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1 Introduction

The term structure of interest rates is one of the most widely studied topic in economics and

finance. Built on the pioneering works of Vasicek (1977) and Cox et al. (1985), a large number of

dynamic term structure models (DTSMs) have been developed in the finance literature in the

past two decades. According to Dai and Singleton (2003), DTSMs assume that the evolution of

the spot rate and the yield curve depends on a finite number of state variables. By judiciously

choosing the dynamics of the state variables and their relation with the spot rate, the DTSMs

that have been developed to date are empirically flexible and analytically tractable. Among

the most prominent classes of DTSMs are the affine term structure models (ATSMs) of Duffie

and Kan (1996) and Dai and Singleton (2000), in which the spot rate is a linear function of the

state variables that follow affine diffusions. These models have been extensively studied in the

literature to address a wide range of term structure related issues.

One of the fundamental assumptions common to all DTSMs is that bond yields follow

Markov processes. That is, changes in bond yields and excess bond returns depend on cur-

rent but not lagged yields. In most DTSMs, the state variables are assumed to follow either

continuous-time Markov processes or discrete-time AR(1) processes. Contrary to this impor-

tant assumption, however, there is increasing evidence that bond yields do not follow Markov

processes. For example, based on nonparametric methods, Chen and Hong (2011) show that

the seven-day Eurodollar rates strongly violate the Markov assumption. Cochrane and Pi-

azzesi (2005) and Feunou and Fontaine (2014) also find that, in addition to current yields (for-

ward rates), lagged yields explain a significant portion of the variation of bond excess returns,

a clear violation of the Markov assumption.

In light of the above evidence, existing DTSMs in the literature have been extended to

capture non-Markov bond yields. For example, Ang and Piazzesi (2003) and Jardet et al.

(2013) consider macro term structure models, in which the state variables follow a discrete-

time Gaussian VAR(p) process under both the physical (P) and risk-neutral (Q) measures

to incorporate lagged information into bond pricing. Joslin et al. (2013) and Feunou and

Fontaine (2014) also consider non-Markov Gaussian DTSMs, in which the state variables fol-

low a VAR(p) or VARMA(1,1) process under the P measure. However, both models require the

state variables to be Markov under the Q measure. Under this setup, lagged information only
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affects the expected change of yields, but has no direct impact on current yields. As a result,

lagged information is left unspanned by current yields.

While these non-Markov models provide interesting new insights on term structure dy-

namics, it is fair to say that non-Markov term structure models are still severely understudied

compared to the large number of Markov DTSMs in the literature. In this paper, we develop

a systematic approach of constructing continuous-time non-Markov Gaussian DTSMs under

the Heath, Jarrow, and Morton (1992, HJM) framework. Compared to extant DTSMs, HJM

models are particularly convenient for modelling the non-Markov features in the data for the

following reasons.

First, interest rates generally follow infinite dimensional non-Markov processes under the

HJM framework, and are Markov only under very restrictive assumptions. This feature offers

great flexibility for modelling bond yields because we can start with a large set of non-Markov

models, from which we choose a subset of models that fit the data well. In contrast, DTSMs

are Markov by construction and can be extended in only limited ways, such as adding lags to

the state variables to obtain non-Markov models. If the current yields depend on yields in the

distant past, for example, such non-Markov models would need many lags and can become

overly complicated to parameterize.1

Second, under the HJM framework, the volatility function of the forward rates completely

determines the dynamics of the yield curve. For certain volatility functions, the term struc-

ture has a finite-dimensional representation in the sense that forward rates are linear func-

tions of a finite number of state variables, which follow Gaussian processes. We obtain Finite-

Dimensional Representations (FDRs) of Gaussian HJM models based on the linear system ap-

proach of Björk and Gombani (1999). One important advantage of this approach is that it

leads to infinitely many equivalent FDRs for the same HJM model, similar to the “invariant

transforms” of Dai and Singleton (2000).2

Third, the HJM approach offers potentially richer non-Markov dynamics for the term struc-

ture than the current non-Markov DTSMs. Based on appropriate specifications of the volatility

function, we can obtain non-Markov Gaussian DTSMs by allowing the number of state vari-

1 Neither VAR(p) nor VARMA(1,1) is flexible enough to be consistent with the empirical data. For example, for
three-factor models, VAR(p) becomes intractable when p > 12. For monthly data, however, p = 12 only accounts
for lags up to one year, which does not go far enough to capture the strong non-Markov property exhibited by
the data.

2 Dai and Singleton (2000) use invariant transforms to classify all affine term structure models into a few
subclasses of canonical representations.
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ables to be larger than the number of factors, i.e., the dimension of the Wiener process. By

imposing additional constraints, we show that our specification reduces to VARMA state vari-

ables in discrete time. Moreover, by specifying an appropriate pricing kernel or the market

prices of risk as in Joslin et al. (2014), we are able to reproduce the unspanning property of

current yields.

We conduct a comprehensive analysis of non-Markov Gaussian term structure models

based on government bond yields from nine countries, which we divide into three groups

based on geographical locations or the similarity of economic systems: Asia Pacific (Aus-

tralia, Japan, and New Zealand), Continental Europe (Germany, Sweden, and Switzerland),

and North America and UK (Canada, the United Kingdom, and the United States). Our em-

pirical analysis progresses in three steps.

First, we provide compelling evidence that government bond yields from the nine countries

exhibit a strong non-Markov property. Similar to Cochrane and Piazzesi (2005), we find that

forward rates with up to two-month lags have strong predictive power of excess bond returns.

We also find that moving averages of bond yields with up to 60-month lags explain a large

portion of the variation of excess bond returns. To examine the economic significance of the

out-of-sample forecasting power of the Cochrane and Piazzesi (2005) specification and our

specification with long-lagged moving averages, we compute their trading profits according

to the risk-adjusted average return of a trading rule that exploits the predictability of bond

excess returns. We find that our specification with long-lagged moving averages results in

much higher trading profits than the specification of Cochrane and Piazzesi (2005). These

results demonstrate that bond yields strongly violate the Markov assumption and extremely

long lags are needed to capture the dynamics of bond yields.

Second, we study whether the Markov property is satisfied under the Q measure as as-

sumed in Joslin et al. (2013) and Feunou and Fontaine (2014). Since we only observe bond

yields under the P measure, we need specific assumptions on the market prices of risk to esti-

mate the term structure dynamics under the Q measure. To avoid such assumptions, we focus

on the term structure of U.S. repo rates, for which Longstaff (2000) and Della Corte et al. (2008)

have shown that the expectations hypothesis cannot be rejected, and hence the dynamics of

the repo rates under the P and Q measures would coincide. We provide strong evidence that

the Markov assumption is violated by the repo rates under the Q measure.
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Third, using the bond yields of the nine countries, we compare the in-sample and out-of-

sample performance of the non-Markov models constructed using our approach with that of

the non-Markov models in the existing literature, specifically Joslin et al. (2013)’s VAR(4) model

and Feunou and Fontaine (2014)’s VARMA(1,1) model. Upon inspecting the in-sample fit to the

data using various statistical criteria, such as AIC, BIC, and HIC, we find that our non-Markov

models can fit the data in-sample better than both the three-factor Markov model and the non-

Markov models of VAR(4) and VARMA (1,1). We also examine the out-of-sample performance

of all models in predicting the excess bond returns. The results show that in seven of the nine

bond markets, the Markov model fails to capture the excess bond returns out-of-sample in an

economically significant way.3 In contrast, in all countries except for one, there are at least three

non-Markov models producing economically significant trading profits. We also find that even

though VAR(4) and VARMA(1,1) have similar in-sample trading profits as the continuous-

time Markov and non-Markov models, they fail to match the out-of-sample performance of

our non-Markov models. Looking at the results across the nine countries, different markets

call for different non-Markov specifications. These observations suggest that the non-Markov

property is a staple feature of the bond market. We contribute to the literature by offering a

flexible and parsimonious modelling framework that can accommodate this feature.

The structure of the paper is as follows. In Section 2, we show that moving averages of

bond yields (over extended windows) explain a large portion of the variation of excess bond

returns in all nine bond markets considered. In Section 3, we develop a systematic approach

to building non-Markov GDTSMs. Section 4 provides empirical evidence on the non-Markov

property under the Q measure. Section 5 carries out an out-of-sample exercise that identifies

the non-Markov model that delivers the best performance in capturing the excess bond returns.

Section 6 concludes the paper. Appendix A to Appendix D contain proofs and technical details.

In Appendix E, we discuss the specification of unspanned risks within our framework.

2 Non-Markov property of international bond yields

In this section, we provide extensive evidence that government bond yields in different coun-

tries strongly violate the Markov assumption. Specifically, we show that bond yields with

3 Since we do not consider transaction costs, we require that the associated trading rule to yield a risk-adjusted
average return of 30 percent or more to be qualified as being economically significant.
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extensive lags can significantly improve the predictability of excess bond returns. This evi-

dence provides strong motivation for developing non-Markov term structure models beyond

those in the existing literature.

2.1 Data

The data used in this paper are bond yields from nine industrialized countries with different

monetary policies constructed by Wright (2011), and made available through an online appen-

dix.4 We categorize the nine countries into three groups based on their geographical locations

and economic similarities: Asia Pacific (Australia, Japan, and New Zealand), Continental Eu-

rope (Switzerland, Sweden, and Germany), and North America and UK (Canada, the United

Kingdom, and the United States).

The data contain zero yields with maturities ranging from one year to ten years with in-

crements of one year, and observed at the monthly frequency. The sample periods start at

different dates for different countries and all end in April 2009. In our analysis, we divide

the data into two subsamples. For countries with sample periods starting earlier than January

1980 (DE, GB, and US), the in-sample period ends in April 1994. For the rest of the countries

(AU, JP, NZ, CH, SE, and CA), the in-sample period ends in April 2000 or April 2004. The

details about the sample periods of different countries are summarized in Table 1.

[Insert Table 1 about here]

2.2 Moving averages explain excess returns

In this section, we examine whether bond yields in the nine countries violate the Markov

assumption, in the sense that excess bond returns depend not only on current yields but also

on historical yields.

Following Cochrane and Piazzesi (2005), we focus on the average log excess holding period

4 In Wright (2011)’s dataset, zero-coupon yield curves of Norway are also available. However, due to their
relatively short history, we exclude Norway’s data from our analysis.
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return across maturities between two to five years:

rxt+1 ≡
1
4

5

∑
n=2

rx(n)t+1,

rx(n)t+1 ≡ r(n)t+1 − y(1)t ,

r(n)t+1 ≡ ny(n)t − (n− 1) y(n−1)
t+1 ,

where y(n)t is the n-year zero yield at time t.

We consider two forecasting models for bond excess returns that include lagged yield in-

formation. The first one is the regression model of Cochrane and Piazzesi (2005), which we

refer to as the CP approach:

rxt+1 = α0 + α1 ft + α2 ft− 1
12
+ α3 ft− 2

12
+ εt+1,

where ft =

[
y(1)t f (2)t · · · f (10)

t

]ᵀ
and f (n)t ≡ ny(n)t − (n− 1) y(n−1)

t , that is, ft represents

one-year forward rates up to ten years in maturity.5 The CP approach incorporates both current

forward rates and forward rates with one- and two-month lags as predictors.

The second model we consider incorporates both current zero yields and moving averages

of lagged zero yields as predictors, which we refer to as the moving average (MA) approach:

rxt+1 = α0 + α1yt + α2ȳl
−t + εt+1, (1)

where yt =

[
y(1)t y(2)t · · · y(10)

t

]ᵀ
, ȳl
−t =

[
ȳ(1),l−t ȳ(2),l−t · · · ȳ(10),l

−t

]ᵀ
, ȳ(n),l−t = 1

l ∑l
j=1 y(n)

t− j
12

,

and l is the number of lags in months. Therefore, while yt represents the current yields, ȳl
−t

represents moving averages of historical yields up to l months in the past.

Besides the statistical fit of the above forecasting models, we also use the profits generated

by a trading strategy based on these models to gauge the economic significance of the lagged

predictors. Specifically, we report the “adjusted return” and “cumulative return” of the trading

strategy considered in Cochrane and Piazzesi (2006).

For simplicity, we assume that we are able to trade a portfolio that gives a log annual return

of rxt. We invest in Et (rxt+1) units of this portfolio every month and close the position after

5 The original CP paper uses forward rates up to five years in maturity. We extend the maturities to ten years
because our dataset includes zero yields up to ten years in maturity.
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holding it for 12 months.6 The return of this “trading rule” is the product of the excess return

and its expected value one year prior:

rnt ≡ rxt ×Et−1 (rxt) .

In this section, we use Et (rxt+1) = α̂0 + α̂1 ft + α̂2 ft− 1
12
+ α̂3 ft− 2

12
for the CP approach, and

Et (rxt+1) = α̂0 + α̂1yt + α̂2ȳl
−t for the MA approach. The “adjusted return” is the average

of rnt divided by its standard deviation (it can be regarded as the Sharpe ratio of the trading

strategy):

AdjRn =
〈rnt〉
std (rnt)

.

The “cumulative return” is simply the sum of rnt over monthly intervals (with ∆t = 1/12):

CumRnt =
t/∆t

∑
i=∆t

rni.

Table 2 reports the in-sample R2’s and the in- and out-of-sample adjusted returns of the CP

and MA models.7 The model parameters in all out-of-sample tests are fixed at their in-sample

estimates, i.e., as time progresses, we do not update the model parameters in real time.8 For

the MA approach, we have the number of lags as an extra free parameter. We use lags of 12

to 60 months to run the test, and report results based on the number of lags that gives the best

out-of-sample AdjRn among all lags considered.

From Table 2, we see that adding moving averages of historical yields in the regression im-

proves the in-sample R2’s significantly relative to the CP approach. Moreover, while the two

approaches have comparable in-sample adjusted returns, the MA approach seems to have bet-

ter out-of-sample adjusted returns. The same table also shows that the performance of the CP

approach deteriorates sharply when moving from in-sample to out-of-sample, suggesting that

the CP approach fails to capture the non-Markov feature inherent in bond yields. In contrast,

6 We long the portfolio if Et (rxt+1) > 0 and short the portfolio if Et (rxt+1) < 0.
7 Out-of-sample R2’s are not reported because they are not as informative as the adjusted returns in measuring

the out-of-sample performance of a trading rule.
8 While this might be inconsistent with industry practice, our goal is not to develop real-time trading strategies.

By deliberately keeping the model parameters fixed, we are more interested in features of the data that different
model specifications are unable to reproduce in an out-of-sample setting.
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the performance of the MA approach does not deteriorate as much as that of the CP approach.

Graphically, Figure 1 shows that the MA approach delivers higher in-sample cumulative re-

turns than the CP approach, and Figure 3 shows that the MA approach largely delivers better

out-of-sample cumulative returns than the CP approach as well. Similar results were also

identified by Feunou and Fontaine (2014).

[Insert Table 2 about here]

[Insert Figure 1 about here]

While the above results for the MA approach are based on the number of lags that gives the

best out-of-sample performance, Figure 2 reports the in- and out-of-sample performances of

the MA approach for different lags. For many countries, the MA approach performs similarly

across different lags. For others, variations of performance across different lags are bigger.

The last row in Table 2 reports the number of lags for different countries that gives the MA

approach its best out-of-sample performance (as measured by the out-of-sample AdjRn).

[Insert Figure 2 about here]

Although the MA approach does outperform the CP approach both in-sample and out-

of-sample for some countries, we notice that there are still others, such as CH, DE, JP, and

US, where both approaches fail out-of-sample. The significant improvement of performance

brought by the MA approach suggests that the non-Markov property does exist in the bond

market. The long lags for the best MA model also suggest that the non-Markov feature is

complex and cannot be easily captured by adding a small number of lags. However, both of

these specifications likely suffer from over-fitting, as evidenced by the dramatic drop in perfor-

mance from in-sample to out-of-sample for CH, DE, JP, and US.9 Therefore, these regression-

based approaches are unable to capture the non-Markov property consistently in all cases. In

the next section, we introduce a systematic approach of constructing non-Markov continuous-

time GDTSMs, which are able to capture the non-Markov property in all nine bond markets in

an out-of-sample context.

[Insert Figure 3 about here]

9 This could be due to the large number of explanatory variables in both the MA and the CP regressions.
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3 A systematic approach to non-Markov Gaussian DTSMs

The evidence presented in the previous section shows that the Markov assumption is over-

whelmingly violated by international bond yields, and that regression-based models have dif-

ficulty capturing the non-Markov feature of the data in a consistent manner. In this section,

we develop a systematic approach of constructing non-Markov Gaussian DTSMs under the

Heath, Jarrow, and Morton (1992, HJM) framework. We first discuss the advantages of the

HJM approach to non-Markov term structure modeling. Then, we describe the linear systems

approach of Björk and Gombani (1999), which allows us to construct infinitely many Markov

and non-Markov Gaussian term structure models from the same HJM model. Specializing to a

deterministic specification of the forward rate volatility function, we present an algorithm for

constructing both Markov and non-Markov term structure models. Finally, we show that our

non-Markov models are more flexible than those in the current literature. These new models

will be implemented in the subsequent empirical analysis.

3.1 The HJM framework

We begin by briefly introducing the HJM framework. Let f (t, T) represent the instantaneous

forward rate at time t for a future date T > t, which represents the rate that can be contracted

at time t for instantaneous risk-free borrowing or lending at time T. Given f (t, T) for all

maturities between t and T, the price at time t of a zero-coupon bond with maturity T can be

obtained as:

P (t, T) = exp
{
−
∫ T

t
f (t, s) ds

}
.

The spot interest rate at time t is simply rt = f (t, t).

HJM model term structure dynamics through the stochastic evolution of the forward rates:

d f (t, T) = µ (t, T) dt+ σ f (t, T) dWt,

where Wm×1 is an m-dimensional Wiener process under the Q measure, and µ (t, T) and σ f (t, T)1×m

are the drift and volatility of the forward rate, respectively. HJM also establish the following
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no-arbitrage restriction on the drift of the forward rate process:

µ (t, T) = σ f (t, T)
(∫ T

t
σ f (t, s) ds

)ᵀ
.

Therefore, the volatility function σ f (t, T) completely determines the drift of the forward rate

under the Q measure.

For convenience, we consider the Musiela parameterization, which uses the time to ma-

turity (denoted by x), rather than the time of maturity, to parameterize bonds and forward

rates:

Definition 1 For all x > 0, the forward rate in the Musiela parameterization, r (t, x) , is defined as:

r (t, x) = f (t, t+ x) and P (t, T) = exp
{
−
∫ T−t

0
r (t, s) ds

}
.

Following Brace and Musiela (1994), the standard HJM drift condition can be rewritten as:

dr (t, x) = µr (t, x) dt+ σ (t, x) dWt,

µr (t, x) =
∂

∂x
r (t, x) + σ (t, x)

∫ x

0
σ (t, s)ᵀ ds,

where Wt =
[
[wi]

m
i=1
]ᵀ , σ (t, x) = σ f (t, t+ x) = [σi (t, x)]mi=1 , and [•i]

m
i=1 is a compact notation

for a row vector [•1, •2, · · · , •m]. We then have:

r (t, x) = r (0, t+ x) +Θ (t, x) + r0 (t, x) , (2)

Θ (t, x) =
∫ t

0
σ (s, x+ t− s)

∫ x+t−s

0
σ (s, τ)ᵀ dτds, (3)

r0 (t, x) =
∫ t

0
σ (s, x+ t− s) dWs, (4)

dr0 (t, x) =
∂r0 (t, x)

∂x
dt+ σ (t, x) dWt, r0 (0, x) = 0. (5)

From (2) to (5), we can see that Θ (t, x) + r0 (t, x) is the time-varying stochastic component

of the forward rate r (t, x). When σ (t, x) is time-invariant, i.e., σ (t, x) = σ (x), which is the

main focus of this paper, the non-Markov property is reflected in the drift term of dr0 (t, x),
∂r0(t,x)

∂x =
∫ t

0
∂σ(x+t−s)

∂x dWs, which requires integrating over the entire history of the underlying

Wiener process.
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3.2 Finite-Dimensional Representation of HJM models

Interest rates under HJM models are generally non-Markov and infinite dimensional (see Björk

and Gombani, 1999), which makes their empirical implementation difficult. Consequently, a

large literature has been developed to identify conditions that allow Finite-Dimensional Repre-

sentations (FDRs) of HJM models. One widely recognized sufficient condition for HJM models

to exhibit FDRs is a time-invariant volatility that is a deterministic function of time to matu-

rity, which satisfies a multi-dimensional linear ODE with constant coefficients (e.g., Björk and

Svensson, 2001, Corollary 5.1 or Chiarella and Kwon, 2003, Assumption 1).10 Since the time

and maturity dependent components of the volatility function are separable, we can obtain

Markov state variables by integrating over the historical Brownian shocks.

Following the approach of obtaining FDRs of HJM models developed by Björk and Gom-

bani (1999) based on linear systems theory, we start from the following definition:

Definition 2 A triplet {A, B, C(x)}, where A is an n× n matrix , B is an n× m full rank matrix,

and C (x) is an n-dimensional row-vector function, is called an n-dimensional realization of the system

r0 (t, x) if r0 (t, x) has the following representation:

r0 (t, x) = C (x) Zt, (6)

dZt = AZtdt+ BdWt, Z0 = 0, (7)

where Zt is an n-dimensional column vector of state variables.

Björk and Gombani (1999) show that for an HJM model to have an FDR as in (6)-(7), the

volatility function must be written as:

σ (x) = C(x)B = C0 exp(Ax)B,

where A, B, and C (x) are given in Definition 2, and C0 = C (0). Also, one can apply invariant

transforms to the triplet {A, B, C (x)} to construct a new realization
{

MAM−1, MB, C (x)M−1}
10 Specifically, the ith component of σ, σi (x) (which is n times differentiable with respect to x), satisfies an nth

ODE of the form

∂n

∂xn σi (x)−
n−1

∑
j=0

κij (x)
∂j

∂xj σi (x) = 0

where κij (x)’s are continuous deterministic functions.
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given a nonsingular n× n matrix M. Then:

r0 (t, x) = C (x)M−1 (MZt) ,

d (MZt) = MAM−1 (MZt) dt+ MBdWt,

is another FDR for the same HJM model with a new state vector MZ.

Traditional GDTSMs are time-homogeneous. Although the FDR we obtain for r0 (t, x)

is time-homogeneous, the first two components of the forward curve in (2), r (0, t+ x) and

Θ (t, x), are not. To preserve the time-homogeneity feature, we construct GDTSMs from HJM

models by replacing

r (0, t+ x) +Θ (t, x)

with

lim
t→∞

r (0, t+ x) +Θ (t, x) ,

essentially assuming that the model has evolved from the distant past. De Jong and Santa-

Clara (1999) and Trolle and Schwartz (2009) adopt a similar treatment. Details of this derivation

are presented in Appendix A and Appendix B.

3.3 Non-Markov and Markov states

An important feature of this approach is that the number of states is allowed to be larger than

the number of factors, i.e., the dimension of the Wiener process. In this subsection, using an

invariant transform, we show that any model having more states than factors exhibits a non-

Markov property. We emphasize that by this we mean that some of the states are non-Markov

on their own, i.e., their conditional forecast depends on their current as well as lagged values.

However, when we examine all states as a whole, they form a Markov system because the

requisite lagged information is included as additional state variables.

Let us consider a model with B being n×m and lower trapezoidal, where n > m.11 Parti-

11 A full rank B with n>m can always be transformed into a lower trapezoidal matrix via an invariant trans-
formation.
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tion B as follows:

B =


B1︸︷︷︸

m×m

B2︸︷︷︸
(n−m)×m


n×m

.

Since B is a full rank and lower trapezoidal matrix, B1 is a nonsingular and lower triangular

matrix by construction. Define a transform matrix M as:

M =


α11︸︷︷︸
m×m

α21︸︷︷︸
m×(n−m)

−B2B−1
1︸ ︷︷ ︸

(n−m)×m

1︸︷︷︸
(n−m)×(n−m)


n×n

,

where α1 and α2 are free scalar parameters, and 1 is an identity matrix if it is square, and

otherwise an identity matrix with a proper number of appended zero rows at the bottom or

columns on the right. Then, the last n−m rows of

Bnew ≡ MB =


α1B1 + α2B2 (1 : m, 1 : m)︸ ︷︷ ︸

m×m

0︸︷︷︸
(n−m)×m


are zeros rows, where B2 (1 : m, 1 : m) is the first m rows of B2 when n−m ≥ m or B2 appended

below with zero rows when n−m < m.

Therefore, the last n−m state variables in Znew,t ≡ MZt are not directly subject to contem-

poraneous Gaussian shocks, and are instead exponentially-weighted averages of the first m

state variables. In other words, these n−m state variables by design summarize the history of

the first m states. Therefore, the first m states are non-Markov by themselves, in the sense that

their drift can depend on both current and lagged values of the first m states. We formalize

this observation using the following proposition, a proof of which is provided in Appendix C:

Proposition 1 For any FDR with n > m, there exists at least one m-dimensional subsystem of the

FDR that is non-Markov.

It is worth noting that when n = m, all transformations of the m-dimensional FDR are
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Markov. Therefore, Proposition 1 clarifies the difference between an FDR with n = m and one

with n > m. In what follows, we will refer to FDRs with n = m as Markov models, and those

with n > m as non-Markov models.

3.4 Volatility specification and base realization

One important advantage of using the HJM framework is that the volatility function com-

pletely determines model specification under the Q measure. In this subsection, we introduce

a volatility function that guarantees FDRs of HJM models. The volatility function we consider

is a special case of the most general deterministic function that allows FDRs according to Björk

and Svensson (2001) and consists mainly of polynomials and exponentials.12

Specifically, for an m-factor Gaussian HJM model, the volatility function is

σ (x) ≡
[[

1 x · · · xni−1

]
e−kix

]I

i=1︸ ︷︷ ︸
1×∑I

i=1ni

×Ω(
∑I

i=1ni

)
×m

, (8)

where ni is a natural number,
[

1 x · · · xni−1

]
is a 1 × ni row vector, ki is a positive real

number with ki < k j for i < j, and
[[

1 x · · · xni−1

]
e−kix

]I

i=1
is a 1× ∑I

i=1ni row vector.13

The matrix Ω satisfies the following restrictions:

1. Ω is an ∑I
i=1 ni ×m full rank matrix with ∑I

i=1 ni ≥ m, i.e., Rank (Ω) = m.14

2. In Ω, any ∑
j
i=1 nith row is not a zero row, for j = 1, 2, . . . , I.15

3. Ω (1, j) +∑I−1
k=1 Ω

(
1+∑k

i=1 ni, j
)
≥ 0, for j = 1, 2, . . . , m.16

12 Björk and Svensson (2001) show that the most general deterministic volatility function that allows FDRs of
HJM models is the so-called “quasi-exponential” (or QE) function that has the following general form:

σQE (x) = ∑
i

eλix +∑
j

eαjx
[
pj (x) cos

(
ωjx

)
+ qj (x) sin

(
ωjx

)]
,

where λi, αj, and ωj are real numbers, and pj and qj are polynomials. Moreover, σQE (x) can be written as
C0 exp(Ax)B.

13 Though the ki’s could take complex values, Joslin et al. (2011) show that a model with two complex conjugate
eigenvalues is empirically equivalent to a model with two real eigenvalues equal to the real and imaginary part of
the complex eigenvalues. Therefore, without loss of generality, we restrict the ki’s to be real in our specification.

14 If m > ∑I
i=1 ni, some of the parameters in Ω are unidentifiable, as the m-factor model degenerates to a

∑I
i=1 ni-factor model.
15 If it were, then ni needs to be reduced until this is no longer the case.
16 This restriction ensures that the volatility of the derived short rate is non-negative.
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4. Ω is set to a lower trapezoidal matrix (a generalization of the lower triangular form for a

non-square matrix) for the purpose of identification.17

Given the volatility function (8), a base realization is presented in the following theorem, a

proof of which is provided in Appendix C.

Theorem 1 For the HJM volatility function defined in (8), one realization triplet {A, B, C (x)} is:

C (x) =
[[

1 x · · · xni−1

]
e−kix

]I

i=1
, B = Ω,

A=



A1

A2

. . .

AI


n×n

, Ai =



−ki 1

−ki 2

−ki
. . .
. . . ni − 1

−ki


ni×ni

,

where n = ∑I
i=1 ni, and A is in block diagonal form with each block given by Ai, whose non-zero

elements are indicated above.

Using this base realization, we present a concrete example of a non-Markov model using

an invariant transform. Specifically, we consider a one-factor HJM model with its volatility

function given by:

σ (x) = [Ω1 +Ω2x] e−kx. (9)

The base realization of this model is:

dZt =

−k 1

0 −k

 Ztdt+

Ω1

Ω2

 dWt.

Suppose that 0 < k < 1/4, and we set:

M =

 (
√

1−4k−1)Ω2
2Ω1

−(
√

1−4k−1)Ω1−2Ω2
2Ω1

−Ω2
Ω1

1

 ,

17 In our empirical estimation, Ω appears only through ΩΩᵀ. Therefore, only the lower part of Ω is identifiable.
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then the new state variables Znew,t = MZt have the following dynamics:

dZnew,t =

ν −ν

1 −ϑ

 Znew,t dt+

−Ω2
2

Ω1

0

 dWt.

where ν = 1
2 − k− 1

2

√
1− 4k and ϑ = k+ 1

2 −
1
2

√
1− 4k. It can be easily shown that the second

state variable in Znew,t is an exponentially-weighted average of the history of the first state

variable, i.e.,

Znew,t (2) =
∫ t

0
e−ϑ(t−s)Znew,s (1) ds,

and the first state variable “extrapolates” from the second:18

dZnew,t (1) = ν
[
Znew,t (1)− Znew,t (2)

]
dt− Ω2

2
Ω1

dWt.

Apparently, Znew,t (1) by itself is non-Markov since its drift contains its own history. However,

Znew,t as a whole is a Markov system.

3.5 Concise model notations

For convenience, we establish some concise notations to distinguish the different models within

our framework. The previous subsection shows that the specification of the model is com-

pletely determined by two entities: the vector
[[

1, x, · · · , xni−1] e−kix
]I

i=1 and the matrix Ω,

where the former determines the number of state variables and the latter the number of fac-

tors. We use N = [n1, n2, · · · , nI ], a 1 × I row vector with ni − 1, i = 1, 2, . . . , I, being the

highest order in the polynomial associated with ki, to designate the number of state variables

(
I

∑
i=1

ni) and the base transfer matrix A. We use m to designate the number of factors. For ex-

ample, a model with N = [2, 2, 1] and m = 3 has 5 state variables and 3 factors, and its base

18 As documented in Barberis et al. (2015), investors often use extrapolation to form beliefs about future state
variables. Though this simple example features extrapolation, it is just as easy to construct an alternative specifi-
cation in which the first state variable mean-reverts to the second.
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realization is:

C (x) =
[

e−k1x xe−k1x e−k2x xe−k2x e−k3x

]
,

A=



−k1 1 0 0 0

0 −k1 0 0 0

0 0 −k2 1 0

0 0 0 −k2 0

0 0 0 0 −k3


, B =



Ω1 0 0

Ω2 Ω6 0

Ω3 Ω7 Ω10

Ω4 Ω8 Ω11

Ω5 Ω9 Ω12


.

3.6 Comparing with existing non-Markov models

The recent term structure literature has shown an increasing interest in non-Markov models.

Two studies in this aspect are Joslin et al. (2013) and Feunou and Fontaine (2014). Following

Joslin et al. (2013)’s notations, these two models can be summarized as follows:

rt = ρ0 + ρ1Zt,

Zt = KQ
0Z + KQ

1ZZt−∆t +
√

ΣZεQ
t , εQ

t ∼ N(0, 1),

where rt is the short-term interest rate, ∆t denotes the time interval, and Zt is a vector of

observable states. For example, Zt can consist of the principal components of bond yields and

macro variables.19

The difference between these models lies in their specification of the dynamics of Zt under

the P measure. In Joslin et al. (2013), Zt is a VAR(p) process under the P measure:

Zt = KP
0Z + KP

1ZZ
p
t−∆t +

√
ΣZεP

t , εP
t ∼ N(0, 1),

where Z p
t−∆t ≡

(
Zt−∆t, . . . , Zt−p∆t

)
. In Feunou and Fontaine (2014), Zt is a VARMA(1,1)

process under the P measure:

(Zt − v) = KP
1Z (Zt−∆t − v) +

√
ΣZεP

t + M1
√

ΣZεP
t−∆t, εP

t ∼ N(0, 1),

19 Joslin et al. (2013) show that this model is observationally equivalent to a canonical representation of affine
models, in which rt is a linear function of some latent state variables.
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where v is the unconditional P-mean of Zt.

Apparently, under the Q measure, both Joslin et al. (2013) and Feunou and Fontaine (2014)

restrict the state variables to be Markov processes, i.e., VAR(1). Our framework, however, does

not impose this restriction at all. In fact, our approach is more general than the existing non-

Markov approach in two aspects: a) we allow the dynamics of the state variables under both

Q and P to be non-Markov; b) we can incorporate unspanned risks if we restrict the pricing

state variables (bond market specific states) to be a proper subset of the entire system of state

variables. This unifies the unspanned risk specifications of Joslin et al. (2014), Feunou and

Fontaine (2014), and Joslin et al. (2013), and is illustrated in Appendix E.

As shown in Section 2.2 and Feunou and Fontaine (2014), the MA component (over long

lags) is more crucial than the AR component (over short lags) in explaining the risk premia.

Therefore, the VARMA specification seems to be better than the VAR specification under the

discrete-time setting. In the rest of this subsection, we show that our volatility specification

can generate VARMA representations.

It is shown in Bergstrom (1983) that the discrete-time representation of a continuous-time

vector autoregressive process of order p (CVAR(p)) is precisely a VARMA(p,p − 1) process.

Under our framework, we can easily specify the volatility function to generate a CVAR real-

ization. This is illustrated in the following example, in which we consider a two-dimensional

system with p = 2.

Following earlier notations, we specify a model with N = [1, 1, 1, 1] , m = 2, and the base

triplet {A, B, C (x)} given by:

C (x) =
[

e−k1x e−k2x e−k3x e−k4x

]
,

A=



−k1 0 0 0

0 −k2 0 0

0 0 −k3 0

0 0 0 −k4


, B =



Ω1 0

−Ω1k2
k1

0

Ω2 Ω3

−Ω2k4
k3

−Ω3k4
k3


.
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Considering an invariant transform with:

M =



− 1
k1
− 1

k2
0 0

0 0 − 1
k3
− 1

k4

1 1 0 0

0 0 1 1


,

we have a CVAR(2) realization as:

CCVAR (x) =
[

k1k2e−xk1−k1k2e−xk2

k1−k2

k3k4e−xk3−k3k4e−xk4

k3−k4

k1e−xk1−k2e−xk2

k1−k2

k3e−xk3−k4e−xk4

k3−k4

]
,

ACVAR=



0 0 1 0

0 0 0 1

−k1k2 0 −k1 − k2 0

0 −k3k4 0 −k3 − k4


, BCVAR =



0 0

0 0
Ω1(k1−k2)

k1
0

Ω2(k3−k4)
k3

Ω3(k3−k4)
k3


,

and denoting the resulting state variables by ZCVAR.

If we normalize the time interval ∆t to 1, by Bergstrom (1983, Theorem 2), the first two

states in ZCVAR has a VARMA(2,1) representation:

Z1:2
CVAR,t = F1Z1:2

CVAR,t−1 + F2Z1:2
CVAR,t−2 + εt + Gεt−1,

E (εt) = 0, E
(
εtε

ᵀ
t
)
= K, E

(
εsε

ᵀ
t
)
= 0 (s 6= t) ,

where Z1:2
CVAR,t denotes the first two states in ZCVAR,

F1 =

e−k1 + e−k2 0

0 e−k3 + e−k4

 , F2 =

−e−(k1+k2) 0

0 −e−(k3+k4)

 ,

and K and G satisfy the equations:

K+ GKGᵀ = Γ0, GK = Γ1,
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where

Γ0 =
∫ 1

0
P (s)BCVARBᵀCVARPᵀ (s) +Q (s)BCVARBᵀCVARQᵀ (s) ds,

Γ1 =
∫ 1

0
P (s)BCVARBᵀCVARQᵀ (s) ds,

P (h) =

 e−(k1+k2)(h+1)(ek1+hk2−ek2+hk1)
k1−k2

0

0
e−(k3+k4)(h+1)(ek3+hk4−ek4+hk3)

k3−k4

 ,

Q (h) =

 e−hk2−e−hk1
k1−k2

0

0 e−hk4−e−hk3
k3−k4

 .

Under this specification, K and G cannot be solved in closed-form. However, this should

not be a concern, since the purpose of this illustration is merely to show that our general

framework is capable of generating VARMA representations. Once we have estimated the

structural parameters of the triplet, we can solve K and G numerically.

It is worth noting that the volatility function for this VARMA(2,1) representation is con-

strained. While the lower trapezoidal matrix B has seven free parameters, we constrain four of

these parameters to be functions of other parameters or zero so as to achieve the VARMA rep-

resentation. If we do not impose these constraints, we will have more flexibility in capturing

the non-Markov property under the Q measure, although the discrete-time state variables will

no longer follow a VARMA process. Moreover, the VARMA model presented here should not

be directly compared with that of Feunou and Fontaine (2014), as their model is unrestricted

under the P measure and of order (1,1), while the one presented here is restricted under the

Q measure and can be readily extended to higher orders.20 However, as mentioned in Wymer

(1993), a large efficiency gain can be expected of the estimates of the restricted VARMA repre-

sentation of a continuous-time system relative to the unrestricted VARMA estimates when it

comes to prediction.

20 Under the P measure, our model will have more degrees of freedom thanks to the market price of risk
parameters, although the VARMA representation is usually lost.
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4 Empirical analysis I: Non-Markov property under the Q mea-

sure

In this section, we formally compare the Markov and non-Markov models. Following Joslin

et al. (2014), we consider the Akaike (1973) (AIC), Hannan and Quinn (1979) (HQIC), and

Schwarz et al. (1978) Bayesian information criteria (SBIC).

In order to evaluate these information criteria, we must compute the likelihood for each

model under the Q measure given the full-information ML estimates of its parameters. The

fact that we only observe the yields under the P measure, however, imposes a great challenge

for this exercise, as the (inferred) state variables simply do not evolve according to their Q-

dynamics unless their P- and Q-dynamics coincide. Fortunately, at the very short end of the

yield curve, the Q-dynamics of the short rate becomes exceptionally close to its counterpart

under the P measure. To support this claim, we refer to the empirical evidence in Longstaff

(2000) and Della Corte et al. (2008), showing that the expectations hypothesis (EH) cannot be

rejected using US repo rates. If the pure EH holds, as Longstaff (2000) finds to be the case, our

task will be made much simpler.21

Therefore, we use US repo rates to estimate both Markov and non-Markov models, as-

suming that the state variables have the same dynamics under both P and Q. Our data are

obtained from Bloomberg, similar to Longstaff (2000) and Della Corte et al. (2008), and consist

of daily observations of the closing overnight, 1-week, 2-week, 3-week, 1-month, 2-month, and

3-month general collateral government repo rates from May 21, 1991 to January 17, 2014. The

total number of observations is 39,935.

Since we focus only on the very short end of the yield curve, we consider only one-factor

models with m = 1. The Markov model is N = [1], and the non-Markov models are N = [1, 1],

[2], [1, 1, 1], [1, 2], [2, 1], and [3]. The models are estimated using the Kalman filter in conjunc-

tion with ML. Following standard practice (Duffee, 1999), we assume that the repo rates are

observed with noise, and that these measurement errors are independent over time and nor-

mally distributed with zero means and a diagonal covariance matrix with distinct diagonal

elements. The resulting maximized values of the log likelihood function are used to evaluate

21 Under the continuous-time framework, this is equivalent to assuming that the Local EH (Cox et al., 1981)
holds. Although Cox et al. (1981) show that many traditional forms of the EH are incompatible with each other in
a theoretical sense, Campbell (1986) demonstrates that the differences among them are typically of little empirical
significance. This has been confirmed for US repo rates by Longstaff (2000).
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the three different information criteria: AIC, HQIC, and SBIC.

We report the estimates of the model parameters (excluding the covariance matrix of the

pricing errors) in Table 3 and our assessment of the models in Table 4. The latter shows that

all three criteria unanimously prefer the non-Markov models to the Markov model. Among

the non-Markov models, those with three state variables generally perform better than those

with only two. While this may be attributed to a greater number of parameters that come with

an additional state variable, it is not the sole determinant of model performance because the

functional form of the volatility σ (x) clearly makes a difference as well. For example, a variety

of different ki’s are preferred to a single value ([1, 1, 1] vs. [3]), and having the term xe−kx in the

volatility function associated with the larger k2 is preferred to one with the smaller k1 ([1, 2]

vs. [2, 1]). Interestingly, having an extra ki at the cost of giving up the xe−kx term in the case

of N = [1, 1, 1] does not improve upon the performance of N = [1, 2]. In fact, Table 3 shows

that all parameters of [1, 2] are significantly different from zero, while some of the parameters

of [1, 1, 1] have large standard errors. In any case, these results suggest that adding just a few

more deterministically varying states to the Markov model, with a carefully chosen volatility

specification, can increase the Q likelihood without overfitting the data, confirming that non-

Markov state variables are required even under the Q measure.

[Insert Tables 3 and 4 about here]

5 Empirical analysis II: An out-of-sample exercise

5.1 Non-Markov models with a Markov origin

We have shown that any model with B being n × m, where n > m (regardless of how N is

specified), exhibits a non-Markov property. However, in order to take advantage of Joslin et al.

(2011) (JSZ)’s estimation method for Markov GDTSMs, in the empirical analysis we focus on

models with not only B being n× m, but also N being 1× m. Non-Markov models with this

type of specifications have a Markov model as their origin. In other words, they all reduce to

a Markov model when certain parameters are set to zero.

To see this point more clearly, let us consider again the model with N = [2, 2, 1] and m = 3.

23



If we set Ω2, Ω4, Ω6, Ω8, Ω10, and Ω11 in B to zero, i.e.,

B =



Ω1 0 0

0 0 0

Ω3 Ω7 0

0 0 0

Ω5 Ω9 Ω12


,

the model reduces to N = [1, 1, 1] , m = 3, because the volatility functions of N = [2, 2, 1] , m =

3 and N = [1, 1, 1] , m = 3 are exactly the same:

C0 exp(Ax)B

=

[
1 0 1 0 1

]
exp





−k1 1 0 0 0

0 −k1 0 0 0

0 0 −k2 1 0

0 0 0 −k2 0

0 0 0 0 −k3


x





Ω1 0 0

0 0 0

Ω3 Ω7 0

0 0 0

Ω5 Ω9 Ω12



=

[
1 1 1

]
exp



−k1 0 0

0 −k2 0

0 0 −k3

 x




Ω1 0 0

Ω3 Ω7 0

Ω5 Ω9 Ω12

 .

The reason why the model N = [2, 2, 1] , m = 3 has a Markov origin is that its matrix A

is 5× 5 but has only three distinct eigenvalues. Thus, by setting some of the Ωi’s to zero, we

manage to degenerate A to 3× 3, which will be for a Markov model with the three original

eigenvalues. In contrast, the model N = [1, 1, 1, 1] , m = 3 does not have a Markov model as its

origin because its matrix A has four distinct eigenvalues and therefore cannot degenerate to a

3× 3 matrix.

5.2 Estimation

In this empirical analysis, we consider non-Markov models with four to six state variables,

which all have the same three-factor Markov model as their origin. Specifically, using the

notations introduced in Section 3.5, m = 3 for all these non-Markov models, and their N
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vectors are laid out in the third column of Table 5. In total, we will be testing 19 different

non-Markov models for each country.

To estimate the model parameters, we need to specify the dynamics of the state variables

under the P measure. Adopting an essentially affine specification of the market price of risk

(Duffee, 2002):

dWP
t = (λ1 + λ2Zt) dt+ dWt,

the P-dynamics of Zt is:

dZt = AP (−µ+ Zt) dt+ BdWP
t ,

where

AP = A− Bλ2, µ =
(

AP
)−1

Bλ1.

In order to reduce the chances of being stuck in some local optima far away from the global

optimum, the parameters of these models are estimated in a two-step procedure. First, the

majority of the parameters from the underlying three-factor Markov model are estimated using

JSZ’s method. Second, using these estimates and zeros for the rest of the parameters as initial

values, all parameters are estimated using the Kalman filter in conjunction with ML. These two

steps are elaborated in the following two subsections. The ten maturities of the term structure

(one to ten years) from the in-sample periods (see Table 1) are used to estimate the parameters.

5.2.1 Applying JSZ’s method to continuous-time Markov GDTSMs

The purpose of applying JSZ’s method is not to estimate the P and Q parameters separately,

but to use the results as initial values to speed up the convergence of the full estimation.

Following JSZ (Case P in their paper), we assume that the first three principal components

(PCs) of the yields are observed perfectly, while the yields themselves are observed with er-

ror. These measurement errors are assumed to be normally distributed with zero mean and
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variance σ2:

et︸︷︷︸
10×1

∼ N

(
0︸︷︷︸

10×1

, σ21︸︷︷︸
10×10

)
,

and independent across time. Then, the conditional log likelihood function (under P) of the

observed yields has two parts:

log ll t|t−∆t = log llerrors
t + log llstates

t|t−∆t.

The first part of the likelihood function represents the log likelihood of measurement errors,

log llerrors
t ∝ −1

2
log
(

det
(

σ21
))
− errorᵀt errort

2σ2 ,

where

errort = yt − {Cm + BmZt} ,

Zt = (wm · Bm)
−1 (PCt − wm · Cm) ,

Cm =

[
ϕ+

∫ 1
0 Θ∗(s)ds

1 , · · · , ϕ+
∫ 10

0 Θ∗(s)ds
10

]ᵀ
︸ ︷︷ ︸

10×1

,

Bm =

[( ∫ 1
0 C(s)ds

1

)ᵀ
, · · · ,

( ∫ 10
0 C(s)ds

10

)ᵀ]ᵀ
︸ ︷︷ ︸

10×3

.

Here, yt︸︷︷︸
10×1

is a vector of zero yields of ten different maturities, and wm︸︷︷︸
3×10

is the weighting matrix

for the principal components, i.e., PCt︸︷︷︸
3×1

= wm · yt. The above expression makes use of the

relation between the model-implied zero yield and the state variables backed out from the

principal components when forward rates are assumed to be time-homogeneous.22

The second part of the likelihood function represents the log transition density of the state

variables,

log llstates
t|t−∆t ∝ −1

2
log (det (cv))− (α+ βZt−∆t − Zt)

ᵀ cv−1 (α+ βZt−∆t − Zt)

2
,

22 See (A5) in Appendix A. The parameter ϕ and function Θ∗ (·) can also be found therein.

26



where cv =
∫ ∆t

0 exp
(
AP (∆t− s)

)
BBᵀ exp

(
AP (∆t− s)

)ᵀ ds is the conditional variance of Zt

given Zt−∆t, and AP, α, and β are explicit functions of the data and the Q parameters, which are

determined as follows: First, given the Q parameters, the state variables are backed out from

the principal components. Then, α and β are obtained as the OLS estimates of the following

regression:

Zt = α+ βZt−∆t + εt.

Finally, we calculate AP as log(β)
∆t , where log denotes the matrix logarithm operator.23

Therefore, ∑T∆t
t=2∆t log ll t|t−∆t is a function of the data and the Q parameters only. This sim-

plification reduces the number of parameters in the optimization and speeds up the conver-

gence of the estimation. Given the ML estimates of the Q parameters, AP and µ (hence λ2 and

λ1) are explicitly determined from the values of α and β. By the results of JSZ, such estimates

are also ML estimates.

5.2.2 Estimating the continuous-time non-Markov GDTSMs

It is possible to use the Kalman filter in conjunction with ML to estimate all parameters without

any priors. However, recent literature (e.g., Bauer et al., 2012) has found that the log likeli-

hood function of GDTSMs can be badly behaved (very flat in the parameter space), exhibiting

many local maxima. Therefore, it is time-consuming to search for the global optimum from

uninformative initial values when the number of parameters is large.

To alleviate the difficulty in estimating the non-Markov models, we initialize the parame-

ters of a non-Markov model that have counterparts in its Markov origin (we call them Markov

parameters) to their estimates using the JSZ method, and the other parameters (we call them

non-Markov parameters) to zero. Then, all parameters are estimated using the Kalman filter in

conjunction with ML. This separation between the Markov and non-Markov parameters is fea-

sible because a) all non-Markov models we consider here have a Markov origin, and b) we use

the essentially affine market price of risk specification.

We use the model N = [1, 1, 2] , m = 3 as an example to illustrate this separation. To

23 In all of our estimations, the ML parameter estimates result in β having a unique log (β), i.e., β is nonsingular
with no negative eigenvalues, and every eigenvalue of log (β) has an imaginary part lying strictly between −π
and π. See, e.g., Higham (2008, Theorem 1.31).
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conserve space, we denote the models N = [1, 1, 2] , m = 3 and N = [1, 1, 1] , m = 3 by “nMrkv”

and “Mrkv”, respectively. From Mrkv to nMrkv, there is no change in the ki’s, although AnMrkv

is now 4× 4:

AnMrkv =



−k1 0 0 0

0 −k2 0 0

0 0 −k3 1

0 0 0 −k3


.

In addition, there are three more non-Markov parameters in BnMrkv:

BnMrkv︸ ︷︷ ︸
4×3

=


BMrkv︸ ︷︷ ︸

3×3

BnMrkv
4︸ ︷︷ ︸
1×3

 .

Finally, there are three more parameters in λnMrkv
2 , but there is no change in λnMrkv

1 :

λnMrkv
2︸ ︷︷ ︸
3×4

=

[
λMrkv

2︸ ︷︷ ︸
3×3

, λnMrkv
2,4︸ ︷︷ ︸
3×1

]
,

λnMrkv
1 = λMrkv

1 .

Therefore,

AP,nMrkv = AnMrkv − BnMrkvλnMrkv
2 ,

µnMrkv =
(

AP,nMrkv
)−1

BnMrkvλMrkv
1 .

5.3 Finding the best non-Markov model

Following the procedures outlined in the previous subsections, we estimate a three-factor

Markov model along with the nineteen non-Markov models. We also estimate Joslin et al.

(2013)’s VAR(4) model and Feunou and Fontaine (2014)’s VARMA(1,1) model, the details of

which are presented in Appendix D. All models are estimated using only data from the in-

sample periods. The AIC values of the different models are reported in Table 5. Among the

three benchmark models (the three-factor Markov model, the VAR(4), and the VARMA(1,1)),
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the VAR(4) consistently has the lowest AIC values. However, we find that the AIC values of

most of the non-Markov models to be even lower, especially those with five or six state vari-

ables. Generally speaking, non-Markov models with a larger number of states have lower AIC

values. This indicates that the data exhibit a strong non-Markov property.24

[Insert Table 5 about here]

Given the parameter estimates from the in-sample periods, for the 20 continuous-time mod-

els (the Markov and non-Markov models specified under our framework), we filter the state

variables from the observed zero yields in the full sample. For the two discrete-time models

(VAR(4) and VARMA(1,1)), the state variables are the three principal components constructed

using the weighting matrix estimated from the in-sample periods. Therefore, the first subsam-

ple of the state variables are in-sample values, while the second subsample are out-of-sample

ones. Given the parameters and the state variables, the expected excess return Et (rxt+1) is

computed following its definition in Section 2.2:

Et (rxt+1) =

(
1
4

5

∑
j=2

jy(j)t − y(1)t

)

− 1
4

4

∑
j=1

(
jϕ+

∫ j

0
Θ∗ (s) ds+

∫ j

0
C (s) ds

(
1− exp

(
AP
))

µ

)

− 1
4

4

∑
j=1

∫ j

0
C (s) dsexp

(
AP
)

Zt,

where we have used the relation between zero yields and state variables in (A5) and the con-

ditional mean of Zt+1 given Zt. Using the model-implied expected excess return Et (rxt+1),

we can calculate trading returns of the form rnt+1 ≡ rxt+1 ×Et (rxt+1), just as we did in Sec-

tion 2.2 for the CP and MA approaches. We can then evaluate the 22 models considered here

based on their in- and out-of-sample adjusted returns (AdjRn= 〈rnt〉 /std(rnt)) and cumula-

tive returns (CumRnt = ∑t/∆t
i=∆t rni), as well as their in-sample R2’s from projecting the realized

excess return onto its model-implied expectation.

We present the in-sample R2’s and the adjusted returns in Tables 6 and 7, respectively.

Intuitively, a high R2 means that the model can explain the excess bond returns well, and this

should be a necessary condition for obtaining a mostly positive trading return rnt and a high

24 Results using other information criteria, such as the SBIC and HQIC, are similar. These additional results are
available upon request.
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value for its risk-adjusted mean, which we denote as AdjRn. Indeed, this is confirmed upon

a careful inspection of both tables. For example, Table 6 shows that for Germany (DE), the

model [1, 3, 2] has the highest in-sample R2 among all models considered (R2 = 0.410). In

Table 7, [1, 3, 2] also has the highest adjusted returns (AdjRn= 0.622) among all models for

DE. The same inspection also reveals that there is no single model that outperforms for all

countries. For example, in Table 6, VAR(4) has the highest in-sample R2 for three countries

(NZ, CH, and SE), while non-Markov models do so for the other six; in Table 7, the three-

factor Markov model has the highest in-sample AdjRn for three countries (NZ, CH, and US),

while VARMA(1,1) does so for one (AU) and non-Markov models round out the other five.

[Insert Tables 6 and 7 about here]

Figure 4 plots the cumulative returns (CumRns) for the in-sample periods. We include

the CP and MA models studied earlier, as well as the three benchmark models (three-factor

Markov, VAR(4), and VARMA(1,1)), and the best non-Markov specification according to its

out-of-sample AdjRn (see Table 8). The graphs show that the simple regression-based CP

and MA approaches actually perform better in-sample than the GDTSMs, in the sense that

they produce larger cumulative trading returns over time. Putting aside these two regression-

based models, we see no single GDTSM specification that consistently outperforms among

the 22 continuous-time and discrete-time GDTSMs. The best performing model seems to

be spread evenly across the countries among VAR(4), VARMA(1,1), the three-factor Markov

model, and the best three-factor non-Markov specification. Therefore, while the information

criteria clearly show an advantage in using non-Markov models to describe bond yields, this

advantage is less obvious based on the trading profits from a strategy that exploits the pre-

dictability of bond excess returns.

[Insert Figure 4 about here]

In model selection, however, one must be cautious about relying too much on in-sample

fitting. Ultimately, whether a model successfully captures the true data generating process can

only be tested with out-of-sample model predictions. It is in this context that problems with

overfitting are easily revealed. Therefore, we also examine the adjusted returns and cumulative

returns of the trading strategy in an out-of-sample context, keeping model parameters fixed
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at their in-sample estimates while continuing to filter the state variables and predict the bond

excess returns. Since our out-of-sample periods are five, nine, or 15 years long, depending on

the country, we subject the models to a rather severe form of out-of-sample testing. This is

intentional, however, since our objective is to see which model is capable of capturing the true

term structure dynamics in the long-run.25

We present the out-of-sample AdjRns in Table 8, in which we highlight, for each country,

one of the 22 GDTSMs that yields the highest AdjRn. In two of the countries this is the three-

factor Markov specification, while one of our non-Markov specifications is the best for the

other seven countries. Comparing the in-sample AdjRns from Table 7 with the out-of-sample

AdjRns from Table 8, we find that the performance of the three benchmark models declines

significantly from in-sample to out-of-sample. Since we do not consider transaction costs when

computing the trading returns, we impose a somewhat arbitrary risk-adjusted return of 30

percent or more for it to be qualified as economically significant (other cutoffs yield similar

insights). Consequently, while VAR(4), VARMA(1,1), and the three-factor Markov model all

yield economically significant in-sample AdjRns for all nine countries, VAR(4) no longer does

so for any country out-of-sample, VARMA(1,1) does so for only one (US), and the three-factor

Markov model, two (NZ and SE).

[Insert Table 8 about here]

In contrast, the situation with non-Markov models is more encouraging. Take the model

[4, 1, 1] as an example. It generates economically significant in-sample AdjRns for six countries

(AU, JP, DE, SE, CA, and US). Out of these six cases, five (AU, DE, SE, CA, and US) continue

to have economically significant out-of-sample AdjRns. While the performance of the other

non-Markov specifications is slightly weaker, even a randomly chosen non-Markov specifica-

tion among the 19 seems to perform better out-of-sample than the three benchmark models.

Another way to see the superior out-of-sample performance of the non-Markov models is to

count the number of cases in which they generate economically significant CumRns. This is

equal to 3 (AU), 7 (JP), 0 (NZ), 14 (CH), 14 (DE), 5 (SE), 9 (CA), 8 (GB), and 13 (US). Hence, with

25 The common practice for out-of-sample testing is to do re-calibration using a rolling window of historical
observations. However, the re-calibration of model parameters tends to mask the differences among the models.
Our specifications are also more time-consuming to estimate compared to, say, the Joslin et al. (2013) model, and
it would be infeasible for us to conduct rolling window estimation across the 19 non-Markov models and nine
countries.
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the exception of NZ, we have a large number of non-Markov specifications to choose from that

can potentially capture the underlying term structure dynamics.

The advantage of our non-Markov setup is confirmed by the out-of-sample CumRn plots

in Figure 5, which look distinctly different from their in-sample counterparts in Figure 4. For

the majority of the countries, the non-Markov specification selected to yield the best out-of-

sample AdjRn also yields the highest CumRn. We mention two additional observations based

on this figure. First, when the non-Markov model is not the best in terms of its CumRn (AU,

NZ, and CA), the best model turns out to be the MA model, which shows that the non-Markov

feature still plays an important role. Second, when the MA model fails to perform well out-of-

sample due to potential overfitting (Table 2 shows that this occurs for JP, CH, DE, and US), a

non-Markov model is the best-performing one. In summary, although our non-Markov mod-

els perform similarly in-sample as the three benchmark models, their superior out-of-sample

performance indicates that the non-Markov feature captures a crucial aspect of term structure

dynamics.

[Insert Figure 5 about here]

5.4 More states than factors: A potential feature embedded in fundamen-

tals

As Table 8 shows, a three-factor non-Markov model with six states delivers the best out-of-

sample performance in four countries (CH, DE, CA, and US), a model with five states does

so in one country (GB), and a model with four states does so in two countries (AU and JP).

This suggests that our flexible and parsimonious framework for specifying GDTSMs is indeed

helpful for capturing the non-Markov property across many different bond markets.

Under a general equilibrium setting, the dynamics of interest rates is explicitly determined

by the dynamics of the fundamental economic variables, such as investment and production

(e.g., Cox et al., 1985; Longstaff and Schwartz, 1992). Indeed, Jin and Glasserman (2001) show

that every HJM model can arise as the equilibrium term structure in a Cox-Ingersoll-Ross pro-

duction economy. Therefore, the empirical fact that deterministically varying states in the

dynamics of interest rates can significantly forecast excess bond returns indicates that a similar

non-Markov structure might also be present in the economic fundamentals. One way in which

32



this can occur has been suggested by Cox et al. (1981) (footnote 34): “One possible justification

(for why past interest rates are plausible state variables in a rational expectations equilibrium)

arises when investment is not readily reversible so that past interest rates are still reflected

in the current production function. Changes in the interest rate will then be affected by past

rates as these investments disappear or are abandoned.” Merton (1973) also mentions that the

Markov property of “the stochastic processes describing the opportunity set and its changes” is

rather general in the sense that the stochastic processes describing returns can be non-Markov,

but by including supplementary variables, the entire (expanded) set is once again Markov. The

extra states in our models echo the very idea of “supplementary variables.” However, to the

best of our knowledge, there are only a few studies, mostly theoretical, in this direction.26

6 Conclusion

In this paper, we confirm the presence of a non-Markov property among international gov-

ernment bond yields, i.e., the moving averages of long-lagged yields significantly improve the

forecasts of one-year excess bond returns. Motivated by this evidence, we develop a systematic

approach to building non-Markov GDTSMs. This approach not only inherits the canonical fea-

tures emphasized in the recent literature, e.g., Joslin et al. (2011), but also offers great flexibility

in specifying non-Markov dynamics for the state variables under both Q and P. A non-Markov

specification for the Q-dynamics is called for by the data, but is not typically implemented by

the modeling approaches we currently have. Exploiting the flexibility of our approach, we

conduct a specification analysis to examine the ability of our non-Markov GDTSMs to forecast

bond excess returns out-of-sample. We find that in a majority of the bond markets (seven out of

nine, including the U.S.), the traditional three-factor Markov model cannot produce econom-

ically significant trading profits. In contrast, in most of the markets (eight out of nine), there

are at least three non-Markov specifications producing economically significant trading prof-

its, with different specifications producing the best results in different bond markets. In five

of the nine markets, at least two or three deterministically varying state variables are needed

to capture the non-Markov property in a model with three independent random sources (fac-

tors). This suggests that the non-Markov property can be strong and non-trivial to model.

26 One such example is Dumas et al. (2009). In their model, four state variables are driven by two independent
random sources.

33



Collectively, the empirical evidence presented in our paper suggests that the exploration of

non-Markov properties within a general equilibrium framework can be a fruitful avenue for

future research.
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Table 1: Data summary

This table summarizes the start and end dates of the data. The dates are of the “yyyymm” format. The
lengths of the data in terms of the number of months are also reported for the in-sample and the full
sample periods.

Asia Pacific Continental Europe NA and UK Group

AU JP NZ CH DE SE CA GB US

Start 198702 198501 199001 198801 197301 199212 198601 197901 197111

In-sample End 200004 200004 200404 200004 199404 200404 200004 199404 199404

Full-sample End 200904 200904 200904 200904 200904 200904 200904 200904 200904

In-sample mths 159 184 172 148 256 137 172 184 270

Full-sample mths 268 293 233 257 437 198 281 365 451

Table 2: CP vs MA (best out-of-sample performance)

This table compares the in-sample and out-of-sample performance of the CP and MA approaches. The
MA results are based on the number of lags that gives rise to the best out-of-sample AdjRns between 12
to 60 months. This number is reported on the last row. “In-sample” and “out-of-sample” are indicated
by “(in)” and “(out)”, respectively.

Asia Pacific Continental Europe NA and UK Group

AU JP NZ CH DE SE CA GB US

CP

R2 (in) 0.58 0.57 0.53 0.87 0.45 0.75 0.75 0.75 0.56

AdjRn (in) 0.81 0.65 0.50 0.85 0.71 1.10 0.94 0.47 0.61

AdjRn (out) -0.02 -0.07 0.43 -0.39 -0.31 0.30 -0.47 -0.22 -0.20

MA

R2 (in) 0.86 0.91 0.66 0.96 0.66 0.90 0.87 0.86 0.71

AdjRn (in) 0.78 0.73 0.58 0.62 0.84 0.76 0.74 0.52 0.60

AdjRn (out) 0.57 -0.17 1.05 0.08 -0.38 0.46 0.93 0.58 -0.19

lag (mths) 29 25 12 60 12 49 51 35 12
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Table 3: Estimation results of one-factor Markov and non-Markov Models

This table reports the parameter estimates (excluding the seven diagonal elements in the covariance matrix of the pricing errors) of the one-factor Markov
and non-Markov models. These models are estimated using Kalman filter in conjunction with MLE. The standard errors are in parentheses.

states N k1 k2 k3 Ω1 Ω2 Ω3 φ Zt dynamic

Markov 1 [1]
0.013

– –
0.009

– –
0.000

dZt = −k1Ztdt+Ω1dWt(0.010) (0.001) (0.230)

non-
Markov

2 [1 1]
0.061 2.114

–
0.017 -0.010

–
0.112

dZt =

−k1 0

0 −k2

 Ztdt+

Ω1

Ω2

 dWt

(0.010) (0.091) (0.002) (0.001) (0.013)

2 [2]
0.580

– –
0.008 0.020

–
0.062

dZt =

−k1 1

0 −k1

 Ztdt+

Ω1

Ω2

 dWt

(0.018) (0.001) (0.002) (0.002)

3 [1 1 1]
0.038 6.572 6.658 0.015 -0.828 0.823 0.133

dZt =


−k1 0 0

0 −k2 0

0 0 −k3

 Ztdt+


Ω1

Ω2

Ω3

 dWt

(0.014) (1.084) (1.434) (0.002) (6.383) (6.382) (0.018)

3 [1 2]
0.038 6.614

–
0.015 -0.006 -0.071 0.133

dZt =


−k1 0 0

0 −k2 1

0 0 −k2

 Ztdt+


Ω1

Ω2

Ω3

 dWt

(0.013) (1.094) (0.002) (0.001) (0.019) (0.018)

3 [2 1]
0.061 2.114

–
0.017 0.000 -0.010 0.112

dZt =


−k1 1 0

0 −k1 0

0 0 −k2

 Ztdt+


Ω1

Ω2

Ω3

 dWt

(0.010) (0.091) (0.002) (0.000) (0.001) (0.013)

3 [3]
0.352

– –
0.008 0.016 -0.004 0.000

dZt =


−k1 1 0

0 −k1 2

0 0 −k1

 Ztdt+


Ω1

Ω2

Ω3

 dWt

(0.144) (0.001) (0.006) (0.005) (0.242)
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Table 4: Information criteria for one-factor Markov and non-Markov Models

This table compares the one-factor Markov and non-Markov models in terms of their AIC, HQIC, and
SBIC. The table also reports the number of states and parameters, and the log likelihood values for
different models. The number of parameters includes the seven diagonal elements in the covariance
matrix of the pricing errors. The model specification is indicated by N in the third column.

states N # of parameters log likelihood AIC HQIC SBIC

Markov 1 [1] 10 229206.7 -45.839 -45.837 -45.831

non-
Markov

2 [1 1] 12 232028.4 -46.403 -46.400 -46.393

2 [2] 11 231592.3 -46.316 -46.313 -46.307

3 [1 1 1] 14 232668.3 -46.531 -46.527 -46.519

3 [1 2] 13 232668.3 -46.531 -46.528 -46.520

3 [2 1] 13 232028.4 -46.403 -46.400 -46.392

3 [3] 12 231709.5 -46.340 -46.336 -46.329
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Table 5: In-sample AIC

This table reports the in-sample AIC of the Markov and non-Markov models. The number of states and factors is indicated in the first two columns. The
model specification is indicated in the third column.

Asia Pacific Continental Europe NA and UK Group
AU JP NZ CH DE SE CA GB US

Markov 3-factor [1 1 1] -2.636 -3.101 -2.918 -2.481 -3.914 -2.303 -2.642 -2.729 -4.380

non-
Markov
(3-factor)

4-state
[1 1 2] -2.639 -3.021 -2.969 -2.524 -4.176 -2.314 -2.459 -2.582 -4.585
[1 2 1] -2.777 -3.100 -2.988 -2.565 -4.055 -2.243 -2.652 -2.621 -4.665
[2 1 1] -2.843 -3.191 -2.838 -2.526 -4.118 -2.263 -2.588 -2.724 -4.698

5-state

[1 1 3] -2.835 -3.399 -3.098 -2.492 -3.929 -2.254 -2.575 -2.743 -4.736
[1 2 2] -2.831 -3.496 -3.070 -2.593 -4.313 -2.301 -3.012 -2.891 -5.093
[1 3 1] -3.010 -3.430 -3.009 -2.827 -4.466 -2.145 -3.124 -3.011 -4.880
[2 1 2] -3.016 -3.296 -3.021 -2.593 -4.613 -2.400 -2.795 -2.963 -5.137
[2 2 1] -2.997 -3.064 -3.089 -2.834 -4.724 -2.342 -2.857 -2.882 -5.176
[3 1 1] -2.979 -3.454 -3.130 -2.678 -4.522 -2.521 -2.887 -2.950 -5.029

6-state

[1 1 4] -3.290 -3.675 -3.152 -2.821 -4.215 -2.537 -2.741 -3.267 -4.864
[1 2 3] -3.050 -3.735 -2.856 -2.603 -4.435 -2.131 -3.149 -3.031 -5.338
[1 3 2] -3.137 -3.743 -3.030 -2.911 -4.787 -2.060 -3.355 -3.193 -5.345
[1 4 1] -3.380 -3.765 -3.183 -3.123 -4.529 -2.176 -3.268 -3.391 -5.605
[2 1 3] -3.060 -3.477 -3.174 -2.808 -4.364 -2.327 -3.299 -2.983 -5.166
[2 2 2] -3.162 -3.598 -3.152 -3.138 -4.770 -2.598 -3.150 -3.175 -5.439
[2 3 1] -3.185 -3.578 -3.341 -2.750 -4.900 -2.509 -3.165 -3.418 -5.686
[3 1 2] -3.171 -3.712 -3.407 -3.016 -4.606 -2.527 -2.964 -3.141 -5.358
[3 2 1] -3.140 -3.450 -3.311 -3.054 -5.071 -2.568 -3.113 -3.252 -5.396
[4 1 1] -3.396 -3.758 -4.106 -3.295 -4.545 -2.357 -3.208 -3.322 -5.739

Discrete-time
non-Markov

3-factor
VAR(4) -2.750 -3.228 -3.087 -2.579 -4.005 -2.409 -2.693 -2.826 -4.615

VARMA(1,1) -2.259 -2.663 -2.453 -2.154 -3.419 -1.971 -2.385 -2.473 -3.822
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Table 6: In-sample R-squared’s

This table reports the in-sample R2’s of the Markov and non-Markov models for the nine bond markets. The number of states and factors is indicated in
the first two columns. The model specification is indicated in the third column. The numbers reported represent the R2’s of projecting the realized excess
return onto the model-implied expected excess return.

Asia Pacific Continental Europe NA and UK Group
AU JP NZ CH DE SE CA GB US

Markov 3-factor [1 1 1] 0.087 0.188 0.297 0.594 0.175 0.116 0.203 0.179 0.304

non-
Markov
(3-factor)

4-state
[1 1 2] 0.011 0.032 0.090 0.383 0.099 0.066 0.151 0.108 0.151
[1 2 1] 0.041 0.147 0.002 0.193 0.095 0.097 0.106 0.062 0.119
[2 1 1] 0.007 0.225 0.223 0.095 0.239 0.274 0.133 0.116 0.208

5-state

[1 1 3] 0.009 0.111 0.058 0.389 0.106 0.206 0.127 0.417 0.197
[1 2 2] 0.057 0.253 0.001 0.171 0.097 0.035 0.130 0.005 0.226
[1 3 1] 0.039 0.089 0.177 0.107 0.009 0.127 0.137 0.121 0.246
[2 1 2] 0.026 0.069 0.211 0.019 0.095 0.028 0.191 0.240 0.073
[2 2 1] 0.038 0.282 0.024 0.017 0.046 0.050 0.066 0.031 0.216
[3 1 1] 0.009 0.062 0.276 0.040 0.008 0.000 0.092 0.044 0.092

6-state

[1 1 4] 0.092 0.012 0.408 0.287 0.143 0.012 0.127 0.004 0.227
[1 2 3] 0.028 0.162 0.155 0.175 0.159 0.051 0.114 0.040 0.121
[1 3 2] 0.029 0.120 0.239 0.144 0.410 0.121 0.103 0.061 0.091
[1 4 1] 0.004 0.084 0.176 0.225 0.000 0.021 0.032 0.001 0.241
[2 1 3] 0.010 0.147 0.341 0.086 0.167 0.001 0.035 0.430 0.092
[2 2 2] 0.108 0.167 0.009 0.001 0.068 0.003 0.060 0.027 0.204
[2 3 1] 0.011 0.142 0.013 0.013 0.026 0.005 0.079 0.065 0.325
[3 1 2] 0.000 0.046 0.043 0.299 0.325 0.194 0.222 0.067 0.232
[3 2 1] 0.178 0.021 0.352 0.023 0.003 0.043 0.050 0.003 0.224
[4 1 1] 0.021 0.251 0.056 0.424 0.072 0.323 0.150 0.025 0.181

Discrete time
non-Markov

3-factor VAR(4) 0.064 0.207 0.505 0.649 0.242 0.359 0.155 0.207 0.287

VARMA(1,1) 0.098 0.058 0.453 0.347 0.226 0.024 0.078 0.178 0.281
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Table 7: In-sample AdjRns

This table reports the in-sample AdjRns of the Markov and non-Markov models for the nine bond markets. The number of states and factors is indicated
in the first two columns. The model specification is indicated in the third column. The results presented are based on the model-implied expected excess
return.

Asia Pacific Continental Europe NA and UK Group
AU JP NZ CH DE SE CA GB US

Markov 3-factor [1 1 1] 0.476 0.670 0.464 0.815 0.438 0.423 0.516 0.303 0.433

non-
Markov
(3-factor)

4-state
[1 1 2] 0.134 0.534 0.350 0.733 0.372 0.313 0.473 0.258 0.370
[1 2 1] 0.257 0.050 0.010 0.491 0.400 0.213 0.412 0.027 0.322
[2 1 1] 0.287 0.681 0.138 -0.247 0.476 0.469 0.459 -0.311 0.383

5-state

[1 1 3] 0.379 0.095 0.285 0.659 0.379 0.153 0.420 0.404 0.408
[1 2 2] 0.415 0.436 -0.112 0.461 0.370 -0.283 0.436 -0.069 0.278
[1 3 1] 0.355 -0.290 0.393 0.352 0.270 0.214 0.451 0.227 0.285
[2 1 2] 0.102 0.648 0.191 -0.104 -0.378 -0.291 0.452 0.333 0.283
[2 2 1] 0.358 -0.349 -0.368 0.141 0.354 0.227 0.337 -0.224 0.313
[3 1 1] 0.369 -0.540 -0.226 0.217 0.338 0.613 0.377 0.240 -0.251

6-state

[1 1 4] 0.366 0.695 0.272 0.537 0.399 0.290 0.399 -0.043 0.359
[1 2 3] 0.278 0.267 0.386 0.470 0.451 0.163 0.429 -0.242 0.256
[1 3 2] 0.391 0.150 0.372 0.375 0.622 0.265 0.390 0.175 0.251
[1 4 1] 0.255 -0.043 0.049 0.527 0.216 -0.311 0.357 -0.129 0.280
[2 1 3] 0.288 0.788 0.444 -0.324 -0.301 0.396 0.300 0.468 0.274
[2 2 2] 0.050 0.500 -0.176 -0.006 0.384 0.278 0.121 0.202 0.324
[2 3 1] -0.050 0.280 -0.276 -0.071 0.351 0.379 0.143 -0.110 0.388
[3 1 2] 0.213 0.552 -0.252 -0.177 0.593 0.647 0.544 0.213 0.309
[3 2 1] -0.179 -0.600 -0.032 -0.165 0.315 0.176 0.385 0.135 0.329
[4 1 1] 0.391 0.337 -0.151 -0.665 0.399 0.629 0.460 0.124 0.314

Discrete time
non-Markov

3-factor VAR(4) 0.385 0.488 0.386 0.747 0.444 0.595 0.385 0.331 0.413

VARMA(1,1) 0.481 0.477 0.458 0.377 0.459 0.381 0.402 0.309 0.379
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Table 8: Out-of-sample AdjRns

This table reports the out-of-sample AdjRns of the Markov and non-Markov models for the nine bond markets. The number of states and factors is
indicated in the first two columns. The model specification is indicated in the third column. The results presented are based on the model-implied expected
excess return. The best result in each column is highlighted in gray.

Asia Pacific Continental Europe NA and UK Group
AU JP NZ CH DE SE CA GB US

Markov 3-factor [1 1 1] -0.004 -0.438 0.633 -0.260 0.196 0.469 -0.338 -0.120 -0.330

non-
Markov
(3-factor)

4-state
[1 1 2] 0.274 0.802 0.016 0.133 0.386 -0.256 0.299 -0.247 -0.137
[1 2 1] -0.101 -0.781 0.076 0.591 0.540 -0.325 0.462 -0.363 0.364
[2 1 1] 0.377 0.877 0.293 0.429 0.440 -0.170 0.447 0.394 0.470

5-state

[1 1 3] 0.036 -0.776 0.107 0.471 0.634 -0.346 0.159 -0.252 -0.222
[1 2 2] 0.328 -0.666 0.040 0.436 0.146 -0.336 0.301 0.443 0.565
[1 3 1] -0.052 -0.797 0.096 0.555 0.657 -0.274 0.622 0.135 0.303
[2 1 2] 0.238 0.839 0.037 -0.523 -0.125 -0.365 -0.045 -0.314 -0.135
[2 2 1] 0.096 0.721 0.018 0.567 0.635 0.436 -0.463 0.428 -0.348
[3 1 1] 0.265 -0.812 0.029 0.464 0.664 0.406 0.366 0.524 0.464

6-state

[1 1 4] -0.183 0.816 0.065 0.622 0.546 -0.376 0.074 0.201 0.144
[1 2 3] -0.141 -0.755 0.069 0.405 0.462 0.081 0.202 -0.448 0.499
[1 3 2] 0.270 -0.783 0.076 0.572 -0.118 -0.448 0.188 0.068 0.529
[1 4 1] -0.228 -0.793 0.008 0.634 0.625 -0.351 0.994 0.425 0.329
[2 1 3] 0.215 0.555 0.073 0.459 0.298 0.430 0.904 -0.181 -0.374
[2 2 2] -0.167 -0.678 -0.006 -0.558 0.528 -0.100 -0.398 -0.458 0.547
[2 3 1] -0.215 -0.762 0.011 -0.537 0.582 0.410 -0.766 0.394 0.578
[3 1 2] -0.179 0.763 0.070 -0.700 -0.449 0.209 0.003 -0.176 0.534
[3 2 1] -0.234 -0.788 0.033 0.525 0.737 0.253 0.950 0.479 0.596
[4 1 1] 0.349 -0.189 0.033 0.373 0.610 0.452 0.709 0.519 0.501

Discrete time
non-Markov

3-factor VAR(4) -0.124 -0.538 0.296 -0.514 -0.272 -0.028 -0.506 -0.069 -0.378

VARMA(1,1) 0.248 -0.418 0.126 0.284 0.140 0.228 -0.493 0.206 0.424

41



Figure 1: CP vs. MA: In-sample CumRns

The plots in this figure present the in-sample CumRns over time of the CP and MA approaches for the
nine bond markets. Panels (a), (b), and (c) present results of the Asia Pacific, Continental Europe, and
NA and UK Group, respectively. The MA results are based on the number of lags that gives rise to
the best out-of-sample AdjRns between 12 to 60 months. That number is shown in the legends. The
CumRns are in basis points. All the x-axes are year in the format of “yy”.
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Figure 2: MA approach with varying lags

The panels in the upper row present the in-sample R2’s; the panels in the middle row present the in-sample AdjRns; the panels in the bottom row present
the out-of-sample AdjRns. The left, middle, and right columns correspond to the results of Asia Pacific, Continental Europe, and NA and UK groups,
respectively.
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(b) In-sample R2s: CE Group
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(c) In-sample R2s: NA and UK Group
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(d) In-sample AdjRns: AP Group
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(e) In-sample AdjRns: CE Group
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(f) In-sample AdjRns: NA and UK Group
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(g) Out-of-sample AdjRns: AP Group
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(h) Out-of-sample AdjRns: CE Group

12 18 24 30 36 42 48 54 60
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

Lags in MA (mths)

o
u

t 
o

f 
s
a

m
p

le
 a

d
ju

s
te

d
 r

e
tu

rn

(i) Out-of-sample AdjRns: NA and UK Group
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Figure 3: CP vs. MA: Out-of-sample CumRns

The plots in this figure present the out-of-sample CumRns over time of the CP and MA approaches for
the nine bond markets. Panels (a), (b), and (c) present results of the Asia Pacific, Continental Europe,
and NA and UK Group, respectively. The MA results are based on the number of lags that gives rise to
the best out-of-sample AdjRns between 12 to 60 months. That number is shown in the legends. The
CumRns are in basis points. All the x-axes are year in the format of “yy”.
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Figure 4: In-sample CumRns: Best non-Markov model vs. benchmarks vs. CP and MA

The plots in this figure present the in-sample CumRns over time for the best non-Markov model (among
the 19 specifications), the benchmark models (three-factor Markov model, VAR(4), and VARMA(1,1)),
and the CP and MA approaches for the nine bond markets. Panels (a), (b), and (c) present results of
the Asia Pacific, Continental Europe, and NA and UK Group, respectively. The CumRns are in basis
points. All the x-axes are year in the format of “yy”.

(a) Asia Pacific

90 93 95 98
−500

0

500

1000

1500

2000

2500

3000

Asia Pacific: AU
Best non−Markov [2  1  1]

 

 
3−factor

Best non−Markov

VAR

VARMA

CP

MA

87 90 93 95 98
−500

0

500

1000

1500

2000

Asia Pacific: JP
Best non−Markov [2  1  1]

93 95 98 01 04
−500

0

500

1000

1500

Asia Pacific: NZ
Best non−Markov [2  1  1]

(b) Continental Europe

93 94 95 97 98 00
−200

0

200

400

600

800

Continental Europe: CH
Best non−Markov [1  4  1]

 

 
3−factor

Best non−Markov

VAR

VARMA

CP

MA

76 82 87 93
−500

0

500

1000

1500

2000

2500

3000

Continental Europe: DE
Best non−Markov [3  2  1]

97 98 00 01 02 04
−200

0

200

400

600

800

Continental Europe: SE
Best non−Markov [4  1  1]

(c) NA and UK Group

90 93 95 98
−500

0

500

1000

1500

2000

NA and UK Group: CA
Best non−Markov [1  4  1]

 

 
3−factor

Best non−Markov

VAR

VARMA

CP

MA

82 84 87 90 93
−500

0

500

1000

1500

2000

2500

NA and UK Group: GB
Best non−Markov [3  1  1]

76 82 87 93
−1000

0

1000

2000

3000

4000

5000

NA and UK Group: US
Best non−Markov [3  2  1]

45



Figure 5: Out-of-sample CumRns: Best non-Markov model vs. benchmarks vs. CP and MA

The plots in this figure present the out-of-sample CumRns over time for the best non-Markov model
(among the 19 specifications), the benchmark models (three-factor Markov models, VAR(4), and
VARMA(1,1)), and the CP and MA approaches for the nine bond markets. Panels (a), (b), and (c)
present results of the Asia Pacific, Continental Europe, and NA and UK Group, respectively. The
CumRns are in basis points. All the x-axes are year in the format of “yy”.
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Appendices

A Time-homogeneous forward curves

By taking the limit as t→ ∞ in (2), the forward rate can be rewritten as r (t, x) = ϕ+Θ∗ (x) +

C0 exp (Ax) Zt, where

Θ∗ (x) ≡ lim
t→∞

Θ (t, x) (A1)

= C (x)
(

A−1BBᵀ (Aᵀ)−1
)

Cᵀ0 −
1
2

C (x)
(

A−1BBᵀ (Aᵀ)−1
)

C (x)ᵀ , (A2)

ϕ ≡ lim
t→∞

r (0, t+ x) . (A3)

In Appendix B, we show that the second equality holds for any invertible A.27 The zero-

coupon bond price is given by:

P (t, t+ x) = exp
(
−
∫ x

0
r (t, s) ds

)
= exp (H (x)− F (x)ᵀ Zt) , (A4)

where

H (x) = −ϕx−
∫ x

0
Θ∗ (s) ds,

F (x)ᵀ = C0

∫ x

0
exp (As) ds = (C (x)− C0)A−1.

These results can also be derived using the traditional GDTSM approach by starting from

the short rate specification. That is, the short rate is:

r (t, 0) = ϕ+Θ∗ (0) + C0Zt, where dZt = AZtdt+ BdWt, Z0 = 0.

Then, H (x) and F (x) can be solved from the following ordinary differential equations:

dH (x)
dx

=
1
2

F (x)ᵀ BBᵀF (x)− (ϕ+Θ∗ (0)) ,
dF (x)

dx
= AᵀF (x) + Cᵀ0 ,

with the boundary conditions H (0) = 0, and F (0) = 0m×1.

27 This requirement is automatically satisfied when the ki’s are restricted to be positive.
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Therefore, following (A4), the model-implied n-year zero yield at time t can be expressed

as:

y(n)t = ϕ+

∫ n
0 Θ∗ (s) ds

n
+

∫ n
0 C (s) ds

n
Zt. (A5)

B Derivation of Θ∗ (x)

By Θ (t, x) =
∫ t

0 σ (x+ t− s)
∫ x+t−s

0 σ (τ)ᵀ dτds and σ (x) = C (x)B, we have:

Θ (t, x) = C (x)
[∫ t

0
exp (A (t− s))BBᵀ

∫ x+t−s

0
exp (Aᵀτ) dτds

]
Cᵀ0

= C (x)
∫ t

0
exp (A (t− s))BBᵀ


∫ x

0 exp (Aᵀτ) dτ+

∫ t−s
0 exp (Aᵀτ) dτ exp (Aᵀx)


dsCᵀ0

= C (x)
∫ t

0
exp (A (t− s)) dsBBᵀ

∫ x

0
exp (Aᵀτ) dτCᵀ0

+ C (x)
∫ t

0
exp (A (t− s))BBᵀ

∫ t−s

0
exp (Aᵀτ) dτdsC (x)ᵀ

= C (x)
∫ t

0
exp (A (t− s))BBᵀ exp (Aᵀ (t− s)) ds (Aᵀ)−1 C (x)ᵀ

− C (x)
∫ t

0
exp (A (t− s))BBᵀds (Aᵀ)−1 Cᵀ0 .

Then,

Θ∗ (x) = C (x)
[

lim
t→+∞

∫ t

0
exp (A (t− s))BBᵀ exp (Aᵀ (t− s)) ds

]
(Aᵀ)−1 C (x)ᵀ

− C (x)
[

lim
t→+∞

∫ t

0
exp (A (t− s)) ds

]
BBᵀ (Aᵀ)−1 Cᵀ0

= C (x)
(

A−1BBᵀ (Aᵀ)−1
)

Cᵀ0 −
1
2

C (x)
(

A−1BBᵀ (Aᵀ)−1
)

C (x)ᵀ .

The second equation above is by the fact that Υ ≡
∫ ∞

0 exp (A (t− s))BBᵀ exp (Aᵀ (t− s)) ds

satisfies the Lyapunov equation:

AΥ+ ΥAᵀ = −BBᵀ.
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Therefore,

C (x)Υ (Aᵀ)−1 C (x)ᵀ + C (x)A−1ΥC (x)ᵀ = −C (x)
(

A−1BBᵀ (Aᵀ)−1
)

C (x)ᵀ ,

which means that

C (x)Υ (Aᵀ)−1 C (x)ᵀ = −1
2

C (x)
(

A−1BBᵀ (Aᵀ)−1
)

C (x)ᵀ ,

since C (x)Υ (Aᵀ)−1 C (x)ᵀ and C (x)A−1ΥC (x)ᵀ are both scalars, and are transposes of each

other.

C Proofs

C.1 Proof of Proposition 1

It is trivial that any FDR with n > m can be transformed into one with B being


B1︸︷︷︸

m×m

0︸︷︷︸
(n−m)×m


.

So, without loss of generality, we consider the following Zt as representative of any FDR with

n > m:

dZt = d


Z1,t︸︷︷︸
m×1

Z2,t︸︷︷︸
(n−m)×1


=


A11︸︷︷︸
m×m

A12︸︷︷︸
m×(n−m)

A21︸︷︷︸
(n−m)×m

A22︸︷︷︸
(n−m)×(n−m)




Z1,t︸︷︷︸
m×1

Z2,t︸︷︷︸
(n−m)×1


dt+


B1︸︷︷︸

m×m

0︸︷︷︸
(n−m)×m


dWt︸︷︷︸
m×1

.

Therefore, the dynamics of Z2,t is given by an ODE:

dZ2,t = (A21Z1,t + A22Z2,t) dt, Z2,0 = 0. (A6)

49



That is, Z2,t =
∫ t

0 A21Z1,sds+
∫ t

0 A22Z2,sds. Given this, the dynamic of Z1,t is:

dZ1,t =

(
A11Z1,t + A12A21

∫ t

0
Z1,sds+ A12A22

∫ t

0
Z2,sds

)
dt+ B1dWt.

Apparently, the drift term of Z1,t contains integrals of its own and Z2,t’s historical values.

We now show that Z2,t is an exponentially-weighted average of Z1,t. We guess, and later

verify, that Z2,t takes the form

Z2,t = eA22tφ (t) .

Therefore, we have

dZ2,t = A22eA22tφ (t) dt+ eA22tdφ (t) . (A7)

Comparing (A7) with (A6), it is clear that φ (t) solves the following ODE:

dφ (t) = e−A22t A21Z1,tdt.

Thus φ (t) =
∫ t

0 e−A22s A21Z1,sds and Z2,t =
∫ t

0 eA22(t−s)A21Z1,sds. Therefore, the drift of Z1,t

generally depends on its own history, showing that the first m states are non-Markov on their

own.

C.2 Proof of Theorem 1

To show that the triplet {A, B, C (x)} is a realization, according to Björk and Gombani, 1999,

Proposition 3.1, we only need to demonstrate that:

C (0) exp (Ax) = C (x) =
[[

1, x, · · · , xni−1
]

e−kix
]I

i=1
.

First, we rewrite
[[

1, x, · · · , xni−1] e−kix
]I

i=1 in matrix form:

[[
1, x, · · · , xni−1

]
e−kix

]I

i=1
= Poly (N, x)ExpM (K, N, x) ,

where N = [n1, n2, · · · , nI ] is a 1 × I row vector with elements of natural numbers, K =
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[k1, k2, · · · , kI ] is a 1× I row vector with elements of distinct positive real numbers, ExpM (K, N, x) :(
R1×I , N1×I , R+

)
→ Rn×n

+ , n = ∑I
i=1 ni, is a matrix function defined as:

ExpM (K, N, x) ≡



ExpM1 · · · 0

ExpM2
...

... . . .

0 · · · ExpMI



,

ExpMi ≡ exp
{
− diag [ki, · · · , ki]︸ ︷︷ ︸ x

}
ni×ni

,

where diag[· · · ] is a compact notation for a diagonal matrix, and Poly (N, x) :
(

N1×I , R+
)
→

R1×n
+ is a vector function defined as:

Poly (N, x) ≡
[
1, x, · · · , xni−1

]I

i=1
.

It is then enough to show that for any i = 1, 2, . . . I,

[1, 0, · · · , 0]︸ ︷︷ ︸
1×ni

exp (Aix) =
[
1, x, · · · , xni−1

]
ExpMi

⇐⇒ [1, 0, · · · , 0] exp (Aix) (ExpMi)
−1 =

[
1, x, · · · , xni−1

]
. (A8)

Since ExpMi is a diagonal matrix with identical elements on the diagonal, exp (Aix) (ExpMi)
−1
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becomes:

exp





0 1

0 2

0 . . .

. . . ni − 1

0



x



= UPasx = UPas ◦ UToe (x) ,

where UPas is an ni-dimensional upper-triangular Pascal matrix (which has a first row of

ones), UToe (x) is an ni-dimensional upper-triangular Toeplitz matrix of the power series of

x:

UToe (x) =



1 x x2 · · · xni−1

1 x · · · xni−2

. . . ...

1 x

1



,

and ◦ denotes the Hadamard product. In fact, UPasx is also referred to as the transpose of the

generalized Pascal matrix of x. For example, see Yang and Micek (2007) and Stefan (2011).

Therefore, the left hand side of (A8) is the first row of the Hadamard product of UPas and

UToe (x) , which equals the right hand side of (A8).
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D Estimation and forecast of VAR(4) and VARMA(1,1) models

We estimate three-factor VAR and VARMA models, where the three factors are the first three

principal components of the zero yields. The estimation for Joslin et al. (2013)’s VAR(4) model

is exactly the same as that in JSZ with the number of lags being four instead of one. The

estimation for Feunou and Fontaine (2014)’s VARMA(1,1) model is again very similar to that

in JSZ, except that the VARMA parameters directly enter the likelihood function and are part

of the ML estimation, because they cannot be estimated using OLS regressions. The likelihood

function for an unrestricted VARMA(1,1) model can be found in Lütkepohl (2007, p. 464).

Suppose that the VAR(4) model is described by:

PCt = υ+ A1PCt− 1
12
+ · · ·+ A4PCt− 4

12
+
√

Σεt,

and the VARMA(1,1) model by:

(PCt − υ) = A1

(
PCt− 1

12
− υ
)
+
√

Σεt + M1
√

Σεt− 1
12

.

Given the parameters estimates, for VAR(4), the h-month ahead forecast is given by:

P̂Ct

(
h

12

)
= υ̂+ Â1P̂Ct

(
h− 1

12

)
+ · · ·+ Â4P̂Ct

(
h− 4

12

)
.

For VARMA(1,1), the h-month ahead forecast is given by:

P̂Ct

(
h

12

)
= υ̂+

12(t−1)+h

∑
i=1

Π̂i

[
P̂Ct

(
h− i

12

)
− υ̂

]
,

where P̂Ct (j) =PCt+j for j < 0, and Π̂i = (−1)i−1
(

M̂i
1 + M̂i−1

1 Â1

)
.

Denote the model-implied j-year zero yield by:

y(j)t = CPC
m (j) + BPC

m (j)PCt.

Then, the model-implied expected excess return is given by:

Et (rxt+1) =

(
1
4

5

∑
j=2

jy(j)t − y(1)t

)
− 1

4

4

∑
j=1

(
jCPC

m (j) + jBPC
m (j) P̂Ct (1)

)
.
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E Unspanned risk specifications

In this appendix, we show that our framework can be easily extended to cover unspanned risk

specifications in the sense of Joslin et al. (2014).

The key to having the unspanned risk property is to allow the stochastic discount factor,

hence the market price of risk, to depend on a broader set of state variables, some of which are

unspanned by the bond market specific states.28 Denote these broader state variables by ZE
t ∈

RN, which are driven by an M-dimensional Wiener process WE
t under the P measure. Recall

that the bond market specific states Zt ⊆ ZE
t are driven by WP

t ⊆WE
t , each with dimensionality

n and m, respectively, where n ≥ m, N ≥ n, M ≥ m, and N ≥ M. Since the market price of

risk is an affine function of ZE
t , WP

t is linked to Wt via the following relation:

dWP
t =

 λ1︸︷︷︸
m×1

+ λ2︸︷︷︸
m×N

ZE
t

 dt+ dWt. (A9)

In light of the recent literature, non-Markov states (Joslin et al., 2013; Feunou and Fontaine,

2014) and additional risk factors, such as macro variables (Joslin et al., 2014), might be un-

spanned by the bond market specific states. We present two simple examples below to demon-

strate how our framework can accommodate these unspanning features.

E.1 Unspanned non-Markov states

For simplicity, we set M = m = 1, N = 2, and n = 1. Therefore, Zt under the Q measure

follows:

dZt = −k1Ztdt+Ω1dWt. (A10)

Since there is no unspanned risk factor in this case, i.e., Wt = WE
t , we specify the dynamics

28 Joslin et al. (2014) call these broader state variables the “states of the economy.”
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of ZE
t under Q as:

dZE
t =


−k1 1

0 −k1


ZE

t dt+


Ω2

Ω1


dWt.

Thus the second element in ZE
t is Zt, i.e., ZE

t (2) = Zt. As for ZE
t (1), which captures the lagged

information about Zt, it is unspanned by the current yields because it is excluded from the

pricing state variable Zt.

Given (A9), the P-dynamics of ZE
t is given by:

dZE
t = −


Ω2

Ω1


λ1dt+




−k1 1

0 −k1


−


Ω2

Ω1


λ2


ZE

t dt+


Ω2

Ω1


dWP

t .

E.2 Unspanned additional risk factors

In this example, we assume M = 2, m = 1, N = 2, and n = 1. Although Zt still follows (A10),

WE
t includes an additional random source other than WP

t :

WE
t =


WP

t

WU
t


.

The P-dynamics of ZE
t is specified as:

dZE
t = AE,P

(
ZE

t − µE
)

dt+


Ω1 0

Ω2 Ω3


dWE

t .
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Given the assumption in Joslin et al. (2011) and others about the perfect observability of port-

folios of yields and macro variables, the parameters AE,P, µE, Ω1, Ω2, and Ω3 can be estimated

using standard maximum likelihood. Once they are estimated, the market prices of risk λ1 and

λ2 are given by the following equations:

λ1 =

(
AE,PµE) (1)

Ω1
,

λ2 =

−k1 0

−AE,P (1, :)

Ω1
,

where
(
AE,PµE) (1) and AE,P (1, :) denote the first rows of AE,PµE and AE,P, respectively.
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