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Asset Allocation with Time Series

Momentum and Reversal

Abstract

We develop a continuous-time asset price model to capture the well documented

time series momentum and reversal. The optimal asset allocation strategy is derived

theoretically and tested empirically. We show that, by combining with market fun-

damentals and timing opportunity with respect to market trend and volatility, the

optimal strategy based on the time series momentum and reversal outperforms sig-

nificantly, both in-sample and out-of-sample, the S&P500 and pure strategies based

only on either time series momentum or mean reverting. The outperforming also

holds for different time horizons and with short-sale constraints. Furthermore, the

outperformance is immune to market states, investor sentiment and market volatil-

ity.
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1. Introduction

Equity return momentum in the short-run and reversal in the long-run are two of

the most prominent financial market anomalies. Though market timing opportuni-

ties under mean reversion in equity return are well documented (see, for example,

Campbell and Viceira (1999) and Wachter (2002)), time series momentum (TSM)

that characterizes strong positive predictability of a security’s own past returns has

been explored recently in Moskowitz, Ooi and Pedersen (2012). If an investor incor-

porates both return momentum and reversal into a trading strategy optimally, the

investor would expect to outperforming the strategies based only on return momen-

tum or reversal, and even the market index.

This paper examines theoretically and empirically how to optimally explore time

series momentum and reversal in financial markets. We first introduce a financial

market asset price model to incorporate momentum and mean-reverting components.

By solving a dynamic asset allocation problem, we derive the optimal investment

strategy of combining momentum and mean reversion in closed form, which includes

pure momentum and pure mean-reverting strategies as special cases. By estimating

the model to monthly returns of the S&P 500 index, we show that the optimal strat-

egy outperforms, measured by the utility of portfolio wealth and Sharpe ratio, not

only the strategies based on the pure momentum and pure mean-reversion models

but also the S&P 500 index.

This paper makes three contributions to the literature. Firstly, we find that

the performance of TSM strategy can be significantly improved by combining with

market fundamentals, while the performance of mean-reverting strategy can be sig-

nificantly improved by combining with TSM. To demonstrate the outperformance of

the optimal strategy over the pure TSM strategy, we derive a suboptimal portfolio

purely based on the TSM effect. We find that this portfolio is not able to outper-

form the market portfolio and the optimal portfolio. Comparing the performance

of the optimal strategy with the TSM strategy used in Moskowitz et al. (2012), we

show that the optimal strategy outperforms the TSM and passive holding strate-

gies. Essentially, in contrast to a TSM strategy based on trend only, the optimal

strategy takes into account not only the trading signal based on momentum and

fundamentals but also the size of position, which is associated with market volatil-

ity. Without considering the fundamentals, the pure momentum portfolio is highly

leveraged, and hence suffers from higher risks. We also derive another suboptimal

portfolio, the pure mean-reverting portfolio, by ignoring the TSM effect. We find

that this portfolio is based conservatively on fundamental investments, leading to

a stable growth rate of portfolio wealth, but is not able to explore the price trend,

especially during extreme market periods, and hence underperforms the optimal
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portfolio. In addition to the above model-based results, we further investigate the

model-free performance of the optimal strategy following Moskowitz et al. (2012).

We find that our optimal strategy outperforms the TSM strategy with respect to

Sharpe ratio and cumulative excess return.

Secondly, to the best of our knowledge, this paper is the first to theoretically

examine the effect of the time horizon of the TSM on the performance of the op-

timal portfolio. Empirically, the time horizon in TSM is a fixed look-back period.

It plays a crucial role in the performance of momentum strategies, which have been

investigated extensively in the empirical literature.1 However, due to the technical

challenge, there are few theoretical results concerning the effect of the time horizon.

The asset price model developed in this paper takes the time horizon of TSM into

account directly. As the result, historical prices underlying the TSM component af-

fect asset prices, leading to a non-Markov process characterized by stochastic delay

differential equations (SDDEs). This is very different from the Markov asset price

process documented in the literature (Merton 1969, 1971) in which it is difficult to

model the time series momentum strategy explicitly. In the case of Markov pro-

cesses, the stochastic control problem is most frequently solved using the dynamic

programming method and HJB equation. However, solving the optimal control

problem for SDDEs using the dynamic programming method becomes more chal-

lenging because it involves infinite-dimensional partial differential equations. One

way to solve the problem is to apply a type of Pontryagin maximum principle, which

has been developed recently by Chen and Wu (2010) and Øksendal et al. (2011)

for the optimal control problem of SDDEs. By exploring these latest advances in

the theory of the maximum principle for control problems of SDDEs, we derive the

optimal strategies in closed form. This helps us to study thoroughly the impact of

historical information on the profitability of different strategies based on different

time horizons, in particular of TSM trading strategies based on moving averages

over different time horizons. More interestingly, we show that the optimal strategy

based on the estimated model performs the best when the TSM is based on the past

9 to 12 months.

Thirdly, we show that, in addition to price trend, position size is another very

important factor for momentum trading. The optimal position size derived in this

paper is determined by the level of trading signals and market volatility. In the

empirical literature, momentum trading only considers the trading signals of price

trend and takes a constant position to trade. We show that, if we only consider the

sign of trading signals indicated by the optimal strategy and take a unit position

to trade, the portfolio is not able to outperform the optimal portfolio for all time

horizons. The robustness of the performance of the optimal strategy is also tested for

1See, for example, De Bondt and Thaler (1985) and Jegadeesh and Titman (1993).
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different sample periods, out-of-sample predictions, short-sale constraints, market

states, investor sentiment and market volatility.

This paper is closely related to the literature on reversal and momentum. Reversal

is the empirical observation that assets performing well (poorly) over a long period

tend subsequently to underperform (outperform). Momentum is the tendency of as-

sets with good (bad) recent performance to continue outperforming (underperform-

ing) in the short term. Reversal and momentum have been documented extensively

for a wide variety of assets. On the one hand, Fama and French (1988) and Poterba

and Summers (1988), among many others, document reversal for holding periods of

more than one year, which induces negative autocorrelation in returns.2 The value

effect documented in Fama and French (1992) is closely related to reversal, whereby

the ratio of an asset’s price relative to book value is negatively related to subsequent

performance. Mean reversion in equity returns has been shown to induce significant

market timing opportunities (Campbell and Viceira 1999, Wachter 2002 and Koijen,

Rodŕıguez and Sbuelz 2009). On the other hand, the literature mostly studies cross-

sectional momentum.3 More recently, Moskowitz et al. (2012) investigate TSM that

characterizes strong positive predictability of a security’s own past returns. For a

large set of futures and forward contracts, Moskowitz et al. (2012) find that TSM

based on excess returns over the past 12 months persists for between one and 12

months and then partially reverses over longer horizons. They provide strong evi-

dence for TSM based on the moving average of look-back returns. This effect based

purely on a security’s own past returns is related to, but different from, the cross-

sectional momentum phenomenon studied extensively in the literature. Through

return decomposition, Moskowitz et al. (2012) argue that positive auto-covariance

is the main driving force for TSM and cross-sectional momentum effects, while the

contribution of serial cross-correlations and variation in mean returns is small. Intu-

itively, a strategy taking into account both the short-run momentum and long-run

mean reversion in time series should be profitable and outperform pure momentum

and pure mean-reversion strategies. In this paper, we provide a justification to this

intuition theoretically and empirically.

The apparent persistent and sizeable profits of strategies based on momentum

and reversal have attracted considerable attention, and many studies have tried to

2For instance, Jegadeesh (1991) finds that the next one-month returns can be negatively pre-

dicted by their lagged multiyear returns. Lewellen (2002) shows that the past one-year returns

negatively predict future monthly returns for up to 18 months.
3Jegadeesh and Titman (1993) document cross-sectional momentum for individual U.S. stocks,

predicting returns over horizons of 3–12 months using returns over the past 3–12 months. The

evidence has been extended to stocks in other countries (Fama and French 1998), stocks within

industries (Cohen and Lou 2012), across industries (Cohen and Frazzini 2008), and the global

market with different asset classes (Asness, Moskowitz and Pedersen 2013).
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explain the phenomena.4 This paper is largely motivated by the empirical litera-

ture testing trading signals with combinations of momentum and reversal.5 Asness,

Moskowitz and Pedersen (2013) highlight that studying value and momentum jointly

is more powerful than examining each in isolation.6 Huang, Jiang, Tu and Zhou

(2013) find that both mean reversion and momentum can coexist in the S&P 500

index over time. Extending the literature, this paper develops an asset price model

by taking both mean reversion and time series momentum directly into account and

demonstrates the explanatory power of the model through the outperformance of

the optimal strategy.

This paper is also largely inspired by Koijen, Rodŕıguez and Sbuelz (2009), who

propose a theoretical model in which stock returns exhibit momentum and mean-

reversion effects. This paper is however different from Koijen et al. (2009) in two

aspects. Firstly, in Koijen et al. (2009), the momentum is calculated from the entire

set of historical returns with geometrically decaying weights, instead of a fixed look-

back period. This effectively reduces the price dynamics to a Markovian system,

and enables a thorough analysis of the performance of the hedging demand implied

by the model. In this paper, we follow the empirical literature and model TSM by

the standard moving average over a moving window with a fixed look-back period.

Our model of momentum complements in a unique way to the theoretical study of

Koijen et al. (2009) and many empirical studies that do not study systematically

the role of momentum with different look-back period. We study explicitly the

impacts of different look-back periods on the performance of momentum-related

trading strategies. Secondly, instead of studying the economic gains of hedging

due to momentum in Koijen et al. (2009), we focus more on the performance of

4Among which, the three-factor model of Fama and French (1996) can explain long-run reversal

but not short-run momentum. Barberis, Shleifer and Vishny (1998) argue that these phenomena

are the result of the systematic errors investors make when they use public information to form

expectations of future cash flows. Models Daniel, Hirshleifer and Subrahmanyam (1998), with

single representative agent, and Hong and Stein (1999), with different trader types, attribute the

under reaction to overconfidence and overreaction to biased self-attribution. Barberis and Shleifer

(2003) show that style investing can explain momentum and value effects. Sagi and Seasholes

(2007) present an option model to identify observable firm-specific attributes that drive momentum.

Vayanos and Woolley (2013) show that slow-moving capital can also generate momentum. He and

Li (2015) find that momentum strategies can be self-fulfilling.
5For example, Balvers and Wu (2006) and Serban (2010) show empirically that a combination

of momentum and mean-reversion strategies can outperform pure momentum and pure mean-

reversion strategies for equity markets and foreign exchange markets respectively.
6They find that separate factors for value and momentum best explain the data for eight different

markets and asset classes. Furthermore, they show that momentum loads positively and value loads

negatively on liquidity risk; however, an equal-weighted combination of value and momentum is

immune to liquidity risk and generates substantial abnormal returns.
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the optimal strategy comparing with the market, TSM, and mean-reversion trading

strategies.

The paper is organized as follows. We first present the model and derive the

optimal asset allocation in Section 2. In Section 3, we estimate the model to the

S&P 500 and conduct a performance analysis of the optimal portfolio and examine

the impact of hedging demand. We then investigate the time horizon effect in Section

4. Section 5 concludes. All the proofs and robustness analysis are included in the

appendices.

2. The Model and Optimal Asset Allocation

In this section, we introduce an asset price model and study the optimal invest-

ment decision problem. We consider a financial market with two tradable securities,

a riskless asset B satisfying
dBt

Bt
= rdt (2.1)

with a constant riskless rate r, and a risky asset. Let St be the price of the risky

asset or the level of a market index at time t where dividends are assumed to be

reinvested. Empirical studies on return predictability, see for example Fama (1991),

have shown that the most powerful predictive variables of future stock returns in

the United States are past returns, dividend yield, earnings/price ratio, and term

structure variables. Following this literature and Koijen et al. (2009), we model

the expected return by a combination of a momentum term mt based on the past

returns and a long-run mean-reversion term µt based on market fundamentals such

as dividend yield. Consequently, we assume that the stock price St follows

dSt

St
=
[

φmt + (1− φ)µt

]

dt+ σ′
SdZt, (2.2)

where φ is a constant,7 measuring the weight of the momentum component mt, σS

is a two-dimensional volatility vector (and σ′
S stands for the transpose of σS), and

Zt is a two-dimensional vector of independent Brownian motions. The uncertainty

is represented by a filtered probability space (Ω,F , P, {Ft}t≥0) on which the two-

dimensional Brownian motion Zt is defined. As usual, the mean-reversion process

µt is defined by an Ornstein-Uhlenbeck process,

dµt = α(µ̄− µt)dt+ σ′
µdZt, α > 0, µ̄ > 0, (2.3)

where µ̄ is the constant long-run expected return, α measures the rate at which µt

converges to µ̄, and σ′
µ is a two-dimensional volatility vector. The momentum term

7The dominance of market fundamentals and TSM, measured by φ, can be time-varying, de-

pending on market condition. For simplicity we take φ as a constant parameter in this paper.
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mt is defined by a standard moving average (MA) of past returns over [t− τ, t],

mt =
1

τ

∫ t

t−τ

dSu

Su
, (2.4)

where delay τ represents the time horizon. The way we model the momentum in this

paper is motivated by the TSM strategy documented recently in Moskowitz et al.

(2012), who demonstrate that the average return over a past period (say, 12 months)

is a positive predictor of future returns, especially the return for the next month. The

resulting asset price model (2.2)–(2.4) is characterized by a stochastic delay integro-

differential system, which is non-Markovian and lacks analytical tractability. We

show in Appendix A that the price process of (2.2)–(2.4) almost surely has a unique

continuously adapted pathwise solution and the asset price stays positive for given

positive initial values over [−τ, 0].

We now consider a typical long-term investor who maximizes the expected utility

of terminal wealth at time T (> t). Let Wt be the wealth of the investor at time t

and πt be the fraction of the wealth invested in the stock. Then it follows from (2.2)

that the change in wealth satisfies

dWt

Wt
=
{

πt[φmt + (1− φ)µt − r] + r
}

dt+ πtσ
′
SdZt. (2.5)

We assume that the preferences of the investor can be represented by a CRRA utility

index with a constant coefficient of relative risk aversion equal to γ. The investment

problem of the investor is then given by

J(W,m, µ, t, T ) = sup
(πu)u∈[t,T ]

Et

[W 1−γ
T − 1

1− γ

]

, (2.6)

where J(W,m, µ, t, T ) is the value function corresponding to the optimal investment

strategy. We apply the maximum principle for optimal control of stochastic delay

differential equations and derive the optimal investment strategy in closed form.

The result is presented in the following proposition and the proof can be found in

Appendix B.

Proposition 2.1. For an investor with an investment horizon T − t and constant

coefficient of relative risk aversion γ, the optimal wealth fraction invested in the

risky asset is given by

π∗
u =

φmu + (1− φ)µu − r

γσ′
SσS

+
(zu)3σS

p3uσ
′
SσS

, (2.7)

where zu and pu are governed by a backward stochastic differential system (B.6) in

Appendix B.2. Especially, when γ = 1, the preference is characterized by a log utility

and the optimal allocation to stocks is given by

π∗
t =

φmt + (1− φ)µt − r

σ′
SσS

. (2.8)



ASSET ALLOCATION WITH TIME SERIES MOMENTUM AND REVERSAL 9

This proposition states that the optimal fraction (2.7) invested in the stock con-

sists of two components. The first characterizes the myopic demand for the stock and

the second is the intertemporal hedging demand (see, for instance, Merton 1971).

When γ = 1, the optimal strategy (2.8) characterizes the myopic behavior of the

investor with log utility. This result has a number of implications. Firstly, when the

asset price follows a geometric Brownian motion process with mean-reversion drift

µt, namely φ = 0, the optimal investment strategy (2.8) becomes

π∗
t =

µt − r

σ′
SσS

. (2.9)

This is the optimal investment strategy with mean-reverting returns obtained in the

literature, say for example Campbell and Viceira (1999) and Wachter (2002). In

particular, when µt = µ̄ is a constant, the optimal portfolio (2.9) collapses to the

optimal portfolio of Merton (1971).

Secondly, when the asset return depends only on the momentum, namely φ = 1,

the optimal portfolio (2.8) reduces to

π∗
t =

mt − r

σ′
SσS

. (2.10)

If we consider a trading strategy based on the trading signal indicated by the excess

return mt−r only, with τ = 12 months, the strategy of long/short when the trading

signal is positive/negative is consistent with the TSM strategy used in Moskowitz

et al. (2012). By constructing portfolios based on monthly excess returns over the

past 12 months and holding for one month, Moskowitz et al. (2012) show that this

strategy performs the best among all the momentum strategies with look-back and

holding periods varying from one month to 48 months. Therefore, if we only take

fixed long/short positions and construct simple buy-and-hold momentum strategies

over a large range of look-back and holding periods, (2.10) shows that the TSM

strategy of Moskowitz et al. (2012) can be optimal when mean reversion is not

significant in financial markets. On the one hand, this provides a theoretical justi-

fication for the TSM strategy when market volatilities are constant and returns are

not mean-reverting. On the other hand, note that the optimal portfolio (2.10) also

depends on volatility. This explains the dependence of momentum profitability on

market conditions and volatility found in empirical studies. In addition, the optimal

portfolio (2.10) defines the optimal wealth fraction invested in the risky asset. Hence

the TSM strategy of taking fixed positions based on the trading signal may not be

optimal in general.

Thirdly, the optimal strategy (2.8) implies that a weighted average of momentum

and mean-reverting strategies is optimal. Intuitively, it takes into account the short-

run momentum and long-run reversal, both well-supported market phenomena. It
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also takes into account the timing opportunity with respect to market trend and

volatility.

In summary, for the first time, we have provided a theoretical support for optimal

strategies that combining of momentum and reversal documented in the empirical

literature (see, for example, Balvers and Wu (2006) and Serban (2010)). In the

rest of the paper, we first estimate the model to the S&P 500 and then evaluate

and demonstrate empirically the performance of the optimal strategy comparing it

to the market and other trading strategies recorded in the literature. In order to

provide a better understanding of the performance, we start with the case γ = 1.

The simple model and closed-form optimal strategy (2.8) facilitate model estimation

and empirical analysis. We then numerically solve the optimal portfolio (2.7) and

examine the values added by the hedging demand in Section 3.8.

3. Model Estimation and Performance Analysis

In this section we first estimate the model to the S&P 500. Based on these

estimations, we then use utility of portfolio wealth and the Sharpe ratio to examine

the performance of the optimal strategy (2.8), comparing to the performance of

the market index and the optimal strategies based on pure momentum and pure

mean-reversion models. To provide further evidence, we conduct out-of-sample tests

on the performance of the optimal strategy and examine the effect of short sale

constraints, market states, sentiment and volatility. In addition, we also compare

the performance of the optimal strategy to that of the TSM strategy.

3.1. Model Estimation. In line with Campbell and Viceira (1999) and Koijen

et al. (2009), the mean-reversion variable is affine in the (log) dividend yield,

µt = µ̄+ ν(Dt − µD) = µ̄+ νXt,

where ν is a constant, Dt is the (log) dividend yield with E(Dt) = µD, and Xt =

Dt−µD denotes the de-meaned dividend yield. Thus the asset price model (2.2)-(2.4)

becomes






dSt

St

=
[

φmt + (1− φ)(µ̄+ νXt)
]

dt+ σ′
SdZt,

dXt = −αXtdt+ σ′
XdZt,

(3.1)

where σX = σµ/ν. The uncertainty in system (3.1) is driven by two independent

Brownian motions. Without loss of generality, we follow Sangvinatsos and Wachter

(2005) and assume the Cholesky decomposition on the volatility matrix Σ of the

dividend yield and return,

Σ =

(

σ′
S

σ′
X

)

=

(

σS(1) 0

σX(1) σX(2)

)

.
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Thus, the first element of Zt is the shock to the return and the second is the dividend

yield shock that is orthogonal to the return shock.

To be consistent with the momentum and reversal literature, we discretize the

continuous-time model (3.1) at a monthly frequency. This results in a bivariate

Gaussian vector autoregressive (VAR) model on the simple return8 and dividend

yield Xt,






Rt+1 =
φ

τ
(Rt +Rt−1 + · · ·+Rt−τ+1) + (1− φ)(µ̄+ νXt) + σ′

S∆Zt+1,

Xt+1 = (1− α)Xt + σ′
X∆Zt+1.

(3.2)

Note that both Rt and Xt are observable. We use monthly S&P 500 data over

the period January 1871—December 2012 from the home page of Robert Shiller

(www.econ.yale.edu/∼shiller/data.htm) and estimate model (3.2) using the maxi-

mum likelihood method. We set the instantaneous short rate r = 4% annually. As

in Campbell and Shiller (1988a, 1988b), the dividend yield is defined as the log of

the ratio between the last period dividend and the current index. The total return

index is constructed by using the price index series and the dividend series.

The estimations are conducted separately for given time horizon τ varying from

one to 60 months. Empirically, Moskowitz et al. (2012) show that the TSM strategy

based on a 12-month horizon better predicts the next month’s return than other

time horizons. Therefore, in this section, we focus on the performance of the optimal

strategy with a look-back period of τ = 12 months and a one-month holding period.

The effect of time horizon τ varying from one to 60 months is studied in the next

section.

For comparison, we estimate the full model (FM) (3.2) with 0 < φ < 1, the pure

momentum model (MM) with φ = 1, and the pure mean-reversion model (MRM)

with φ = 0. For τ = 12, Table 3.1 reports the estimated parameters, together with

the 95% confidence bounds. For the pure momentum model (φ = 1), there is only

one parameter σS(1) to be estimated. For the full model, as one of the key parameters,

it shows that the momentum effect parameter φ ≈ 0.2, which is significantly different

from zero. This implies that market index can be explained by about 20% of the

momentum component and 80% of the mean-reverting component. Other parameter

estimates in terms of the level and significance in Table 3.1 are consistent with those

in Koijen et al. (2009).

We also conduct a log-likelihood ratio test to compare the full model (0 < φ < 1)

to the pure momentum model (φ = 1) and pure mean-reversion model (φ = 0). For

the pure momentum model, the test statistic (13100) is much greater than 12.59,

the critical value with six degrees of freedom at the 5% significance level. For the

8To be consistent with the momentum and reversal literature, we use simple return to construct

mt and also discretize the stock price process into simple return rather than log return.
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Table 3.1. Parameter estimations of the full model (FM), pure mo-

mentum model (MM) with τ = 12, and pure mean-reversion model

(MRM).

Parameter α φ µ̄ ν

FM (%) 0.46 19.85 0.36 0.20

Bounds (%) (0.03, 0.95) (8.70, 31.00) (0.26, 0.46) (-0.60, 1.00)

MM (%)

Bounds (%)

MRM (%) 0.55 0.37 2.67 ∗ 10−5

Bounds (%) (0.07, 1.03) (0.31, 0.43) (-0.46, 0.46)

Parameters σS(1) σX(1) σX(2)

FM (%) 4.10 -4.09 1.34

Bounds (%) (3.95, 4.24) (-4.24, -3.93) (1.29, 1.39)

MM (%) 4.23

Bounds (%) (4.09, 4.38)

MRM (%) 4.11 -4.07 1.36

Bounds (%) (3.97, 4.25) (-4.22, -3.92) (1.32, 1.40)

pure mean-reversion model, the test statistic (6200) is much greater than 3.841, the

critical value with one degree of freedom at 5% significance level. Therefore the full

model is significantly better than the pure momentum model and the pure mean-

reversion model. This implies that the (full) model captures short-term momentum

and long-term reversion in the market index and fits the data better than the pure

momentum and pure mean-reverting models.

3.2. Economic Value. Based on the previous estimations, we examine the eco-

nomic value of the optimal portfolio (2.8) based on log utility in terms of the utility

of the portfolio wealth, comparing it to those of the market index and of the pure

momentum and pure mean-reversion models. We evaluate the performance of a

portfolio (or strategy) in terms of the Sharpe ratio in the next subsection.

We first compare the realized utility of the optimal portfolio wealth invested in the

S&P 500 index based on the optimal strategy (2.8) with a look-back period τ = 12

months and one-month holding period to the utility of a passive holding investment

in the S&P 500 index with an initial wealth of $1. As a benchmark, the log utility

of an investment of $1 to the index from9 January 1876 to December 2012 is equal

to 5.765. For τ = 12, we calculate the moving average mt of past 12-month returns

at any point of time based on the market index from January 1876 to December

9Considering the robustness analysis for τ varying from one to 60 months in the next section,

all the portfolios start at the end of January 1876 (60 months after January 1871).
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Figure 3.1. The time series of market index (a), the simple return

of the S&P 500 (b); and the time series of the optimal portfolio (c)

and the utility (d) of the optimal portfolio wealth from January 1876

until December 2012 for τ = 12. In (d), the utilities of the optimal

portfolio wealth and the market index are plotted in solid red and

dash-dotted blue lines respectively.

2012. With an initial wealth of $1 at January 1876 and the estimated parameters

in Table 3.1, we calculate the monthly investment of the optimal portfolio wealth

Wt based on (2.8) and record the realized utilities of the optimal portfolio wealth

from January 1876 to December 2012. Based on the calculation, we plot the index

level and simple return of the S&P 500 index from January 1876 until December

2012 in Fig. 3.1 (a) and (b). Fig. 3.1 (c) reports the optimal wealth fractions πt of

(2.8) and Fig. 3.1 (d) reports the evolution of the utilities of the optimal portfolio

wealth over the same time period, showing that the optimal portfolios outperform

the market index measured by the utility of wealth.

There are two interesting observations from Fig. 3.1. Firstly, the returns of

optimal strategies and index are positively correlated (with a correlation of 0.335).

Secondly, Fig. 3.1 (d) seems to indicate a big jump in the utilities of the optimal
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Figure 3.2. The time series of the optimal portfolio weight and the

utility of the wealth for the pure momentum model with τ = 12 (a)

and (b) and the pure mean-reversion model (c) and (d) from January

1876 until December 2012. In (d), the utilities of the optimal portfolio

wealth and the market index are plotted in solid red and dash-dotted

blue lines respectively.

portfolio during the period of the Great Depression in the 1930s. This observation is

consistent with Moskowitz et al. (2012), who find that the TSM strategy delivers its

highest profits during the most extreme market episodes. However, the performance

of the optimal portfolio is not completely driven by its performance during crisis

periods.10

Next, we compare the economic value of the pure momentum and pure mean-

reverting strategies to that of the market index. For the pure momentum model,

10To clarify this observation, we also examine performance using data from January 1940 to

December 2012 to avoid the Great Depression periods. We re-estimate the model, conduct the

same analysis. Our results show that the optimal strategies still outperform the market index over

this time period. This indicates that the outperformance of the optimal strategy is not necessarily

due to extreme market episodes, such as the Great Depression. Later in this section, we show that

the outperformance is in fact immune to market conditions.
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based on the estimated parameters in Table 3.1, Fig. 3.2 (a) and (b) illustrate the

time series of the portfolio weights and the utilities of the optimal portfolio for the

pure momentum model from January 1876 to December 2012. Compared to the

full model illustrated in Fig. 3.1, the leverage of the pure momentum strategies is

much higher, as indicated by the higher level of π∗
t . The optimal strategies for the

pure momentum model suffer from high risk and perform worse than the market

and hence the optimal strategies of the full model. Similarly, based on the estimates

in Table 3.1, Fig. 3.2 (c) and (d) illustrate the time series of the portfolio weight

and the utility of the wealth of the optimal portfolio for the pure mean-reversion

model, showing that the performance of the strategy is about the same as the stock

index but worse than the optimal strategies (2.8). Note that in this case there is not

much variation in the portfolio weight and the optimal portfolio does not capture

the timing opportunity of the market trend and market volatility. Therefore, both

the pure momentum and pure mean-reversion strategies underperform the market

and the optimal strategies of the full model.
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Figure 3.3. (a) Average utility ((the solid red line), the 95% confi-

dence bounds (the solid green lines) and the 60% confidence bounds

(the dotted blue lines) and (b) one-sided t-test statistics based on

1,000 simulations for τ = 12.

To provide further evidence for the economic value of the optimal strategy, we

conduct a Monte Carlo analysis. For τ = 12 and the estimated parameters, we

simulate model (3.1) and report the average portfolio utilities (the solid red line in

the middle) based on 1,000 simulations in Fig. 3.3 (a), together with 95% confidence

levels (the two solid green lines outside), comparing to the utility of the market index

(the dotted blue line). It shows that firstly, the average utilities of the optimal

portfolios are better than that of the S&P 500. Secondly, the utility for the S&P

500 falls into the 95% confidence bounds and hence the average performance of

the optimal strategy is not statistically different from the market index at the 95%
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confidence level. We also plot two black dashed bounds for the 60% confidence

level. It shows that, at the 60% confidence level, the optimal portfolio significantly

outperforms the market index. Fig. 3.3 (b) reports the one-sided t-test statistics

to test lnW ∗
t > lnW SP500

t . The t-statistics are above 0.84 most of the time, which

indicates a critical value at 80% confidence level. Therefore, with 80% confidence,

the optimal portfolio significantly outperforms the market index. In summary, we

have provided empirical evidence of the outperformance of the optimal strategy (2.8)

compared to the market index, pure momentum and pure mean-reversion strategies.

3.3. The Sharpe Ratio. We now use the Sharpe ratio to examine the performance

of the optimal strategy. The Sharpe ratio is defined as the ratio of the mean excess

return on a portfolio and the standard deviation of the portfolio return. When the

Sharpe ratio of an active strategy exceeds the market Sharpe ratio, we say that the

active portfolio outperforms or dominates the market portfolio (in an unconditional

mean-variance sense). For empirical applications, the (ex-post) Sharpe ratio is usu-

ally estimated as the ratio of the sample mean of the excess return on the portfolio

and the sample standard deviation of the portfolio return (Marquering and Verbeek

2004). The average monthly return on the total return index of the S&P 500 over

the period January 1871–December 2012 is 0.42% with an estimated (unconditional)

standard deviation of 4.11%. The Sharpe ratio of the market index is 2.1%. For the

optimal strategy (2.8), the return of the optimal portfolio wealth at time t is given

by

R∗
t = (W ∗

t −W ∗
t−1)/W

∗
t−1 = π∗

t−1Rt + (1− π∗
t−1)r. (3.3)

Table 3.2 reports the Sharpe ratios of the passive holding market index portfolio

and the optimal portfolios from January 1886 to December 2012 for τ = 12 together

with their 90% confidence intervals (see Jobson and Korkie 1981). It shows that,

by taking the timing opportunity (with respect to the market trend and market

volatility), the optimal portfolio outperforms the market. We also conduct a Monte

Carlo analysis based on 1,000 simulations and obtain an average Sharpe ratio of

6.12% for the optimal portfolio. The result is consistent with the outperformance of

the optimal portfolio measured by portfolio utility (with an average terminal utility

of 8.71 for the optimal portfolio).

Table 3.2. The Sharpe ratios of the optimal portfolio and the market

index with corresponding 90% confidence interval and the Sharpe ratio

of the optimal portfolio based on Monte Carlo simulations.

Optimal portfolio Market index Monte Carlo

Sharpe ratio (%) 5.85 2.11 6.12

Bounds (%) (1.86, 9.84) (-1.88, 6.10) (5.98, 6.27)
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In summary, we have used two performance measures and provided empirical

evidence of the outperformance of the optimal strategy (2.8) compared to the market

index, pure momentum and pure mean-reversion strategies. The results provide

empirical support for the analytical result on the optimal strategy derived in Section

2. In the following subsection, we conduct further empirical tests on these results.

We first conduct out-of-sample tests on the predication power of the model and then

examine the performance of the optimal strategy with short-sale constraints, market

states, sentiment and volatility.

3.4. Out-of-Sample Tests. We implement a number of out-of-sample tests for

the optimal strategies by splitting the whole data set into two sub-sample periods

and using the first sample period to estimate the model. We then apply the esti-

mated parameters to the second portion of the data to examine the out-of-sample

performance of the optimal strategies.

In the first test, we split the whole data set into two equal periods: January 1871

to December 1941 and January 1942 to December 2012. Notice the data in the two

periods are quite different; the market index increases gradually in the first period

but fluctuates widely in the second period as illustrated in Fig. 3.1 (a). With τ = 12,

Fig. 3.4 (a) and (b) illustrates the corresponding time series of the optimal portfolio

and the utility of the optimal portfolio wealth from January 1942 to December 2012,

showing that the utility of the optimal strategy grows gradually and outperforms

the market index.

Many studies (see, for example, Jegadeesh and Titman 2011) show that momen-

tum strategies perform poorly after the subprime crisis in 2008. In the second test,

we use the subprime crisis to split the whole sample period into two periods and

focus on the performance of the optimal strategies after the subprime crisis. The

results are reported in Fig. 3.4 (c) and (d). It is clear that the optimal strat-

egy still outperforms the market over the sub-sample period, in particular, during

the financial crisis period around 2009 by taking large short positions in the optimal

portfolios. We also use data from the last 10 years and 20 years as the out-of-sample

test and find the results are robust.

As the third test, we implement the rolling window estimation procedure to avoid

look-ahead bias. For τ = 12, we estimate parameters at each month by using the

past 20 years’ data and report the results in Fig. C.1 in Appendix C. We then report

the time series of the index level (a), the simple return of the total return index of

S&P 500 (b), the optimal portfolio (c), and the utility of the optimal portfolio

wealth (d) in Fig. C.2 of Appendix C, showing a strong performance of the optimal

portfolios over the market.
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Figure 3.4. The time series of out-of-sample optimal portfolio

weights and utility of the optimal portfolio wealth (the solid lines)

from January 1942 until December 2012 in (a) and (b) and from Jan-

uary 2008 to December 2012 in (c) and (d) with τ = 12 compared to

the utility of the market index (the dotted line).

We also implement the out-of-sample tests for the pure momentum and pure

mean-reversion models (not reported here) and find that they cannot outperform the

market in most out-of-sample tests (last 10, 20 and 71 years), but do outperform the

market for out-of-sample tests over the last five years. We also report the results of

out-of-sample tests of the pure momentum in Fig. C.4 and the pure mean reversion

in Fig. C.6 based on the 20-year rolling window estimates in Fig. C.3 and Fig.

C.5 respectively, in Appendix C. We also implement the estimations for different

window sizes of 25, 30 and 50 years (not reported here) and find that the estimated

parameters are not very sensitive to the size of rolling window and the performance

of strategies is similar to the case of 20-year rolling window estimation. Overall,

the out-of-sample tests demonstrate the robustness of the outperformance of the

optimal trading strategies compared to the market index, pure momentum and pure

mean-reversion strategies.
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3.5. Short-sale Constraints. Investors often face short-sale constraints. To eval-

uate optimal strategies under such constraints, we consider them when short selling

and borrowing (at the risk-free rate) are not allowed. The portfolio weight π in this

case must lie between zero and 1. Since the value function is concave with respect

to π, the optimal strategy becomes

Π∗
t =















0, if π∗
t < 0,

π∗
t , if 0 ≤ π∗

t ≤ 1,

1, if π∗
t > 1.

(3.4)

Table 3.3. The terminal utility of the portfolio wealth, Sharpe ratio,

mean and stand deviation of the portfolio weights for the optimal

portfolios with and without short-sale constraints, comparing with

the market index portfolio.

Utility Sharpe Ratio Average weights Std of weights

With constraints 10.35 0.12 0.43 0.46

Without constraints 17.06 0.06 0.23 1.74

Market index 5.76 0.02

Table 3.3 reports the terminal utilities and the Sharpe ratio of the optimal portfo-

lio with and without short-sale constraints, compared to the passive holding market

index portfolio. The results show that the optimal portfolio with short-sale con-

straints outperforms the market, it even outperforms the optimal portfolio without

short-sale constraints under the Sharpe ratio. It seems that the constraints improves

portfolio performance. This observation is consistent with Marquering and Verbeek

(2004 p. 419) who argue that “While it may seem counterintuitive that strategies

perform better after restrictions are imposed, it should be stressed that the unre-

stricted strategies are substantially more affected by estimation error.” Indeed, we

see from Table 3.3 that the estimated optimal portfolio weight without constraints

has bigger standard error than that with constraints.

3.6. Market States, Sentiment and Volatility. The cross-sectional momen-

tum literature has shown that momentum profitability can be affected by market

states, investor sentiment and market volatility. For example, Cooper, Gutierrez and

Hameed (2004) find that short-run (six months) momentum strategies make profits

in an up market and lose in a down market, but the up-market momentum profits re-

verse in the long run (13–60 months). Hou, Peng and Xiong (2009) find momentum

strategies with a short time horizon (one year) are not profitable in a down market,

but are profitable in an up market. Similar profitability results are also reported in

Chordia and Shivakumar (2002), specifically that common macroeconomic variables
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related to the business cycle can explain positive returns to momentum strategies

during expansionary periods and negative returns during recessions.

To investigate the performance of optimal strategies under different market states,11,

we see from Table D.1 in Appendix D that the unconditional average excess return

is 87 basis points per month. In up months, the average excess return is 81 basis

points and it is statistically significant. In down months, the average excess return is

101 basis points; this value is economically significant although it is not statistically

significant. The difference between down and up months is 20 basis points, which is

not significantly different from zero, based on a two-sample t-test (p-value of 0.87).

Controlling for market risk, we use an up-month dummy12 to capture incremental

average return in up market months relative to down market months. We report

the regression results in Table D.2 in Appendix D for the optimal strategy, the

pure momentum strategy, pure mean-reversion strategy and the TSM strategy in

Moskowitz et al. (2012) for τ = 12 respectively. Except for the TSM, which earns

significant positive returns in down markets, both down market returns α and the

incremental returns in up market κ are insignificant for all other strategies; these

results are consistent with those in Table D.1. We also control for market risk in up

and down months separately and obtain similar results in Table D.2.

Other way to see effects of market state on portfolio returns is to look at its pre-

dictive powers. Table D.3 reports predictive regression results of excess portfolio

returns on the up-month dummy. We see that up market has no additional pre-

dictive power to portfolio returns over down market (insignificant κ), down market

has significant predictive power to TSM returns. Down market has insignificant

predictive power to the full model, pure momentum, and pure mean reversion, but

among them, the effect is relatively strong in the full model, and weak in the pure

mean reversion. We obtain similar results for the CAPM-adjusted return.

In terms of the effects of investor sentiment and market volatility on portfolio

performance, Baker and Wurgler (2006, 2007) find that investor sentiment affects

cross-sectional stock returns and the aggregate stock market. Wang and Xu (2012)

find that market volatility has significant power to forecast momentum profitability.

For TSMs, however, Moskowitz et al. (2012) find that there is no significant rela-

tionship of TSM profitability to either market volatility or investor sentiment. We

11We follow Cooper et al. (2004) and Hou et al. (2009) and define market state using the

cumulative return of the stock index (including dividends) over the most recent 36 months. We

label a month as an up (down) market month if the three-year return of the market is non-negative

(negative). We compute the average return of the optimal strategy, compare the average returns

between up and down market months, and report the results in Appendix D.
12The results are robust when we replace the up-month dummy with the lagged market return

over the previous 36 months (not reported here).
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find that both investor sentiment and market volatility have no predictive power on

portfolio returns (see Table D.4 and D.5 in Appendix D).

Overall, we find that returns of the optimal strategies are not significantly different

in up and down market states. We also find that both investor sentiment and market

volatility have no predictive power for the returns of the optimal strategies. In fact,

the optimal strategies have taken these factors into account and hence the returns of

the optimal strategies have no significant relationship with these factors. Therefore,

the optimal strategies are immune to market states, investor sentiment and market

volatility.

3.7. Comparison with TSM. We now compare the performance of the optimal

strategy to the TSM strategy of Moskowitz et al. (2012). The momentum strate-

gies in the empirical studies are based on trading signals only. We first verify the

profitability of the TSM strategies and then examine the excess return of buy-and-

hold strategies when the position is determined by the sign of the optimal portfolio

strategies (2.8) with different combinations of time horizons τ and holding periods

h.

For a given look-back period τ , we take long/short positions based on the sign

of the optimal portfolio (2.8). Then for a given holding period h, we calculate the

monthly excess return of the strategy (τ, h). Table E.1 in Appendix E reports the

average monthly excess return (%) of the optimal strategies, skipping one month

between the portfolio formation period and holding period to avoid the one-month

reversal in stock returns, for different look-back periods (in the first column) and

different holding periods (in the first row). The average return is calculated in the

same way as in Moskowitz et al. (2012). We calculate the excess returns of the

optimal strategies over the period from January 1881 (10 years after January 1871

with five years for calculating the trading signals and five years for holding periods)

to December 2012.

For comparison, Table E.2 in Appendix E reports the average returns (%) for

the pure momentum model.13 Notice that Tables E.1 and E.2 indicate that strategy

(9, 1) performs the best. This is consistent with the finding in Moskowitz et al. (2012)

that strategy (9, 1) is the best strategy for equity markets although the 12-month

horizon is the best for most asset classes.

Next we use the Sharpe ratio to examine the performance of the optimal strategy

π∗
t of (2.8) and compare it to the passive index strategy and two TSM strategies: one

follows from Moskowitz et al. (2012) and the other is the TSM strategy based on the

sign of the optimal strategies sign(π∗
t ) as the trading signal (instead of the average

13Notice the position is completely determined by the sign of the optimal strategies. Therefore,

the position used in Table E.2 is the same as that of the TSM strategies in Moskowitz et al. (2012).
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Table 3.4. The Sharpe ratio of the optimal portfolio, market index,

TSM and MMR for τ = 12 with corresponding 90% confidence inter-

val.

Optimal portfolio Market index TSM MMR

Sharpe ratio (%) 5.85 2.11 -0.03 4.16

Bounds (%) (1.86, 9.84) (-1.88, 6.10) (-4.01, 3.96) (0.18, 8.15)

excess return over a past period), which is called momentum and mean-reversion

(MMR) strategy for convenience. For a time horizon of τ = 12 months, we report

the Sharpe ratios of the portfolios for the four strategies in Table 3.4 from January

1881 to December 2012. It shows that the TSM strategy underperforms the market

while the MMR strategy outperforms it. The optimal strategy also significantly

outperforms all the momentum, mean-reversion and TSM strategies. Note that the

only difference between the optimal strategy and the MMR strategy is that the

former considers the size of the portfolio position, which is inversely proportional

to the variance, while the latter always takes one unit of long/short position. This

implies that, in addition to trends, the size of the position is another very important

factor for investment profitability.

Following Moskowitz et al. (2012), we examine the cumulative excess return. That

is, the return at time t is defined by

R̂t+1 = sign(π∗
t )
0.1424

σ̂S,t

Rt+1, (3.5)

where 0.1424 is the sample standard deviation of the total return index and the

ex-ante annualized variance σ̂2
S,t for the total return index is calculated as the expo-

nentially weighted lagged squared month returns,

σ̂2
S,t = 12

∞
∑

i=0

(1− δ)δi(Rt−1−i − R̄t)
2, (3.6)

here the constant 12 scales the variance to be annual, and R̄t is the exponentially

weighted average return based on the weights (1− δ)δi. The parameter δ is chosen

so that the center of mass of the weights is
∑∞

i=1(1−δ)δi = δ/(1−δ) = two months.

To avoid look-ahead bias contaminating the results, we use the volatility estimates

at time t for time t+ 1 returns throughout the analysis.
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Figure 3.5. Log cumulative excess return of the optimal strategy

and momentum strategy with τ = 12 and passive long strategy from

January 1876 to December 2012.

With a 12-month time horizon Fig. 3.5 illustrates the log cumulative excess return

of the optimal strategy (2.8), the momentum strategy and the passive long strategy

from January 1876 to December 2012. It shows that the optimal strategy has the

highest growth rate and the passive long strategy has the lowest growth rate. The

pattern of Fig. 3 in Moskowitz et al. (2012 p.239) is replicated in Fig. 3.5, showing

that the TSM strategy outperforms the passive long strategy.14 In summary, we

have shown that the optimal strategy outperforms the TSM strategy of Moskowitz

et al. (2012). By comparing the performance of two TSM strategies, we find that

the TSM strategy based on momentum and reversal trading signal is more profitable

than the pure TSM strategy of Moskowitz et al. (2012).15

3.8. Discussions on Hedging Demand. Taking the advantage of the closed-form

solution, previous sections concentrate on the case of γ = 1. Ideally, we should ex-

amine the general case of γ where the optimal portfolio weight is the sum of myopic

and hedging demands for the stock. However, the optimal strategy (2.7) is deter-

mined by a coupled forward backward stochastic differential equations (FBSDEs),

up till now, there is no efficient way to numerically solving FBSDEs with time delay

(Ma and Yong, 1999 and Delong, 2013). Given current state of the art of FBSDEs

14 In fact, the profits of the diversified time series momentum (TSMOM) portfolio in Moskowitz

et al. (2012) are to some extent driven by the bonds when scaling for the volatility in equation (5)

of their paper, and hence applying the TSM strategies to the stock index may have fewer significant

profits than the diversified TSMOM portfolio.
15This paper studies the S&P 500 index over 140 years of data, while Moskowitz et al. (2012)

focus on the futures and forward contracts that include equity indices, currencies, commodities,

and sovereign bonds. Despite a large difference between the data investigated, we find similar

patterns for the TSM in the stock index and replicate their results with respect to the stock index.
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with time delay, we only be able to do some limited exploratory analysis on the

hedging demand.

We follow the scheme developed in Bender and Denk (2007) which is based on

Picard iterations. Due to the non-Markovian structure of time-delayed BSDEs, the

conditional expectation in (B.6) in Appendix B has to be taken with respect to the

whole information Ft. Therefore, we estimate the expected values by approximat-

ing the Brownian motion by a symmetric random walk as in Ma, Protter, Martin

and Torres (2002). Specifically, we first simulate the 2T trajectories of the forward

processes St and µt for t from 1 to T based on the approximating binomial random

walk. The parameters are chosen based on Table 3.1 and the initial values St = ϕt,

t ∈ [−τ, 0] and µ0 = µ̂ are chosen as the corresponding initial values of S&P 500 and

the dividend yield. A unique solution (p, z) to the backward part (B.6) is obtained

as the limit of the sequence of the processes (p(n), z(n)) governed by

p
(n)
t =E

[

ΦX(XT ) +

∫ T

t

{

(bπ
(n−1)

X )⊤p(n−1)
u + (σπ(n−1)

X )⊤z(n−1)
u +

(bπ
(n−1)

Xτ
|u+τ )

⊤p
(n−1)
u+τ + (σπ(n−1)

Xτ
|u+τ)

⊤z
(n−1)
u+τ

}

du
∣

∣

∣
Ft

]

,

with (p(0), z(0)) = (1, 0). For the n-th iteration, π(n−1) and hence W (n−1) can be

obtained after knowing (p(n−1), z(n−1)). This algorithm would be feasible for small

terminal time T but impractical for longer durations due to an enormous number of

trajectories that has to be generated. We consider terminal time T up to 12 months

and choose the relative risk aversion γ = 5. To examine the values added by the

hedging demand, we compare the optimal strategy and the myopic strategy. For

both the optimal and suboptimal investment strategies, we determine the certainty

equivalent return and report the annualized loss in certainty equivalent wealth by

following the suboptimal strategic allocation. Specifically, the annualized utility

costs are given by

C =

[

J2 + 1/(1− γ)

J1 + 1/(1− γ)

]1/[T (1−γ)]

− 1, (3.7)

where J1 and J2 are the value functions resulting from following the optimal and

myopic strategies.

Table 3.5. The utility costs (in %) of behaving myopically for ter-

minal times up to one year and time horizons up to six months. Here

γ = 5.

T 1 3 6 9 12

τ = 1 -0.26 -0.97 -1.83 -1.86 -3.01

τ = 3 -0.64 -1.01 -1.64 -5.30 -8.17

τ = 6 -12.99 -12.77 -12.81 -16.34 -24.39



ASSET ALLOCATION WITH TIME SERIES MOMENTUM AND REVERSAL 25

Table 3.5 reports the utility costs for terminal times up to one year and time

horizons up to six months. Two observations follow Table 3.5. Firstly, intuitively,

myopic strategy suffers a big loss for large investment horizons. Table 3.5 confirms

this intuition and shows that the costs of myopic strategy increase as terminal time

increases. Secondly, the time delay effect in stock returns also enlarges the costs of

myopic strategy. We complete this section with the following remark. Notice the

larger τ is, the more values of the backward processes are 0 across different market

states for t ∈ [T, T + τ ] and hence the less impact of time delay involved from the

conditional expectations in the BSDEs. This effect can be observed from Table 3.5,

especially the little difference when T < τ for τ = 6.

4. Time Horizon Effects

The impact of time horizon on investment profitability has been extensively in-

vestigated in the empirical literature, for example, De Bondt and Thaler (1985) and

Jegadeesh and Titman (1993). Due to the closed-form optimal strategy (2.8), we are

able to explicitly examine the dependence of the optimal results on different time

horizons. Rather than focusing only on τ = 12 months, in this section we examine

the effect of a time horizon τ varying from one to 60 months on the outperformance

of the optimal strategies.

4.1. Model Estimations and Comparison. For a given time horizon τ we esti-

mate the model 3.2. Fig. 4.1 reports the estimated parameters in monthly terms for

τ ranging from one month to five years, together with the 95% confidence bounds.

Fig. 4.1 (b) shows that the momentum effect parameter φ is significantly different

from zero when time horizon τ is more than half a year, indicating a significant

momentum effect for τ beyond six months.16 Note that φ increases to about 50%

when τ increases from six months to three years and then decreases gradually when

τ increases further. This implies that market returns can be explained by both

the momentum (based on different time horizons) and mean-reverting components.

Other results in terms of the level and significance reported in Fig. 4.1 are consistent

with Koijen et al. (2009).

Obviously, the estimations depend on the specification of the time horizon τ . To

explore the optimal value for τ , we compare different information criteria, including

Akaike (AIC), Bayesian (BIC) and Hannan–Quinn (HQ) information criteria for τ

from one month to 60 months in Fig. F.1 of Appendix F. The results imply that

the average returns over the past 18 months to two years can best predict future

16 For τ from one to five months, φ is indifferent from zero statistically and economically.

Correspondingly, for small look-back periods of up to half a year, the model is equivalent to a pure

mean-reversion model. This observation is helpful when explaining the results of the model for

small look-back periods in the following discussion.
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Figure 4.1. The estimates of (a) α; (b) φ; (c) µ̄; (d) ν; (e) σS(1); (f)

σX(1) and (g) σX(2) as functions of τ .

returns and the explanatory power for the market returns is reduced for longer time

horizons. This is consistent with studies showing that short-term (one to two years),

rather than long-term, momentum better explains market returns. Combining the

results in Figs 4.1 (b) and F.1, we can conclude that market returns are better

captured by short-term momentum and long-term reversion.

We also compare the performance of the optimal strategies with the pure momen-

tum strategies (φ = 1) for different τ . Fig. F.2 (a) reports the estimates of σS(1) and

the 95% confidence bounds for τ ∈ [1, 60]. It shows that as τ increases, the volatility

of the index decreases dramatically for small time horizons and is then stabilized
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for large time horizons. It implies high volatility associated with momentum over

short time horizons and low volatility over long time horizons. We also compare the

information criteria for different τ (not reported here) and find that all the AIC,

BIC and HQ reach their minima at τ = 11. This implies that the average returns

over the previous 11 months can predict future returns best for the pure momentum

model. This is consistent with the finding of Moskowitz et al. (2012) that momen-

tum returns over the previous 12 months better predict the next month’s return

than other time horizons. In addition, we conduct the log-likelihood ratio test to

compare the full model to the pure momentum model (φ = 1) and to the pure

mean-reversion model for different τ . We report the log-likelihood ratio test results

in Fig. F.2 (b), which show that the full model is significantly better than the pure

momentum model and pure mean-reversion model for all τ .
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Figure 4.2. The terminal utility of the optimal portfolio wealth (a)

from January 1876 to December 2012, (b) from January 1945 to De-

cember 2012, and (c) the average terminal utility of the optimal port-

folios based on 1000 simulations from January 1876 to December 2012,

comparing with the terminal utility of the market index portfolio (the

dash-dotted line).

4.2. The effect of time horizon on performance. For τ = 1, 2, · · · , 60, we

estimate the full model over the full sample. Fig. 4.2 (a) reports the utility of

terminal wealth, compared to the utility of the market portfolio at December 2012.

It shows that the optimal strategies consistently outperform the market index for τ

from five to 20 months.17 The corresponding utilities are plotted in Fig. F.4.

17When τ is less than half a year, Fig. 4.2 (a) shows that the optimal strategies do not perform

significantly better than the market. As we indicate in footnote 16, the model with a small look-

back period of up to half a year performs similarly to the pure mean-reversion strategy. Note the

significant outperformance of the optimal strategy with a one-month horizon in Fig. 4.2 (a). This

is due to the fact that the first order autocorrelation of the return of the S&P 500 is significantly



28 ASSET ALLOCATION WITH TIME SERIES MOMENTUM AND REVERSAL

We have observed from Fig. 3.1 (d) for τ = 12 that the Great Depression in

the 1930s has greatly improved the utilities of the optimal portfolio . To clarify

this observation, we also examine performance using the data from January 1940 to

December 2012 to avoid the Great Depression period. We re-estimate the model,

conduct the same analysis, and report the terminal utilities of the optimal portfolios

in Fig. 4.2 (b) over this time period. It shows that the optimal strategies still

outperform the market and the performance of the optimal strategies over the more

recent time period becomes even better for all time horizons. Consistent with the

results obtained in the previous section, the outperformance of the optimal strategy

is not necessarily due to extreme market episodes, such as the Great Depression.

We also conduct further Monte Carlo analysis on the performance of the optimal

portfolios based on the estimated parameters in Fig. 4.1 and 1,000 simulations and

report the average terminal utilities in Fig. 4.2 (c). The result displays a different

terminal performance from that in Fig. 4.2 (a). In fact, the terminal utility in

Fig. 4.2 (a) is based on only one specific trajectory (the real market index), while

Fig. 4.2 (c) provides the average performance based on 1,000 trajectories. We find

that the optimal portfolios perform significantly better than the market index (the

dash-dotted constant level) for all time horizons beyond half a year. In particular,

the average terminal utility reaches its peak at τ = 24, which is consistent with the

result based on the information criteria in Fig. F.1, particularly the AIC. Therefore,

according to the utility of portfolio wealth, the optimal strategies outperform the

market index for most of the time horizons.

As the second performance measure, Fig. 4.3 (a) reports the Sharpe ratio of the

passive holding market index portfolio from January 1881 to December 2012 and the

Sharpe ratios of the optimal portfolios for τ from one month to 60 months together

with their 90% confidence intervals (see Jobson and Korkie 1981). If we consider

the optimal portfolio as a combination of the market portfolio and a risk-free asset,

then the optimal portfolio should be located on the capital market line and hence

should have the same Sharpe ratio as the market. However Fig. 4.3 (a) shows that,

by taking the timing opportunity (with respect to the market trend and market

volatility), the optimal portfolios (the dotted blue line) outperform the market (the

solid black line) on average for time horizons from six to 20 months. The results are

surprisingly consistent with that in Fig. 4.2 (a) under the utility measure. We also

conduct a Monte Carlo analysis based on 1,000 simulations and report the average

Sharpe ratios in Fig. 4.3 (b) for the optimal portfolios. It shows the outperformance

of the optimal portfolios over the market index based on the Sharpe ratio for the

look-back periods of more than six months. The results are consistent with that in

positive (AC(1) = 0.2839) while the autocorrelations with higher orders are insignificantly different

from zero. This implies that the last period return could well predict the next period return.
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Figure 4.3. The Sharpe ratio of the optimal portfolio (the solid blue

line) with corresponding 90% confidence intervals (a), the average

Sharpe ratio based on 1,000 simulations (b) for τ ∈ [1, 60], compared

to the passive holding portfolio of market index (the dotted black line)

from January 1881 to December 2012.

Fig. 4.2 (c) under the portfolio utility measure. In addition, we show in Fig. F.3

that the pure momentum strategies underperform the market in all time horizons

from one month to 60 months. Therefore, we have demonstrated the consistent

outperformance of the optimal portfolios over the market index and pure strategies

under the two performance measures.
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Figure 4.4. The terminal utility of the wealth for the optimal port-

folio, compared to the passive holding market index portfolio (the

dotted line), with out-of-sample data from January 2008 to December

2012 for τ ∈ [1, 60].
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4.3. The effect on the out-of-sample tests. For τ from one month to 60 months,

Fig. 4.4 reports the out-of-sample utility of the optimal portfolio wealth from Jan-

uary 2008 to December 2012. It clearly shows that the optimal strategies still out-

perform the market index for time horizons up to two years. We report additional

out-of-sample tests in Appendix F.4 and rolling window estimates in Appendix F.5.

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

τ

ln W
T
*

 

 
With Constraints
Without Constraints
Passive Holding

(a) Terminal utility

0 10 20 30 40 50 60
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

τ

S
ha

rp
e 

R
at

io

 

 
With Constraints
Without Constraints
Passive Holding

(b) Sharpe ratio

0 10 20 30 40 50 60

0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ

A
ve

ra
ge

 W
ei

gh
ts

 

 
With Constraints
Without Constraints

(c) Mean of portfolio weights

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

τ

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 W

ei
gh

ts

 

 
With Constraints
Without Constraints

(d) Standard deviation of portfolio weights

Figure 4.5. The terminal utility of wealth (a) and the Sharpe ratio

(b) for the optimal portfolio, the mean (c) and the standard devi-

ation of the optimal portfolio weights, with and without short-sale

constraints, compared with the market index portfolio.

4.4. The effect on short-sale constraints. For different time horizon, Fig. 4.5

(a) and (b) report the terminal utilities of the optimal portfolio wealth and the

Sharpe ratio for the optimal portfolio with and without short-sales constraints, re-

spectively, comparing with the passive holding market index portfolio. We also

examine the mean and standard deviation of the optimal portfolio weights and re-

port the results in Fig. 4.5 (c) and (d) with and without short-sale constraints. The

results for τ = 12 in the previous section also hold. That is, with the constraints,

the optimal portfolio weights increase in the mean while volatility is low and sta-

ble. On the other hand, without constraints, the volatility of the optimal portfolio
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weights varies dramatically, which seems in line with the argument of Marquering

and Verbeek (2004).

4.5. Comparison with TSM with different time horizons. As in the previous

section for τ = 12, we use the Sharpe ratio to examine the performance of the

optimal strategy π∗
t in (2.8) and compare with the passive index strategy and two

TSM strategies for time horizons from 1 month to 60 months and one month holding

period. We report the Sharpe ratios of the portfolios for the four strategies in Fig.

4.6 (a).18 For comparison, we collect the Sharpe ratio for the optimal portfolio and

the passive holding portfolio reported in Fig. 4.3 and report the Sharpe ratios of

the TSM strategy using a solid green line and of momentum and mean-reversion

strategy using a dotted red line together in Fig. 4.6 (a) from January 1881 to

December 2012. We have three observations. First, the TSM strategy outperforms

the market only for τ = 9, 10 and the momentum and mean-reversion strategy

outperform the market for short time horizons τ ≤ 13. Second, by taking the mean-

reversion effect into account, the momentum and mean-reversion strategy performs

better than the TSM strategy for all time horizons. Finally, the optimal strategy

significantly outperforms both the momentum and mean-reversion strategy (for all

time horizons beyond four months) and the TSM strategy (for all time horizons).
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Figure 4.6. (a) The average Sharpe ratio for the optimal portfolio,

the momentum and mean-reversion portfolio and the TSM portfolio

with τ ∈ [1, 60] and the passive holding portfolio from January 1881

until December 2012. (b) Terminal log cumulative excess return of

the optimal strategies and TSM strategies with τ ∈ [1, 60] and passive

long strategy from January 1876 to December 2012.

18The monthly Sharpe ratio for the pure mean-reversion strategy is 0.0250, slightly higher than

that for the passive holding portfolio (0.0211).
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Fig. 4.6 (b) shows the terminal values of the log cumulative excess returns of

the optimal strategy (2.8) and the TSM strategy with τ ∈ [1, 60], together with the

passive long strategy, from January 1876 to December 2012.19 It shows that the

optimal strategy outperforms the TSM strategy for all time horizons (beyond four

months), while the TSM strategy outperforms the market for small time horizons

(from about two to 18 months). The terminal values of the log cumulative excess

return have similar patterns to the average Sharpe ratio reported in Fig. 4.6 (a),

especially for small time horizons.

5. Conclusion

To characterize the time series momentum in financial markets, we propose a

continuous-time model of asset price dynamics with the drift as a weighted average

of mean reversion and moving average components. By applying the maximum

principle for control problems of stochastic delay differential equations, we derive

the optimal strategies in closed form. By estimating the model to the S&P 500, we

show that the optimal strategy outperforms the TSM strategy and the market index.

The outperformance holds for out-of-sample tests and with short-sale constraints.

The outperformance is immune to the market states, investor sentiment and market

volatility. The results show that the profitability pattern reflected by the average

return of commonly used strategies in much of the empirical literature may not

reflect the effect of portfolio wealth.

The model proposed in this paper is simple and stylized. The weights of the

momentum and mean-reversion components are constant. When market conditions

change, the weights can be time-varying. Hence it would be interesting to model

their dependence on market conditions. This can be modelled, for example, as a

Markov switching process or based on some rational learning process (Xia 2001).

The portfolio performance is examined under log utility in this paper. It would be

interesting to study the intertemporal effect under general power utility functions.

We could also consider incorporating stochastic volatilities of the return process

into the model. Finally, an extension of the model to a multi-asset setting to study

cross-sectional optimal strategies would be helpful to understand cross-sectional mo-

mentum and reversal.

19Note that the passive long strategy introduced in Moskowitz et al. (2012) is different from the

passive holding strategy studied in the previous sections. Passive long means holding one share of

the index each period; however, passive holding in our paper means investing $1 in the index in

the first period and holding it until the last period.
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Appendix A. Properties of the Solutions to the System (2.2)–(2.4)

Let C([−τ, 0], R) be the space of all continuous functions ϕ : [−τ, 0] → R. For

a given initial condition St = ϕt, t ∈ [−τ, 0] and µ0 = µ̂, the following proposition

shows that the system (2.2)-(2.4) admits pathwise unique solutions such that St > 0

almost surely for all t ≥ 0 whenever ϕt > 0 for t ∈ [−τ, 0] almost surely.

Proposition A.1. The system (2.2)-(2.4) has an almost surely continuously adapted

pathwise unique solution (S, µ) for a given F0-measurable initial process ϕ : Ω →

C([−τ, 0], R). Furthermore, if ϕt > 0 for t ∈ [−τ, 0] almost surely, then St > 0 for

all t ≥ 0 almost surely.

Proof. Basically, the solution can be found by using forward induction steps of length

τ as in Arriojas, Hu, Mohammed and Pap (2007). Let t ∈ [0, τ ]. Then the system

(2.2)-(2.4) becomes














dSt = StdNt, t ∈ [0, τ ],

dµt = α(µ̄− µt)dt+ σ′
µdZt, t ∈ [0, τ ],

St = ϕt for t ∈ [−τ, 0] almost surely and µ0 = µ̂.

(A.1)

where Nt =
∫ t

0

[

φ
τ

∫ s

s−τ
dϕu

ϕu
+ (1 − φ)µs

]

ds +
∫ t

0
σ′
SdZs is a semimartingale. Denote

by 〈Nt, Nt〉 =
∫ t

0
σ′
SσSds, t ∈ [0, τ ], the quadratic variation. Then system (A.1) has

a unique solution














St = ϕ0 exp
{

Nt −
1

2
〈Nt, Nt〉

}

,

µt = µ̄+ (µ̂− µ̄) exp{−αt}+ σ′
µ exp{−αt}

∫ t

0

exp{αu}dZu

for t ∈ [0, τ ]. This clearly implies that St > 0 for all t ∈ [0, τ ] almost surely, when

ϕt > 0 for t ∈ [−τ, 0] almost surely. By a similar argument, it follows that St > 0 for

all t ∈ [τ, 2τ ] almost surely. Therefore St > 0 for all t ≥ 0 almost surely, by induction.

Note that the above argument also gives existence and pathwise-uniqueness of the

solution to the system (2.2)-(2.4).

�
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Appendix B. Proof of Proposition 2.1

To solve the stochastic control problems, there are two approaches: the dynamic

programming method (HJB equation) and the maximum principle. Since the SDDE

is not Markovian, we cannot use the dynamic programming method. Recently, Chen

and Wu (2010) introduced a maximum principle for the optimal control problem of

SDDE. This method is further extended by Øksendal et al. (2011) to consider a one-

dimensional system allowing both delays of moving average type and jumps. Because

the optimal control problem of SDDE is relatively new to the field of economics and

finance, we first briefly introduce the maximum principle of Chen and Wu (2010)

and refer readers to their paper for details.

B.1. The Maximum Principle for an Optimal Control Problem of SDDE.

Consider a past-dependent state Xt of a control system
{

dXt = b(t, Xt, Xt−τ , vt, vt−τ )dt+ σ(t, Xt, Xt−τ , vt, vt−τ )dZt, t ∈ [0, T ],

Xt = ξt, vt = ηt, t ∈ [−τ, 0],
(B.1)

where Zt is a d-dimensional Brownian motion on (Ω,F , P, {Ft}t≥0), and b : [0, T ]×

R
n × R

n × R
k × R

k → R
n and σ : [0, T ] × R

n × R
n × R

k × R
k → R

n×d are given

functions. In addition, vt is a Ft (t ≥ 0)-measurable stochastic control with values

in U , where U ⊂ R
k is a nonempty convex set, τ > 0 is a given finite time delay,

ξ ∈ C[−τ, 0] is the initial path of X , and η, the initial path of v(·), is a given

deterministic continuous function from [−τ, 0] into U such that
∫ 0

−τ
η2sds < +∞.

The problem is to find the optimal control u(·) ∈ A, such that

J(u(·)) = sup{J(v(·)); v(·) ∈ A}, (B.2)

where A denotes the set of all admissible controls. The associated performance

function J is given by

J(v(·)) = E

[

∫ T

0

L(t, Xt, vt, vt−τ )dt+ Φ(XT )
]

,

where L : [0, T ]× R
n × R

k × R
k → R and Φ : Rn → R are given functions. Assume

(H1): the functions b, σ, L and Φ are continuously differentiable with respect to

(Xt, Xt−τ , vt, vt−τ ) and their derivatives are bounded.

In order to derive the maximum principle, we introduce the following adjoint

equation,


























−dpt =
{

(buX)
⊤pt + (σu

X)
⊤zt + Et[(b

u
Xτ

|t+τ )
⊤pt+τ + (σu

Xτ
|t+τ )

⊤zt+τ ]

+ LX(t, Xt, ut, ut−τ)
}

dt− ztdZt, t ∈ [0, T ],

pT = ΦX(XT ), pt = 0, t ∈ (T, T + τ ],

zt = 0, t ∈ [T, T + τ ].

(B.3)
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We refer readers to Theorems 2.1 and 2.2 in Chen and Wu (2010) for the existence

and uniqueness of the solutions of the systems (B.3) and (B.1) respectively.

Next, define a Hamiltonian function H from [0, T ]×R
n×R

n×R
k×R

k×L2
F (0, T+

τ ;Rn)× L2
F (0, T + τ ;Rn×d) to R as follows,

H(t, Xt, Xt−τ , vt, vt−τ , pt, zt)

=〈b(t, Xt, Xt−τ , vt, vt−τ ), pt〉+ 〈σ(t, Xt, Xt−τ , vt, vt−τ ), zt〉+ L(t, Xt, vt, vt−τ ).

Assume (H2): the functions H(t, ·, ·, ·, ·, pt, zt) and Φ(·) are concave with respect

to the corresponding variables respectively for t ∈ [0, T ] and given pt and zt. Then

we have the following proposition on the maximum principle of the stochastic control

system with delay by summarizing Theorem 3.1, Remark 3.4 and Theorem 3.2 in

Chen and Wu (2010).

Proposition B.1. (i) Let u(·) be an optimal control of the optimal stochastic

control problem with delay subject to (B.1) and (B.2), and X(·) be the cor-

responding optimal trajectory. Then we have

max
v∈U

〈Hu
v + Et[H

u
vτ |t+τ ], v〉 = 〈Hu

v + Et[H
u
vτ |t+τ ], ut〉, a.e., a.s.; (B.4)

(ii) Suppose u(·) ∈ A and let X(·) be the corresponding trajectory, pt and zt be

the solution of the adjoint equation (B.3). If (H1), (H2) and (B.4) hold

for u(·), then u(·) is an optimal control for the stochastic delayed optimal

problem (B.1) and (B.2).

B.2. Proof of Proposition 2.1. We now apply Proposition B.1 to our stochastic

control problem. Let Pu := lnSu and Vu := W 1−γ
u −1
1−γ

. Then the stochastic delayed

optimal problem in Section 2 becomes to maximize Eu[Φ(XT )] := Eu[
W 1−γ

T
−1

1−γ
] =

Eu[VT ], subject to

{

dXu = b(u,Xu, Xu−τ , πu)du+ σ(u,Xu, πu)dZu, u ∈ [t, T ],

Xu = ξu, vu = ηu, u ∈ [t− τ, t],
(B.5)

where

Xu =







Pu

µu

Vu






, σ =







σ′
S

σ′
µ

(

(1− γ)Vu + 1
)

πuσ
′
S






,

b =











φ
τ
(Pu − Pu−τ ) + (1− φ)µu − (1− φ)

σ′

SσS

2

α(µ̄− µu)
(

(1− γ)Vu + 1
)

{

−
γπ2

uσ
′

S
σS

2
+ πu

[

φ
τ
(Pu − Pu−τ ) +

σ′

S
σS

2
φ+ (1− φ)µu − r

]

+ r

}











.
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Then we have the following adjoint equation


























−dpu =
{

(bπ
∗

X )⊤pu + (σπ∗

X )⊤zu + Eu[(b
π∗

Xτ
|u+τ )

⊤pu+τ + (σπ∗

Xτ
|u+τ )

⊤zu+τ ]

+ LX

}

du− zudZu, u ∈ [t, T ],

pT = ΦX(XT ), pu = 0, u ∈ (T, T + τ ],

zu = 0, u ∈ [T, T + τ ],

(B.6)

where

pu = (piu)3×1, zu = (ziju )3×2,

(bπ
∗

X )⊤ =









φ
τ

0 [(1− γ)Vu + 1]φ
τ
π∗
u

1− φ −α [(1− γ)Vu + 1](1− φ)π∗
u

0 0 (1− γ)

{

−
γπ∗2

u σ′

S
σS

2
+ π∗

u

[

φ
τ
(Pu − Pu−τ) +

σ′

S
σS

2
φ+ (1− φ)µu − r

]

+ r

}









,

(bπ
∗

Xτ
|u+τ )

⊤ =







−φ
τ

0 −[(1− γ)Vu+τ + 1]φ
τ
π∗
u+τ

0 0 0

0 0 0






, ΦX(XT ) =







0

0

1






, LX = 0,

(σπ∗

X )⊤ =

(

(σπ∗

1X)
⊤

(σπ∗

2X)
⊤

)

, (σπ∗

iX)
⊤ =







0 0 0

0 0 0

0 0 (1− γ)π∗
uσS(i)






, i = 1, 2, (σπ∗

Xτ
|u+τ)

⊤ = 02×3×3.

The Hamiltonian function H is given by

H =
[φ

τ
(Pu − Pu−τ) + (1− φ)µu − (1− φ)

σ′
SσS

2

]

p1u + α(µ̄− µu)p
2
u

+ [(1− γ)Vu+τ + 1]
{

−
γπ2

uσ
′
SσS

2
+ πu

[φ

τ
(Pu − Pu−τ ) +

σ′
SσS

2
φ+ (1− φ)µu − r

]

+ r
}

p3u

+ σ′
S

(

z11u
z12u

)

+ σ′
µ

(

z21u
z22u

)

+ [(1− γ)Vu + 1]πuσ
′
S

(

z31u
z32u

)

,

so that

Hπ∗

π = [(1−γ)Vu+1]p3u

{

−γπ∗
uσ

′
SσS+

φ

τ
(Pu−Pu−τ )+

σ′
SσS

2
φ+(1−φ)µu−r

}

+[(1−γ)Vu+1]σ′
S

(

z31u
z32u

)

.

It can be verified that Eu[H
π∗

πτ
|u+τ ] = 0. Therefore,

〈Hπ∗

π + Eu[H
π∗

πτ
|u+τ ], π〉 = πuH

π∗

π .

Taking the derivative with respect to πu and letting it equal zero yields

π∗
u =

φ
τ
(Pu − Pu−τ) +

σ′

SσS

2
φ+ (1− φ)µu − r

γσ′
SσS

+
σS(1)z

31
u + σS(2)z

32
u

γp3uσ
′
SσS

=
φmu + (1− φ)µu − r

γσ′
SσS

+
σS(1)z

31
u + σS(2)z

32
u

γp3uσ
′
SσS

,

(B.7)
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where zu and pu are governed by the backward stochastic differential system (B.6).

This gives the optimal investment strategy.

Especially, if γ = 1, the utility reduces to a log one. Then the parameter matrices

in the adjoint equation (B.6) become

(bπ
∗

X )⊤ =







φ
τ

0 φ
τ
π∗
u

1− φ −α (1− φ)π∗
u

0 0 0






, (bπ

∗

Xτ
|u+τ )

⊤ =







−φ
τ

0 −φ
τ
π∗
u+τ

0 0 0

0 0 0






,

ΦX(XT ) =







0

0

1






, LX = 0, (σπ∗

X )⊤ = (σπ∗

Xτ
|u+τ )

⊤ = 02×3×3.

Since the parameters and terminal values for dp3u are deterministic in this case, we

can assert that z31u = z32u = 0 for u ∈ [t, T ], which leads to p3u = 1 for u ∈ [t, T ].

Then the Hamiltonian function H is given by

H =
[φ

τ
(Pu − Pu−τ ) + (1− φ)µu − (1− φ)

σ′
SσS

2

]

p1u + α(µ̄− µu)p
2
u

+
{

−
π2
uσ

′
SσS

2
+ πu

[φ

τ
(Pu − Pu−τ ) +

σ′
SσS

2
φ+ (1− φ)µu − r

]

+ r
}

p3u

+ σ′
S

(

z11u
z12u

)

+ σ′
µ

(

z21u
z22u

)

,

and the optimal strategy is given by

π∗
u =

φmu + (1− φ)µu − r

σ′
SσS

,

which is myopic.
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Appendix C. Additional out-of-sample tests and Rolling Window

Estimations

In this appendix, we provide some robustness analysis to out-of-sample tests and

rolling window estimations.
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Figure C.1. The estimates of (a) α; (b) φ; (c) µ̄; (d) ν; (e) σS(1); (f)

σX(1) and (g) σX(2) for τ = 12 based on data from the past 20 years.

C.1. Rolling Window Estimations. For fix τ = 12, we estimate parameters of

(3.2) at each month by using the past 20 years’ data to avoid look-ahead bias. Fig.
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C.1 illustrates the estimated parameters. The big jump in estimated σS(1) during

1930–1950 is consistent with the high volatility of market return illustrated in Fig.

C.2 (b). Fig. C.1 also illustrates the interesting phenomenon: that the estimated φ

is very close to zero for three periods of time, implying insignificant momentum but

significant mean-reversion effect. By comparing Fig. C.1 (b) and (e), we observe

that the insignificant φ is accompanied by high volatility σS(1).
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Figure C.2. The time series of (a) the index level and (b) the simple

return of the total return index of S&P 500; (c) the optimal portfolio

and (d) the utility of wealth from December 1890 until December 2012

for τ = 12 with 20-year rolling window estimated parameters.

Fig. C.2 illustrates the time series of (a) the index level and (b) the simple return

of the total return index of S&P 500; (c) the optimal portfolio and (d) the utility

of the optimal portfolio wealth from December 1890 to December 2012 for τ = 12

with 20-year rolling window estimated parameters. The index return and π∗
t are

positively correlated with correlation 0.0620. In addition, we find that the profits

are higher after the 1930s.

Fig. C.3 illustrates the estimates of σS(1) for the pure momentum model (φ = 1)

based on data from the past 20 years; the big jump in volatility is due to the Great
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Figure C.3. Estimates of σS(1) for the pure momentum model (φ =

1) based on data from the past 20 years.

01/1891 01/1941 01/1991 12/2012
−10

−5

0

5

10

15

20

t

π
t
*

(a)

01/1891 01/1941 01/1991 12/2012
−10

−8

−6

−4

−2

0

2

4

6

t

 

 

ln W
t
*

ln W
t

(b)

Figure C.4. The time series of (a) the optimal portfolio and (b) the

utility of wealth from December 1890 until December 2012 for τ = 12

for the pure momentum model with 20-year rolling window estimated

parameters.

Depression in the 1930s. Fig. C.4 illustrates the time series of (a) the optimal

portfolio and (b) the utility of wealth from December 1890 until December 2012 for

τ = 12 for the pure momentum model with the 20-year rolling window estimated

σS(1). By comparing Fig. C.3 and Fig. C.4 (b), the optimal strategy implied by the

pure momentum model suffers huge losses during the high market volatility period.

However, Fig C.2 illustrates that the optimal strategy implied by the full model

makes big profits during the big market volatility period.

Fig. C.5 illustrates the estimated parameters for the pure mean-reversion model

based on data from the past 20-years.

Fig. C.6 illustrates the time series of the optimal portfolio and the utility of wealth

from December 1890 until December 2012 for the pure mean-reversion model with

20-year rolling window estimated parameters. After eliminating the look-ahead bias,

the pure mean-reversion strategy cannot outperform the stock index any longer.
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Figure C.5. The estimates of (a) α; (b) φ; (c) µ̄; (d) ν; (e) σS(1); (f)

σX(1) and (g) σX(2) for the pure mean-reversion model based on data

from the past 20 years.
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Figure C.6. The time series of (a) the optimal portfolio and (b) the

utility of wealth from December 1890 until December 2012 for the

pure mean-reversion model with 20-year rolling window estimated pa-

rameters.
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Appendix D. Regressions on the Market States, Sentiment and

Volatility

D.1. Market States. First, we follow Cooper et al. (2004) and Hou et al. (2009)

and define market state using the cumulative return of the stock index (including

dividends) over the most recent 36 months.20 We label a month as an up (down)

market month if the market’s three-year return is non-negative (negative). There

are 1,165 up months and 478 down months from February 187621 to December 2012.

Table D.1. The average excess return of the optimal strategy for τ = 12.

Observations (N) Average excess return

Unconditional return 1,643 0.0087

(2.37)

Up market 1,165 0.0081

(4.09)

Down market 478 0.0101

(0.87)

We compute the average return of the optimal strategy and compare the average

returns between up and down market months. Table D.1 presents the average un-

conditional excess returns and the average excess returns for up and down market

months. The unconditional average excess return is 87 basis points per month. In

up market months, the average excess return is 81 basis points and it is statistically

significant. In down market months, the average excess return is 101 basis points;

this value is economically but not statistically significant. The difference between

down and up months is 20 basis points, which is not significantly different from zero

based on a two-sample t-test (p-value of 0.87).22

We use the following regression model to test for the difference in returns:

R∗
t − r = α + κIt(UP ) + β(Rt − r) + ǫt, (D.1)

where R∗
t = (W ∗

t −W ∗
t−1)/W

∗
t−1 in (3.3) is the month t return of the optimal strategy,

Rt − r is the excess return of the stock index, and It(UP ) is a dummy variable that

takes the value of 1 if month t is in an up month, and zero otherwise. The regression

intercept α measures the average return of the optimal strategy in down market

months, and the coefficient κ captures the incremental average return in up market

20The results are similar if we use the alternative 6-, 12- or 24- month market state definitions,

even though they are more sensitive to sudden changes in market sentiment.
21We exclude January 1876 in which there is no return to the optimal strategies.
22The p-values for the pure momentum strategy, pure mean-reversion strategy and TSM are

0.87, 0.87 and 0.67 respectively.
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months relative to down months. We also replace the market state dummy in (D.1)

with the lagged market return over the previous 36 months (not reported here), and

the results are robust.

Table D.2. The coefficients for the regression (D.1)-(D.2).

FM MM MRM TSM FM MM MRM TSM

α 0.0094 0.0476 -0.0000 0.0060 0.0086 0.0423 0.0002 0.0058

(1.46) (1.34) (-0.01) (3.23) (1.44) (1.32) (0.18) (3.29)

κ 0.0005 0.0041 -0.0005 -0.0014 -0.0008 -0.0034 -0.0002 -0.0017

(0.06) (0.10) (-0.32) (-0.63) (-0.11) (-0.09) (-0.14) (-0.81)

β -1.0523 -6.7491 0.3587 -0.1548

(-12.48) (-14.60) (22.97) (-6.39)

β1 0.1994 0.7189 0.0708 0.1341

(1.90) (1.27) (3.84) (4.30)

β2 -2.5326 -15.5802 0.6991 -0.4964

(-22.16) (-25.31) (34.88) (-14.63)

The first four columns of Table D.2 reports the regression coefficients of (D.1)

for the full model, the pure momentum model, pure mean-reversion model and the

TSM strategy in Moskowitz et al. (2012) for τ = 12 respectively. We see that for all

strategies, the differences in returns between down and up market are not significant.

Also, the returns in down market are not significant, except for the TSM which earns

significant positive returns in down market. The results are consistent with those in

Table D.1.

To further control for market risk in up and down market months, we now run

the following regression:

R∗
t − r = α + κIt(UP ) + β1(Rt − r)It(UP ) + β2(Rt − r)It(DOWN) + ǫt. (D.2)

The regression coefficients are reported in the last four columns of Table D.2. Again,

we obtain similar results to (D.1).

Table D.3. The coefficients for the regression (D.3)-(D.4).

Excess return CAPM-adj return

FM MM MRM TSM FM MM MRM TSM

α 0.0083 0.0409 0.0002 0.0057 0.0094 0.0476 0.0000 0.0060

(1.22) (1.08) (0.14) (3.03) (1.46) (1.34) (-0.01) (3.23)

κ 0.0006 0.0037 -0.0002 -0.0012 0.0005 0.0041 -0.0005 -0.0014

(0.07) (0.08) (-0.14) (-0.53) (0.06) (0.10) (-0.32) (-0.63)
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When we regress excess return on dummy variable of previous month’s state

It−1(UP ):

R∗
t − r = α + κIt−1(UP ) + ǫt, (D.3)

we find insignificant κs in Table D.3, which indicate the insignificant incremental

predictive power of up market state for returns of all strategies. However, we observe

significant estimate of α for TSM, and larger t-statistics of α for FM and MM

(although not significant at conventional level) than that of MRM. This implies

that down market state predicts TSM returns, and it also has stronger predictive

power for the optimal strategy and pure momentum strategy compared to that of

mean reversion. We obtain the same result for the CAPM-adjusted returns:

R∗
t − r = αCAPM + βCAPM(Rt − r) + εt,

R∗
t − r − βCAPM(Rt − r) = α + κIt−1(UP ) + ǫt.

(D.4)

In summary, whereas cross-sectional momentum usually generates higher returns

in up months in Hou et al. (2009), we do not find significant differences in returns

between up and down months for the strategies from our model and the TSM.

The TSM has significant positive returns in down market months, which also has

significant predictive power to next month’s TSM returns.

Table D.4. The coefficients for the regression (D.5).

FM MM MRM TSM

a 0.0059 0.0267 0.0005 0.0040

(1.77) (1.74) (1.49) (2.57)

b 0.0040 0.0134 -0.0003 0.0023

(1.20) (0.87) (-1.01) (1.48)

D.2. Investor Sentiment. In this subsection, we examine if investor sentiment

predicts returns of the optimal strategies:

R∗
t − r = a+ bTt−1 + ǫ, (D.5)

where Tt is the sentiment index constructed by Baker and Wurgler (2006).23 We see

from Table D.4 that none of the estimates of b is significant, which suggests that

investor sentiment has no predictive power for returns of optimal strategies and of

the TSM. We also examine monthly changes of the level of sentiment by replacing Tt

with its monthly changes and their orthogonalized indexes. The results are similar.
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Table D.5. The coefficients for the regression (D.6)-(D.7).

FM MM MRM TSM FM MM MRM TSM

α 0.0037 0.0421 -0.0014 0.0053 -0.0020 -0.0151 0.0012 0.0025

(1.06) (1.11) (-1.00) (2.78) (-0.27) (-0.36) (0.80) (1.19)

κ 0.0138 0.0141 0.0137 -0.0232

(0.25) (0.05) (1.21) (-1.48)

κ1 0.1043 0.5763 -0.0127 0.0016

(1.34) (1.33) (-0.80) (-0.07)

κ2 0.1026 0.5564 -0.0098 0.0084

(1.80) (1.75) (-0.84) (0.53)

D.3. Market Volatility. Finally, we examine the predictability of market volatility

for portfolio returns:

R∗
t − r = α + κσ̂S,t−1 + ǫt, (D.6)

where the ex-ante annualized volatility σ̂S,t is given by (3.6). We see from Table

D.5 that the estimated κs are not significant, which implies that volatility has no

predictive power for returns of optimal strategies and of the TSM. We obtain similar

results even if we separate volatility into up and down market months as Wang and

Xu (2012):

R∗
t − r = α+ κ1σ̂

+
S,t−1 + κ2σ̂

−
S,t−1 + ǫt, (D.7)

where σ̂+
S,t (σ̂

−
S,t) is equal to σ̂S,t if the market state is up (down) and otherwise equal

to zero.

23The data on the Baker-Wurger sentiment index from 07/1965 to 12/2010 is obtained from the

Jeffrey Wurglers website (http://people.stern.nyu.edu/jwurgler/).
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Appendix E. Comparison with Moskowitz, Ooi and Pedersen (2012)

Table E.1. The average excess return (%) of the optimal strategies

for different look-back period τ (different row) and different holding

period h (different column).

(τ \ h) 1 3 6 9 12 24 36 48 60

1 0.1337 0.1387 0.1874∗ 0.1573∗ 0.0998 0.0222 0.0328 0.0479 0.0362

(1.28) (1.84) (3.29) (2.83) (1.84) (0.42) (0.63) (0.90) (0.66)

3 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972

(0.93) (0.93) (0.93) (0.93) (0.93) (0.93) (0.93) (0.93) (0.93)

6 0.2022 0.2173∗ 0.2315∗ 0.1462 0.0700 -0.0414 0.0199 0.0304 0.0014

(1.93) (2.28) (2.60) (1.75) (0.88) (-0.58) (0.32) (0.53) (0.02)

9 0.3413∗ 0.3067∗ 0.2106∗ 0.1242 0.0333 -0.0777 -0.0095 0.0000 -0.0450

(3.27) (3.12) (2.28) (1.45) (0.41) (-1.16) (-0.17) (0.00) (-1.11)

12 0.1941 0.1369 0.0756 -0.0041 -0.0647 -0.0931 -0.0234 -0.0137 -0.0587

(1.85) (1.40) (0.80) (-0.04) (-0.76) (-1.30) (-0.41) (-0.30) (-1.46)

24 -0.0029 -0.0513 -0.0776 -0.0591 -0.0557 -0.0271 0.0261 -0.0020 -0.0082

(-0.03) (-0.51) (-0.79) (-0.62) (-0.61) (-0.34) (0.40) (-0.03) (-0.15)

36 0.0369 0.0602 0.0517 0.0419 0.0416 0.0657 0.0351 0.0273 0.0406

(0.35) (0.59) (0.52) (0.43) (0.44) (0.81) (0.49) (0.42) (0.64)

48 0.1819 0.1307 0.1035 0.0895 0.0407 -0.0172 0.0179 0.0500 0.0595

(1.74) (1.30) (1.06) (0.93) (0.43) (-0.21) (0.24) (0.70) (0.86)

60 -0.0049 -0.0263 -0.0800 -0.1160 -0.1289 -0.0396 0.0424 0.0518 0.0680

(-0.05) (-0.26) (-0.81) (-1.20) (-1.41) (-0.49) (0.55) (0.69) (0.92)
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Table E.2. The average excess return (%) of the optimal strategies

for different look-back period τ (different row) and different holding

period h (different column) for the pure momentum model.

(τ \ h) 1 3 6 9 12 24 36 48 60

1 -0.0144 0.0652 0.0714 0.0689 0.0568 -0.0040 0.0006 0.0010 -0.0133

(-0.14) (0.89) (1.34) (1.52) (1.37) (-0.12) (0.02) (0.04) (-0.57)

3 0.1683 0.1915∗ 0.1460 0.1536∗ 0.0764 -0.0360 -0.0290 -0.0143 -0.0395

(1.61) (2.16) (1.91) (2.20) (1.17) (-0.69) (-0.72) (-0.45) (-1.38)

6 0.2906∗ 0.2633∗ 0.2635∗ 0.1884∗ 0.1031 -0.0484 -0.0130 0.0157 -0.0281

(2.78) (2.79) (3.01) (2.29) (1.34) (-0.75) (-0.26) (0.40) (-0.77)

9 0.4075∗ 0.3779∗ 0.2422∗ 0.1538 0.0545 -0.0735 -0.0217 -0.0047 -0.0460

(3.91) (3.78) (2.62) (1.76) (0.66) (-1.05) (-0.38) (-0.10) (-1.12)

12 0.2453∗ 0.1660 0.0904 0.0122 -0.0748 -0.1195 -0.0602 -0.0454 -0.0798

(2.35) (1.67) (0.94) (0.13) (-0.86) (-1.63) (-1.02) (-0.95) (-1.88)

24 0.0092 -0.0242 -0.0800 -0.0962 -0.0955 -0.0682 -0.0081 -0.0140 -0.0211

(0.09) (-0.24) (-0.81) (-1.03) (-1.06) (-0.88) (-0.13) (-0.24) (-0.39)

36 -0.0005 0.0194 0.0219 0.0212 0.0113 0.0030 0.0127 0.0241 0.0206

(-0.01) (0.19) (0.23) (0.22) (0.12) (0.04) (0.18) (0.37) (0.33)

48 0.0779 0.0733 0.0231 0.0019 -0.0392 -0.0676 -0.0004 0.0435 0.0382

(0.74) (0.73) (0.24) (0.02) (-0.42) (-0.83) (-0.01) (0.61) (0.55)

60 -0.0568 -0.0852 -0.1403 -0.1706 -0.1986 -0.1091 -0.0043 0.0157 0.0239

(-0.54) (-0.84) (-1.41) (-1.77) (-2.15) (-1.36) (-0.06) (0.22) (0.34)
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Appendix F. The Effects of Time Horizons

F.1. Information Criteria. We present different information criteria, including

Akaike (AIC), Bayesian (BIC) and Hannan–Quinn (HQ) information criteria for τ

from one month to 60 months in Fig. F.1. We see that the AIC, BIC and HQ

reach their minima at τ = 23, 19 and 20 respectively. Also, we observe a common

increasing pattern of the criteria level for longer τ .
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Figure F.1. (a) Akaike information criteria, (b) Bayesian informa-

tion criteria, and (c) Hannan–Quinn information criteria for τ ∈

[1, 60].

F.2. The Estimation and Log-likelihood Ratio Test for the Pure Momen-

tum Strategy. We present the estimation of parameter σS(1) for the pure mo-

mentum model in Fig. F.2(a) for τ ∈ [1, 60]. We also present the results of the

log-likelihood ratio test to compare the full model to the estimated pure momentum

model (φ = 1) and pure mean-reversion model with respect to different τ in Fig.

F.2 (b), where the solid red line shows the test statistic when compared to the pure

momentum model. The statistic is much greater than 12.59, the critical value with

six degrees of freedom at the 5% significance level. The dash-dotted blue line illus-

trates the test statistic when comparing to the pure mean-reversion model. The test

statistic is much greater than 3.841, the critical value with one degree of freedom at

5% significance level.

F.3. The Performance for Different Time Horizons. To compare with the

performance of the pure momentum strategies to the market index, based on esti-

mated parameters in Fig. F.2, we report the terminal utilities of the portfolios of

the pure momentum model at December 2012 in Fig. F.3.
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Figure F.2. The estimates of σS(1) for the pure momentum model

(a) and the log-likelihood ratio test (b) for τ ∈ [1, 60].
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Figure F.3. The utility of terminal wealth of the pure momentum

model for τ ∈ [1, 60].

For τ = 1, 2, · · · , 60, Fig. F.4 illustrates the evolution of the utility of the optimal

portfolio wealth (the dark and more volatile surface) and of the passive holding

index portfolio (the yellow and smooth surface) from January 1876 until December

2012. It indicates that the optimal strategies outperform the market index for τ

from five months to 20 months consistently.
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Figure F.4. The utility of the optimal portfolio wealth from Jan-

uary 1876 until December 2012 comparing with the passive holding

portfolio for τ ∈ [1, 60].

F.4. The Out-of-sample Test for Different Time Horizons. To see the effect

of the time horizon on the results of out-of-sample tests, we split the whole data set

into two equal periods: January 1871–December 1941 and January 1942–December

2012. For given τ , we estimate the model for the first sub-sample period and do

the out-of-sample test over the second sub-sample period. We report the utility of

terminal wealth for τ ∈ [1, 60] using sample data of the last 71 years in Fig. F.5.

Clearly the optimal strategies still outperform the market for τ ∈ [1, 14].
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Figure F.5. The utility of terminal wealth for τ ∈ [1, 60] based on

the out-of-sample period January 1942 to December 2012.

F.5. Rolling Window Estimates for Different Time Horizons. We also im-

plement rolling window estimations for different time horizons. Fig. F.6 illustrates

the correlations of the estimated σS(1) with (a) the estimated φ and the return of

the optimal strategies for (b) the full model, (c) the pure momentum model and (d)

the TSM return for τ ∈ [1, 60]. Interestingly, higher volatility is accompanied by a

less significant momentum effect with small time horizons (τ ≤ 13). But φ and σS(1)

are positive correlated when the time horizon becomes large. One possible reason is

that a long time horizon makes the trading signal less sensitive to changes in price
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Figure F.6. The correlations of the estimated σS(1) with (a) the

estimated φ and the return of the optimal strategies for (b) the full

model, (c) the pure momentum model and (d) the TSM return.

and hence the trading signal is significant only when the market price changes dra-

matically in a high volatility period. Fig. F.6 (c) and (d) show that the profitability

of the optimal strategies for the pure momentum model and the TSM strategies are

sensitive to the estimated market volatility. The return is positively (negatively)

related to market volatility for short (long) time horizons. But Fig. F.6 (b) shows

that the optimal strategies for the full model perform well even in a highly volatile

market.
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Figure F.7. The fraction of φ significantly different from zero for τ ∈ [1, 60].

We also study other time horizons. We find that the estimates of σS(1), σX(1)

and σX(2) are insensitive to τ but the estimates of φ are sensitive to τ . Fig. F.7

illustrates the corresponding fraction of φ, which is significantly different from zero

for τ ∈ [1, 60]. It shows that the momentums with 20–30 month horizons occur most

frequently during the period from December 1890 until December 2012.
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Figure F.8. The utility of wealth from December 1890 to December

2012 for the optimal portfolio with τ ∈ [1, 60] and the passive holding

portfolio with 20-year rolling window estimated parameters.

Fig. F.8 (a) illustrates the utility of wealth from December 1890 until December

2012 for the optimal portfolio with τ ∈ [1, 60] and the passive holding portfolio.

Especially, the utility of terminal wealth illustrated in Fig. F.8 (b) shows that

the optimal strategies work well for short horizons τ ≤ 20 and the terminal utility

reaches its peak at τ = 12.
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