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Abstract

This paper provides a new bridge sampler that can efficiently generate sample paths, subject
to some endpoint condition, for non-Gaussian dynamic models. This bridge sampler uses a
companion pseudo-Gaussian bridge as the proposal and sequentially re-simulates sample paths
via a sequence of tempered importance weights in a way bearing resemblance to the density-
tempered sequential Monte Carlo method used in the Bayesian statistics literature. This bridge
sampler is further accelerated by employing a novel idea of k-fold duplicating a base set of
sample paths followed by support boosting. We implement this bridge sampler on a GARCH
model estimated to the S&P 500 index series, and our implementation covers both parametric
and non-parametric conditional distributions. Our performance study reveals that this new
bridge sampler is far superior to either the simple-rejection method when it is applicable or
other alternative samplers designed for paths with a fixed endpoint. Computing SRISK of the
NYU-Stern Volatility Institute is then used to demonstrate the method’s real-life applicability.
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1 Introduction

We propose a new bridge sampling method that can efficiently generating sample paths, subject to
some endpoint condition, for any non-Gaussian dynamic model. A stochastic bridge is a random
sample path, Xt, that starts from some known value initially, say, x0, but always lands at a fixed
value at some future time point, say, time T . Were the distribution of Xt (for any 0 < t < T )
conditional on x0, XT and other initial information variables at time 0 analytically known, sampling
such a stochastic bridge would be rather straightforward. Other than Gaussian systems, general
dynamic models are not expected to be analytically tractable. As a concrete example, the popular
discrete-time GARCH(1,1) model’s initial condition can be completely characterized by x0 and σ1,
but the distribution of Xt conditional on x0, σ1 and XT has no known tractable analytical solution.
In this paper, we offer a novel sequential Monte Carlo (SMC) sampling scheme to effectively generate
GARCH bridges or other general non-Gaussian bridges (discrete or continuous-time). In addition,
we expand this new bridge sampling technique to allows for the endpoint condition to be a set of
points as opposed to be just a singleton.

Bridge sampling is often needed for dynamic scenario analyses, particularly stress testing where
one must generate many sample paths for some stochastic process of interest in order to assess the
consequences of a prescribed stress scenario. Supervisor-led stress testing is becoming the norm
for banks, with scenarios being prescribed by regulators and aggregated by banks in bottom-up
fashion. Banks also conduct internal stress testing to determine economic capital and augment
various value-at-risk measures. Supervisors themselves conduct top-down stress tests alongside
banks.1

The well-known SRISK, a systemic risk measure championed by Nobel laureate, Professor
Robert Engle, is a concrete example of dynamic scenario analysis. SRISK proposed by Acharya,
et al (2012), uses the methodology in Brownlees and Engle (2012), and is released and maintained
by the Volatility Institute at Stern School of Business, New York University. SRISK measures a
financial institution’s need for additional equity capital when the general stock market falls by a
factor of at least 40% over a period of six months (126 trading days). SRISK assumes that a broad-
based stock market index value follows the GJR-GARCH process of Glosten, et al (1993) on a
daily frequency. Because the conditional distribution under the stress scenario has no tractable an-
alytical solution, the SRIK methodology relies on a simple-rejection technique; that is, to simulate
the GJR-GARCH model forward for six months and only keep those paths satisfying the endpoint
condition. Since the endpoint condition is a set with a positive probability, simple-rejection sam-
pling works theoretically but is rather inefficient computationally. At the average volatility level
of the S&P500 index, the acceptance rate is about 0.244%, meaning that only 24.4 out of every

1For an overview of supervisory stress tests and regulatory perspectives, readers are referred to the BCBS Report
on principles for sound stress testing practices and supervision (2009), Borio, et al (2014), Moretti, et al (2008),
Cihak (2007) and Sorge (2004). Jurisdiction-specific reports are available in the EBA Report on EU-wide stress test
(2014), Fed Report on SCAP (2009), Hirtle and Lehnert (2014), Borio and Drehmann (2009), Boss, et al (2007),
Drehmann (2005) and Virolainen (2004).
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10,000 generated paths will be kept.2 As a comparison, our bridge sampler is able to reduce the
computing time by a factor of over 10 times while having correct distributional properties.

At the heart of our bridge sampling scheme is the application of density-tempered SMC to
sequentially modify a set of sample paths originated from a pseudo-Gaussian proposal to eventually
arrive at a set of target bridge paths. The simulated sample paths are brought through a sequence of
density-tempered intermediate targets with reweighting, resampling and support boosting (via the
Metropolis-Hastings move). The density-tempered SMC algorithm can be likened to running many
independent Markov chains simultaneously while feeding the chains with stationarily distributed
random paths represented by the SMC sample for a particular intermediate target. The Metropolis-
Hastings move is therefore used only for the purpose of support boosting as opposed to achieving
convergence to the stationary distribution. The density-tempered SMC approach allows us to
exercise control over the effective sample size at different stages and to balance between efficiency
and richness of path variety. We further accelerate this bridge sampler by employing a novel idea
of k-fold duplicating a base set of sample paths followed by support boosting. Our bridge-sampling
algorithm is easy to implement, and delivers exact draws from the target bridge. This bridge-
sampling approach is inspired by the density-tempered SMC method of Del Moral, et al (2006)
and Duan and Fulop (2015), which are designed for Bayesian statistical analysis.

We use the ARCH/GARCH model, pioneered by Engle (1982) and Bollerslev (1986), to con-
cretely demonstrate how our proposed bridge-sampling technique works for non-Gaussian stochastic
processes. Specifically, we adopt the GJR-GARCH(1,1) version by Glosten, et al (1993) because
it is this GARCH model underlying SRISK. Our bridge-sampling method is obviously applicable
to any properly discretized version of continuous-time stochastic volatility models because they
resemble the GARCH model. Intuitively, our bridge sampler is expected to work well for general
non-Gaussian stochastic processes, and thus adds to the literature by providing an efficient and
accurate means to simulate stochastic processes subject to an endpoint condition.

In the context of stochastic differential equations, simulating diffusion bridges has long been
the interest of many researchers. By the theory of h-transforms available in, say, Rogers and
Williams (2000), the diffusion bridge will share the local characteristics with the original diffusion,
meaning that the diffusion term remains unchanged. The drift term of the diffusion bridge needs
to be adjusted in a way to ensure that the diffusion bridge meets its fixed endpoint, but the
adjustment term tends to be intractable. Nevertheless as shown in Papaspiliopoulos and Roberts
(2012), an importance sampling scheme by using the linear diffusion bridge, whose dynamic is
analytically solvable using the h-transform theory, can serve as a proposal. This result is fairly
intuitive, because the likelihood ratio of the target diffusion bridge over the proposal of a linear
diffusion bridge can be evaluated up to a proportional constant, which need not be known for the
importance sampling purpose. A more sophisticated diffusion bridge sampling scheme has recently
been proposed by Bladt and Sorensen (2014) where the proposal bridge is constructed by taking
the path that forward and reverse sampling of the target diffusion intersect within the time span

2This acceptance rate is obtained with the GJR-GARCH model with conditional t distribution estimated to the
daily time series of the S&P500 index values from 2 January 1990 to 18 September 2015.
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of the bridge. In contrast to the literature on diffusion bridges, our bridge sampler is also based on
importance sampling but can handle both continuous-time and discrete-time stochastic processes
even with non-parametric conditional distributions. Moreover, the density-tempered SMC feature
really distinguishes our bridge sampler. It is quite clear that the importance sampling schemes
in the diffusion bridge literature can benefit from adopting the density-tempered SMC in their
algorithmic designs.

Our bridge sampler can be fairly easily generalized to handle multidimensional bridges. More
interestingly perhaps is the situation where the paths of a multivariate stochastic process are
generated with an endpoint condition only applicable to one or a subset of variables. As Foglia
(2009) notes, stress test scenarios should be coherent. In the typical example of a macroeconomic
stress test involving a severe shock to GDP, one needs to generate coherent shocks to unemployment,
FX, asset prices, as well as financial variables. Along the same vein, there is increasing emphasis on
the integration/interaction of market risk and credit risk – conditional on a severe market shock, how
would credit factors respond? Authors who have highlighted this issue include Hartmann (2010),
Drehmann et al (2010), Bellini (2013), and Alessandri and Drehmann (2010). SRISK, an application
examined in this paper, fits nicely in this category. SRISK in essence hinges on measuring how a
financial institution’s equity value would respond to a severe stock market downturn. The results
presented in this paper show that our bridge sampler performs well vis-a-vis the simple rejection
method employed by SRISK in a bivariate setting.

Our bridge sampler can also contribute to the literature on infill statistics in the context of
estimating diffusion models. If analysts are only privy to discretely sampled observations, a “dis-
cretization bias” inevitably occurs when the Euler-Maruyama approximation is used in estimation.
Pedersen (1995) proposed to reduce this bias by simulating extra points between two adjacent
observations to bring the discretized version closer to the target model. These “infill” points are
of course unobservable, and hence need to be integrated out in some way. The Perdersen (1995)
solution is based on unconditional forward simulation to the last infill point and averages the con-
ditional density of the endpoint evaluated at the last infill point. This solution, albeit creative, is
a rather crude way of conducting a bias correction. The literature has expanded since to include
the use of the Gaussian bridge as in Durham and Gallant (2002) and some importance sampler as
in Elerian, et al (2001). Further reading on this literature can be found in Kleppe, et al (2014).

All in all, we add to the growing literature on density-tempered SMC with a unique methodolog-
ical development with many potential applications. While our focus and the example are geared
towards finance/economics, this new bridge sampler can certainly be applied to a wider range of
problems in other disciplines.
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2 A non-Gaussian bridge sampler based on density-tempered SMC

The non-Gaussian bridge sampler proposed here borrows the idea of density-tempered SMC in the
Bayesian statistics literature such as Del Moral, et al (2006) and Duan and Fulop (2015) where
density-tempering is used to bridge the far apart prior and posterior distributions. Here we choose
bridge-sampling the GARCH model to describe the method and demonstrate it in action. The
GARCH model exhibits an attractive nonlinear dynamic through volatility, and has been widely
applied to model financial time series. We focus on the GJR-GARCH version by Glosten, et al
(1993) because of its popularity and ability to capture asymmetric volatility responses. But our
bridge sampler is generically applicable to a wide range of non-Gaussian stochastic processes.

Let the logarithmic asset price at time t be denoted by Xt. Assume that the asset return (con-
tinuously compounded) follows the GJR-GARCH model and mean is allowed to be autoregressive
of first order:

Xt = µ+ ρXt−1 + εt (1)

σ2t = ω + (α+ γIt−1)ε
2
t−1 + βσ2t−1 (2)

It−1 =

{
0 if εt−1 ≥ 0

1 if εt−1 < 0
(3)

εt | Ft−1 ∼ D(0, σ2t ) (4)

where εt, conditional on the information set Ft−1 at time t−1, follows some distribution with mean
0 and variance σ2t . Denote by f(Xt | Xt−1, σt) the conditional density function, which can be either
parametric or non-parametric.

We wish to generate random paths, X = (x0, X1, X2, · · · , XT ), subject to the condition that
XT ∈ A where A is a set. If A is a set with a small probability of occurrence, say, some level below
x0, a straightforward simulation-rejection method may be applied albeit inefficient. When A is a
singleton, say, at exactly some level below x0, bridge sampling seems to be the only sensible way
to generate a sample, because a singleton set has a zero probability of occurrence. Our proposed
bridge sampler can deal with both situations.

2.1 Initialization by a pseudo-Gaussian bridge

Given the starting value x0 at time 0, one first samples the endpoint XT ∈ A with an easy-to-sample
distribution, g(XT | x0, σ1, A). When A is a singleton, this distribution trivially equals to 1 at the
only permissible endpoint. We will discuss in a later section how to choose g(XT | x0, σ1, A) when
A is an interval.

Once XT is in place, a pseudo-Gaussian bridge sampler is applied to generate {X1, X2, ..., XT−1}
sequentially, knowing that it is a sample from a wrong but easy-to-sample bridge. This pseudo-
Gaussian bridge utilizes the conditional mean and variance implied by the Gaussian bridge. How-
ever, motivated by the fact that the target GARCH model has heavy tails, the bridge samples are
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generated with t distribution. The pseudo-Gaussian bridge also takes into account the conditional
volatility implied by the target GARCH model as one moves along a sample path, i.e., σt, so that
it more closely resembles the target model. In other words, advance the system from t = 1 to T −1
one time point at a time using the following system:

Xt = αt(Xt−1) + βtXT + ut (5)

αt(Xt−1) = µ+ ρXt−1 − βt
(

1− ρT−t+1

1− ρ
µ+ ρT−t+1Xt−1

)
(6)

βt = ρT−t
1− ρ2

1− ρ2(T−t+1)
(7)

ζ2t = kb
1− ρ2 − β2t (1− ρ2(T−t+1))

1− ρ2
σ2t (8)

ut ∼ ζt

√
νb − 2

νb
t(0, νb) i.i.d. (9)

where t(0, νb) is t distribution with νb degrees of freedom and νb > 2 to ensure a finite variance.
Note that the terms αt(Xt−1) and βt come from the standard Gaussian bridge results. For the
variance term (8), we made the design choice to introduce a multiplier kb to increase the span of
the Gaussian bridge draws because the target GARCH has a known stochastic mixing feature that
increases the distribution’s tail thickness. Also, instead of scaling up a constant volatility as in
standard Gaussian bridge, σ2t is used to track the volatility of the target model and is updated
according to equation (2) recursively.

If νb =∞, the pseudo-Gaussian bridge becomes a sequence of standard Gaussian bridge draws
based on changing volatilities. In the limiting case of ρ = 1, in other words no mean reversion, the
above set of equations can be simplified to:

Xt =
T − t

T − t+ 1
Xt−1 +

1

T − t+ 1
XT + ut (10)

ζ2t = kb
T − t

T − t+ 1
σ2t (11)

ut ∼ ζt

√
νb − 2

νb
t(0, νb) i.i.d. (12)

Each simulated path is essentially a (high-dimensional) point and should be associated with an
importance weight. The log-density of the path under the pseudo-Gaussian bridge sampler is:

lnLPGbridge(X) = (T − 1) ln
Γ(νb+1

2 )√
π(νb − 2)Γ(νb2 )

−
T−1∑
t=1

[
ln ζt +

νb + 1

2
ln

(
1 +

u2t
ζ2t (νb − 2)

)]
+ ln g(XT | x0, σ1, A). (13)

Note that the first term on the right-hand side of the above equation is a norming constant and
need not be evaluated for the algorithm, because converting importance weights into probabilities
will naturally remove the norming constant.
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The log-density of this path under the true GJR-GARCH bridge with the conditional density
function, f(Xt | Xt−1, σt), is:

lnLgarch(X) =
T∑
t=1

ln f(Xt | Xt−1, σt)− lnProb(XT ∈ A | X0, σ1). (14)

The simulated path is naturally associated with the importance weight,
Lgarch(X)
LPGbridge(X) , and for which

Prob(XT ∈ A | X0, σ1) also becomes an irrelevant constant because it only depends on x0, σ1, A and
the parameters of the target GARCH model which are fixed for all simulated paths. Normalizing
importance weights into probabilities for different simulated paths cancels out this term.

The sample generated by the above scheme is legitimate when being coupled with correct impor-
tance weights, but the sample would have a very poor numerical quality because the importance
weights are highly uneven across different simulated paths, translating into a very low effective
sample size (ESS3). Thus, the sample must undergo further refinements, which will be explained
in detail later.

2.2 Tempering importance weights sequentially

Due to the high dimensionality of X and its non-Gaussian dynamic structure, the sample of simu-
lated paths from the above section 2.1 generally exhibit a low ESS. A straightforward application
of importance weights is clearly not advisable.4 As stated earlier, our solution borrows the idea of
density-tempered SMC such as Del Moral, et al (2006) and Duan and Fulop (2015) and treats the
pseudo-Gaussian bridge like the prior distribution and the target GARCH bridge as the posterior
distribution.

Consider an intermediate target where the density is given by5:

fδ(X) ∝ LPGbridge(X)

(
Lgarch(X)

LPGbridge(X)

)δ
(15)

One starts with δ = 0, which represents the distribution under the pseudo-Gaussian bridge.
Through a sequence of intermediate targets 0 < δ1 < δ2 < ... < 1, one can arrive at δ = 1,
which is exactly the intended GARCH bridge. Clearly, the sequence of intermediate targets are ar-
tificial, but nevertheless completely valid. Similar to the density-tempered SMC methodology, one
begins with an easy-to-sample distribution, i.e., the pseudo-Gaussian bridge (δ = 0), and traverses
through a sequence of densities to the ultimate target (δ = 1), i.e. the GARCH bridge with its
endpoint falling in a pre-defined set.

3Unless otherwise stated, ESS in this paper takes on the standard definition of 1/
∑

i ω
2
i , where ωi are the

importance weights converted into probabilities.
4Our experience suggests that unless the bridge is short, such as a few time points, the pseudo-Gaussian bridge

proposal is bound to be a poor path for its target GARCH bridge.
5The proportional relationship “∝” is to accommodate the fact that the right-hand side may not be integrated to

1 and is thus off by a constant multiplier. In the case of δ = 0 or 1, it is a density function by definition.
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Moving from δi to a new intermediate target represented by δi+1 can be implemented by re-
weighting the paths by the ratio of the two weights.

W (δi, δi+1,X) =
fδi+1

(X)

fδi(X)
∝
LPGbridge(X)

(
Lgarch(X)
LPGbridge(X)

)δi+1

LPGbridge(X)
(
Lgarch(X)
LPGbridge(X)

)δi =

(
Lgarch(X)

LPGbridge(X)

)δi+1−δi
(16)

Consider the case where one moves from δ = 0 to δ1. The density for the pseudo-Gaussian bridge
is f0(X) = LPGbridge(X), and this target is also the basis for our initial sample. In moving
to δ1, we target an abstract intermediate, fδ1(X), and couple it with the importance weight of(
Lgarch(X)
LPGbridge(X)

)δ1
. Likewise, this can be generally applied to the move from δi to δi+1 with incre-

mental importance weight as in equation (16). Having draws from an intermediate target, one can
progress to the next in the sequence.

Similar to Del Moral, et al (2006) and Duan and Fulop (2015), we adaptively choose the
tempering sequence {δi} to ensure sufficient path diversity. Moving from δi, we pick δi+1 so that
the ESS derived from (16) stays at least as large as some preset level, say, bI% of the sample size
N .6 Unless otherwise stated, we set bI = 80 in our empirical implementation later. Note that in
this manner, we directly control the variability of the importance weights and thereby avoid sample
impoverishment.

We conduct resampling with the assigned importance weight, which is a common step in the
SMC literature. Without resampling, weights get accumulated sequentially and will also cause
sample impoverishment. Resampling and thus reassignment of equal weights to all simulated paths
are essential to the success of our bridge sampler.

2.3 Boosting the empirical support

With repeated reweighting and resampling, the empirical support of the simulated paths would
gradually shrink, i.e., fewer and fewer distinct paths in the sample of size N . Periodically boosting
the empirical support, i.e., having more distinct paths, is thus a must for the sampling scheme to
succeed. Support boosting can be accomplished by running the Metropolis-Hastings (MH) move at
each δ step. Note that this MH move is not for achieving convergence as in the typical MCMC run.
Rather, it is designed to increase the diversity of sample paths and thus the representativeness of the
sample through the use of the correct MH kernel to maintain the intermediate target distribution.
The MH move is also an essential component of the SMC methodology.

The MH move requires a proposal, and the quality of the proposal determines the acceptance
rate of the proposed replacement. In contrast to the SMC in the Bayesian estimation where the

6When dealing a sample of equal or unequal weights, the correct ESS calculation should first collapse non-distinct
paths with the compensating weight adjustment. Otherwise, the ESS is likely overstated. However, collapsing non-
distinct paths require computing time, and leaving it as an inflated figure in the intermediate steps can still serve the
control purpose well.
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high-dimensional parameters do not have an intrinsic internal structure, the GARCH path with
an ending condition naturally imposes a highly restrictive relationship among points along a path.
For our problem, the obvious proposal is again the pseudo-Gaussian bridge sampler used in the
initialization discussed above. However, instead of sampling the entire path, we sample and replace
segments with random starting and ending times, which are shorter and therefore increase chances
of being accepted.

We sample starting and ending times randomly with 1 ≤ ts ≤ te ≤ T − 1 and attach them to
the current path to be a point in an augmented space. Once ts and te are in place, we sample a
pseudo-Gaussian bridge to replace the segment running from ts to te inclusive, in a way similar
to the initialization sampling where the bridge is naturally anchored at time ts − 1 and te + 1.
When A is not a singleton set, we need to resample XT ∈ A with a reasonable probability of, say,
50% so that XT gets rejuvenated. Let Z be an independent Bernoulli random variable determining
whether the endpoint is resampled. When Z = 1, te is always set equal to T−1 so that the replaced
segment is drawn consistently with the resampled endpoint. We also find that rejuvenating the
segment near the starting point beneficial. When Z = 0, we set ts = 0 with a probability of say
50%. In other words, let Y be another independent Bernoulli random variable, and set ts = 0 if
Y = 1.

The current path augmented by Z, starting time and ending time is denoted by (X, Z, ts, te),
whereas the new proposal is (X∗, Z∗, t∗s, t

∗
e). The log-density of the new path given the current path

X while conditioning on Z, ts and te is:

lnLMH(X∗ | X;Z, ts, te)

=


∑te

t=ts
pt(X

∗, te) if A is a singleton set

1{Z=1}

[∑T−1
t=ts

pt(X
∗, T − 1) + g(XT | Xts−1, σts(X), A)

]
+1{Z=0}

∑te
t=ts

pt(X
∗, te) otherwise

(17)

where g(XT | Xts−1, σts(X), A) is the density of the same endpoint sampler as in the initialization
stage which will be described in a later section, and the density of the pseudo-Gaussian bridge
sampler for ts ≤ t ≤ T − 1 is:

pt(X
∗, te) = ln

Γ(νb+1
2 )√

π(νb − 2)Γ(νb2 )
− ln ζt(X

∗, te)−
νb + 1

2
ln

(
1 +

u2t (X
∗, te)

ζ2t (X∗, te)(νb − 2)

)
(18)

where

ut(X
∗, te) = X∗t − αt,te(Xt−1)− βt,teXte+1

ζ2t (X∗, te) = kb
1− ρ2 − β2t,te(1− ρ

2(te−t+2))

1− ρ2
σ2t (X

∗)

αt,te(Xt−1) = µ+ ρXt−1 − βt,te
(

1− ρte−t+2

1− ρ
µ+ ρte−t+2Xt−1

)
βt,te = ρte−t+1 1− ρ2

1− ρ2(te−t+2)
.
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Again, in the limiting case of ρ = 1, the above simplifies to:

ut(X
∗, te) = X∗t −

te − t+ 1

te − t+ 2
Xt−1 −

1

te − t+ 2
Xte+1

ζ2t (X∗, te) = kb
te − t+ 1

te − t+ 2
σ2t (X

∗).

Worth noting is the fact that σt(X
∗), the GARCH volatility deduced from the new path, will be

different from σt(X) at time (ts + 1) and all the way to the end of the path even though X∗ and X
share the identical segment after te.

The MH acceptance probability conditioning on Z, ts and te is:

a(X→ X∗ | Z, ts, te) = min

(
1,
fδ(X

∗)

fδ(X)

LMH(X | X∗;Z, ts, te)
LMH(X∗ | X;Z, ts, te)

)
. (19)

We now elaborate on how the MH moves essentially provide new draws from the intermediate
target distribution. By the standard result, the Markov transition kernel conditional on (Z, ts, te)
becomes

K(X→ X∗ | Z, ts, te) = a(X→ X∗ | Z, ts, te)LMH(X∗ | X;Z, ts, te)dX
∗

+B(X;Z, ts, te)δX(dX∗) (20)

where δX(dX∗) is a Dirac measure that puts unit mass at X, and B(X;Z, ts, te) = 1−
∫
Y∈S a(X→

Y | Z, ts, te)LMH(Y | X;Z, ts, te)dY with S = {x0} × RT−1 × A denoting the set of all possible
paths. Note that B(X;Z, ts, te) captures the probability of the Markov chain staying at X after one
transition. Again by the standard result of the MH algorithm, K(X → X∗ | Z, ts, te)fδ(X)dX is
reversible, and hence fδ(X) is a stationary density of this Markov transition kernel for any (Z, ts, te).

Our sampling scheme of advancing (X, Z, ts, te) to (X∗, Z∗, t∗s, t
∗
e) is conducted in the aug-

mented space, and thus has the following Markov transition kernel: K(X→ X∗ | Z, ts, te)Prob{Z∗}
Prob{t∗s, t∗e}. It follows that∑

Z,ts,te

∫
X∈S

Prob{Z}Prob{ts, te}K(X→ X∗ | Z, ts, te)fδ(X)dXProb{Z∗}Prob{t∗s, t∗e}

=

 ∑
Z,ts,te

Prob{Z}Prob{ts, te}

(∫
X∈S
K(X→ X∗ | Z, ts, te)fδ(X)dX

)
Prob{Z∗}Prob{t∗s, t∗e}

= Prob{Z∗}Prob{t∗s, t∗e}fδ(X∗)dX∗. (21)

because the first term in the second equality of the above equals 1, and the second term becomes
fδ(X

∗)dX∗ due to the fact that fδ(X) is a stationary density of K(X→ X∗ | Z, ts, te). Therefore,
equation (21) implies that Prob{Z}Prob{ts, te}fδ(X)dX is a stationary measure for the Markov
transition kernel in the augmented space. Obviously, this Markov transition kernel is also irreducible
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and aperiodic by design, and hence convergence to the stationary distribution takes place with
repeated MH moves.

A sample of independently simulated paths, {Xi; i = 1, 2, · · · , N}, that rightly represents the
intermediate target density, fδ(X), can be viewed as an independent sample generated from the
stationary distribution (after marginalization to focus on X) corresponding to the Markov transi-
tion kernel. A one-step MH move applied on all N paths will naturally produce a new sample of
independent paths that also represents the same target distribution. In this sense, the MH move is
used to refine the sample rather than one of many moves needed to achieve Markov Chain Monte
Carlo convergence to the stationary distribution. Excessive application of MH moves is there-
fore unnecessary after the empirical support has been satisfactorily boosted. To achieve adequate
boosting at the intermediate steps, we find it effective to apply a rule of thumb requiring each path
to accept on average a fixed number of MH moves, say, twenty moves. Having multiple accepted
moves is essential, because every accepted MH move simply replaces a random segment instead of
the whole path.

2.4 Sample endpoints that fall in the target set

When the endpoint is not fixed, there are two places in the algorithm that the endpoint needs to be
sampled – the initialization step and the MH move in the support boosting stage. We now describe
how to sample endpoints falling in an intended set. Without loss of generality, we can focus on an
interval, i.e., A = {a < XT ≤ b}.

The endpoint will be sampled with a truncated t distribution with νe degrees of freedom.7 The
mean and variance of the truncated t distribution should also reflect those implied by the target
process; that is, the mean and variance used in the t sampler must suitably reflect the the length
of sample path, and the mean return and the initial volatility of the target GARCH process. Let
Ψ(·; νe) be the cumulative distribution function for t random variable with νe degrees of freedom.
The truncated t sampler used here has the following log-density for XT ∈ A:

ln g(XT | Xt, σt+1, A)

= ln
Γ(νe+1

2 )√
π(νe − 2)Γ(νe2 )

− ln η(t, T )− νe + 1

2
ln

(
1 +

[XT − λ(t, T )]2

η2(t, T )(νe − 2)

)
− ln

[
Ψ

(
b− λ(t, T )

η(t, T )

√
νe

νe − 2
; νe

)
−Ψ

(
a− λ(t, T )

η(t, T )

√
νe

νe − 2
; νe

)]
(22)

where

λ(t, T ) = ρT−txt +
1− ρT−t

1− ρ
µ

η2(t, T ) = ke
1− ρ2(T−t)

1− ρ2
σ21.

7The truncated Cauchy distribution would have been a direct alternative, since it is the limiting case of the t
distribution. However, it leads to substantially lower MH acceptance rates, possibly due to the greater dissimilarity
between the two distributions.

11



Note that the mean function, λ(t, T ), reflects the multiperiod conditional mean of the target process.
To ensure that the simulated endpoint can reach a wide enough range to cover heavy tails and/or
larger volatility caused by the target GARCH process, ke ≥ 1 is introduced into the variance
function by design. In our implementation later, we apply ke = 1.96.

Our algorithm for executing the above truncated t sampler comprises: (1) generating points
using the truncated standardised Cauchy distribution based on inversion of its cumulative distri-
bution function, (2) applying the standard rejection simulation technique to obtain draws from the
standardised t distribution, and (3) applying a scale factor of η(t, T ) and shift factor of λ(t, T ) to
the standardised t draw, with corresponding adjustments to the density function, to obtain draws
for XT . The acceptance probability for rejection sampling in step (2) is:

at,h(x) =
1

R

t(x; νe, A
′)

h(x;A′)
(23)

where t(x; νe, A
′) denotes the standardised-t distribution with degrees of freedom νe, truncated to

the standardised set A′, h(x;A′) denotes the standardised Cauchy distribution truncated to A′,
and R is the scaling factor to facilitate rejection sampling by ensuring that t(x; νe, A

′) is bounded

by Rh(x;A′). Analytically, the local optima of t(x;νe,A′)
h(x;A′) occur at −1, 0 and 1 and so if any of these

points lie within A′, we set R accordingly to the maximum. If these points do not lie in A′, then

we can improve the tightness by evaluating t(x;νe,A′)
h(x;A′) at | supA′| < −1 or | inf A′| > 1, whichever

the case may be.

2.5 k-fold duplication followed by support boosting

By iteratively progressing through a series of intermediate targets, through reweighting, resam-
pling and boosting the sample, we finally arrive at a representative sample that reflects the target
GARCH bridge. Indeed, with the suitable selection of parameters, the sample provides an accurate
empirical representation of the target bridge. While the algorithm as-is already provides computa-
tional efficiency vis-a-vis, say, the simple rejection sampling (i.e., simulate-discard) algorithm, we
can leverage on the support boosting technique further to increase efficiency by another order of
magnitude.

Suppose that we require N paths in our sample. It is not necessary for all N paths to be carried
through the intermediate targets. We can simply traverse the density-tempered bridge with a small
representative sample. Once at the final target distribution, “duplicate-and-boost” rounds may be
conducted to rapidly multiply the sample size whilst maintaining sample diversity. This involves
duplicating the representative sample by k folds, i.e., increasing the sample such that there will be
k identical sets of paths. Support-boosting can then be conducted in the same fashion as described
in section 2.3 to restore distinctiveness of paths. As already shown, the Metropolis-Hastings moves
provide valid proposals to replace the duplicated paths.

In our implementation later, the target is 50,000 paths. Starting with a base sample of 2000
paths, we traverse the density-tempered bridge to reach the final target distribution. Two rounds
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of duplicate-and-boost are conducted with the number of paths duplicated by 5 folds at each round
for a total duplication factor of 52 = 25 that multiplies 2,000 paths to 50,000.

Our second enhancement involves improving the pseudo-Gaussian bridge sampler by utilizing
the empirical distribution of paths. When δ = 0, the pseudo-Gaussian bridge sampler performs well
because that is exactly the initial (intermediate) target distribution. However, when δ increases and
approaches 1, its performance degrades (i.e., the MH acceptance rate decreases). This is because
the target approaches that of the true GARCH bridge, and more proposals are required of the
pseudo-Gaussian sampler to obtain GARCH-like paths.

Observe equations (5) to (9) and note that the pseudo-Gaussian bridge essentially provides the
location and scale for Xt given Xt−1 and XT . We improve αt(Xt−1) and βt by updating them
with a linear regression of Xt on Xt−1 and XT , using the empirical distribution which has been
generated via the density-tempered bridge and is currently at the final target. Bridge sampling
then uses these regression-updated coefficients as the basis of the location and scale for the new
path proposals.

Note that a balance needs to be struck as the regression-updated bridge sampler need not be
superior to the pseudo-Gaussian bridge sampler. First, the regression coefficients are subject to
sampling errors when the SMC sample used to compute these coefficients is not large enough.
Second, we found the pseudo-Gaussian bridge may have higher acceptance rates when support-
boosting is conducted over the intermediate stages of the density tempering sequence. For the
results reported in this paper, we apply the pseudo-Gaussian bridge sampler for all intermediate
density targets and use the regression-updated bridge sampler for the duplicate-and-boost rounds
where δ = 1.

2.6 Summary of the non-Gaussian bridge sampler

To sample N paths with the endpoint in set A, the key steps are:

1. At δ0 = 0, initialize the base sample by sampling a fraction of N paths, say Nb, with (1)
simulating XT ∈ A using g(XT ; 0, x0, σ1) as in equation (22) when A is not a singleton set,
and (2) running a pseudo-Gaussian bridge sampler as in equations (5)-(9).

2. Determine the next intermediate target by selecting δi+1 such that the ESS computed with
incremental importance weights, W (δi, δi+1,X) in (16), does not fall below bI% of Nb, and
bI = 80 is used.

3. At the selected δi+1, resample Nb paths according to W (δi, δi+1,X), and then reassign equal
weights to all resampled paths.

4. Perform the Metropolis-Hastings updating moves to replace random segments of each path
as described in Section 2.3 to boost the empirical support.

5. Repeat steps 2-4 until δ = 1.
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6. Duplicate-and-boost Nb until N sample paths are obtained, as per section 2.5; that is, at each
round of duplication, conduct regression to update the bridge sampler’s location and scale,
duplicate the paths by k folds, and then boost support as per section 2.3.

3 A performance study

3.1 Performance of the density-tempered SMC bridge sampler subject to a
endpoint set constraint

Our density-tempered SMC bridge sampler can be compared with a simple rejection sampler when
the endpoint is required to fall in a set, i.e., A, with a non-negligible probability. The simple rejec-
tion sampler is, for example, used in the SRIK implementation. Rejection sampling is conducted
by simulating GARCH paths forward and discarding those where XT /∈ A. We use this simple
rejection sampler as the benchmark method, knowing that it works straightforwardly even if it may
be inefficient.

The target GJR-GARCH model is defined by the parameters estimated to the daily S&P500
Index series from the beginning of January 1990 to the end of May 2015. The conditional distri-
bution is assumed to be t with ν degrees of freedom, and is motivated by the common empirical
finding of conditional heavy tails of the S&P500 Index return. We set ρ = 1 per usual practice in
modeling asset prices, and the parameter estimates by the maximum likelihood principle are listed
in Table 1. Although we use a conditional t distribution in this study, our bridge sampler also
works for a non-parametric conditional distribution, which will be shown later.

Based on the adopted conditional distribution, our target GARCH process has the following
conditional log-density:

ln f(Xt | Xt−1, σt) = ln
Γ(ν+1

2 )√
π(ν − 2)Γ(ν2 )

− lnσt −
ν + 1

2
ln

[
1 +

(Xt −Xt−1 − µ)2

σ2t (ν − 2)

]
. (24)

The degrees of freedom, νb and νe, of the two t-distributed samplers used in the algorithm (i.e.,
the pseudo-Gaussian bridge and the endpoint sampler) need not equal ν, the degrees of freedom
for the target model’s conditional t distribution. In the performance analysis, we set νb = ν − 1
and νe = ν − 4, giving the two samplers heavier tails in order to accommodate the increased tail
thickness due to stochastic mixing effect of the GARCH dynamics.

The GARCH path to be bridge-sampled is 6 months long (126 trading days). The baseline case
for the set of endpoints, i.e., A, is at least 40% percentage below the starting asset value. For the
logarithmic index value, the baseline case becomes A = (−∞, x0+ln 0.6]. The choice of this baseline
case is motivated by the SRISK measure of Acharya, et al (2010) and Brownlees and Engle (2012).
The baseline case also sets the initial conditional volatility to the stationary volatility computed
with the estimated parameters. The full list of parameters for the baseline case is provided in Table
1.
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Table 1: Performance Study Parameters

Bridge

x0 ln(1000) Initial price
A (−∞, ln(600)] Endpoint set
T 126 trading days Time horizon

GJR-GARCH

µ 4.04× 10−4 Drift
ρ 1 AR term
ω 1.16× 10−6 Constant
α 3.85× 10−7 ARCH term
β 0.918 GARCH term
γ 0.140 Leverage term
ν 7.69 Degrees of freedom for t distributed innovations

σann 0.159 Implied annualized volatility (252 days)

DTSMC

Nb 2000 Representative base sample size
νe 3.69 Degrees of freedom for the t-distributed endpoint sampler
ke 1.96 Endpoint sampler multiplier
νb 6.69 Degrees of freedom for the t distribution in the bridge sampler
kb 1.44 Bridge sampler multiplier

P (Z = 1) 0.5 Probability of proposing new right segment
P (Y = 0) 0.25 Probability of proposing new mid segment
P (Y = 1) 0.25 Probability of proposing new left segment

bI 80 Target ESS for new delta
MH Moves 20 Avg moves req per path at intermediate targets
# of rounds 2 Number of duplicate-and-boost rounds conducted

k 5 k-fold multiplier for duplicate-and-boost
MH Moves 10 Average numbers of moves for duplicate-and-boost
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For the baseline, we show in Figure 1 the QQ plots8 of the two corresponding empirical distri-
butions (bridge sampling vs simple rejection sampling) at three time points along the path – X41,
X83 and X126. In addition, we show QQ plots of the path average, minimum and maximum values.
The plots provided are based on 50,000 paths. Overall, the results lend credibility to our bridge-
sampling scheme, matching draws from the simple rejection method accurately. More importantly,
the bridge sampler (coded in C++) is much more efficient with the running time less than 1/10
of the time needed for simple rejection sampling (also coded in C++) for the baseline case. Since
SMC is naturally parallelizable just like the simple rejection method, their relative performance
should remains fairly constant when one chooses to perform parallel processing.

Our scheme is also robust, and continues to deliver high-quality samples when the shock is varied
between 0% and 80% below the starting value of the path. We also alter the initial conditional
volatility to various levels between the minimum and maximum conditional volatilities in the time
series. Lastly, we assess the results when the time horizon is shortened and extended to 63 and 252
trading days, respectively. The results for various cases are summarized in Table 2. The QQ plots
do not suggest any inconsistency in the distribution of density-tempered SMC paths as compared
to rejection sampling, and are skipped to conserve space. Across the spectrum of test cases, our
bridge sampler dominates the simple rejection method except for cases when the probability of
landing in the endpoint set is high; such as a shock of 0% or more or when the initial volatility is at
its historical maximum. However, those cases should not call for bridge sampling in the first place.

3.2 Fixed endpoint sampler and alternatives

3.2.1 Quality of the density-tempered SMC bridge sampler under a fixed endpoint

The performance comparison reported earlier shows that the density-tempered SMC bridge sampler
is accurate and delivers superior computational efficiency when the endpoint is confined to a set
with a low probability. Logically, the accuracy should remain true when the paths are required to
end at a fixed value. However, simple rejection sampling can no longer serve as the benchmark
because the probability for a path to hit a fixed endpoint is zero.

In order to ascertain the numerical quality of the density-tempered SMC bridge sampler which
uses 20 accepted MH moves on average for all intermediate targets, we use the sample produced
by the same bridge sampler as the benchmark except that the number of accepted MH moves on
average is set to a higher value of 100, with confidence that the empirical support would have been
boosted to a very high level of satisfaction.

Also, the fixed endpoint will be set equal to the starting point, i.e., XT = x0, which is the case
for assessing alternative samplers later. We reduce the shock level for a reason. The alternative
samplers to be discussed later are deployed in infill estimation where extreme moves over a data
period are far less likely to occur under the circumstance of their applications. We compare the

8QQ plots shown in this paper, unless otherwise stated, are based on comparing 100 points corresponding to the
percentile levels 0.5% to 99.5% in increments of 1%.
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Figure 1: QQ Plots of Density-Tempered SMC Bridge Sampling vs Simple Rejection Sampling
(conditional t)

Comparison of two samples of 50,000 GJR-GARCH paths generated by two sampling meth-
ods, and each path covers six months (126 trading days). All paths share the same
starting value and end at 40% or lower than the starting value. The initial volatil-
ity is set equal to the stationary volatility. Simple rejection sampling takes 2858 sec-
onds to complete whereas density-tempered SMC bridge sampling needs 230 seconds.
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Table 2: Efficiency of Simple Rejection Sampling vs Density-Tempered SMC Bridge Sampling
(conditional t)

Comparison of the computing time of the rejection sampling vs the density-tempered SMC
bridge sampler. Density-tempered SMC provides efficiency gains under the majority of
the test cases. The computing time is based on execution on a desktop computer with
Intel i5-4460 @ 3.20 GHz, DDR3-1600MHz CL9 (4 GB x 2), and dedicated graphics.

Rejection Sampling DTSMC Bridge

(in seconds, unless otherwise stated)
Baseline (Figure 1)
Shock 40%, Volatility 15.9%, T=126 2858 230

Varying Shock Level
Shock of at least 80% > 46 h 125
Shock of at least 60% > 5 h 108
Shock of at least 20% 320 85
Shock of at least 0% 27 75

Varying Initial Volatility (annualized)
Historical minimum 6.5% 3.0 h 282
Half of unconditional volatility 8.0% 2.4 h 277
Twice of unconditional volatility 31.8% 573 193
Historical maximum 89.0% 80 188

Varying Time Horizon
1 quarter horizon (T=63) 1.6 h 102
1 year horizon (T=252) 2427 612
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sample of 10,000 GJR-GARCH bridge paths generated in the way as before against this benchmark
sample of the same size but obtained at a higher number of MH moves. The QQ plots of these
two samples as in Figure 2 reveal that the two empirical distributions are essentially identical,
suggesting that the density-tempered SMC bridge sampler is already accurate at 20 accepted MH
moves on average.

3.2.2 Alternative samplers and their quality

The first fixed-endpoint sampler in comparison is the Pedersen sampler (1995) used in infill es-
timation. Here, we adopt the idea and apply it to simulate the GARCH bridge. The method
can be summarized as follows: simulate the GARCH process forward per usual up to time T − 1
ignoring the influence of the endpoint on the path. Because the path must end at xT , the density
of the last step from time T − 1 to T solely determines the importance weight of a path, which is
f(xT | XT−1, σT ).9 The importance weights for such simulated paths will be highly uneven, simply
because XT−1 is generated without factoring in the fact that the next point in the path must end
at xT .

The second alternative sampler being considered is the Gaussian bridge sampler (GBS) which
was used in Durham and Gallant (2002) as an infill correction for discretization bias. Here, we
apply it to the GJR-GARCH model. We use equations (5)-(12), except that we set kb = 1 and
ut to a Gaussian random variable. In other words, we apply a standard GBS, except that we use
the conditional volatility as prescribed by the GARCH dynamics, the left pin being t− 1 and right
pin T . Naturally, each sampled path must be assigned an importance weight which equals the
ratio of its density under the GARCH bridge to its density under the Gaussian bridge. As we shall
see, GBS fares poorly and a few paths dominate the entire sample. Note that the initialization
sampler in our density-tempered SMC bridge sampler is in effect a more sophisticated version of
GBS. It may serve as a starting point of an ultimate sampler, but needs to go through a sequence
of revisions in order to arrive at a quality sample for a GARCH bridge.

Table 3 provides the ESS based on 10,000 sample paths produced by the Pedersen and GBS
samplers, respectively. The target model is still GJR-GARCH(1,1) but with both conditional
normal and t distributions estimated to the S&P500 index daily series from 2 January 1990 to 18
September 2015.

Having established the density-tempered SMC bridge sampler as a quality method, we use it
as the benchmark to assess the two alternative bridge samplers. The Pedersen sampler generally
performs poorly, regardless of the conditional distribution. Even with benign shocks of -10% and
10%, the ESS is below 11%. GBS appears to fare better, in the range of 33.3% to 67.9%, but only
when the conditional distribution is Gaussian. When a heavier-tailed distribution like t is involved,

9When A is a set containing more than one element, the Pedersen sampler needs to further simulates XT using
the conditional distribution at time T − 1 under the GARCH model and factoring in the conditioning set, XT ∈ A.
The importance weight becomes Prob(XT ∈ A | XT−1, σT ), which arises from conditioning at time T − 1.
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Figure 2: QQ Plots for 20 vs 100 MH Moves under Density-Tempered SMC Bridge Sampling with
a Fixed Endpoint

Comparison of two samples of 10,000 GJR-GARCH paths generated by the density-tempered SMC
bridge sampler. All paths share the same starting value and end at the same point as the starting
value. Paths produced for both 20 and 100 MH moves use the baseline parameter provided earlier.
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which is more reasonable for applications, the ESS falls drastically to between 3.38% and 5.03%,
which is worse than the Pedersen sampler.

The overall low ESS implies that important weights are highly uneven, or stated differently,
a few paths dominate the entire sample. This is illustrated in the QQ plots of Figure 3, where
a sample of 100 paths is used to plot against the quantitles produced by the density-tempered
SMC bridge sampler.10 Many of the GARCH paths are essentially repeats of each other. Overall,
our results suggest that the Pedersen and GBS samplers are inappropriate for simulating GARCH
bridges, and by extension, are unlikely to work well for other non-Gaussian stochastic processes.

Table 3: Effective Sample Sizes (ESS) of Alternative Samplers

Price Change
-10% 0% 10%

Conditional Gaussian
Pedersen 4.57% 10.9% 10.4%
GBS 33.3% 67.9% 65.6%

Conditional t
Pedersen 3.00% 7.71% 10.1%
GBS 3.38% 4.18% 5.03%

4 Application - Computing SRISK

Our sampler can be used in a wide range of applications, and here we demonstrate it with the
particular example of SRISK computation. SRISK is a value critically hinges on the long-run
marginal expected shortfall (LRMES), where LRMES of a financial firm is defined as its expected
return conditional on a systemic event. We understand that V-Lab defines this event as a negative
shock of at least 40% to the S&P500 index11 over a period of 6 months (126 days). SRISK is basically
LRMES translated to a dollar value of additional equity capital required through factoring in a
financial institution’s capital structure.

Computing LRMES requires simulation of market prices under stress. Our bridge sampler needs
to accommodate several differences in the specific SRISK implementation. First, instead of using
conditional t innovations, LRMES computation uses a non-parametric conditional distribution. The
density-tempered SMC bridge sampler can accommodate non-parametric conditional distributions,
and will be demonstrated shortly. Second, we need to simulate a bivariate system based on the

10We chose to show a sample size of 100 to illustrate the flat portions of the QQ plot, indicating that a few actual
paths dominate the entire sample, leading to low ESS. This effect exists at 10,000 paths, but is harder to detect
visually.

11The actual implementation of SRISK for US financial firms is based on the SPDR S&P500 ETF which tracks
the S&P500 index very closely. We have used the latter to be consistent with the earlier sections of our paper.
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Figure 3: QQ Plot of the Gaussian Bridge Sampler and Pedersen Samplers against the
Density-Tempered SMC Bridge Sampler

Comparison of samples of 100 GJR-GARCH paths generated by the Gaussian bridge and Ped-
ersen samplers against the target quantiles obtained by the density-tempered SMC bridge sam-
pler. All paths share the same starting value and end at the same point as the starting value.
Circles represent the Pedersen sampler while the crosses represent the Gaussian bridge sampler.
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GARCH-DCC model of Engle (2002) while making one stochastic process subject to an endpoint
condition. This is because LRMES is the expected return of a financial institution given a severe
S&P500 index shock.

4.1 Non-parametric innovations

We first demonstrate the ability of the density-tempered bridge sampler to handle non-parametric
innovations. By “non-parametric”, we are referring to the distribution of εt in equation (4). In
other words, εt is no longer t-distributed, and is instead constructed from the empirical distribution
of the standardized residuals. As per usual notation, let εt = σtzt, where zt is the standardised
innovation with mean 0 and variance 1.

Our benchmark is the rejection sampler, which we implement by extracting zt from the time
series of the S&P index using the estimated GJR-GARCH model where the estimation is conducted
with the quasi-maximum likelihood principle requiring no commitment to a specific conditional
distribution. Following the convention of setting µ = 0 as per SRISK and estimating the remaining
parameters, the sample of standardised residuals based on the S&P500 index series shows that it
has a negative skewness of -0.4132 and excess kurtosis of 1.588, which could potentially pose a
model fitting issue for a symmetric heavy-tailed distribution like t, which in a way motivates its
use in SRISK.

For the rejection sampler, we consider the discrete empirical distribution, which is obtained by
bootstrapping the standardized residuals. Whenever an innovation is required for the next price
point, we randomly draw from these residuals with equal probabilities to obtain zt. zt is then scaled
by the conditional volatility at that point to obtain the innovation εt = σtzt. The rejection sampler
performs about four times as fast as the case of conditional t-distribution when the endpoint
condition is for the final price drops by 40% or more. Aside from the differences in parameter
estimates, we identify two key reasons. First, the error distribution is now negatively skewed which
increases the probability of reaching the endpoint set A (0.386% vs 0.244%). Second, sampling the
standardized residuals is faster because it simply picks from the pool of stored residuals instead of
drawing from a t-distribution.

On the other hand, handling a non-parametric distribution is more onerous for the density-
tempered SMC bridge sampler. Recall equation (14) where the log-density under the target GARCH
model is computed. The importance weights are then formed as the ratio of the GARCH density
to the sampler’s density as per equation (16). In other words, we need to estimate the density
function for the non-parametric distribution. We do so using kernel density estimation (KDE).
Our implementation of KDE uses a Gaussian kernel with bandwidth selected as per Sheather and
Jones (1991). We use the sample of standardized residuals available from 2 January 1990 to 18
September 2015 to pre-compute density values over a mesh of 2048 points spread equally over a
domain of [min{zt} − 5,max{zt}+ 5], where {zt} are the stored standardized residuals.

The density-tempered SMC bridge sampler continues to perform decently in term of accuracy
as compared to the simple rejection sampler, which is revealed in the QQ plots in Figure 4. Slight
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differences exist for a few possible reasons. First, bootstrapping uses discrete points but the density-
tempered SMC bridge sampler uses the continuous kernel density function. Consequently, the
support of our standardised residuals spans a continuous domain rather than selecting from a set
of 6481 discrete points. Second, as mentioned in the previous paragraph, we work with a wider
domain to accommodate larger shocks which may be proposed by our bridge sampler.

Our density-tempered SMC bridge sampler also performs well in terms of computing time. For
the baseline case studied in the earlier section, producing 50,000 paths takes 372 seconds, compared
to 767 seconds taken by the rejection sampler, or roughly twice as fast. Naturally, we expect greater
advantages in speed when conditional volatilities are low.

4.2 Simulation of a bivariate GARCH-DCC model

As per Brownlees and Engle (2012), both the processes for the S&P index and the financial insti-
tution are assumed to follow GJR-GARCH with dynamic conditional correlation. In other words,
equations (1) to (4) apply to both processes, and µ is set to 0 for both the S&P500 index and the
financial firm. The conditional distribution D in equation (4) is jointly non-parametric:[

εmt
εit

]∣∣∣∣Ft−1 ∼ D(0,

[
σ2it ritσitσmt

ritσitσmt σ2mt

])
(25)

where the sub-indices i and m refer to the financial institution and the market, respectively. rit
refers to the dynamic conditional correlation between i and m at time t, which is updated according
to a companion pseudo-correlation matrix Qit to ensure positive semi-definiteness:

Corr

[
εmt
εit

]
=

[
1 rit
rit 1

]
= diag(Qit)

− 1
2Qitdiag(Qit)

− 1
2 (26)

Qit = (1− αC − βC)Si + αC

[
εmt−1
εit−1

] [
εmt−1
εit−1

]′
+ βCQit−1 (27)

where αC and βC are the DCC coefficients and Si is the unconditional correlation matrix of the
financial institution and market index. Engle (2009) provides the details for estimation of this
system. Table 4 shows the estimated parameters for four selected US financial institutions.

Next, consider a pair {zmt, ξit}, where ξit are standardised, linearly orthogonal shocks of the
financial institution to the market on day t and computed as:

ξit =
(zit − ritzmt)√

1− r2it
(28)

To obtain LRMES, we first obtain 50,000 simulated paths of {Xmt} that satisfy Xm,126 ≤
Xm,0 + ln(0.6) via the sampler. The implied shocks εmt and standardized residuals zmt = εmt/σmt
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Figure 4: QQ Plots of Density-Tempered SMC Bridge Sampling vs Simple Rejection Sampling
(non-parametric conditional distribution)

Comparison of two samples of 50,000 GJR-GARCH paths generated by two sampling methods, the
rejection sampler based on continuous empirical distribution and the density tempered sampler.
All paths cover six months (126 trading days), have the same starting value, and end at 40%
or lower than the starting value. The initial volatility is set equal to the stationary volatility.
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Table 4: GARCH-DCC Parameter Estimation for Four US Financial Firms

S&P500 Citibank BOA JPM WellsFargo

ωi (×10−6) 1.67 2.10 2.95 2.15 1.36
αi 9.68× 10−7 0.0356 0.0388 0.0191 0.0200
βi 0.913 0.936 0.930 0.941 0.940
γi 0.144 0.0542 0.0532 0.0783 0.0771
αC 0.0295 0.0272 0.0225 0.0265
βC 0.957 0.958 0.973 0.967
σi1 0.0145 0.0219 0.0228 0.0212 0.0219
ri1 0.824 0.789 0.844 0.830

are inferred from each of these paths. For each simulated zmt, a correlated zit is generated according
to:

zit =
√

1− r2itξit + ritzmt (29)

where ξit is a corresponding orthogonal shock component for the financial institution.

We consider two cases of LRMES, one assuming only linear correlations, and the other taking
into account non-linear dependency. For the first case, since we assume only linear correlation in
the shocks, rit captures the correlation behaviour fully and we simply pick ξit randomly from the
stored set of shocks whenever it is required. For the second case, since non-linear dependency is
not explicitly modelled, we pick the corresponding ξit from the pairs of {zmt, ξit} stored earlier.

For the non-linear dependency case, there is a nuance. The rejection sampler draws discretely
from the stored {zmt, ξit} and there is a one-to-one matching of ξit for each zmt. On the other
hand, the density-tempered sampler produces continuous {zmt}, and will naturally generate {zmt}
which need not be constrained to historical observations. Accordingly, given zmt, we need to choose
the corresponding ξit appropriately. This is done by randomly choosing between the two stored
residuals (on the left and right) which are closest to zmt, with probabilities of choosing either of
them based on their distance to zmt, assigning the closer one with a higher probability (for example,
1/4 vs 3/4 yield probabilities of 3/4 vs 1/4). Since we apply KDE in the density tempered sampler,
there will be cases where zmt exceeds the bounds of the stored set of standardized residuals. In
these cases, we simply select the residual at the boundary. There are also cases of multiple identical
observations of zmt but different ξit, in particular zmt = 0, to pick from. We select one of these
observation randomly with equal probabilities. Once the corresponding ξit is determined, it is used
to update the price path for the financial institution.

For computing LRMES, we continue to use the parameters as calibrated to the data sample
from 2 January 1990 to 18 September 2015. But the conditional volatilities and dynamic correlation
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take their values as of September 18, 2015.12 We simulate the bivariate process and compute the
LRMES for each financial institution according to:

LRMESi =
1

N

N∑
p=1

[
1− e

∑126
t=1 εit,p

]
(30)

where i refers to the financial institution, t to the time point, and N to the total number of paths.

Table 5 below provides a comparison of the LRMES measures computed under the rejection
sampler and density-tempered SMC bridge sampler. Overall, the numbers match well in terms of
magnitude and are comparable. As we have alluded to earlier, the differences which exist are likely
to be attributable to the fact that the density tempered sampler operates in a continuous domain
while the rejection sampler uses discrete values.13 Arguably, simulating with KDE even in terms
of rejection sampling would yield a smoother estimate of LRMES, and thus a better estimate than
that from bootstrapping the standardized residuals.

Table 5: LRMES estimates under the Rejection Sampler and DTSMC Sampler (LRMES in
percentage points and standard errors in parentheses)

Citibank BOA JPM WellsFargo

Linear Dynamic Correlation
Rejection Sampler 48.698 45.093 53.310 48.849

(0.092) (0.091) (0.087) (0.095)
Density-Tempered Sampler 49.129 45.430 53.777 49.145

(0.094) (0.090) (0.087) (0.095)

Non-Linear Dependency
Rejection Sampler 48.477 44.161 50.905 48.650

(0.096) (0.097) (0.089) (0.097)
Density-Tempered Sampler 48.920 43.004 50.470 49.351

(0.135) (0.094) (0.089) (0.097)

5 Conclusion

We propose a new bridge sampling scheme for efficiently generating paths based on a general non-
Gaussian stochastic process, particular the GARCH process. The endpoint of such paths can be
either a set of points or a singleton. This bridge sampling scheme relies on SMC and specifically

12Although this is a point of relatively high volatility, the DTSMC is still faster and produces 50,000 paths in 349
seconds compared to 498 seconds taken by the rejection sampler.

13While both our samplers are comparable, they do not match the published LRMES from NYU-Stern V-Lab in
terms of magnitude. However, their loose rankings are aligned. While we have attempted to follow the stated SRISK
setup as far as possible, differences are still likely to exist.
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density-tempered SMC to facilitate smooth transition across a sequence of intermediate targets
so as to deliver exact draws from the target bridge. Careful control of the ESS is essential and is
accomplished by reweighting, resampling and support boosting via the Metropolis-Hastings move at
each stage of the sequence. As applied to generating a GARCH bridge defined by a stress scenario of
an at least 40% negative shock to the S&P 500 index value, our bridge sampling scheme is accurate
and delivers computational efficiency of over 10 times in comparison with simple rejection sampling
for a baseline. When the path’s endpoint is fixed, the density-tempered SMC bridge sampler is also
far superior to the alternative bridge samplers. This bridge sampling method performs well under
a range of parameter values and for both parametric and non-parametric conditional distributions.

The SRISK application shows that this new bridge sampling scheme makes stress scenario
generation computationally efficient. The relevance of our bridge sampling scheme is its ability
to efficiently generate paths of a non-Gaussian bridge under severe stress scenarios, and this has
many implications. The Bank for International Settlements in its “Principles for Sound Stress
Testing Practices and Supervision (2009)” notes that “most bank stress tests were not designed to
capture the extreme market events that were experienced”, and that “scenarios tended to reflect
mild shocks”. With this new bridge sampler, one can better cater to the needs for more onerous
stress test scenarios with much reduced computational burden.
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