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Abstract
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bogus group is more likely to arise if absolute level of productivity is high. We show that
allowing the bogus group to exist in equilibrium, not only prevent the loss caused by the bogus
group under the standard group loan contract, but also enhance the efficiency of the economy
because (i) the entire loans are invested in the project with relatively higher productivity in a
bogus group, and (ii) the loan size for the bogus group is always larger than that of the standard
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1 Introduction

Lending to the poor, especially in rural areas, is a difficult task all around the world. As documented
in literature, the main reason is that the poor people cannot supply adequate collateral when
borrowing. Consequently, the poor people have no handy instruments to mitigate borrowing cost
due to the information asymmetry such as adverse selection, moral hazard, costly state verification
etc. between them and the lending group.1 As one of the promising methods to mitigate the
borrowing cost due to the insufficient collateral, group-lending has attracted plenty of attention for
the past decades.2 In contrast to the conventional bilateral lender-borrower contracts, the group loan
contracts involve a lender and a group of poor borrowers without collateral. The lender provides
loans to each member of the group and requires each of them invest in one’s own project. The
members of the group take joint-responsibility of the group’s liability: if any member of the group
defaults, his liability need to be repaid by the other group members. Otherwise the entire group
loses the opportunity for future refinancing (Chowdhury (2005)). Such design can allow the bank
to provide loans to the borrowers without collateral at a relatively low interest rate. As a result of
such risk diversification effect, more poor people potentially are affordable to borrow money from
the bank.3

The microfinance practices in rural China recently demonstrate a seemly surprising evidence
against the standard group-lending. We have interviewed by telephone with 366 clients (borrowing
groups) of CFPAMF (China Foundation for Poor Alleviation Microfinance), the leading microfinance
lender in China. These interviewees are in three rural villages, and the main access to finance their
projects is through CFPAMF. During the interview, we ask how the group loan is used, and the
finding from the interview demonstrates that nearly 70% of the borrowing groups, the entire loan
is fully used by only one of group members in her project while the other members only play the
role of “co-signers”. This practice is inconsistent with the borrowing terms with the CFPAMF.
However, CFPAMF does not take action to eliminate this practice. We call this unconventional
group formation as “bogus group”, a phenomenon called “Lei Da Hu" in Chinese.4 This is in
contrast to the conventional group-lending practice, where each member gets one share of the loans
and invests the share in her own project, i.e., “standard groups”.

It is quite interesting to observe the majority of the lending group is bogus since according to the
theory, group-lending rather bogus group can help the reduce the borrowing cost, and increase the
probability of obtaining the loan. Given the fact that the access to the microfinance is very precious
to the borrowers, it seems surprising to observe the existence of the bogus group in practice. Our
paper tries to address this issue by identifying the (possible) justifications for the existence of the
bogus group.

1See Mosley (1986), Udry (1990), Morduch (1999), Ahlin and Waters (2011) etc.
2See Armendariz de Aghion (1999), Ghatak and Guinnane (1999), Ahlin and Waters (2011),Ahlin (2012) etc.
3In addition to the risk diversification effect mentioned above, the group-lending benefits the poor people via the

monitoring cost reduction effect since the group members has comparative advantages in information revealing relative
to the lenders such as banks or moneylenders. Intuitively, the members in the group can monitor each other or verify
the state of each other’s investment projects with relatively low cost because usually they live geographically nearby
(Ghatak and Guinnane (1999), Karlan (2005)), they also have stronger enforcement power to make the members repay
because they have close social links and can impose powerful social sanctions on members who default strategically
(Besley and Coate (1995), Armendariz de Aghion (1999)). Therefore the lender is willing to lend to the group even
though they have no collateral since the members with these comparative advantages have incentive to monitor,
verify and enforce each other when they have joint-responsibility for any of the members’ default. In other words,
the group members’ comparative advantages on information revealing helps them access to the credit and improves
the efficiency of the economy.

4 The “co-signers” are willing to participate either because the main borrower can provide the (social) benefit to
them or because they might want to invite the main borrower to co-sign the contract in future.
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We build a static model with a population of the borrowers who are endowed with a project,
which can be of high or low productivity. The borrowers have no fund to finance their projects so
they have to borrow the loans from a microfinace lender (a bank). Due to some exogenous reason,
the lender only offer the loan through group-lending. After getting the loans from the lender, the
group members can either operate as a standard group or a bogus group. In both cases, all the
group members take the joint-responsibility of the group’s liability. Therefore, in both cases, if
the joint liability is not fulfilled, all the group members will be shut off from the access to future
financing.

We start our investigation by a benchmark case where the borrowers can freely choose to be
either standard group or bogus group and lender can observe the type of the projects. For instance,
in practice, the microfinance lender will collect the information on the project the borrower will
conduct conditional on the loan is issued. We find that if only one loan contract is offered, only
the group of members with heterogeneity in project productivity will be bogus group. The bogus
group is more likely to arise if the heterogeneity of the borrowers’ productivity is sufficiently high
(condition (13)). This result highlights the one important difference between the bogus group and
the standard group. As documented in literature, the standard group can offer an opportunity for
the group member to share the risk, i.e., the probability for the borrowers to obtain the future
financing is larger than that in bogus group where only one project is undertaken. Therefore, if
the group decides to switch from a standard group to a bogus group, the benefit from this risk-
sharing effect is forgone. In return, the bogus group offers a chance to the group member to use the
entire loan to do the project with highest productivity. This benefit of increase in the total output
only exists when the group members are endowed with different projects. Consequently, in this
benchmark case, only the group where members are endowed with different projects might choose
to be bogus group. And if the difference in the productivity is larger, the benefit of the increase
in the total output switching from standard group to the bogus group is larger. Notice that, since
there is no risk-sharing effect in the bogus group, i.e, the probability of default is higher for a bogus
group than that of a standard group. Therefore, if the microfinance lender does not acknowledge
the possibility of the existence of the bogus group, the contract offered to the standard group will
incur a loss.

We show that the microfinance lender can undertake several strategies to avoid the deficit. A
naive strategy is to exclude the existence of bogus group by holding the interest rate at the level
for standard group and reducing the loan size so that borrowers’ incentive to form the bogus group
is reduced. This strategy might be due to that the lender can not tolerate the existence of bogus
group or be due to some other external reasons, for example, the lender just cannot tolerate the
“cheating behavior” of operating as a bogus group; or the interest rate of the group-lending market
is regulated and the lender cannot make break even under such interest rate if bogus groups exist;
or the lender hope every borrower engage in ones own project to improve her long run skills and
experience, or to enhance the employment rate of the community and maintain the stability of the
social order etc. We show that such treatment to the bogus group problem is not optimal if we
consider the joint payoff of the borrowers in the group. As in the practice, the CFPAMF does
not take action to exclude the existence of the bogus group even if it acknowledge its existence.
The other strategy is to explicitly allow the existence of bogus group in equilibrium and offer the
optimal contract, suitable for either standard group or bogus group. We find that, no matter the
productivity is observable or not for the lender, for a group with different types of projects, bogus
group is more likely to arise if the relative heterogeneity of productivity is high; while for a group
with same types of projects, bogus group is more likely to arise if absolute level of productivity
is high. This result highlights the second important difference between the bogus group and the
standard group, i.e., the way to share the total surplus is different. In the standard group, since
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the repayment decision is made by each member independently, each group member might have
the incentive to free-ride her partner by strategic defaulting, especially when the loan size is large.
Therefore, to design the optimal contract targeted to standard groups, the lender need to reduce the
loan size to reduce such strategic default and free-riding incentives. In contrast, in the bogus group,
the entire loan is used for a single project with the highest productivity, the surplus is shared and
the repayment decision is made by the two members collectively. Therefore, there is no strategic
interaction free-riding incentive in the repayment stage for the group members. Consequently, the
lender might be able to offer a loan contract of larger loan size to the bogus group than that of a
standard group.

Consequently, when the separating contracts are offered, the loan size of the bogus group contract
is larger than that of the standard group. Furthermore, we argue that if the projects have positive
NPV, this suggests that by allowing the existence of bogus group and providing the bogus group
loan contract accordingly to them, we not only prevent the loss caused by the bogus group under
the standard group loan contract, but also enhance the efficiency of the economy because (i) the
entire loans are invested in the project with relatively higher productivity in a bogus group, and (ii)
the loan size for the bogus group is always larger than that of the standard group loan contract.

Thus, in our paper, we highlights the difference between a bogus group and a standard group by
focusing on three mechanism: the well-documented “risk-sharing" premium offered by the standard
arrangement of group-lending, the more efficient fund allocation to the highest productivity projects
and the reduced negative effect on loan size caused by strategic interaction in repayment stage by
the bogus group. As to our knowledge, the latter two mechanism of the bogus group is not well
studied in literature. We show that in a standard group-lending model, allowing the existence of
bogus group can actually increase the welfare.

Our paper contributes to the literature in the following ways. First, motivated by the group
lending practice in China, we extend the standard group lending framework to allow the possibility
of the endogenous choice of the group type. Furthermore, we show that the optimal design of
the group lending should take into account the existence of the bogus group explicitly. Second, we
demonstrate that there are fundamental difference between standard group lending group and bogus
group. In particular, forming a bogus group, while forfeit the benefit of the risk-sharing, which is
one of the main benefits of the group lending, can also leads to the decrease in the lending cost due
to reduced possibility of the free-riding of the group member. Furthermore, bogus group might allow
all the loan to be used more efficiently since all the loan will be used in the most efficient projects.
As to our knowledge, these features of the a bogus group is seldom discussed, or, equivalently, the
these possible drawbacks of the standard group lending practice are seldom discussed.

Our paper also relates to the mechanism design literature when the principal have both (ex-ante)
adverse selection and ex-post moral hazard. In our paper, when the types of the projects are not
observable, for instance, the reported intended usage of the loan might be misleading in practice,
the micro lender still would like to maximize the total welfare of the borrowers. Now, he faces the
adverse selection due to unobservable type of projects and the moral hazard due to the group might
optimally decide the group type (standard or bogus) after they obtain the loan. We show that in
our case, the micro lender can design up to two optimal contracts which can be used to separate
the groups.

The remainder of the paper is organized as follows. Section 2 introduces the institution back-
ground of group-lending in China; section 3 is the model, where standard group-lending problem,
the problem brought by the possibility of bogus group, and the solution regard to this problem are
discussed successively; and section 4 concludes.
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2 Institution background

Microcredit is loaned to a micro-entrepreneur by a bank or other institution and can be offered,
often without collateral, to a group or an individual. It came to prominence in the 1980s, though
early experiments date back 30 years ago in Brazil, Bangladesh and a few other countries. This
innovation empowered the poor in a new way by providing them with access to financial services
that were formal and secure.

During the year of 2010, the whole scale of microcredit in China is up to $14.1 billion, with
2.4 million active borrowers. Among the microcredit institutions all around the country, CFPAMF
(China Foundation for Poor Alleviation Microfinance) has ranked the 1st in both loan scale and
active members.

CFPAMF is established in 1989 as the China’s largest and best-known charitable NGO ,com-
mitted to contributing to poverty alleviation and empowerment of the poor. CFPAMF is treated to
be one of the most significant projects in CFPA which is offering loan support to the poor and in-
spiring these micro-entrepreneurs with a spirit of self-development. In 2009, CFPAMF was formally
transformed into a professional and national microfinance institution. Currently, CFPAMF is one of
the largest microfinance institutions in China reaching out to about 100,000 clients spread over 13
districts in China and through 53 branch offices. Since 1996, when CFPA launched its microfinance
projects, the cumulative number of loans distributed is 378,322, amounting to $2472,074,500 and
with a very high overall repayment rate of over 99.87%.

The institution have divided their work between headquarter and several branches. The HQ
makes standardized operation processes and management rules. The branches focus on rigorous
execution of these obligations.In the operation of group-lending, all programs employ specially
trained officers who introduce the regulations and expected program costs and benefits to potential
members. Later, these officers also assume the responsibility for training and monitoring the groups.
CFPAMF’s rules for group formation include:

1. A group must consist of 2-5 self-chosen members.

2. All group members must be from the same village.

3. There shall be no more than one member from the same household in a group. It is also not
desirable for close relatives to be in the same group.

4. As each group is formed, it elects its own leader among the members.

CFPAMF branches advertise regularly around the county areas, so most people in the areas are
aware of CFPAMF. Clients firstly form the group and then go to the CFPAMF to apply for the loans.
If the group meets the basic criteria (have their business, understand the rules, and want a loan), the
CFPAMF will provide a training for the clients regarding the joint liability, group operations and
the importance of group solidarity, and monitoring of loan repayment by all members. In particular,
the CFPAMF will make it very clear that the clients themselves are responsible for monitoring the
group members in order to ensure that loan proceeds are used properly and to enforce repayment
and attendance. Then each individual receives her first loan. The whole process typically takes one
week.

3 The model

The economy is populated by two types of agents: lenders and borrowers. The borrowers are
endowed with one investment project each, which has to be financed by taking a loan at t = 1. The
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borrowers have no capital, so the entire initial investment L required to implement an investment
project must be financed by borrowing a loan from the microfinance lender. There are two types
of investment projects: a “conventional” project with productivity kL and a “high-return” project
with productivity kH , where kH > kL > 0. Both project types (i = H,L) succeed with probability
p and the output, generated at t = 2, is given by

Yi =

{
kiL, with probability p,
0, with probability 1− p.

(1)

Throughout this section, we assume that the lender can observe the types of the projects, i.e.,
the productivity parameter ki. One interpretation is that in practice, the microfinance lender will
collect the information on the types of the project the borrowers will do before providing the loan
contract. We will consider the situation with unobservable ki in section 3.4, which shows that our
main conclusion and intuition still hold.

Both lenders and borrowers are risk-neutral. We assume an environment with limited enforce-
ment (the project return Y is non-verifiable which gives rise to the possibility of strategic default.
Loan terms must therefore be such that borrowers have incentive to pay the loan back. In addition,
we assume that borrowers are subject to limited liability: if the project fails, a borrower (involun-
tarily) defaults, in which case the lender cannot punish the borrower further. For simplicity, the
borrowers’ outside option (if they do not invest in their project) is normalized to zero.

In our model, a representative competitive lender only provides a group loan contract due to
some exogenous reason. For instance, the microfinance lender could be delegate by a NGO who
would like to finance the projects for the poor people. This group-lending loan is issued to a group
consisting of two borrowing members who need investment funds.5 A group loan contract consists
of two loans of size L each and a pre-specified total repayment amount 2R. The group loan contract
has a joint liability clause: each member is fully responsible for the total group obligation 2R. That
is, if the lender does not receive 2R (either from a single borrower or from both borrowers combined)
at t = 2, then both borrowers are cut off from access to credit in the future. Maintaining future
access to credit has present discounted value V > 0 for a borrower. Furthermore, we assume due to
free entry of the microlenders, or the microlender’s not-for-profit mission, the microfinance lender
makes zero profit in equilibrium.

The group of two borrowers can either operate as a “standard group” or as a “bogus group”. In a
standard group each member invests L into one’s own business project, as assumed in the literature
on group-lending or as required by microlenders in practice. In contrast, in a bogus group the two
members invest the total amount, 2L, into a single one of the two projects and share the surplus,
which can be viewed as “cheating” behavior by the lender.

In section 3.1, we study the standard group-lending problem as in the literature without allowing
the possibility of forming bogus groups. In section 3.2, we assume that the borrowers can choose
their group form freely, i.e. either standard group or bogus group, then discuss the problem brought
by the possibility of bogus groups arising in equilibrium as well as analyze the condition under
which a group opt to operating as bogus both generally and particularly when the standard group
loan contract in section 3.1 is offered. In section 3.3, we discuss how the bogus group problem can
be addressed in an optimal way. In section 3.4, we consider the situation in which each borrower’s
investment productivity ki is unobservable for the lender.

5We assume a group only consists of two members for simplicity.
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3.1 When Bogus group formation is impossible

We start with a basic case where due to some exogenous reason, the formation of bogus group is not
possible. That is, we are in the case which is equivalent to the standard group-lending literature.
In this case, the timing is as follows:

• stage 0: Two borrowers form a group and then each borrower is randomly endowed with an
investment project with productivity parameter ki, i ∈ {H,L}, which is observable for the
lender;

• stage 1: The lender offers a group loan contract with terms {L,R};

• stage 2: Each borrower’s investment is launched and her project output is realized on period
later, each borrower only observes the output realization of her own project.6

• stage 3: Repayment decisions are made by the group members and all payoffs are realized.

Notice that if a borrower’s project succeeds while her partner claims to default (because of the
failure of her project or strategic consideration), it is never optimal to repay an amount strictly
between 0 and 2R since either defaulting (repaying zero) and forfeiting the entire future value V ,
or repaying in full (2R) and securing the future value V is the dominant strategy. Similarly, it is
never optimal to repay an amount between 0 and R if one’s partner claims to repay. Given this,
the lender optimally chooses the contract {L,R} while the strategy of each group member is either
“Repay” in full (R or 2R depending on the partner’s action) or “default” (repay zero). We study
Nash equilibria within the group below.

We call the type of a group ij if the productivity of the two projects are ki and kj respectively.
There can be three types of groups: HH, LL, HL. Generally, consider the ij group’s problem for
i, j ∈ {H,L}.

Without loss of generality, we assume ki ≥ kj . The group loan contract is feasible, that is, each
member’s project generates enough output when succeed to cover repayment ifmin{kiL, kjL} ≥ 2R,
or equivalently

R ≤ 1

2
kjL. (2)

Given the feasibility condition, the repayment decisions made by the two members in stage 3
results from a simultaneous moving game with its normal form presented in the table 1, where only
the payoffs of the row player i are listed, those of the column player are symmetric around the
diagonal.7

Repay Default
Repay kiL−R− (1− p)R+ V kiL− 2R+ V
Default kiL+ V kiL

Table 1: The normal form of the game in the repayment stage.

Conditional on the type j member choosing “Repay”, type i would also optimally repay when
her project succeeds if his payoff from repaying R is not smaller than her payoff from strategically

6As modeled in Armendariz de Aghion (1999) etc.
7It will be shown that the strategic interaction happened in this repayment game leads to smaller loan sized offered

by the lender, and such fiction is one of the driving forces of our model. In section 3.5, we rule out such strategic
interaction friction by assuming that the members in a standard group make repayment decision collectively, we find
that the bogus group problem still exist and the main solutions to such problem is similar.
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defaulting (repaying zero), that is, kiL−R− (1− p)R+ V ≥ kiL+ pV , or

(2− p)R ≤ (1− p)V (3)

The LHS of (3) is the expected repayment (the marginal cost of not defaulting), while the RHS
is the marginal benefit because the probability that the borrower obtains the future credit access
value V increases from p to 1. The above condition implies the following constraint on R:

R ≤ 1− p
2− p

V . (4)

Similarly, conditional on the type j member choosing “default”, the type i member would optimally
choose to “repay” if paying back 2R and securing V results in a larger payoff than defaulting, i.e.
kiL− 2R+ V ≥ kiL, or

R ≤ 1

2
V . (5)

Since condition (4) implies (5), (Repay, Repay) is the unique Nash equilibrium (“Repay” is at
least weakly dominant strategy) whenever R ≤ 1−p

2−pV .8

Given the contract {L,R} with the condition (2) and (4), the joint payoff of the standard group
ij is

Wij(L,R|S) = p(ki + kj)L− 2p(2− p)R+ 2p(2− p)V, (6)

where S indicates that the group form is standard.
Forming a standard group increases the repayment probability from the success probability p

to p2 + 2p(1− p) = p(2− p). Though the group repays 2p(2− p)R on average, which is more than
2R, the group jointly maintains higher value from future access to finance, i.e. 2p(2− p)V . The net
benefit derived from the standard group lending is 2p(2− p)(V −R) > 0 conditional on (4).

The lender receives the required payment 2R back with probability p2 + 2p(1 − p) = p(2 − p),
and receives nothing otherwise. Thus, the lender’s participation constant is 2p(2 − p)R − 2L ≥ 0,
or

R ≥ L

p(2− p)
. (7)

Assuming zero profits for the lender because of free entry or because of the lenders’ mission,
as explained above, the optimal standard group loan contract can be defined as the loan size
and repayment {LS , RS} which maximize the joint payoff of a standard group, that is, the contract
{LS , RS} which solves:

max
L,R

Wij(L,R|S), (8)

s.t. (2), (4), (7).

The two constraints (2) and (7) are collectively equivalent to L
p(2−p) ≤ R ≤ 1

2kjL, which is
non-empty only if kj ≥ 2

p(2−p) . If kj <
2

p(2−p) , then the above constraint never hold, so the market

8In general, the pure strategy Nash equilibrium of this game will be (i) (Repay, Repay) if R ≤ 1−p
2−p

V , (ii) (Repay,
Default) or (Default, Repay) if 1−p

2−p
V < R ≤ 1

2
V , or (iii) (Default, Default) if R > 1

2
V . It is possible for the lender

to offer a contract with 1−p
2−p

V < R ≤ 1
2
V and make break even by setting L = pR. However, such a contract leads

to an “asymmetric” equilibrium in which one borrower “exploits” the other and there is no risk sharing between the
group members. Such equilibrium is against the initial intention of standard group-lending and may hardly survive
or be implemented in reality. In order to show the basic intuition and the driving forces of our model clearly and
cohesively, we first focus on the standard group loan contract in the (Repay, Repay) regime with R ≤ 1−p

2−p
V . In the

appendix, we show that even when we allow the existence of (Repay, Default) or (Default, Repay) equilibrium, our
main results and intuition still hold.
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collapses. Hence, we make the following assumption so that the market is active for all types of
groups.

Assumption 1. Assume kL ≥ 2
p(2−p) so that the standard group-lending market does not collapse

for all types of groups.

Then we obtain the following results.

Proposition 1. When bogus group formation is impossible, the optimal standard group loan contract
is S = {LS , RS} where

LS = p(1− p)V, RS =
LS

p(2− p)
. (9)

Proof. See appendix A.1.

Thanks to the risk sharing between the two borrowers, the lender can get 2R back with prob-
ability p(2 − p) > p, so the interest rate of contract S is rS = RS

LS
= 1

p(2−p) , which is lower than
the capital cost of the projects 1

p . Nevertheless, as mentioned above, when each member succeeds,
the actual payment on average is (2 − p)R > R. The effect of lower interest rate and the higher
average repayment exactly cancel out since the effective interest rate is also equal to the capital
cost 1

p since the actual payment is (2 − p)R∗N =
L∗N
p . This is also the reason that why the lender

makes break even with a interest rate 1
p(2−p) lower than the capital cost 1

p . However, even though
the benefit of lower interest rate is actually canceled out by the higher expected repayment level,
one benefit remains as the net gain from standard group lending: the probability of maintaining
the future access to finance increases from the natural success probability p to p(2− p). In all, the
joint payoff for a ij group given contract S is

Wij(LS , RS |S) = (p(1− p)(ki + kj) + 2)pV. (10)

Notice that the contract S is independent of ki and kj , therefore, even when we assume that ki
and kj are unobservable for the lender, we should abstain the same contract and results above.

3.2 When bogus group is possible

A standard assumption in the literature on joint-liability lending, and also standard practice in
microfinance, is that each borrower is expected to invest in her own business project. However,
as motivated by the evidence reviewed in the introduction, suppose that the lender is unable to
enforce that each group member invests in their own project. Therefore, borrowers can choose to
form either a “standard group”, or a “bogus group”, that is a borrowing group in which all loaned
money (2L) is invested into a single business project run by one of the borrowers. Essentially, here
we extend the standard group-lending framework by allowing the endogenous choice of the group
form, i.e. standard or bogus.

Allowing for the endogenous choice between the standard group and the bogus group, the model’s
timing is as follows:

• stage 0: Two borrowers form a group and then each borrower is randomly endowed with a
business project with productivity ki, i ∈ {H,L}; the productivities ki are observable to the
lender;

• stage 1: The lender provides a loan contract {L,R};

• stage 2: The group members choose to operate as a standard group or as a bogus group;
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• stage 3: Investment is launched and output(s) is/are realized one period later;

• stage 4: Repayment decisions are made by the group members and all payoffs are realized.

We first consider the endogenous decision of the group form which is made in stage 2, that is,
whether the borrowers choose to form a standard group or a bogus group. If the group chooses to
be a bogus group, the two group members collectively decide which project to invest and whether or
not to repay when succeed. The surplus is allocated between the two members by Nash-bargaining.

Proposition 2. Given any group-lending loan contract {L,R}, it is optimal for the ij group to
form a bogus group if

p(ki − kj)L > 2p(1− p)(V −R). (11)

Proof. See appendix A.2.

Forming a standard group instead of a bogus group resembles buying an insurance. For a
borrower in a standard group, when she succeeds (with probability p), she can always obtain the
future value V as long as she repays. However, conditional on project success, in expectation she
needs to repay (2 − p)R in a standard group (pay 2R in case of partner project failure and R in
case of partner project success) instead of 2R/2 = R (per person) in a bogus group. The difference
(2 − p)R − R = (1 − p)R can be thought of as the insurance premium when a borrower’s project
succeeds (with probability p). If a borrower’s project fails on the other hand, due to limited liability
she pays nothing but would receive pV in expectation in a standard group as opposed to 0 in a
bogus group. Thus, pV is the risk sharing benefit of being in a standard group when a borrower’s
project fails (with probability 1− p). The ex-ante total net benefit (insurance value) from being in
a standard group for both borrowers is hence

I = 2(1− p)pV − 2p(1− p)R = 2p(1− p)(V −R). (12)

which is positive since we have V > R based on the no-default condition (4).
If the borrowers form a bogus group instead of a standard group, they will optimally invest all

the loaned funds (2L) into the project with higher productivity. Without loss of generality assume
ki ≥ kj . Total group output increases by p(ki − kj)L compared to forming a standard group under
the same loan contract. However the group members forgo the insurance value (or risk sharing
benifit) of being in a standard group. We thus obtain the Lemma (2) result.

Notice that, for a homogeneous ii (HH or LL) group, the LHS of (11) in Lemma (2) is zero
and so this condition is never satisfied for such groups – a bogus group does not offer any benefit
in terms of additional project return while still requires foregoing the risk-sharing value inherent in
a standard joint liability group. We therefore see that condition (11) holds only for heterogeneous
(HL) groups and only if the productivity difference kH − kL is sufficiently large so that the extra
output benefit of forming a bogus group overwhelms the loss of insurance (risk sharing) value in a
standard group.

The consequence of the possibility of bogus group forming if the lender (mistakenly) offers the
optimal standard group contract S is thus as follows:

Proposition 3. If the standard group loan contract S is offered, any HL groups with

kH − kL >
2

p(2− p)
, (13)

will optimally operate as bogus groups, which consequently incur a loss to the lender.

10



Proof. See appendix A.3.

The above proposition demonstrates the main problem with not taking into account the possibil-
ity of endogenously forming bogus groups – lenders would no longer break even using the standard
group loan contract S.

If condition (13) holds, the lender must offer alternative contract(s) to avoid the loss caused by
the bogus groups. As motivated by our empirical observation mentioned in the induction part, we
propose the following assumption:

Assumption 2. Assume kH − kL > 2
p(2−p) so that the bogus group will arise when the standard

standard group loan contract S is offered.

For any contract designed for standard group, we have R = L
p(2−p) , substitute it into condition

(11) when ij = HL, it becomes

p(kH − kL)L > 2p(1− p)
(
V − L

p(2− p)

)
. (14)

Given kH and kL, if we increase the loan size L, the LHS of the above condition (productivity
benefit of bogus group) will be amplified while the RHS of it (insurance/risk-sharing benefit of
standard group) will be dampened (because the “insurance premium” payed by the borrowers in
good state becomes cheaper), therefore the above condition is more likely to hold and bogus group
is more likely to arise. On the contrary, only by reducing the loan size, can the lender mitigate
the borrowers’ incentive to operate as bogus group. We will discuss how can the lenders address
the bogus group problem when they acknowledge the possibility of bogus groups forming in next
section and the above intuition will help explain our results.

3.3 Solutions to the bogus group problem

In this section, we consider two possible cases and propose strategies accordingly for the lender to
solve the bogus group problem in each case. The first case is that the lender, for some exogenous
reasons, cannot allow the existence of bogus group and would like to design an appropriate group
loan contract that eliminates the incentive for any group to operate as a bogus one.9 The second
case, on the contrary, is that the lender allows the existence of bogus group and is free to design
appropriate contract for the group by taking into account the group’s self-selection behavior for its
group type (standard or bogus), which is a hidden action for the lender.

3.3.1 Exclude the incentive of forming bogus group

In this section, we first consider the case in which the lender cannot allow the existence of bogus
group in any situation, so that she wants to design a contract {L∗ij , R∗ij} for any ij group such that
using it the borrower group would optimally choose to be a standard group and each member will
not default strategically. The timing of the game is identical to the form discussed in section 3.2.
The strategy of the lender is the contract {L∗ij , R∗ij}, while the strategy of each borrower consists
of the repay-default choice and, collectively, the group type choice. The contract {L∗ij , R∗ij} will be

9For example, as discusses in the introduction, the lender just cannot tolerate the “cheating behavior” of operating
as a bogus group; or the interest rate of the group-lending market is regulated and the lender cannot make break
even under such interest rate if bogus groups exist; or the lender hope every borrower engage in ones own project to
improve her long run skills and experience, or to enhance the employment rate of the community and maintain the
stability of the social order etc.
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designed so that: (i) any borrower group will be standard, (ii) each group member will optimally
repay when her own project succeeds (iii) the lender breaks even and (iv) the group’s joint payoff
is maximized.

From the previous section we know that contract {L∗ij , R∗ij} must ensure that standard groups
will repay (condition (2) and (4)) and that bogus group will not arise. To exclude bogus groups we
thus have to ensure that the converse of condition (11) is true, that is,

(ki − kj)L ≤ 2(1− p)(V −R) (15)

holds at {L∗ij , R∗ij}.
The contract {L∗ij , R∗ij} solves:

max
L,R

Wij(L,R|S) = p(ki + kj)L− 2p(2− p)R+ 2p(2− p)V (16)

s.t. (2), (4), (15), and R =
L

p(2− p)
(17)

The constraint (15) for ii group is always true, and thus redundant. For HL group, it is
equivalent to

(kH − kL)L+ 2(1− p)R ≤ 2(1− p)V . (18)

At the optimum the lender’s break-even constraint, p(2− p)R = L implies that R is an increasing
function of L, so the LHS of (18) increasing in L. For given parameter values, the no-bogus
constraint (18) would thus hold only if the loan size L is sufficiently small. Since the standard
group loan contract S does not meet this condition for HL group (as shown in Proposition 3), this
implies that to rule out bogus groups the loan size for HL group must be reduced relative to LS ,
as described in the following proposition.

Proposition 4. Suppose the the lender observes the productivity of each borrower but cannot allow
the existence of bogus group, then

(i) the optimal contract for ii group {L∗ii, R∗ii} is still S = {LS , RS};
(ii) the optimal contract for HL group {L∗HL, R∗HL} is E = {LE , RE} where

LE =
p(2− p)V

1 + p(2−p)
2(1−p)(kH − kL)

< LS and RE =
LE

p(2− p)
. (19)

Proof. See appendix A.4.

The the contract for standard group-lending S is still optimal for ii group because under this
contract, such group has no incentive to be bogus group. Since the HL group opt to operate as
bogus group under contract S, only by reducing the loan size to the level of contract E can the
lender eliminate the borrower’s incentive to be bogus group. The interest rate in contract E is the
same as in contract S since in both cases all groups are standard in equilibrium and hence the
lender’s break-even condition is the same per dollar lent. In order to rule out bogus groups, HL
group’s welfare is reduced under contract E because the loan size provided to is smaller than that
in contract S derived in section 3.1 in which bogus groups were assumed away either exogenously
or because of enforcement by the lender.
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3.3.2 Allow the existence of bogus group

Suppose now the lender can allow the existence of both standard groups and bogus groups and
therefore wishes to design the optimal contract contingent on the group type ij, such that the
lender can make break even granted that the group can self-select to be either standard or bogus
group. The timing in this case is as follows.

• stage 0: Two borrowers form a group and then each borrower is randomly endowed with a
project with productivity ki, i ∈ {H,L}, which is observable to the lender;

• stage 1: The lender offers the contract;

• stage 2: Given the contract, the borrower group chooses to be either standard or bogus;

• stage 3: Investment is launched and output is realized one period later;

• stage 4: Repayment decisions are made by the group members and all payoffs are realized.

For group ij, the lender’s objective is to find the optimal contract {L#
ij , R

#
ij} that maximizes the

group’s joint payoff, subject to the no strategic default condition and the lender’s breaks even condi-
tion. The last requirement comes from the free-entry assumption which rules out cross-subsidization
across contracts or group types. The optimal contract could implements the endogenous group type
to be either standard (τ = 1) or bogus (τ = 0), thus the no strategic default condition and the
lender’s breaks even condition should adapt accordingly, i.e. the lender solves the following problem:

W#
ij = max

L,R,τ∈{0,1}
Wij(L,R, τ), (20)

subject to

R ≤ τ 1− p
2− p

V + (1− τ)V, (21)

R = τ
L

p(2− p)
+ (1− τ)L

p
, (22)

τWij(L,R|S) + (1− τ)Wij(L,R|B) ≥ τWij(L,R|B) + (1− τ)Wij(L,R|S), (23)

where W (L,R, τ) = τWij(L,R|S) + (1 − τ)Wij(L,R|B), and the joint payoff function Wij(·, ·|S)
and Wij(·, ·|B) are given as follows:

Wij(L,R|S) =


p(ki + kj)L− 2p(2− p)R+ 2p(2− p)V, R ≤ 1−p

2−pV (Repay,Repay)
p((ki + kj)L− 2R+ 2V ), 1−p

2−pV < R ≤ V
2 (Repay,Default)

p(ki + kj)L, R > V
2 (Default,Default)

, (24)

Wij(L,R|B) =

{
2pkiL− 2pR+ 2pV, R ≤ V (Repay)
2pkiL, R > V (Default)

. (25)

The last constraint (23) is the self-selection constraints stating that whenever a contract that im-
plements a particular group type (standard or bogus) is offered, it is then optimal for that group
itself to operate as the desired type. The contracts are feasible given the assumption 1.

Then we attain the following proposition.
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Proposition 5. Suppose the lender observes each borrower’s productivity and allows the existence
of bogus group, then

(i) the optimal contract for ii group {L#
ii , R

#
ii } is S = {LS , RS} if ki ≤ 1

p2
or B = {LB, RB} if

ki >
1
p2

where LB = pV and RB = LB
p , ii group operates as standard group given contract S while

operates as bogus group given contract B;
(ii) the optimal contract for HL group {L#

HL, R
#
HL} is E = {LE , RE} if kH ≤ f(kL) or B =

{LB, RB} if kH > f(kL) where f(kL) = 1
2(kL + c +

√
(kL + c)2 − 4kL/p) and c = 2p2−5p+4

p(2−p) , HL
group operates as standard group given contract E while operates as bogus group given contract B.

Proof. see appendix A.5.

Recalled that according to proposition 2, given a standard group loan contract, any homogeneous
ii group, unlike the HL group, has no incentive to be bogus group because such group, when
operating as bogus group, gains nothing in terms of output but forfeits the risk sharing benefit
of standard group and thus suffers net loss. However, when the lender allows the existence of
bogus group and offers the appropriate contractM for bogus groups, a seemingly surprising result
revealed by proposition 5 is that it is optimal for even homogeneous ii group to be bogus group
under contractM when the absolute level of the productivity ki is sufficiently high. The reason is
that homogeneous ii group can benefit from the larger loan size of contractM especially when the
productivity ki is sufficiently high.

The interest rate of contractM, designed for bogus groups, is equal to the capital cost 1
p . While

the contract designed for standard group, such as S (or E), requires lower interest rate 1
p(2−p) due

to the risk sharing between the two members in a standard group. As we mentioned in section 3.1,
the lender breaks even with lower interest rate 1

p(2−p) because it actually requires each borrower to
repay (2 − p)RS > RS , thus the effective interest rate is also equal to the capital cost 1

p since the
actual payment is (2− p)RS = LS

p .
Though the effective interests are the same under two types of contracts, the loan size designed

for standard group is smaller than that for bogus group because of the possibility of strategic default
consideration that only exist in a standard group. When the group operates as a standard group,
the two borrowers invest in two independent projects, and each member chooses her own repayment
decision independently, thus providing each borrower an opportunity to default strategically when
her own project indeed succeeds and “free ride” on the partner’s repayment action. In specific, the
repayment decisions of the two borrowers comes as a Nash-equilibrium of a simultaneous game shown
in table 1. Such strategic interaction between the two members reduces the loan size provided for
them since only when the loan size is sufficiently small will they play (Repay, Repay) in equilibrium,
and such factor negatively affects the welfare of the group members. We call the such inefficiency
as the “strategic interaction cost” for standard group lending. However, when the borrowers form
a bogus group, they act collectively in the repayment stage and there is no possibility of strategic
default by one borrower, thus no one can “free ride” on other’s repayment action. Given this fact,
the loan sizes for a bogus group could be larger and such factor positively affects the welfare of the
group members.

The above analysis can also be interpreted by the following two formulas: we can rewrite repay-
ment condition (3) (for the best standard group contract S) and (21) (for contractM) as

LS
p
≤ V − pV (26)

LM
p
≤ V − 0 (27)

14



As stated before, the LHS are the marginal payments and the RHS are the marginal increase in
the future credit value. The above two conditions clearly show that the loan size of standard group
contract is smaller because the marginal gain in the future credit value is less, not due to the terminal
value V is lower, but due to the initial level pV > 0 is higher. This reveals the fact the there is
some “free riding” problem and the possibility of strategic interaction between the two members
that cuts down the incentive to repay in the standard group: if the loan size is too high so that
the borrower has to repay too much, she would rather free ride on her peer’s repayment behavior
than repay herself, thus, in equilibrium the loan size must be small enough so that (Repay, Repay)
becomes the Nash equilibrium. The loan size of contract E is even smaller than that of contract S
because of the additional bogus group problem stated in proposition 3.

Compared with homogeneous ii group, HL group has even higher incentive to operating under
the contract designed for bogus group: when doing so, it only forfeits the risk sharing benefit of
standard group, whereas gains not only from the enlarged loan size of contract M but also from
the increasing of average productivity form 1

2(kH + kL) to kH . Thus, as long as the kH is high
enough relative to kL so that the increasing in output could be quite significant, the HL group
should optimally operating as bogus group under contractM.

The optimal contract in this section, which allows the existence of bogus group, compared with
that in section 3.3.1, enhances the not only welfare of HL group, but also that of homogenous ii
group.

3.4 When the productivity ki is unobservable for the lender

In this section, we consider the situation in which the borrower’s exogenous type, the productivity
parameter ki, i ∈ {H,L}, is unobservable for the lender. As shown below, the main properties of
the model with observable productivity generalize to the model in this section.

Notice that the standard group loan contract {LS , RS} is independent of ki and kj , therefore it
is still optimal to offer the contract S defined in Proposition 1 when bogus groups were assumed
away either exogenously or because of enforcement by the lender. Therefore proposition 2 and 3
still apply to this section. In particular, if the group can freely choose to form either standard group
or bogus group, the condition under which bogus group arises is also the same with that depicted
in proposition 2.

Thus, we only need to reconsider the optimal strategies for the lender to address the bogus group
problem in the following.

3.4.1 Exclude the incentive of forming bogus group

We first consider the case in which the lender cannot allow the existence of bogus group in any
situation. Different from the above previous analysis, since the lender is unable to observe the
group type ij, she cannot design a contract contingent on ij. On the contrary, the lender can only
offer a common contract {L∗, R∗} independent from ij for the entire population so that using it any
borrower group would optimally choose to be a standard group and each member will not default
strategically. The timing of the game is identical to the form discussed in section 3.2. except that
the lender does not observe ki. The strategy of the lender is the contract {L∗, R∗}, while the strategy
of each borrower consists of the repay-default choice and, collectively, the group type choice. The
contract {L∗, R∗} will be designed so that: (i) any borrower group will be standard, (ii) each group
member will optimally repay when her own project succeeds (iii) the lender breaks even and (iv) the
ex-ante expected joint payoff of the group (or equivalently, the total payoff of the population) is
maximized. The last requirement indicates that the lender, who is unable to observe the group type
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knows the distribution of the group type ij cares about the aggregate welfare of the the economy.
From the previous section we know that contract {L∗ij , R∗ij} must ensure that standard groups

will repay (condition (2) and (4)) and that bogus group will not arise. To exclude bogus groups we
thus have to ensure that the converse of condition (11) is true, that is, holds at {L∗ij , R∗ij}.

So the contract {L∗, R∗} solves:
max
L,R

Wij(L,R|S) = p(ki + kj)L− 2p(2− p)R+ 2p(2− p)V (28)

s.t. (2), (4), R =
L

p(2− p)
and

(ki − kj)L ≤ 2(1− p)(V −R), ∀ij ∈ {HH,HL,LL} (29)
where the no-bogus condition (29) is the IC constraint that must hold for all types of groups. It
turn out that it is binding for HL type, i.e.

(kH − kL)L+ 2(1− p)R ≤ 2(1− p)V . (30)

Then similar to the analysis of appendix A.4, we obtain the following proposition.

Proposition 6. Suppose the the lender cannot observe the productivity of each borrower and cannot
allow the existence of bogus group, then the optimal contract is E = {LE , RE}.

In this case, the lender cannot provide contracts contingent on group type ij. In order to rule
out bogus groups, borrowers’ welfare is reduced under contract E because the loan size provided to
any group type is smaller than that in contract S derived in section 3.1 in which bogus groups were
assumed away either exogenously or because of enforcement by the lender. While only borrowers in
HL groups would choose to operate as bogus, all borrowers obtain smaller loans. This is inefficient.

3.4.2 Allow the existence of bogus group

Similarly, optimal contract in Proposition (5) is no longer optimal, since the lender cannot observe
the group’s productivity parameter ki and kj and cannot provide contracts contingent on ij. Since
the lender allows the existence of both standard group and bogus group in equilibrium, therefore,
based on the break even conditions for two types of group form, two types of contracts in terms
of interest rate should be offered: one type, designed for standard groups, has gross interest rate

1
p(2−p) , and the other type, designed for bogus groups, has gross interest rate 1

p . According to the
previous analysis, the joint payoff of a group is always increasing in the loan size whatever the
productivity types of the group members are. Hence, within each contract type in terms of interest
rate, only one contract can be offered.

Above analysis implies that the lender can offer two contracts N = {L#
N , R

#
N} and M =

{L#
M , R

#
M} targeted at standard group and bogus group respectively, such that (a) any group chooses

contract N self-selects to be standard form and any group chooses contract M self-selects to be
bogus form, (b) no borrower default strategically and (c) the ex-ante expected joint payoff of the
group (or equivalently, the total payoff of the population) is maximized. Suppose the proportion of
the ij group in the population is qij , and

∑
ij qij = 1, then L#

N , R
#
N , L

#
M , R

#
M solve the problem10

max
LN ,RN ,LM ,RM

∑
ij

qijWij(LN , RN , LM , RM ) (31)

10We can interpret the problem as a optimal mechanism design problem in which the lender, who does not observe
the type of the group ij, maximizes the expected payoff of the group or equivalently the ex-ante aggregate welfare of
all the borrowers. The lender makes break even per contract because of the free entry of lenders, no cross-subsidization
among different types of groups exist given our optimal solution derived below.
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subject to
RM ≤ V (32)

RM =
LM
p

(33)

RN ≤
1− p
2− p

V (34)

RN =
LN

p(2− p)
(35)

max{Wij(LN , RN |S),Wij(LM , RM |B)}
≥ max{Wij(LN , RN |B),Wij(LM , RM |S)}

,∀ij ∈ {HH,HL,LL} (36)

where Wij(LN , RN , LM , RM ) ≡ max{Wij(LN , RN |S),Wij(LM , RM |B)}, and the joint payoff func-
tion Wij(·, ·|S) and Wij(·, ·|B) are defined by equation (24) and (25) respectively. The contracts are
feasible given the assumption 1.

Notice that the contract N , designed for standard group, will never be in the (Repay, Default)
regime (1−p2−pV < R ≤ V

2 ). In this regime, the break even condition of the lender implies that
the interest rate should be equal to that of contract M, thus the functional form of Wij(·, ·|S) is
the same with Wij(·, ·|B), but the constraint for the repayment (or equivalently for loan size) is
tighter for such contract N than for contractM, that is, any contract in this regime is dominated
by contract M. That is why we only seek the optimal contract N in the (Repay, Repay) regime
defined by the constraint (34).

The last constraint (23) is the self-selection constraints stating that no group would “cheat” by
operating as bogus group under contract N , the one designed for standard groups, and vise versa.

Conditional on (32), (33), (34) and (35), the above problem can be simplified as:

max
LN ,LM

∑
ij

qijWij

(
LN ,

LN
p(2− p)

, LM ,
LM
p

)
(37)

subject to
LM ≤ pV (38)

LN ≤ p(1− p)V (39)

max

{
Wij

(
LN ,

LN
p(2− p)

|S
)
,Wij

(
LM ,

LM
p
|B
)}

≥ max

{
Wij

(
LN ,

LN
p(2− p)

|B
)
,Wij

(
LM ,

LM
p
|S
)}, ∀ij ∈ {HH,HL,LL}, (40)

where
Wij

(
LN ,

LN
p(2− p)

|S
)

= (p(ki + kj)− 2)LN + 2p(2− p)V (Repay,Repay), (41)

Wij

(
LN ,

LN
p(2− p)

|B
)

= 2

(
pki −

1

2− p

)
LN + 2pV (Repay) (42)

Wij

(
LM ,

LM
p
|B
)

= 2(pki − 1)LM + 2pV (Repay) (43)

Wij

(
LM ,

LM
p
|S
)

=


(p(ki + kj)− 2(2− p))LM + 2p(2− p)V, LM ≤ p(1−p)

2−p V (Repay,Repay);
(p(ki + kj)− 2)LM + 2pV, p(1−p)

2−p V < LM ≤ pV
2 ; (Repay,Default)

p(ki + kj)LM , LM > pV
2 . (Default,Default)

(44)
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Lemma 1. The constraint (38) is binding, i.e.

LM = pV. (45)

Proof. see appendix A.6.

Given the above facts, the constraint (40) can be simplified as:

max{Wij(N|S),Wij(M|B)} ≥Wij(N|B), ∀ij ∈ {HH,HL,LL}, (46)

where

Wij(N|S) ≡Wij

(
LN ,

LN
p(2− p)

|S
)

= (p(ki + kj)− 2)LN + 2p(2− p)V (Repay, Repay) (47)

Wij(N|B) ≡Wij

(
LN ,

LN
p(2− p)

|B
)

= 2

(
pki −

1

2− p

)
LN + 2pV (Repay) (48)

Wij(M|B) ≡Wij(LM , V |B) = 2kip
2V (Repay) (49)

The condition (46) means that the HL group (i) either finds that it is better to operate as
a standard group under contract N (Wij(N|S) ≥ Wij(N|B)), or (ii) finds that it is better to
operate as a bogus group under contractM rather than operate as a bogus group under contract
N (Wij(N|S) < Wij(N|B) even though it is better to operate as a bogus group under contract N
(Wij(M|B) ≥ Wij(N|B)). Besides, the group choose one of the two contracts that yields higher
joint payoff, so the group choose contractM if

Wij(N|S) < Wij(M|B)⇔ LN <
2(pki − (2− p))
p(ki + kj)− 2

pV (50)

while choose contract N otherwise.
Now we are ready to prove the following proposition.

Proposition 7. Suppose the lender cannot observe the productivity of each borrower but allows the
existence of both standard and bogus group in equilibrium, then the optimal contract menu that
maximizes the expected payoff of a group consists of two contracts N ≡ {L#

N , R
#
N} and M ≡

{L#
M , R

#
M}. Contract M, designed for bogus group, is always B = {LB, RB}, while contract N ,

designed for standard group is (i) S = {LS , RS} if kH > 1
p2(2−p) , (ii) E = {LE , RE} if kH < f(kL),

or (iii) F = {LF , RF } if f(kL) ≤ kH ≤ 1
p2(2−p) , where LF = pkH−1

pkH− 1
2−p

pV and RF = LF
p(2−p) .

Homogenous ii group choose contract M iff ki ≥ 1
p2
, while HL group choose contract M iff kH ≥

f(kL). Any group choose contract N operates as standard group and any group choose contractM
operates as bogus group.

Proof. see appendix A.7.

According to proposition 7, when kL ≥ 1
p2
> 1

p2(2−p) and kH ≥ f(kL), it is optimal for the lender
to provide contract menu {S,M} and actually all types of the groups will choose contractM. This
in consistent with the results suggested by proposition 5 in section 3.3.2 where ki is observable for
the lender, since contract M is optimal for all types of groups given these parameter values no
matter ki is observable or unobservable for the lender.

Furthermore, as suggested by proposition 7, the contract menu {S,M} is optimal as long as
a looser condition with kH > 1

p2(2−p) is satisfied, because though HL group has incentive to be a
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bogus group under contract S, it will not choose contract S since it is still better for it to choose
contractM.

However, when kH ≤ 1
p2(2−p) , HL group will find that being bogus group under contract S is

more attractive than being bogus group under contract M, which will consequently cause loss to
the lender. Thus, in this case, the loan size of the contract designed for the groups which prefer
to be standard (ii group) should be reduced to the level of LF so that HL group will no longer
choosing this contract and operating as bogus. The lower bound of the loan size for contract N is
LE because no group is willing to be bogus given that level, and there is no need to reduce the loan
size lower than LE .

In the following, we visualize the above results in the figures. The assumptions 1 and 2 restricts
the parameter value space to the blue area displayed in Figure 1.

← kL = c1 ≡
2

p(2−p)

← kH = kL + c1

kL

k
H

The whole parameter space given a certain p

0

Figure 1: the whole parameter value space (blue area)

Define the group’s choice function as

τ(ki, kj) =

{
1, if Wij(N|S) ≥Wij(M|B)

0 otherwise
(51)

Let C = {HL,HH,LL} be the complete set of the types, ∅ be the empty set, and CM|B be the set
of the types that choose contractM and operating as bogus group, i.e. CM|B = {ij|τij = 0}. Let
CN|B = CM|B = {ij|τij = 1} be the set of types that choose contract N . Then we define Case A,
B, C, D as the case where CM|B = C = {HL,HH,LL}, CM|B = {HL,HH}, CM|B = {HL}, and
CB = ∅ respectively. Then we have Corollary 1, which is visualized in Figure 2.

Corollary 1. According to proposition 7, given the optimal separating contract pair (N ,M), (i)
HL group choose contract M if kH > f(kL) while choose contract N otherwise, (ii) HH group
choose contractM if kH > 1/p2 while choose contract N otherwise, (iii) LL group choose contract
M if kL > 1/p2 while choose contract N otherwise. The following four cases are possible:

• If 2/3 ≤ p < 1, we always have kH > f(kL), kH > 1/p2 and kL > 1/p2, thus all the three
types choose contractM (top-left panel of figure 2);
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Figure 2: The whole parameter space and different cases.
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• If 2/5 < p < 2/3, we always have kH > f(kL) and kH > 1/p2, thus both HL and HH groups
always choose contract M, while both choices are possible for LL groups (top-right panel of
figure 2);

• If 1/4 ≤ p ≤ 2/5, we always have kH > f(kL), thus only HL groups always choose contract
M, while both choices are possible for HH and LL groups (bottom-left panel of figure 2);

• If 0 < p ≤ 1/4, both choices are possible for HL, HH and LL groups (bottom-right panel of
figure 2).

In other words,

• HL groups choose the bogus group contractM in Case A, B, C, while they choose the standard
group contract N in Case D;
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• HH groups choose the bogus group contractM in Case A, B, while they choose the standard
group contract N in Case C, D;

• LL groups choose the bogus group contractM in Case A, while they choose the standard group
contract N in Case B, C, D;

Corollary 1 says that when the success probability p is sufficiently high (23 ≤ p < 1), all groups
will always choose contract M and operate as bogus; when the success probability p is moderate
(25 ≤ p <

2
3), both HL and HH group will always choose contractM and operate as bogus group;

when the success probability p is relatively low (0 < p ≤ 2
5), only HL group will always choose

contractM and operate as bogus group.
In general, for a group with different types of projects, bogus group is more likely to arise if the

relative heterogeneity of productivity is high; while for a group with same types of projects, bogus
group is more likely to arise if absolute level of productivity is high. Obviously, the basic intuition of
the trade-off among three factors, i.e. (i) the risk sharing benefit, (ii) strategic interaction cost and
(iii) the productivity improvement in bogus group, still apply when the each borrower’s productivity
is unobservable for the lender: for ii group, the strategic interaction cost in the repayment stage
may overwhelm the risk sharing benefit in standard group when the absolute level of productivity ki
is sufficiently high so that operating as bogus group under contractM is preferred; for HL group,
besides the first two trade-offs, when the relative heterogeneity in productivity is sufficiently high,
the extra benefit in increased joint productivity level will further strengthen the incentive for it to
operate as bogus group under contractM.

Similar to the finding in the case of observable types of project, the welfare can be enhanced
if the bogus group is not excluded but is offered with an appropriate contract. To see this, let us
examine the Figure 2. As in Figure 2 we can see that when the success probability of the projects
is high, all types of groups (HH,HL,LL) tend to prefer being bogus groups under the “right”
contract designed for bogus groups. Such result implies that by allowing the bogus group to exist
in equilibrium and providing the “right” contract to them accordingly, we can enhance the welfare
of the economy. Thus, bogus group is a bad news for the economy if we ignore the possibility of its
existence or does not tolerate its existence, but is a good news if we can provide the proper contract
for them to lead them to the efficient investment actions.

3.5 When standard group members make repayment decision collectively

In the previous sections, we assume that in a standard group, each borrower make the repayment
decision individually, leaving there a possibility of strategic interaction and free riding incentive for
each group member. This friction leads to a tight restriction on the loan size of standard group
loan contract, and becomes one important factor that influences the contract design problem for
the lender and the contract choice problem for the group. In this section, we extend our basic
model by ruling out such friction in standard group, by assuming that the repayment decision in
a standard group is made by the group collectively, not by each individual independently. We can
interpret it as a scenario that each borrower invest into one’s own project independently but the two
members pool together all the outputs together one period later and they act collectively to decide
whether repay or not, then they split the surplus according to preestablished allocations rules. Such
repayment decision pattern and surplus allocation rule in a standard group are now the same with
those of a bogus group. Thus, the unique difference between the standard group and a bogus group
comes from the investment stage: the borrowers invest in two projects in a standard group while
invest in one projects in a bogus group.

21



We still start with a basic case where due to some exogenous reason, the formation of bogus
group is not possible.

In the repayment stage, the group, makes a binary choice between repaying the entire group
liability 2R or repaying zero, similar to the previous analysis, any repayment strictly between 0 and
2R is not optimal. At the repayment stage, the group maximizes the joint payoff of a group, thus
it will choose to repay 2R iff 2R ≤ 2V , or

R ≤ V. (52)

Given assumption 1 and the above condition, the break even condition of the lender is

R =
L

p(2− p)
. (53)

Thus the lender’s problem is

max
L

Wij

(
L,

L

p(2− p)
|S
)

= (p(ki + kj)− 1)L+ p(2− p)V (54)

s.t. L ≤ p(2− p)V (55)

Since the objective function is increasing in L, the constraint (55) is binding, thus we obtain:

Proposition 8. When bogus group formation is impossible and the standard group members make
repayment decision collectively, the optimal standard group loan contract is S ′ = {L′S , R′S} where

L′S = p(2− p)V, R′S = V. (56)

We can see that, since the condition (52) is less restrictive than condition (4), the standard
group can get larger loan size in this case.

In all, the joint payoff for a ij group given contract S ′ is

Wij(L
′
S , R

′
S |S) = p2(2− p)(ki + kj)V > Wij(LS , RS |S). (57)

Notice that the contract S ′ is independent of ki and kj , therefore, it does not matter whether
ki and kj are observable for the lender or not.

By acknowledging the possibility of bogus group formation, proposition 2, which stats about a
general contract {L,R}, still applies here. Notice that the RHS of condition (11) is the the ex-ante
total net benefit (insurance value) from being in a standard group for both borrowers, i.e.

I = 2p(1− p)(V −R). (58)

It turns out that, at contract S ′, since R′S = V , the insurance value of standard group relative
to bogus group is zero. Such result indicates that compered with bogus group, standard group’s
relative advantage (insurance/risk-sharing benefit) and relative disadvantage (strategic interaction
cost) accompany with each other: when we shut down the strategic interaction cost by assuming that
standard group members act collectively in repayment stage, the net insurance benefit of standard
group relative to bogus group also disappears. However, the productivity improvement benefit of
bogus group still exists for heterogeneous group HL. Straightforwardly, we obtain the following
proposition, which shows the consequence of the possibility of bogus group forming if the lender
(mistakenly) offers the group loan contract S ′:
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Proposition 9. If borrowers make repayment decision collectively in a standard group, and the
group loan contract S ′ is offered, any ij group with

ki − kj > 0, (59)

or equivalently HL group, will optimally operates as bogus group, which consequently incur a loss to
the lender.

We proceed by discussing how can the lenders address the bogus group problem when they
acknowledge the possibility of bogus groups forming in the following.

We first consider the case in which the lender cannot allow the existence of bogus group in any
situation. To be consistent with section 3.4, we still assume that each borrower’s productivity is
unobservable for the lender. So the lender can offer a common contract {L∗′ , R∗′} independent from
ij for the entire population so that using it any borrower group would optimally choose to be a
standard group and each member will not default strategically. Similarly, the contract {L∗′ , R∗′}
solves:

max
L,R

Wij(L,R|S) = p(ki + kj)L− 2p(2− p)R+ 2p(2− p)V (60)

s.t. (2), (29), (52), (53),

Similar to the analysis of appendix A.4, it turns out that contract E = {LE , RE} is also the
optimal solution in this case. We obtain the following proposition.

Proposition 10. If borrowers make repayment decision collectively in a standard group, the lender
cannot observe the productivity of each borrower and cannot allow the existence of bogus group, then
the optimal contract is E = {LE , RE}.

Suppose now the lender allows the existence of both standard group and bogus group in equilib-
rium, similar to the analysis in previous section, the lender can offer two contracts N ′ = {L#′

N , R
#′

N }
andM = {L#′

M , R
#′

M } targeted at standard group and bogus group respectively, such that (a) any
group chooses contract N ′ self-selects to be standard form and any group chooses contract M′
self-selects to be bogus form, (b) no borrower default strategically and (c) the ex-ante expected
joint payoff of the group (or equivalently, the total payoff of the population) is maximized. So
L#′

N , R
#′

N , L#′

M , R
#′

M solve the problem

max
LN ,RN ,LM ,RM

∑
ij

qijWij(LN , RN , LM , RM ) (61)

subject to
RM ≤ V (62)

RM =
LM
p

(63)

RN ≤ V (64)

RN =
LN

p(2− p)
(65)

max{Wij(LN , RN |S),Wij(LM , RM |B)}
≥ max{Wij(LN , RN |B),Wij(LM , RM |S)}

,∀ij ∈ {HH,HL,LL} (66)

where Wij(LN , RN , LM , RM ) ≡ max{Wij(LN , RN |S),Wij(LM , RM |B)}, and the joint payoff func-
tion Wij(·, ·|S) and Wij(·, ·|B) are defined by equation (24) and (25) respectively. The contracts are
feasible given the assumption 1. Note that constraint (64) is different from (34) now.

Similarly, we attain the following proposition.
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Proposition 11. Suppose borrowers make repayment decision collectively in a standard group, the
lender cannot observe the productivity of each borrower but allows the existence of both standard and
bogus group in equilibrium, then the optimal contract menu that maximizes the expected payoff of
a group consists of two contracts N ′ ≡ {L#′

N , R
#′

N } and M′ ≡ {L#′

M , R
#′

M }. Contract M′, designed
for bogus group, is always B = {LB, RB}, while contract N ′, designed for standard group is (i)
E = {LE , RE} if kH < f(kL), or (ii) F = {LF , RF } if kH ≥ f(kL). Homogenous ii group always
choose contractM′ (i.e. B), while HL group choose contractM′ iff kH ≥ f(kL). Any group choose
contract N ′ operates as standard group and any group choose contractM′ operates as bogus group.

The above proposition shows that, when we assume that the borrowers in a standard group
make repayment decision collectively so that there is no strategic interaction cost, the loan size
of the contract designed for standard group is enlarged. Consequently, even when proper bogus
group loan contract M′ (i.e. B) is provided, the homogenous ii group still prefer to be standard
group. However, since heterogeneous HL group has an extra benefit (improvement in productivity)
when operating as bogus group, such group prefer the one designed for bogus group as long as the
heterogeneity in productivity is sufficiently high.

4 Conclusion

In this paper, we study the group-lending problem by considering the possibility of bogus group for-
mation. There are three driving forces that influence the contract design and group type formation
in our model.

The first one is the risk sharing benefit in a standard group: the probability that the group
fulfills the joint liability is higher due to risk sharing in a standard group than that that in a bogus
group, thus the mechanism of the standard group lending resembles a insurance that reduces the
probability of losing the future credit value for each borrower.

The second one is the strategic interaction cost in a standard group: each member of a standard
group makes the repayment decision independently so that each has the opportunity to default
strategically while free ride on the partner’s repayment action, thus the loans size for a standard
group is reduced so that both borrowers will not default strategically; however, bogus group members
act collectively and there is no such strategic interaction, thus the loan size of bogus loan contract
is always larger.

The third one is the productivity improvement that exist in a bogus group with heterogeneous
productivity: the average productivity of a HL group will increase form 1

2(kH + kL) to kH if the
group deviate from being a standard group to being a bogus group, since the bogus group will invest
the entire loaned fund into the project with higher productivity kH .

Given the trade-off among the above three factors, it is straightforward to understand the
findings of our model. We find that if the the borrowers can freely choose to be either standard
group or bogus group, bogus group will arise under the standard group loan contract when the
heterogeneity of the borrowers’ productivity is sufficiently high (condition (13)), and such bogus
group will cause loss to the lender. This results from the trade-off between the risk sharing benefit
of standard group and productivity improvement of bogus group.

We proposed optimal contracts to solve the bogus group problem in two complementary cases:
either bogus group is allowed or not allowed to exist in equilibrium for some exogenous reasons
discussed in the paper. The lender can exclude the existence of bogus group only by holding the
interest rate at the level for standard group and reducing the loan size so that borrowers’ incentive
constraint to form bogus group does not hold. This method takes effect though the channel by
holding the risk sharing benefit of standard group constant while reducing the benefit from improved
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productivity in bogus group. Of course, it is not optimal if we only consider the joint payoff of the
borrowers in the group. If bogus group is allowed to exist, the lender provides appropriate contract
that targets to either standard or bogus group, depending on the group’s joint payoff under two
forms of groups. We find that the welfare for each type of group can be enhanced if bogus group
is allowed to exist because the loan size in a bogus group can be enlarged significantly given that
bogus group removes the strategic interaction cost arise in the repayment stage.

We also considered the situation in which the lender is unable to observe the productivity of each
borrower. It turns out that the mains findings are similar and basic intuition still hold. The welfare
of each type of group increases if bogus group is allowed and addressed properly. And homogeneous
ii group prefer to be bogus group if the absolute level of productivity is sufficiently high, while
HL group prefer to be bogus group if the relative heterogeneity of productivity is sufficiently high,
which also reflects the trade-off the three factors summarized above.

In addition, we also show that when we assume that the group members in a standard group
make repayment decision collectively, so that the strategic interaction friction is ruled out, then the
loan size for standard group becomes larger. However, the bogus group problem still exists and we
show that the solutions to it is similar to those we proposed above. The only main difference is
that, homogeneous ii group will never choose to be bogus group even when the lender provides the
proper contract for bogus group. However, HL group may optimally choose to accept the contract
designed for bogus group and consequently, the welfare of such group is enhanced compared with
the case where bogus group is not allowed to exist.

Such results imply that by allowing the bogus group to exist in equilibrium and providing the
“right” contract to them accordingly, we can enhance the welfare of the economy. Thus, bogus group
is a bad news for the economy if we ignore the possibility of its existence or does not tolerate its
existence, but is a good news if we can provide the proper contract for them to lead them to the
efficient investment actions.
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A Appendix

A.1 Proof of Proposition 1

Since the objective function (8) is decreasing in R, lender’s participation constraint must be binding
(the lender breaks even), i.e. R = L

p(2−p) . Therefore the optimization problem is reduced to be

max
L

(p(ki + kj)− 2)L+ 2p(2− p)V, (67)

s.t. L ≤ p(1− p)V. (68)

Since the objective function is increasing in L, the constraint (68) is binding. Thus the contract
S = {LS , RS} given in the proposition 1 is optimal.

A.2 Proof of Proposition 2

We only need to consider the joint payoff of the group when being standard group and bogus group,
because as long as the total surplus increases, the Nash bargaining will yield a Pareto improvement.
Since ki ≥ kj , the entire loans (2L) will be invested in the i type project. The group loan contract
{L,R} must satisfy the feasibility condition (2), then the bogus group has enough output 2kiL
when succeed to cover repayment 2R since 2kiL > 2kjL ≥ 4R > 2R. The bogus group will repay
upon success if 2kiL− 2R+ 2V ≥ 2kiL, or

R ≤ V, (69)

while default strategically otherwise. The LHS of (21) is the repayment conditional on project
success (i.e., the marginal cost of not defaulting), while the RHS is the marginal benefit from future
credit access, which increases from 0 to V due to choosing to repay. Therefore the joint payoff if
they form a bogus group given the contract {L,R} is

Wij(L,R|B) =

{
2pkiL− 2pR+ 2pV, R ≤ V (Repay);
2pkiL, R > V (Default).

(70)

The group loan contract {L,R} must satisfy the condition 4, given this the ij group will form
a bogus group if and only if Wij(L,R|B) ≥Wij(L,R|S), which is exactly the condition (11).

A.3 Proof of Corollary 3

Given the contract {LS , RS}, condition (11) is equivalent to LS >
p(2−p)V

1+
p(2−p)
2(1−p)

(ki−kj)
, or

ki > kj +
2

p(2− p)
. (71)

If i = j, (71) is impossible to hold. Therefore, given the standard group loan contract {LS , RS},
bogus group will arise only if i = H and j = L and and the condition (13) holds. The joint payoff
of the bogus group under contract S is

WHL(LS , RS |B) =2p(kHLS −RS + V )

=2

(
pkH −

1

2− p

)
p(1− p)V + 2pV

=2

((
pkH −

1

2− p

)
(1− p) + 1

)
pV.
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However, the profit of the lender is

2pRS − 2LS = 2

(
p

LS
p(2− p)

− LS
)

= −2(1− p)
2− p

LS < 0,

so the bogus group causes loss to the lender.

A.4 Proof of Proposition 4

In this case, the break-even condition for the lender is

R =
L

p(2− p)
.

Then the constraint (4), (2) and (18) imply

L ≤ p(1− p)V, (72)

and
L ≤ p(2− p)V

1 + p(2−p)
2(1−p)(ki − kj)

. (73)

The above two constraints are equivalent to

L ≤ min

p(1− p)V, p(2− p)V
1 + p(2−p)

2(1−p)(ki − kj)

 =

p(1− p)V, if i = j
p(2−p)V

1+
p(2−p)
2(1−p)

(kH−kL)
, if i = H, j = L

. (74)

Since objective function increases with L, the lender should provide the largest possible loan size,
the optimal contract for ii group is still the contract S, whereas that for HL group is given by (19).

A.5 Proof of Proposition 5

The maximization problem can be equivalently broken down into a two stage maximization problem.
In the first stage, given τ ∈ {0, 1}, we solve

Wij(τ) = max
L,R

W (L,R, τ), (75)

s.t. (21), (22), (23). (76)

In the second stage, we solve
W#
ij = max

τ
Wij(τ). (77)

Consider the first stage problem. Given τ = 1, we have

Wij(1) = max
L,R

Wij

(
L,

L

p(2− p)
|S
)
, (78)

subject to
L ≤ p(1− p)V, (79)

Wij

(
L,

L

p(2− p)
|S
)
≥Wij

(
L,

L

p(2− p)
|B
)
, (80)
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where
Wij

(
L,

L

p(2− p)
|S
)

= (p(ki + kj)− 2)L+ 2p(2− p)V,

Wij

(
L,

L

p(2− p)
|B
)

= 2

(
pki −

1

2− p

)
L+ 2pV.

The constraint (80) is equivalent to

L ≤ p(2− p)V
1 + p(2−p)

2(1−p)(ki − kj)
, (81)

Since the objective is increasing in L, we have

L#
ij(1) = min

p(1− p)V, p(2− p)V
1 + p(2−p)

2(1−p)(ki − kj)

 =

p(1− p)V, if i = j
p(2−p)V

1+
p(2−p)
2(1−p)

(kH−kL)
, if i = H, j = L

(82)

and

Wij(1) =(p(ki + kj)− 2)L∗ij(1) + 2p(2− p)V

=


2(p(1− p)ki + 1)pV, if i = j
kH+kL+

(2−p)
(1−p)

(kH−kL)

1+
p(2−p)
2(1−p)

(kH−kL)
p2(2− p)V, if i = H, j = L

(83)

Given τ = 0, we have

Wij(0) = max
L,R

Wij

(
L,
L

p
|B
)
, (84)

subject to
L ≤ pV, (85)

Wij

(
L,
L

p
|B
)
≥Wij

(
L,
L

p
|S
)
, (86)

where
Wij

(
L,
L

p
|B
)

= 2(pki − 1)L+ 2pV,

Wij

(
L,
L

p
|S
)

=


(p(ki + kj)− 2(2− p))L+ 2p(2− p)V, L ≤ p(1−p)

2−p V (Repay,Repay);
(p(ki + kj)− 2)L+ 2pV, p(1−p)

2−p V < L ≤ pV
2 (Repay,Default);

p(ki + kj)L, L > pV
2 . (Default,Default)

(87)
Since the objective is increasing in L, we have

L∗ij(0) = pV, (88)

and
Wij(0) = 2p2kiV. (89)

Then consider the second stage problem (77), we haveτ∗ = 0 iff

Wij(0) > Wij(1)⇔

{
ki >

1
p2
, if i = j

kH > f(kL), if i = H, j = L
, (90)

while τ∗ = 1 otherwise.
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A.6 Proof of Lemma 1

Before proving Lemma 1, we first prove the following lemma.

Lemma 2. Conditional on the constraint (38), (39) and (36), we can increase LM holding LN
constant so that the constraint (36) still holds.

Proof. Conditional on the constraint (38), (39), we have W
(
LM ,

LM
p |S

)
≥W

(
LM ,

LM
p |B

)
if and

only if LM ≤ L∗M ≡ min
{

2p(1−p)V
p(ki−kj)+2(1−p) ,

p(1−p)V
2−p

}
.

In the regime where LM ≤ L∗M , we have

W

(
LM ,

LM
p
|S
)

= (p(ki + kj)− 2(2− p))LM + 2p(2− p)V (91)

Consequently,

dW
(
LM ,

LM
p |B

)
dLM

= 2(pki − 1) > p(ki + kj)− 2(2− p) =
dW

(
LM ,

LM
p |S

)
dLM

(92)

Therefore, by increasing LM holding LN constant, the LHS of the constraint (36) increases weakly
faster than the RHS of it, so the constraint (36) will still hold.

In the regime where LM > L∗M , the constraint (36) is equivalent to

max

{
W

(
LN ,

LN
p(2− p)

|S
)
,W

(
LM ,

LM
p
|B
)}
≥W

(
LN ,

LN
p(2− p)

|B
)

(93)

Notice that W
(
LM ,

LM
p |B

)
is increasing in LM , hence, by increasing LM holding LN constant,

the LHS of (93) weakly increases while the RHS of it remains constant, i.e., both the precondition
LM ≥ L∗M and the constraint (93) will still hold, which means that the constraint (36) will still
hold.

Combining the analysis above, we achieve the argument as desired.

According to Lemma 1, suppose LM < pV , we can increase LM holding LN constant, so that the
constraint (36) still holds. However, since the W

(
LM ,

LM
p |B

)
is increasing in LM , the objective

function weakly increases, therefore LM = pV = LB is optimal. Thus the optimal contract M
should be B = {LB, RB}.

A.7 Proof of Proposition 7

Since
Wij(N|S) ≥Wij(N|B)⇔ LN ≤ L1(ij) ≡

p(2− p)V
1 + p(2−p)

2(1−p)(ki − kj)
(94)

and
Wij(M|B) ≥Wij(N|B) > Wij(N|S)⇔ L1(ij) < LN ≤ L2(ij) ≡

pki − 1

pki − 1
2−p

pV, (95)

the condition (46) is equivalent to

LN ≤ max{L1(ij), L2(ij)},∀ij ∈ {HH,HL,LL} (96)
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Notice that the above condition should hold for all ij ∈ {HH,HL,LL}, thus it is equivalent to

LN ≤ max{LE , LF } (97)

where LE = L1(HL) =
p(2−p)V

1+
p(2−p)
2(1−p)

(kH−kL)
and LF = L2(HL) ≡ pkH−1

pkH− 1
2−p

pV .

Combining the condition (39) and (96) together yields

LN ≤ min{LS ,max{LE , LF }} =


LS , kH > 1

p2(2−p) (case 1)

LF , f(kL) ≤ kH ≤ 1
p2(2−p) (case 2)

LE , kH < f(kL) (case 3)

(98)

Notice that the objective function is weakly increasing in LN , so the optimal values will be the
largest possible while satisfying all constraints, i.e. L∗N = min{LS ,max{LE , LF }} is optimal. So
the optimal contract N , designed for standard group is (i) S = {LS , RS} if kH > 1

p2(2−p) , (ii)
E = {LE , RE} if kH < f(kL), or (iii) F = {LF , RF } if f(kL) ≤ kH ≤ 1

p2(2−p) .
For HL group, by deviating from contract N to contract M (i.e. B), the productivity and

refinancing probability remains the same, the group faces the trade-off between larger loan size of
contract M and lower interest rate of contract N . From (95), we know that LF is the loan size
such that the HL group is indifferent between the two contracts, hence, HL group strictly prefer
contract M in case 1 and weakly prefer contract M in case 2, but strictly prefer contract N in
case 3. In summary, HL group prefer contractM if LF ≥ LE , which is equivalent to the condition
kH ≥ f(kL) in proposition 7.

According to (50), the ii group prefer contractM if

LN <
pki − (2− p)
pki − 1

pV (99)

where LN is given as in equation (98). If LF ≥ LS (i,e, pkH−1
pkH− 1

2−p

> 1 − p), then L∗N = LS , the ii

group prefer contractM only if 1− p < pki−(2−p)
pki−1 ⇔ ki ≥ 1

p2
.

If LE ≤ LF < LS , then L∗N = LF , the condition (99) becomes ki ≥ (2 − p)kH , which is
impossible to hold. Therefore, ii group must strictly prefer contract N in this case. The intuition
is as follows. Given the contract pair, if a ii group deviate from contract N , under which it will
be standard group, to contractM, besides the trade-off between larger loan size and lower interest
rate, such group also suffer the decrease in the probability of getting the refinancing opportunity,
which deceases from p(2−p) to p, that is, the net gain of such a deviation for ii group is always less
than that for HL group. Notice that LF is the threshold that makes HL feel indifferent between
the two contracts, then ii group must strictly prefer contract N .

If LF < LE , then L∗N = LF , the condition (99) is also impossible to hold. The intuition above
also applies: in this case even HL group prefer contract N , then based on the augment above, ii
group also prefer contract N .

In conclusion, ii group prefer contractM if and only if L∗N = LS and ki ≥ 1
p2
, or equivalently,(

pkH − 1

pkH − 1
2−p

> 1− p

)
∧
(
ki ≥

1

p2

)
⇔
(
kH >

1

p2(2− p)

)
∧
(
ki ≥

1

p2

)
⇔ ki ≥

1

p2
(100)
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A.8 Allow the (Repay,Default) equilibrium for standard group

In this section, we suppose that the lender is allowed to provide a group loan contract in the
(Repay,Default) regime for the standard group. The joint payoff Wij(L,R|S) of the standard group
given the contract {L,R} is

Wij(L,R|S) =


p(ki + kj)L− 2p(2− p)R+ 2p(2− p)V, R ≤ 1−p

2−pV (Repay,Repay);
p((ki + kj)L− 2R+ 2V ), 1−p

2−pV < R ≤ V
2 ; (Repay,Default)

p(ki + kj)L, R > V
2 . (Default,Default)

(101)
The ex-ante probability φ(L,R) that the lender receives 2R is

φ(L,R) =


p(2− p), R ≤ 1−p

2−pV (Repay,Repay);
p, 1−p

2−pV < R ≤ V
2 ; (Repay,Default)

0, R > V
2 . (Default,Default)

(102)

Thus, the lender’s participation constant is

2φ(L,R)R− 2L ≥ 0 (103)

⇔ R ≥ L

φ(L,R)
=

{
L

p(2−p) , R ≤ 1−p
2−pV (Repay,Repay);

L
p ,

1−p
2−pV < R ≤ V

2 ; (Repay,Default)
(104)

Thus, the lender can offer a contract either in the (Repay, Repay) regime or in the (Repay,
Default) regime. Assuming zero profits for the lender because of free entry or because of the
lenders’ mission, as explained above, the optimal standard group loan contract can be defined as
the loan size and repayment {LG, RG} which maximize the joint payoff of a standard group, that
is, the contract {LG, RG} which solves:

max
L,R

W (L,R|S) (105)

s.t. (2) and (104)

The two constraints (2) and (104) can be reduced as

L

φ(L,R)
≤ R ≤ 1

2
kjL (106)

which is non-empty only if

kj ≥
2

φ(L,R)
=

{
2

p(2−p) , R ≤ 1−p
2−pV (Repay,Repay);

2
p ,

1−p
2−pV < R ≤ V

2 ; (Repay,Default)
(107)

Then we obtain the following proposition.

Proposition 12. The optimal standard group loan contract G = {LG, RG} is S = (LS , RS) and
the Nash-equilibrium in repayment stage is (Repay, Repay) if (i) 2

p(2−p) ≤ kj <
2
p , or (ii) kL ≥ 2

p ,
p ≤ 1

2 , or (iii) kL ≥ 2
p ,

1
2 < p ≤ 3

4 , p(p−
1
2)(ki + kj) ≤ 1; the optimal standard group loan contract

G = {LG, RG} is is H = {LH , RH} and the Nash-equilibrium in repayment stage is (Repay, Default)
if (d) kL ≥ 2

p ,
1
2 < p ≤ 3

4 , p(p−
1
2)(ki+kj) > 1, or (e) kL ≥ 2

p , p >
3
4 , whereLH = pV

2 and RH = V
2 .
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Intuitively, in the (Repay, Default) regime (1−p2−pV < R ≤ V
2 ), deviating from forming a standard

group to forming a bogus group does not change the repayment probability (equal to p in both
cases), thus does not change the expected joint refinancing value (equal to 2pV in both cases), but
it increases the expected joint output from p(ki + kj)L to 2pkiL, thus it is always better for the
borrowers to be a bogus group in this regime.

Even though we show here that contract H may arise in the standard group lending practice
when the bogus group problem is assumed away, it will never arise when we allow the existence of
bogus group and design optimal contract(s) because any such contract will be dominated by the
contract designed for the bogus group, see section 3.3.2 and 3.4.2.
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