continuous time trading

and show that our main results still go through in dynamic trading although

the opportunity set that favors herding will be smaller due to more intensive

competition. In addition, in continuous time trading, investors will not herd

unless there is a social network to share information. However, they will

never share their information to all in the network due to the resulting rat

race among the managers.
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1 Introduction

Human beings are social animals and are influenced by what their friends do. We go to

the clubs, watch the same movies and try out adventures together with our friends. This

also holds in our financial activities. For example, fund managers prefer to be close to

financial centers, partly because they would like to know what other fund managers are

investing. There are many venues with which fund managers can share ideas, including

industry conferences, Internet clubs and private communications. In the hedge fund industry,

top investors share ideas and learn from each other in conferences such as the Value Investing

Congress, the Hedge Fund Activism and Shareholder Value Summit. With the spread of

mobile communications, information exchanges through on line communities become very

convenient. Sumzero.com is an invitation only internet community open to hedge fund

managers. Valueinvestorsclub.com provides another platform for top investors to share their

best ideas.

Observation of each other’s activities and private communication in a social network can

result in herding, which is prevalent in financial activities. Some stocks are hot while others

attract no attention even when the stocks have similar distributions in terms of fundamental

value. When Warren Buffet buys stocks in China, other managers take notice. In the fund

industry, a large literature has shown that herding among fund managers are prevalent.

Lakonishock, Shleifer, and Vishny (1992) find evidence that pension funds engage in herding

with a stronger effect in smaller stocks. Grinblatt, Titman and Wermers (1995) find a

tendency for funds to buy and sell stocks at the same time in which a large number of

funds are active. Kodres and Pritsker (1997) report herding in daily trading by large futures

market institutional investors.

People not only watch what other people do, they also communicate with each other,

although conversation can be noisy. With the current explosive development of social net-

works on the Internet, a huge amount of information gets passed from one person to another

through multimedia. Shiller and Pound (1989) argue that conversations among investors are

very important in investment decisions. Shiller (2000) argues that: “This flow of conver-

sation serves to exchange a wide variety of information, and also to reinforce memories of

pieces of information to be held uncommon by the group.” Hong, Kubik and Stein (2005)

show that mutual fund managers in a given city tend to have trading behavior that covaries
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more strongly with other managers in the same city, as opposed to with managers in differ-

ent cities. Feng and Seasholes (2004) find similar behavior in the Chinese stock market for

geographically closed investors. Cohen, Frazznini and Malloy (2007) find that mutual fund

managers who went to college together have similar trades. Ivkovic and Weisbenner (2007)

find individual investors who live close by trade similar stocks. Pool, Stoffman and Yonker

(2014) find that socially connected fund managers have more similar holdings and trades.

Many fund managers place an identical trade at the same time. For example, in October

2008, multiple hedge funds trading in the Porsche/Volkswagen lost money when the deal

went through. In August 2007, many hedge funds experience losses caused by one or more

sizable hedge funds liquidating (Khadani and Lo (2007)).

In this paper, we propose a theory of herding on information acquisition and trading on

the same stock due to information complementarity. There is a public announcement that

reveals the asset value. We assume that managers have information about the asset value.

Hence, when the managers combine their information, they have perfect information about

the asset value. We show that when the noise in managers’ signals is sufficiently large, they

would prefer to acquire information and trade on stocks in which other fund managers have

already been active, provided the total number of fund managers in the stock is less than or

equal to three. In this case, herding on the same stock occurs because of implicit collusion

when they trade together. Fund managers make more profits as their combined information

is much more informative than their individual signals. However, the incentive to herd is

hindered by competition, and herding occurs only when the number of managers is less than

or equal three.

The implicit collusion through trading raises the possibility that managers may have

incentives to interact with each other through social networks and share information among

themselves directly. We derive conditions under which managers are better off sharing their

information with each other. We show that with very noisy signals, managers’ gains from

information sharing increases with the size of social network. Intuitively, direct information

sharing helps managers to have stronger information advantage over the market. As a

result, information sharing increases the opportunity set with which herding on information

acquisition and informed trading occurs. We show that in the presence of social network

and information sharing, herding can occur when the number of fund managers is arbitrarily
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large.

Interestingly, for any social network size, there exist parameters such that managers trade

in aggregate like a monopolist. In this case collusion is perfect in terms of expected profits.

First of all, information sharing makes managers more informative. Secondly, competition is

also minimized when the sufficient statistic of each fund manager are independent from each

other in a social network. Fund manager’s expected profits are non-monotonic with respect

to the informativeness of the fund manager’s signal under optimal social network size. Start

with the case in which fund managers have very noisy signals such that the optimal social

network is to include all managers. As the informativeness of manager’s signal increases,

it reaches a point in which all managers collude which maximize their expected profits.

At this point, when managers’ signals becomes more informative, they start to trade more

competitively and their expected profits will decrease. As the manger’s signal’s precision

further increases, there will be a point such that the optimal network size drops by one. At

this point, manager’s expected profits will again increases with the informativeness of their

signal and this zigzag will repeat itself until information sharing is no longer optimal.

Information sharing is a double edged sword. On one hand, it helps fund managers to

have more precise information. On the other hand it also intensifies competition. Thus there

exist an optimal size of social network among the fund managers. We show that the optimal

size of social network decreases as managers have more precise information. Only when each

fund manager’s signal is sufficiently noisy, would their expected profits increase with the size

of social network. In this case it is optimal for the social network to cover all managers.

Communication in a social network may not be complete and precise. Conversational

learning can be noisy and information can be distorted during communication. With large

social networks, fund managers may not be willing to share all of their signals in the social

network. We analyze how noisy information sharing affects trading. We show that when

social network size is sufficiently large, managers would like to add noises to the informa-

tion shared in the network. Adding noises could reduce competition caused by information

sharing and expand the set of parameters with which herding and information sharing are

beneficial to managers.

In earlier literature, it has been shown that when informed investors trade dynamically,

they compete more aggressively which erodes their profits. Consequently, it is important
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to examine how dynamic trading affects the incentive to share information. We extend our

model to multi-period setting and continuous time trading. The incentive to share informa-

tion still persists in dynamic trading. However, the opportunity set in which managers herd

reduces and are willing to share information increases with trading frequency. In particular,

herding will not occur without social network in the continuous time trading setting. More-

over, managers will never share all of their information in continuous time trading due to a

rat race in continuous time trading with homogeneous information.

Our paper is related to two strands of literature in finance. The first is herding. An

extensive literature have shown that people herd because of reputation, social learning or

relative compensation. Herding in our paper is different as it occurs due to complementarity

in their information as without other managers in the market, each manager will end up with

very noisy information and limited gains from it. Moreover, herding occurs due to collusion

to reap higher profits and the potential to share information in a social network.

The second line of related research is on social network in financial markets. Social

networks theory has been used to analyze contagion. Stein (2008) shows that when players

have to bounce ideas off each other in order to come up with a new product, they are willing

to exchange ideas when the discount rate is close to one and competition is not too high.

In his model, players receive signals sequentially and alternate with each other. On the

contrary, in our model fund managers act simultaneously and price formation is endogenous.

Moreover, we study herding in the fund industry while Stein’s focus is on venture capital.

Colla and Mele (2009) also study the role of social network in a strategic setting. They focus

on trade correlations among informed investors and show that informed investors have more

correlated trades when they are close to each other in the network. Ozsoylev and Walden

(2011) study general forms of network structure and provide conditions for existence of linear

rational expectations equilibria.

The remainder of the paper is organized as follows. Section 2 introduces the model in

the absence of social network. Section 3 analyzes the effects of social network on herding

and profits to fund managers. Section 4 allows for noisy signals in personal communication.

Section 5 extends the model to multi-period trading and continuous time trading. Section 6

Concludes. Proofs are presented in the appendix.
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2 The Model

We consider an economy with N risk neutral fund managers who invest in a stock based

on the classic model of Kyle (1985). In our model, there are two dates, time 0 and time 1.

And in the financial market there exist one risk-free asset and one risky stock that the fund

managers can invest in. The risk-free rate is taken to be zero.

Each fund manager receives a mean-zero signal si at time 0. We assume the signals

and the liquidation value of the stock have a nondegenerate joint normal distribution that is

symmetric in the signals.1 Let v denote the expectation of the liquidation value conditional

on the combined information of the fund managers. By normality, v is an affine function of

si’s. By rescaling the si if necessary, we can assume without loss of generality that

v = v̄ +
N∑
i=1

si, (1)

for a constant v̄. This is a normalization adopted by Foster and Viswanathan (1996) and

Back, Cao and Willard (2000). For simplicity, we assume v̄ = 0.

Remark 1 Notice that our information structure allows for the signals to have negative

correlation. To understand how this could happen in the economy, consider the following

setting. At time zero, there is a public signal y about the stock value:

y = v −
N∑
i=1

si. (2)

And fund manager i observes the noise in the public signal, si. We assume that the stock

value v, the public signal y and the fund managers’ private signals {si}Ni=1 have zero means

and a nondegenerate joint normal distribution that is symmetric in the private signals. The

variance of v is σ2
v and the variance of si is the same across i and is denoted σ2

s . Prior to

observing the signal y, correlation coefficient of si with sj for i 6= j is ρ0 and we assume that si

are positively correlated, 0 ≤ ρ0 ≤ 1. The private signal si is assumed to be uncorrelated with

1Symmetry means that the joint distribution of stock value v and private signals {si}Ni=1 is invariant to
a permutation of the indices 1, . . . , N .

5



the stock value v, Cov[v, si] = 0, i = 1, . . . , N . In such a setting, although knowing private

signal si alone doesn’t help predicting the stock value, each fund manager has information

advantage over the market as she knows how to interpret the public signal better.

Given the public signal, we can rewrite the stock value as

v = y +
N∑
i=1

si. (3)

Therefore given the public signal, the stock value is a sum of the signals of the fund managers.

This provides an explanation for equation (1).

The conditional correlation between signals si and sj given the public signal y is

ρs|y =
ρ0σ

2
v − (1− ρ0)(1 + (N − 1)ρ0)σ

2
s

σ2
v + (N − 1)(1− ρ0)(1 + (N − 1)ρ0)σ2

s

(4)

The conditional correlation coefficient ρs|y decreases in the variance of the private sig-

nal, σ2
s . When σ2

s goes to infinity, ρs|y goes to − 1
N−1 . When σ2

s goes to 0, ρs|y goes to ρ0.

Although the unconditional correlation between private signals are always positive, the con-

ditional correlation between them could be negative given the variance of the private signal

is big enough.2

Let φ denote the “R-squared” of running a regression of v on Nsi,

φ =
Var[v]

Var[Nsi]
. (5)

It is the percentage of variance in v that is explained by the fund manager’s information.

This is a measure of the quality of each fund manager’s information. If φ = 1, then either

N = 1 or the si’s are perfectly correlated. In either case, each fund manager has perfect

information about the stock value v. Letting ρ denote the correlation coefficient of si with

sj for i 6= j, one can compute φ for N > 1 as

φ =
1

N
+
N − 1

N
ρ (6)

2In Colla and Mele (20010), there are scenarios that the initial correlation between private signals is
assumed to be negative. In our setting, the private signals are assumed to be positively correlated but the
conditional correlation between them turns negative after observing the public signal.
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Notice that due to symmetry, there is no i subscript on φ. It is easy to show that φ’s range

is (0,1] and that φ increases with ρ.

Definition We say that fund managers have complementary signals when φ < 1
N

, indepen-

dent signals when φ = 1
N

and substitutive signals when φ > 1
N

.

As φ represents fraction of variance explained by each of the fund manager’s signal,

when φ < 1/N , it means each manager standing alone, knows about less than 1/N of the

variation of v. However, when managers can combine their information, they have perfect

information. Therefore, managers have incentive to exchange signals and the stock payoff

variance explained by the combined signals is more than a simple addition of explained

variance with individual signals. On the contrary, when φ > 1/N , each fund manager alone

knows more than 1/N of the variation of v. Although managers know the stock value v

perfectly if they combine their information, they might not benefit from exchanging signals

because competition could become so fierce and trading profits are reduced by information

sharing.

As in the usual Kyle (1985) setup, there is also a group of liquidity traders with order

u which is normally distributed with mean zero and variance σ2
u. u is independent with

the liquidation value v and private signals {si}Ni=1. There is a competitive market maker

who sets the price at the conditional expected payoff given the aggregate order flow. All

market participants are assumed to be risk neutral. We first analyze the incentive to herd on

information acquisition in a static setting and thereafter consider the role of social networks.

2.1 Fund Managers’ Profits in the Absence of Social Network

In this subsection, we derive the manager’s expected profits of trading as a monopolist and

trading together with other fund managers on the same stock. The case in which a fund

manager trading alone in the absence of other fund managers is similar to that in Kyle (1985).

Without loss of generality, we assume fund manager i is the only manager who trades on

the stock. The fund manager behaves as a monopolist, at time 0, he submits an order of

xi = βsi, keeping in mind of the price impact of his order. The market maker observes the

total order flow z = u + xi and set the stock price to be the expectation of v given total
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order z:

p0 = λz (7)

As all random variables are normally distributed, one can compute λ as

λ =
βCov[v, si]

σ2
u + β2Var[si]

(8)

The fund manager’s expected profit at time 0 when submitting an order xi is

E[xi(v − (λ(u+ xi)))|si] = xi(E[v|si]− λxi),

So the optimal order is

xi =
1

2λ
E[v|si] =

Cov[v, si]

2λVar[si]
si.

Hence,

β =
Cov[v, si]

2λVar[si]
. (9)

Combining equation (8) and equation (9), one expresses β explicitly as

β =

√
σ2
u

Var[si]
. (10)

Specifically, let σ2
v denote the variance of v, then we have following proposition,

Proposition 1 Let πM denote the expected profits of a manager trading alone on a stock.

Then

πM =

√
φσvσu

2
(11)

Similarly as in Kyle (1985), the fund manager’s profit is proportional to the standard

deviation of the explained part of the stock value by his signal, and the standard deviation

of the liquidity order. In Kyle (1985), the fund manager knows the stock value v perfectly

and hence φ = 1.
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When there are more than one fund manager trade together with other informed fund

managers, the case is similar to the static model in Cao (1995) and Foster and Viswananthan

(1996). Fund manager i submits an order of xi = βsi, the market maker observes a total

order flow:

z = u+
N∑
i=1

xi = u+ βv.

and sets the stock price at the conditional expectation of v given the aggregate order flow,

p0 = E[v|z] = λz,

with λ = βVar[v]
σ2
u+β

2Var[v]
.

Fund manager i’s expected profits while he submits an order of xi are

E

[
xi

(
v −

(
λ(xi +

∑
j 6=i

βsj)

))
|si

]
= xi

[(
(1− λβ)

Cov[si, v]

Var[si]
+ λβ

)
si − λxi

]

So the optimal order xi is

xi =
1

2λ

(
(1− λβ)

Cov[si, v]

Var[si]
+ λβ

)
si = βsi.

One can solve β explicitly as

β =

√
σ2
uCov[si, v]

Var[v]Var[si]
=

√
σ2
u

NVar[si]

Each fund manager’s expected profits are given below:

Proposition 2 Let πC denote the expected profits of each fund manager trading together on

a stock. Then

πC =

√
φσvσu√

N(1 +Nφ)
. (12)

Interestingly, fund managers trade in unison like a monopolist when φ = 1/N . In the

case that a monopolist knows the stock value v perfectly, she places an order σu
σv
v and earns
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expected profits of 1
2
σuσv. When there are multiple fund managers and φ = 1/N , they

collectively place orders β
∑N

i=1 si = βv, with β =
√

σ2
uCov[si,v]

Var[v]Var[si]
= σu

σv
, and earn expected

profits of N ×
√
φσuσv√

N(1+Nφ)
= 1

2
σuσv.

When the expected profits of a fund manager is higher when he trades together with

other fund managers, this implies that the fund manager would prefer to herd together and

trade on stocks in which other fund managers are already active. Comparing the expected

profits with and without competition, we can derive conditions in which herding is optimal.

For that purpose we assume that there is another stock with independent payoff v′, private

signals s′i, i = 1, ..., N . In addition, the variance covariance matrix of v′, s′i, i = 1, ..., N is

identical to that of v, si, i = 1, ..., N . Before trading starts, fund managers have to decide on

which stock to acquire information. We analyze conditions under which all fund managers

would decide to acquire information and trade on the same stock.

Proposition 3 When N = 2, 3, and

φ < φ∗ ≡ 1

N

(√
4

N
− 1

)
,

there exists a herding equilibrium in which all fund managers will herd to acquire information

on the same stock. When N ≥ 4, there does not exist such a herding equilibrium.

Intuitively, one would thought that fund managers prefer to analyze stocks that no other

fund manager has been trading actively. Indeed, notice that φ∗ ≤ 1/N and thus when

managers have substitutive signals, that is φ > 1/N , herding will not occur. However, when

φ < 1/N , each fund manager has information that tells him less than 1/N of the variation

in the stock payoff. This implies that combining fund managers signals together, each fund

manager knows more about the variation in stock payoff than the simple addition of the

explained variances using individual signals. However, the gains of cooperation and herding

is also hindered by competition. When the number of fund managers is large, i.e., N ≥ 4,

fund managers will never herd on the same one stock. However, it’s possible that there

exists partial herding, in which a group of less than four managers herd on a stock and other
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groups herd on other stocks.3

When investors have complementary signals, investors herd as they would like to analyze

the same stock and trade together to reap more profits. An interesting question is whether

investors would share their information directly. We next analyze the effect of social network

and information sharing on the incentive to herd.

3 Social Network and Herding

In this section, we assume that fund managers are seated on a circle and each fund manager

can observe the signals of up to G− 1 managers clockwise to his seat, 1 ≤ G ≤ N .4 We call

G the size of social network. When G = 1, there is no social network and each fund manager

can see only his own private signal. When G = N , each fund manager observes all private

signals {si}Ni=1.

Since fund manager i can observe the signals of fund manager i + 1, . . . , i + G − 1 −
Nb(i+G− 1)/Nc, his information can be summarized by a sufficient statistic ŝi(G)

ŝi(G) ≡ 1

G

iG∑
j=i

sj, (13)

here, iG ≡ i + G− 1−Nb(i + G− 1)/Nc, where b·c is the largest smaller integer function.

The stock value can still be expressed as the sum of signals ŝi(G).

v =
N∑
i=1

ŝi(G). (14)

The symmetric information structure is maintained although the correlation structure is

different. The traders that are seated close by will have more highly correlated signals. For

3When a group of three fund managers herd on a stock, then each manager makes more profits than
what he gains from forming a two member group with another manager and trading on anther stock. When
forming a two-manager group, the variance of the liquidation value becomes σ̂2

v = 4φ
3φ+1σ

2
v and φ becomes

φ̂ = φ2

3φ+1 . The ratio of expected profits that the manager earns when staying in a three-manager group and

forming a new a two-manager group is 18φ2+3φ+1√
54φ(1+3φ)

, which is larger than 1 when φ < 1
3

(√
4
3 − 1

)
.

4In Colla and Mele (2010), fund manager i can observe the signals of manager i± 1, . . . , i±G0. In their
setting, a manager observes 2G0 + 1 (which is always an odd number) signals. However, in our setting a
manager can observe G signals, here G could be an arbitrary positive integer.
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example, the correlation between ŝi(G) and ŝi+1(G) is

Corr[ŝi(G), ŝi+1(G)] = ρ0 +
(G− 1)(1− ρ0)(1 +Gρ0)

G(1 + (G− 1)ρ0)

which is larger than ρ0, the initial correlation coefficient between private signals, when G > 1

and ρ0 < 1.5 Similarly, the proportion of variance explained by ŝi(G) is

φ(G) ≡ Var[v]

Var[Nŝi(G)]
=

(N − 1)Gφ

N(G− 1)φ+N −G
.6

Clearly, as fund managers share more information with each other, each manager knows

more about the stock value. Therefore φ(G) is an increasing function of G.7 When G = 1,

i.e., there is no social networking and φ(G) = φ. When G = N , each fund manager observes

all private signals and hence knows the stock value v perfectly, φ(G) = 1.

In Section 2, we have shown that when fund managers trade in unison like a monopolist

and their expected profits are maximized when φ = 1/N . With social network, we have

following result.

Proposition 4 For every N > 2 and G > 1, there exist

φ̂ =
N −G

N [G(N − 2) + 1]
<

1

N
(16)

such that φ(G) = 1/N and fund managers trade in unison like a monopolist.

5One can show that Corr[ŝi(G), ŝi+j+1(G)] = Corr[ŝi(G), ŝi+j(G)]− 1−ρ0
G(1+(G−1)ρ0) , which is smaller than

Corr[ŝi(G), ŝi+j(G)] given ρ0 < 1 and manager (i+ j + 1)G doesn’t see si.
6

φ(G) =
Gσ2

v

N2(1 + (G− 1)ρ0)Var[si]

=
Gφ

1 + (G− 1)ρ0

(
By φ =

σ2
v

N2Var[si]

)
=

(N − 1)Gφ

N(G− 1)φ+ (N −G)

(
By ρ0 =

Nφ− 1

N − 1

)

7Rewriting φ(G) =
(

1 + 1−φ
(N−1)φ

(
N
G − 1

))−1
, which is a increasing function in G given φ > 0 and 1 ≤

G ≤ N .
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Fund managers know more about the stock value as they share more information with

each other. With social network, the fund managers can maximize their profits with even

noisier information. The precision of their private signals could reduce further as the size of

social network increases, i.e., φ̂ decreases in G.

Above we analyze the optimal precision of private signals (given G) for fund managers

to maximize their profits. We next determine the optimal size of social network given the

precision of private signal φ.

Proposition 5 Let

Ĝ ≡
⌊

N(1− φ)

1 +N(N − 2)φ

⌋
(17)

The optimal network size is

G∗(φ) =


Ĝ if φ(Ĝ)φ(Ĝ+ 1) > 1

N2

Ĝ, Ĝ+ 1 if φ(Ĝ)φ(Ĝ+ 1) = 1
N2

Ĝ+ 1 if φ(Ĝ)φ(Ĝ+ 1) < 1
N2

. (18)

In Figure 1A, we plot the optimal size of social network as a function of the precision

of each manager’s signal φ. Interestingly, when φ ≥ 1/N ,8 it is optimal for fund managers

not to share any information. Notice that the smaller φ, the larger is the optimal network

size. We have G∗ = N if φ < 1
N(N(N−1)2−(N−2)) . So when fund managers have very noisy

signals, they would like to share their information to all other managers. Only in this case,

managers’ gains from information sharing increases with the size of social network. As φ(G)

remains smaller than 1/N but gets closer to 1/N as G increases, the fund managers expected

profits increases in the size of social network.

In Figure 1B, we plot each fund manager’s expected profits as a function of the precision

of each manager’s signal φ with optimal size of social network. Fund manager’s expected

profits are non-monotonic with respect to the informativeness of the fund manager’s signal

under optimal social network size. Start with the case in which fund managers have very

8Actually, G∗ = 1 when φ >
1+
√

1+8(N−1)(N−2)
4N(N−1) which is smaller than 1/N .
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noisy signals such that the optimal social network is to include all managers. As the infor-

mativeness of manager’s signal increases, it reaches a point in which all managers collude

which maximize their expected profits. At this point, when managers’ signals become more

informative, they start to trade more competitively and their expected profits will decrease.

As the mangers’ signals’ precision further increases, there will be a point such that the opti-

mal network size drops by one. At this point, manager’s expected profits will again increases

with the informativeness of their signal and this zigzag will repeat itself until social network

is no longer optimal.
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Figure 1 Figure 1A: The optimal size of social network as a function of the precision of
each manager’s signal φ. Figure 1B: Each fund manager’s expected profits as a function of
the precision of each manager’s signal φ. The number of fund managers N = 10.

In Section 2, we show that fund managers would like to herd to acquire information

and trade on the same stock, given the number of fund managers is less than four. Fund

managers know more about the stock value as they share more information with each other.

So, with social network, fund managers with very imprecise private signals share information

with each other and come up with better information about the stock value and it’s possible

for them to make more profits than what they gain while trading alone in which case there is

no a social network to share information. We can show that under certain conditions herding

to acquire information and trading on the same stock is optimal for arbitrary number of fund

managers. Specifically, we have following proposition.

Proposition 6 For any N > 1, there exist G and φ such that all fund managers will herd

to acquire information and trade on the same stock.
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4 Noisy Communication in a Social Network

In last section we have shown that there could be gains in sharing information. However,

information sharing can also hurt managers if they share too much information. Therefore

it is interesting to see when information sharing is optimal and whether fund managers will

herd on the same stock if a fund manager can choose to share how much of his information

to other managers sitting close to him.

Now, fund manager i can send a noisy version of his private signal to managers up to

G − 1 seats away from him clockwise, and at the same time he observes a noisy version of

private signals of his G − 1 neighbors. Each fund manager adds a noise to his own private

signal when sharing information with his neighbors. Specifically, fund manager i adds a

noise ηi to his private signal si to form a noisy version of signal s′i = si + ηi that he shares

with his G− 1 neighbors. At the same time, he observes

s′j = sj + ηj, j = i+ 1, . . . , iG.

Here, {ηj}Nj=1 are normally distributed with mean zero and variance σ2
η, they are mutually

independent and are independent with other random variables in the economy. The precision

of the noise ηi measures how much of noise a fund manager adds into his private signal. The

larger the σ2
η, the noisier is the information that the fund managers share with each other.

When σ2
η = 0, the fund managers don’t add any noise into their signals and it goes back the

perfect information sharing case we analyze in Section 3. At the other extreme case, σ2
η =∞

and the information that the fund managers share with each other is useless and this case

corresponds to that in Section 3 without information sharing or G = 1.

Now, fund manager i’s information set contains: private signal si, the noise that he adds

to his shared signal, ηi, and information that up to G − 1 managers sitting away from him

clockwise share to him, {s′i+1, . . . , s
′
iG
}. Due to the symmetry of information structure, the

sufficient statistics for {si, ηi, s′i+1, . . . , s
′
iG
} is {si, ηi,

∑iG
j=i+1 s

′
j}. Define

εi ≡
1

G− 1

iG∑
j=i+1

s′j, (19)
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and

ω ≡
N∑
i=1

ηi. (20)

Then fund manager i’s information set at time 0 is Si = {si, ηi, εi}.

Lemma 1 The conditional expectations of v and ω under fund manager i’s information set

are

E[v|Si] = αvssi + αvηηi + αvε εi, (21)

E[ω|Si] = αωs si + αωη ηi + αωε εi, (22)

with

αvsαvη
αvε

 =


(1+(N−1)ρ0)(σ2

η+(1−ρ0)σ2
s)

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

0
(1+(N−1)ρ0)(G−1)(1−ρ0)σ2

s

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

 ,
αωsαωη
αωε

 =


−(G−1)ρ0σ2

η

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

1
(G−1)σ2

η

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

 . (23)

Because the noise ηi that fund manager i adds to his private signal doesn’t help predict

the stock value v and ηi is independent of si and εi, we have αvη = 0. Moreover, ω =
∑N

i=1 ηi

and ηi doesn’t have any power in predicting ηj (j 6= i), so we have αωη = 1. Each fund

manager use the information εi that other managers share to him to help predicting the

stock value, the improvement of predicting v from observing εi deceases as the fund managers

add more noise to their signals. This can be seen clearly from that Var[v|si] − Var[v|Si] =

φσ2
v(G−1)(1−ρ0)2

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s
decreases with σ2

η. In the extreme case σ2
η = ∞, εi doesn’t help to

predict v and hence we have αvη = ∞. On the other hand, it goes back to the perfectly

information sharing case in Section 3 when αvη = 0 and we have E[v|Si] = 1+(N−1)ρ0
1+(G−1)ρ0

∑jG
j=i sj.

Similarly, fund manager i uses εi to predict v − ηi and at the same uses si to hedge the

information about sj contained in εi. One can see this clearly when σ2
η = ∞ and E[ω|Si] =

ηi +
∑iG

j=i+1(sj + ηj)− (G− 1)ρ0si =
∑iG

j=i ηj +
∑iG

j=i+1(sj − ρ0si).

Fund manager i submits an order of

xi = βssi + βηηi + βεεi (24)

16



and the market maker observes a total order of

z = u+
N∑
i=1

xi

= u+
N∑
i=1

(βssi + βηηi + βεεi)

= u+ (βs + βε)v + (βη + βε)ω (25)

and sets the time 0 stock price to be

p0 = E[v|z] = λz

with

λ =
(βs + βε)σ

2
v

σ2
u + (βs + βε)2σ2

v + (βη + βε)2σ2
ω

. (26)

In this case, each fund manager’s expected profits are given below:

Proposition 7 Let πnC denote the expected profits of each fund manager trading together on

a stock. Then

πnC = λ[βs, βη, βε]Var[Si][βs, βη, βε]
′, (27)

When the size of social network is sufficiently large, fund managers would be sharing too

much information with each other when φ > φ̂ at which φ(G) = 1/N . In this case, managers

would like to add noises to the information shared in the network. With perfect information

sharing, the fund managers will not herd on information acquisition and trading anymore if

φ > φ̂. However, if they can add noise to their shared information, it would be still optimal

to herd when φ is slightly larger than φ̂. We can see this clearly from figure 2A, in which

we plot the boundary value of φh as a function of N with G = N . When φ < φh, herding

on information acquisition and stock trading occurs. Notice that noisy communication can

expand the set of parameters with which herding occurs. Similarly, in figure 2B, we plot the

boundary value φs under which information sharing in a network is optimal and we notice

that noisy communication increases φ(s) for all N .
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Figure 2 Figure 2A: The boundary value of φ(h) as a function of number of fund managers
N , herding on information acquisition and stock trading occurs when φ < φ(h). Figure 2B:
The boundary value of φ(s) as a function of number of fund managers N , information sharing
in a network is optimal when φ < φ(s). The size of social network G = N . The dashed
line is for the case with perfect communication and the solid line is for the case with noisy
communication.

5 Dynamic Trading

Cao (1995), Foster and Viswananthan (1996), and Back, Cao and Willard (2000) show that

dynamic trading can affect informed investors’ trading strategy dramatically. In particular,

when investors have the same information, their profits will be driven down to zero as

trading approaches continuous time. It is interesting to examine how multi-period trading

and continuous time trading affects the incentive to herd on information acquisition and to

share information.

In figure 3A, we plot the boundary value of φh as a function of number of trading

periods with the size of social network G = 2 and the number of fund managers N = 6.

When φ < φh, herding on information acquisition and stock trading occurs. Notice that

dynamic trading can narrow the set of parameters in which herding occurs. φh decreases

with the number of trading periods and reaches 0 when the number of trading periods goes

to infinity. Similarly, in figure 3B, we plot the boundary value φs under which information

sharing in a network is optimal and we notice that dynamic trading increases φs.

When the number of trading periods goes to infinity, the model approaches to continuous-

time trading. In a continuous-time trading model, we can show that what a fund manager

18
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Figure 3 Figure 3A: The boundary value of φh as a function of number of trading periods,
herding on information acquisition and stock trading occurs when φ < φh. Figure 3B: The
boundary value of φs as a function of number of trading periods, information sharing in a
network is optimal when φ < φs. The number of fund managers N = 6 and the size of social
network G = 2.

gains while trading alone is always larger than what he gains trading together with other

fund mangers. And if all managers possess identical information about the stock value, that

information will reveal right away at the beginning of the trading period and the expected

profits of each fund manager are driven down to 0. So, it’s never optimal to share information

to all managers.

Proposition 8 In continuous time trading, investors will never herd in the absence of social

network. In addition, investors will never share their signals with all managers.

6 Conclusion

Social networks are becoming increasingly important in daily life. It affects all areas of social

life including investment activities. We analyze the role of social network on the incentives

of fund managers to herd on information acquisition and trading. We show that when fund

managers have noisy and complementary signals, they would like to herd. The formation of

social network expands the set of economies in which herding will occur. The optimal size

of the social network will be larger when investors have noisier signals.

Dynamic and around the clock trading can intensify competition among fund managers.
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As a result, the set of economies for herding to be optimal is smaller in the setting of

continuous time trading. Nevertheless, information sharing and herding remains optimal for

very noisy signals.

For simplicity, we have considered only trading on a single stock. It would be interesting

to see when investors have multiple signals on many stocks, what information they would

like to share. For example, they may want to share information on one stock but not the

other, depending on the correlation structure of signals.

We have also limited our attention to settings in which a manager releases the same signal

to others in his social network. As there are more channels for private communications in

the age of internet, it would be interesting to see how private communications with different

versions of garbled signals would affect our results.
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Appendix

Proof of Proposition 1.

Due to the symmetry of the information structure, we have

φ =
Var[v]

Var[si]

(
Cov[si, v]

Var[v]

)2

=
Cov[si, v]2

Var[v]Var[si]
(28)

The fund manager’s expected profits before observing his private signal are:

πM = E[E[βsi(v − λ(u+ βsi))|si]]

= E

[
βCov[v, si]

2Var[si]
s2i

]
=

1

2
βCov[v, si]

=
1

2

√
σ2
u

Var[si]
Cov[v, si]

=
1

2

√
φσuσv

The second equation comes from equation (8), the fourth equation from equation (9), and

the last equation from equation (28). Q.E.D.

Proof of Proposition 2.

Fund manager i’s unconditional expected profits are

πC = E[E[βsi(v − λ(u+ βv))|si]]

= E

[
β(1− λβ)

Cov[si, v]

Var[si]
s2i

]
= β(1− λβ)Cov[si, v]

=
1

1 + σ2
v/(NVar[si])

√
σ2
u

NVar[si]

σ2
v

N

=

√
φσuσv√

N(1 +Nφ)
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The second equation holds because E[v|si] = Cov[si,v]
Var[si]

si, plugging the expressions of β and

λ into the third equation gives the fourth equation, and the last equation comes from the

definition of φ. Q.E.D.

Proof of Proposition 3. The fund managers will herd to acquire information and trade on

the same stock if and only if πM < πC , which means
√
N(1+Nφ) < 2, i.e., φ < 1

N

(√
4
N
− 1
)

.

Because the range of φ is (0, 1], we must have N < 4. If N ≥ 4, the fund managers will not

herd to acquire information and trade on the same stock. Q.E.D.

Proof of Proposition 4. Given N > 2 and G > 1, it’s straightforward to verify that we

have φ(G) = 1/N when φ equals to

φ̂ =
N −G

N [G(N − 2) + 1]
=

N −G
N [(N −G) + (N − 1)(G− 1)]

< 1/N

So if the fund managers possess complementary private information and there exists a social

network with size G, it’s possible that they behave in unison like a monopolist. Q.E.D.

Proof of Equation (17). Differentiating πC with respect to φ(G) gives

∂πC
∂φ(G)

∝ N(1/N − φ(G))

2(1 +Nφ(G))
√
φ(G)


> 0, if φ(G) < 1/N

= 0, if φ(G) = 1/N

< 0, if φ(G) > 1/N

The fund manager’s expected profit is a concave function in φ(G). It increases in φ(G)

when φ(G) < 1/N , reaches its maximum at φ(G) = 1/N , and decreases as φ(G) > 1/N .

When φ(G) = 1/N , we have G = N(1−φ)
1+N(N−2)φ . However, G has to be a natural number.

We have to compare which is larger, πC(φ(Ĝ)) and πC(φ(Ĝ+ 1)).

πC(φ(Ĝ+ 1))− πC(φ(Ĝ))

∝ φ(Ĝ+ 1)

(1 +Nφ(Ĝ+ 1))
− φ(Ĝ)

(1 +Nφ(Ĝ))

∝ (φ(Ĝ+ 1)− φ(Ĝ))(1−N2φ(Ĝ)φ(Ĝ+ 1))


< 0, if φ(Ĝ)φ(Ĝ+ 1) > 1

N2 ,

= 0, if φ(Ĝ)φ(Ĝ+ 1) = 1
N2 ,

> 0, if φ(Ĝ)φ(Ĝ+ 1) < 1
N2 .
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Q.E.D.

Proof of Proposition 6. Here, we need to find conditions under which πM < πC , which is

equivalent to

√
φσuσv

2
<

√
φ(G)σuσv√

N(1 +Nφ(G))

⇔ 1−
√

1−N2φ√
N3φ

<
√
φ(G) =

√
(N − 1)Gφ

N(G− 1)φ+N −G
<

1 +
√

1−N2φ√
N3φ

. (29)

Solutions of the above set of inequalities are the intersection of 0 < φ < 1/N2 and solutions

of the inequality f(φ) < 0,

f(φ) ≡ N2(NG−1)2φ2−2[(N2+2N−2)G2−(N3+3N−2)G+N2]φ+

(
5− 4

N

)
(N−G)

(
N2

5N − 4
−G

)
.

When φ = 1/N2,

f

(
1

N2

)
=

(
(N − 1)G

N
− G− 1

N
− (N −G)

)2

> 0,

and

f(0) =

(
5− 4

N

)
(N −G)

(
N2

5N − 4
−G

){
≤ 0, if N ≥ G > N2

5N−4 ,

≥ 0, if 1 ≤ G ≤ N2

5N−4 .

Considering the polynomial in G, h(G) = (N2 + 2N − 2)G2 − (N3 + 3N − 2)G+N2, which

is a convex function of G and has

h(1) = −N(N − 1)2 <= 0, and

h

(
N2

5N − 4

)
∝ −N2(4N + 5)(N − 3)− (7N2 + 18N + 24) < 0,

so we must have h(G) ≤ 0 over
[

N2

5N−4 , 1
]

when N < 4 or
[
1, N2

5N−4

]
when N ≥ 4, which

means f(φ) is increasing in φ when φ goes from 0 to 1/N2. That is there is no solutions to

the set of inequalities (29) when G ≤ N2

5N−4 .
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By the Intermediate Value Theorem, there must be a φ ∈ (0, 1/N2) such that f(φ) = 0

if G >
⌊

N2

5N−4

⌋
. So, the conditions under which inequalities (29) hold is,

N ≥ G >

⌊
N2

5N − 4

⌋
0 < φ < φ̄.

with φ̄ =
[(N2+2N−2)G2−(N3+3N−2)G+N2]+

√
[(N2+2N−2)G2−(N3+3N−2)G+N2]2−N(NG−1)2(N−G)(N2−(5N−4)G)

N2(NG−1)2 .

Proof of Lemma 1.

All random variables are jointly normally distributed, so we have

E[v|Si] = Cov[v, Si]Var[Si]
−1Si

= αvssi + αvηηi + αvε εi

with αvsαvη
αvε

 =

σ2
v/N
0

σ2
v/N

 σ2
s 0 ρ0σ

2
s

0 σ2
η 0

ρ0σ
2
s 0

(1+(G−2)ρ0)σ2
s+σ

2
η

G−1

−1

=


(1+(N−1)ρ0)(σ2

η+(1−ρ0)σ2
s)

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

0
(1+(N−1)ρ0)(G−1)(1−ρ0)σ2

s

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s


The proof of equation (22) can proceed in the same way. Q.E.D.

Proof of Proposition 7. Fund manager i’s expected profits when he submits an order of

xi given other fund managers apply the trading strategy as in equation (24),

E[xi(v − λ(u+ (βs + βε)v + (βη + βε)ω + xi − (βssi + βηηi + βεεi)))|Si]

= xi[(1− λ(βs + βε))E[v|Si]− λ(βη + βε)E[ω|Si] + λ(βssi + βηηi + βεεi)− λxi]

So the optimal xi is

xi =
1

2λ
[((1− λ(βs + βε))α

v
s + λβs − λ(βη + βε)α

ω
s )si + ((1− λ(βs + βε))α

v
η + λβη − λ(βη + βε)α

ω
η )ηi

+ ((1− λ(βs + βε))α
v
ε + λβε − λ(βη + βε)α

ω
ε )εi]
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which means

βs =
(1− λ(βs + βε))α

v
s + λβs − λ(βη + βε)α

ω
s

2λ
(30a)

βη =
(1− λ(βs + βε))α

v
η + λβη − λ(βη + βε)α

ω
η

2λ
(30b)

βε =
(1− λ(βs + βε))α

v
ε + λβε − λ(βη + βε)α

ω
ε

2λ
(30c)

From equation (30), one can compute λ(βs + βε) and λ(βη + βε) as

λ(βs + βε) =
(αvs + αvε )(1 + αωη + αωε )− (αvη + αvε )(α

ω
s + αωε )

(1 + αvs + αvε )(1 + αωη + αωε )− (αvη + αvε )(α
ω
s + αωε )

(31a)

λ(βη + βε) =
αvη + αvε

(1 + αvs + αvε )(1 + αωη + αωε )− (αvη + αvε )(α
ω
s + αωε )

(31b)

Plugging equation (31) into equation (26) gives

λ =
1

σu

√
λ(βs + βε)σ2

v − (λ2(βs + βε)2σ2
v + λ2(βη + βε)2σ2

η)

and β’s can be computed from equation (30).

The expected profits that fund manager i earns at the equilibrium is

πnC = E[(βssi + βηηi + βεεi)E[v − λ(u+ (βs + βε)v + (βη + βε)ω)|Si]]

= E[(βssi + βηηi + βεεi)(((1− λ(βs + βε))α
v
s − λ(βη + βε)α

ω
s )si

+ ((1− λ(βs + βε))α
v
η − λ(βη + βε)α

ω
η )ηi + ((1− λ(βs + βε))α

v
ε − λ(βη + βε)α

ω
ε )εi)]

= λE[(βssi + βηηi + βεεi)
2]

= λ[βs, βη, βε]Var[Si][βs, βη, βε]
′.

The second equation comes from Lemma 1 and the third equation from equation (30). Q.E.D.

Proof of Proposition 8. In a continuous-time trading model, Back, Cao, and Willard

(2000) show that there exists a unique linear equilibrium described in their Theorem 1 on

page 2131. Clearly, if the fund managers share all his information to all managers, they

have identical information which is revealed right away at the beginning of trading and their
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expected profits are pulled to 0. So it will never be optimal to share all information with

others.

In Proposition 13 in Cao, Ma, and Ye (2014), they prove that the expected profits a

fund manager earns while trading alone are always larger than what he’s able to earn while

trading with other fund managers, which means fund managers will never herd in the absence

of social networking.
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