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Abstract

Some recent papers suggest that the Easley and O’Hara (1987) probability of in-

formed trade (PIN) model fails to capture private information. We investigate this issue

by comparing the PIN model with the Duarte and Young (2009) (DY) and Odders-

White and Ready (2008) (OWR) models of private information arrival. We find that

the PIN and DY models fail to capture private information because they mistakenly

associate variations in turnover with the arrival of private information. On the other

hand, the OWR model, which uses returns along with order flow imbalance, seems to

plausibly identify the arrival of private information.
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The Probability of Informed Trade (PIN) model, developed in a series of seminal papers

including, Easley and O’Hara (1987), Easley, Kiefer, O’Hara, and Paperman (1996), and

Easley, Kiefer, and O’Hara (1997), has been used extensively in accounting, corporate finance

and asset pricing literature as a measure of information asymmetry.1 The PINmodel is based

on the notion, originally developed by Glosten and Milgrom (1985), that periods of informed

trade can be identified by abnormally large order flow imbalances. Recently, however, several

papers have called into question the model’s ability to identify informed trade because s

tend to be at their lowest when information asymmetry should be at its highest (e.g. Aktas,

de Bodt, Declerck, and Van Oppens (2007), Benos and Jochec (2007), and Collin-Dufresne

and Fos (2014a)).

We conduct an empirical examination of the PIN model to identify what might cause

difficulties in its ability to identify informed trade. This exercise is important because the

various possibilities imply very different agendas for this growing area of research. If 

fails because its model does not fit the data well, then the PIN model could, in principle,

be corrected by extending it to better fit the order flow data. Alternatively, it could be

that net order flow itself is such a poor indicator of private information that no model based

on order flow alone is capable of identifying informed trade, no matter how well it fits the

data. Indeed, the theoretical work of Back, Crotty, and Li (2014) and the results in Kim and

Stoll (2014) suggest that by itself, order flow imbalance is insufficient to isolate information

events. If this is indeed the case, there is little to be gained by extending the PIN model to

better fit the order flow data. Instead, a different approach involving variables other than

order flow is necessary to generate useful inferences about the arrival of informed trade.

To address these possibilities, we compare the PIN model with two other models: one

developed by Duarte and Young (2009) (the DY model), and the other by Odders-White and

1A Google scholar search reveals that this series of PIN papers has been cited more than 3,500 times as

of this writing. Examples of papers that use PIN in the finance and accounting literature include Duarte,

Han, Harford, and Young (2008), Bakke and Whited (2010), Da, Gao, and Jagannathan (2011), and Akins,

Ng, and Verdi (2012).
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Ready (2008) (the OWR model). Duarte and Young show that while the PIN model implies

that the covariance between the daily number of buyer initiated trades (buys) and seller

initiated trades (sells) is negative, it is, in fact, strongly positive for almost every publicly

traded U.S. firm. The authors propose an alternative  measure ( ) that is

also based on Glosten and Milgrom (1985) but accounts for the positive correlation between

buys and sells and thus improves the fit of the model. By comparing the ability of the DY

and PIN models to identify private information, we can examine how a better fitting model

of order flow helps in identifying private information. Odders-White and Ready develop

a measure of private information based on Kyle (1985) rather than Glosten and Milgrom

(1985). The OWR model uses intraday and overnight returns, along with order imbalance,

to identify private information events. We compare the OWR and the PIN/DY models to

highlight the importance of looking beyond order flow when identifying private information.

To compare these models, we examine the conditional probability of an information

event () implied by each model. To compute s, we first estimate each model’s

parameters using an entire year of data, and then use the observed market data (buys,

sells, returns) to estimate the posterior or model-implied probability of an information event

for each day in our sample. While the PIN and DY models allow for a calculation of the

probability of informed trade, the OWR model does not. However, all three models have

a parameter that controls the unconditional probability of an information event on a given

day () and allow for the calculation of  As a result, we can compare how each model

identifies private information through its .

We then examine how each of the three models identifies private information. We do

this in two ways. First, we regress the PIN, DY, and OWR models’ s ( 

   respectively) for each firm-year on the variables that, according to

each model, are associated with the arrival of private information. In theory, variations in

 and  result from variation in absolute order imbalance, while variation

in  is the result of variation in the squared and interaction terms of intraday

2



returns, overnight returns, and order flow imbalances. In practice, however, the models

may produce poor descriptions of the data, and model misspecification can affect the way

they actually identify private information. Therefore, the hypothesis that we test in our

regressions is whether observed variation in each model’s  is consistent with each

model’s theory.

Second, we use estimates of each model’s  to conduct event studies using a sample

of target firms in mergers and acquisitions. We have two sets of hypotheses for our event

studies. Our first event study hypothesis is similar to the one in our regression tests. The

hypothesis is that variation in each model  in the event window is consistent with the

theory behind each model. It is important to note that we test this hypothesis without any

assumptions about whether or not private information arrives around the announcement.

For our second event study test, we adopt the working hypothesis that private information

should arrive prior to the event, rather than after the event.2 Under this hypothesis, we

expect that if a model correctly identifies informed trade, its  will increase prior to

the announcement. We also anticipate that informed trading, and hence s, will decline

rapidly after the announcement, when investors have the same (now public) information.

Our results are as follows. We find that the PIN model primarily identifies informa-

tion events based on volume rather than absolute order flow imbalance. In regressions of

 on absolute order imbalance, turnover, and their squared terms, turnover and

turnover squared account for, on average, around 65% of the overall 2. This is a problem

because the PIN model mechanically associates increases in turnover with the arrival of pri-

vate information although turnover can vary for reasons unrelated to private information.3

This problem becomes more pronounced late in the sample because the model breaks down

with the increase in both the level and volatility of turnover. For example, after 2006, the

2There is considerable evidence suggesting the possibility of high asymmetric information prior to impor-

tant announcements. See for example Meulbroek (1992) and Hendershott, Livdan, and Schurhoff (2014).
3For instance, turnover can increase with disagreement (e.g. Kandel and Pearson (1995), and Banerjee

and Kremer (2010)). Furthermore, recent work by Chae (2005) indicates that turnover may either decrease

or increase due to asymmetric information.
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PIN model suggests that 90% of the observed daily order flows for the median stock have

a near-zero probability (i.e. smaller than 10−10) of occurring. In addition, in our event

studies, we find that  is higher after the announcement, due to the higher levels of

volume in the post-announcement period. The intuition behind these results is that under

the PIN model increases in volume can only come about through the arrival of private infor-

mation. When confronted with actual data where turnover can change without the arrival of

private information, the model mechanically interprets turnover shocks as periods of private

information arrival, even when the order imbalance is zero.

We find that the DY model also identifies a relatively large proportion of variation in

 with variation in turnover instead of order imbalance. In regressions of 

on absolute order imbalance, turnover, and their squares, turnover accounts for, on average,

40% of the overall 2. Furthermore, the DY model also breaks down late in the sample. As

with the PIN model, for the median stock in our sample, the DY model suggests that about

90% of daily order flows have a near-zero probability of occurring after 2006. Moreover, in

our event study of M&A targets, we find that like  , the  increases before

the event, but remains elevated after the event, largely due to the increased volume in the

post-event period.

In contrast, we find that the OWR model generally behaves as our hypotheses suggest

it should. We find that the 2 of a regression of  on the squared and interaction

terms of intraday returns, overnight returns, and order flow imbalances is around 80%. In

contrast to the PIN and DY models, the behavior of the OWR model does not change in the

latter part of the sample because it relies on order imbalance, which remains stable over time,

as opposed to the levels of buyer and seller initiated trades, which are subject to (common)

stochastic trends. Furthermore, we find that variation in the  around merger

announcements is almost completely due to variation in both the squares and the interactions

of intraday and overnight returns instead of variation in the square and interactions of order

imbalance. Hence, under the working hypothesis that private information about merger
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targets arrives in the market before the announcement of the merger, our findings suggests

that variables other than order flow may be significant in identifying private information. In

addition, we find the  increases before the announcement and decreases rapidly

after the announcement, which suggests, under our working hypothesis, that the OWRmodel

identifies the arrival of informed trade around events in a sensible way.

Overall, our findings suggest that  and   are poor proxies for private infor-

mation, while the OWR model’s  or its  may be reliable proxies for private informa-

tion. It seems implausible that  and   correctly capture private information

late in the sample since they are based on models that cannot account for 90% of the me-

dian stock’s observed order flow. Moreover, the mechanical relation between turnover and

 suggests that  does not properly identify private information. The perfor-

mance of the OWRmodel, on the other hand, suggests that its  or  may be promising

measures of information asymmetry.

Our paper is related to a growing literature that analyzes the extent to which  actu-

ally captures information asymmetry.4 Most of this research attempts to do so by estimating

 around events and testing whether  is higher before than after an announcement.

Using this approach, Collin-Dufresne and Fos (2014a) find that  and other adverse se-

lection measures are lower when Schedule 13D filers trade. Collin-Dufresne and Fos partially

attribute this finding to informed traders choosing to trade in periods of high liquidity and

turnover (see also Collin-Dufresne and Fos (2014b)). Similarly, Aktas, de Bodt, Declerck,

and Van Oppens (2007) find that  is higher after merger announcements than before,

partially as a result of increases in PIN model’s 5 Easley, Engle, O’Hara, and Wu (2008)

4A series of papers addresses the pricing of information asymmetry in the cross section of stock returns

(e.g. Easley, Hvidkjaer, and O’Hara (2002), Duarte and Young (2009), Mohanram and Rajgopal (2009),

Lambert and Leuz (2012), and Lai, Ng, and Zhang (2014)). In contrast to this paper, Duarte and Young

(2009) question whether PIN is priced because it identifies private information or because it is related to

illiquidity. We do not address the pricing of  , instead we aim to understand how the PIN, DY, and

OWR models identify private information.
5In addition, Benos and Jochec (2007) find that  is higher after earnings announcements than before

the announcements.
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critique this line of research, noting that  is a stock characteristic rather than a measure

of the extent to which private information is present in a given calendar time period.6 To

address this critique, Easley, Engle, O’Hara, and Wu (2008) develop an extension of the orig-

inal model in which  is time-varying, and in a paper contemporaneous to ours, Brennan,

Huh, and Subrahmanyam (2015) use conditional probabilities similar to  .

We contribute to this literature in three ways. First, our results indicate that these

previously identified  anomalies are partially related to the strong connection between

 and turnover that we document. Our findings cannot speak to the possibility

that informed traders sometimes choose to trade in periods of high volume as suggested by

Collin-Dufresne and Fos (2014b), instead we show that the PIN model often mechanically

attributes increases in turnover with the arrival of private information. Second, we show that

event studies that use daily measures of private information (e.g. Easley, Engle, O’Hara, and

Wu (2008)) can be misleading if variation in these measures around event announcements is

due to variables not necessarily related to information asymmetry. For instance, Brennan,

Huh, and Subrahmanyam (2015) interpret the fact that their  measures are higher

after earnings announcements than before as evidence of informed trading. We show that

 is closely related to volume (controlling for order flow imbalance), therefore their

findings may be due to the fact that turnover is higher after announcements. Third, we

show that the OWR model represents a promising model for potential future use in the wide

variety of contexts where proxies for information asymmetry are needed.

The remainder of the paper is outlined as follows. Section 1 briefly describes the intuition

behind the PIN, DY, and OWR models. Section 2 outlines the data we use for our empirical

results. Section 3 describes the maximum likelihood procedure. Section 4 analyzes how each

6Easley, Lopez de Prado, and O’Hara (2012) develop the volume-synchronized probability of informed

trading or   . We do not consider   in this paper because, as Easley, Lopez de Prado, and

O’Hara (2012) point out,   is a measure of order flow toxicity at high frequencies rather than a stock

characteristic that measures adverse selection at lower frequencies as  is widely used in the finance and

accounting literature. Moreover, Andersen and Bondarenko (2014) provide detailed critique of the  

measure.
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model identifies information events. Section 5 examines the three models’ ability to identify

private information arrival around merger announcements. Section 6 concludes.

1 Description of the estimated models

In this section, we outline the intuition behind the PIN, DY, and OWR models.7 We then

discuss how to compute the  for each using the data and the model parameters. Our

analyses focus on the probability of an information event that an econometrician using each

model would infer on a particular day after seeing the ‘market’ data for that day. For the

PIN and DY models, the ‘market’ data consist of the numbers of buy and sell orders. For

the OWR model, the data consist of the intraday and overnight returns and the order flow

imbalance.

1.1 The PIN model

The Easley, Kiefer, O’Hara, and Paperman (1996) PIN model posits the existence of a liq-

uidity provider who receives buy and sell orders from both informed traders and uninformed

traders. At the beginning of each day, the informed traders receive a private signal with

probability  If the private signal is positive, buy orders from informed and uninformed

traders arrive following a Poisson distribution with intensity + , while sell orders come

only from the uninformed traders and arrive with intensity . If the private signal is nega-

tive, sell orders from informed and uninformed traders arrive following a Poisson distribution

with intensity  + , while buy orders come only from the uninformed traders and arrive

with intensity . If the informed traders receive no private signal, they do not trade; thus,

all buy and sell orders come from the uninformed traders and arrive with intensity  and

, respectively. Fig.1 Panel A shows a tree diagram of this model.

7For a more detailed description of the PIN model, see Easley, Kiefer, O’Hara, and Paperman (1996). A

more detailed description of the DY model is in Duarte and Young (2009). For a more detailed discussion

of the OWR model, see Odders-White and Ready (2008).
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The difference in arrival rates captures the intuition that on days with positive private

information, the arrival rate of buy orders increases over and above the normal rate of noise

trading because informed traders enter the market to place buy orders. Similarly, the

arrival rate of sell orders rises when the informed traders seek to sell based on their negative

private signals. Therefore, the PINmodel identifies the arrival of private information through

increases in the absolute value of the order imbalance. The model also ties large variations in

turnover to the arrival of private information. To see this, note that the expected number of

buys plus sells on days with private information is + +, while the expected number of

trades on days without private information is  + . Thus, under the PIN model, private

information is necessarily the cause of any variation in average turnover.

1.1.1 

We estimate the PINmodel numerically via maximum likelihood. Let () represent the

number of buys (sells) for stock  on day  andΘ = (  
  ) represent the vector

of the PIN model parameters for stock . Let  = [Θ  ]. The likelihood

function of the Easley, Kiefer, O’Hara, and Paperman (1996) model is
Q

=1 (),

where

() = () + +() + −() (1)

() is the likelihood of observing  and  on a day without private informa-

tion; +() is the likelihood of  and  on a day with positive information; and

−() is the likelihood on a day with negative information. The likelihood equation

shows that at each node of the tree in Fig. 1 Panel A, buys and sells arrive according to

independent Poisson distributions, with the intensity parameters differing according to the

node of the tree. See Internet Appendix A for the formulas for the likelihood functions.

Using the PIN model, for each stock-day, we compute the probability of an information

event conditional both on the model parameters and on the observed total number of buys

and sells. Specifically, let the indicator  take the value of one if an information event occurs
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for stock  on day , and zero otherwise. For the PIN model, we compute  =

 [ = 1|]. This probability is given by

 =
−() + +()

()
 (2)

 represents the econometrician’s posterior probability of an information event

given the data observed on that day, and assuming that he or she knows the underlying

model’s parameters.

Note that if we condition down with respect to the data,  reduces to the

model’s unconditional probability of information events (). The unconditional probability

represents the econometrician’s beliefs about the likelihood of an information event before

seeing any actual orders or trades. In the absence of buy and sell data, an econometrician

would assign a probability  to an information event for stock  on day , where  =

[] and the expectation is taken with respect to the joint distribution of  and

. The  of a stock, defined as 

++
, is the unconditional probability that any given

trade is initiated by an informed trader.  and  are linked via the unconditional

probability of an information event, , which is also the unconditional expectation of .

1.2 The DY model

Duarte and Young (2009) extend the PIN model to address some of its shortcomings in

matching the order flow data. Specifically, the authors note that the PIN model implies that

the number of buys and sells are negatively correlated; however, in the data the correlation

between the number of buys and sells is overwhelmingly positive. To correct this problem,

the DY model partially disentangles turnover variation from private information arrival. As

in the PIN model, the DY model posits that at the beginning of each day, informed investors

receive a private signal with probability . If the private signal is positive, buy orders from

the informed traders arrive according to a Poisson distribution with intensity . If the

private signal is negative, informed sell orders arrive according to a Poisson distribution with
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intensity  If the informed traders receive no private signal, they do not trade.

In contrast to the PIN model, the DY model allows for symmetric order flow shocks.

These shocks increase both the number of buyer- and seller-initiated trades but are unre-

lated to private information events. Symmetric order flow shocks can happen for a variety

of reasons, such as disagreement among traders about the interpretation of public news.

Alternatively, liquidity shocks may occur that cause investors holding different collections of

assets to simultaneously rebalance their portfolios, resulting in increases to both buys and

sells. Regardless of the mechanism, symmetric order flow shocks arrive on any given day

with probability . On days with symmetric order flow shocks, both the number of buyer-

and seller-initiated trades increase by amounts drawn from independent Poisson distribu-

tions with intensity ∆ or ∆, respectively. Buy and sell orders from uninformed traders

arrive according to a Poisson distribution with intensities  ( +∆) and  ( +∆) on

days without (with) symmetric order flow shocks. Fig. 1 Panel B shows the structure of the

DY model.

Under the DY model, turnover can increase due to either symmetric order flow shocks or

the arrival of private information. To see this, note that the expected number of buys plus

sells on days with positive (negative) information and without symmetric order flow shocks

is  +  + ( +  +); the expected number of trades on days with symmetric order

flow shocks and without private information shocks is  +  +∆ +∆, and the expected

number of trades is  +  on days without either.

1.2.1 

As with the PIN model, we estimate the extended model numerically via maximum likeli-

hood. Let Θ = ( 
  

   ∆
∆) be the vector of parameters of the

DY model for stock . Let  and  be the number of buys and sells, respectively, for

stock  on day . Let  = [ Θ]. The likelihood function of the extended
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model is
Q

=1 ():

() = () + () + −() (3)

+−() + +() + +()

where () is the likelihood of observing  and  on a day without private

information or a symmetric order flow shock; () is the likelihood of  and 

on a day without private information but with a symmetric order flow shock; − (−)

is the likelihood of  and  on a day with negative information and without (with) a

symmetric order flow shock; and + (+) is the probability on a day with positive

information and without (with) a symmetric order flow shock. Analogous to the original

PIN model, each term in the likelihood function corresponds to a branch in the tree in Fig.

1, Panel B. See Internet Appendix B for the formulas for the likelihood functions.

As with the PIN model, for each stock-day, we compute the probability of an information

event conditional on both the model parameters and on the number of buys and sells observed

that day. Specifically, let the indicator  take the value of one if an information event occurs

for stock  on day  and zero otherwise. We compute  =  [ = 1|] as:

 =
+() + +() + −() + −()

()
(4)

Analogous to the PIN model, the   of a stock is
(+(1−))

(+(1−))+++(∆+∆)
.

This is the unconditional probability that any given trade is initiated by an informed trader.

 and   are linked via the unconditional probability of an information event,

, which is also the unconditional expectation of  .

To illustrate how the  and  work, we present a stylized example of the

PIN and DY models in Fig. 2. We plot simulated and real order flow data for Exxon-Mobil

during 1993, with buys on the horizontal axis and sells on the vertical axis. Real data are

marked as +, and simulated data as transparent dots. The real data are shaded according

to the model-specific , with lighter points (+) representing low and darker points (+)

high s.
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Panel A of Fig. 2 illustrates the central intuition behind the PIN model. The simulated

data comprise three types of days, which create three distinct clusters. Two of the clusters

are made up of days characterized by relatively large order flow imbalance, with a large

number of sells (buys) and relatively few buys (sells). The third group of days has relatively

low numbers of buys and sells; these days have no private information arrival. Generalizing

from this figure, days with large order flow imbalances (i.e. the number of buys minus the

number of sells) are likely to correspond to informed traders entering the market. The real

data, on the other hand, show no distinct clusters. Furthermore, an econometrician naively

using the model to identify days with private information would mistakenly classify those

with large turnover (i.e. the days in the northeast corner of the panel) as days with private

information events.

Panel B shows the same graph for the DY model. The DY model generates six data

clusters, greatly improving upon the PIN model’s coverage of the data. The two clusters

on the dotted line in Panel B are not related to private information, but the other four

clusters are. An econometrician using the DY model, moving along the dotted line, would

observe that high turnover—considered information days under the PIN model—are no longer

classified as such, because higher turnover may be driven by symmetric order flow shocks

under the DY model. Instead, the DY model identifies private information when moving

away from the dotted line; when buys are greater than sells and vice versa.

1.3 The OWR model

Odders-White and Ready (2008) extends Kyle (1985) by allowing for days with no infor-

mation events. The OWR model identifies the arrival of private information through both

the price response to order imbalances and the subsequent responses to the public revelation

of private information (which they assume arrives overnight). In the OWR model, stock

prices respond to order imbalances because there is always the risk of an information event;

however, when this order flow is entirely based on of noise traders, the price response is
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subsequently reversed.

Specifically, the OWR model assumes that each day the econometrician observes three

variables: a noisy measure of the day’s total order imbalance due to informed and noise

traders , the intraday return (measured from the open to the volume-weighted average

price (VWAP)) , and the overnight return (measured from the VWAP to the open the

following day), .
8 The econometrician can make inferences about the probability of an

information event by observing ,  and  because the covariance matrix of the three

variables differs between days when private information arrives and those when only public

information is available.

To see this, consider the variance of the observed order flow,  If no information event

occurs, then  () is composed of only the variances of the uninformed order flow and

the noise in the data. However, if an event occurs,  () increases because the order

flow reflects at least some informed trading. Similarly,  () is higher for an information

event, because it reflects the market maker’s partial reaction to the day’s increased order

flow. Since the private signal is revealed after trading closes,  () increases in the wake

of an information event, as it reflects the remainder of the market maker’s partial reaction

to the informed trade component in the order flow. Likewise, information events make

( ) and ( ) rise. The higher covariance between order flow and intraday

returns occurs because, for an information event, both order flow and the intraday return

(partially) reflect the impact of informed trading. Along these same lines, because the

market maker cannot perfectly separate the informed from the uninformed order flows, she

is unable to fully adjust the price during the day to reflect the informed trader’s private

signal. However, since the private signal is assumed to be fully reflected in prices after the

close, for an information event, ( ) is higher because the overnight returns incorporate

any additional reaction to the private signal that was not captured in prices during the day.

Finally, ( ) is positive for information events, reflecting the fact that the information

8We suppress the  subscript for ease of exposition.
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event is not completely captured in prices during the day. In contrast, ( ) is negative

in the absence of an information event, as the market marker’s reaction to the noise trade

during the day is reversed after she learns that there was no private signal.

1.3.1 

As with the PIN and DY models, we estimate the OWR model numerically via maximum

likelihood. Let Θ represent the vector of OWR model parameters for stock ,  and

 represent the intraday and overnight returns for stock  on day  and  represent

the order flow imbalance for stock  on day  Let  = [Θ   ]. The

likelihood function of the OWR model is
Q

=1 () where:

() = () + () (5)

where  () is the likelihood of observing   and  on a day without (with)

an information event. See Internet Appendix C for the formulas for the likelihood functions.

The probability of an information event, conditional on is therefore =

 [ = 1|]. This probability is given by:

 =
()

()
(6)

As in the PIN and DY models, if we condition down with respect to the data, 

reduces to the model’s unconditional probability of information events ().

In contrast to the PIN and DY models, the OWR model does not contain a direct analog

to the probability of informed trading. To understand this result, note that the probability

of informed trade in the PIN and DY models is given by the ratio of the expected number

of informed trades to the expected total number of trades on a given day. Since the OWR

model does not make assumptions about the number of trades, it is mute regarding this ratio.

This may appear to be a limitation of the OWR model, but we argue that it is actually an

advantage. This is because, as we show in Section 4, the fact the OWR does not make
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assumptions about the level of buys and sells allows it to disentangle variations in turnover

from the arrival of informed trading. Moreover, the parameter  in the OWR model is a

measure of information asymmetry in a given stock.

2 Data

To estimate the PIN, DY, and OWR models, we need daily data on the number of buyer-

and seller-initiated trades for each firm in the sample. We collect trades and quotes data for

stocks between 1993 and 2012 from the NYSE TAQ database. We require that the stocks in

our sample have only one issue (i.e. one PERMNO), are common stock (share code 10 or 11),

are listed on the NYSE (exchange code 1), and have at least 200 days worth of non-missing

observations for the year. Our sample contains 1,060 stocks per year on average, with a

minimum number stocks in 2012 of 934, and a maximum number of stocks in 1997 of 1,155.

As a result of our sample selection, about 36% (25%) of the stocks in our sample are in

the top (bottom) three Fama-French size deciles. For each stock in the sample, we classify

each day’s trades as either buys or sells, following the Lee and Ready (1991) algorithm. In

our analysis, we include turnover, defined as the sum of daily buys and sells divided by

the number of shares outstanding. Internet Appendix D describes the computation of the

number of buys and sells.

We estimate both the PIN and DY models using the daily total number of buys and

sells ( and ). The OWR model also requires intraday and overnight returns as well

as order imbalances. Following Odders-White and Ready (2008) we compute the intraday

return at day  as the volume-weighted average price (VWAP) at  minus the opening quote

midpoint at  plus dividends at time , all divided by the opening quote midpoint at time

.9 We compute the overnight return at  as the opening quote midpoint at + 1 minus the

VWAP at , all divided by the opening quote midpoint at . The total return, or sum of the

9The opening quote midpoint is not available in TAQ many instances. When the opening quote midpoint

is not available, we use the matched quote of the first trade in the day as a proxy for the opening quote.
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intraday and overnight returns is the open-to-open return from  to +1. We compute order

imbalance () as the daily total number of buys minus the total number of sells, divided

by the total number of buys plus sells. We follow Odders-White and Ready and remove

systematic effects from returns to obtain measures of unexpected overnight and intraday

returns ( and ). Internet Appendix D describes how we compute  and .

Like Odders-White and Ready (2008), we remove days around unusual distributions or

large dividends, as well as CUSIP or ticker changes. We also drop days for which we are

missing overnight returns (), intraday returns (), order imbalance (), buys (),

or sells (). Our empirical procedures follow those of Odders-White and Ready with two

exceptions. First, OWR estimate  as the idiosyncratic component of net order flow divided

by shares outstanding. We do not follow the same procedure as OWR in defining  because

we find that estimating  as we do results in less noisy estimates. Specifically, we find

that  defined as buys minus sells divided by shares outstanding, as in Odders-White and

Ready (2008), suffers from scale effects late in the sample, when order flow is several orders

of magnitude larger than shares outstanding. Second, Odders-White and Ready remove a

whole trading year of data surrounding distribution events, but we only remove one trading

week [-2,+2] around these events.

For the event study portion of our analysis, we examine merger and acquisition (M&A)

targets. We collect M&A dates from Thompson Reuter’s SDC database. If the event occurs

on a non-trading day, then we use the next available trading day as the event date. We

require that firms have a PERMNO, which we get by matching six-digit CUSIPs from SDC to

CRSP. Our event sample includes on average 673 merger targets per year, with a minimum

of 231 in 2012 and a maximum of 1,030 in 1998. Table 1 contains summary statistics of all

the variables used to estimate the models. Panel A gives summary statistics of our entire

sample, and Panel B displays the summary statistics for the days of merger announcements.
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3 Estimation of the models

For every firm-year in our sample, we estimate the PIN, DY, and OWR models by

maximizing the likelihood functions introduced in Section 1. The estimation procedure is

similar to that used in Duarte and Young (2009). The parameter estimates are used for

computing the s used in Section 4. Internet Appendices E and F provide details

about the maximum likelihood procedure and the calculation of s.

Table 2 contains summary statistics for the parameter estimates from each model. Panel

A displays the summary statistics of the PIN model parameters, Panel B of the DY model,

and Panel C of the OWR model. Table 2 also contains summary statistics of the cross-

sectional sample means and standard deviations of . We see that the mean 

behaves exactly like  for all of the three models. Hence, changes in  and changes in

the estimated alphas are analogous. Fig. 3 shows how the distribution of  changes over

time. The distribution of the PIN and DY  parameters in the early part of the sample

is similar to that in Duarte and Young (2009). On the other hand, the estimated OWR 

parameters are in general higher than those in Odders-White and Ready (2008). This is due

to the fact that our definition of  is different from that in Odders-White and Ready (2008)

(see the discussion in Section 2 above).10 Interestingly, the PIN model  increases over time,

with the median PIN  rising from about 30% in 1993 to 50% in 2012.11 parameters from

1993 to 2012 is comparable to that in Brennan, Huh, and Subrahmanyam (2015). Neither

the DY nor the OWR  changes as much as the PIN , remaining within the 40% to 50%

range. Panels A and B of Fig. 4 plot the time series of  and   respectively. Note

that both  and   decrease over time in spite of the fact that  increases. This

happens because, according to these models, the intensity of noise trading is increasing over

10In fact, we get  estimates close to those reported in Odders-White and Ready (2008) if we define  in

the same way that they do.
11The increase in our estimated PIN model  parameters is somewhat larger than that in Brennan, Huh,

and Subrahmanyam (2015). This small difference arises because Brennan, Huh, and Subrahmanyam (2015)

have a larger number of stocks per year due to the fact that we apply sample filters similar to those in

Odders-White and Ready (2008). In fact, without these filters, the increase in our estimated PIN model
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time while the intensity of informed trading remains flat as shown in Panels C and D of Fig.

4. It is important to note, however, that the time series pattern of the model parameters in

Figures 3 and 4 has no implication for how each of the models identifies private information.

We also estimate the parameter vectors Θ, Θ, and Θ in the period  ∈
[−312−60] before a merger announcement. These parameter estimates are used to compute
the s in Section 5. The summary statistics of the parameter estimates for the event

studies are qualitatively similar to those in Table 2 and in Figures 3 and 4.

4 How does each model identify private information?

In theory, the PIN and DY models identify information events from changes in the

absolute net order flow, while the OWR model identifies such events from covariation in net

order flow () and overnight and intraday returns ( and ). In practice, however, the

models may produce poor descriptions of the data, and model misspecification can affect the

way they actually identify private information.

To analyze how each model identifies private information in practice, we compare results

from data created by simulating the models to results from real data. To create the simulated

data, we first estimate the parameters of each model for each firm-year in our sample. Then,

for each firm-year, we generate 1,000 artificial firm-years’ worth of data (i.e.  and 

for the PIN and DY models;   and  for the OWR model) using the estimated

parameters. We then compute the , , and  for each

trading day in a simulated trading year and regress these s on the variables that

should, in theory, identify information events in each model. The results of the regressions

using simulated data reveal how each model should perform if the data conform to the model.

The simulated data regressions also allow us to build empirical distributions of the 2 of

the regressions of s on the variables that identify information events in each model.

For each model, we use the empirical distribution of the 2 to test the null hypothesis that
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the real data conform to the model.

4.1 How does the PIN model identify private information?

Panel A of Table 3 presents the results of yearly multivariate regressions of  on

absolute order flow imbalance (| − |) and | − |2. We add squared terms to these
regressions to account for nonlinearities in the relation between  and | − |
We average the simulated results for each PERMNO-Year and report in Panel A of Table 3 the

median coefficient estimates and −stats. The coefficients are standardized so they represent
the increase in  due to a one standard deviation increase in the corresponding

independent variable. We also report the average of the median, the 5 and the 95

percentiles of the empirical distribution of 2s of these regressions generated by the 1,000

simulations. In general, the coefficients are highly statistically significant, and the 2s are

high, confirming the theoretical implication that absolute order imbalance can be used to

infer the arrival of private information under the PIN model.

The columns of Table 3 labeled as ‘2’ include statistics on the increase in the 
2 that

is due to the inclusion of turnover () and turnover squared (2) in these regressions.

2 is equal to the difference between the 
2 of the extended regression model with turnover

terms and the 2 of the regression with only order imbalance terms. We report the average

of the median, the 5 and the 95 percentiles of the 2s of these regressions across the

1,000 simulations. These incremental 2s are relatively low, with an average value of around

10%, which implies that, under the data generating process of the model, turnover has

only modest incremental power in explaining  once controlling for absolute order

imbalance and its square.

The picture that emerges from these regressions is that if the PIN model were a perfectly

accurate representation of trading activity,  is determined by the order flow imbal-

ance on each day. Since the order flow imbalance and turnover on any given day are highly

positively correlated, turnover adds little to explain  in theory.
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Panel B of Table 3 reports regression results for the real rather than simulated data.

With the real data, the picture is very different. The 2s of the regressions of  on

|−| and |−|2 are much smaller than those in the simulations. We test the hypothesis
that the real data 2s and 2s are consistent with those generated by the PIN model.

Panel B reports the average across all stocks’ -value (the probability of observing an 2 in

the simulations at least as small as what we observe in the data), and the frequency that

we reject the null at the 5% level implied by the distribution of simulated 2s. The PIN

model is rejected in about 98% of the stock-years in our sample, and there is on average less

than a 1% chance of the PIN model generating 2s as low as what we see in the data. On

the other hand, the incremental 2s of turnover are much higher than those in the Panel

A. The incremental 2 increases over time with a value of about 36% in 1993, but nearly

46% in 2012. This implies that turnover and turnover squared explain a much larger degree

of variation in  than order imbalance. In fact, the average ratio of the median

2s, 2(2 +2), is about 65%. The difference arises because, in the real data, absolute

order flow and turnover are only weakly correlated. For instance, large absolute order flow

imbalances are possible when turnover is below average, and vice versa. Under the PIN

model, however, the two are highly correlated.

4.2 How does the DY model identify private information?

Table 4 presents a set of regressions for the DY model similar to those in Table 3. The

dependent variable in Table 4 is  . The right-hand side variables are the absolute

order imbalance adjusted for buy/sell correlations (|adj. OIB|), turnover and their squared

terms. We define the adjusted absolute order imbalance as the absolute value of the residual

from a regression of buys on sells. We use this measure to analyze the DY model because,

as Fig. 2 suggests, the DY model implies that days with information events are far from
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the dashed line in this figure.12 Turnover, as before, is defined as the sum of buys and sells.

We report median coefficient estimates and −stats across all firms within a particular year.
The coefficients are standardized as above. We report the average of the median, the 5

and the 95 percentiles of the 2s and 2s.

As with the  , in theory, turnover has little additional power in explaining

 . The incremental 2s in Table 4 Panel A are low with an average value close

to 4%. This is smaller than the average incremental 2s of the PIN model in Panel A of

Table 3. The intuition for this result is that the DY model disentangles turnover and order

flow shocks by including the possibility of symmetric order flow shocks. Buying and selling

activity can simultaneously be higher than average, but this is not indicative of private

information unless there is a large order flow imbalance.

Panel B of Table 4 reports regression results for the real, rather than simulated, data.

The DY model behaves very differently when using real data as opposed to data generated

from the model. The 2s for the real data are much lower than those in the simulated

data, declining from 35% in 1993 to 12% in 2012. The -values (frequency of rejection)

also decreases (increases) over time. For example, in 1993, our hypothesis test based on

2 rejects the model at 5% significance for 81% of the stocks, while in 2012 this percentage

increases to around 95%. The incremental 2 indicate that turnover and turnover squared

explain a large degree of variation in  . Indeed, the average ratio of the median 
2s,

2(2 +2), is about 40%.

4.3 How does the OWR model identify private information?

As we saw in Section 1, the OWR model identifies private information from the covari-

ance matrix of the three variables in the model (  ). Therefore, to analyze how

the OWR model identifies private information, we run the regression of  on the

12Our results are qualitatively similar if we use absolute order imbalance instead of adjusted absolute order

imbalance.
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squared and interaction terms of (  ):

 = 01+11
2
+12

2
+13

2
+14+15+16+

(7)

Panel A of Table 5 presents median coefficient estimates, -stats, and three percentiles of

2s across all firms within a particular year using simulated data. The results highlight the

intuition behind the model. The probability of an information event on any given day is

increasing in the square of intraday returns, the interaction between imbalance and intraday

(or overnight) returns, and the interaction between intraday and overnight returns. The

coefficient estimates on the square of the order imbalance and on the square of overnight

returns are too small to be precisely measured. The high 2s indicate that, practically

speaking, the square of intraday returns, the interaction between intraday and overnight

returns and the interaction between intraday returns and order flow imbalance are sufficient

to explain a large part of the variation in .

Panel B of Table 5 shows the median coefficient estimates, -stats, and the results of

the hypothesis tests based on 2s across all firms within a particular year using real data.

Unlike the PIN and DY models, the coefficient estimates are consistent across the simulated

and real data. For instance in simulated data regressions in Panel A, 2008 is the only year

in which 2 is the most important term. In the real data regressions in Panel B, 2008 is also

the only year in which 2 is the most important term, indicating that the model matches the

features of the data quite well, even for clear outliers like 2008. Furthermore, as with the

simulated data regressions, the high median 2s indicate that a large part of the variation in

 is explained by the squared and interaction terms of (  ) as implied

by the model. The average across years of the 2s in Panel B is about 83% and these 2s

increase over time, reaching 90% in 2012. Moreover, we reject the null hypothesis that the

2s observed in the real data are consistent with the OWR model at 5% level for about 40%

of the sample in 1993 and for about 8% of the sample in 2012.

The high 2s in Panel B imply that, in principle, any variable unrelated to private
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information under the OWR model has only a small incremental value in explaining the

. To see this note that the typical 
2 in Panel B is around 85%. This suggests

that any additional regressor, even if it explained 100% of the residual variation in the

regressions in Panel B, could only marginally improve the 2 from 85% to 100%. Note that

in the case of the PIN and DY models, our results show that turnover, which in principle is

a poor measure of private information, largely drives the PIN and DY models’ identification

of private information. In contrast, under the OWR model the variables related to private

information in the model (squares and interactions of , , and ) can explain a fairly

large amount of the variation in . As a result, any variable that is not related to

private information in the OWR model can only explain a relatively small fraction of the

variation in .

4.4 Discussion of results

The results in Table 3 indicate that the PIN model frequently identifies private information

in periods of increased volume, as opposed to periods of large order imbalances. This is

especially true in the later portion of the sample, as order imbalance becomes less important

in explaining  over time. The results in Table 4 indicates that the DY model also

identifies private information as periods of high volume, particularly later in the sample.

To illustrate why both the DY and the PIN models fail to describe the order flow data,

Fig. 5, Panels A and B plot the simulated and real PIN and DY data for Exxon in 2012. Note

that the PIN model’s three clusters do not fit the majority of the data. Unlike Fig. 2, the

PIN model in Fig. 5 essentially classifies days with above average turnover as being private

information days (i.e.  equal to one) and days with below average turnover as days

without private information (i.e.  equal to zero) with no intermediate values. This

occurs because these data points are extreme outliers relative to what the model expects (i.e.

the points represented by the simulated data). Panel B shows that although the DY model

recognizes that some high turnover days may not be due to private information events, it
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still classifies the days with the most extreme turnover as information days. Essentially,

the DY model implies that, later in the sample,  is a non-linear function of turnover.

Thus, the 2s in Panel B of Table 4 drop over time. As with the PIN model, the majority

of the data are extreme outliers compared to what the DY model expects (i.e. the points

representing the simulated data).

Although Fig. 5 is a highly stylized example of the PIN and DY models’ failure to

describe the data, the problem is widespread and made more severe by the increase in

volume observed in the sample. To quantify how often the PIN model fails to fit the data,

Panel A of Fig. 6 shows the fraction of days for the median stock-year which the PIN model

classifies as “outliers” (likelihoods smaller than 10−10). According to the PIN model, for the

median stock about 60% (90%) of the annual observations are classified as outliers in 2005

(2010). Panel B shows the results related to the DY model. According to the DY model,

for the median stock about 40% (90%) of the annual observations are classified as outliers

in 2005 (2010). Essentially, both the PIN and DY models are very poor descriptions of the

order flow data in the most recent years in the sample. The intuition for this is simple,

the PIN and DY models assume that the order flow is distributed as a mixture of Poisson

random variables. The mean and the variance of a Poisson random variable are equal and as

a consequence the Poisson mixtures behind the PIN and the DY model cannot accommodate

the high level and volatility of turnover that we observe in the later part of the sample.

Fig. 5 also emphasizes the mechanical nature of the relation between  and

turnover. The PIN model essentially classifies all days with higher than average turnover as

being days with private information events. Note that this classification does not necessarily

relate to the possibility, suggested by Collin-Dufresne and Fos (2014b), that informed traders

sometimes choose to trade in days with high liquidity or turnover. Naturally, it is possible

that informed traders do in fact trade in some days with high volume. However, the PIN

model classifies all high volume days as information events. This happens because the

relation between  and turnover mechanically results from the model’s inability to
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match both the high level and volatility of the order flow data.

Fig. 5 also gives the intuition for why the median PIN  increases over time in Fig. 3.

To see this, recall that  is the unconditional expected value of  Therefore, as we

observe more  values approaching one, the estimated PIN  must increase. In fact,

the median PIN  becomes close to 50% later in the sample which consistent with the fact

that the PIN model assigns a  equal to one (zero) to days with turnover above

(below) the average. The same happens to a lesser extent with the DY model, but not with

the OWR model.

O’Hara, Yao, and Ye (2014) find that high-frequency trading is associated with an in-

crease in the use of odd lot trades, which do not appear in the TAQ database. Therefore,

estimates of the PIN and DY model parameters computed using recent TAQ data may be

systematically biased. More broadly, Fig. 6 indicates that even if the DY and PIN models

are estimated using a dataset that includes odd lot trades, both models will still be badly

misspecified late in the sample.

The OWR model does not suffer from the limitations faced by the PIN and DY models.

The OWR model does not rely on assumptions about the number of buys and sells, instead

it relies on assumptions about the order imbalance itself (). As a result, the OWR model

is not affected by the observed increase in the level of both buys and sells. Moreover, when

we compare Panels A and B of Table 5, the OWR model behaves similarly when using both

the simulated and the real data, indicating that the variations in  in the real data

are consistent with those implied by the model.

Given the strong connection between s and the unconditional probability of infor-

mation arrival, () these results call into question the use of  and   as proxies

for private information. While there are other parameters in the models (i.e. ,  and ),

these parameters are jointly identified with . Hence it seems extremely unlikely that in

the joint identification of the model parameters, biases in the other parameters ‘correct’ the

biases in  in such a way that  and   are ‘rescued’ as reasonable proxies of
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private information. Thus, while our  results do not speak directly to ,  and , they

still call into question  and   as a measures of private information. Moreover, it

seems unlikely that either  or   can possibly measure private information later

in the sample if the models in which they are based cannot even account for the existence

90% of the daily order flow observations for the median stock.

5 Event study evidence

This section examines how well the PIN, DY, and OWR models identify information

events around announcements of targets in merger and acquisition (M&A) transactions. Un-

like a standard event study, we focus on movements in  rather than price movements.

For each model, we examine the period  ∈ [−30 30] around the event. To do so, we esti-
mate the parameter vectors Θ, Θ, and Θ in the period  ∈ [−312−60] before
the event and then compute the daily s for the period  ∈ [−30 30] surrounding the
announcement. Prior studies such as Aktas, de Bodt, Declerck, and Van Oppens (2007) and

Vega (2006) estimate the parameters of the model in various windows around an event in

order to compute the  . Our procedure is different in that we estimate the parameters

of the model one year prior to the event and then employ the estimated parameters as if

we were market makers observing the market data (i.e. buys and sells in the PIN and DY

models; order flow, overnight and intraday returns in the OWR model) and attempting to

infer whether an information event occurred. Table 1 Panel B presents summary statistics

for order imbalance, intraday returns, overnight returns, turnover, number of buys, and the

number of sells for merger announcement days ( = 0). Section 3 describes the maximum

likelihood estimation.

5.1 Information event probabilities under the PIN model

Panel A of Fig. 7 shows the average  in event time for our sample of merger targets.

The graph shows that, under the PINmodel, the probability of an information event increases
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prior to the event, starting at around 55% 23 days before the announcement and peaking

around 79% on the day of the announcement. The rise in the probability of an information

event prior to the announcement is consistent with a world where informed traders generate

signals about the merger and trade on this information before the merger is announced to

the public.  is also higher after the identity of the merger target becomes public

information. In fact,  remains above the average  observed in the gap

period, [−60−30] for 30 days after the announcement.
Panels B and C of Fig. 7 shed light on the features of the data that produce the observed

pattern in the average  in Panel A. Panel B shows the average predictions fromOLS

regressions of  on order imbalance and absolute order imbalance squared across

all of the stocks in the event study sample.13 The solid line indicates that order imbalance

explains only a small fraction of the movement in  during the event window. Panel

C shows the average predictions from regressions of  on turnover and turnover

squared. The solid line indicates that the variation in  around merger target

announcements is explained almost entirely by turnover. The intuition follows directly from

the results in Section 4.1, which illustrates that  is extremely sensitive to volume

increases. The higher post-event volume levels are enough to keep  above its

pre-event mean for a substantial period.

To formalize the intuition behind the figures in Panels B and C of Fig. 7, we run

regressions similar to those in Table 3 using our event sample. Specifically, we run regressions

of  on absolute value of order imbalance and its squared term during the event

window [-30,+30]. The results of these regressions (see Table 6 ) indicate that absolute order

imbalance explains little of the variation in  in the event window while turnover

explains most of the variation in  . In fact, Panel A of Table 6 shows that for the

median stock, adding turnover and turnover squared to these regressions triples the 2s.

13We restrict the predicted  to fall on the interval [0,1].
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5.2 Information event probabilities under the DY model

Panel A of Fig. 8 shows the average  in event time for our sample of merger

announcements. Panels B of Fig. 8 shows the average  along with the average

predicted  with |adj. OIB| and |adj. OIB| squared. Panels C of Fig. 8 shows the

average  along with the average predicted  with turnover and turnover

squared. Like  ,  increases from around 55% starting 23 days prior to

the announcement and peaks at 73% on the day of the announcement. Also similar to

 ,  remains high after the announcement. The reason for this post-event

increase mirrors what we observed with the PIN model. Thus, the higher post-event volume

levels are enough to keep  above its pre-event mean for a substantial period.

As with the PIN model, to formalize the intuition behind the figures in Panels B and C

of Fig. 8, we run regressions similar to those in Table 4 using our event sample. Specifically,

we run regressions of  on the absolute value of adjusted order imbalance and its

squared term during the event window [-30,+30]. The results of these regressions (see Table

6) indicate that turnover explains most of the variation in  . In fact, Panel B of

Table 6 shows that for the median stock, the 2s in these regressions almost double due to

turnover and turnover squared.

5.3 Information event probabilities under the OWR model

Panel A of Fig. 9 illustrates the average  in event time for our sample of merger

announcements. Similar to the PIN model, the probability of an information event increases

from around 45% 6 days before the announcement and peaks on the announcement date at

around 49%. In fact, the  is more than two standard deviations from its mean

(estimated between  ∈ [−60−29]) two trading days before the announcement. As with
the PIN and DY model results, this pattern is consistent with informed traders acting on

private information before the announcement. However, unlike the PIN and DY models,

the  drops back to its pre-event mean within a day or two.
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Consistent with the simulations and regressions in Table 5, Fig. 9 Panels B—G show

that the majority of the variation in measured private information () comes from

intraday (Panel C) and overnight (Panel D) returns as well as the interaction between the

two (Panel G). Order imbalance squared (Panel A) provides almost no explanatory power,

although the interaction between the order imbalance and returns (Panels E and F) does

have some impact.

Panel C of Table 6 presents the results from regressions of  on the squared and

interaction terms of order imbalance, intraday, and overnight returns (  ) during the

event window [-30,+30]. Panel C of Table 6 shows that for the median stock, the 2 is 81%.

This implies that, as the model suggests, a large proportion of the variation in  is

due to the squared and interaction terms of order imbalance, intraday, and overnight returns.

5.4 Discussion of event study results

The event study results suggest that the variation in  around events documented in the

literature could be due to variation in  that is driven primarily by volume, rather than order

imbalance. For instance, Benos and Jochec (2007) show that  increases after earnings

announcements, while Aktas, de Bodt, Declerck, and Van Oppens (2007) show that 

increases after M&A target announcements due to increases in both  and . Therefore, our

evidence suggests that these  results are at least partially explained by the fact that the

PIN model erroneously attributes increases in volume to private information. Note that this

conclusion does not depend on whether private information is higher after announcements or

not because, as we show in Panel A of Table 3, under the PIN model, turnover should have

little incremental power in identifying the arrival of private information once we control for

absolute order imbalance.

Another important implication of our results is that event studies based on measures of

private information (e.g. Easley, Engle, O’Hara, and Wu (2008) and Brennan, Huh, and

Subrahmanyam (2015)) can be misleading. For instance, it may appear at first glance that
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the results in Panel A of Fig. 7 suggest that the PIN model identifies private information in

a sensible way since  increases dramatically from 55% before the announcement

to over 70% on the day of the announcement then falls after the announcement, albeit

over a period of weeks. However, the decomposition of the s in Panels B and C of

Fig. 7 points to a different interpretation, namely that the dramatic increase in 

around the event is actually result of variation in turnover, not order imbalance. Indeed,

our results indicate that event study plots of the  measure or the  that do not

distinguish between variation in these measures related to order imbalance and variation

due to turnover can lead to misleading conclusions about the model’s ability to properly

identify private information. Naturally, turnover may increase due to private information.

However, turnover around announcements is also affected by other factors such as portfolio

rebalancing and disagreement. Moreover, the fact that  varies with turnover and

not absolute order imbalance is not consistent with the PIN model.

The DY model is also prone to identify information events from variations in turnover

rather than order imbalance. On the other hand, the OWR model, which uses net order flow

to identify private information, exhibits no such tendency.

Under the working hypothesis that there is more informed trade before rather than

after merger announcements, our findings suggest that the OWR model identifies private

information in a sensible way.14 Even though the magnitude of the increase in 

around the event date is small, it results from variation in the variables the model suggests

should be important in identifying private information. This stands in contrast to the results

for the PIN and DYmodels. The small increase in  may simply be indicative of the

difficulty of detecting the arrival of private information, even when using variables other than

just order imbalance. Moreover, the fact that order imbalance alone explains very little of the

variation in  around merger announcements suggests that order flow, however well

14There is evidence suggesting that it is unlikely that there is more informed trading activity in the weeks

after the news is made public. Indeed, studies such as Meulbroek (1992) show that in 80% of insider trading

cases involving mergers, the insiders acted before the announcement of the merger.
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modeled, is insufficient to be the sole source of inferences about private information arrival.

This result provides empirical support for the proposition in Back, Crotty, and Li (2014) and

in Kim and Stoll (2014) that researchers cannot use order flow alone to successfully identify

periods of informed trade.

6 Conclusion

The  measure, developed in the seminal work of Easley and O’Hara (1987), Easley,

Kiefer, O’Hara, and Paperman (1996), and Easley, Kiefer, and O’Hara (1997), is arguably

the most widely used measure of information asymmetry in the accounting, corporate finance

and asset pricing literature today. Recent work however suggests that PIN fails to capture

private information (e.g. Aktas, de Bodt, Declerck, and Van Oppens (2007), Benos and

Jochec (2007), and Collin-Dufresne and Fos (2014a)). This paper analyzes why the model

might incorrectly identify informed trade. We perform this analysis by comparing the PIN

model with the DY and OWR models. By doing so, we suggest some important insights for

future research using, constructing, or testing proxies for informed trade.

We find that both the PIN and DY models tend to identify information events from total

volume or turnover, rather than from order flow imbalance. This failure in both models

is particularly strong after the increase in volume in the middle of the first decade of the

2000’s. For example, after 2006, for the median stock in our sample, the PIN and DY

models suggest that about 90% of observed daily order flows have a near-zero probability of

occurring. It seems unlikely that models that cannot even account for the existence of 90%

of the order flow observations of the median stock can possibly detect private information.

The OWR model, on the other hand, does not suffer from this problem, because it relies on

assumptions about order flow imbalance rather than about the distribution of the number

of buys and sells. These findings suggest that future research concerned with constructing

private information measures should focus on modeling order flow imbalance directly instead
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of modeling the number of buys and sells as the PIN and DY models do.

Our event study results, which do not depend on whether private information arrives

before or after the event, suggest that at least part of the variation in  around events

documented in Aktas, de Bodt, Declerck, and Van Oppens (2007) and Benos and Jochec

(2007) are explained by the fact that the PIN model erroneously attributes increases in

volume, unrelated to order imbalance, to private information. In addition, we find similar

results for the DY model. These findings suggest that future research concerned with event

study based tests of private information proxies (e.g. Easley, Engle, O’Hara, and Wu (2008)

and Brennan, Huh, and Subrahmanyam (2015)) can be misleading if one overlooks the fact

that the pattern in the tested proxies can result from changes in variables that are in principle

unrelated to private information. For instance, Brennan, Huh, and Subrahmanyam (2015)

interpret the fact that their  measures are higher after earnings announcements

than before as evidence of informed trading. We show that  is closely related to

volume (controlling for order flow imbalance), therefore their findings may be due to the fact

that turnover is higher after earnings announcements.

Under the working hypothesis that there is more informed trade before rather than after

merger announcements, our findings suggest that the OWR model identifies private informa-

tion in a sensible way. Moreover, the fact that order imbalance alone explains very little of

the variation in  around merger announcements suggests that order flow, however

well modeled, is insufficient to be the sole source of inferences about private information

arrival. This result provides empirical support for the proposition in Back, Crotty, and

Li (2014) and in Kim and Stoll (2014) that researchers cannot use net order flow alone to

successfully identify periods of informed trade. This suggests that future research aimed at

building measures of informed trade should focus on the use of variables other than simply

net order flow alone.

Our findings also suggest that future research in corporate finance, accounting or asset

pricing that uses information asymmetry measures should consider using the OWR  or
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 as a measure of private information instead of the  or   .
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Table 1: Summary Statistics. This table summarizes the full sample and event day
(t=0) returns, order imbalance, number of buys and sells, and turnover. We compute
intraday and overnight returns as well as daily buys and sells for stocks between 1993
and 2012 using data from the NYSE TAQ database. Following Odders-White and
Ready (2008), we compute the intraday return, rd, at time t as the volume-weighted
average price at t (VWAP) minus the opening quote midpoint at t plus dividends
at time t, all divided by the opening quote midpoint at time t. We compute the
overnight return, ro, at t as the opening quote midpoint at t + 1 minus the VWAP
at t, all divided by the opening quote midpoint at t. The total return, or sum of
the intraday and overnight returns, is the open-to-open return from t to t + 1. We
compute ye as the daily total number of buys minus total number of sells, divided
by the total number of trades. For the PIN and DY models, we use the daily total
number of buys and sells. We compute turnover as the number of buys plus sells
divided by shares outstanding. We collect M&A dates from Thomson Reuter’s SDC
database. If the event occurs on a non-trading day, then we use the next available
trading day as the event day. We require that target firms have a CRSP PERMNO,
which we get by matching 6-digit CUSIPs from CRSP and SDC.

(a) Full Sample

N Mean Std Q1 Median Q3

ye 5,286,191 2.766% 31.259% -10.433% 3.282% 18.996%
rd 5,286,191 -0.004% 1.500% -0.707% -0.024% 0.680%
ro 5,286,191 0.003% 1.297% -0.566% -0.024% 0.525%
turn 5,286,191 2.096% 4.178% 0.159% 0.529% 2.407%
# Buys 5,286,191 1,876 6,917 37 220 1,128
# Sells 5,286,191 1,843 6,894 36 194 1,033

(b) Targets

N Mean Std Q1 Median Q3

ye 5,850 3.140% 28.295% -9.706% 1.618% 16.082%
rd 5,859 0.381% 2.074% -0.657% 0.234% 1.273%
ro 5,859 0.497% 2.048% -0.507% 0.250% 1.243%
turn 5,859 4.243% 10.885% 0.212% 0.673% 3.690%
# Buys 5,859 4,311 20,232 57 323 2,294
# Sells 5,859 4,287 20,315 52 287 2,149



Table 2: Parameter Estimates. This table summarizes parameter estimates of the PIN, DY,
and OWR models for 21,206 PERMNO-Year samples from 1993 to 2012. In all three models, α
represents the average unconditional probability of an information event at the daily level. For the
PIN and DY models, εB and εS represent the expected number of daily buys and sells given no
private information or symmetric order flow shocks. µ, µb, and µs represent the expected additional
order flows given an information event, which is good news with probability δ and bad news with
probability 1−δ. In the DY model, a symmetric order flow shock occurs with probability θ, in which
case the expected number of buys and sells increase by ∆B and ∆S , respectively. In the OWRmodel,
σu represents the standard deviation of the order imbalance due to uninformed traders, which is
observed with normally distributed noise with variance σ2

z . σi represents the standard deviation of
the informed trader’s private signal. σpd and σpo represent the standard deviation of intraday and
overnight returns, respectively. CPIE and Std(CPIE) are the PERMNO-Year mean and standard
deviation of CPIE.

(a) PIN

N Mean Std Q1 Median Q3

α 21,206 0.372 0.122 0.291 0.375 0.445
δ 21,206 0.607 0.209 0.484 0.625 0.762
εb 21,206 1,625 5,388 33 193 1,039
εs 21,206 1,596 5,369 35 186 956
µ 21,206 312 593 43 160 314
CPIE 21,206 0.382 0.135 0.293 0.379 0.449
Std(CPIE) 21,206 0.451 0.052 0.427 0.470 0.490

(b) DY

N Mean Std Q1 Median Q3

α 21,206 0.456 0.092 0.409 0.464 0.509
δ 21,206 0.550 0.192 0.441 0.541 0.680
θ 21,206 0.249 0.137 0.149 0.253 0.344
εb 21,206 1,418 4,571 26 158 866
εs 21,206 1,397 4,570 28 148 807
∆b 21,206 2,148 10,058 41 190 989
∆s 21,206 2,097 9,934 34 160 908
µb 21,206 290 575 29 119 310
µs 21,206 284 574 27 107 302
CPIE 21,206 0.455 0.092 0.409 0.461 0.506
Std(CPIE) 21,206 0.454 0.056 0.431 0.479 0.493

(c) OWR

N Mean Std Q1 Median Q3

α 21,206 0.437 0.257 0.214 0.436 0.639
σu 21,206 0.075 0.068 0.022 0.062 0.109
σz 21,206 0.239 0.143 0.137 0.221 0.332
σi 21,206 0.030 0.286 0.013 0.021 0.027
σpd 21,206 0.010 0.005 0.006 0.009 0.012
σpo 21,206 0.006 0.004 0.004 0.006 0.008
CPIE 21,206 0.451 0.258 0.227 0.455 0.656
Std(CPIE) 21,206 0.137 0.047 0.109 0.142 0.171



Table 3: PIN Model Regressions. This table reports real and simulated regressions of the CPIEPIN on
absolute order imbalance (|B − S|), and order imbalance squared (|B − S|2). In Panel A, we simulate 1,000
instances of the PIN model for each PERMNO-Year in our sample (1993–2012) and report mean standardized
estimates for the median stock, along with 5%, 50%, and 95% values of the R2 (R2

inc.) values. We compute
the incremental R2

inc. as the R2 attributed to turn and turn2 in an extended regression model. In Panel B,
we report standardized estimates for the median stock using real data, along with the median R2 values,
and tests of the hypothesis that the observed variation in CPIEPIN is consistent with the PIN model. The
p-value of R2 (R2

inc.) is the probability of observing an R2 at least as small (large) as what is observed in the
real data. The % Rej. is the fraction of stocks for which we reject the hypothesis at the 5% level.

(a) Simulated Data

β t R2 R2
inc.

|B − S| |B − S|2 |B − S| |B − S|2 5% 50% 95% 5% 50% 95%

1993 0.437 -0.079 (10.31) (-1.80) 71.13% 76.09% 80.38% 7.17% 10.57% 15.25%
1994 0.422 -0.072 (9.63) (-1.67) 67.49% 73.26% 78.11% 9.39% 13.47% 18.55%
1995 0.410 -0.058 (9.68) (-1.36) 70.32% 75.39% 79.85% 7.64% 11.39% 16.02%
1996 0.432 -0.085 (9.89) (-1.90) 69.02% 74.28% 78.87% 8.32% 12.17% 16.97%
1997 0.450 -0.089 (10.30) (-1.98) 71.99% 76.93% 81.12% 7.36% 10.76% 14.79%
1998 0.482 -0.104 (10.79) (-2.36) 74.32% 78.71% 82.46% 6.65% 9.53% 13.30%
1999 0.484 -0.112 (11.03) (-2.47) 75.62% 79.96% 83.46% 6.49% 9.36% 12.92%
2000 0.529 -0.137 (11.88) (-3.00) 79.78% 83.36% 86.15% 4.98% 7.47% 10.45%
2001 0.638 -0.217 (13.97) (-4.61) 83.34% 86.13% 88.57% 4.17% 6.00% 8.35%
2002 0.695 -0.260 (14.11) (-5.30) 82.61% 85.53% 88.06% 4.83% 6.92% 9.54%
2003 0.665 -0.244 (12.38) (-4.52) 78.88% 82.36% 85.36% 7.90% 10.56% 13.79%
2004 0.650 -0.223 (11.49) (-4.16) 77.84% 81.38% 84.59% 8.92% 11.67% 15.03%
2005 0.658 -0.220 (12.59) (-4.46) 80.47% 83.59% 86.45% 7.69% 10.09% 12.95%
2006 0.650 -0.221 (11.96) (-4.35) 80.31% 83.36% 86.18% 7.76% 10.29% 13.50%
2007 0.632 -0.222 (9.40) (-4.07) 79.72% 83.35% 86.15% 8.53% 10.93% 14.05%
2008 0.666 -0.235 (12.29) (-4.83) 82.44% 85.25% 88.00% 6.83% 9.15% 11.78%
2009 0.709 -0.269 (14.37) (-5.70) 84.29% 86.87% 89.20% 6.22% 8.28% 10.57%
2010 0.704 -0.261 (14.60) (-5.68) 84.99% 87.41% 89.64% 5.66% 7.55% 9.89%
2011 0.671 -0.234 (14.13) (-5.21) 85.91% 88.25% 90.21% 5.34% 7.28% 9.39%
2012 0.693 -0.251 (14.92) (-5.62) 85.68% 87.98% 90.34% 5.22% 7.22% 9.50%



Table 3: PIN Model Regressions. Continued.

(b) Real Data

β t R2 R2
inc.

|B − S| |B − S|2 |B − S| |B − S|2 50% p-value % Rej. 50% p-value % Rej.

1993 0.300 -0.073 (5.98) (-1.43) 35.76% 0.39% 98.81% 36.20% 2.57% 94.07%
1994 0.264 -0.047 (5.28) (-0.92) 32.82% 0.39% 98.02% 40.02% 3.36% 92.17%
1995 0.280 -0.061 (5.77) (-1.29) 34.20% 0.73% 96.98% 36.97% 5.05% 89.29%
1996 0.277 -0.065 (5.69) (-1.28) 30.92% 0.51% 98.46% 38.97% 3.85% 92.30%
1997 0.283 -0.073 (5.67) (-1.36) 30.80% 0.35% 99.05% 38.86% 3.54% 92.99%
1998 0.274 -0.059 (5.26) (-1.09) 30.12% 0.24% 99.31% 39.58% 3.54% 93.67%
1999 0.280 -0.059 (5.21) (-1.08) 29.05% 0.18% 99.38% 39.46% 3.29% 94.29%
2000 0.300 -0.079 (5.48) (-1.39) 29.99% 0.17% 99.73% 39.08% 2.59% 95.63%
2001 0.339 -0.111 (5.67) (-1.87) 29.44% 0.17% 99.71% 39.39% 3.53% 94.76%
2002 0.279 -0.058 (4.09) (-0.85) 23.05% 0.10% 99.82% 44.28% 5.59% 91.48%
2003 0.247 -0.032 (3.57) (-0.47) 21.97% 0.17% 99.73% 41.86% 9.55% 84.87%
2004 0.211 -0.005 (3.14) (-0.08) 19.55% 0.00% 100.00% 45.22% 8.78% 86.21%
2005 0.254 -0.053 (3.81) (-0.81) 19.42% 0.38% 99.46% 46.29% 9.21% 85.47%
2006 0.251 -0.066 (3.80) (-0.96) 16.95% 1.26% 97.86% 48.44% 10.83% 85.30%
2007 0.271 -0.104 (4.01) (-1.57) 14.30% 2.47% 95.62% 50.32% 14.04% 82.00%
2008 0.268 -0.111 (4.00) (-1.66) 13.78% 1.93% 96.34% 50.97% 11.49% 86.08%
2009 0.280 -0.117 (4.15) (-1.74) 14.59% 1.88% 96.79% 49.91% 10.08% 87.58%
2010 0.291 -0.124 (4.39) (-1.82) 15.96% 1.96% 96.23% 47.64% 10.62% 87.45%
2011 0.295 -0.131 (4.56) (-2.03) 15.94% 1.01% 97.34% 46.60% 11.14% 86.90%
2012 0.319 -0.145 (4.96) (-2.23) 17.56% 3.35% 94.75% 45.61% 13.31% 85.12%



Table 4: DY Model Regressions. This table reports real and simulated regressions of the CPIEDY on
adjusted order imbalance (|adj. OIB|), and adjusted order imbalance squared (|adj. OIB|2. In Panel A, we
simulate 1,000 instances of the DY model for each PERMNO-Year in our sample (1993–2012) and report mean
standardized estimates for the median stock, along with 5%, 50%, and 95% values of the R2 (R2

inc.) values.
We compute the incremental R2

inc. as the R2 attributed to turn and turn2 in an extended regression model.
In Panel B, we report standardized estimates for the median stock using real data, along with the median R2

values, and tests of the hypothesis that the observed variation in CPIEDY is consistent with the DY model.
The p-value of R2 (R2

inc.) is the probability of observing an R2 at least as small (large) as what is observed in
the real data. The % Rej. is the fraction of stocks for which we reject the hypothesis at the 5% level.

(a) Simulated Data

β t R2 R2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 5% 50% 95% 5% 50% 95%

1993 0.518 -0.230 (10.88) (-4.74) 52.28% 59.44% 66.01% 5.55% 9.86% 15.29%
1994 0.484 -0.214 (10.47) (-4.42) 50.66% 58.06% 64.97% 5.56% 9.46% 14.95%
1995 0.475 -0.214 (9.96) (-4.32) 46.81% 54.46% 61.69% 7.01% 11.71% 17.54%
1996 0.516 -0.229 (10.54) (-4.60) 51.36% 58.62% 65.21% 5.18% 9.09% 14.31%
1997 0.513 -0.221 (10.33) (-4.40) 50.55% 57.80% 64.50% 4.78% 8.57% 14.03%
1998 0.537 -0.236 (10.60) (-4.49) 52.85% 60.14% 66.63% 4.00% 7.45% 12.31%
1999 0.607 -0.281 (11.92) (-5.45) 56.53% 63.49% 69.68% 3.07% 6.11% 10.47%
2000 0.597 -0.272 (11.43) (-5.09) 55.69% 62.59% 69.09% 2.82% 5.65% 9.73%
2001 0.729 -0.350 (13.81) (-6.75) 65.81% 71.48% 76.83% 0.62% 1.87% 4.09%
2002 0.769 -0.371 (15.03) (-7.28) 71.90% 76.37% 80.55% 0.24% 1.04% 2.41%
2003 0.805 -0.394 (16.06) (-7.99) 74.77% 78.95% 82.78% 0.34% 1.19% 2.71%
2004 0.798 -0.385 (15.94) (-7.61) 77.39% 81.40% 84.70% 0.23% 0.95% 2.22%
2005 0.787 -0.365 (16.23) (-7.40) 79.40% 83.08% 86.23% 0.25% 0.97% 2.20%
2006 0.761 -0.332 (15.52) (-6.74) 79.38% 83.00% 86.15% 0.45% 1.41% 2.88%
2007 0.736 -0.311 (12.97) (-5.97) 69.81% 74.50% 79.19% 1.23% 2.93% 5.99%
2008 0.755 -0.317 (15.14) (-6.52) 77.82% 81.67% 85.36% 0.34% 1.21% 2.82%
2009 0.768 -0.331 (16.09) (-7.01) 79.54% 83.16% 86.38% 0.63% 1.70% 3.51%
2010 0.769 -0.329 (15.95) (-7.01) 78.65% 82.63% 86.22% 0.56% 1.64% 3.66%
2011 0.754 -0.313 (15.47) (-6.73) 77.75% 81.79% 85.71% 0.63% 1.87% 4.10%
2012 0.763 -0.328 (15.65) (-7.01) 77.64% 81.93% 85.61% 0.89% 2.25% 4.69%



Table 4: DY Model Regressions. Continued.

(b) Real Data

β t R2 R2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 50% p-value % Rej. 50% p-value % Rej.

1993 0.369 -0.170 (7.61) (-3.48) 34.07% 6.15% 80.56% 15.22% 23.83% 48.21%
1994 0.348 -0.150 (7.51) (-3.16) 33.55% 7.07% 75.52% 14.53% 23.87% 48.38%
1995 0.342 -0.149 (6.99) (-3.00) 30.15% 6.52% 77.48% 15.63% 29.41% 43.47%
1996 0.358 -0.164 (7.33) (-3.42) 31.11% 6.85% 79.27% 14.19% 25.56% 50.64%
1997 0.334 -0.140 (6.49) (-2.78) 28.00% 5.52% 82.25% 13.92% 26.26% 50.56%
1998 0.329 -0.136 (6.21) (-2.62) 26.26% 4.50% 84.04% 12.97% 22.18% 57.16%
1999 0.365 -0.166 (6.91) (-3.16) 27.89% 3.53% 88.72% 12.56% 18.93% 62.38%
2000 0.333 -0.145 (5.75) (-2.55) 23.49% 3.06% 89.90% 11.88% 20.82% 62.06%
2001 0.374 -0.176 (6.38) (-3.06) 25.25% 1.43% 94.67% 9.07% 15.71% 74.29%
2002 0.328 -0.130 (4.82) (-1.90) 21.31% 1.03% 97.16% 9.08% 10.15% 82.14%
2003 0.334 -0.135 (4.84) (-1.98) 21.55% 0.63% 98.41% 8.58% 10.51% 81.42%
2004 0.295 -0.104 (4.15) (-1.46) 18.31% 0.39% 99.11% 9.57% 10.09% 83.63%
2005 0.279 -0.103 (4.03) (-1.51) 16.23% 0.40% 98.83% 10.61% 11.10% 82.60%
2006 0.243 -0.083 (3.40) (-1.17) 12.46% 1.16% 97.58% 11.15% 16.81% 77.86%
2007 0.219 -0.086 (3.14) (-1.25) 9.66% 1.94% 95.91% 12.26% 25.72% 65.76%
2008 0.217 -0.086 (3.05) (-1.23) 8.83% 2.16% 96.34% 11.92% 19.43% 74.90%
2009 0.230 -0.093 (3.24) (-1.30) 10.04% 2.04% 95.86% 11.43% 19.40% 74.53%
2010 0.241 -0.103 (3.41) (-1.49) 10.59% 2.45% 95.08% 12.38% 21.74% 71.55%
2011 0.245 -0.102 (3.45) (-1.50) 10.35% 2.04% 95.95% 13.05% 21.61% 71.57%
2012 0.275 -0.127 (4.04) (-1.86) 12.22% 2.54% 95.61% 12.20% 23.56% 70.88%



Table 5: OWR Model Regressions. This table reports real and simulated regressions of the CPIEOWR

on the squared and interaction terms of ye, rd, and ro. In Panel A, we simulate 1,000 instances of the
OWR model for each PERMNO-Year in our sample (1993–2012) and report mean standardized estimates for
the median stock, along with 5%, 50%, and 95% values of the R2 values. In Panel B, we report standardized
estimates for the median stock using real data, along with the median R2 values, and tests of the null that
the model fits the data. The p-value of R2 is the probability of observing an R2 at least as small as what is
observed in the real data. The % Rej. is the fraction of stocks for which we reject the null at the 5% level.

(a) Simulated Data

β t R2

y2e ye × rd ye × ro r2d rd × ro r2o y2e ye × rd ye × ro r2d rd × ro r2o 5% 50% 95%

1993 0.002 0.068 -0.003 0.017 0.016 0.096 (0.42) (11.52) (-0.66) (2.71) (3.34) (17.78) 68.29% 79.86% 88.22%
1994 0.002 0.065 -0.003 0.018 0.017 0.093 (0.53) (12.10) (-0.67) (3.14) (3.80) (18.95) 70.03% 81.70% 89.67%
1995 0.003 0.065 -0.003 0.019 0.018 0.093 (0.57) (12.03) (-0.71) (3.14) (4.00) (18.83) 69.82% 81.98% 89.91%
1996 0.003 0.066 -0.003 0.020 0.019 0.094 (0.68) (12.73) (-0.76) (3.77) (4.43) (20.14) 72.12% 83.64% 91.18%
1997 0.003 0.063 -0.003 0.018 0.018 0.092 (0.77) (14.31) (-0.80) (4.05) (4.73) (21.45) 73.01% 85.04% 92.43%
1998 0.002 0.070 -0.004 0.018 0.017 0.102 (0.67) (16.25) (-1.01) (4.14) (4.70) (24.53) 74.91% 86.68% 93.93%
1999 0.003 0.060 -0.003 0.017 0.018 0.093 (0.74) (13.90) (-0.75) (3.88) (4.86) (22.15) 72.82% 84.70% 92.22%
2000 0.003 0.051 -0.002 0.017 0.019 0.085 (0.87) (13.37) (-0.58) (4.20) (5.64) (22.86) 73.87% 85.03% 92.21%
2001 0.002 0.066 -0.004 0.014 0.014 0.098 (0.51) (17.18) (-1.15) (3.72) (4.25) (26.22) 76.05% 87.58% 94.14%
2002 0.001 0.066 -0.003 0.012 0.013 0.099 (0.44) (18.37) (-1.03) (3.40) (3.89) (27.41) 76.47% 87.94% 94.40%
2003 0.002 0.071 -0.005 0.014 0.013 0.105 (0.48) (19.18) (-1.53) (3.50) (3.84) (27.86) 77.31% 88.81% 94.93%
2004 0.001 0.068 -0.005 0.012 0.012 0.100 (0.49) (21.61) (-1.91) (4.05) (4.06) (30.04) 79.32% 90.05% 95.22%
2005 0.002 0.061 -0.005 0.012 0.012 0.086 (0.60) (22.68) (-2.02) (4.35) (4.35) (31.06) 80.89% 90.80% 95.18%
2006 0.001 0.063 -0.004 0.011 0.011 0.089 (0.52) (22.88) (-1.91) (3.95) (4.14) (30.37) 80.34% 90.48% 95.19%
2007 0.001 0.051 -0.003 0.002 0.004 0.068 (0.65) (22.32) (-1.69) (0.78) (1.68) (28.67) 81.21% 90.63% 95.41%
2008 0.076 0.000 -0.001 0.000 0.004 0.001 (27.51) (0.07) (-0.25) (0.10) (1.42) (0.29) 76.59% 88.91% 95.17%
2009 0.002 0.039 -0.002 0.001 0.005 0.060 (1.18) (18.30) (-0.73) (0.35) (2.36) (27.24) 80.66% 90.07% 95.06%
2010 0.002 0.038 -0.002 0.000 0.000 0.046 (0.94) (18.05) (-1.34) (0.13) (0.23) (22.24) 78.97% 88.62% 94.54%
2011 0.001 0.042 -0.002 0.000 0.000 0.055 (0.79) (19.58) (-1.37) (0.11) (0.16) (24.64) 80.82% 90.39% 95.10%
2012 0.001 0.046 -0.003 0.000 0.000 0.055 (0.68) (19.47) (-1.55) (0.11) (0.22) (23.02) 79.83% 89.47% 94.62%



Table 5: OWR Model Regressions. Continued.

(b) Real Data

β t R2

y2e ye × rd ye × ro r2d rd × ro r2o y2e ye × rd ye × ro r2d rd × ro r2o 50% p-value % Rej.

1993 -0.000 0.053 -0.000 0.032 0.029 0.055 (-0.03) (7.24) (-0.13) (4.41) (4.56) (8.11) 69.97% 15.59% 40.02%
1994 0.000 0.053 -0.001 0.032 0.027 0.060 (0.06) (8.11) (-0.17) (4.69) (4.68) (9.44) 72.00% 17.13% 38.49%
1995 0.001 0.052 -0.001 0.033 0.029 0.059 (0.15) (7.92) (-0.17) (4.74) (4.89) (9.35) 72.73% 17.59% 41.21%
1996 0.001 0.055 -0.003 0.032 0.028 0.062 (0.28) (8.61) (-0.52) (4.77) (4.81) (9.83) 73.65% 16.42% 41.49%
1997 0.002 0.054 -0.002 0.029 0.027 0.061 (0.36) (8.90) (-0.53) (4.85) (4.84) (10.17) 74.72% 16.34% 41.04%
1998 0.002 0.069 -0.004 0.025 0.023 0.074 (0.37) (11.25) (-0.89) (4.43) (4.15) (12.61) 77.46% 18.52% 35.82%
1999 0.002 0.057 -0.003 0.025 0.025 0.065 (0.56) (9.59) (-0.64) (4.33) (4.58) (11.66) 76.48% 19.65% 31.28%
2000 0.003 0.050 -0.003 0.021 0.022 0.066 (0.82) (10.58) (-0.98) (4.50) (5.15) (14.37) 79.83% 28.77% 20.29%
2001 0.001 0.068 -0.003 0.018 0.016 0.078 (0.47) (14.62) (-0.94) (4.10) (3.81) (16.91) 83.25% 34.94% 20.48%
2002 0.002 0.072 -0.002 0.016 0.014 0.081 (0.47) (16.83) (-0.72) (3.88) (3.71) (19.17) 84.71% 36.14% 16.94%
2003 0.002 0.080 -0.003 0.017 0.015 0.080 (0.60) (20.66) (-0.94) (4.38) (3.93) (20.51) 87.22% 42.18% 13.72%
2004 0.001 0.077 -0.005 0.016 0.012 0.074 (0.54) (24.74) (-1.74) (4.48) (3.58) (21.11) 88.70% 41.66% 14.95%
2005 0.002 0.072 -0.005 0.013 0.010 0.065 (0.83) (25.08) (-2.12) (4.36) (3.32) (20.58) 89.54% 44.67% 12.29%
2006 0.002 0.072 -0.005 0.013 0.010 0.066 (0.74) (25.53) (-1.61) (4.12) (3.36) (20.42) 89.47% 43.32% 12.28%
2007 0.002 0.058 -0.003 0.004 0.005 0.058 (0.98) (18.17) (-0.97) (1.40) (1.79) (17.59) 89.34% 45.41% 10.21%
2008 0.077 0.004 -0.002 0.003 0.006 0.007 (22.41) (1.10) (-0.55) (1.07) (2.00) (1.54) 88.02% 42.49% 7.83%
2009 0.003 0.038 -0.002 0.004 0.006 0.053 (1.55) (15.99) (-0.87) (1.85) (2.42) (22.33) 89.34% 46.12% 7.45%
2010 0.002 0.035 -0.002 0.002 0.003 0.038 (1.39) (16.80) (-0.69) (1.02) (1.53) (15.83) 89.54% 48.77% 7.53%
2011 0.002 0.043 -0.002 0.002 0.003 0.050 (1.27) (17.71) (-0.84) (1.04) (1.50) (18.56) 89.84% 49.68% 7.88%
2012 0.002 0.045 -0.003 0.002 0.003 0.039 (1.14) (20.34) (-1.05) (1.20) (1.54) (17.30) 90.29% 51.35% 7.71%



Table 6: M&A Regressions. This table reports regression results for the PIN, DY, and OWR CPIE
around M&A events. For each M&A target firm in our sample, we run regressions of CPIE on order flow
and returns data (for the OWR model) from [−30,+30] and report median estimates across all the events.
In Panels A and B we compute the incremental R2

inc. as the increase in R2 attributed to turn and turn2. For
all panels, we report standardized coefficients.

(a) PIN

β t R2 R2
inc.

|B − S| |B − S|2 |B − S| |B − S|2 50% 50%

0.298 -0.117 (5.76) (-2.29) 20.18% 44.04%

(b) DY

β t R2 R2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 50% 50%

0.292 -0.130 (5.43) (-2.44) 15.83% 11.96%

(c) OWR

β t R2

y2e ye × rd ye × ro r2d rd × ro r2o y2e ye × rd ye × ro r2d rd × ro r2o

0.002 0.057 -0.003 0.016 0.015 0.061 (0.87) (13.91) (-0.92) (4.09) (3.95) (15.18) 81.40%



Figure 1: Model Trees. Panels A and B represent the PIN and DY models of informed trading. For a given
trading day, private information arrives with probability α. When there is no private information, buys and
sells are Poisson with intensity εb and εs. Private information is good news with probability δ. In the PIN
model, the expected number of buys (sells) increases by µ in case of good (bad) news. In the DY model,
the expected number of buys (sells) increases by µb (µs) in case of good (bad) news. The DY model extends
the PIN model to include symmetric order flow shocks, which occur with probability θ. In the event of a
symmetric order flow shock, buys increase by ∆b and sells increase by ∆s.

(a) PIN Tree (b) DY Tree



Figure 2: XOM 1993. This figure compares the real and simulated data for XOM in 1993 using the PIN
and DY models. In Panels A and B, the real data are marked as +. The real data are shaded according to
the model-specific CPIE, with lighter markers (+) representing low and darker markers (+) high CPIEs.
The simulated data points are represented by transparent dots, such that high probability states appear as a
dense, dark “cloud” of points, and low probability states appear as a light “cloud” of points. The PIN model
has three states: no news, good news, and bad news; the DY model includes three additional states for when
there are symmetric order flow shocks.

(a) PIN (b) DY



Figure 3: Yearly Alphas. This figure shows the distribution of yearly α estimates for the PIN, DY, and
OWR models, respectively. The solid black line represents the median α, and the dotted lines represent the
5, 25, 75, and 95 percentiles.
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Figure 4: PIN and DY Model Parameters. This figure shows the distribution of PIN and Adj. PIN as
well as the mean PIN and DY model parameters for each year in our sample. In Panels A and B the solid
black line represents the median stock’s probability of informed trading, and the dotted lines represent the
5, 25, 75, and 95 percentiles. In Panels C and D, µ, ε, and ∆ represent the expected number of trades from
informed, uninformed, and symmetric order flow trading shocks, respectively.
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Figure 5: XOM 2012. This figure compares the real and simulated data for XOM in 2012 using the PIN
and DY models. In Panels A and B, the real data are marked as +. The real data are shaded according to
the model-specific CPIE, with lighter markers (+) representing low and darker markers (+) high CPIEs.
The simulated data points are represented by transparent dots, such that high probability states appear as a
dense, dark “cloud” of points, and low probability states appear as a light “cloud” of points. The PIN model
has three states: no news, good news, and bad news; the DY model includes three additional states for when
there are symmetric order flow shocks.

(a) PIN (b) DY



Figure 6: Days With Near-Zero Probability. Panels A and B show the distribution of the fraction of
days within a PERMNO-Year with near-zero probability of occurring under the data-generating processes of the
PIN and DY models. These days occur when the total likelihood, given the model parameters and observed
order flow data, is less than 10−10. The solid black line represents the median stock, and the dotted lines
represent the 5, 25, 75, and 95 percentiles.
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Figure 7: M&A Target - PIN. Panel A shows the average CPIEPIN for the PIN model in event time
surrounding mergers and acquisitions targets. Panels B and C compare the average with the predicted
CPIEPIN using the absolute value of buys minus sells or turnover, respectively. To obtain the predictions,
we run regressions of daily CPIEPIN on |B − S| or turn, and their respective squared terms.
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(c) Prediction using turn and turn2
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Figure 8: M&A Target - DY. Panel A shows the average CPIEDY for the DY model in event time
surrounding mergers and acquisitions targets. Panels B and C compare the average with the predicted
CPIEDY using the absolute value of adjusted order imbalance or turnover, respectively. To obtain the
predictions, we run regressions of daily CPIE on |adj. OIB| or turn, and their respective squared terms.
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Figure 9: M&A Target - OWR. Panel A shows the average CPIEOWR in event
time surrounding mergers and acquisitions targets. Panels B–G compare the average
CPIEOWR with the predicted CPIEOWR using the squared and interaction terms
of ye, rd, and ro.
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(b) Prediction using y2e
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(d) Prediction using r2o
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(e) Prediction using ye × rd
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(f) Prediction using ye × ro
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Internet Appendix

A. PIN Likelihood

The probabilities of observing  and  on a day without an information event, on a day

with positive information event, and on a day with a negative information event are:

() = (1− )
−






!
−





!
(1)

+() = 
−(+) ( + 

)

!
−





!
(2)

−() = (1− )
−






!
−(+)

( + )


!
(3)

B. DY Likelihood

() = (1− )(1− )
−






!
−





!
(4)

() = (1− )
−(+∆

) (
+∆

)

!
−(+∆

) ( +∆)


!
(5)

−() = (1− )(1− )
−






!
−(+)

( + )


!
(6)

−() = (1− )
−(+∆

) (
+∆

)

!
−(++∆

) ( +  +∆)


!
(7)

+() = (1− )
−(+)

(
+ 

)

!
−





!
(8)

+() = 
−(++∆

) (
+ 

+∆
)

!
−(+∆

) ( +∆)


!
(9)

where () is the likelihood of observing  and  on a day without private

information trading or symmetric order flow shock; () is the likelihood of  and

 on a day without private information and with a symmetric order flow shock; −

(−) is the likelihood of  and  on a day with negative information and without

(with) symmetric order flow shock; + (+) is the probability on a day with positive

information and without (with) a symmetric order flow shock.
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C. OWR Likelihood

Let Θ = (     ) be the vector of parameters of this model. The

parameter  is the probability that there is an information event on a given day. 
2

is the

variance of the noise of the observed net order flow (); 
2

is the variance of the net order

flow from noise traders; 2 is the variance of the private signal received by the informed

trader; 2 is the variance of the intraday return; 
2


is the variance of the overnight

return.

The likelihood of observing  on a day without and with an information event:

 = (1− )() (10)

 = () (11)

where () is the joint probability density of (  ) on days without

information, () is the density of (  ) on days with information events.

Both () and () are multivariate normal with zero means and covariance

matrices Ω and Ω. The covariance matrix Ω has elements:

 () = 2 + 2 (12)

 () = 2 + 2 4 (13)

 () = 2 + 2 4 (14)

( ) = −2 4 (15)

( ) = 122 (16)

( ) = −122 (17)
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And Ω:

 () = (1 + 1)2 + 2 (18)

 () = 2 + (1 + )24 (19)

 () = 2 + (1 + )2 4 (20)

( ) = (1− )24 (21)

( ) = −122 + 122 (22)

( ) = −122− 122 (23)

D. Estimating Order Flow,  and 

Wharton Research Data Services (WRDS) provides trades matched to National Best Bid

and Offer (NBBO) quotes at 0, 1, 2, and 5 second delay intervals. We use only "regular

way" trades, with original time and/or corrected timestamps to avoid incorrect quotes or

non-standard settlement terms, for instance, trades that are settled in cash or settled the

next business day.1 Prior to 2000, we match “regular way” trades to quotes delayed for 5

seconds; between 2000 and 2007, we match trades to quotes delayed for 1 second; and after

2007, we match trades to quotes without any delay.

We classify the matched trades as either buys or sells following the Lee and Ready (1991)

algorithm, which classifies all trades occurring above (below) the bid-ask mid-point as buyer

(seller) initiated. We use a tick test to classify trades that occur at the mid-point of the

bid and ask prices. The tick test classifies trades as buyer (seller) initiated if the price was

above/(below) that of the previous trade.

To estimate  and  we run daily cross-sectional regressions of overnight and intra-

day returns on a constant, historical beta (based on the previous 5 years of monthly CRSP

returns), log market cap, log book-to-market (following Fama and French (1992), Fama and

French (1993), and Davis, Fama, and French (2000)). We impose min/max values for book

1Trade COND of (“@”,“*”, or “ ”) and CORR of (0,1)
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equity (before taking logs) of 0.017 and 3.13, respectively. If book equity is negative, we

set it to 1 before taking logs, so that it is zero after taking logs. We use the residuals from

these daily cross-sectional regressions, winsorized at the 1 and 99% levels as our idiosyncratic

intraday and overnight returns.

E. Maximum likelihood procedure

To estimate the PIN likelihood function, we use the maximum of the likelihood maximization

with ten different starting points as in Duarte and Young (2009). We note, however, that

late in the sample, the likelihood functions of the PIN and of the DY models are very close

to zero. This is not surprising given the results in Fig. 6. In fact, after 2006, the PIN model

suggests that 90% of the observed daily order flows for the median stock have a near-zero

probability (i.e. smaller than 10−10) of occurring. This makes the estimation susceptible

to local optima. To get around this problem, we choose one of our ten starting points to

be such that the PIN model clusters are close to the observed mean of the number of buys

and sells. Specifically, we choose  and  values equal to the sample means of buys and

sells,  equal to 1%, and delta equal to the mean absolute value of order imbalance. The

other nine starting points are randomized. We do this in order to ensure that at least one of

the starting points is centered properly, as the numerical likelihood estimation using purely

random starts often stops at points outside of the central cluster of data.

We use a similar procedure to estimate the DY model. Specifically, we choose ( )

values, and ( +∆  +∆) equal to the sample means of buys and sells computed by

the k-means algorithm with k=2. The k-means algorithm looks for clusters in the buys and

sells such that each observation belongs to the cluster with the nearest mean. Because we

know a priori that buys and sells have a strong positive correlation (see Duarte and Young

(2009)), we partition the sample into high and low order flow clusters, which correspond to

the symmetric order flow shock/no symmetric order flow shock states in the DY model. The

other nine starting points are randomized. As with the PIN model, we do this in order to
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ensure that at least one of the starting points is centered properly, as the numerical likelihood

estimation using purely random starts often stops at points outside of the central clusters of

data.

F. Computing s

In Section 2 of the paper, we define the  for the PIN, DY, and OWRmodels as the ratio

of the “news” likelihood functions to the sum total of the likelihood functions. In practice,

there are many cases in the PIN model for which the data are classified as “impossible”

days, meaning (), +(), and −() are all numerically equivalent

to zero (numerically a value less than the computer epsilon). As a result the  ratio

results in a divide by zero error.

In order to compute  for these days, we “center” the likelihoods around the state

with the highest log-likelihood before computing the . For example, consider the PIN

model with:

max ≡ max{  +  −} (24)

max ≡ log(max) (25)

where  represents the log of the corresponding likelihood function. We compute the centered

versions of each of the likelihood functions:

0 =  − max (26)

0+ = + − max (27)

0− = − − max (28)

We compute the 0 as:

0
 =

0+ + 0−
0 + 0

+
+ 0

−
(29)
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such that the most likely state has 0 = 1. For a high turnover day, it may be the case that

0+ = 1, 
0
− = 0 and 0 = 0; hence, the ’ will be 1. We follow a similar procedure

to compute  .
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