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Abstract

In this paper we study competition in the private information production and trading

by large strategic traders in securities backed by a pool of assets, such as mortgage-backed

pass-through securities (MBS) or other types of asset-backed securities (ABS). Our model

demonstrates that when the correlation in payoffs of the individual assets in the pool is

low and, consequently, the risk-diversification effect of pooling is large, strategic traders

optimally prefer to remain less informed in equilibrium, even though their dollar expenditures

on information production may in fact increase. When there are multiple strategic traders

competing to produce private information, ABS and MBS security prices become even less

informative compared to a single-trader case, despite the higher aggressiveness of trading

on private information. This paper justifies low levels of adverse selection in the secondary

markets for securitized ABS and MBS instruments in normal times, and provides a framework

to analyze how private information production about asset-backed securities responds to

changes in the economic environment.
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Introduction

Adverse selection reduces amount of trade for securitizations that are information-sensitive.

Costly information production may provide valuable private information about the fundamental

value of security tranches and aggravate adverse selection. On the other hand, when private in-

formation production incentives are weak, information-sensitive securities by their initial design

can emerge as ones having low levels of adverse selection in equilibrium. In this paper we study

competition in the information production by large strategic traders in pass-through securities

backed by a pool of assets, such as mortgage-backed pass-through securities (MBS) and other

types of asset-backed securities (ABS). We demonstrate how the correlation of underlying as-

sets in the pool and the degree of overlapping information across traders affect dramatically the

information production incentives and market quality.

This paper presents a model in which multiple risk-neutral traders compete in private infor-

mation production about a pass-through security backed by a large pool of correlated assets. Our

focus on a pass-through security offers a useful simplification to the exposition, however our key

results generalize naturally to more complex tranche designs. Traders have access to a particular

research technology that describes a particular sequence in which individual underlying assets

in the pool are reflected in the private information set of each trader. This results in several

scenarios of overlapping information across traders, and affects greatly the economic incentives

of private information production. We argue that these research technologies apply naturally in

the context of asset-backed securitizations. Finally, the trading profits of market participants are

determined by a one-period strategic trading model, as in Kyle [1985].

Dang, Gorton, and Holmstrom [2009] show that even such an information-insensitive security

as debt can become information-sensitive when a bad enough shock triggers private information

production. We present a model of such mechanism and how it works in the context of securi-

tizations. In normal times, when the correlation in payoffs of the individual assets in the pool

is low and the risk-diversification effect of pooling is high, traders optimally prefer to remain

less informed even though their dollar expenditures on information production may increase.

When multiple strategic traders compete to produce private information, ABS and MBS security

prices are likely to become less informative compared to a single-trader case, despite the higher

aggressiveness of trading due to such competition. In contrast, in crisis times, when assets in

the pool are more exposed to systematic shocks and the risk-diversification effect of pooling is
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low, there are two opposite effects on market liquidity: on the one hand, cheaper production

of private information tends to reduce market liquidity, on the other hand, traders face tougher

competition from their peers who used to stay away from information production and now trade

more aggressively. Our framework allows to analyze how the intensive margin of the private

information production about asset-backed securities responds to such changes in the economic

environment.

Our paper relates to several stands of literature on securitization markets and strategic in-

formation acquisition. The literature has shown that the quality of private information is an

important determinant for both the security design and tranching, as well as secondary market

liquidity. DeMarzo [2005] develops a model of asset securitization process in an environment with

asymmetric information. Informed intermediaries prefer to construct information-insensitive se-

curity tranches backed by a pool of assets when the risk diversification effect of pooling the assets

together outweighs the loss of asset-specific private information intermediaries might possess. In

this paper we endogenize the asset-specific private information of intermediaries. Glaeser and

Kallal [1997] study the incentives of intermediaries in the pass-through MBS markets to acquire

noisy signals about the true security value, with a particular focus on the information restrictions

by original security issuers. Our paper provides the analysis of the intensive margin of information

production and the associated Cournot competition of producing research about the underlying

assets in the pool. Subrahmanyam [1991] shows that the adverse selection is typically weaker

in a composite basket security compared to individual securities because of the diversification

benefit provided by informed traders and the heavier liquidity trading. Security-specific analysts

have higher incentives to acquire private information when the security is heavily weighted in the

basket and vice versa. Our analysis shows why adverse selection may be further weakened by the

overlapping information traders acquire independently of each other.

On another side there is both theoretical and empirical literature studying how number of

analysts covering stocks affects market depth (Brennan and Subrahmanyam [1995], Holden and

Subrahmanyam [1992] and others). We complement this literature by studying the optimal level

of information precision of each analyst when the structure of information is granular, as in

the case of asset-backed pass-through securities. Dierker [2006] studies Cournot competition in

information acquisition by strategic traders who make uncorrelated forecast errors about the asset

fundamental value as in Verrecchia [1982]. In this paper we extend the set of research technologies

available to traders, and we argue that our extension is particularly important in the context of
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asset-backed securities.

The structure of the paper is as follows. In section 1 we present our model of research

technologies that traders use in order to acquire information about underlying assets. The key

novelty is that our research technologies allow for different degrees of overlapping information

traders acquire about asset fundamentals. In section 2 we present the trading environment with

multiple strategic traders and derive traders’ equilibrium research efforts. In section 3 we analyze

the market quality implications of endogenous information production for price informativeness,

market depth, price and order flow volatility. Section 4 concludes. Proofs of the propositions are

in the Appendix.

1 Structure of Information and Research Technologies

1.1 Research Technologies

In the model some traders have access to a research technology that allows them to produce

private information about the underlying pool of assets. The research technology describes the

relationship between traders’ expenditures on information production and the quality of private

information they get.

Suppose there is a pass-through security with the true fundamental value v, and traders

strategically produce additional signals si that are correlated with v. Using this notation we can

define a research technology as:

Definition 1.1. A research technology is a mapping from traders’ expenditures on research

c = (c1 . . . cN ) to the joint distribution of their signals and the fundamental value of a security v:

G(v, s1 . . . sN ), where si is the signal i-th informed trader produces, i ∈ {1 . . . N}.

Example. In Verrecchia [1982] each informed trader observes the true fundamental security

value v ∼ N(0,Σ0) perturbed by a normally-distributed forecast error εi with zero mean and

precision γi = 1/σ2
i ≥ 0. Forecast errors are independent across traders. Traders can choose

different levels of precision γ of their forecast errors εi and there is an associated cost function

TC(γ). The research technology would be a mapping from traders’ expenditures (c1 . . . cN ) to
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the distribution of signals (v, s1 . . . sN ) ∼ N(0,Ψ), where:

Ψ =




Σ0 Σ0 · · · Σ0

Σ0 Σ0 + 1/TC−1(c1) · · · Σ0

...
...

. . .
...

Σ0 Σ0 · · · Σ0 + 1/TC−1(cN )




1.2 Structure of Information

For the purpose of our analysis we focus on a pass-through security as it provides a good illustra-

tion of the forces that drive competition in the information production. A pass-through security

derives its value from a large underlying pool of assets, which can be individual mortgages, auto

loans, credit card accounts or student loans, and all cash-flows from these assets are passed di-

rectly to the holder of the security. Our methodology can be extended to more complex derivative

instruments when they are backed by a pool of homogenous assets.

Suppose the true fundamental value of a pass-through security is v and there areM underlying

assets in the pool. Each asset in the pool has a fundamental value ei where i ∈ {1, · · · ,M}, which

contributes to the fundamental value v of the pass-through security. The underlying assets in

the pool are homogenous and their fundamental values ei are identically distributed and can be

positively correlated.1

v =

M∑

i=1

ei (1)

We assume that it is equally costly to “poke around suburbs”2 and learn about the performance

of each individual asset in the underlying pool, so the total expenditure on information production

is proportional to the number of assets under study. This assumption however does not preclude

diminishing marginal returns to a dollar spent on producing information. Here we want to stress

the importance of the possibility that assets in the pool have positively correlated fundamental

values ei. When the fundamental values of individual assets in the pool are positively correlated,

traders can use the information about some of the assets in the pool to partially predict the

performance of the other assets for free. Thus the marginal value of the first dollar spent on
1AsM →∞ our description converges to a large homogenous portfolio (LHP) and the approximation techniques

used in the credit risk literature, e.g. as in Vasicek [2002]. However our focus is different, as we are not modelling
the credit risk of the pass-through security. In reality, most traditional pass-through security are insured against
default by government-sponsored agencies.

2Lewis [2010] Liar’s Poker. WW Norton&Company, 2010.
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information production can be substantially higher than the rest.

The informative signal si is defined as the partial sum of the fundamental values of individual

assets in the pool. When a trader uses his research technology to reveal the performance of

ωi ×M assets in the pool, the informative signal is:

si =

ωi×M∑

i=1

ei (2)

We will refer to ωi as the research effort of trader i. Note that producing information about 50

mortgages out of the total M = 100 mortgages in the pool is the same as producing information

about 100 mortgages out of the total M = 200 mortgages in the pool—in both cases exactly half

of the underlying pool is covered by the information production efforts. The proportion ω of the

total size of the pool M describes the research effort of a trader. The necessary and sufficient

condition for the total size of the pool M not to affect the quality of the informative signal si

above is the infinite-divisibility condition provided below:

Infinite-Divisibility Condition. When M increases, the covariance of any two fundamentals

ei and ej decreases at a rate M2, so that Cov(ei, ej)×M2 is a constant for any integer M .

Figure 1 summarizes the structure of private information about the pass-through security:

Figure 1: Private signal as a sum of asset values in the pool

assets in the poolωM

M

. . .eωMe1 eM

M∑

i=1
ei = v ∼ N(0,Σ0)

In what follows we assume that all fundamental values of assets in the pool ei have a joint-

Normal distribution and may be correlated. Using the infinite-divisibility condition 1.2 we char-

acterize the distribution of traders’ private signals si:

Proposition 1.1. Suppose that trader i exerts a research effort ωi ∈ [0, 1] and obtains a private
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signal si. Assume the infinite-divisibility condition and let ρ = Cov(ei, ej)×M2/Σ0. Then:

V ar(si) = ωiΣ0(1− (1− ωi)ρ) (3)

Cov(si, v) = ωiΣ0

See Appendix A.1 for proof.

1.3 Overlapping Information

When there are multiple traders who compete and produce private information about the same

pool of assets, they can overlap by studying independently the performance of the same assets in

the pool. The extent of such overlapping information they get will affect the covariance of their

private signals si.

Example: Suppose M = 6 and there are three traders with research efforts ω1 = 1/6,

ω2 = 1/3, and ω3 = 1/2. The first agent reveals one fundamental, the second agent chooses two

fundamentals, and the third chooses three. It is possible that neither of the three traders has

overlapping assets with others, as when agent 1 reveals {e1}, agent 2 reveals {e2, e3} and agent

3 reveals {e4, e5, e6}. We refer to this case as a non-overlapping research. At the other extreme,

all traders may reveal fundamentals in the same order, as when trader 1 reveals {e1}, trader 2

reveals {e1, e2} and trader 3 reveals {e1, e2, e3}. We refer to this case as a perfectly-overlapping

research. The third possible scenario occurs when each trader draws an independent random

sample of asset to study, and we refer to this case as an independently-overlapping research.

Figure 2 demonstrates the three scenarios of overlapping information described above.

Definition 1.2. Suppose there are N potentially informed traders on the market and ωi is the

research effort of the i-th trader. Suppose for ∀i ∈ {1 . . . N} ωiM is a Natural number. Denote

by Si the subset of M assets in the underling pool each trader decides to reveal.

1. Traders engage in non-overlapping research if ∀i 6= j we have Si∩Sj = ∅. This can happen

only if
∑N
i=1 ωi ≤ 1.

2. Traders engage in perfectly-overlapping research if ∀i 6= j such that ωi ≥ ωj we have

Si ∩ Sj = Sj.

3. Traders engage in randomly-overlapping research if ∀i : Si is a simple random sample of

size ωiM .
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Figure 2: Possible Scenarios for Overlapping Information

. . .

. . .

Non-overlapping Research

. . .

. . .

. . .

Perfectly-overlapping Research

. . .

. . .

. . .

Independently-overlapping Research

. . .

All traders start here

ω1

ω3

ω2

ω1

ω2

ω3

Random sample of assets in the pool

— size of the sampleωiM

For simplicity of exposition, consider two traders who have access to a research technology on

the market, N = 2. Denote their research efforts by ω2 ≤ ω1 ≤ 1. The overlapping information

scenario will determine the covariance of informative signals traders get, which is characterized

in the following proposition:

Proposition 1.2. Let two potentially informed traders with research efforts ω1 ≥ ω2 obtain

signals s1 and s2. Assume the infinite-divisibility condition holds and let ρ = Cov(ei, ej)×M2/Σ0.

Then the Cov(s1, s2) is:

Cov(s1, s2) = Σ0 × ρ× ω1ω2 ← non-overlapping (4)

Cov(s1, s2) = Σ0 × ω2 × (1− (1− ω1)ρ) ← perfectly-overlapping (5)

Cov(s1, s2) = Σ0 × ω1ω2 ← independently-overlapping (6)

See Appendix A.2 for proof.
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Interestingly, we can show the equivalence of the independently-overlapping research technol-

ogy and the information acquisition technology used by Verrecchia [1982] and commonly referred

to in the literature on information acquisition:

Proposition 1.3. Consider the following definition of a signal: s̃i = v + εi where εi is trader-

specific forecast error uncorrelated across traders: Cov(εi, εj) = 0. Precision of forecast error εi

is proportional to the trader’s expenditure on research ci: V ar(εi) = 1/T̃C
−1

(ci), where T̃C(·)

is an increasing function. This research technology is equivalent to independently-overlapping

research technology defined in 1.2.

Proof. Define wi and TC(wi) in the following way:

ωi =
Σ0(1− ρ)T̃C

−1
(ci)

1 + Σ0(1− ρ)T̃C
−1

(ci)
∈ [0, 1)

TC(·) : TC


 Σ0(1− ρ)T̃C

−1
(ci)

1 + Σ0(1− ρ)T̃C
−1

(ci)


 = ci

Then redefine each trader’s signal as: si = ωi× s̃i = ωi×(v+εi). Scaling by a constant preserved

the information contained in trader’ signal. The joint distribution of vector (v, s1, · · · , sN ) is

the same as under the independent-overlapping research technology. Thus the two research

technologies are equivalent.

The result in proposition 1.3 is an interesting interpretation of the research technology in

Verrecchia [1982]. Take a pool of identically distributed fundamentals and two informed traders

who choose optimally the size of the independent random samples to draw from the pool. This

turns out to be equivalent to each trader observing the true value of the asset with a forecast error,

independently distributed across traders. Note that our approach to information acquisition is

more general and allows to study alternative scenarios for agents’ overlapping information—other

than independently-overlapping, so that the forecast errors are not independent across traders

anymore.

Finally, we want to allow for the intermediate scenarios of overlapping information that occur

in between the three scenarios described above. We introduce a parameter γ ∈ [0, 1] that captures

severity of overlapping information: γ = 0 corresponds to non-overlapping research; γ = 0.5

corresponds to independently-overlapping research; γ = 1 corresponds to perfectly-overlapping
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research. We use linear interpolation to describe what happens for intermediate values of γ, and

the following proposition summarizes the results:

Proposition 1.4. Let two potentially informed traders with research efforts ω1 ≥ ω2 obtain

signals s1 and s2. Assume the infinite-divisibility condition holds and let ρ = Cov(ei, ej)×M2/Σ0.

Let γ ∈ [0, 1] describe the degree of overlapping information in traders’ research technologies so

that for γ ≤ 0.5 the linear interpolation between non-overlapping and independently-overlapping

scenarios is used, while for γ > 0.5 the linear interpolation between independently-overlapping

and perfectly-overlapping scenarios is used. Then the Cov(s1, s2) is:

Cov(s1, s2) = Σ0 × ω1ω2 × (ρ+ 2γ(1− ρ)), when γ ≤ 0.5 (7)

Cov(s1, s2) = Σ0 × ω2 × (ρω1 + (1− ρ)(1 + 2(γ − 1)(1− ω1))), when γ > 0.5

See Appendix A.3 for proof.

1.4 The Limiting Stochastic Process

In the prior discussion we used a discrete number M of assets in the underlying pool. In this

section we show that our results generalize to the limiting case when M → ∞. We derive the

limiting stochastic process that describes the structure of information and allows us to use any

real value for trader’s research effort ωi ∈ [0, 1].

Definition 1.3. Suppose that the unit interval V = [0, 1] describes the set of individual assets in

the underlying pool. Traders have research efforts ωi = µ(Si) ∈ (0, 1], where Si ∈ V is the subset

of underlying assets trader i learns about. Let W (t) be Brownian motion. Then the informative

signal traders obtain is defined as:

si =

∫

Si

dX(t), where: (8)

dX(t) =
ρ

(1− ρ) + ρt
X(t)× dt+

√
Σ0(1− ρ)× dW (t) (9)

The SDE in equation 9 describes a random process X(t) that captures the information struc-

ture of an infinite pool of correlated homogenous assets. The true value of a pass-through security

under this notation is v = X(1), which corresponds to a research effort ω = 1. Now we can define

the three overlapping information scenarios via the measure of intersections in traders’ infor-
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mation sets. When there are two traders with information sets Si ∈ V and research efforts

ωi = µ(Si) ∈ (0, 1] and µ(S2) ≤ µ(S1), we have:

1. Non-overlapping research is defined as: µ(S1 ∩ S2) = 0

2. Perfectly-overlapping research is defined as: µ(S1 ∩ S2) = ω2

3. Independently-overlapping research is defined as: µ(S1 ∩ S2) = ω1ω2

The following proposition establishes equivalence between the discrete and continuous versions

of informative signals defined above.3

Proposition 1.5. The discrete version of an informative signal defined in equation (2) is equiv-

alent to the continuous version defined in equation (8) in terms of its distributional properties

V ar(si), Cov(si, sj), and Cov(si, v).

See Appendix A.4 for proof.

2 Trading Environment

In order to characterize the profitability of information production we analyze strategic trading

decisions of traders on a secondary market for the pass-through security, and apply the research

technologies developed above to find optimal traders’ research efforts ωi. We use Kyle [1985]

model to describe the strategic trading environment with asymmetric information.

Firstly we describe traders’ information production incentives in a one-period trading envi-

ronment with one asset and two risk-neutral traders who have access to a research technology.

We then study the robustness of our equilibrium in a setting with larger number of traders in

section 3.

There is a mass of uninformed liquidity traders with no access to a research technology and

a competitive price-setting mechanism, which is a market-maker who intermediates the trades.4

The true fundamental value of the pass-through security is v ∼ N(v0,Σ0). Before submitting
3The continuous definition in equation (8) is more general in the sense that it does not rely on ωiM being a

positive integer number. It justifies the joint-Normal distribution of signals and the true asset value v with the
same covariance matrix as provided by the discrete version in propositions 1.1 and 1.2.

4ABS and MBS pass-through securities are traded on OTC markets with a search friction, described in Duffie,
Gârleanu, and Pedersen [2005], Hugonnier, Lester, and Weill [2014] and others. However the standard pass-through
securities are one of the most liquid instruments among a richer set of securitizations, so the magnitude of the
search friction is not too high. Here we assume that a competitive market-maker is a reduced-form representation
of a price-formation process with relatively small OTC friction, so the market structure has only second-order
effects on the information production results.

11



trades each trader learns the value of his informative signal si. Then traders submit simultane-

ously their trades xi = Xi(si) to the market-maker, where Xi(·) is a function of si. Liquidity

traders add their aggregate order flow, which is u ∼ N(0, σ2
u) and is independent of all other

variables. The total order flow is Σx + u =
∑2
i=1 xi + u and the price is p = P (Σx + u),

where P (·) is a function of the total order flow. The expected trading profits for each trader are

E(πi|si) = E((v − p)xi|si) = EΠi(Xi, Xj , P ). As in Kyle [1985], we assume that the true value

of a pass-through security and the informative signals (v, s1, s2) are jointly-Normally distributed

and we restrict our analysis to the linear pricing rule P (Σx + u) and linear trading strategies

Xi(si). We define the trading equilibrium:

Definition 2.1. A trading equilibrium is a set of functions X1, X2, P that satisfies two con-

ditions: Profit Maximization (10): For any trader ∀i ∈ {1, 2}, any alternative trading strategy

X ′ and any realization of i-th signal si (the opponent’s trading strategy is denoted by X−i) does

not yield higher expected trading profit; and Market Efficiency (11): Function P satisfies the

fair-pricing condition below.

EΠi(Xi, X−i, P ) ≥ EΠi(X
′, X−i, P ) ∀i ∈ {1, 2} (10)

P (Σx+ u) = E(v|Σx+ u) (11)

In our information production model, traders’ research efforts ωi describe the proportion of the

underlying pool of assets, traders have accurate information about. As we noted, having private

information about the same proportion of the underlying pool of assets may imply different levels

of traders’ informativeness when assets in the pool are correlated. The amount of information

each trader has depends both on the research effort ωi and asset correlation ρ. We use the αi

notation for the amount of information each informed agent has:

αi =
Σ0 − V ar(v|si)

Σ0
∈ [0, 1] (12)

The proposition below characterizes the trading decisions of informed traders in terms of the

amount of information αi each of the two traders has:

Proposition 2.1. Let ρ12 denote the correlation between the signals s1 and s2 two traders obtain.

There exists a unique linear trading equilibrium defined by Xi = (βi/λ)si for each i ∈ {1, 2} and
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P = λ(Σx+ u) where constants βi and λ are:

βi =

√
Σ0

V ar(si)
×

(
2
√
αi − ρ12

√
αj

)

4− (ρ12)2
(13)

λ =

√
Σ0

σ2
u

×

√(
2
√
α1 − ρ12

√
α2

)2
+
(
2
√
α2 − ρ12

√
α1

)2

4− (ρ12)2
(14)

See Appendix B.1 for proof.

2.1 Optimal Research Efforts

Above we have established that for any research efforts ωi chosen by traders there is a unique

linear trading equilibrium that arises, and is described in Proposition 2.1. In this section we

assume that both agents choose their research efforts ωi ∈ [0, 1] simultaneously in the beginning

of the trading game. These choices are simultaneous, so the deviations are not directly observable

to competitors as in the Cournot game, such as when a trader chooses a different level of research

effort and obtains a signal with different properties.

Definition 2.2. Denote by Ψω = Ψ(ω1, ω2) the covariance matrix of signals s1(ω1), s2(ω2), and

the true value of the pass-through security v. Denote by (Xω
1 , X

ω
2 , P

ω) the unique linear trading

equilibrium for Ψω. Then research efforts (ω1, ω2) constitute a Nash equilibrium if ∀ω̂ ∈ [0, 1]

and ∀i ∈ {1, 2} the following condition holds:

maxXi

[
EΠi(Xi, X

ω
−i, P

ω)|si(ω̂)
]
− c(ω̂) ≤ (15)

≤ EΠi(X
ω
i , X

ω
−i, P

ω|si(ωi))− c(ωi)

Condition 15 highlights two noteworthy ideas: 1) when one informed trader chooses an off-

equilibrium research effort ω̂, all other market participants do not observe such deviation; 2) the

trader is able to reoptimize his trading strategy Xi given the new properties of the informative

signal si(ω̂). In the following lemma we derive the reoptimized trading strategy for the trader

who deviates and the associated expected profits.

Lemma 2.1. Suppose that trader i enters the trading game with an arbitrary signal snew
i . The

opponent and the market-maker do not observe the quality of the new signal, instead they follow

a given trading equilibrium for some covariance matrix Ψ (their belief about si is no longer con-

sistent with the true properties of snew
i ). Under these circumstances, given β−i and λ determined
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according to Proposition 2.1, trader i’s optimal trading strategy is Xnew
i = (βnew

i /λ)snew
i where:

βnew
i =

1

2
√
V ar(snew

i )

(√
Σ0 × αnew

1 − ρnew
12 ×

√
V ar(s−i)× β−i

)
(16)

E(πnew
i ) =

1

4λ

(√
Σ0 × αnew

1 − ρnew
12 ×

√
V ar(s−i)× β−i

)2

(17)

See Appendix B.2 for proof.

Now we present our results on the existence and uniqueness of Nash equilibria under different

research technologies and the scenarios of overlapping information. For convenience, we impose

restriction on the cost function TC(ω) so that a single trader with access to a research technol-

ogy never finds it optimal to acquire information about the entire pool of assets, which would

correspond to ω = 1. We refer to such condition as the single-agent-interior condition:

Single-Agent-Interior Condition. In a model with a single trader with access to a research

technology and a weakly convex cost function TC(ω) the trader’s optimal research effort is ω1 ∈

(0, 1). This is ensured by the following restriction on the cost function:

dTC

dω
(ω = 1) >

(1− ρ)
√

Σ0 × σ2
u

2
(18)

We study interior equilibria with ω1, ω2 ∈ (0, 1) as well as corner equilibria with ω1 > ω2 = 0.

For our discussion of the model with two traders who have access to a research technology we

assume ω1 ≥ ω2. We also assume that research is equally costly to traders.

Firstly, we find that asymmetric interior Nash equilibria do not exist when research technology

is characterized by low degree of overlapping information γ ≤ 1/2:

Lemma 2.2. Under a research technology characterized by low degree of overlapping information

γ ≤ 1/2 and linear trading and pricing rules, if for some linear cost function TC(ωi) an interior

Nash equilibrium exists with ωi ∈ (0, 1),∀i ∈ {1, 2}, and γ 6= ρ
2(1−ρ) , then this equilibrium is

symmetric with ω1 = ω2.

See Appendix B.3 for proof.

We also study corner Nash equilibria, where one of the two traders optimally decides not

to participate neither in research nor trading. These cases can represent informational barriers

to entry created by the costly information production. It turns out that these barriers are

particularly strong when the correlation of assets in the underlying pool is weak. The next
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lemma allows to characterize such cases in our model:

Lemma 2.3. Assume a cost function TC(ωi) that satisfies the single-agent-interior condition.

Under a research technology with the degree of overlapping information γ and linear trading and

pricing rules, there exists a corner Nash equilibrium with ω1 = ω∗, ω2 = 0 if and only if the

following holds:

ρ ≤ 2γ

1 + 2γ
, when γ ≤ 1/2 (19)

ρ ≤ (2− 2γ)ω∗ + 2γ − 1

(3− 2γ)ω∗ + 2γ − 1
, when γ > 1/2 (20)

See Appendix B.4 for proof.

It should be noted that the condition 20 depends on the optimal research effort ω∗ of a single

trader. Intuitively, the less advanced trader performs a catch-up research when his research effort

is lower than of his competitor, and the more advanced is the leading trader, the more assets

in the underlying pool the first trader has to evaluate. This effect is especially strong when one

considers the perfectly-overlapping research technology with γ = 1.

The following proposition completes the set of results on the existence and uniqueness of Nash

equilibria in our information production model:

Proposition 2.2. Assume a linear cost function TC(ωi) that satisfies the single-agent-interior

condition. Under a research technology characterized by the degree of overlapping information γ

and linear trading and pricing rules: 1) There exists a Nash equilibrium when γ ≤ 1/2 that is

symmetric: ω1 = ω2 ∈ (0, 1). 2) There exists a unique asymmetric Nash equilibrium when γ = 1.

See Appendix B.5 for proof.

Figures 3 and 4 illustrate traders’ optimal choices of research efforts ωi and the informational

content of signals αi. Each figure has two panels: the left panel corresponds to relatively low

marginal cost of research, so that ω∗ = 1; the right panel corresponds to relatively high marginal

costs of research, so that ω∗ = 0.5. Recall that ω∗ is the optimal research effort of a single trader

with access to a research technology.

15



Figure 3: Optimal Choices of Research Efforts ωi and Signal Informativeness αi (γ ≤ 1/2)
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The figures illustrate that more overlapping information reduce incentives of private infor-

mation production. In the case of a perfectly-overlapping research presented in figure 4 when

ρα1 ≤ 1/2 the second agent optimally decides to stay away from producing information and

trading (see appendix B.5 for details).

Figure 4: Optimal Choices of Research Efforts ωi and Signal Informativeness αi (γ = 1)
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In the following section we study the market quality: the equilibrium price informativeness,

market depth, price and volume volatility for the pass-through security.
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3 The Market Quality

There are two forces that drive competition between traders who have access to a research tech-

nology. The first force is the trading aggressiveness that feeds information into prices and par-

tially reveals private signals of traders to the general public through price movements. It can

be demonstrated that two traders with identically distributed signals s1 and s2 reveal more

information through price movements compared to a single trader with a signal s3 such that

V ar(v|s3) = V ar(v|s1, s2). The second force is the competition in information production and

the resulting overlapping information traders have about the underlying pool of individual assets,

which is the primary focus of our study.

Consider first the case with a single trader with access to a research technology, N = 1. The

trading equilibrium is characterized by β1 =
√

Σ0
√
α1

2
√
V ar(si)

and λ =
√

Σ0
√
α1

2
√
σ2
u

. The equilibrium trading

strategy is (β1/λ)s1 = σu
s1√

V ar(s1)
and its variance does not depend on neither research effort

ω1 nor informativeness of the signal α1. The trader scales the signal so that the variance of the

trade amount is equal to the variance of liquidity traders’ order flow u, as described in Dierker

[2006]. Also note that the price impact λ increases in α1.

3.1 Price Informativeness

Once the trading is over, an outside person can learn information about the true value of the

pass-through security by observing the price, or the total trading volume which provides the same

information in the model. The informativeness of prices is measured by L:

L =
Σ0 − V ar(v|Σx+ u)

Σ0
∈ [0, 1] (21)

When there is a single trader with access to a research technology on the market, the equilib-

rium price informativeness is L = α1/2. As described in Kyle [1985] exactly half of the insider’s

information is revealed through prices. The following lemma describes price informativeness L

when two traders have access to a research technology, N = 2:

Lemma 3.1. In the trading equilibrium outlined in Proposition 2.1 the equilibrium price infor-

mativeness is:

L =
2(α1 + α2)− ρ12

√
α1
√
α2

4− (ρ12)2
(22)

When α1 and α2 are sufficiently close to each other, price informativeness is higher the more
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information α1 traders produce and the less correlated traders’ signals ρ12 are. We need the

model to tell us how traders’ adjust their research efforts in response to a tougher competition.

As it follows from our results in section 2.1 the two sets of possible overlapping information

scenarios—relatively low overlapping information with γ ≤ 1/2 and relatively severe overlapping

information with γ > 1/2 must be considered separately given the way we specify the correlation

in traders’ signals in Proposition 1.4.

Figure 5: Effect of Overlapping Information on Price Informativeness L (γ ≤ 1/2)
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Figure 5 shows effect of overlapping information on price informativeness when γ ≤ 1/2: The

left panel corresponds to a relatively low cost of doing research so that ω∗ = 1, the right panel

corresponds to relatively high cost of research so that ω∗ = 1/2. We find that when individual

assets in the pool are not highly correlated and thus the degree of diminishing returns to research

is small (small values of ρ), higher degree of overlapping information results in lower equilibrium

price informativeness (the curve is below the dashed line, which is the single agent benchmark).

Low correlation in underlying assets make information production a harder task, as more assets

need to be covered by research efforts to reduce posterior variance of true pass-through value v

by the same amount.
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Figure 6: Effect of Overlapping Information on Price Informativeness L (γ = 1)
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Figure 6 presents our analysis of the perfectly-overlapping research technology (γ = 1 case).

We find that for relatively low correlation in underlying assets in the pool (low values of ρ) the

second trader decides not to use his research technology and withdraw from trading. However,

when ρ becomes high and the second trader decides to compete in the information production,

the price informativeness increases.

3.2 Market Depth

Another measure of market quality is market depth, which is the inverse of price sensitivity to

the order flow. Market depth is particularly important for large institutional traders with big

orders and arbitrage seekers, which fits naturally our story of strategic information production.

We denote this measure byM.

When there is a single trader with access to a research technology on the market, the market

depth is inversely proportional to the amount of information α1 this trader has: M = 2σu√
Σ0
√
α1

.

The following result describes the market depth M when two traders have access to a research

technology, N = 2:

M =

√
σ2
u

Σ0
× 4− (ρ12)2

√(
2
√
α1 − ρ12

√
α2

)2
+
(
2
√
α2 − ρ12

√
α1

)2 (23)
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Figure 7: Effect of Overlapping Information on Market DepthM (γ ≤ 1/2)
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Figure 7 illustrates the market depth for different degrees of overlapping information when

γ ≤ 1/2. We find that market depth increases as there is more overlapping information generated

by the research technology traders use. It turns out that more overlapping information reduces

the degree of adverse selection the market faces and allows for a deeper market in equilibrium,

as the correlation in traders’ signals and their orders goes up. Figure 8 presents our analysis

of market depth for the perfectly-overlapping research γ = 1. It turns out that as assets in

the underlying pool become more correlated, this reduces informational barriers to entry for the

additional traders with access to a research technology. However, the highest market depth is

achieved for the level of such asset correlation below ρ < 0.8. For the levels of asset correlation

that are too high, information production becomes cheap and this aggravates the adverse selection

problem.

Figure 8: Effect of Overlapping Information on Market DepthM (γ = 1)

0.0 0.2 0.4 0.6 0.8 1.0

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Correlation in Fundamentals Ρ

M
a
rk

e
t
D

e
p
th

M

Γ = 1

Panel A: Single-agent α∗ = 1

0.0 0.2 0.4 0.6 0.8 1.0

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Correlation in Fundamentals Ρ

Γ = 1

Panel B: Single-agent α∗ = 0.5

20



3.3 Volatility of Prices and Total Order Flow

Here we analyze the variability of prices and order flow on the secondary market for the pass-

through security. When there is a single trader with access to a research technology on the

market, the volatility of the price level is V ar(p) = Σ0α1/2. The price volatility is proportional

to the informativeness of the trader’s signal α1. It turns out that the price volatility is equal

to the price informativeness measure scaled by the variance of pass-through security value v, as

captured in the following Lemma:

Lemma 3.2. In the trading equilibrium outlined in Proposition 2.1 the equilibrium volatility of

prices is equal to the product of equilibrium price informativeness and the volatility of pass-through

security value v:

V ar(p) = Σ0 − V ar(v|Σx+ u) = Σ0 × L (24)

Proof.

Σ0 − V ar(v|Σx+ u) =
Cov(v,Σx+ u)2

V ar(Σx+ u)
=

(
Cov(v,Σx+ u)

V ar(Σx+ u)

)2

× V ar(Σx+ u)

= (λ2)× V ar(Σx+ u)

The total order flow volatility is defined as V ar(Σx + u). When there is a single trader

with access to a research technology on the market, the total order flow volatility is 2σ2
u. The

following lemma describes the volatility of the order flow when two traders have access to a

research technology, N = 2:

Lemma 3.3. In the trading equilibrium outlined in Proposition 2.1 the equilibrium volatility of

total order flow is:

V ar(Σx+ u) = σ2
u × (4− (ρ12)2)× 2((α1 + α2)− ρ12(

√
α1
√
α2))

(2(
√
α1)− ρ12(

√
α2))2 + (2(

√
α2)− ρ12(

√
α1))2

(25)

Figure 9 illustrates the order flow volatility for different degrees of overlapping information

when γ ≤ 1/2. We find that the total order flow volatility generally increases with the degree

of overlapping information in the research technology used by traders. Figure 10 illustrates the

order flow volatility for the perfectly-overlapping research γ = 1.
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Figure 9: Effect of Overlapping Information on Total Order Flow Volatility V ar(Σx+u) (γ ≤ 1/2)
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Figure 10: Effect of Overlapping Information on Total Order Flow Volatility V ar(Σx+u) (γ = 1)
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3.4 Model with More Informed Traders

In this section we study the robustness of our equilibrium in a setting with larger number of

traders. We present our results for the information production model with N informed agents and

symmetric equilibrium research efforts. We solve numerically for a symmetric Nash equilibrium

in a model with N = 50 traders with access to a research technology and then compare it to the

equilibrium with one more trader, N = 51. We find that our findings in section 3.1 are robust to

adding more traders to the analysis.

Figure 11 illustrates the effect of an additional 51th trader on the price informativeness for

different degrees of overlapping information in the research technology. We focus on symmetric

22



equilibria only, and we limit our analysis to cases when γ ≤ 1/2.

Figure 11: Effect of Overlapping Information on Marginal Change in Price Informativeness L

when N = 50
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Figures 12 and 13 illustrate the effect of an additional 51th trader on the market depth and

the total order flow volatility. We find that the market depth and the total order flow volatility

increase when more traders participate in information production.

Figure 12: Effect of Overlapping information on Marginal Change in Market Depth M when

N = 50
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Figure 13: Effect of Overlapping information on Marginal Change in Order Flow Volatility Ratio

when N = 50
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4 Concluding Remarks

When we talk about the levels of adverse selection in markets for information-sensitive and

information-insensitive security tranches, it is important to take into account the strength of

private information production incentives. The private information production incentives are

affected by changes in the economic environment, such as changes to the correlation of the

underlying assets in the pool, which affect the extent of diminishing returns to doing research,

and the degree of overlapping information in traders’ research technology.

An aggregate shock as described in Dang, Gorton, and Holmstrom [2009] can affect not only

the information production incentives of active traders, but also reduce information barriers to

entry and activate strategic traders who used to stay away from trading on information. These

effects will change substantially the landscape of adverse selection on the securitization markets,

and it is important to take these effects into account.
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A Information Structure and Research Technologies

A.1 Proposition 1.1

Proof. Equation (1) together with the V ar(v) = Σ0 implies:

MV ar(ei) +M(M − 1)Cov(ei, ej) = Σ0

V ar(ei) = (1/M)(Σ0 −M(M − 1)Cov(ei, ej)) (26)

Now use definition of a signal (2) together with the above equation (26) to calculate V ar(si) and

Cov(si, v):

V ar(si) = ωΣ0 − ω(1− ω)M2Cov(ei, ej) (27)

Cov(si, v) = V ar(si) + ωM(M − ωM)Cov(ei, ej) = ωΣ0 (28)

Equation (28) is the result we need. In order to simplify equation (27) we note that V ar(si) must

not depend on M according to the infinite-divisibility condition presented in Section 1. Thus

as M increases, covariance of information bits ei and ej must decay at the rate M2, in other

words Cov(ei, ej) = const/M2. We use the following normalization: ρ = Cov(ei, ej) ×M2/Σ0.

Plugging this expression in equation (27) obtains the result.

A.2 Proposition 1.2

Proof. We assume the infinite-divisibility condition holds and use the following normalization:

ρ = Cov(ei, ej)×M2/Σ0. There are two traders doing research, ω1 ≥ ω2, and assume both ω1M

and ω2M are Natural numbers. For non-overlapping research there are no common underlying

assets reflected in both traders’ signals, thus:

Cov(s1, s2) = (ω1M)(ω2M)Cov(ei, ej) = Σ0 × ρ× ω1ω2 (29)

For perfectly-overlapping research we can rewrite the signal first trader obtains as:

s1 = s2 +

(ω1−ω2)M∑

j=1

ej
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And thus we have:

Cov(s1, s2) = V ar(s2) + (ω2M)(ω1M − ω2M)Cov(ei, ej)

Using the first equation in (1.1) to substitute for V ar(s2) we obtain the result:

Cov(s1, s2) = Σ0 × ω2 × (1− (1− ω1)ρ) (30)

To derive the expression for randomly-overlapping research let ωM underlying assets constitute

the overlap of the two signals, ω ≤ ω2. Similarly to perfectly-overlapping case, we can rewrite

traders’ signals as the sum of overlapping and non-overlapping parts, where ωM is the size of

the overlapping part. We denote the overlapping part of both signals by s. Holding ω fixed we

express Cov(si, sj) in terms of ω:

Cov(s1, s2|ω) = V ar(s) + (ω(ω1 − ω) + ω(ω2 − ω) + (ω1 − ω)(ω2 − ω))M2Cov(ei, ej)

The above expression simplifies to:

Cov(s1, s2|ω) = ωΣ0(1− ρ) + ω1ω2Σ0ρ (31)

When each trader makes independent random draws of size ωiM , the expected size of overlap

is E(ω) = ω1ω2. Imagine trader 1 moves first and selects ω1M underlying assets, and assume

all numbers are Natural in the following discussion. Then agent 2 draws randomly ω2M assets

without replacement, thus the number of bits drawn by both traders follows hypergeometric

distribution with parameters N = N,m = ω1N,n = ω2M . The expected value of hypergeometric

distribution is mn/N , which is equal to ω1ω2N in our case. Thus the unconditional covariance

of signals is:

Cov(s1, s2) = E(ω)Σ0(1− ρ) + ω1ω2Σ0ρ = Σ0 × ω1ω2 (32)
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A.3 Proposition 1.4

Proof. Use equation (31) expressing covariance of the two signals in terms of the size of overlap

(from the proof of proposition 1.2):

Cov(s1, s2|ω) = ωΣ0(1− ρ) + ω1ω2Σ0ρ

It follows from the definition of the three research technologies that the corresponding sizes of

overlap under the three scenarios are:

1. Non-overlapping research (γ = 0): ω = 0

2. Independently-overlapping research (γ = 1/2): ω = ω1ω2

3. Perfectly-overlapping research (γ = 1): ω = min(ω1, ω2)

We take linear interpolations for intermediate overlap scenarios in the following way:

ω =





2γ × ω1ω2, when 0 ≤ γ ≤ 0.5

2(1− γ)ω1ω2 + (2γ − 1) min(ω1, ω2), when 0.5 < γ ≤ 1

Without loss of generality we assume ω1 ≥ ω2. Plugging in expression for ω in the above equation

obtains the result.

A.4 Proposition 1.5

Proof. It is straightforward to show that results in propositions 1.1 and 1.2 go through with the

continuous definition of a signal given the process Xt satisfies the given SDE (9). Here we will

present the derivation of this SDE for Xt by starting with the discrete version of a signal and

taking the limiting case as the number of underlying assets goes to infinity M →∞.

Start with M identical and independent jointly-Normally distributed random innovations,

denote by a vector uM . Let vector eM denote M identical jointly-Normal random variables with

a given covariance matrix ΨM (all elements of eM are identically distributed, thus all off-diagonal

elements of ΨM are the same). Denote by V are = V ar(ei) and Cove = Cov(ei, ej). Vector eM

captures all underlying assets or fundamentals within the pass-through security available to a

trader. As a first step, we express a generic element ei of vector eM as a function of previous

elements e1, · · · , ei−1 and innovation ui. Then we take the limit of this expression as M →∞ to
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obtain an SDE for a continuous time stochastic process that we refer to as Xt. Let Im denote an

m×m identity matrix, and Jm denote m× 1 vector of ones:

eM = Ψ
1/2
M × uM (33)

ΨM = (V are − Cove)× IM + Cove × JMJTM

We can use Cholesky decomposition and rewrite ΨM as (there exist a vector F and number E so

that the following holds):

ΨM =




ΨM−1 Cove × JM−1

Cove × JTM−1 V are


 =




Ψ
1/2
M−1 0

FT E


×




(Ψ
1/2
M−1)T F

0 E


 ,

where:

F = Cove × (Ψ
1/2
M−1)−1 × JM−1

E =
√
V are − Cov2

e × JTM−1Ψ−1
M−1JM−1 (34)

Combining equations 33 and 34 we obtain:



−→e i−1

ei


 =




Ψ
1/2
i−1 0

Cove × JTi−1Ψ−1
i−1Ψ

1/2
i−1

√
V are − Cov2

e × JTi−1Ψ−1
i−1Ji−1


×



−→u i−1

ui




ei = Cove × JTi−1Ψ−1
i−1 ×−→e i−1 + ui

√
V are − Cov2

e × JTi−1Ψ−1
i−1Ji−1

The last equation can be simplified by noting that:

Ψ−1
i−1 =

1

(V are − Cove)
× Ii−1 −

Cove
(V are − Cove)(V are + Cove(i− 2))

Ji−1J
T
i−1

JTi−1Ψ−1
i−1 =

1

(V are − Cove)
× JTi−1 −

Cove(i− 1)

(V are − Cove)(V are + Cove(i− 2))
JTi−1

=
1

V are + Cove(i− 2)
JTi−1

We obtain the following result:

ei =
Cove

V are + Cove(i− 2)
JTi−1 ×−→e i−1 + ui

√
V are −

Cov2
e(i− 1)

V are + Cove(i− 2)

We use infinite-divisibility condition and substitute the covariance terms with Cove = Σ0ρ/M
2.
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We also use equation (26) from the proof of proposition 1.1 to substitute the variance terms with

V are = (1/M)(Σ0 −M(M − 1)Cove) = (Σ0/M)(1− ρ(M − 1)/M):

ei =
ρ

(1− ρ) + ρ(i− 1)/M

(
JTi−1 ×−→e i−1

M

)
+

(
ui√
M

)√
Σ0(1− ρ) +

Σ0ρ(1− ρ)

M(1− ρ) + ρ(i− 1)

Now we let i = t×M for some t ∈ (0, 1), limM→∞ 1/M = dt, and limM→∞(JTi−1×−→e i−1) = X(t).

Taking the limit as M →∞ we obtain the following SDE for X(t):

dX(t) =
ρ

(1− ρ) + ρt
X(t)× dt+

√
Σ0(1− ρ)× dW (t)

B Trading Environment

B.1 Proposition 2.1

Proof. Conjecture linear trading strategies Xi = (βi/λ)si for the two traders and linear pricing

rule of the form P = λ(Σx+ u). Start with the profit maximization condition (10):

max
Xi

{EΠi(Xi, X−i, P )} = max
x
{E((v − λ(x+ (β−i/λ)s−i + u))× x|si = s)}

We follow the approach of Bernhardt and Taub [2008] and rewrite the i-th trader problem as

unconditional maximization with respect to trading intensity βi:

max
x
{E((v − λ(x+ (β−i/λ)s−i + u))× x|si = s)} =

max
β

{
E

[(
v − λ

((
β

λ

)
si +

(
β−i
λ

)
s−i + u

))(
β

λ

)
si

]}

Using the joint-normality of signals and the true asset value, plus independence of liquidity

trading, the unconditional problem simplifies to:

max
β

{(
β

λ

)
Cov(si, v)−

(
β2

λ

)
V ar(si)−

(
ββ−i
λ

)
Cov(si, s−i)

}
(35)
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Assuming λ is positive, the second-order condition for the above maximization is satisfied. Thus,

it is sufficient to consider the system of two first-order conditions for two informed traders:




β1

β2


 =




2× V ar(s1) Cov(s1, s2)

Cov(s1, s2) 2× V ar(s2)




−1


Cov(s1, v)

Cov(s2, v)




From the above we obtain the expression (13) for βi presented in the proposition. Note that

given conjectured linear trading and pricing rules the βi are determined uniquely.

Now we use the market efficiency condition (11) to determine λ. Note that if λ is determined

uniquely, the initial trading intensities βi/λ will be unique. Under the conjectured linear trading

strategies the total order flow is:

Σx+ u = (β1/λ)s1 + (β2/λ)s2 + u

and is jointly normally distributed with v. This implies linearity of pricing rule and the following

result (market efficiency condition (11) represents a linear regression of v on Σx+ u):

λ =
Cov(v,Σx+ u)

V ar(Σx+ u)
=

(β1/λ)Cov(s1, v) + (β2/λ)Cov(s2, v)

(β1/λ)2V ar(s1) + (β2/λ)2V ar(s2) + 2(β1/λ)(β2/λ)Cov(s1, s2) + σ2
u

(λσu)2 =

2∑

i=1

βi(Cov(si, v)− βiV ar(si)− β2Cov(si, s−i))

The first order condition for informed trader’s problem 35 implies:

Cov(si, v)− βiV ar(si)− β2Cov(si, s−i) = V ar(si)βi

Plugging this result in the above equation and simplifying we obtain expression (14) for λ. The

linear trading equilibrium is unique.

B.2 Lemma 2.1

Proof. Suppose trader-i’s opponent and the market-maker follow equilibrium strategies β−i and

λ given by Proposition 2.1. Then trader-i’s profit maximization problem is:

max
x

{
E

[(
v − λ

(
x+

(
β−i
λ

)
s−i + u

))
× x
∣∣∣∣ snew
i

]}

32



Following the approach in Bernhardt and Taub [2008] we rewrite the above as an equivalent

unconditional maximization problem:

max
β

{(
β

λ

)
Cov(snew

i , v)−
(
β2

λ

)
V ar(snew

i )−
(
ββ−i
λ

)
Cov(snew

i , s−i)

}

The first-order condition is sufficient and gives the expression (16) for βnew
i :

βnew
i =

Cov(snew
i , v)− β−iCov(snew

i , s−i)

2V ar(snew
i )

=
1

2
√
V ar(snew

i )

(√
Σ0 × αnew

1 − ρnew
12 ×

√
V ar(s−i)× β−i

)

Plugging the solution for βnew
i into the unconditional maximization problem we obtain the ex-

pression (17) for expected profit of trader i:

E(πnew
i ) =

1

4λ× V ar(snew
i )

(Cov(snew
i , v)− Cov(snew

i , s−i)× β−i)2

=
1

4λ

(√
Σ0 × αnew

i − ρnew
12 ×

√
V ar(s−i)× β−i

)2

B.3 Lemma 2.2

Proof. Both traders have access to the same research technology characterized by overlapping

information parameter γ ≤ 1/2 and cost function TC(ω) that is assumed to be linear in ω (all

identically distributed underlying assets are equally costly to reveal). In order to show the result

we express the expected trading profits of informed traders in terms of their research efforts

ω1 and ω2. We use equation (17) in Lemma 2.1 to derive the first order optimality condition

necessary for a Nash equilibrium:

∀i ∈ {1, 2} :
Σ0(1− ρ)

4λ
×
(

1− (2γ(1− ρ) + ρ)× ωjβj
1− (1− ωi)ρ

)2

=
dTC

dω
(ωi) (36)

The right-hand side of the equation above is the marginal cost of information acquisition,

which we assume does not depend on the research effort ω. We equate marginal trading benefits

of doing research for the two traders and plug in the resulting expression equilibrium values of β1

and β2 (λ cancels out). We also reexpress the result in terms of α1 and α2 to simplify exposition
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(there is a one-to-one mapping between research effort ωi and %-conditional variance reduction

measure αi):

αi =
ωi

1− (1− ωi)ρ
(37)

α2 ×
(

2(ρ− 2γ(1− ρ))

4− (2γ(1− ρ) + ρ)2α1α2

)
= α1 ×

(
2(ρ− 2γ(1− ρ))

4− (2γ(1− ρ) + ρ)2α1α2

)
(38)

The above equation implies α1 = α2 when γ 6= ρ
2(1−ρ) . It is worth noting that the knife-edge

case γ = ρ
2(1−ρ) results in multiplicity of possible equilibria—for a given linear cost function

TC(ω) continuum of Nash equilibria exists (one symmetric and continuum of asymmetric for any

given linear cost function satisfying single-agent-interior condition). The marginal trading benefit

of research efforts for each agent in this case is a symmetric function of α1 and α2.

We establish for the game with two informed traders that if an interior Nash equilibrium

exists for γ < 1/2 and γ 6= ρ
2(1−ρ) , then it is symmetric, that is ω1 = ω2.

B.4 Lemma 2.3

Proof. We prove the lemma by conjecturing existence of a corner equilibrium and then verifying

it is a Nash equilibrium of the game. Without loss of generality suppose ω1 > ω2 = 0 in the

corner equilibrium. We use equation (17) in Lemma 2.1 and express expected trading profits

of informed traders in terms of their research efforts ω1 and ω2. It can be verified that trading

equilibrium for a game with one informed trader is equivalent to a trading equilibrium in a game

with two informed traders when one trader’s research effort is zero. The two cases γ ≤ 1/2 and

γ > 1/2 result in the following expressions for correlation of two signals ρ12:

ρ12 =





(2γ(1− ρ) + ρ)
√
α1α2, when 0 ≤ γ ≤ 1/2

(1−2(1−γ)(1−α1))
√
α2√

α1
, when 1/2 < γ ≤ 1,

(39)

where: αi =
ωi

1− (1− ωi)ρ
,∀i ∈ {1, 2}

Consider the case γ ≤ 1/2 first. The first order optimality condition necessary for a corner Nash

equilibrium is:
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Σ0(1− ρ)

4λ
×
(

1− (2γ(1− ρ) + ρ)× ω1β1

1− ρ

)2

≤ dTC

dω
(0) = (40)

=
dTC

dω
(ω1) =

Σ0(1− ρ)

4λ
×
(

1

1− (1− ω1)ρ

)2

We plug in the above expression the trading equilibrium values of β1 and λ that correspond to

single trader doing research on the market (Proposition 2.1):

β1 =
1

2

(
1

1− (1− ω∗)ρ

)

λ =

√
2Σ0

2σu
×
√

ω∗

1− (1− ω∗)ρ

The above condition 40 simplifies to the following expression:

(
1

1− (1− ω∗)ρ +
(ρ− 2γ(1− ρ))× ω∗

2(1− ρ)(1− (1− ω∗)ρ)

)2

≤
(

1

1− (1− ω∗)ρ

)2

Using the single-agent-interior condition that implies ω∗ < 1 and also restrictions on model

parameters ρ ∈ [0, 1) and γ ≤ 1/2, the first order condition for the corner equilibrium is satisfied

if and only if:

ρ− 2γ(1− ρ) ≤ 0 ≡ ρ ≤ 2γ

1 + 2γ

It remains to check that the necessary first order condition above is sufficient for the corner

Nash equilibrium. We show that the objective functions in traders’ profit maximization problems

are concave (strategies of other market participants held fixed and using equation (36) above):

∂(Eπi − TC(ωi))

∂ωi
=

Σ0(1− ρ)

4λ
×
(

1− (2γ(1− ρ) + ρ)× ωjβj
1− (1− ωi)ρ

)2

− dTC

dω
(ωi)

∂2(Eπi − TC(ωi))

∂ω2
i

= −Σ0(1− ρ)

4λ
×
(

2ρ(1− (2γ(1− ρ) + ρ)× ωjβj)2

(1− (1− ωi)ρ)3

)
< 0

This concludes the proof for low degree of overlapping information γ ≤ 1/2. Now we repeat

similar steps for γ > 1/2 and use corresponding functional form for the correlation between

signals ρ12.

The first order optimality condition necessary for a corner Nash equilibrium when γ > 1/2 is:
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Σ0(1− ρ)

4λ
×
(

1− ((2γ − 1)(1− (1− ω1)ρ) + 2(1− γ)ω1)β1

1− ρ

)2

≤ dTC

dω
(0) = (41)

=
dTC

dω
(ω1) =

Σ0(1− ρ)

4λ
×

(
1

1− (1− ω1)ρ

)2

The trading equilibrium values of β1 and λ remain unaffected by γ because only one informed

trader does research. The above condition simplifies to:

(
(3− 2γ)(1− ρ) + (2γ(1− ρ) + 3ρ− 2)ω∗

2(1− ρ)(1− (1− ω∗)ρ)

)2

≤
(

1

1− (1− ω∗)ρ

)2

ρ ≤ (2− 2γ)ω∗ + 2γ − 1

(3− 2γ)ω∗ + 2γ − 1
, when γ > 1/2

It remains to check the sufficiency of the above condition. The objective function of the single

informed trader doing research on the market is concave:

∂(Eπ1 − TC(ω1))

∂ω1
=

Σ0(1− ρ)

4λ
×
(

1

1− (1− ω1)ρ

)2

− dTC

dω
(ω1)

∂2(Eπ1 − TC(ω1))

∂ω2
1

= −Σ0(1− ρ)

4λ
×
(

2ρ

(1− (1− ω1)ρ)3

)
< 0

The objective function for the second informed trader that is at the corner consist of two parts:

the catch-up part ω2 < ω∗ and leading part ω2 > ω∗. Instead of doing piecewise marginal analysis

we use equation (17) in Lemma 2.1 to show that the total trading profits second informed trader

obtains is strictly less than research costs for any research effort ω2 > 0 when the above condition

holds.

E(πnew2 ) =
1

4λ

(√
Σ0 × αnew

2 − ρnew
12 ×

√
V ar(s1)× β1

)2

≤ TC(ω2) (42)

When one informed trader acts on the market in equilibrium, we use its first-order condition to

express the relationship between research effort and total variable cost of research for the second

trader in case it decides to deviate from ω2 = 0 (under linear cost assumption and single-agent

interior condition):

TC(ω2) =
(1− ρ)Σ0

4λ

(
1

1− (1− ω1)ρ

)2

× ω2

When the second informed trader exerts lower research effort than ω1, his marginal trading
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profit is decreasing in ω2, thus trading profits cannot turn positive at 0 < ω2 < ω1 provided that

marginal trading profit is already below marginal cost at zero. However once ω2 ≥ ω1 there are

potential benefits of doing break through research, and this is the case we analyze below. Plugging

in corner equilibrium values of λ and β1 in equation (42), taking ω2 ≥ ω1 and simplifying yields

an equivalent inequality:

(2ω2(1− ρ+ ρω1)− ω1((2γ − 1)(1− ρ)(1− ω2) + ω2))2 < 4ω2
2 × (1− ρ)(1− ρ+ ρω2)

Note that the expression above is quadratic in ρ. When ρ = 0 the expression simplifies to

ω1((2γ − 1)(1 − ω2) + ω2)(4ω2 − ω1((2γ − 1)(1 − ω2) + ω2)) > 0 and is true when ω2 > ω1 and

γ > 1/2. When ρ = 1 the same expression simplifies to ω2
1ω

2
2 > 0. Now if we show that when

ρ = (2−2γ)ω∗+2γ−1
(3−2γ)ω∗+2γ−1 (the threshold in the Lemma) the above expression is negative, our result

follows—for all ρ ∈ [0, (2−2γ)ω∗+2γ−1
(3−2γ)ω∗+2γ−1 ] the needed inequality holds. It turns out that this holds,

when ρ is equal to our threshold, the above expression is negative. It simplifies to:

−4γ2ω1(ω2 − ω1)2 + 4γ(ω3
1 + 2ω3

2 − ω1ω
2
2(1 + 2ω2))− ω3

1 − 2ω2
1ω2 − 4ω3

2 + ω1ω
2
2(3 + 8ω2) > 0

The above expression is a concave quadratic polynomial in γ, the relevant range for which is

γ ∈ [0.5, 1]. We use the region of research efforts such that ω2 > ω1. For convenience, let

ω2 = νω1, where ν > 1. Using this reformulation for γ = 0.5 the above simplifies to 4ν3ω4
1 > 0.

For γ = 1 it simplifies to (ν(6 + ν(4ν − 5))− 1)ω3
1 , which is increasing function in ν and positive

when ν = 1. These two facts together with concavity of the polynomial above establish the fact.

This leads us to conclude that the first order condition above is both necessary and sufficient.

B.5 Proposition 2.2

Proof. Firstly, consider research technologies with low degree of overlapping information γ ≤ 1/2.

Use equation (17) in Lemma 2.1 to rewrite informed trader’s expected profits function E(πi) in

terms of its research effort ωi and take the first order condition of the profit maximization problem

(holding ω−i, λ and β−i constant):

Σ0(1− ρ)

4λ
×
(

1− (2γ(1− ρ) + ρ)× ω−iβ−i
1− (1− ωi)ρ

)2

=
dTC

dω
(ωi)
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Using result in Lemma 2.2 that in the class of interior Nash equilibria under γ ≤ 1/2 only

symmetric equilibria can exist, we substitute ωi = ωj = ω in the above equation. Plugging

equilibrium values of λ and βi, the above first order condition simplifies to:

(1− ρ)
√

Σ0 × σ2
u(2(1− ρ) + (2γ(1− ρ) + 3ρ)ω)√

2(2 + 2γ(1− ρ) + ρ)2
√
ω(1− (1− ω)ρ)5/2

=
dTC

dω
(ω)

Our first observation is as ω → 0 the LHS of the above expression limits to +∞. Thus for any

finite marginal cost of doing research ω = 0 is never an equibrium. When ω = 1 the LHS simplifies

to (1−ρ)
√

Σ0×σ2
u√

2(2+2γ(1−ρ)+ρ) <
(1−ρ)

√
Σ0×σ2

u

2 < dTC
dω (ω = 1), the latter implied by the single-agent-interior

condition. Thus ω = 1 is never an equilibrium. It remains to show that for any given constant

RHS there is a unique solution for ω ∈ (0, 1). Below we show that LHS is a decreasing function

of ω, which establishes the result.

We show this by differentiating the LHS with respect to ω. The denominator is always positive,

while the numerator is a concave quadratic polynomial in ω that needs to be negative for our

result:

−4(2γ(1− ρ) + 3ρ)ρ× ω2 + (1− ρ)(2γ(1− ρ)− 9ρ)× ω − 2(1− ρ)2 < 0

The polynomial is negative both when ω = 0 and ω = 1. It attains its optimal value when

ω = (1−ρ)(2γ(1−ρ)−9ρ)
8(2γ(1−ρ)+3ρ)ρ . When the optimal value is attained outside the [0, 1] domain, the two

checks at endpoints above are sufficient for the result. When γ ≥ 9ρ
2(1−ρ) and γ ≤ 3ρ(3+5ρ)

2(1−ρ)(1−9ρ) the

optimal value is inside the [0, 1] domain, so we check the value of polynomial at the optimum.

It is negative whenever 4γ2(1 − ρ)2 − 100γ(1 − ρ)ρ − 15ρ2 < 0, which holds under the above

restrictions on γ (verified numerically). This completes the proof of the γ ≤ 1/2 case.

Now consider the perfectly-overlapping research technology γ = 1 in the second part of the

Proposition. Again, we use equation (17) in Lemma 2.1 to rewrite informed trader’s expected

trading profits function E(πi) in terms of its research effort ωi and take the first order condition

of the profit maximization problem (holding ω−i, λ and β−i constant). We use the formula for

correlation of informed traders’ signals ρ12 that corresponds to the perfectly-overlapping research

technology γ = 1 and without loss of generality we assume ω1 ≥ ω2. The first order condition for

the two informed traders is:
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ω1 ≥ ω2 :

∂(Eπ1)

∂ω1
=

Σ0(1− ρ)

4λ

(
1

1− (1− ω1)ρ
− ω2

ω1
β2

)(
1

1− (1− ω1)ρ
+
ω2

ω1
β2

)
=

dTC

dω
(ω1)

∂(Eπ2)

∂ω2
=

Σ0(1− ρ)

4λ

(
1− β1 + β1(1− ω1)ρ

1− (1− ω2)ρ

)2

=
dTC

dω
(ω2)

It can be shown that ∂(Eπ1)
∂ω1

(ω) > ∂(Eπ2)
∂ω2

(ω), while ∂(Eπ1)
∂ω1

has at most one point where it changes

direction. Although the first informed trader’s maximization problem is not concave, the first

order condition is still sufficient. Any candidate Nash equilibrium with positive ω1 > 0 and

ω2 > 0 must satisfy both first order conditions above. We assume linear variable costs of research

dTC
dω (ω1) = dTC

dω (ω2), thus we can equate marginal trading profits of two agents and obtain

relationship between ω1 and ω2 in equilibrium:

(−2ρ(1− ρ(1 + ω1)))× ω2
2 + 2(1− ρ)(3ρω1 − (1− ρ))× ω2 +

+ ω1(4(1− ρ)2 − (1− ρ(1− ω1))2) = 0

We solve the above equation for ω2. It turns out that when ω1ρ > 1 − ρ we have positive

0 < ω2 < ω1. When one of the conditions is not satisfied, we have ∀ω2 ∈ [0, 1] the first trader

with higher research effort ω1 > ω2 has ∂(Eπ1)
∂ω1

(ω1) > ∂(Eπ2)
∂ω2

(ω2), thus only corner solution is

possible for ω2:

when ω1ρ > 1− ρ :

ω2 =
−(1− ρ)(3ω1ρ− 1 + ρ) + (ω1ρ+ 1− ρ)

√
(ω1ρ− 1 + ρ)2 + ρ2ω2

1

2ρ(ω1ρ− 1 + ρ)
(43)

when ω1ρ ≤ 1− ρ :

ω2 = 0 (44)

The latter case when ω1ρ ≤ 1− ρ is consistent with the result in Lemma 2.3 after plugging in

γ = 1. It is interesting that when this condition does not hold, the level of first trader’s research

effort ω1 uniquely determines equilibrium level of second trader’s effort ω2 according to equation

(43). When ω1ρ ≤ 1−ρ the existence and uniqueness of the corner equilibria is established. When

ω1ρ > 1−ρ we establish existence and uniqueness using numerical methods. The underlying idea

is to pick any linear cost function satisfying single-agent-interior condition and demonstrate that
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equation (43) pins down ω1 uniquely. Single-agent interior condition ensures that the equilibrium

is interior ω1 < 1.

This concludes the proof of the proposition.
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