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Abstract

We formulate a theory of optimal corporate liquidity and risk management for a
firm run by a risk-averse entrepreneur, who cannot irrevocably commit her human
capital to the firm. The firm’s balance sheet comprises illiquid capital and cash or
marketable securities on the asset side, and on the liability side equity and a line
of credit, with an endogenously derived limit. The firm’s operations are subject to
both idiosyncratic and aggregate shocks. The entrepreneur seeks to optimally smooth
consumption and investment, and to manage the firm’s risk by choosing the optimal
loading on the idiosyncratic and market risk factors for the firm’s savings, subject to
the constraint that she will continue to employ her changing human capital at the
firm. Besides this inalienability of human capital constraint we do not assume any
other financial market imperfection. The unique state variable in the entrepreneur’s
dynamic optimization problem is the liquidity-to-capital ratio. As this state variable
approaches the lower bound where the firm’s credit limit is exhausted we show that
the entrepreneur optimally responds by increasingly cutting investment, consumption
and the risk exposure of the firm’s liquid savings. The main general implication of our
theory is that corporate liquidity and risk management adds value for firms subject to
inalienability of risky human capital constraints, even in the absence of any financial
market imperfection.
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1 Introduction

A corollary of the Modigliani and Miller irrelevance theorem is that firms cannot create

any value through corporate liquidity and risk management. The basic logic is that any

retained earnings or corporate hedging positions can be undone or replicated by the firm’s

investors, so that there is no value added in the firm doing this for them. Accordingly,

first-generation theories of corporate liquidity and risk management have invoked financial

market imperfections, such as tax distortions, or a wedge between internal and external

funding costs, as a basic rationale for corporate risk management. While such financial

imperfections are clearly important to explain why some firms do engage in liquidity and

risk management, they do not account for all the benefits of corporate risk management.

In this paper we develop a theory of liquidity and risk management that emphasizes

benefits over and above those that spring from tax or asymmetric information distortions.

These benefits have to do with the firm’s greater ability to offer optimal compensation and

thereby improve the firm’s chances to retain talent and valuable human capital. Our theory

considers the problem faced by a risk-averse entrepreneur, who cannot irrevocably commit

her human capital to the firm. The firm’s operations are subject to both idiosyncratic and

aggregate shocks. The entrepreneur has constant relative risk-averse preference and seeks to

smooth consumption. To best retain the entrepreneur it is efficient for the firm to compensate

her with current and future promised consumption. But to back up these promises the firm

must engage in liquidity and risk management.

The firm’s balance sheet is composed of illiquid capital and cash or marketable securities

on the asset side. On the liability side the firm has equity and a line of credit with a limit

that is endogenously determined. Illiquid capital can be augmented via investment and is

subject to stochastic depreciation. The firm’s operations are exposed to both idiosyncratic

and aggregate risk. The firm’s liquidity is augmented via retained earnings from operations

and financial returns from its portfolio of marketable securities. The firm manages its risk

by choosing the optimal loading of its securities holdings on the idiosyncratic and market

risk factors. The unique state variable of the entrepreneur’s dynamic optimization problem

is the firm’s liquidity-to-capital ratio. When this state variable approaches an endogenously

determined lower bound where the firm’s credit limit is exhausted the entrepreneur optimally

responds by increasingly cutting investment, consumption and the risk exposure of the firm’s

liquid savings.
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The model we develop generalizes the limited commitment frameworks of Hart and Moore

(1994) and Rampini and Viswanathan (2010, 2013). Hart and Moore (1994) formulate

a theory of debt and endogenous debt capacity arising from the inalienability of a risk-

neutral entrepreneur’s human capital. In a finite-horizon model with a single fixed project,

deterministic cash flows and fixed human capital, they show that there is a finite debt

capacity for the firm, which is given by the maximum repayment that the entrepreneur can

credibly promise: any higher repayment and the entrepreneur would aband the firm.

We generalize Hart and Moore (1994) along several important dimensions: first, we

introduce risky human capital and cash flows; second, we assume that the entrepreneur is

risk averse; third, we consider an infinitely-lived firm with ongoing investment; and, fourth

we also add a limited liability or commitment constraint for investors. In this more realistic

model we are nevertheless able to derive the optimal investment, consumption, liquidity and

risk management policy of the firm.

Rampini and Viswanathan (2010, 2013) also generalize Hart and Moore (1994) by in-

troducing risky operations, capital accumulation and state-contingent limited commitment

constraints. They develop a theory of liquidity and risk management focusing on the tradeoff

between exploiting current versus future investment opportunities. If the firm invests today

it may exhaust its debt capacity and thereby forego future investment opportunities. If in-

stead the firm foregoes investment and hoards its cash it is in a position to be able to exploit

potentially more profitable investment opportunities in the future. The main addition we

bring to their model is the risk aversion of the entrepreneur and the modeling of limited

commitment in the form of risky inalienable human capital. With this addition we focus on

a different aspect of corporate liquidity and risk management, namely the management of

risky human capital.

Our theory can thus explain the observed corporate policies of human capital intensive,

high-tech, firms. These firms often hold substantial cash pools, which may be necessary to

make credible future compensation promises and thereby retain highly valued employees with

attractive alternative job opportunities. Indeed, employees in these firms are largely paid in

the form of deferred stock compensation. When their stock options vest and are exercised

the companies often engage in stock repurchases so as to avoid excessive stock dilution. But

such repurchase programs require funding, which could explain why these companies retain

so much cash.
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The firm’s optimal investment and consumption policies in our model can be characterized

as straightforward generalizations of respectively the classical q-theory of investment and

the permanent-income theory of consumption, which adjust the optimal investment and

consumption policies further away from the fist-best policies as the firm’s shadow value

of liquidity rises. Similarly, the firm’s optimal liquidity and risk management policies can

be characterized as a generalization of Merton’s classical intertemporal portfolio-choice rules

that condition the portfolio weights on the firm’s liquidity-to-capital ratio. We show that the

firm’s limited commitment constraint in the most reduced formulation of the entrepreneur’s

optimization problem takes the form of an endogenous lower bound for the firm’s liquidity-to-

capital ratio. The closer the firm is to this lower bound the tighter is its financial constraint

and the more the firm’s investment, consumption, and risk management policies deviate

from first-best optimality.

We also show that the entrepreneur’s optimal liquidity and risk management problem

can be reformulated as a dual optimal contracting problem between an optimally diver-

sified investor and a risk-averse entrepreneur subject to an inalienability-of-human-capital

constraint. More concretely, the state variable in the optimal contracting problem between

risk-neutral investors and the risk-averse entrepreneur is the promised wealth to the en-

trepreneur per unit of capital, w, and the value of the firm to investors per unit of capital is

p(w). Moreover, under the optimal contract the firm’s investment and financing policies and

the entrepreneur’s consumption are all expressed as functions of w. As Table 1 below summa-

rizes, we show that this dual contracting problem is equivalent to the entrepreneur’s liquidity

and risk management problem with corporate savings per unit of capital, s = −p(w), as the

state variable and with the objective function of the entrepreneur m(s) = w. The key ob-

servation in the formulation of this dual problem is that the firm’s endogenously determined

credit limit is the outcome of an optimal financial contracting problem. In other words, the

firm’s financial constraint is an optimal credit limit that reflects the entrepreneur’s inability

to irrevocably commit her human capital to the firm.

We extend the simplest formulation of the model in two directions. First, we also in-

troduce a limited commitment (or limited liability) constraint for investors. Second we

introduce productivity shocks in the form of a two-state Markov transition process from

high and low productivity states. In the two-sided commitment problem, where a limited

liability constraint for investors must also hold, we obtain further striking results. The firm
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Table 1: Equivalence between primal contracting and dual implementation

Primal Dual

Optimization Contracting

State Variable s w

Value Function m(s) p(w)

may now over-invest and the entrepreneur may over-consume (compared to the first-best

benchmark). The intuition is as follows. To make sure that investors do not default on their

promised future utility for the entrepreneur, w, this promise cannot exceed an upper bound

w given by p(w) = 0. In other words, the firm’s liquidity, s, cannot be too high (exceed

s = 0), otherwise, investors would simply syphon off the excess liquidity. As a result, the

entrepreneur needs to substantially increase investment and consumption in order to satisfy

the investors’ limited-liability constraint.

In the extension where the firm’s productivity can switch from a high to a low productivity

state we show that

Related literature. Our paper builds on the dynamic contracting methodology in contin-

uous time following Holmstrom and Milgrom (1987), Schaettler and Sung (1993), DeMarzo

and Sannikov (2006), and Sannikov (2008), among others. Our paper provides foundations

for a dynamic theory of liquidity and risk management based on risky inalienable human

capital. As such it is obviously related to the important, early contributions on corporate

risk management by Stulz (1984), Smith and Stulz (1985) and Froot, Scharfstein, and Stein

(1993). Unlike our setup, they consider static models with exogenously given financial fric-

tions to show how corporate cash and risk management can create value by relaxing these

financial constraints.

Our paper is also evidently related to the corporate security design literature, which

seeks to provide foundations for the existence of corporate financial constraints, and for the

optimal external financing by corporations through debt or credit lines. This literature can

be divided into three separate strands. The first approach provides foundations for external

debt financing in a static optimal contracting framework with either asymmetric information

and costly monitoring (Townsend, 1979, and Gale and Hellwig, 1985) or moral hazard (Innes,
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1990, and Holmstrom and Tirole, 1997).

The second more dynamic optimal contracting formulation derives external debt and

credit lines as optimal financial contracts in environments where not all cash flows generated

by the firm are observable or verifiable.1

The third approach which is closely related to the second provides foundations for debt

financing based on the inalienability of human capital (Hart and Moore, 1994, 1998). Harris

and Holmstrom (1982) is an early important paper that generates non-decreasing consump-

tion profile in a model where workers are unable to commit to long-term contracts. Berk,

Stanton, and Zechner (2010) incorporate capital structure and human capital bankruptcy

costs into Harris and Holmstrom (1982). Rampini and Viswanathan (2010, 2013) develop a

model of corporate risk management building on similar contracting frictions. A key result

in their model is that hedging may not be an optimal policy for firms with limited capital

available as collateral. For such firms, hedging demand in effect competes for limited col-

lateral with investment demand. They show that for growth firms the return on investment

may be so high that it crowds out hedging demand. Li, Whited, and Wu (2014) structurally

estimate optimal contracting problems with limited commitment along the line of Rampini

and Viswanathan (2013) providing empirical evidence in support of these class of models.

The latter two approaches are often grouped together because they yield closely related

results and the formal frameworks are almost indistinguishable under the assumption of

risk-neutral preferences for the entrepreneur and investors. However, as our analysis with

risk-averse preferences for the entrepreneur makes clear, the two frameworks are different.

The models based on non-contractible cash flows require dynamic incentive constraints that

restrict the set of incentive compatible financial contracts, while the models based on in-

alienable human capital only impose (dynamic) limited-commitment constraints for the en-

trepreneur. With the exception of Gale and Hellwig (1985) the corporate security design

literature makes the simplifying assumption that the contracting parties are risk neutral. By

allowing for risk-averse entrepreneurs, we not only generalize the results of this literature on

the optimality of debt and credit lines, but we are also able to account for the fundamental

role of corporate savings and risk management.

1See Bolton and Scharfstein (1990), DeMarzo and Fishman (2007), Biais, Mariotti, Plantin, and Rochet
(2007), DeMarzo and Sannikov (2006), Piskorski and Tchistyi (2010), Biais, Mariotti, Rochet, and Villeneuve
(2010), and DeMarzo, Fishman, He and Wang (2012). See Sannikov (2012) and Biais, Mariotti, and Rochet
(2013) for recent surveys of this literature.

5



In contemporaneous and independent work, Ai and Li (2013) analyze a closely related

contracting problem. Their motivation is different from ours: where we emphasize the

inalienability of risky human capital and the implementation of the optimal contract via dy-

namic liquidity and risk management, they study the dynamics of optimal managerial com-

pensation and investment under limited commitment. In addition, we incorporate stochastic

productivity shocks and establish the optimality of contingent capital and insurance con-

tracts. Also closely related is Lambrecht and Myers (2012) who consider an intertemporal

model of a firm run by a risk-averse entrepreneur with habit formation and derive the firm’s

optimal dynamic corporate policies. They show that the firm’s optimal payout policy re-

sembles the famous Lintner (1956) payout rule of thumb.

Our financial implementation of the optimal financial contract is also related to the port-

folio choice literature featuring illiquid productive assets and under-diversified investors in an

incomplete-markets setting. Building on Merton’s intertemporal portfolio choice framework,

Wang, Wang, and Yang (2012) study a risk-averse entrepreneur’s optimal consumption-

savings decision, portfolio choice, and capital accumulation when facing uninsurable id-

iosyncratic capital and productivity risks. Unlike Wang, Wang, and Yang (2012), our model

features optimal liquidity and risk management policies that arise endogenously from an

underlying financial contracting problem.

Our framework also provides a micro-foundation for the dynamic corporate savings mod-

els that take external financing costs as exogenously given. Hennessy and Whited (2007),

Riddick and Whited (2009), and Eisfeldt and Muir (2014) study corporate investment and

savings with financial constraints. Bolton, Chen, and Wang (2011, 2013) study the opti-

mal investment, asset sales, corporate savings, and risk management policies for a firm that

faces external financing costs. It is remarkable that although these models are substantially

simpler and more stylized the general results on the importance of corporate liquidity and

risk management are broadly similar to those derived in our paper based on more primitive

assumptions. Conceptually, our paper shows that to determine the dynamics of optimal

corporate investment, in addition to the marginal value of capital (marginal q), a critical

variable is the firm’s marginal value of liquidity. Indeed, we establish that optimal invest-

ment is determined by the ratio of marginal q and the marginal value of liquidity, which

reflects the tightness of external financing constraints.2 Our model thus shares a similar

2Faulkender and Wang (2006), Pinkowitz, Stulz, and Williamson (2006), Dittmar and Mahrt-Smith
(2007), and Bolton, Schaller, and Wang (2014) empirically measure the marginal value of cash.
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focus on the marginal value of liquidity as Bolton, Chen, and Wang (2011, 2013) and Wang,

Wang, and Yang (2012).

Our paper also relates to the macroeconomics literature that studies the implications

of dynamic agency problems for firms’ investment and financing decisions. Green (1987),

Thomas and Worrall (1990), Marcet and Marimon (1992), Kehoe and Levine (1993) and

Kocherlakota (1996) are important early contributions on optimal contracting under limited

commitment. Alvarez and Jermann (2000, 2001) study welfare and asset pricing implica-

tions of endogenously incomplete markets due to limited contract enforcement constraints.

Albuquerque and Hopenhayn (2004), Quadrini (2004), and Clementi and Hopenhayn (2006)

characterize firms’ financing and investment decisions under limited commitment and/or

asymmetric information. Lorenzoni and Walentin (2007) study q theory of investment under

limited commitment. Grochulski and Zhang (2011) consider a risk sharing problem un-

der limited commitment. Miao and Zhang (2014) develop a duality-based solution method

for limited commitment problems.3 Finally, our paper is clearly related to the voluminous

economics literature on human capital that builds on Ben-Porath (1967) and Becker (1975).

2 Model

We consider the intertemporal optimization problem faced by a risk-averse entrepreneur,

who optimally chooses her consumption, savings, capital investment, and exposures to both

systematic and idiosyncratic risks of the firm, subject to the limited commitment constraint

that she cannot promise to operate the firm indefinitely under any circumstances. This

limited-commitment problem for the entrepreneur will induce an endogenous financial con-

straint for the firm. To best highlight the central economic mechanism arising from this

limited commitment constraint, we remove all other financial frictions from the model by as-

suming that financial markets are fully competitive and dynamically complete (we show how

dynamic completeness is constructed through spanning in Section 2.2). The detailed model

description begins below with the entrepreneur’s production technology and preferences.

3See Ljungqvist and Sargent (2004) Part V for a textbook treatment on the limited-commitment-based
macro models.
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2.1 Production Technology and Preferences

Production Technology and Capital Accumulation. We adopt the capital accumu-

lation specification of Cox, Ingersoll, and Ross (1985) and Jones and Manuelli (2005). The

firm’s capital stock K evolves as follows:

dKt = (It − δKKt)dt+ σKKt

(√
1− ρ2dZ1,t + ρdZ2,t

)
, (1)

where I is the firm’s rate of gross investment, δK ≥ 0 is the expected rate of depreciation,

and σK is the volatility of the capital depreciation shock. Without loss of generality, we

decompose risk into two orthogonal components: an idiosyncratic shock represented by the

standard Brownian motion Z1 and a systematic shock represented by the standard Brownian

motion Z2. The parameter ρ measures the correlation between the firm’s capital risk and

systematic risk, so that the firm’s systematic volatility is equal to ρσK and its idiosyncratic

volatility is given by

εK = σK
√

1− ρ2 . (2)

Production requires combining the entrepreneur’s inalienable human capital with the

firm’s capital stock Kt, which together yield revenue AKt. Without the entrepreneur’s

human capital the capital stock Kt does not generate any cash flows. Investment involves

both a direct purchase and an adjustment cost, so that the firm’s free cash flow (after capital

expenditures) is given by:

Yt = AKt − It −G(It, Kt), (3)

where the price of the investment good is normalized to one and G(I,K) is the standard

adjustment cost function in the q-theory of investment. Note that Yt can take negative

values, which simply means that investors are then financing part of the investment costs

and the entrepreneur’s consumption from sources other than contemporaneous revenue AKt.

We simplify the model by assuming that the firm’s adjustment cost G(I,K) is homogeneous

of degree one in I and K (a common assumption in the q-theory of investment), so that

G(I,K) takes the following separable form:

G (I,K) = g(i)K (4)
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where i = I/K denotes the firm’s investment-capital ratio and g(i) is increasing and convex

in i. As Hayashi (1982) has shown, given this homogeneity property Tobin’s average and

marginal q are equal under perfect capital markets.4 However, under limited commitment

an endogenous wedge between Tobin’s average and marginal q will emerge in our model.5

Preferences. The infinitely-lived entrepreneur has a standard concave utility function

over positive consumption flows {Ct; t ≥ 0} given by:

Jt = Et
[∫ ∞

t

ζe−ζ(v−t)U(Cv)dv

]
, (5)

where ζ > 0 is the entrepreneur’s subjective discount rate, Et [ · ] is the time-t conditional

expectation, and U(C) takes the standard constant-relative-risk-averse utility (CRRA) form:

U(C) =
C1−γ

1− γ
, (6)

with γ > 0 denoting the coefficient of relative risk aversion. As is standard we normalize the

flow payoff with ζ in (5), so that the utility flow is given by ζU(C).6

2.2 Complete Financial Markets

We assume that financial markets are perfectly competitive and complete. Market com-

pleteness is obtained through dynamic spanning with three long-lived assets as in the Black-

Merton-Scholes framework (Duffie and Huang, 1985): Given that the firm’s production is

subject to two shocks, Z1 and Z2, financial markets are dynamically complete if the following

three non-redundant financial assets can be dynamically and frictionlessly traded:

4Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment costs, though
they do not explicitly link their results to marginal or average q. Abel and Eberly (1994) extend Hayashi
(1982) to a stochastic environment and a more general specification of adjustment costs.

5An endogenous wedge between Tobin’s average and marginal q also arises in cash-based optimal financing
and investment models such as Bolton, Chen, and Wang (2011) and optimal contracting models such as
DeMarzo, Fishman, He, and Wang (2012).

6For example, see Sannikov (2008). In terms of preferences, we can generalize our model to allow for
a coefficient of relative risk aversion that is different from the inverse of the elasticity of intertemporal
substitution, à la Epstein and Zin (1989). Indeed, as Epstein-Zin preferences are homothetic, allowing for
such preferences in our model will not increase the dimensionality of the optimization problem. Details are
available upon request.
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a. a risk-free asset that pays interest at a constant risk-free rate r;

b. a risky asset that is perfectly correlated with the idiosyncratic shock Z1. The incre-

mental return dRt on this risky asset over the time interval dt is

dR1,t = rdt+ εKdZ1,t . (7)

Note that the expected return on this risky asset equals the risk-free rate r. As it is

only subject to an idiosyncratic shock it earns no risk premium. We let the volatility

of this risky asset to be εK without loss of generality;

c. a risky asset that is perfectly correlated with the systematic shock Z2. The incremental

return dRt of this asset over the time interval dt is

dR2,t = µRdt+ σRdZ2,t , (8)

where µR and σR are constant mean and volatility parameters. As this risky asset is

only subject to the systematic shock, we refer to it as the market portfolio.

Dynamic and frictionless trading with these three securities implies that the following

unique stochastic discount factor (SDF) exists:

dMt

Mt

= −rdt− ηdZ2,t , (9)

where M0 = 1 and η is the Sharpe ratio of the market portfolio given by:

η =
µR − r
σR

.

Note that the SDF M follows a geometric Brownian motion with the drift equal to the

negative risk-free rate, as required under no-arbitrage. By definition the SDF is only exposed

to the systematic shock Z2. Fully diversified investors will only demand a risk premium for

their exposures to systematic risk. The entrepreneur, however, is not fully diversified given

her exposure to the risky venture.
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2.3 Limited Commitment and Endogenous Borrowing Capacity

The entrepreneur has at all time an outside option, which is to abscond with a fraction

α ∈ (0, 1) of the firm’s capital stock and start afresh with zero liabilities. Another interpre-

tation of this outside option is that the entrepreneur’s human capital can be deployed else-

where albeit less efficiently. The loss in efficiency is then captured by the parameter α, which

measures the maximum relative size of the next best alternative open to the entrepreneur.

Under this interpretation there is no misappropriation involved and the entrepreneur’s out-

side option simply reflects the market value of her accumulated human capital.7

Limited commitment and inalienability-of-human-capital constraints have been widely

invoked to explain endogenous corporate financial constraints and debt capacity (e.g., Hart

and Moore, 1994, 1998, Albuquerque and Hopenhyan, 2004, Kyiotaki and Moore, 1997), but

they have not been linked to corporate liquidity and risk management as we do here. The

reason is that all corporate finance models with limited commitment assume that the investor

and entrepreneur have risk neutral preferences and that the inalienability-of-human-capital

constraint is constant. Rampini and Viswanathan (2010) introduce a risk management mo-

tive into a model with risk neutral preferences by inserting stochastic collateral constraints

into their model. We generalize Rampini and Viswanathan (2010) by introducing risk aver-

sion and consumption smoothing.

Before characterizing the solution under limited commitment, we derive the first-best

optimum under full commitment.

3 First Best

Under dynamically complete markets the entrepreneur’s savings, portfolio allocation, and

consumption problem to maximize her utility can be separated from the corporate investment

problem to maximize firm value (see Duffie, 2001). There are two ways of formulating

the first-best optimization model: either as a static maximization problem with a single

intertemporal budget constraint, or as a dynamic programming problem with continuous,

dynamic, portfolio rebalancing. The latter construction provides a more direct link to the

optimization problem under limited commitment, since it is the limit formulation when the

7There are other, perhaps more realistic, ways of modeling the outside option, but this is a particularly
simple and parsimonious formulation.
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entrepreneur’s commitment friction vanishes. Accordingly, we shall rely on the dynamic

programming method to characterize the first-best solution, which can be framed without

loss of generality as a dynamic liquidity and risk management problem for the firm.

3.1 Liquidity and Risk Management

The entrepreneur’s wealth is comprised of her liquid financial holdings and her ownership of

the illiquid productive capital K. Let {St : t ≥ 0} denote the entrepreneur’s liquid wealth

process. The entrepreneur continuously allocates {St : t ≥ 0} to any admissible positions

{Φ1,t,Φ2,t : t ≥ 0} in the two risky financial assets, whose returns are given by (7) and

(8) respectively, and the residual amount (St − Φ1,t − Φ2,t) to the risk-free asset. Her liquid

wealth then stochastically evolves as follows:

dSt = (rSt + Yt − Ct)dt+ Φ1,tεKdZ1,t + Φ2,t[(µR − r)dt+ σRdZ2,t] . (10)

The first term in (10), rSt+Yt−Ct, is simply the sum of the firm’s interest income rSt and net

operating cash flows, Yt−Ct, the second term, Φ1,tεKdZ1,t, is the exposure to the idiosyncratic

shock Z1, which earns no risk premium, and the third term, Φ2,t[(µR − r)dt + σRdZ2,t], is

the excess return from the investment in the market portfolio.

In the absence of any risk exposure rSt + Yt − Ct is simply the rate at which the en-

trepreneur saves when St ≥ 0 or dissaves (by drawing on a line of credit (LOC) at the

risk-free rate r, when St < 0). In general, saving all liquid wealth S at the risk-free rate is

sub-optimal. By dynamically engaging in risk taking and risk management, through the risk

exposures Φ1 and Φ2, the entrepreneur will do better, as we show next.

The Entrepreneur’s Optimization Problem. The entrepreneur dynamically chooses

consumption C, real investment I, idiosyncratic risk hedging demand Φ1, and the market

portfolio exposure Φ2 to maximize her utility given in (5)-(6) subject to the liquidity accu-

mulation dynamics (10) and the transversality condition lims→∞ Et
[
e−ζ(s−t)|Js|

]
= 0, where

Js is the entrepreneur’s time-s value function.

The entrepreneur’s value function J(K,S) depends on the firm’s capital stock K and her

liquid savings S. By the standard dynamic programming argument, J(K,S) satisfies the
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following Hamilton-Jacobi-Bellman (HJB) equation:

ζJ(K,S) = max
C,I,Φ1,Φ2

ζU(C) + (rS + Φ2(µR − r) + AK − I −G(I,K)− C)JS

+(I − δKK)JK +
σ2
KK

2

2
JKK +

(
ε2KΦ1 + ρσKσRΦ2

)
KJKS

+
(εKΦ1)2 + (σRΦ2)2

2
JSS . (11)

The first term on the right side of (11) represents the entrepreneur’s normalized flow utility

of consumption; the second term (in JS) represents the marginal value of incremental liquid

savings S; the third term (in JK) represents the marginal value of net investment (I−δKK);

and the last three terms (in respectively JKK , JKS, and JSS) capture the valuation of risk.

Given the concavity of the utility function and the convexity of the investment adjust-

ment cost function, the optimal consumption C(K,S) and investment I(K,S) rules are

characterized by the following first-order conditions (FOCs):

ζU ′(C) = JS, (12)

and

1 +G(I,K) =
JK(K,S)

JS(K,S)
. (13)

Equation (12) is the standard FOC for consumption, equating the marginal utility of con-

sumption with the marginal value of savings JS, and equation (13) states that the marginal

cost of investing is equal to the entrepreneur’s marginal value of investing, measured as the

ratio of the entrepreneur’s marginal value of illiquid capital JK and the marginal value of

liquid savings JS.8

Differentiating the HJB equation (11) with respect to Φ1 and Φ2 we similarly obtain the

following FOCs characterizing the firm’s optimal risk-management policy:

Φ1 = − JKS
KJSS

, (14)

8Equation (13) generalizes the optimality condition for a risk-neutral firm that the marginal cost of
investing is equal to the ratio of marginal q and the marginal value of cash in Bolton, Chen, and Wang
(2011).
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and

Φ2 = −µR − r
σ2
R

JS
KJSS

− ρσK
σR

JKS
KJSS

. (15)

We refer to Φ1 as the idiosyncratic-risk hedging demand : the only reason for holding this

risky asset is for hedging purposes against the firm’s idiosyncratic risks. The entrepreneur’s

market portfolio holding Φ2 is given by the classical exposure to the market excess return (the

first term) and a hedge against the firm’s systematic-risk exposure (the second term). Equa-

tions (11), (12), (13), (14) and (15) jointly characterize the solution to the entrepreneur’s

optimization problem.

Guided by the observation that the value function for the standard Merton portfolio-

choice problem (without illiquid assets) inherits the CRRA form of the agent’s utility func-

tion U( · ), we conjecture and verify that the entrepreneur’s value function in the first-best

problem, denoted by JFB(K,S), takes the same form as in Merton’s problem:

JFB(K,S) =
(bMFB(K,S))1−γ

1− γ
, (16)

where MFB(K,S) is the market value of the entrepreneur’s wealth (to be derived) and b is

the following constant:9

b = ζ

[
1

γ
− 1

ζ

(
1− γ
γ

)(
r +

η2

2γ

)] γ
γ−1

. (17)

3.2 The First-Best Solution

Given the model’s homogeneity property in K, we can reduce the two-dimensional value

function J(K,S) in (11) to one dimension by dividing both sides of the HJB equation (11)

by K. Our notation reflects this operation by turning all upper-case variables (investment

I, liquidity S, capital adjustment cost G, consumption C, asset allocations Φ1 and Φ2) into

lower-case variables representing each of the upper-case variable as a fraction of the capital

stock K (for example, it = It/Kt and st = St/Kt). The firm’s optimization problem can

then be expressed as the maximization of the entrepreneur’s value per unit of capital. In

other words, the homogeneity property implies that a unit of capital is worth the perpetuity

9In the special case when γ = 1 we have b = ζ exp
[
1
ζ

(
r + η2

2γ − ζ
)]

.
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value of its expected free cash flow given the optimal net expected first-best growth rate of

capital
(
iFB − δ

)
. The value of capital, QFB

t = qFBKt, then follows a GBM process given

by:

dQFB
t = QFB

t

[(
iFB − δK

)
dt+ (εKdZ1,t + ρσKdZ2,t)

]
,

with the drift
(
iFB − δK

)
, idiosyncratic volatility εK , and systematic volatility ρσK , identical

to those for the dynamics for {Kt : t ≥ 0}.

Corporate investment, the value of capital QFB, and asset pricing. The follow-

ing proposition characterizes the first-best solutions for corporate investment, the value of

capital, and asset prices.

Proposition 1 The value of capital, QFB(K), is proportional to K, QFB(K) = qFBK,

where qFB is Tobin’s q solving:

qFB = max
i

A− i− g(i)

r + δ − i
, (18)

and the maximand for (18), denoted by iFB, is the first-best investment-capital ratio. The

risk-adjusted capital depreciation rate, δ, is given by

δ = δK + ρησK . (19)

The expected return µFB for the value of capital satisfies the CAPM equation:

µFB = r + ρησK = r + βFB (µR − r) , (20)

where

βFB =
ρσK
σR

. (21)

This proposition generalizes the well known Hayashi conditions linking investment to

Tobin’s average (and marginal) q, by extending his framework to situations where the firm’s

operations are subject to both idiosyncratic and systematic risk, where systematic risk com-

mands a risk premium. As in the q-theory of investment, capital adjustment costs create a

wedge between the value of installed capital and newly purchased capital, so that qFB 6= 1 in
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general. Optimal (scaled) investment i is given by the solution to the FOC for investment:

qFB = 1 + g′(iFB), (22)

which equates marginal q to the marginal cost of investing, 1 + g′(i) at the optimum invest-

ment level iFB. Jointly solving (18) and (22) yields the values for qFB and iFB.

Let µFB denote the expected return for the value of capital, QFB
t . Using Ito’s formula,

we may then express the expected return µFB as:

µFB =
A− iFB − g(iFB)

qFB
+
(
iFB − δK

)
= r+ δ− iFB +

(
iFB − δK

)
= r+ β (µR − r) , (23)

where the first equality gives the sum of the dividend yield and expected capital gains, the

second equality uses (18), and the third uses (19) and δ−δK = ρησK = β (µR − r). Note that

the CAPM holds for the value of capital QFB
t , with the risk-adjusted capital depreciation

rate δ equalling the expected depreciation rate δK , augmented by the risk premium ρησK as

given in (19).

Scaled consumption c, scaled idiosyncratic risk hedging demand φ1 = Φ1/K and

scaled market portfolio demand φ2 = Φ2/K. The next proposition characterizes the

first-best solutions for consumption and asset allocations.

Proposition 2 The entrepreneur’s optimal consumption policy is given by

ct = χ
(
st + qFB

)
, (24)

where χ is the marginal propensity to consume (MPC) given by

χ = r +
η2

2γ
+ γ−1

(
ζ − r − η2

2γ

)
. (25)

The first-best idiosyncratic (scaled) risk hedge φ1 and the (scaled) market portfolio allocation
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φ2 are respectively given by:

φFB1 (s) = −qFB , (26)

φFB2 (s) = −ρσK
σR

qFB +
µR − r
γσ2

R

(
s+ qFB

)
. (27)

In words, under complete markets and full commitment, the entrepreneur’s total net

worth, denoted by MFB
t , is given by the sum of her liquid wealth St and the market value

of capital:

MFB
t = QFB(Kt) + St = qFBKt + St. (28)

Again using Ito’s formula, we can express the dynamics of {Mt : t ≥ 0} as:

dMFB
t = MFB

t

[(
r − χ+

η2

γ

)
dt+

η

γ
dZ2,t

]
. (29)

That is, total net worth M is a GBM process with drift (r−χ) + η2/γ and volatility η/γ for

the systematic shock Z2.

Two important observations follow from this proposition: First, note that M has zero net

exposure to the idiosyncratic shock Z1. This is simply due to the fact that the entrepreneur

is averse to any net exposure to risk which does not generate any risk premium. How does

the entrepreneur achieve this? One way is for her to take an offsetting short idiosyncratic

risk exposure in the financial markets by setting φ1 = −qFB, so that her exposure to the

idiosyncratic risk Z1 through her long position in the business venture is exactly offset by an

equivalent short position in the financial asset that is exposed to the idiosyncratic risk Z1.

Second, under perfect and complete financial markets, the entrepreneur essentially cap-

italizes the entire present value of her capital stock K at a unit price of qFB. She then

constructs a Merton-type consumption and portfolio allocation that results in total wealth

MFB
t . That is why the marginal propensity to consume (MPC) and the dynamics for to-

tal wealth M are the same as respectively the MPC and the dynamics for liquid wealth in

Merton (1971).

In summary, our first-best benchmark has the following important characteristics: 1) An

optimal consumption rule that is linear in total wealth M ; 2) An optimal liquidity and risk

management policy such that the entrepreneur’s net exposure to idiosyncratic risk is entirely
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eliminated as seen from (29), and her net exposure to systematic risk is η/γ as in Merton

(1971); 3) A constant investment-capital ratio and a constant Tobin’s q as in Hayashi (1982),

but in a more general setting with a systematic risk premium; 4) An endogenous value for

the capital process QFB that follows a GBM process as in the Black-Scholes economy.

4 Solution under Limited Commitment

We can also characterize the entrepreneur’s optimization problem as a liquidity and risk

management problem under limited commitment. However, the entrepreneur’s inability to

fully commit will constrain her ability to dynamically manage liquidity and risk over time

and across states of nature, in particular by limiting her credit capacity. The entrepreneur

responds to the constraints on her ability to obtain insurance through financial markets by

engaging in self-insurance through liquidity management, which is critical to her due to her

desire to smooth consumption.

Limited Commitment and Endogenous Credit Capacity. The entrepreneur’s limited

ability to commit to a given long-term contract (even if it is in her interest ex ante) arises

from the fact that at any moment in time she has an option to abscond with a fraction

α ∈ (0, 1) of the firm’s capital stock and start afresh with zero liabilities.10

We denote by St the time-t endogenous lower boundary for the firm’s liability at which

the entrepreneur is indifferent between continuing with the firm and starting afresh with a

smaller but liability-free firm. Given that it is never efficient for the entrepreneur to quit on

the equilibrium path, we expect that the entrepreneur’s value function satisfies the following

condition:

J(Kt, St) ≥ J(Kt, St) = J(αKt, 0), (30)

where the equality defines the endogenous lower boundary St implied by the indifference

between a) the status quo value J(K,S) of remaining in the contractual long-term relation

and b) her outside option J(αK, 0).

10In practice entrepreneurs can sometimes partially commit themselves and lower their outside options by
signing non-compete clauses. This possibility can be captured in our model by lowering the parameter α,
which relaxes the entrepreneur’s inalienability-of-human-capital constraints.
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We show in Appendix XXX that (30) translates into the following intuitive constraint:

St ≥ St = S(Kt) , (31)

where S(Kt) is a function that defines the firm’s credit capacity for any given capital stock

Kt. When St < 0, the entrepreneur is in debt and draws down on a line of credit (LOC)

granted by a bank to the entrepreneur. The entrepreneur can borrow on this LOC at the

risk-free rate r up to the endogenously determined credit capacity S(Kt). This borrowing

limit ensures that the entrepreneur does not walk away from the firm in an attempt to evade

her debt obligations. As long as the entrepreneur works at the firm, the firm’s credit line is

risk free and hence can be financed at the risk-free rate.

The entrepreneur’s optimization problem under limited commitment. Other

than facing the additional endogenous credit constraint (31) induced by the limited com-

mitment constraint (30), the entrepreneur faces essentially the same tradeoffs in the interior

region as in the first-best problem of Section 3.1. In particular, the FOCs for C, I, Φ1, and

Φ2 are given by (12), (13), (14), and (15), respectively.

Certainty-equivalent wealth. Again guided by the observation that the entrepreneur’s

value function under the first-best case inherits the CRRA form of her utility function U( · ),
we conjecture and verify that the entrepreneur’s value function under limited commitment

J(K,S) also takes the same form:

J(K,S) =
(bM(K,S))1−γ

1− γ
, (32)

where M(K,S) is the certainty-equivalent wealth that the entrepreneur would demand in

exchange of permanently giving up her liquid wealth S and her risky venture of size K with

her human capital.

Reducing the problem’s dimensionality Because our model has the homogeneity prop-

erty in capital stock K and liquidity S, we can express the entrepreneur’s certainty equivalent

wealth function M(K,S), the consumption rule C(K,S), the investment policy I(K,S) as
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follows:

M(K,S) = m(s) ·K , C(K,S) = c(s) ·K, I(K,S) = i(s) ·K . (33)

The entrepreneur’s two-dimensional optimization problem with state variables (K,S) can

then be simplified to a one-dimensional problem, where the effective state variable is the

firm’s liquidity-capital ratio, s = S/K. The endogenous debt capacity constraint (31) then

reduces to

s ≥ s , (34)

where |s| is the maximal amount that the entrepreneur can borrow per unit of capital.

The dynamics of scaled liquidity s = S/K. Using Ito’s formula, and given c(s), i(s),

φ1(s), and φ2(s), we show that the scaled liquidity ratio s follows the process:

dst = µs(st)dt+ σs1(st)dZ1,t + σs2(st)dZ2,t , st ≥ s ,

where the drift function µs( · ) is given by:

µs(s) = (A− i(s)− g(i(s)) + φ2(s)(µR − r)− c(s))

+(r + δK − i(s))s− (εKσ
s
1(s) + ρσKσ

s
2(s)), (35)

and the idiosyncratic volatility σs1( · ) and systematic volatility σs2( · ) are given by

σs1(s) = (φ1(s)− s)εK , (36)

σs2(s) = φ2(s)σR − sρσK . (37)

Endogenous credit limit and credit capacity. Having described the dynamics for s in

the interior region st ≥ s, we now turn to the endogenous boundary conditions that determine

s. An important first observation is that the endogenous credit constraint (34) generally does

not bind. The reason is, as in the buffer-stock savings models of Deaton (1991) and Carroll

(1992) for household finance, that the risk-averse entrepreneur manages her liquid holdings s

with the objective of smoothing her consumption and thereby maximizing her value function.

Setting st = s is costly in terms of consumption smoothing for a risk-averse agent. This is

why risk aversion plays an important role in liquidity management.
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Second, while the credit constraint given in (34) rarely binds, it has to be satisfied with

probability one. Only then can we ensure that the credit limit is never exceeded and that

the entrepreneur does not default. Given that s follows a diffusion process (and therefore

that the path for s is continuous), we must require that the following conditions on the drift

and volatility functions hold:

lim
s→s

µs(s) ≥ 0,

lim
s→s

σs1(s) = 0, or lim
s→s

φ1(s) = s, and

lim
s→s

σs2(s) = 0, or lim
s→s

φ2(s) = s
ρσK
σR

.

That is, at the lower boundary s, where m(s) = αm(0), the firm’s liquidity should be weakly

increasing and the entrepreneur should face vanishing risk with respect to changes in s.

The following proposition summarizes the limited commitment solution for m(s). The

derivations and proof are provided in the appendix.

Proposition 3 In the interior region s > s, the scaled certainty-equivalent wealth m(s)

satisfies the following ODE:

0 =
m(s)

1− γ

[
γχm′(s)

γ−1
γ − ζ

]
+ [rs+ A− i(s)− g(i(s))]m′(s) + (i(s)− δ)(m(s)− sm′(s))

−
(
γσ2

K

2
− ρησK

)
m(s)2m′′(s)

m(s)m′′(s)− γm′(s)2
+

η2m′(s)2m(s)

2(γm′(s)2 −m(s)m′′(s))
, (38)

subject to the following boundary conditions:

lim
s→∞

m(s) = qFB + s , (39)

m(s) = αm(0) , (40)

lim
s→s

σs1(s) = 0 , lim
s→s

σs2(s) = 0 , and lim
s→s

µs(s) ≥ 0 . (41)
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The consumption and investment rules are:

ζU ′(c) = b1−γm(s)−γm′(s), (42)

1 + g′(i) =
m(s)

m′(s)
− s, (43)

and the hedging strategies are given by:

φ1(s) =
sm′′(s)m(s) + γm′(s)(m(s)− sm′(s))

m(s)m′′(s)− γm′(s)2
, (44)

φ2(s) =
ρσK
σR

sm′′(s)m(s) + γm′(s)(m(s)− sm′(s))
m(s)m′′(s)− γm′(s)2

− µR − r
σ2
R

m′(s)m(s)

m(s)m′′(s)− γm′(s)2
.(45)

5 The Equivalent Optimal Contracting Problem

Before continuing with the numerical solution of the entrepreneur’s problem under limited

commitment it is helpful to underline how the entrepreneur’s optimal dynamic liquidity

and risk-management problem can be formulated equivalently as an optimal contracting

problem between an optimally diversified investor and a risk-averse entrepreneur subject to

an inalienability-of-human-capital constraint.

Thus, consider the optimal long-term contracting problem between an infinitely-lived

fully diversified investor (the principal) and a financially constrained, infinitely-lived, risk-

averse entrepreneur (the agent). The investor is a deep-pocketed individual who provides

both the initial productive capital K0 and working capital over time as needed. Suppose

that the output process Yt is publicly observable and verifiable. In addition, suppose that

the entrepreneur cannot privately save.11 The contracting game begins at time 0 with the in-

vestor making a take-it-or-leave-it long-term contract offer to the entrepreneur. The contract

specifies an investment process {It; t ≥ 0} and a consumption allocation process {Ct; t ≥ 0}
to the entrepreneur, both of which depend on the entire history of capital stock {Kt; t ≥ 0}.

At the moment of contracting at time 0 the entrepreneur has a reservation utility V ∗0 , so

11This is a standard assumption in the literature on dynamic moral hazard (see Bolton and Dewatripont,
2005 chapter 10).
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that the optimal contract must satisfy the participation constraint:

V0 ≥ V ∗0 , (46)

where V0 denotes the value of the contract to the entrepreneur at time 0. In addition, the

entrepreneur’s human capital is inalienable and she can at any time leave the firm. Let

the outside payoff the entrepreneur obtains be denoted by V̂ (Kt). Then the entrepreneur’s

inalienability-of-human-capital constraint at each point in time t is given by:

Vt ≥ V̂ (Kt) , t ≥ 0. (47)

The investor’s problem at time 0 is to choose a dynamic investment It and consumption

Ct policy to maximize the investor’s time-0 discounted value of cash flows,

F0 = max
I, C

E0

[∫ ∞
0

Mt

M0

(Yt − Ct)dt
]
, (48)

subject to the capital accumulation process (1), the production function (3), the entrepreneur’s

inalienability-of-human-capital constraint (47) at all t, and the entrepreneur’s time-0 partic-

ipation constraint (46).12

The participation constraint (46) is always binding under the optimal contract. Oth-

erwise, the investor can always increase his payoff by lowering the agent’s consumption

and still satisfy all other constraints. However, the entrepreneur’s inalienability-of-human-

capital constraints (47) will often not bind as the investor dynamically trades off the benefits

of providing the entrepreneur with risk-sharing/consumption smoothing and the benefits of

extracting higher contingent payments from the firm.

As is well known (see e.g. DeMarzo and Sannikov, 2006), an important simplification

of the contracting problem is to summarize the entire history of the contract in the en-

trepreneur’s promised utility Vt conditional on the history up to time t. Under the optimal

contract the dynamics of the agent’s promised utility can then be written in the recursive

form below. The sum of the agent’s utility flow ζU(Ct)dt and change in promised utility dVt

12Additionally, we require that the investor’s value at time 0, F0, is (weakly) greater than the investors’
second-best option F ∗0 .

23



has the expected value ζVtdt, or:

Et [ζU(Ct)dt+ dVt] = ζVtdt . (49)

We can write the stochastic differential equation (SDE) for dV implied by (49) as the

sum of: i) the expected change (i.e., drift) term Et [dVt]; ii) a martingale term driven by

the Brownian motion Z1; and iii) a martingale term driven by the Brownian motion Z2.

Accordingly, we may write the dynamics of the entrepreneur’s promised utility process V as

follows:

dVt = ζ(Vt − U(Ct))dt+ x1,tVtdZ1,t + x2,tVtdZ2,t , (50)

where {x1,t; t ≥ 0} and {x2,t; t ≥ 0} controls the diffusion idiosyncratic and systematic

volatility of the entrepreneur’s promised utility V , respectively.

Finally, we can write the investors’ objective as a value function F (K,V ) with two state

variables: i) the entrepreneur’s promised utility V ; ii) the venture’s capital stock K. The

optimal contract then specifies investment I, consumption C, idiosyncratic risk exposure x1

and systematic risk exposure x2 to solve the following optimization problem:

F (Kt, Vt) = max
C, I, x1, x2

Et
[∫ ∞

t

Mv

Mt

(Yv − Cv)dv
]
, (51)

subject to the entrepreneurs’ inalienability-of-human-capital constraints (47) for all time

t, and the entrepreneur’s initial participation constraint (46). Applying Ito’s Lemma to

F (Kt, Vt) it is straightforward to derive the following HJB equation for the investor’s value

function F (K,V ):

rF (K,V ) = max
C, I, x1, x2

{
(Y − C) + (I − δK)FK + σ2

KK
2FKK/2

+[ζ(V − U(C))− x2ηV ]FV +
(x2

1 + x2
2)V 2FV V
2

+ (x1εK + x2ρσK)KV FV K

}
.(52)

Again mapping the promised utility V into a promised certainty-equivalent wealth W and

reducing the investor’s problem into a one-dimensional problem with state variable w =
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W/K, the investor’s value function F (K,V ) can be rewritten as:

F (K,V ) ≡ F (K,U(bW )) = P (K,W ) = p(w) ·K, (53)

where p(w) is the solution to the ODE given below in (54).

We summarize the solution to the optimal contracting problem between the investor and

entrepreneur in the proposition below. A detailed derivation and proof of the proposition

can be found in the appendix.

Proposition 4 In the region w > w the investors’ scaled value p(w) solves:

rp(w) = A− i(w)− g(i(w)) +
χγ

1− γ
(−p′(w))

1/γ
w + (i(w)− δ)(p(w)− wp′(w))

+
ζ

1− γ
wp′(w) +

(
γσ2

K

2
− ρησK

)
w2p′(w)p′′(w)

wp′′(w) + γp′(w)
− η2

2

wp′2

wp′′(w) + γp′(w)
,(54)

subject to the following boundary conditions:

lim
w→∞

p(w) = qFB − w , (55)

p(w) = 0 , (56)

lim
w→w

σw1 (w) = 0 , lim
w→w

σw2 (w) = 0 and lim
w→w

µw(w) ≥ 0 . (57)

The optimal investment-capital ratio i = I/K, the entrepreneur’s consumption-capital ratio

c = C/K and risk exposure x1 and x2 respectively satisfy

g′(i(w)) = p(w)− wp′(w)− 1 , (58)

c(w) = χ (−p′(w))
1/γ

w , (59)

x1(w) =
(1− γ)εKwp

′′(w)

wp′′(w) + γp′(w)
, (60)

x2(w) =
(1− γ)(ρσKwp

′′(w) + ηp′(w))

wp′′(w) + γp′(w)
. (61)

Propositions (4) and (3) reveal how the two problems are linked. The optimization

problem for entrepreneur is equivalent to the optimal contracting problem for the investor
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in (51) if and only if the borrowing limits, S(K), are such that for all K:

S(K) = −P (K,W ), (62)

where P (K,W ) is the investors’ value when the entrepreneur’s inalienability-of-human-

capital constraint binds, that is, when W = W . We provide a proof of the equivalence

between the two problems in the Appendix.

6 Quantitative Analysis

6.1 Parameter Choices and Calibration

While our model is equally tractable for any homogeneous adjustment cost function g(i),

for numerical and illustrational simplicity purposes, we choose the following widely-used

quadratic adjustment cost function:

g (i) =
θi2

2
, (63)

which gives explicit formulas for Tobin’s q and optimal i in the first-best MM benchmark:

qFB = 1 + θiFB, and iFB = r + δ −
√

(r + δ)2 − 2
A− (r + δ)

θ
. (64)

Our model with no productivity shocks is parsimonious with only eight parameters.

Three parameters essential for the contracting tradeoff between risk sharing and limited

commitment are the entrepreneur’s coefficient of relative risk aversion γ, the volatility of the

capital shocks σK , and the parameter measuring the degree of human capital inalienability

α. The other five parameters (the risk-free rate r, the entrepreneur’s discount rate ζ, the

risk-adjusted depreciation rate δ, the adjustment cost θ, and the productivity parameter A)

are basic to any dynamic model with investment. We choose plausible parameter values to

highlight the model’s mechanism and main insights.

Thus, we take the widely used value for the coefficient of relative risk aversion, γ = 2; the

annual risk-free interest rate r = 5%; and the aggregate equity risk premium is (µR − r) =
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6%. The annual volatility of the market portfolio return is σR = 20% implying the Sharpe

ratio for the aggregate stock market η = (µR − r)/σR = 30%. The subjective discount rate

is set to equal to the risk-free rate, ζ = r = 5%. As for investment, we rely on the parameter

findings suggested by Eberly, Rebelo, and Vincent (2009): we set the annual productivity

A at 20% and the annual volatility of capital shocks at σK = 20%. We set the correlation

between the market portfolio return and the capital stock shock ρ = 0.2, which implies that

the idiosyncratic volatility of the productivity shock εK = 19.6%.

Fitting the first-best values of qFB and iFB to the sample averages, we set the adjustment

cost parameter at θ = 2 and the (expected) annual capital depreciation rate at δK = 11%,

which implies the risk-adjusted depreciation rate is δ = 0.122. These parameters imply

qFB = 1.264 and an annual investment-capital ratio of iFB = 0.132.

Finally, we choose the fraction of capital stock that the entrepreneur may start out with

when she quits, α, to be 0.8, in line with some empirical estimates.13

The parameter values for our baseline case are summarized in Table 2. Note that all

parameter values are annualized when applicable.

Table 2: Summary of Parameters

This table summarizes the parameter values used for numerical illustration.

A. Baseline model with no productivity shocks

Parameters Symbol Value
Risk-free rate r 5%
The entrepreneur’s discount rate ζ 5%
Correlation ρ 20%
Excess return µR − r 6%
Volatility of market portfolio σR 20%
The entrepreneur’s relative risk Aversion γ 2
Capital depreciation rate δK 11%
Volatility of capital depreciation shock σK 20%
Quadratic adjustment cost parameter θ 2
Firm’s productivity A 20%
Inalienability of human capital parameter α 80%

13See Li, Whited, and Wu (2014) for the empirical estimates of α. The averages are 1.2 for Tobin’s q and
0.1 for the investment-capital ratio, respectively, for the sample used by Eberly, Rebelo, and Vincent (2009).
The imputed value for the adjustment cost parameter θ is 2 broadly in the range of estimates used in the
literature. See Hall (2004), Riddick and Whited (2009), and Eberly, Rebelo, and Vincent (2009).

27



6.2 Investors’ Value is Entrepreneur’s Liability: P (K,W ) = −S

The primal contracting and dual implementation problems are linked as follows:

s = −p(w) and w = m(s) , (65)

where p(w) is the scaled investors’ value in the contracting problem, and m(s) is the en-

trepreneur’s scaled certainty equivalent wealth as a function of s in the implementation

formulation. Thus, liquidity s for the entrepreneur is the payoff that the investor is giving

up through the promised wealth w to the entrepreneur. Note that (65) implies that the

composition of −p and m, denoted by −p ◦m, yields the identity function: −p(m(s)) = s.

Scaled promised wealth w and scaled investors’ value p(w). Panel A and B of

Figure 1 plots the investor’s scaled value p (w) and the sensitivity of the value to changes in

promised wealth p′ (w) = PW in Panels A and B respectively. In the first-best MM world,

compensation to the entrepreneur is simply a one-to-one transfer away from investors, as we

see from the dotted lines: p(w) = qFB−w = 1.264−w and p′(w) = −1. With inalienability of

human capital, investors’ value p(w) is decreasing and concave in w. That is, as w increases

the entrepreneur is less constrained so that the marginal value p′(w) decreases.

Additionally, p(w) approaches qFB − w, and p′(w)→ −1, as w →∞. That is, the first-

best payoff obtains when the entrepreneur is unconstrained. However, the entrepreneur’s

inability to fully commit not to walk away ex post imposes a lower bound w on w. For our

parameter values, w ≥ w = 0.944.

Finally, note that despite being risk neutral, the investor effectively behaves in a risk-

averse manner due to the entrepreneur’s inalienability-of-human-capital constraints. This is

reflected in the concavity of the investors’ scaled value function p(w). This concavity property

is an important difference of the limited commitment problem relative to the neoclassical

problem, where volatility has no effect on firm value.

Scaled liquidity s and the entrepreneur’s scaled certainty-equivalent wealth m(s).

Panel C and D of Figure 1 plot the entrepreneur’s scaled savings m(s) and the marginal

value of liquidity m′(s). As one might expect m(s) is increasing and concave in s. The

higher the liquidity s the less constrained the entrepreneur is. Additionally, as s increases
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Figure 1: Investors’ scaled value p(w), the marginal value of w, p′(w), the en-
trepreneur’s scaled certainty equivalent wealth m(s) and marginal (certainty
equivalent) value of liquidity, m′(s). For the limited-commitment case, w ≥ w = 0.944,
and p(w) is decreasing and concave in w. Similarly, for the limited-commitment case,
s ≥ s = −0.224, and m(s) is increasing and concave in s. The dotted line depicts the
full-commitment MM results: p(w) = qFB − w, p′(w) = −1, m(s) = qFB + s and m′(s) = 1.

the entrepreneur is less constrained so that the marginal value of savings m′(s) decreases

(m′′(s) < 0). In the limited-commitment case the entrepreneur’s scaled wealth m(s) ap-

proaches qFB + s and m′(s) → 1 as s → ∞.14 The entrepreneur’s LOC limit, or in other

words, her risk-free debt capacity s = −p(w) is given by −0.224.

We next discuss the optimal policy rules.

14See Wang, Wang, and Yang (2012) for similar conditions in a model with exogenously-specified
incomplete-markets model of entrepreneurship.
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6.3 Investment, Consumption, Liquidity and Risk Management

We first analyze the firm’s investment decisions, then the entrepreneur’s optimal consump-

tion, and finally corporate liquidity and risk management.

6.3.1 Investment, marginal q, and the marginal value of liquidity m′(s).

We can simplify the FOC for investment to:

1 + g′(i(s)) =
JK
JS

=
MK

MS

=
m(s)− sm′(s)

m′(s)
, (66)

where the first equality is the investment FOC, the second equality follows from the definition

of the value function in (32), and the last equality follows from the homogeneity property of

M(K,S) in K. Under perfect capital markets the entrepreneur’s certainty equivalent wealth

is given by M(K,S) = m(s) ·K = (qFB+s) ·K and the marginal value of liquidity is MS = 1

at all times. Hence in this case, the FOC (66) specializes to the classical Hayashi condition

for optimal investment, where the marginal cost of investing 1 + g′(i(s)) equals marginal q.

Under limited commitment, MS > 1 in general and the FOC (66) then states that the

marginal cost of investing (on the left-hand side) equals the ratio between (a) marginal q,

measured by MK , and (b) the marginal value of liquidity measured by MS. Unlike in the

classical q theory of investment, here financing matters and MS measures the (endogenous)

marginal cost of financing generated by limited commitment constraints.

Figure 2 illustrates the effect of inalienability of human capital on marginal q and invest-

ment i(s). The dotted lines in Panels A and B of Figure 2 give the first-best qFB = 1.264

and iFB = 0.132, respectively. With limited commitment, i(s) is lower than the first-best

benchmark iFB = 0.132 for all s, and increases from −0.043 to iFB = 0.132 as s increases

from the left boundary s = −0.224 towards ∞. This is to be expected: increasing finan-

cial slack mitigates the severity of under-investment for a financially constrained firm. Note

however that, surprisingly, marginal q (that is, MK) decreases with s from 1.25 to 1.20 in

the credit region s < 0. What is the intuition? When the firm is financing its investment

via credit at the margin (when S < 0), increasing K moves a negative-valued s closer to the

origin thus mitigating financial constraints, which is an additional benefit of accumulating
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Figure 2: Marginal q, MK = m(s)−sm′(s), and the investment-capital ratio i(s). For
the limited-commitment case, the firm always under-invests and i(s) increases with s. The
dotted line depicts the full-commitment MM results where the marginal equals qFB = 1.264
and the first-best investment-capital ratio i(s) = iFB = 0.132.

capital.15

But why does a high marginal-q firm invest less in the credit region s < 0? And how do

we reconcile an increasing investment function i(s) with a decreasing marginal q function,

MK = m(s) − sm′(s) in the credit region s < 0? The reason is simply that in the credit

region (s < 0) a high marginal-q firm also faces a high financing cost. When s < 0 the

marginal q and the marginal financing cost m′(s) are perfectly correlated. And investment

is determined by the ratio between the marginal q and m′(s) as we have noted. At the left

boundary s = −0.224 marginal q is 1.25 and m′(s) is 1.37 both of which are high. Together

they imply that i(−0.224) = −0.043, which is low compared with the first-best iFB = 0.132.

More generally, we consider a measure of investment-cash sensitivity given by i′(s). Tak-

ing the derivative of investment-capital ratio i(s) in (66) with respect to s, we have

i′(s) = −1

θ

m(s)m′′(s)

m′ (s)2 > 0. (67)

As m(s) is concave in s regardless of whether s ≥ 0 or s < 0, i(s) is increasing in liquidity.16

15Formally, this result follows from dMK/ds = −sm′′(s) < 0 when s < 0 and from the concavity of m(s).
16See Bolton, Chen, and Wang (2011) for related discussions on how cash and credit influence the behaviors

of investment, marginal q, and marginal value of liquidity.
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6.3.2 Consumption
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Figure 3: Consumption-capital ratio c(s) and the MPC c′(s). For the limited-
commitment case, the entrepreneur always under-consumes compared with the full-
commitment case and c(s) increases with s. The dotted line depicts the full-commitment
consumption-smoothing results: c(s) = χ(s+ qFB) and the MPC c′(s) = χ = 5%.

The entrepreneur’s optimal consumption rule c(s) is given by:

c(s) = χm′(s)−1/γm(s) , (68)

where χ is given in (25). Figure 3 plots the optimal consumption-capital ratio c(s), and the

MPC c′(s) in Panels A and B respectively. The dotted lines in Panels A and B of Figure

3 give the first-best c(s) = (s + qFB) and MPC c′(s) = 6.13%, respectively. The solid

line gives the entrepreneur’s consumption, which is lower than the first-best benchmark.

Additionally, the higher the financial slack s the higher is c(s) as seen in the figure. Moreover,

we have m(s) → qFB + s and the marginal value of liquidity m′(s) → 1 as s → ∞, so that

c(s)→ χ
(
qFB + s

)
, the permanent-income consumption benchmark. Panel B shows that the

MPC c′(s) decreases significantly with s and approaches the permanent-income benchmark

χ = 6.13% as s→∞. Thus, financially constrained entrepreneurs deep in debt (with s close

to s) have MPCs that are substantially higher than the permanent-income benchmark.

Next we turn to the firm’s optimal hedging policy.
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6.3.3 Hedging

Before delving into the analysis, we first review the entrepreneur’s total wealth holdings in

our implementation, which consist of three parts: (1) a 100% equity stake in the underlying

business; (2) a mark-to-market futures position; and (3) a liquidity asset holding in the

amount of s (negative when the firm is borrowing.)
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Figure 4: Hedging position. For the limited-commitment case, the entrepreneur partially
hedges her firm’s equity idiosyncratic risk exposure by shorting in the idiosyncratic risky
asset, φ1(s) < 0. Note that idiosyncratic risky hedging |φ1(s)|, and market index futures
position φ2(s) increases with s. And the The dotted line depicts the entrepreneur’s full-
commitment hedging results with φ1(s) = −qFB = −1.264 and φ2(s) = −0.2 ∗ qFB + 0.75 ∗
(s+ qFB).

Panel A of Figure 4 plots the futures position against idiosyncratic shocks φ1(s). First,

under full commitment, the risk-averse entrepreneur is fully insured against the idiosyncratic

business risk by taking a perfectly offsetting short futures position φ1(s) = −qFB = −1.264.

See the dotted line in Panel A of Figure 4.

With limited commitment the entrepreneur cannot fully hedge her equity exposure. How

does φ1(s) depend on s in this case? The solid line gives the futures position φ1(s): As the

firm becomes less constrained (s increases) the entrepreneur increases the futures hedging

position |φ1(s)|. Thus, a less constrained firm has a larger hedging position (after controlling

for firm size), and in the limit as s → ∞ the entrepreneur can fully diversify the idiosyn-
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cratic business risk by taking a short futures position: φ1(s) = −qFB = −1.264, attaining

the full-commitment perfect insurance benchmark. Rampini, Sufi, and Viswanathan (2014)

provide empirical evidence supporting this result. Note that here liquidity and hedging are

complements.

Panel B plots the market index futures position φ2(s). Notice that under full commit-

ment, the risk-averse entrepreneur is fully insured against the systematic business risk by

shorting the position −ρσK
σR
qFB and he also has the standard mean-variance demand given

as η
γσR

mFB(s), so the total market index futures position φ2(s) = −ρσK
σR
qFB + η

γσR
mFB(s) =

−0.2 ∗ qFB + 0.75 ∗ (s + qFB) as represented by the dotted line in Panel B of Figure 4. It’s

interesting that for low s, it’s very important to manage the risk

7 Two-sided Limited Commitment

As we have shown so far, under the one-sided commitment solution investors must be able to

commit to incurring losses. As Figure 1 illustrates p(w) takes negative values when w exceeds

1.18. To be able to retain the entrepreneur, investors then promise such a high wealth w to

the entrepreneur that they end up committing to making losses in these states of the world.

But, what if they cannot commit to such loss-making wealth promises to the entrepreneur?

What if investors are protected by limited liability and cannot commit to a long-term contract

that yields a negative net present value at some point in the future? We explore this issue in

this section and derive the optimal contract when neither the entrepreneur nor investors are

able to fully commit. Specifically, we introduce the additional set of constraints for investors

that guarantee at any time t that investors receive a non-negative payoff value under the

contract:

Ft ≡ Et
[∫ ∞

t

e−r(v−t)(Yv − Cv)dv
]
≥ 0 . (69)

As it turns out, solving the two-sided limited commitment problem does not involve

major additional complexities. The main change relative to the one-sided problem is that

the upper boundary is now s = 0. Indeed, any promise of strictly positive savings s > 0 is

not credible as this involves a negative continuation payoff for investors.

Again, we simply modify the upper boundary condition in Proposition 3. The upper

boundary is now given by s = 0 rather than the natural limiting boundary s → ∞ in the
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one-sided case. We thus replace condition (39) with the following conditions at the new

upper boundary s = 0:

lim
s→0

σsH(s) = 0 and lim
s→0

µsH(s) ≤ 0 . (70)

As before, the volatility σsn( · ) must be zero at s = 0 and the drift needs to be weakly

negative to pull s to the interior so as to ensure that s will not violate the constraint s ≤ 0.

Similarly, we also consider the special case when the firm’s productivity is constant,

AL = AH = A, so that the only shock is the diffusion capital shock Z.

7.1 Investment and Risk Management
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Figure 5: The entrepreneur’s scaled certainty equivalent wealth m(s) and
marginal (certainty equivalent) value of liquidity, m′(s) under two-sided limited-
commitment case.

Figure 5 shows the entrepreneur’s scaled certainty equivalent wealth m(s) and marginal

(certainty equivalent) value of liquidity, m′(s). It shows that in the two-sided limited-

commitment case, s lies between s = −0.249 and s = 0, so that the entrepreneur has a

larger LOC limit of |s| = 0.249. But this comes at the expense of lower promised utility,

which translates into no corporate savings in this implementation (s = 0). Indeed, if we had

s > 0 the investors’ value would be strictly negative violating the investors’ limited-liability
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condition. In sum, the additional investor limited-liability condition limits the entrepreneur’s

self savings capacity, which in turn increases the entrepreneur’s demand for relying on an

LOC. Remarkably, here a firm with a larger debt capacity is not necessarily less constrained

and may have a lower value!

While m′(s) ≥ 1 holds for the one-sided case, m′(s) can be less than 1 in the two-

sided limited-commitment case. This is again due to the fact that in the two-sided case the

benefit of relaxing financial constraints for the entrepreneur with an increase in s may not be

sufficient to offset the cost to the investor (due to a shorter distance investors’ limited-liability

constraint) implying that m′(s) < 1 in the region s < s ≤ 0.
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Figure 6: Optimal investment-capital ratio i(s) and consumption-capital ratio c(s)
under two-sided limited-commitment case.

Figure 6 reports the two-sided limited-commitment solution for investment and con-

sumption in Panels A and B, respectively. Comparing the two-sided and one-sided limited

commitment solutions for investment in Panel A, we observe that the limited-liability con-

straint for investors prevents the entrepreneur from owning positive liquid wealth, so that

there is only a credit region in the two-sided case: s ≤ 0. This is necessary for the investors

to have positively-valued stake in the firm. Remarkably, in this case the firm may either

under-invest or over-invest compared with the first-best benchmark. The firm under-invests

when s < −0.13 but over-invests when −0.13 < s ≤ 0. Whether the firm under-invests or

over-invests depends on the net effects of the entrepreneur’s limited-commitment and the in-

vestors’ limited-liability constraints. For sufficiently low values of s (when the entrepreneur is

36



deep in debt) the entrepreneur’s constraint matters more and hence the firm under-invests.

For values of s sufficiently close to zero, the investors’ limited-liability constraint has a

stronger influence on investment as the investors’ value is close to zero. To ensure that s

will drift back into the credit region the entrepreneur needs to “save” in the form of the

illiquid productive asset (by increasing K) by borrowing more. By over-investing, the firm

optimally chooses to keep s between s and 0. In summary, given that the entrepreneur

cares about the total compensation W = w ·K and given that investors are constrained by

their ability to promise the entrepreneur w beyond an upper bound, investors reward the

entrepreneur along the extensive margin, firm size K, which induces over-investment but

allows the entrepreneur to build more human capital.

Similarly, comparing the two-sided and one-sided limited commitment solutions for con-

sumption in Panel B, we observe that in both cases consumption is increasing with financial

slack s, and the entrepreneur always under-consume. Interestingly, the entrepreneur will

significantly increasing the consumption under two-sided limited commitment, which may

exceed the consumption under one-sided case, to ensure s drift back into the credit region

when s is close to 0. And the economic intuition is similarly with the behavior of the firm’s

over-investment.
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Figure 7: Hedging strategy under two-sided limited-commitment case.

Figure 7 plots the hedging position φ1(s) and φ2(s). It illustrates that both of φ1(s)

and φ2(s) are non-monotonic in s for the two-sided case: Although the entrepreneur can

afford to build larger hedging positions when s is larger, investors find these large hedging
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positions incompatible with their limited-liability constraints. To prevent investors from

reneging on their promises volatility must be turned off at s = 0, which is achieved by

setting φ1(s) = s and φ2(s) = s at s = 0, as implied by the volatility boundary condition

(36) for σ1(s) and (37) for σ2(s) . This nonlinear hedging result illustrates the complexity

of firms’ liquidity and risk management policies and point to the subtle interaction between

a firm’s risk management and its financial slack.

8 Persistent Productivity Shocks: Insurance

The shocks in our baseline model of Section 2 are capital depreciation shocks that we model

via continuous diffusion processes. In this section, we extend the model to allow for persistent

productivity shocks that also have first-order implications on corporate liquidity and risk

management. Naturally, the risk-averse entrepreneur optimally insure against such shocks.

We characterize the optimal insurance contract against such shocks and how investment,

executive compensation/consumption, liquidity/risk management and the firm’s credit limit

vary with the firm’s productivity. For simplicity, we only consider the one-sided limited

commitment case where productivity shock is purely idiosyncratic. We have generalized this

setting to allow for systematic productivity shocks and/or two-side limited-commitment,

which are available upon request, but these features out due to space considerations.

To keep the analysis simple we model persistent productivity shocks {At; t ≥ 0} as a

two-state Markov switching process, At ∈
{
AL, AH

}
with 0 < AL < AH . Similarly, we

denote by λt ∈
{
λL, λH

}
with λL being the transition intensity from state L to H and λH

being the intensity from state H to L. The counting process {Nt; t ≥ 0} (starting with

N0 = 0 without loss of generality) increases by one whenever the state switches either from

H to L or from L to H, and remains unchanged otherwise, in that dNt = Nt −Nt− = 1 if

and only if At 6= At−. Otherwise, dNt = 0.

Suppose that the current time is t− and the firm is considering the decision over the

time interval (t−, t). First, we introduce the contingent claim that the firm can buy or

issue/sell to insure the change of productivity shock. One unit of this insurance contract

over time interval (t−, t) pays the holder one lump-sum unit at time t, if and only if dNt = 1.

Under the assumptions that markets are perfectly competitive and productivity shocks are

idiosyncratic, the actuarially fair premium on a unit of this insurance claim over the time
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interval (t−, t) is then λt− per unit of time.17 Therefore, if the firm buys Πt− units of

insurance over the time interval (t−, t), the firm will be pays insurance premium λt−Πt−dt.

We can write the dynamics of liquidity St as follows:

dSt = (rSt + Yt − Ct + Φ2,t(µR − r)− λt−Πt−) dt+ Φ1,tεKdZ1,t + dt+ Φ2,tσRdZ2,t + Πt−dNt .(71)

The first term in (71) gives the firm’s savings rate. In addition to the term rSt + Yt −
Ct + Φ2,t(µR − r) as we have in the baseline case, we also have the insurance premium term

−λt−Πt−. If Πt− > 0, in that the firm is buying an insurance with a lump-sum payment in

the amount of Πt−, the firm has to pay an insurance premium which lowers the firm’s savings

rate at λt−Πt− per unit of time. The insurance company delivers the payment Πt− > 0 if

and only if dNt = 1, i.e., when the productivity suddenly switches from time t− to t. If

Πt− < 0, the firm sells insurance which increases the firm’s savings rate locally, but exposes

the firm to the risk of delivering a lump-sum payment −Πt− at time t when dNt = 1.

9 Conclusion

Our generalization of Hart and Moore (1994) to introduce risky human capital, risk aversion,

and ongoing consumption reveals the optimality of corporate liquidity and risk management

for financially constrained firms. Most of the existing corporate security design literature

has confined itself to showing that debt financing and credit line commitments are optimal

financial contracts. By adding risky human capital and risk aversion for the entrepreneur,

two natural assumptions, we show that corporate liquidity and hedging policies are also an

integral part of an optimal financial contract. When productivity shocks are persistent, we

find that insurance contracts and/or equilibrium default by the entrepreneur on her debt

obligations is part of an optimal contract. We have thus shown that the inalienability-

of-human-capital constraint naturally gives rise to a role for corporate liquidity and risk

management, dimensions that are typically absent from existing macroeconomic theories of

investment under financial constraints following Kiyotaki and Moore (1997).

Although our framework is quite rich, we have imposed a number of strong assumptions,

17We can generalize this to allow for systematic risk premium via a change of measure by choosing different
jump intensities under the physical measure and the risk-neutral measure. Notes are available upon request.
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Figure 8: Insurance demand. Parameter values: γ = 0.1, ζ = 0.1, σK = 1, η = 0, θ = 5,
AL = 0.05, AH = 0.2, λH = λL = 0.05. The constrained region of πn under L state is
−0.09 < s < 0.06.

which are worth relaxing in future work. For example, one interesting direction is to allow

for equilibrium separation between the entrepreneur and the investors. This could arise,

when after an adverse productivity shock the entrepreneur no longer offers the best use of

the capital stock. Investors may then want to redeploy their capital to other more efficient

uses. By allowing for equilibrium separation our model could be applied to study questions

such as the expected and optimal life-span of entrepreneurial firms, the optimal turnover of

managers, or the optimal investment in firm-specific or general human capital.
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Figure 9: Optimal investment-capital ratio in(s) and consumption-capital ratio
cn(s) under two states and one-sided limited-commitment case. Parameter values:
γ = 0.1, ζ = 0.1, σK = 1, η = 0, θ = 5, AL = 0.05, AH = 0.2, λH = λL = 0.05.

References

Abel, A.B., Eberly, J.C., 1994. A unified model of investment under uncertainty. American

Economic Review, 84, 1369–1384.

Ai, H., Li, R., 2013. Investment and CEO Ccompensation under limited commitment. Working

paper. Minneapolis University and Purdue University.

Albuquerque, R., Hopenhayn, H., 2004. Optimal lending contracts and firm dynamics. Review of

Economic Studies, 71, 285–315.

Alvarez, F., and Jermann, U. J., 2000. Efficiency, equilibrium, and asset pricing with risk of

default. Econometrica, 68, 775–797.

Alvarez, F., and Jermann, U. J. 2001. Quantitative asset pricing implications of endogenous

solvency constraints. Review of Financial Studies, 14, 1117–1151.

Becker, G., Human Capital: A Theoretical and Empirical Analysis with Special Reference to Edu-

cation, 2nd edition, National Bureau of Economic Research (New York: Columbia University

Press, 1975).

Berk, J.B., Stanton, R., Zechner, J., 2010. Human capital, bankruptcy and capital structure.

Journal of Finance, 65(3), 891–926.

41



−0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.6

s

A. Insurance demand: π
n
(s)

 

 

H

L

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

0.6

0.8

s

B. Liquidity (post−productivity shock): s+π
n
(s)

−0.2 0 0.2 0.4

1

1.5

2

2.5

3

s

C. Marginal utility of liquidity: J
S

−0.2 0 0.2 0.4
1

1.1

1.2

1.3

1.4

1.5

1.6

D. Marginal CE value of liquidity: m
′

n
(s)

s

Figure 10: Insurance demand. Parameter values: γ = 0.8, ζ = 0.05, σK = 0.2, η = 0.5,
θ = 5, AL = 0.02, AH = 0.245, λH = λL = 0.1. The constraint region of πn under L state is
−0.072 < s < 0.051.

Ben-Porath, Y., 1967. The Production of human capital and the life cycle of earnings. The

Journal of Political Economy, 75(4), 352–365.

Biais, B., Mariotti, T., Plantin, G., Rochet, J.-C., 2007. Dynamic security design: convergence to

continuous time and asset pricing implications. Review of Economic Studies, 74, 345–390.

Biais, B., Mariotti, T., Rochet, J.-C., 2013. Dynamic financial contracting. Advances in Eco-

nomics and Econometrics, Tenth World Congress (Daron Acemoglu, Manuel Arellano, Eddie

Dekel), vol. 1, Cambridge University Press.

Biais, B., Mariotti, T., Rochet, J.-C., Villeneuve, S., 2010. Large risks, limited liability and

dynamic moral hazard. Econometrica, 78, 73–118.

42



−0.2 0 0.2 0.4

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

A. Investment−capital ratio: i
n
(s)

s

 

 

n=H

n=L

−0.2 0 0.2 0.4
0

0.005

0.01

0.015

0.02

B. Consumption−capital ratio: c
n
(s)

s

Figure 11: Optimal investment-capital ratio in(s) and consumption-capital ratio
cn(s) under two states and one-sided limited-commitment case. Parameter values:
γ = 0.8, ζ = 0.05, σK = 0.2, η = 0.5, θ = 5, AL = 0.02, AH = 0.245, λH = λL = 0.1.

Bolton, P., Chen, H., Wang, N., 2011. A unified theory of Tobin’s q, corporate investment,

financing, and risk management. Journal of Finance, 66, 1545–1578.

Bolton, P., Chen, H., Wang, N., 2013. Market timing, investment, and risk management. Journal

of Financial Economics, 109, 40–62.

Bolton, P., Dewatripont, M., 2005. Contract Theory. MIT Press.

Bolton, P., Schaller, H., Wang, N., 2014. Financial constraints, corporate savings, and the value

of cash. Working paper. Columbia University.

Bolton, P., Scharfstein, D., 1990. A theory of predation based on agency problems in financial

contracting. American Economic Review, 80, 93–106.

Bulow, J., Rogoff, K., 1989. A constant recontracting model of sovereign debt. Journal of Political

Economy, 155-178.

Clementi, G.L., Hopenhayn, A., 2006. A theory of financing constraints and firm dynamics.

Quarterly Journal of Economics, 121, 229–265.

Cox, J.C., Ingersoll, J.E.Jr., Ross, S.A., 1985. An intertemporal general equilibrium model of

asset prices. Econometrica, 53, 363–384.

DeMarzo, P.M., Fishman, M.J., 2007. Optimal long-term financial contracting. Review of Finan-

cial Studies, 20, 2079–2128.

43



−0.2 0 0.2 0.4
−0.05

0

0.05

s

A. Insurance demand: π
n
(s)

 

 

H

L

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

s

B. Liquidity (post−productivity shock): s+π
n
(s)

−0.2 0 0.2 0.4

0.5

1

1.5

2

s

C. Marginal utility of liquidity: J
S

−0.2 0 0.2 0.4
1

1.1

1.2

1.3

1.4

D. Marginal CE value of liquidity: m
′

n
(s)

s

Figure 12: Insurance demand. Parameter values: AL = 0.18, AH = 0.2, λH = λL = 0.2
and the other parameters are the same with baseline model. The constraint region of πn
under L state is −0.19 < s < −0.183.

DeMarzo, P.M., Fishman, M.J., He, Z., Wang, N., 2012. Dynamic agency and the q theory of

investment. Journal of Finance, 67, 2295–2340.

DeMarzo, P.M., Sannikov, Y., 2006. Optimal security design and dynamic capital structure in a

continuous–time agency model. Journal of Finance, 61, 2681–2724.

Dittmar, A., Mahrt-Smith, J., 2007. Corporate governance and the value of cash holdings. Journal

of Financial Economics, 83, 599–634.

Duffie, D., Huang, C., 1985. Implementing Arrow-Debreu equilibria by continuous trading of eew

long-lived securities. Econometrica. 53, 1337–1356.

Eberly, J.C., Rebelo, S., Vincent, N., 2009. Investment and value: A neoclassical benchmark.

Unpublished working paper. Northwestern University and HEC Montréal.
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