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Abstract 
 

How does the covariation risk (the risk of simultaneous unfavorable shocks to cash flows 

and discount rate) impact hedging demands of long-term investors and expected stock 

returns?  To address this question, we develop an intertemporal asset pricing model with 

the time-varying covariance matrix of cash-flow news and discount rate news, in which 

covariation risk carries separate risk premium. Our model helps account for approximately 

71% of the return variation across size, book-to-market and momentum sorted portfolios 

for the modern U.S. sample period.  Collectively, our findings suggest that covariation 

risk is both economically and statistically important for understanding equity risk premia.  
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I. Introduction 

 Understanding risk factors that explain variation in the cross-section of expected stock returns 

is a fundamental issue in the asset pricing literature. Intertemporal asset pricing theory, starting 

with the seminal study ofMerton (1973), predicts that long-term investors care not only about a 

stock's covariance with the market portfolio (i.e., market beta of a stock) as in Sharpe (1964) and 

Lintner (1965), but also about stock’s covariance with fluctuations in expected returns and 

variances of their investments. Building on Merton's (1973) Intertemporal Capital Asset Pricing 

model (ICAPM), Campbell and Vuolteenaho (2004) show that the market beta of an asset 

decomposes into a cash-flow component and a discount-rate component, and that both 

components carry distinct risk premia. A recent and growing literature also emphasizes the role 

of variance fluctuations in determining risk premia and hedging demands of investors. Campbell 

et al. (2014) extend Campbell and Vuolteenaho (2004) model to allow for stochastic volatility 

and find evidence that asset sensitivity to the news about aggregate market volatility (i.e.,, 

volatility risk) is also an important determinant of expected returns. In related study, Bansal et al. 

(2014) use a consumption-based model to show that long-run consumption volatility risk carries 

a sizable risk premium. 

The results in Campbell et al. (2014) and Bansal et al. (2014) suggest that investors require 

higher risk premium for holding stocks with higher exposure to volatility risk. In this paper, we 

posit that investors are concerned not only about the magnitude of exposure to volatility risk (as 

in Campbell et al. (2014) and Bansal et al. (2014)), but also about the source of volatility risk.  

Specifically, we develop an intertemporal asset pricing model, in which the news about 

aggregate market volatility — and by inference, volatility risk —decomposes into three news 

components: cash-flow variation, discount-rate variation, and the covariation between the cash-
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flow and discount-rate news. In our model, long-term investors are willing to pay a premium to 

hedge an increase in variation as well as to hedge a decrease in covariation.  Our model predicts 

that these three components of aggregate volatility risk carry different risk premia. Therefore, 

recognizing these distinct sources of volatility risk is important for better understanding asset 

pricing dynamics.  

In our model, the variation effect arises due to a multi-period precautionary savings 

motive, which suggests that investors are willing to pay a premium for assets that hedge an 

increase in stand-alone variations of cash-flow news and of discount-rate news. The covariation 

effect works in the opposite direction to the variation effect: investors are willing to pay a 

premium to hedge the risk of being hurt simultaneously by unfavorable cash-flow news and 

unfavorable discount-rate news—a scenario that becomes more likely when covariation 

becomes more negative. An intuitive way to summarize this “double whammy” effect is to say 

that cash flow and discount rate news are unconditionally positively correlated (e.g., Campbell 

and Vuolteenaho (2004), Lettau and Ludwigson (2005), Golez (2014)), and therefore naturally 

hedge each other in normal times. However, when this covariation decreases, marginal utility 

increases. That is, marginal utility is higher in times when unfavorable news about decreasing 

future cash-flows is less likely to be offset by favorable news about decreasing discount-rates, 

and in times when unfavorable news about increasing discount-rates is less likely to be offset by 

favorable news about increasing future cash-flows. Therefore, marginal utility is higher in times 

when covariation is low and this “double whammy” event is more likely. Consequently, long-

term investors are averse to decreases in covariation and are willing to pay a premium for assets 

that hedge this risk. This intuition is formalized in our model, which posits that covariation risk 

carries a positive risk premium.  
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Our analytical framework implies a non-linear ICAPM which includes the following 

factors: (i) cash-flow news, (ii) discount-rate news, (iii) cash-flow variation news, (iv) discount-

rate variation news, and (v) covariation news.  The non-linearity in our model arises from a second-

order approximation of the pricing kernel, which helps better approximate states in which the 

pricing kernel realization is substantially away from its mean. In these states, a first-order 

approximation is likely to induce a significantly larger approximation error than a second-order 

approximation. See e.g. Chen, Cosimano, and Himonas (2013). 

To operationalize our model, we use a two-step estimation approach. In the first step, we 

estimate cash-flow and discount-rate news using the Vector Autoregression (VAR) approach 

(Campbell and Vuolteenaho (2004)). In the second step, we estimate the three volatility news 

components under the assumption that cash-flow news and discount rate news  follow a 

multivariate GARCH (MGARCH) process. Utilizing MGARCH framework in the context of our 

research question has two important advantages. First, while being sufficiently general it helps us 

parsimoniously estimate our model. Second, it restricts the covariance matrix of cash flow news 

and discount rate news to be positive definite, and thus prevents the volatility estimates from taking 

negative values, which may lead to econometric issues that are not easily resolved.3 

We evaluate the performance of our model using cross-section of returns across size, book-

to-market, and past stock performance (momentum) sorted portfolios on the U.S. market.4 We find 

that small cap stocks have higher exposure to covariation risk compared to large cap stocks. 

Further, we find that stocks with good past performance (“past winners”) have higher exposure to 

                                                           
3 For instance, Campbell et al.(2014) show that, if realized volatility is used as an additional variable in a linear VAR 

model, then future volatility predicted by the VAR can potentially take negative values. 
4 Asset pricing models are often evaluated on their ability to explain the size and value effect (e.g., Campbell and 

Vuolteenaho (2004), Hahn and Lee (2006)). Jegadeesh and Titman (1993) is the seminal reference for the momentum 

effect.  
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covariation risk compared to stocks with poor past performance (“past losers”). The model 

explains about 71% of the return variation across size, book-to-market, and momentum sorted 

portfolios over the period of 1963-2010 and is not rejected at conventional significant levels.  

Furthermore, we find that the explanatory power of our model is predominantly attributed to 

covariation risk, which carries a positive and statistically significant risk premium. To gauge the 

robustness of our findings, we also estimate the model using the implied cost of equity approach 

(Gebhardt, Lee, and Swaminathan(2001), Claus and Thomas(2001), Chen, Chen, and Wei (2011)) 

for a panel of individual stocks. Our key results continue to hold. 

 Our study makes several contributions to the existing literature. First, at a broader level, 

our study contributes to the asset pricing literature by identifying covariation risk as an important 

determinant of the cross-section of risk premia in the equity market. Specifically, our findings 

suggest that stocks with higher covariation risk have higher expected returns. These results are 

consistent with the notion that long-term investors are averse to decreases in covariation, and 

therefore are willing to pay a premium for assets that hedge this risk.  

Second, our findings contribute to a growing stream of research documenting the 

important role of aggregate market volatility risk in shaping the expected return-risk relation 

(Bansal et al. 2014, Campbell et al. 2014). We show that news about aggregate market volatility 

— and by inference, aggregate market volatility risk — can be decomposed into the cash-flow 

variation, discount-rate variation and covariation news components. Furthermore, our results 

suggest that the aggregate volatility risk premium is predominantly driven by the covariation 

risk.In this context, our model can also be viewed as a natural extension of the Campbell and 

Vuolteenaho (2004) return decomposition model where not only the unconditional correlation 

between cash-flows and discount rates is important for return decomposition, but also the time-
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variation in this correlation. Our results suggest that that both the magnitude of exposure to 

volatility risk and the source of volatility risk should be taken into consideration when modeling 

the relation between expected returns and volatility risk. 

Third, our study provides a potential explanation to the momentum phenomenon; namely, 

the documented tendency of stocks that experienced high (low) returns in the past to continue 

outperforming (underperforming) the market (Jegadeesh and Titman (1993)). Specifically, we 

document that stocks with high past returns (“past winners”), on average, have higher exposure 

to covariation risk relative to stocks with low past returns (“past losers”). These results suggest 

that past loser stocks outperform past winner stocks in times of decreasing covariation between 

the cash-flow and discount-rate news; that is, times when the marginal utility of precautionary 

savings is high according to our model. As such, our study contributes to the ongoing debate 

regarding the source of momentum strategy returns by offering a risk-based explanation for the 

momentum phenomenon.5 

The rest of the paper is organized as follows. In Section II we set the theoretical 

framework. We derive our stochastic discount factor in Section III. Section IV describes our 

estimation procedure. The empirical results are presented and discussed in Section V. Section 

VI concludes. 

II. Theoretical Framework 

We commence with a simple example that illustrates the baseline intuition behind our 

volatility risk decomposition. Consider an economy with a risk averse representative agent whose 

                                                           
5 We refer to the debate regarding behavioral versus rational explanations of momentum phenomenon. On one hand, 

several studies suggest that momentum in stock returns is unlikely to be explained by risk and, instead, should be 

treated as the anomaly driven by behavioral explanations (Fama, 1998; Barberis and Thaler, 2003; and Jegadeesh and 

Titman, 2005). On the other hand, some studies attempt to rationalize momentum phenomenon by offering risk-related 

explanations for the observed continuation in stock returns (Bansal, Dittmar, and Lundblad, 2005; Sagi and Seasholes, 

2007; Liu and Zhang, 2008). 
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next-period wealth, the value of the market portfolio ( 1tw  ), is the present value of a perpetuity of 

dividends ( 2td  ), starting from period 2 and discounted using discount-rate 1tr  ,  where small case 

denote logs. Equating log wealth to the log of the present value of dividends, we obtain

1 2 1t t tw d r    . In this special case, the conditional variance of investor wealth is decomposed as

       1 2 1 2 1var var var 2cov ,t t t t t t t t tw d r d r       .   

In this basic example, a positive shock to either )(var 2tt d  or )(var 1tt r   increases the 

volatility of wealth. Consequently, a risk-averse investor will be willing to pay a premium to hold 

assets that hedge against an increase in the variances of future dividends and discount-rates; that 

is, assets that perform well at times when either the variance of future dividends or the variance of 

discount-rate goes up. In contrast, a positive shock to ),(cov 12  ttt rd  decreases the volatility of 

wealth. Therefore, a risk-averse investor will be willing to pay premium to hold assets that hedge 

against a decrease in covariance between future dividends and discount-rates; that is, assets that 

perform well at times when the covariance between future dividends and discount-rate goes down. 

In other words, decreasing covariance is a risk that this representative agent will want to hedge 

against.  

We formalize this intuition in our asset pricing model. We begin by outlining several results 

from prior research that will be helpful for derivation of our model. Similar to prior studies, our 

starting point is a no arbitrage condition which implies the standard Euler equation:  

 1 , 1E 1,t t i tM R 
   

 

(1) 

where tM denotes the stochastic discount factor (SDF) and iR  the return on any traded asset in the 

economy (see Harrison and Kreps (1979)). The expression for the SDF depends on the preferences 
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of the representative agent and the intertemporal budget constraint6. Following prior research (e.g., 

Campbell and Vuolteenaho (2004), Campbell et al. (204)), we assume a representative agent with 

Epstein-Zin recursive preferences (Epstein and Zin (1989,1991)). This assumption has the desirable 

property that the notion of risk aversion is separated from that of the intertemporal elasticity of 

substitution (IES). In our economy, when risk aversion and IES are not equal and are both larger 

than 1, agents have a stronger precautionary savings motive than when they are equal or when they 

are less than 1. That is, they demand larger risk premia for holding assets exposed to the risk of a 

long-run rise in economic uncertainty (volatility risks). In contrast, when the IES is close to 1, 

volatility risks do not contribute substantially to their marginal utility (see Campbell and 

Vuolteenaho (2004)). Since we are interested in understanding the asset pricing implications of 

various components of volatility risk, we assume Epstein-Zin recursive preferences and allow for 

IES to be substantially greater than 1. 

Epstein andZin (1989, 1991) show that these preferences and a budget constraint imply the 

following stochastic discount factor 1tM   for a representative agent: 

  

1

11
1 1

t
t t

t

C
M R

C









 
 

   
   

     
(2) 

In Equation (2), 1tR  is the return on the aggregate wealth ,tW  where Wt is defined as the market 

value of the consumption stream  tC  (including current consumption) owned by the representative 

agent. The preference parameters are the discount factor δ, risk aversion γ, and the elasticity of 

intertemporal substitution (IES) ψ. θ is a function of these parameters and is defined as

                                                           
6 The investment for the next period is constrained to be the wealth minus the amount consumed in each period. The 

allocation of consumption over time is chosen so as to maximize the lifetime utility of the agent. 
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A. An approximate stochastic discount factor with second order shocks 

Our approach is to derive an expression for SDF in terms of the two news components of 

the unexpected market returns: cash-flow news  , 1c tN  and discount-rate news  , 1 .d tN   Towards 

this end, we fist obtain an approximation for the pricing kernel outlined in Equation (2) using a 

second-order Taylor expansion. For analytical tractability, we first express Equation (2) in terms 

of logs and then approximate the equation using a second-order Taylor expansion around the 

conditional expectations of 1tr   and 1tc  , where lower case letters denotes natural logs. This yields 

an approximation of the SDF around   1exp E .tm   For convenience, we define 

, 1 1 1r t t t tr E r      and , 1 1 1c t t t tc E c       . The second-order Taylor expansion of Equation (2) 

gives Equation (3a). For analytical tractability, we re-arrange expression in Equation 3(a) which 

gives Equation 3(b).   
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(3a) 

(3b) 

 

Equation (3b) expresses the percentage deviation in the SDF from its expected value in terms of 

shocks to log consumption growth  c , shocks to log market return  r , and the variance of the 

first-order approximation of shocks to the SDF:  
2

, 1 , 1 , 1 ,1v t c t r t m th


   


  

  
     

   

, where 
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, , 1 , 1E 1m t t c t r th

  


 

  
    

   

 or equivalently  , , 1 , 1var 1m t t c t r th
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B. Expressing 1, tc in terms of cash-flow and discount-rate news 

Our next step is to express , 1m t   
in Equation (3) in terms of the cash-flow and discount-

rate news components, 1, tcN and 1, tdN , which requires expressing 1, tc
 
and 1, tv in terms of 1, tcN

 

and 1, tdN . We commence by deriving an expression for 1, tc in terms of 1, tcN and 1, tdN  

components. To do so, we first obtain approximate expressions for expected log consumption 

growth,
 

 1Et tc  , and expected log return on market portfolio, 1tt rE   by imposing the restriction 

that Equation (1) holds for any asset i, including the aggregate wealth portfolio. Applying 

Equations (1) and (3b) to the market portfolio and estimating the Euler equation by applying a 

second-order Taylor expansion around the means of 1tr and 1tc  gives Equation (4):  

  1 1 1 1

1
E log E var .

2
t t t t t t tc r c r


   


        

 

(4) 

Equation (4) relates deviations of expected consumption growth from its long-term mean to 

deviations of returns from their long-term means and a precautionary savings term. The sensitivity 

of consumption deviations to expected return deviations is measured by the IES coefficient   . 

Consistent with related models such as Campbell et al. (2003), the precautionary savings term 

measures the influence of an increase in the variance of future consumption growth relative to 

portfolio returns,  1 1vart t tc r   . According to (4), when θ < 0 (our assumed case), an increase 

in  1 1vart t tc r    decreases expected consumption growth. Using (4) and a standard log-

linearization of the budget constraint yields an expression for unexpected consumption growth, 

which can be used to replace unexpected log consumption growth in the SDF with news 

components: 
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(5) 

where , 1d tN   denotes discount-rate news, and , 1c tN  ,  denotes cash-flow news. The last term, , 1,v tN 

denotes news about “future risk”, following Campbell et al. (2014). It captures revisions in 

expectations for the variance of future log returns plus the log stochastic discount factor. The 

expressions for these news terms are: 
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(6) 

Under the assumption of conditional log-normality, these expressions are equivalent to the 

expressions in Campbell et al. (2014). However, Equations (5) and (6) are more general and are 

valid even when the conditional log-normality assumption is violated. Plugging expression for 

1, tc  from Equation (5) into Equation (3.b) yields Equation (7). 

 , 1 , 1 , 1 , 1 , 1

1 1
,

2 2
m t c t d t v t v tN N N         

 

(7) 

Equation (7) generalizes the expressions derived by Campbell et al. (2014) and Bansal et al. (2014) 

in that the shocks to the squared log SDF are also priced. The difference arises because these 

studies assume conditional log-normality and therefore ignore second order SDF volatility shocks, 

which are potentially important in the data. For example, studies such as Harvey and Siddique 

(2000), show the importance of covariance with the square of the market returns help explain risk 

premia. Equation (7) allows for these second-order effects in an ICAPM return-decomposition 
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framework. In the next section, we develop a testable model of expected returns based on the SDF 

in Equation (7). 

 

III. A non-linear ICAPM with volatility risk decomposition  

A. Expressing , 1v tN  and , 1v t   in terms of cash-flow and discount rate news 

Recall that our goal is to derive an expression for the pricing kernel in terms of the two 

components of the unexpected market return—cash-flow news ( , 1c tN  ) and discount-rate news (

, 1d tN  ). However, the expression for the pricing kernel in Equation (7) depends not only on these 

two components, but also on the news to future risk ( , 1v tN  ) and the news to the volatility of log 

SDF ( , 1v t  ). Therefore, the remaining task is to derive expressions for , 1v tN  and , 1v t   in terms of 

, 1c tN  and , 1d tN  .  

To derive an expression for news to future risk in terms of , 1c tN   and , 1d tN  , we need to 

make an assumption regarding the process that governs the time-dynamics of the covariance matrix 

of , 1c tN  and , 1d tN  . We assume that conditional covariance matrix, tH , follows an MGARCH 

process:8  

 
1 1 -1' ' ' ,t s t s t s t s     
 H A N N A + G H GC C

 
(8) 

where tH   is the 2 × 2 conditional covariance matrix of , 1c tN  and , 1d tN  , tN  denotes a 2 × 1 

vector of the news terms, and C , A and G are 2 × 2 matrices of constants. We assume that 

                                                           
8 This assumption is sufficiently general as it encompasses a variety of positive definite representations of the 

covariance matrix (Engle and Kroner, 1995). 
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the process is covariance stationary. This assumption enables us to estimate our intertemporal 

model with variation and covariation risks, without estimating shocks to long-term volatility 

directly. The expression for conditional volatility of cash flow news implied by the MGARCH 

process defined in Equation (8) is:  

 
2 2 2 2 2 2

, 1 11 , , , , , , ,2 2 ,cc t cc c t cc dc c t d t dc d t cc cc t cc dc cd t dc dd th c a N a a N N a N g h g g h g h       

 

(9) 

where xya denotes an element of A , the ARCH persistence matrix, and xyg denotes an element of 

G , the GARCH persistence matrix. With this MGARCH process assumption in hand, we solve 

for a second-order approximation for , 1v tN  : 
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v t t t c t j t t cc t j

j j

cc cc t dc dd t dc cc cd t

N N h
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 (10) 

In Equation (10), 
, 1cc tN 

,
, 1dd tN 

, and , 1cd tN   are news to second-order terms of , 1c tN  and , 1d tN  ,  

given by 2

, 1 , 1,c t cc tN h  2

, 1 , 1,d t dd tN h  and , 1 , 1 , 1,c t d t cd tN N h   respectively, and 
  

is a scale 

parameter that captures the link between news to long-term aggregate variance and the variance of 

next period’s cash flow news  , 1cc th 
.9   

 
 

To derive an expression for , 1v t  in terms of , 1c tN  and , 1d tN  we commence by eliminating 

the third order and higher order terms of , 1c tN   and , 1d tN   from its expression. In Equation (3b), 

                                                           

9 In our calibration exercise discussed in Section IV, we set   2 2
1 cc cca g      to reflect long-term impact of 

a one period shock to , 1.cc th   
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we keep only the first and second order terms of , 1c tN   and , 1d tN   in the expression for

 
2

, 1 , 1 ,1v c t r t m th


   


 

  
     

   

. Note that, according to Equation (10), , 1v tN   is a second-

order function of , 1c tN   and , 1d tN  . Therefore, the third order and higher order terms of , 1v tN   do 

not contribute to the second-order approximation of , 1v t  . This further implies that the expression 

for , 1v t  in terms of first and second order terms of , 1c tN   and , 1d tN   (and ignoring higher order 

terms) is given by: 

   
2 2

, 1 1 , 1 , 1 , 1 , 1 , 1E E 2 .v t t t c t d t cc t dd t cd tN N N N N               

 

(11) 

B. Intertemporal asset pricing with variation and covariation risks 

Having expressed the news to future risk ( , 1v tN  ) and the news to the log of SDF ( , 1v t  ) 

in terms of the cash-flow and discount-rate news components, we plug the resulting expressions 

from Equations (10) and (11) in Equation (7) to obtain the expression for our SDF:  

 , 1 , 1 , 1 , 1 , 1 , 1,m t c t d t cc cc t dd dd t cd cd tN N N N N             

 

(12) 

The expressions for ddcc  ,   and cd are given in Equation(13).
  

 

2 2 2
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(13a) 

(13b) 

(13c) 

 

From the expressions in Equations (13a) and (13b), we note that , 0.cc dd    Also Equation (13c) 
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implies that 0cd   when 0dc cca a  . If investors demand a risk premium for holding assets that 

decline when covariation declines, then we should find that either 0dc cca a  , or that 

2( 1) ( ).dc cca a      The condition 0dc cca a   implies that a decrease in cash flows along with 

an increase in discount rates  increases cash flow volatility ( , , 0c t d tN N   , 1cc th  ). Consistent 

with our conjecture of a positive covariation risk premium  0 ,cd   we find that 0dc cca a   for 

our estimated MGARCH parameters (discussed in further detail in Section IV). 
 

Substituting Equation (12) into Equation (1) yields an approximate pricing expression for 

expected excess return on any traded asset: 

 
, 1 , , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 1 , 1

cov , cov ,   

cov , cov , cov , .

t i t f t t i t c t t i t d t

cc t i t cc t dd t i t dd t cd t i t cd t

E R R r N r N

r N r N r N



  

    

     

         

            

 (14) 

The expressions in Equation (13)along with the restriction that 0dc cca a   provide an important 

insight. An increase in variation risk is associated with increase in marginal utility. This reflects 

the willingness of investors to pay a premium for assets that hedge against an increase in variance 

of future cash flows or discount-rate news, as reflected in , 0.cc dd  
 
In contrast, an increase in 

covariation risk between future cash flows news and discount rate news is associated with 

an decrease in marginal utility. This reflects an intertemporal investor’s preference for states 

when discount rate news has high positive covariance with cash flow news so that shocks to 

cash flows and discount rates are likely to offset each other. Consistent with this, investors 

will require higher risk premium for assets which yield low returns in states when covariance 

between the cash-flow and discount-rate news is low, as reflected in 0cd . 



15 
 

C. Relation to other asset pricing models 

Among other asset pricing models, our SDF and asset pricing relation are most closely 

related to Campbell et al. (2014). However, a fundamental difference between our model and the 

model derived by Campbell et al. (2014) is that in our model the shocks to the second-order terms 

of cash-flow and discount rate news are also priced. This difference arises for two reasons. First, 

Campbell et al. (2014)assume conditional log-normality and therefore ignore the extra second 

order terms due to shocks to the square of the SDF. When this assumption is relaxed, shocks to the 

second-order terms of the log SDF influence risk premia and hedging demands of long-term 

investors. Second, Campbell et al. (2014) do not allow for decomposition of volatility risk, which 

can significantly affect interpretation of the determinants of expected returns. In particular, 

Equation (13) shows that as  increases, the second order components carry substantial and 

distinct risk premia. Therefore, collapsing the components of volatility risk into a single volatility 

risk measure may significantly distort inferences regarding the risk-return relation. Further, an 

important empirical advantage of Equations (12) and (14) is that they model the intertemporal 

effect of stochastic volatility on the expected asset returns without direct reference to news about 

future volatility. That is, this model can be estimated using a linear VAR that does not include 

volatility as an additional state variable. This representation helps avoid econometric issues 

related to estimated negative conditional volatilities, if volatility is included as an additional state 

variable in a VAR.11   

While not the main focus of our study, it is interesting to note that Equations (12) and (14) 

are also related to the three-moment CAPM model of Kraus and Litzenberger (1976) and its 

                                                           
11 On one hand, when constraints that the predicted values of future realized volatility must be positive are not imposed 

on the VAR, Campbell et al. (2014) find that the VAR predictions of realized volatility can be negative. On the other 

hand, the statistical properties of binding non-negative constraints on volatility predictions in a VAR framework are 

not well-understood.  
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conditional version derived by Harvey and Siddique (2000). In these models, coskewness of a 

risky asset with the market return is priced. That is, the pricing kernel in these models is a function 

of the square of the market return, and the expected return on a risky asset is positively related 

with the covariance of an asset return with the square of market return.  Harvey and Siddique 

(2000) suggest that this pricing kernel is consistent with several different models of preferences 

and return distributions, and can be derived using a second-order Taylor expansion under the 

assumption of nonincreasing absolute risk aversion.  

There are two key differences between our model and the model in Harvey and Siddique 

(2000). First, we consider a long-term investor with Epstein-Zin preferences (1989), which lead to 

different prices of risk for cash flow and discount rate news. Second, our approach effectively 

decomposes variation in market return into the variation in cash-flow news, discount-rate news 

and the covariation components. Thus, our model can be viewed as an intertemporal generalization 

of the models of Kraus and Litzenberger (1976) and Harvey and Siddique (2000). In the special 

case, when 𝛾 = 1 as in Harvey and Siddique (2000), we arrive at an expression for the conditional 

pricing kernel that can be expressed only in terms of the market portfolio’s returns.  

 

IV. Estimation of the news components. 

As shown in Equation (12), shocks to the pricing kernel in our model depend on cash-

flow news ( , 1c tN  ), discount-rate news ( , 1d tN  ) and shocks to the second-order terms of these two 

news components ( , 1 , 1, ,cc t dd tN N  and , 1cd tN  ). We use a two-step process to estimate these terms. 

In the first step, we estimate the time-series of Nc and Nd   news components. In the second step, 

we fit an MGARCH model to the time-series of Nc and Nd to estimate shocks to the second-order 

terms of these two news components. Below we provide a detailed description of each of the two 

steps.  



17 
 

A. Estimation of cash-flow and discount-rate news  

We estimate the cash-flow and discount-rate news following Campbell and 

Vuolteenaho (2004). Specifically, we assume that the dynamics of the relevant state variables are 

well captured by a first-order vector autoregressive (VAR) process  

 1 1.t t t     x x x x u        (15) 

Here tx  is a n × 1 vector of state variables with the log market excess returns as the first element, 

x̄  is a n × 1 vector of constants, Γ is the n × 𝑛 matrix of VAR coefficients, and ut +1 is a n × 1 

vector of shocks to the state variables with conditional mean of zero. The cash flow news ( , 1c tN 

) and discount rate news ( , 1d tN  ) components of the unexpected market return can be expressed 

in terms of 1( ) ,  
λ = Γ I - Γ    a matrix that maps instantaneous state variable shocks to the news 

components of unexpected excess returns. Specifically, , 1 1d t tN  
 1e λu and  , 1 1.c t tN  

  
1 1

e e λ u

where 
1e  is a vector with one as the first element and zero as the remaining elements.  

Consistent with Campbell and Vuolteenaho (2004) we estimate Equation (15) using a 

4 × 1 vector of state variables that has the excess market return as the first element and three 

other variables that help to predict excess market returns: term-spread, small-value spread and 

the log of P/E ratio.12 Excess market return is estimated as the difference between the log-returns 

on CRSP value-weighted index and 3-month Treasury bill. Term spread is estimated as the 

                                                           
12 In our baseline tests, we use the same state variables as used by Campbell and Vuolteenaho (2004) to facilitate 
comparison between the…..Chen and Zhao claim that the results of the Campbell and Vuolteenaho (2004) 

methodology are sensitive to the decision to forecast expected returns explicitly and treat news to cash flows as a 

residual. They further suggest forecasting cash flows directly. Campbell, Polk, and Vuolteenaho (2010) address this 

critique and show that a VAR that forecasts expected returns is equivalent to one that forecasts expected dividend 

growth with the same state variables.  However, news term estimates are sensitive to the inclusion of other state 

variables. In the robustness tests (discussed in further depth below), we modify our estimation approach to include 

additional state variables identified by prior literature as potential predictors of market returns. 
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difference between the 10-year and short-term government bond yields. Small value spread is 

estimated as the log of the ratio of book-to-market ratios of small value and growth stocks. P/E 

ratio is the ratio of market price to the lagged 10-year moving average of aggregate earnings.13 

Following Campbell and Vuolteenaho (2004) we set ρ equal to 0.95 in annual terms. The 

estimates of the VAR parameters and the residuals from VAR model are then used to estimate 

cash flow and discount rate news components. This approach has been widely used in a variety 

of empirical applications (e.g., Bernanke and Kuttner, 2005; Hecht and Vuolteenaho, 2006; 

Campbell, Polk, and Vuolteenaho, 2010; and Koubouros, Malliaropulos, and Panopoulou, 

2010). Following Campbell and Vuolteenaho (2004), we estimate VAR system with data starting 

from December 1928 up to December 2010 (i.e., the end of our sample period).  

The coefficients of the VAR and the summary statistics for the cash flow and discount 

rate news for our sample period (i.e., 1963-2010) are reported in Panels A and B of Table I, 

respectively. The mean cN  is -0.06% and the mean dN , is -0.05%.14 The standard deviation of 

the cash- flow news is 2.32%, much smaller than the standard deviation of the discount rate 

news of 4.36%, consistent with the results reported by Campbell and Vuolteenaho (2004).  

B. Estimation of the shocks to second-order terms of cash-flow and discount-rate news 

To estimate the shocks to the second-order terms of cash-flow and discount-rate news, 

we need to estimate conditional expectations of 
2

1, tcN , 
2

1, tdN  and 1,1,   tdtc NN ; that is, the 

conditional variance of 1, tcN  (denoted as 1, tcch ), conditional variance of 1, tdN  (denoted as 

                                                           
13    For further details a reader is referred to the Campbell and Vuolteenaho (2004) Data Appendix, available at 

http://www.aeaweb.org/aer/contents/appendices/dec04_app_campbell.pdf 
S Since the cash-flow and discount-rate news are linear combinations of VAR residuals, they both have zero means 

for the sample used to estimate VAR (i.e., December 1928 to December 2010). The means for these news terms in 

the modern sample (i.e., July 1963-December 2010) is slightly different from zero.  
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1, tddh ) and the conditional covariance of 1, tcN  with 1, tdN  
 
(denoted as 1, tcdh ). Recall that in 

deriving our asset pricing equations, we assume that the conditional covariance matrix of 1, tcN

and 1, tdN  follows an MGARCH process. Therefore, we fit the MGARCH model outlined in 

Equation (8) to the time-series of cN  and dN , anduse the estimates of the MGARCH model to 

calculate conditional variances and covariance series of the cash-flow and discount rate news. 

Next, we estimate the shocks to the quadratics by subtracting the corresponding elements of the 

conditional covariance matrix predicted by the MGARCH model from the quadratics of cash-flow 

and discount-rate news. That is, the shock to 
2

1, tcN  (or to
2

1, tdN ) is calculated as 1,

2

1,   tcctc hN  (or 

as 1,

2

1,   tddtd hN ) and the shock to the 1,1,   tdtc NN term is calculated as 1,1,1,   tcdtdtc hNN . 

In Panel C of Table I we report the estimated MGARCH coefficients. The ARCH and 

GARCH coefficients are statistically significant. The sign of the unconditional covariance of 

shocks to cash flows and discount rates is positive (E[Nc,Nd] ≥ 0).15 

C. Time-series of the news components 

Figure 1 plots the time series of cash flow news and discount rate news. Figure 2 plots 

the shocks to second-order terms of cash-flow and discount rate news and their conditional 

variance and covariance as predicted by our fitted MGARCH model. Campbell and Vuolteenaho 

(2004) characterize recessions in which stock market declines are attributed to declining cash 

flows as “profitability” recessions, and those in which stock market declines are attributed to 

increasing discount rates as “valuation” recessions. We extend this line of logic to our model and 

                                                           
15 The average of NcNd in our sample period and the MGARCH estimate of unconditional covariance of Nc and Nd 

are positive. Campbell and Vuolteenaho (2004) and Lettau, and Ludvigson (2005) find similar evidence of positive 

unconditional covariance between cash flow news and discount rate news. Evidence that does not rely on VAR 

estimates and return decomposition, can be found in Golez (2014)..  
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characterize recessions in which covariance between cash flows and discount rates is notably 

negative as “covariation recessions”.  

 

[Insert Figure 1 about here] 

 

Major shocks to each of the series plotted in figure 1 seem to coincide with NBER recessions.  

Recessions in our sample seem to coincide with increases in discount rate variation. The level of 

cash flow variation also increases in these recessions, but the magnitude of increase is lower. 

Interestingly, conditional covariance between cash flow news and discount rate news declines 

most in only two of the recessions in our sample: the 1970s recession and the recent Global 

Financial Crisis.   

 

[Insert Figure 2 about here] 

 

Our model predicts that these two covariation recessions represent an environment of high 

economic uncertainty, and high marginal utility for Epstein-Zin investors. Therefore, for our 

model to be consistent with the data in this stylized setting, the risk premium of stocks that most 

underperform in covariation recessions should be higher than those that do not, all else equal.  We 

examine this and other predictions of our model in the next section.  

 

V. Empirical results 

To evaluate performance of our model we conduct three types of analyses. In the first 

analysis, we calibrate the parameters of our model using the time-series of aggregate market 
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returns. In the second analysis, we examine the performance of our model using cross-section of 

portfolio returns sorted based on size, book-to-market, past performance (momentum), and 

industry characteristics. In the third analysis, we supplement our cross-sectional analysis by 

estimating our model for a panel of individual stocks using an implied cost of equity capital 

approach.    

A. Calibration of model parameters using the aggregate equity returns  

To gain some preliminary understanding of the importance of volatility risk 

decomposition, we commence our analysis with a simple calibration exercise using aggregate 

aggregate equity portfolio returns. Specifically, we evaluate the magnitudes of the risk premia 

attributable to the variation and covariation risk components of volatility risk for different values 

of the representative investor’s risk aversion ( ). Consistent with Equations (13) and (14), the 

relative contribution of the components of volatility risk will be driven by the price of these risks 

and the covariance of these risks with the aggregate equity portfolio returns. Panel A of Table II 

reports the covariances of the aggregate equity portfolio with news to various components of our 

pricing kernel. We also report scaled covariances (  ) of the market portfolio, namely the cash-

flow beta ( c ), discount-rate beta ( d ), cash-flow variation beta ( cc ), discount-rate variation 

beta ( dd ), and the covariation beta ( cd ).Positive values of betas with a certain type of risk 

indicate that the aggregate equity portfolio is exposed to that risk, and negative values imply that 

it hedges that risk. Panel B of Table II reports assumed model parameters used to calculate the 

prices of risk as per Equation (14).  The persistence parameter   is set equal to 9, which is 

estimated from the long-run impact of a one-period revision in variance for a univariate GARCH 

process    2 21 cc cca g     . The ARCH and GARCH parameters are obtained from the 
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estimated MGARCH coefficients  , ,cc cc dcg a a reported in panel C of Table I. 

In Panel C of Table II, we report the model implied market risk premium and its 

decomposition into different components, assuming values of the risk aversion coefficient (𝛾) 

between one and ten. We proceed as follows. For each value of 𝛾, we first calculate the price of 

risk (𝜆) for each of the components of the pricing kernel (as per Equation (12)) using the assumed 

model parameters reported in Panel B of Table II. We then calculate the contribution of each of 

these components to the market risk premium by multiplying the price of risk (𝜆) with the exposure 

of the market portfolio (𝛽) to obtain the contribution of that particular risk factor to the risk 

premium of the market portfolio (βmλ).  We report annualized figures by multiplying this monthly 

expected return figure by 12. We find that the market portfolio is exposed to both variation risk 

and covariation risk. Recall that the price of risk of the variation components is negative. This 

implies that these risks are expected to contribute to the higher returns demanded by investors to 

hold equities.  Though the price of discount rate variation risk is the lowest in our model (at our 

calibrated parameters), the relatively large exposure of the equity portfolio to discount rate 

variation risk makes this risk the largest contributor to the risk premium.  Overall, this evidence 

suggests that the our decomposition of aggregate variance into the three components does capture 

independent risks exposures of equities and that this decomposition is likely to enhance our 

understanding of the cross-section of expected returns, especially if equity portfolios have 

significantly different exposures to one or more of these components of aggregate volatility. 

B. Estimating Risk Premia Using Portfolios of Stocks 

In our second analysis, we estimate and test our model using a cross-section of portfolio 

returns sorted based on firm size, book-to-market ratio, and past stock performance 

(“momentum”) attributes. Prior research shows that these characteristics have predictive power 
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for the cross-section of stock returns.Specifically, our basic test assets are the Fama-French 25 

size/book-to-market sorted portfolios and 25 Fama-French size/momentum sorted portfolios. 

Size/book-to-market sorted portfolios have been used as the test assets in previous studies (see 

among others Hodrick and Zhang, 2001; Campbell and Vuolteenaho, 2004; Hahn and Lee, 

2006). We also include size/momentum sorted portfolios since momentum factor poses a 

particular challenge for the asset pricing models (Fama 1998; Jegadeesh and Titman, 2005). 

For each of these portfolios we estimate its monthly excess return as the difference between 

the gross monthly return and the yield on the 1-month Treasury bill. All data were obtained from 

the Kenneth French data library and the Center for Research in Security Prices (CRSP). The 

sample period for the Fama-MacBeth regressions is from July 1963 to December 2010. All 

returns are measured on monthly basis.16 

B.1  Preliminary analysis 

We commence by examining whether the average returns on long-short portfolios based 

on these characteristics, SMB (small minus big stocks), HML (value minus growth stocks), and 

MOM (winners minus losers) are consistent with a key prediction of our model: that assets that 

have low returns during times of decreasing covariation have higher risk premia. To provide some 

intuitive insights to the formal tests that follow, we first examine the prediction that the cross-

sectional premia in average returns of SMB, HML, and MOM should be reversed in recessions 

when covariation is the most negative (recessions that we term “covariation recessions”). That is, 

the long leg of the portfolios (e.g. small stocks) should perform worse than the short leg of the 

                                                           
16 The descriptive statistics for the test asset portfolios in our sample (untabulated for brevity) are consistent with 

prior research (e.g., Jegadeesh and Titman (1993), Hodrick and Zhang (2001), Hahn and Lee (2006)). Specifically, 

small cap stocks have higher average returns compared to large cap stocks, and stock with high book-to-market 

ratio (“value stocks”) have higher average returns compared to stocks with low book-to-market ratio (“growth 

stocks”). Also, stocks with stocks with good past performance have higher average returns compared to the stocks 

with poor past performance, and the effect is more pronounced for the small cap stocks.  
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portfolio (e.g. large stocks) in “covariation recessions”.  

We calculate unconditional average and abnormal returns, as well as those conditional 

on three types of recessions: NBER recessions (NBERD), “covariation recessions” (COVD), and 

other NBER recessions (ONBERD). If the covariation recessions are different from other 

recessions then, according to our model, we expect stocks that underperform in these recessions 

to have higher risk premia. This is because our model predicts that investors have higher marginal 

utility in recessions with low conditional covariance than in other recessions.  Recall that in the 

previous section we identified covariation recessions as the early 1970s NBER recession and the 

2008 NBER recession—the two recessions in which covariation of cash flow news and discount 

rate news was visibly negative in Figure 2. Other NBER recessions indicate all NBER recessions 

excluding these two covariation recessions.  

We present the results of this preliminary analysis in Table III. The table reports the 

average and abnormal returns (controlling for exposure to the market portfolio, 𝛼𝑖|𝐷 = 𝑎𝑣𝑔[𝑟𝑖,𝑡 −

𝛽𝑖𝑟𝑚,𝑡]) of SMB, HML, and MOM. We also report results where the market beta exposure 𝛽𝑖|𝐷 of 

a portfolio i is allowed to vary conditional on a type of recession (NBERD, COVD, or ONBERD). 

If our model can explain the average returns on SMB, HML, and MOM, we expect to see a 

negative sign for average returns and abnormal returns if covariation recessions are indeed 

associated with times of higher marginal utility. 

In Table III, we find that the abnormal returns for SMB and MOM, conditional on 

COVD, are negative and economically significant.17 That is, we find that small cap stocks 

                                                           
17 According to the reported Newey-West t-tests, the negative returns on SMB during covariation recessions and the 

positive returns on MOM in recessions other than covariation recessions are also statistically significant. However, 

due to concerns of subsample selection based on ex-post conditional covariance, we are cautious as interpreting these 

abnormal returns as statistically significant. The purpose of our analysis is simply to examine whether a prediction of 

our model, that covariation recessions are times of high marginal utility of investors, is broadly consistent with the 

behaviour of return dynamics of these portfolios and their unconditional risk premia. 
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underperform large cap stocks in covariation recessions and winners underperform losers in these 

covariation recessions after controlling for the market return and changes in the market beta 

during recessions. Further, we find that this is not the case when we condition on ONBERD, other 

NBER recessions in which cash flow and discount rate covariance does not decline as much. 

These preliminary findings are consistent with our model and provide evidence in favor of the 

prediction that covariation recessions are more important than regular recessions in explaining 

the high average returns on these portfolios.  

 

B.2 Risk Exposures of Test Portfolios 

The results reported in the previous section provide some preliminary evidence that 

covariation risk (and, more generally, decomposition of volatility risk) may account for some 

cross-sectional variation in average stock returns sorted by size and momentum. In this section, 

we conduct a more formal test of this conjecture by examining the risk exposures ( ) of the 

size/book-to-market and size/momentum sorted portfolios. The results are presented in Table IV, 

where Panel A reports the estimates of betas for the size/book-to-market sorted portfolios, and 

Panel B reports the estimates of betas for the size/momentum sorted portfolios. The estimates of 

Panel A are organized in a square matrix with small cap (large cap) stocks at the top (bottom) and 

high book-to-market (low book-to-market) stocks at the left (right). In Panel B, the estimates for 

the small cap (large cap) stocks are reported at the top (bottom) and the estimates for the 

stocks with the poor (good) past performance are reported at the left (right). The corresponding 

standard errors are reported in square brackets. For each quintile (size, book-to-market, past 

performance) we report the differences between the estimated betas for the extreme portfolios, 

with the corresponding p-values reported in parentheses.  

First consider the estimates of risk exposures for the size/book-to-market sorted 
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portfolios. The estimates of both cash-flow and discount-rate betas are largely consistent with 

the results reported by Campbell and Vuolteenaho (2004) for the 1963-2001 sample period. 

Specifically, cash-flow betas are significantly larger for the value stocks compared to the 

growth stocks. Also, the discount-rate betas are significantly larger for the small cap stocks 

compared to the large cap stocks.18  The estimates of cash-flow variation betas are negative 

and significant and so are the estimates of the discount-rate variation betas, suggesting that, 

on average, stocks exhibit a significant exposure to both cash flow and discount rate variation 

risks. We also find some limited evidence of cash flow variation betas being larger for the 

value stocks compared to growth stocks. The estimates of covariation risk betas are positive and 

statistically significant, suggesting that, on average, stocks exhibit significant exposure to 

covariation risk. Further, the covariation risk betas are significantly larger for the small cap 

stocks compared to the large cap stocks.   

Now consider estimates of risk exposures for the size/momentum sorted portfolios. The 

estimates of the cash flow betas appear to be slightly lower for the stocks with high past 

returns compared to the stocks with poor past performance. The difference, however, is not 

significant for most of the categories.. The discount rate betas, on the other hand, display a 

distinct U-shape, being largest for the stocks with poor and high past performance. This 

observation suggests that portfolios comprised of the stocks with poor or high past performance 

(that is, stocks that experienced in the past large absolute returns) are potentially picking stocks 

with high sensitivity to the changes in discount-rate. Importantly, the estimates of covariation 

risk betas are positive and monotonously increasing when moving from the stock with poor past 

                                                           
18 These results are also consistent with previous studies (Gertler and Gilchrist, 1994; Christiano, Eichenbaum 

and Evans, 1996; Perez-Quiros and Timmermann, 2000) who find small firms to be more sensitive to fluctuations 

in interest rates. 
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performance to the stocks with high past performance, and the difference is also statistically 

significant. These results suggest that portfolios comprised of the stocks with high past 

performance have higher exposure to the covariation risk relative to the market. Also, similar to 

the results reported in Panel A we find the estimates of covariation risk betas to be significantly 

larger for the small cap stocks relative to the large cap stocks.  

B.3 Estimation of Risk Premia 

Having estimated risk exposures for the test assets, our next step is to estimate the model 

risk premia. Following prior research (Campbell and Vuolteenaho 2004; Campbell et al. 2014) 

we estimate our model using the following cross-sectional regression: 

 

 
�̅�𝑖

𝑒 = 𝑔0 + ∑ 𝑔𝑘�̂�𝑖,𝑘 + 𝜀𝑖
𝐾
𝑘=1  , (16) 

where  �̅�𝑖
𝑒 is average excess portfolio return, �̂�𝑖,𝑘 is the estimated risk exposure with respect to 

k-th risk factor, 𝑔0 is the zero-beta rate, and 𝑔𝑘 is the k-th factor risk premium. To incorporate 

estimation uncertainty due to using estimated betas, we produce standard errors with a bootstrap 

from 5000 simulated realizations, following Campbell and Vuolteenaho (2004). We consider 

the following five models: (1) CAPM (Sharpe (1964) and Lintner (1965)), (2) 2-beta ICAPM 

(Campbell and Vuolteenaho 2004)), (3) CAPM with coskewness (Kraus and Litzenberger 

(1976); Harvey and Siddique (2000)), (4) our non-linear ICAPM, and (5) 4-factor Fama-French-

Carhart model (Carhart 1997)). To assess model performance, for each model we also estimate 

its pricing error as shown in Equation (17): 

𝜗 = (∑ (�̅�𝑖
𝑒 − ∑ 𝑔𝑘�̂�𝑖,𝑘)𝐾

𝑘=1
2𝑁

𝑖=1 )
0.5

     (17) 

To evaluate statistical significance of the pricing error, we use a bootstrap method (Campbell and 

Vuolteenaho (2004), Campbell et al. (2014)). Specifically, for each model we adjust test asset 
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return to be consistent with the model (that is, generate test asset return series under the null that 

the model prices test assets correctly). Next, we simulate the distribution of the pricing error under 

the null using bootstrap with 5000 simulated realizations and report p-value for the pricing error 

as a proportion of simulated pricing errors from the bootstrap that exceed the realized pricing error 

of a given model. 

For the 2-beta ICAPM of Campbell and Vuolteenaho (2004) and the proposed non-linear 

ICAPM we also report the risk aversion parameter (𝛾) implied by the estimated risk premia of the 

model. Specifically, for the 2-beta ICAPM the implied risk aversion parameter is estimated as the 

ratio of the cash-flow news premium to the discount-rate news premium. For the non-linear 

ICAPM, the situation is not as straightforward as in the 2-beta ICAPM case since the model has 

four risk premia parameters that depend on risk aversion, as shown in Equations (13) and (14). To 

obtain implied risk aversion for the non-linear ICAPM we search for the value of 𝛾 that minimizes 

the weighted absolute distance between the estimated risk premia and their theoretical values as 

per equations (13) and (14), amongst the set of possible parameter values. The weights are 

estimated as the inverse of the standard errors of the risk premia estimates which allows us to take 

into account estimation uncertainty inherent in model estimates.  

We commence our analysis with the sample of 50 test assets which include 25 Fama-

French portfolios sorted based on size/BM and 25 portfolios sorted based on size/momentum. The 

results are reported in Panel A of Table V. The first tested model is the CAPM of Sharpe (1964) 

and Lintner (1965) with a single explanatory variable ̶ CAPM beta. Consistent with the results 

reported by prior studies (Jegadeesh and Titman, 1993; Campbell and Vuolteenaho, 2004; Hahn 

and Lee, 2006) traditional CAPM fails to explain the size, book-to-market and momentum premia. 

The estimated price of risk is not significant and the adjusted R2 is 0.05. The model is strongly 
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rejected based on the data (pricing error=0.091, p-value<0.01). 

Next, we examine the performance of the two-beta ICAPM of Campbell and Vuolteenaho 

(2004). Similar to CAPM, the poor performance of the two-beta ICAPM is evident. The estimated 

risk premia for both cash-flow and discount rate betas are not significant and the adjusted R2 is 

0.06 and the implied risk aversion coefficient is 4.33. The pricing error of the model is 0.121 and 

is statistically significant (p-value<0.01), suggesting that the model is rejected based on the data. 

Given the results reported in Campbell and Vuolteenaho (2004) which show that the two-beta 

ICAPM does a good job in pricing size/book-to-market sorted portfolios, our findings suggest that 

the poor performance of the two-beta model in our sample is driven by the inability of the model 

to explain momentum effect. This notion is further supported by the results reported in Table V, 

which show that past “winners” and past “losers” have similar cash-flow and discount rate betas.  

The next model is CAPM with coskewness (Kraus and Litzenberger, 1976; Harvey and 

Siddique, 2000). The risk premium for the coskewness beta is negative and significant, consistent 

with the notion that investors are willing to accept lower rate of return on assets that hedge against 

coskewness risk. The model yields adjusted R2 of 0.46. The negative and significant risk premium 

for the coskewness beta as well as the good explanatory power of the model are consistent with 

the findings in Harvey and Siddique (2000) who show that some of the size, book-to-market and 

momentum related effects could be attributed to the differences in the exposure to coskewness 

risk. However, the model is still rejected based on the data (pricing error=0.071, p-value<0.02). 

Further, the risk premium for the market beta is negative and significant, in stark contrast to the 

theoretical predictions of the model. The latter finding further highlights the importance of 

decomposing market beta into its cash-flow and discount rate components.  

Next we test the proposed non-linear ICAPM. The estimated risk premium for the cash-
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flow beta is positive and statistically significant, and so is the estimated risk premium for 

covariation risk. The estimates of the cash flow and the discount rate variation risk premia are both 

statistically insignificant, and so is the risk premia for the discount rate beta The model yields 

adjusted R2 of 71% and is not rejected at conventional significance level (pricing error=0.020, p-

value=0.67). The risk aversion parameter implied by the non-linear ICAPM is 2.39. Overall, the 

results suggest that the proposed non-linear ICAPM does a good job in explaining size, book-to-

market and momentum effects in equity returns. The latter result is particularly important given 

the ongoing debate regarding the source of momentum phenomenon. Our findings provide a risk-

based explanation to momentum effect and are consistent with the results reported in Table V, 

which show that past “winners” have a higher exposure to covariation risk (i.e., have higher 

covariation betas) compared to past “losers”. 

Insofar, we compared the proposed non-linear ICAPM to other theoretically motivated 

models. As a supplemental analysis we compare the performance of the non-linear ICAPM 

with the influential empirical four-factor model of Carhart (1997). The adjusted R
2 

of the 

Carhart four-factor model is 79% and the pricing error is 0.025 (p-value=0.17) We consider the 

adjusted R
2 

of 71% and the pricing error of 0.02 of the non-linear ICAPM model as comparable 

and a confirmation of the theoretical insight of our model that the decomposition of volatility 

risk is important in understanding the cross-section of expected returns. 

B.4 Sensitivity Tests 

We conduct several sensitivity tests. First, we examine the sensitivity of our results 

with respect to the choice of conditioning variables in the Campbell and Vuolteenaho (2004) 

model. Chen and Zhao (2009) note that low predictive power of state variables used in 

Campbell and Vuolteenaho (2004) may induce substantial measurement errors in the 
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estimates of both Nc and Nd time-series. To address this concern, we repeat our analyses with 

the Nc and Nd time-series estimated using Campbell and Vuolteenaho (2004) framework 

augmented with additional conditioning variables, suggested in prior literature.19 The results 

(untabulated) remain qualitatively similar to those reported in the paper. 

Second, it is possible that the insignificant results for the cash flow and discount rate 

variation risk premia are driven by the multicollinearity between the components of the volatility 

risk betas. To address this concern, we estimate three restricted versions of the non-linear 

ICAPM, where in each version we restrict two of the three risk premia components of the 

volatility risk to be zero. The results (untabulated) suggest that, among the three components of 

volatility risk, the explanatory power of the non-linear ICAPM is almost solely driven by the 

covariation risk component, and thus further confirm the robustness of our results.  

Third, given that Nc and Nd time-series are estimated using the whole sample as in 

Campbell and Vuolteenaho (2004), a hindsight bias is a potential concern. To address this issue, 

we repeat our analysis with Nc and Nd components estimated using a rolling window approach. 

The results (untabulated) remain qualitatively similar to those reported in the paper.20 

To further validate our findings, we conduct two additional analyses. In the first test, we 

exclude momentum-sorted portfolios from the baseline sample and use 25 size/book-to-market 

sorted portfolios as the test assets.21 The results for the 25 size/book-to-market sorted portfolios 

                                                           
19 Specifically, in addition to the four state variables suggested by Campbell and Vuolteenaho (2004) we include 

the following variables: default spread (difference between Moody’s BAA and AAA-rated corporate yields), 12-

month trailing price-to-dividend ratio, and share of equity issues (Campbell and Amer, 1993; Baker and Wurgler, 

2000; Petkova, 2006; Chen and Zhao, 2009). 
20 All untabulated results are available from the authors upon request. 
21 As discussed in Lewellen, Nagel, and Shanken (2010), due to distinct factor structure of size/book-to-market sorted 

portfolios it is not uncommon for an asset pricing model to exhibit significant explanatory power for the cross section 

of stocks sorted based on these characteristics. Recognizing this important critique, we repeat our analysis using these 

portfolios solely to facilitate comparison to prior studies (Campbell et al. 2004; Hahn and Lee, 2006). 
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are reported in Panel B of Table V. The non-linear ICAPM continues to exhibit successful 

performance (adjusted R2=0.73, pricing error=0.012, p-value=0.74). The estimated risk premium 

for the covariation risk remains positive and significant and the estimated risk premia for both cash 

flow and discount rate variation risks remain statistically insignificant. The implied risk aversion 

coefficient of the model is 2.03. The performance of the non-linear ICAPM continues to be 

comparable to the performance of the Carhart (1997) four-factor model, both in terms of the 

adjusted R2 and the pricing error. The CAPM continues to exhibit poor performance as evident 

from the adjusted R2 is 0.04 and the pricing error of 0.061 (p-value<0.01). The two-beta ICAPM 

exhibits a substantial improvement compared to the results reported in Panel A of Table V. 

Specifically, the adjusted R2 of the two-beta ICAPM is 0.29 and the model yields positive and 

statistically significant risk premium for the cash flow beta. The model cannot be rejected at 

conventional significance level (pricing error=0.029, p-value=0.28). The implied risk aversion 

parameter of the 2-beta ICAPM model is 17.42. These results are generally consistent with 

findings reported by Campbell and Vuolteenaho (2004) for the 1963-2001 sample period. The 

results for CAPM with coskewness are similar to those reported in Panel A of Table V. 

Specifically, the risk premia for market and coskewness betas are both negative and significant, 

and the model is rejected based on the data (pricing error=0.070, p-value=0.01).  

In the second test, we extend our baseline sample of test assets to include 30 industry 

portfolios. Both CAPM and two-beta ICAPM exhibit poor performance as evident from low 

adjusted R
2
 coefficients (largest adjusted R

2 
= 0.002) and statistically significant pricing errors 

(smallest pricing error = 0.079, p-value<0.01). In terms of explanatory power, CAPM with 

coskewness exhibits a better performance compared to these two models (adjusted R
2 

= 0.27) 

but is rejected based on its pricing error. In contrast, non-linear CAPM still explains about 45% 
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of the variation in the cross-section of the test assets. The estimated risk premium for the 

covariation risk remains positive and significant and the estimated risk premia for both cash flow 

and discount rate variation risks remain statistically insignificant. However, the pricing error of 

non-linear ICAPM is significant at 1% significant level. The results for the Carhart (1997) model 

are qualitatively similar to those reported for the non-linear ICAPM.  Collectively, the results 

reported in Table V suggest that the proposed non-linear ICAPM is able to explain cross-

sectional variation in the average returns across size, book-to-market and momentum sorted 

portfolios, yet cannot account for the industry effects in stock returns.  

C. Estimation of Risk Premia Using Implied Cost of Equity Approach 

In previous sections, we examine the prices of risk of the volatility components using 

realized portfolio returns. While being widely adopted in the prior literature, this method also has 

several limitations. First, a test of the asset pricing theory requires a measure of ex ante (i.e., 

expected) rate of return. However, realized returns could be a poor proxy for expected returns 

(Elton, 1999) with cost-of-capital estimates derived from the average realized returns being 

“unavoidably imprecise” (Fama and French, 1997). Second, using portfolios sorted based on 

previously documented pricing anomalies (e.g., size, book-to-market, or momentum) may, 

potentially, lead to data-snooping bias (Lewellen, 1999; Lewellen et al., 2010). Hence, in this 

section we supplement our analysis by estimating our model for a panel of individual stocks using 

the implied cost of equity capital approach. 

In terms of research design, we estimate the expected rate of return on equity as a 

discount-rate that is implied by market prices and analysts’ earnings forecasts using four different 

models introduced by Claus and Thomas (2001), Ohlson and Juettner-Nauroth (2005), 
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Gebhardt et al., (2001), and Easton (2004).22 Specifically, for each firm-year observation and 

for each of these four models we estimate the implied expected return on equity that equates 

current share price of firm i in year t to the discounted stream of projected future cash flows. 

Since there is little consensus on which model performs the best, we perform an additional test 

following Hail and Leuz (2006, 2009) and Chen, Chen and Wei (2011) in using the median of 

the estimates from the four models as an additional measure of the cost of equity. This leaves 

us with the total of five estimates of the cost of equity for each firm-year observation. Next, 

for each model specification we compute the implied risk premium, IRPi,t,  as the difference 

between the corresponding implied expected return for firm i and year t and the 10-year US 

Treasury bond yield. The details of estimation procedure are outlined in Appendix A. 

To estimate prices of risk we run the following regression model: 

 𝑟𝑝𝑖,𝑡 = 𝑔0 + 𝑔1�̂�𝑐,𝑖,𝑡 + 𝑔2�̂�𝑑,𝑖,𝑡 + 𝑔3�̂�𝑐𝑐,𝑖,𝑡 + 𝑔4�̂�𝑑𝑑,𝑖,𝑡+𝑔5�̂�𝑐𝑑,𝑖,𝑡 + ∑ 𝑏𝑗𝑘𝑖,𝑡 + 𝐼𝑖,𝑡 + 𝜀𝑖,𝑡
𝑁
𝑗=5  .    (18) 

 

For each firm-year observation we compute the estimates of cash flow beta, discount rate beta, and 

betas of the three volatility risk components using previous 60 months of stock returns (with at 

least 24 monthly returns). Following prior studies (Gebhardt et al., 2001; Chen et al., 2011) we 

include firm size, book-to-market ratio, leverage, price momentum, volatility of operating cash 

flows, number of analysts following the firm, and share turnover as control variables (𝑘𝑖,𝑡). We 

also include growth in the 1-and 2-year analyst earnings forecasts to control for potential effects 

of analysts’ biases on the estimated cost of equity. Also, to control for an industry-related risk 

component reported in prior studies (e.g., Gebhardt et al., 2001) we estimate Equation (18) with 

                                                           
22  Our sample starts in 1986 due to data availability in IBES. 
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industry fixed effects (Ii,t) based on the 2-digit SIC code. The data used to compute all variables 

are obtained from IBES, Compustat, and CRSP databases. Consistent with Gebhardt et al. (2001) 

we estimate Equation (18) cross-sectionally by year following Fama-MacBeth approach. For 

each slope estimate we report its time-series mean with the corresponding Newey-West t- 

statistics in squared brackets. 

The results are reported in Panel A of Table VI. The coefficient for the covariation risk 

beta is positive and significant for four out of five model specifications. The only exception is 

Claus and Thomas (2001) model, where the coefficient for covariation risk premium is positive 

but insignificant.23  The results suggest that, after controlling for other factors suggested by prior 

literature, investors consider stock with high covariation betas as being more risky, thereby 

requiring higher return for holding these stocks. The estimates of cash flow and discount rate 

variation risk premia are insignificant in all model specifications. 

To facilitate economic interpretation of our results, we re-estimate Equation (18) using 

standardized risk exposure measures. Specifically, we rank each explanatory variable for each 

year, and then partition the resulting ranks into deciles labeled from 1 (lowest decile) to 10 

(highest decile), following Hirshleifer, Lim and Teoh (2009). Next, we re-estimate Equation (9) 

using decile ranked explanatory variables instead of their raw values. 

The results are reported in Panel B of Table VII. The findings further confirm positive 

and significant risk premium for the covariation risk. The estimates of both cash flow and 

discount rate variation risk premia remain statistically insignificant. Further, the results suggest 

that the magnitude of covariation risk premium is also economically meaningful. Specifically, all 

else equal, moving from the first to tenth decile of covariation risk increases expected return by 

                                                           
23    Notably, the overall explanatory power of the Claus and Thomas (2001) model is low relative to other models. 
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1

4
(

0.003

0.01
+

0.005

0.063
+

0.005

0.055
+

0.004

0.024
) = 16% of the market risk premium. 

In sum, we find strong supporting evidence that covariation risk carries a positive and 

economically meaningful risk premium. Overall, the findings are consistent with the results for 

realized portfolio returns, and thus confirm the robustness of our results. 

 

VI Conclusion 

We develop an intertemporal asset pricing model, in which the news about aggregate 

market volatility — and by inference, volatility risk —decomposes into three news components: 

cash-flow variation, discount-rate variation, and the covariation between the cash-flow and 

discount-rate news. In our model, long-term investors are willing to pay a premium to hedge an 

increase in variation as well as to hedge a decrease in covariation. We evaluate our model using 

a cross-section of portfolio returns sorted based on size, book-to-market and past stock 

performance (momentum). We find that stocks with good past performance, on average, have 

higher exposure to covariation risk compared to stocks with poor past performance. Further, we 

find that small cap stocks, on average, have higher exposure to covariation risk compared to 

large cap stocks. Our model helps account for approximately 71% of the return variation across 

size, book-to-market and momentum sorted portfolios for the modern US sample period and is 

not rejected at conventional significance level. Further tests suggest that explanatory power of 

the model is primarily attributed to covariation risk, which carries a positive and economically 

significant premium. We conduct a variety of supplemental tests which provide additional 

support for the notion that covariation risk is an important determinant of risk premia on equity 

market   

Overall, the empirical evidence we present highlights the importance of decomposing 
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aggregate volatility risk into the variation and covariation risk components. In particular, we 

show that the covariation risk component of aggregate volatility is important in helping explain 

the cross section of expected returns. We find that during times of decreasing covariation (which 

increases marginal utility in our model), equities tend to realize low returns. Also, in these times, 

small stocks tend to underperform large socks and winners tend to underperform losers. These 

risk exposures account for a sizable amount of the risk premia in equity markets.  
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Appendix A 

 

Estimation of Implied Cost of Equity  
 

We estimate the implied cost of equity using four models introduced in prior literature: 1) 

Gebhardt, Lee, and Swaminathan (2001, hereafter GLS); 2) Claus and Thomas (2001, 

hereafter CT); 3) Ohlson and Juenttner-Nauroth (2005, hereafter OJ); and 4) the modified 

PEG model of Easton (2004, hereafter MPEG). In implementing these four models we 

follow (with some minor modifications) Chen, Chen and Wei (2011).25 To facilitate our 

discussion, we first introduce the notations used in the following analysis. 

𝑃𝑡
∗ 

Implied market price of firm’s common stock at time t. We use 

price at the end of the month +4 following the fiscal year-end to 

compute 𝑃𝑡
∗ 

𝐵𝑡  
Book value per share of common equity available from the most 

recent financial statement at time t 

𝐹𝐸𝑃𝑆𝑡+𝑖 
Median forecasted earnings per share from IBES or derived 

earnings forecast for the next i-th year at time t 

𝐹𝑅𝑂𝐸𝑡+𝑖  Forecasted return on equity for the next i-th year at time t 

𝑅𝑗 Implied cost of equity for j=GLS, CT, OJ, MPEG 

𝑃𝑂𝑈𝑇 

Projected dividends payout ratio, estimated as the ratio of 

annual indicated dividends from IBES to FEPSt+1. When 

FEPSt+1 is negative we assume a return of assets of 6% to 

compute earnings. 

 

1. Gebhardt, Lee and Swaminathan (2001) 

𝑃𝑡
∗ = 𝐵𝑡 + ∑

[𝐹𝑅𝑂𝐸𝑡+𝑖−𝑅𝐺𝐿𝑆]×𝐵𝑡+𝑖−1

(1+𝑅𝐺𝐿𝑆)𝑖
𝑇−1
𝑡=1 +

[𝐹𝑅𝑂𝐸𝑡+𝑇−𝑅𝐺𝐿𝑆]×𝐵𝑡+𝑇−1

(1+𝑅𝐺𝐿𝑆)𝑇−1𝑅𝐺𝐿𝑆
            (A.1) 

We use analysts’ consensus forecasts from IBES to proxy for the market expectations 

of firm’s earnings for the next three years available at time t. Next, we assume that 

future return on equity declines to the industry-specific median return on equity starting 

from the fourth year to the T-th year. Following Gebhardt et al. (2001) we assume 

that T=12. We classify all firms into 48 industries following Fama and French (1997). 

The return on equity (ROE) is computed as income for common shareholders (Compustat 

data item #237) scaled by the lagged total book value of assets (Compustat data item 

#60). To estimate the future book value of equity we assume a clean surplus assumption, 

                                                           
25    The data used to construct the estimates of the implied cost of equity was obtained from IBES and 

Compustat for the period of 1986-2010.   
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i.e., 𝐵𝑡+1 = 𝐵𝑡 + 𝐹𝐸𝑃𝑆𝑡+1 − 𝐹𝐷𝑃𝑆𝑡+1. We calculate the future dividend, 𝐹𝐷𝑃𝑆𝑡+1, by 

multiplying 𝐹𝐸𝑃𝑆𝑡+1 by the corresponding payout ratio, POUT. We next use a numerical 

approximation to solve for 𝑅𝐺𝐿𝑆 that equates both sides of B.1. Following Chen, Chen and 

Wei (2012) we adjust stock price at month +4 for the partial year discounting, that is, 𝑃𝑡
∗ =

𝑃𝑡

(1+𝑅𝐺𝐿𝑆)4/12 . We apply similar adjustment to other cost of equity models. 

 

2. Claus and Thomas (2001) 

 

𝑃𝑡
∗ = 𝐵𝑡 + ∑

[𝐹𝑅𝑂𝐸𝑡+𝑖−𝑅𝐶𝑇]×𝐵𝑡+𝑖−1

(1+𝑅𝐶𝑇)𝑖
5
𝑡=1 +

[𝐹𝑅𝑂𝐸𝑡+5−𝑅𝐶𝑇]×𝐵𝑡+4×(1+𝑔)

(1+𝑅𝐶𝑇)5(𝑅𝐶𝑇−𝑔)
                 (A.2)                 

We use analysts’ consensus forecasts from IBES to proxy for the market expectations 

of firm’s earnings for the next five years available at time t. Earnings forecasts for the 

future fourth and fifth years are computed using earnings forecasts for the third years and 

the IBES forecasts for the long-term growth rate. If the long-term growth rate is 

missing we replace it with an implied growth rate from 𝐹𝐸𝑃𝑆𝑡+2 and 𝐹𝐸𝑃𝑆𝑡+3. The long-

term abnormal earnings growth rate, g, is computed as the contemporaneous yield on ten-

year Treasury bond minus 3 percent. In cases when the difference is negative we 

replace it by the expected inflation rate from the University of Michigan survey. Similar 

to GLS model we assume a clean surplus assumption to calculate future book value.  We 

next use a numerical approximation to solve for 𝑅𝐶𝑇 that that equates both sides of A.2. 

 

3. Ohlson and Juettner - Nauroth (2005) 

 

𝑃𝑡
∗ =

𝐹𝐸𝑃𝑆𝑡+1

𝑅𝑂𝐽
+

𝐹𝐸𝑃𝑆𝑡+1×(𝑔𝑠𝑡−𝑅𝑂𝐽×(1−𝑃𝑂𝑈𝑇))

𝑅𝑂𝐽(𝑅𝑂𝐽−𝑔𝑙𝑡)
         (A.3) 

 

In this model 𝑔𝑠𝑡 is the average of the short-term earnings growth implied in 𝐹𝐸𝑃𝑆𝑡+1 and 

𝐹𝐸𝑃𝑆𝑡+2 and the analysts’ forecasted long-term earnings growth rate. This model requires 

both 𝐹𝐸𝑃𝑆𝑡+1 and 𝐹𝐸𝑃𝑆𝑡+1 to be positive. We calculate 𝑔𝑙𝑡 as the contemporaneous yield 

on the ten-year Treasury bond minus 3 percent. In cases when the difference is negative 

we replace it by the expected inflation rate from the University of Michigan survey. We 

use a numerical approximation to solve for 𝑅𝑂𝐽 that equates both sides of A.3. 
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4. The Modified PEG ratio by Easton (2004) 

𝑃𝑡
∗ =

𝐹𝐸𝑃𝑆𝑡+1

𝑅𝑀𝑃𝐸𝐺
+

𝐹𝐸𝑃𝑆𝑡+1×(𝑔𝑠𝑡−𝑅𝑀𝑃𝐸𝐺×(1−𝑃𝑂𝑈𝑇))

𝑅𝑀𝑃𝐸𝐺
2        (A.4) 

This models requires that 𝐹𝐸𝑃𝑆𝑡+2>=𝐹𝐸𝑃𝑆𝑡+1>=0. We use a numerical approximation to 

solve for 𝑅𝑀𝑃𝐸𝐺  that equates both sides of A.4. 
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Table I  

 

Descriptive Statistics-Market Returns, Cash flow and Discount rate News 

 
Notes: Panel A of the table shows the OLS parameter estimates for a first-order VAR model including a constant, the log 

excess market return (𝑟𝑚𝑘𝑡
𝑒 ), term yield spread (TY), price-earnings ratio (PE), and small-stock value spread (VS). Each 

set of four rows corresponds to a different dependent variable. The first four columns report coefficients on the four 

explanatory variables, and the remaining columns show R2 and F statistics. In Panel B of this table we report selected 

descriptive statistics for the unexpected market returns and the estimates of the cash flow and discount rate news for the 

sample period of July 1963-December 2010. The cash flow (Nc) and discount rate news (-Nd) were estimated following 

Campbell and Vuolteenaho (2004). The conditional covariance of cash flow (Nc) and discount rate news (Nd) is assumed 

to follow an MGARCH process. The estimated coefficients of this process are presented in Panel C. Monthly means and 

standard deviations are reported in percentage points. In Panel C, we report the BEKK MGARCH parameters of the 

volatility process of Nc and Nd: the matrix A contains the ARCH coefficients; the matrix G, the GARCH coefficients; and 

the matrix C, the intercept parameters. The first element represents cash flows and the second discount rates. 

 
 

Panel A: VAR Parameter Estimates (1929-2010) 
 

 𝑟𝑚𝑘𝑡,𝑡−1
𝑒  TYt-1 PEt-1 VSt-1 R2 F 

𝑟𝑚𝑘𝑡
𝑒  0.109 0.004 -0.016 -0.011 0.03 6.7 

TY -0.011 0.938 -0.003 0.053 0.89 1.9E+03 

PE 0.518 0.001 0.992 -0.003 0.99 2.5E+04 

VS -0.013 -0.001 -0.001 0.991 0.98 1.4E+04 
 

Panel B: Summary Statistics 
 

 1929-2010 1963-2010  

 Mean St.dev. 25% Median 75% Mean St.dev. 25% Median 75%  

           
Nc 0.00 2.65 -1.17 0.18 1.40 -0.06 2.32 -1.13 0.11 1.22 
-Nd 0.00 4.75 -2.57 0.33 2.74 0.05 4.36 -2.42 0.18 2.69 
Nc

2× 102 0.07 0.20 0.00 0.02 0.06 0.05 0.1 0.00 0.01 0.06 
Nd

2× 102 0.23 0.54 0.02 0.07 0.20 0.18 0.37 0.02 0.07 0.19 
Nc×(-Nd) × 102 0.00 0.22 -0.03 0.00 0.03 -0.02 0.2 -0.03 -0.002 0.02 

 
 

Panel C: Volatility Process Coefficients 
 

 C× 104  A  G 

Nc 0.00 3.46  -0.16 -0.64  -0.93 -0.03 

Nd 3.46 13.36  0.19 0.17  0.70 -0.37 
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Table II 
 

Asset Pricing Implications of ICAPM with Covariation Risk 
 

In this table we report the estimates of the sensitivities of the equity market portfolio, for the sample period July 1963-

December 2010. In Panel A, we report covariance of the market portfolio with news to various components of our pricing 

kernel. We also report scaled covariance or beta (βm,N) of the equity market portfolio to various news components, where 

cash flow beta is estimated as  𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑐) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; discount rate beta (𝛽𝑑) as, 𝑐𝑜𝑣(𝑟𝑖 , −𝑁𝑑) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; cash flow variance 

beta (𝛽𝑐𝑐) as  𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑐𝑐 ) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; discount rate variance beta (𝛽𝑑𝑑), as 𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑑𝑑) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; covariation beta (𝛽𝑐𝑑) as, 

𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑐𝑑) 𝑣𝑎𝑟(𝑟𝑚)⁄ .  𝑟𝑚 is the unexpected excess market return. The news terms were estimated following Campbell and 

Vuolteenaho (2004). News to variances were estimated using an MGARCH model. In Panel B, we report assumed model 

parameters based on Table I estimates. Lower case letters a represent elements of the ARCH matrix A tabulated in Table 

I. In Panel C, we report risk premium coefficients 𝜆  for different values of the risk aversion coefficient 𝛾. We also report 

the corresponding model implied decomposition of the market risk premium. We report annualized figures by multiplying 

this monthly expected return figure by 12. 

 
Panel A: Market Risk Exposures 

 
 𝑟𝑚 𝑁𝑐  −𝑁𝑑 𝑁𝑐𝑐 × 102 𝑁𝑑𝑑 × 102 Ncd × 102 

cov(𝑟𝑚, 𝑁) × 104 20.91 3.53 16.92 -10 -46 9 
βm,N 1 0.17 0.81 -0.50 -2.19 0.44 

 

Panel B: Model Parameters 

 
  2

cca  2 cc dca a  
2

dca  

9 0.03 -0.06 0.04 

 
 

Panel C: Market Risk Premium Decomposition 

 
 Total 

(E[𝑅𝑚 − 𝑅𝑓]) 

𝑁𝑐 −𝑁𝑑 𝑁𝑐𝑐  𝑁𝑑𝑑 Ncd 

 

𝜆  1.00 1.00 -0.50 -0.50 1.00 
cov × 𝜆 × 12 2.50% 0.42% 2.03% 0.01% 0.03% 0.01% 

 

𝜆  3 1 -5.04 -1.22 4.08 
cov × 𝜆 × 12 3.48% 1.27% 2.03% 0.06% 0.07% 0.04% 

 

𝜆  5 1 -14.66 -3.38 9.32 
cov × 𝜆 × 12 4.62% 2.12% 2.03% 0.18% 0.19% 0.10% 

 

𝜆  10 1 -60.94 -15.08 31.87 
cov × 𝜆 × 12 8.21% 4.23% 2.03% 0.76% 0.83% 0.35% 
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Table III 

Are covariation recessions (ex-post) different? 

 
In this table we report average excess returns of the small minus big (SMB), value minus growth (HML), and winners 

minus lowers (MOM) portfolios and their abnormal returns with respect to the market return. We also report the average 

differences in average excess returns and abnormal returns in a given recession sub-sample (D=1) with the rest of the 

sample. The sub-samples considered are NBER recessions (NBER), the two recessions in which covariation of cash flow 

news and discount rate news was visibly negative (COV, the early 1970s NBER recession and the 2008 NBER recession), 

and other NBER recessions (ONBER). Abnormal returns are calculated by subtracting beta coefficients estimated from the 

entire sample (𝛼𝑢|𝐷) and after allowing for different betas in NBER recessions (𝛼𝑐|𝐷). Newey-West t-statistics with two 

lags errors are reported in brackets. The sample period is July 1963-December 2010. 

 

 
 

 D=1 for SMB HML MOM 

 

 

| ,

,

| 1

| 0

i D i t

i t

r avg r D

avg r D

 

 
 

Full Sample 0.95 1.27 0.72 

  (5.06) (5.62) (3.87) 

NBER -0.17 0.17 0.45 

  (-0.22) (0.19) (0.6) 

COVD -1.4 -0.92 -0.37 

  (-1.04) (-0.55) (-0.24) 

ONBER 0.65 0.89 1.00 

  (0.82) (0.99) (1.53) 

 

 

| , ,

, ,

| 1

| 0

u D i t i m t

i t i m t

avg r r D

avg r r D

 



  

  
 

Full Sample 0.18 0.31 0.83 

  (2.01) (3.87) (4.54) 

NBER -0.11 0.23 0.44 

  (-0.44) (0.97) (0.63) 

COVD -0.75 -0.11 -0.47 

  (-1.63) (-0.22) (-0.32) 

ONBER 0.31 0.46 1.05 

  (1.28) (2.16) (1.71) 

 

 

| , , | ,

, , | ,

| 1

| 0

c D i t i m t i D m t NBER

i t i m t i D m t NBER

avg r r r D D

avg r r r D D

  

 

    

    
 

Full Sample 0.22 0.35 0.64 

  (2.47) (4.43) (3.64) 

NBER -0.11 0.24 0.41 

  (-0.43) (1.02) (0.64) 

COVD -0.68 -0.04 -0.81 

  (-1.65) (-0.08) (-0.67) 

ONBER 0.28 0.43 1.22 

 (1.09) (1.65) (1.92) 
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Table IV: Risk Exposures of Test Portfolios 
In this table we report the estimates of the sensitivities of the portfolios sorted based on market capitalization (size), book-

to-market (BM), and past returns (momentum), for the sample period July 1963-December 2010. Cash flow beta (𝛽𝑐) are 

estimated as  𝑐𝑜𝑣(𝑟𝑖, 𝑁𝑐) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; discount rate beta (𝛽𝑑), 𝑐𝑜𝑣(𝑟𝑖, −𝑁𝑑) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; cash flow volatility beta (𝛽𝑐𝑐) as  

𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑐𝑐 ) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; discount rate volatility beta (𝛽𝑑𝑑), as 𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑑𝑑) 𝑣𝑎𝑟(𝑟𝑚)⁄ ; covariation beta (𝛽𝑐𝑑), 

𝑐𝑜𝑣(𝑟𝑖 , 𝑁𝑐𝑑) 𝑣𝑎𝑟(𝑟𝑚)⁄ .  𝑟𝑖 is the return on portfolio, 𝑟𝑚 is the unexpected excess market return. “Growth” denotes stocks with 

largest size/book-to-market, “value”-stocks with lowest size/book-to-market, “small”-stocks with lowest market 

capitalization, “large”-stocks with largest market capitalization, “Losers”-stocks with lowest returns from month t-12 to t-

2, “Winners”-stocks with highest returns in that period,. For each portfolio we report the estimated cash flow beta and the 

corresponding GMM standard error (in squared brackets) adjusted for heteroskedasticity and serial correlation. “Diff.” 

columns report differences between the estimates of the extreme portfolios and the p-values of the corresponding J-

statistics (in round brackets).   
 

Panel A: Risk Exposures of the Size/Book-to-Market Sorted Portfolios 
 

 
 

  Growth 2 3 4 Value Diff. 

𝛽𝑐             

Small 0.12 [0.05] 0.14 [0.05] 0.16 [0.04] 0.17 [0.04] 0.2 [0.03] 0.08 (0.01) 

2 0.13 [0.04] 0.16 [0.03] 0.17 [0.03] 0.19 [0.03] 0.22 [0.04] 0.09 (0.00) 

3 0.13 [0.04] 0.18 [0.03] 0.19 [0.03] 0.2 [0.03] 0.22 [0.03] 0.09 (0.00) 

4 0.14 [0.03] 0.19 [0.03] 0.2 [0.02] 0.21 [0.02] 0.24 [0.03] 0.1 (0.00) 

Large 0.14 [0.02] 0.18 [0.02] 0.18 [0.03] 0.21 [0.03] 0.21 [0.03] 0.07 (0.00) 

Diff. 0.02 (0.69) 0.04 (0.43) 0.02 (0.68) 0.04 (0.36) 0.01 (0.79)   

𝛽𝑑             

Small 1.25 [0.08] 1.03 [0.06] 0.88 [0.05] 0.8 [0.04] 0.82 [0.04] -0.43 (0.00) 

2 1.22 [0.06] 0.96 [0.04] 0.84 [0.04] 0.78 [0.04] 0.84 [0.04] -0.38 (0.00) 

3 1.16 [0.06] 0.89 [0.03] 0.77 [0.04] 0.71 [0.04] 0.76 [0.05] -0.4 (0.00) 

4 1.05 [0.05] 0.86 [0.03] 0.79 [0.04] 0.72 [0.04] 0.76 [0.05] -0.29 (0.00) 

Large 0.83 [0.04] 0.74 [0.03] 0.68 [0.03] 0.6 [0.04] 0.64 [0.05] -0.19 (0.00) 

Diff. -0.42 (0.00) -0.29 (0.00) -0.20 (0.00) -0.20 (0.01) -0.18 (0.01)   

𝛽𝑐𝑐             

Small -0.69 [0.31] -0.59 [0.28] -0.59 [0.23] -0.55 [0.24] -0.66 [0.22] 0.04 (0.90) 

2 -0.68 [0.25] -0.62 [0.22] -0.59 [0.19] -0.62 [0.19] -0.70 [0.22] -0.02 (0.90) 

3 -0.64 [0.23] -0.64 [0.19] -0.55 [0.17] -0.56 [0.16] -0.58 [0.17] 0.06 (0.69) 

4 -0.48 [0.20] -0.59 [0.19] -0.59   [0.17] -0.53 [0.14] -0.75 [0.18] -0.26 (0.08) 

Large -0.36 [0.16] -0.50 [0.15] -0.54 [0.16] -0.54 [0.13] -0.65 [0.16] -0.29 (0.05) 

Diff. 0.33 (0.11) 0.09 (0.71) 0.05 (0.80) 0.01 (0.94) 0.01 (0.95)   
𝛽𝑑𝑑             

Small -2.71 [1.43] -2.26 [1.26] -2.09 [1.07] -1.87 [1.02] -2.64 [1.15] 0.07 (0.92) 

2 -2.55 [1.25] -2.52 [1.11] -2.41 [0.99] -2.34 [1.06] -2.42 [1.05] 0.13 (0.75) 

3 -2.35 [1.21] -2.40 [0.99] -2.38 [0.88] -2.21 [0.91] -2.41 [1.01] -0.06 (0.89) 

4 -2.07 [1.06] -2.45 [1.06] -2.56 [1.13] -2.05 [0.94] -2.45 [0.95] -0.38 (0.45) 

Large -1.59 [0.80] -1.94 [0.74] -1.88 [0.75] -1.68 [0.81] -2.29 [0.87] -0.70 (0.11) 

Diff. 1.12 (0.16) 0.32 (0.71) 0.21 (0.75) 0.19 (0.79) 0.35 (0.55)   

𝛽𝑐𝑑             

Small 1.00 [0.62] 1.01 [0.54] 0.89 [0.45] 0.89 [0.46] 0.72 [0.43] -0.28 (0.42) 

2 0.82 [0.51] 0.74 [0.46] 0.61 [0.40] 0.53 [0.38] 0.68 [0.42] -0.14 (0.51) 

3 0.69 [0.47] 0.56 [0.40] 0.43 [0.35] 0.33 [0.34] 0.53 [0.39] -0.16 (0.51) 

4 0.55 [0.41] 0.49 [0.42] 0.37 [0.38] 0.27 [0.29] 0.24 [0.37] -0.31 (0.22) 

Large 0.35 [0.34] 0.29 [0.36] 0.21 [0.36] 0.11 [0.28] 0.09 [0.36] -0.26 (0.28) 

Diff. -0.65 (0.08) -0.72 (0.11) -0.68 (0.04) -0.78 (0.04) -0.63 (0.05)   
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Panel B: Risk Exposures of the Size/ Momentum Sorted Portfolios 
 

 

  Losers 2 3 4 Winners Diff. 

𝛽𝑐             

Small 0.21 [0.04] 0.18 [0.03] 0.17 [0.03] 0.17 [0.03] 0.16 [0.04] -0.1 (0.15) 

2 0.21 [0.05] 0.18 [0.03] 0.18 [0.03] 0.18 [0.03] 0.16 [0.04] -0.1 (0.21) 

3 0.22 [0.04] 0.19 [0.03] 0.18 [0.02] 0.18 [0.03] 0.16 [0.04] -0.1 (0.16) 

4 0.23 [0.04] 0.22 [0.03] 0.19 [0.02] 0.19 [0.02] 0.17 [0.03] -0.1 (0.15) 

Large 0.25 [0.04] 0.18 [0.03] 0.17 [0.02] 0.17 [0.02] 0.17 [0.03] -0.1 (0.02) 

Diff. 0.04 (0.17) 0 (1.00) 0 (1.00) 0 (0.93) 0.01 (0.65)   

𝛽𝑑             

Small 1.08 [0.07] 0.83 [0.05] 0.77 [0.04] 0.79 [0.04] 1 [0.06] -0.1 (0.43) 

2 1.18 [0.08] 0.88 [0.05] 0.8 [0.04] 0.83 [0.04] 1.09 [0.07] -0.1 (0.39) 

3 1.08 [0.08] 0.85 [0.04] 0.79 [0.04] 0.79 [0.03] 1.03 [0.05] -0.1 (0.59) 

4 1.04 [0.09] 0.84 [0.05] 0.77 [0.04] 0.78 [0.03] 0.96 [0.05] -0.1 (0.47) 

Large 0.94 [0.07] 0.73 [0.05] 0.71 [0.03] 0.7 [0.03] 0.86 [0.05] -0.1 (0.41) 

Diff. -0.1 (0.02) -0.1 (0.08) -0.1 (0.13) -0.1 (0.04) -0.10 (0.01)   

𝛽𝑐𝑐             

Small -0.92 [0.20] -0.73 [0.19] -0.69 [0.18] -0.64 [0.19] -0.62 [0.25] 0.30 (0.09) 

2 -0.91 [0.24] -0.72 [0.20] -0.65 [0.19] -0.63 [0.21] -0.46 [0.31] 0.45 (0.06) 

3 -0.89 [0.21] -0.65 [0.18] -0.60 [0.18] -0.64 [0.20] -0.52 [0.26] 0.37 (0.11) 

4 -0.84 [0.21] -0.69 [0.19] -0.59 [0.17] -0.56 [0.18] -0.50 [0.22] 0.34 (0.16) 

Large -0.70 [0.19] -0.53 [0.15] -0.49 [0.15] -0.38 [0.14] -0.41 [0.18] 0.29 (0.13) 

Diff. 0.22 (0.12) 0.30 (0.15) 0.20 (0.02) 0.26 (0.01) 0.21 (0.11)   

𝛽𝑑𝑑             

Small -3.19 [1.23] -2.71 [1.08] -2.57 [0.99] -2.54 [0.98] -2.55 [1.20] 0.64 (0.28) 

2 -3.05 [1.27] -2.62 [1.12] -2.42 [1.02] -2.38 [0.96] -2.26 [1.37] 0.79 (0.25) 

3 -2.39 [1.03] -2.47 [1.05] -2.39 [1.02] -2.42 [0.96] -2.28 [1.20] 0.11 (0.85) 

4 -2.41 [1.11] -2.47 [1.04] -2.32 [0.97] -2.34 [0.95] -2.29   [1.16] 0.12 (0.87) 

Large -2.29 [1.12] -1.86 [0.86] -1.77 [0.71] -1.62 [0.71] -1.69 [0.84] 
 

0.60 (0.44) 

Diff. 0.90 (0.06) 0.85 (0.09) 0.80 (0.05) 0.92 (0.02) 0.86 (0.06)   

𝛽𝑐𝑑             

Small 0.54 [0.43] 0.56 [0.39] 0.59 [0.40] 0.71 [0.42] 0.99 [0.51] 0.45 (0.06) 

2 0.48 [0.43] 0.50 [0.39] 0.54 [0.42] 0.67 [0.43] 1.05 [0.57] 0.57 (0.01) 

3 0.25 [0.36] 0.34 [0.36] 0.48 [0.36] 0.56 [0.43] 0.85 [0.49] 0.60 (0.05) 

4 0.09 [0.30] 0.23 [0.39] 0.35 [0.37] 0.35 [0.39] 0.72 [0.44] 0.63 (0.06) 

Large 0.07 [0.3] 0.02 [0.27] 0.35 [0.33] 0.33 [0.33] 0.51 [0.39] 0.44 (0.11) 

Diff. -0.47 (0.06) -0.54 (0.01) -0.24 (0.06) -0.38 (0.01) -0.48 (0.01)   
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Table V 

Asset Pricing Tests using Fama-MacBeth Regressions 

 
In this table we report the estimated regression coefficients and the associated t-statistics from the Fama-MacBeth (1973) 

two-step regression approach for the sample period July 1963-December 2010. The dependent variable, �̅�𝑒 , is the cross-

section of the average monthly excess returns over the 1-month T Bill on the test assets. Test assets in Panel A are Fama-

French 25 size/book-to-market sorted portfolios.  Test assets in Panel B are Fama-French 25 size/book-to-market sorted 

portfolios, 25 size/momentum sorted portfolios, and 12 industry sorted portfolios. Each column reports estimated risk 

premia and t-statistics for the corresponding asset pricing model. All t-statistics are adjusted for the first-step estimation 

uncertainty using bootstrap methodology following Campbell and Vuolteenaho (2004).  

 

Panel A: Size/BM and Size/Momentum Sorted Portfolios 
 

         

 
      

Model CAPM ICAPM- 

2 beta  

CAPM 

with 

coskewness  

Non-

linear 

ICAPM 

 

Carhart four-factor 

      

Const 0.012 0.016 0.011 0.002 0.003 

[t-stat] [2.93] [2.29] [2.39] [0.33] [1.12] 

𝑀𝐾𝑇 premium -0.005  -0.017  0.001 

[t-stat] [-1.25]  [-2.88]  [0.30] 

𝑀𝐾𝑇2 premium   -0.349   

[t-stat]   [-2.25]   

𝑁𝑐 premium  -0.026  0.054  

[t-stat]  [-0.93]  [2.16]  

𝑁𝑑premium  -0.006  -0.009  

[t-stat]  [-1.39]  [-1.18]  

𝑁𝑐𝑐  premium    0.012  

[t-stat]    [1.29]  

𝑁𝑑𝑑 premium    -0.002  

[t-stat]    [-0.80]  

𝑁𝑐𝑑  premium    0.011  

[t-stat]    [2.00]  

𝑆𝑀𝐵 premium     0.002 

[t-stat]     [1.83] 

𝐻𝑀𝐿 premium     0.004 

[t-stat]     [3.23] 

   MOM  premium     0.008 

[t-stat]     [4.27] 

      

Adj. R2 0.05 0.06 0.46 0.71 0.79 

Implied  𝛾 N/A 4.33 1 2.39 N/A 

Pricing error (𝜗) 0.091 0.121 0.079 0.020 0.025 

p-value (𝜗) 0.000 0.000 0.017 0.671 0.172 
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Table V (continued) 

 
 

Panel B: Size/BM Sorted Portfolios 
 

 

 

Model CAPM ICAPM- 

2-beta  

CAPM 

with 

coskewness  

Non-

linear 

ICAPM 

 

Fama-French-Carhart 

      

Const 0.016 -0.005 0.014 -0.002 0.005 

[t-stat] [3.48] [-0.70] [2.54] [-0.18] [1.04] 

𝑀𝐾𝑇 premium -0.009  -0.021  0.001 

[t-stat] [-1.77]  [-2.56]  [0.18] 

𝑀𝐾𝑇2 premium   -0.373   

[t-stat]   [-2.27]   

𝑁𝑐 premium  0.054  0.064  

[t-stat]  [2.08]  [2.21]  

𝑁𝑑premium  0.003  -0.006  

[t-stat]  [0.53]  [-0.93]  

𝑁𝑐𝑐  premium    0.009  

[t-stat]    [1.06]  

𝑁𝑑𝑑 premium    -0.001  

[t-stat]    [-0.53]  

Ncd  premium    0.009  

[t-stat]    [1.98]  

𝑆𝑀𝐵 premium     0.002 

[t-stat]     [1.54] 

𝐻𝑀𝐿 premium     0.005 

[t-stat]     [3.87] 

 MOM premium     0.025 

[t-stat]     [1.78] 

      

Adj. R2 0.04 0.29 0.55 0.73 0.73 

Implied  𝛾 N/A 17.42 1 2.03 N/A 

Pricing error (𝜗) 0.061 0.029 0.070 0.012 0.025 

p-value (𝜗) 0.004 0.286 0.011 0.744 0.337 
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Table V (continued) 

 

Panel C: Size/BM, Size/Momentum and Industry Sorted Portfolios 
 

      

Model CAPM ICAPM- 

2 beta  

CAPM 

with 

coskewness  

Non-

linear 

ICAPM 

 

Fama-French-Carhart 

      

Const 0.008 0.009 0.008 0.008 0.006 

[t-stat] [2.86] [2.90] [2.49] [2.58] [2.40] 

𝑀𝐾𝑇 premium -0.002  -0.011  -0.001 

[t-stat] [-0.67]  [-2.29]  [-0.32] 

𝑀𝐾𝑇2 premium   -0.256   

[t-stat]   [-2.55]   

𝑁𝑐 premium  -0.009  0.009  

[t-stat]  [-0.64]  [0.60]  

𝑁𝑑premium  -0.002  -0.008  

[t-stat]  [-0.54]  [-1.56]  

𝑁𝑐𝑐  premium    0.002  

[t-stat]    [0.33]  

𝑁𝑑𝑑 premium    -0.001  

[t-stat]    [-0.66]  

𝑁𝑐𝑑  premium    0.009  

[t-stat]    [2.90]  

𝑆𝑀𝐵 premium     0.002 

[t-stat]     [1.54] 

𝐻𝑀𝐿 premium     0.003 

[t-stat]     [2.31] 

MOM     premium     0.008 

[t-stat]     [2.58] 

      

Adj. R2 0.002 -0.001 0.27 0.45 0.65 

Implied  𝛾 N/A 4.50 1 2.03 N/A 

Pricing error (𝜗) 0.079 0.086 0.077 0.075 0.053 

p-value (𝜗) 0.000 0.000 0.005 0.005 0.016 
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Table VI 

 

Asset Pricing Tests Using the Implied Cost of Equity 

 
In this table we report the estimated regression coefficients from the Fama-MacBeth (1973) two-step regression approach 

for the implied cost of equity on the cash flow beta (𝛽𝑁𝐶𝐹), discount rate beta (𝛽𝑁𝐷𝑅),  cash flow volatility beta (𝛽𝑁𝐶2), 

discount rate volatility beta (𝛽𝑁𝐷2), and covariation beta (𝛽𝑁𝐶∗𝑁𝐷)  for the sample of US firms over the period of 1986-

2010. The dependent variable, 𝐼𝑅𝑃𝑖,𝑡 , is the implied risk premium computed as the difference between the implied cost of 

equity for firm i in year t and the yield on 10-year US Treasury bond. We compute the implied cost of equity using five 

different specifications: Claus and Thomas (CT,2001), Ohlson and Juetber-Nauroth (OJ,1995), modified PEG model of 

Easton (MPEG, 2004), Gebhardt, Lee and Swaminathan (2001), and the median of estimates obtained from the four 

models. Constant, control variables and industry fixed effects are included in all regressions. The control variables are firm 

size, firm book-to-market ratio, leverage, price momentum, volatility of operating cash flows, number of analysts following 

the firm, share turnover and growth in the 1-and 2-year analyst earnings forecasts. Industry fixed effects are based on the 

first 2 digits of SIC code. Corresponding t-statistics adjusted for serial correlation are reported in squared brackets. 

 

Panel A: Raw variables 

      

Model Median GLS  OJ MPEG  CT 

      

𝑁𝑐 premium 0.016 0.008 0.017 0.017 0.009 

[t-stat] [2.56] [3.09] [3.02] [2.98] [2.29] 

𝑁𝑑premium 0.005 0.0003 0.006 0.006 0.008 

[t-stat] [6.19] [0.43] [6.48] [6.45] [3.84] 

𝑁𝑐𝑐  premium 0.026 -0.024 0.044 0.018 -0.24 

[t-stat] [0.38] [-1.07] [0.55] [0.24] [-1.41] 

𝑁𝑑𝑑 premium -0.041 -0.002 -0.051 -0.045 -0.009 

[t-stat] [-1.08] [-0.13] [-1.41] [-1.14] [-0.16] 

𝑁𝑐𝑑  premium 0.186 0.095 0.187 0.201 0.079 

[t-stat] [3.47] [3.58] [3.18] [3.26] [0.71] 

      

Implied market premium 0.046 0.010 0.063 0.055 0.024 

Controls Yes Yes Yes Yes Yes 

Industry fixed effects Yes Yes Yes Yes Yes 

Average Adj. R2 0.184 0.414 0.219 0.215 0.096 

      

 

Panel B: Decile ranked variables 
 

 

 
   

 

Model Median GLS  OJ MPEG  CT 

      

𝑁𝑐 premium 0.004 0.002 0.003 0.004 0.004 

[t-stat] [3.99] [3.84] [3.64] [4.18] [3.82] 

𝑁𝑑premium 0.004 0.002 0.002 0.003 0.004 

[t-stat] [3.88] [3.58] [1.32] [3.01] [1.78] 

𝑁𝑐𝑐  premium -0.001 -0.001 0.001 -0.000 -0.008 

[t-stat] [-0.29] [-1.69] [0.22] [-0.12] [-1.49] 

𝑁𝑑𝑑 premium -0.001 -0.001 -0.001 -0.001 0.003 

[t-stat] [-0.31] [-0.39] [-0.46] [-0.38] [0.50] 

𝑁𝑐𝑑  premium 0.005 0.003 0.005 0.005 0.004 

[t-stat] [3.82] [3.45] [3.65] [4.18] [1.11] 

      

Implied market premium 0.046 0.010 0.063 0.055 0.024 

Controls Yes Yes Yes Yes Yes 

Industry fixed effects Yes Yes Yes Yes Yes 

Average Adj. R2 0.236 0.512 0.311 0.292 0.118 
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Figure 1: This figure plots the cash-flow news and the negative of discount-rate news series. The sample period is from 

July 1963 to December 2010. The shaded areas represent NBER recessions. 
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Figure 2: The top two figures show the time series of MGARCH conditional variances and covariance of news to cash 

flows and discount rates. The bottom two figures show the surprises to these series in every period. The sample period is 

from July 1963 to December 2010. The shaded areas represent NBER recessions. 

 

 


