
Capital Heterogeneity, Volatility Risk, and the Value
Premium

Yong Kil Ahn∗

Hong Kong University of Science and Technology

May 28, 2016

Abstract
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1. Introduction

This paper investigates the role of intangible capital complementarity in a firm’s expected

stock return in an extended neoclassical growth framework. In a seminal article, Griliches

(1979) identifies that already-acquired intangible capital and new research and development

(henceforth R&D) investment are complementary inputs in knowledge production. This

specification has since been widely used in finance and economics, e.g., Hall and Hayashi

(1989) and Romer (1990). Data also suggest that US firms have steadily increased the stock

of intangible capital over the past sixty years, e.g., Hall (2001) and Falato, Kadyrzhanova,

and Sim (2013). To the extent that the value of a firm measures the value of all productive

capital (e.g., plants, structures, know-how, employee expertise, brands, organization capital,

etc.), intangible capital is a crucial component of the value of the firm.

Here, I propose an investment-based asset pricing model augmented with heterogeneous

capitals and time-varying volatility. In particular, I extend the canonical neoclassical growth

model to include intangible capital and uncertainty fluctuation and use it to conclude

that complementarity in intangible capital accumulation process together with time-varying

volatility can generate a notably positive value spread.

My focus on the form of intangible capital builds on the growing literature on technology

capital. McGrattan and Prescott (2009) have incorporated the notion of technology capital

into the standard neoclassical growth theory. A firm’s technology capital is the stock of the

firm’s unique expertise and know-how accumulated from investing in R&D, brand, organiza-

tion capital, etc. Unlike other forms of capital, technology capital can be replicated without

cost in multiple plants simultaneously. Technology capital incorporates the feature that a

firm’s unique know-how accumulated from past R&D investments can be freely employed in

all of the firm’s plants at the same time1.

In linking the book-to-market ratio and the R&D effect, I adopt standard empirical

1 The total output at the firm level exhibits constant return-to-scale, so that standard analysis can be
easily applied.
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evidence as given. Among others, Lev and Sougiannis (1999) show that “Low BM [book-

to-market] companies have a large R&D capital, while high BM companies have low R&D

investment”. Ai and Kiku (2016) also point out that “high R&D spending and high Tobin’s

Q, low leverage, and low dividend yields ... are characteristic of growth firms”2.

It has been well-recognized that time-varying economic uncertainty affects asset prices.

The view that fluctuating macroeconomic uncertainty has significant impacts on asset returns

stands mostly on the consumption-based asset pricing literature. For example, Boguth and

Kuehn (2013) show that firms with cash flows more sensitive to consumption volatility require

higher premium. Bansal, Kiku, Shaliastovich, and Yaron (2014) argue that an increase in

aggregate volatility affects consumption and thus variation in the pricing kernel. Turning

from consumption to production, aggregate uncertainty is also correlated with corporate

activities in the real economy. Among others, Bloom (2009) shows that an increase in

aggregate volatility is associated with an increase in the dispersion of firm profit growth,

firm stock return, total factor productivity, and GDP forecast.

Optimal investment decision under conditions of fluctuating economic uncertainty, e.g.,

Lucas and Prescott (1971), Bloom, Bond, and Van Reenen (2007), and Bloom (2009), is a key

driver of the correlation reported in the literature. It turns out that accounting for the causal

link to asset returns has nonetheless proven far from simple. On both the empirical side and

the theoretical side, canonical production-based asset pricing models, e.g., Cochrane (1991)

and Zhang (2005), have been difficult to reconcile with the empirical phenomena that eco-

nomic uncertainty fluctuation and joint uncertainty-cashflow relations determine stock return

properties. Caballero (1991) also argues that the presence of asymmetric adjustment costs

is not sufficient to render a negative relationship between investment and mean-preserving

changes in uncertainty. A jointly dynamic uncertainty-investment structure has therefore

become an important objective in the production-based asset pricing literature.

Recent literature on fluctuating economic uncertainty emphasizes that the impact of

2 The Pearson product-moment correlation between book-to-market ratio and R&D intensity using the
Compustat data from 1981 to 2014 is significantly negative at the 1% level.
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temporary volatility shock appears to be salient in the production side of the real economy

(Bloom (2009) and Arellano, Bai, and Kehoe (2012)). This simple fact, together with the

concept of intangible capital complementarity, explains empirical regularities in corporate

investment and financing activities and thus asset returns. The jointly optimal investment

dynamics for physical capital and technology capital under time-varying volatility serve well

to explain the cross-section of stock returns, providing a fresh insight into why physical-

capital-intensive value firms require more risk premium than R&D-intensive growth firms.

The key mechanism is based on the real option theory, e.g., Bernanke (1983) and Bloom

(2009). It is costly to adjust the stock of physical capital at each plant. When the real

economy is bad and economic uncertainty is high, firms sit tight until economic conditions

become clearer to avoid reducing the stock of physical capital. Moreover, idiosyncratic

volatility is higher than aggregate volatility, e.g., Campbell, Lettau, Malkiel, and Xu (2001).

Hence, a significant increase in idiosyncratic volatility at each level of disaggregation (i.e.,

from the macroeconomy to each plant) exacerbates the inaction on physical investment

at each plant. However, it is not the case for intangible capital. The complementarity

between already-acquired intangible capital and new R&D investment implies that firms

have an incentive to sustain their R&D program at a certain level in order to be productive.

Consequently, the real option effect is more significant for physical capital investment, leading

physical-capital-intensive value firms to have cash flows which are more sensitive to the state

of the real economy.

I incorporate this idea into the model by assuming the usual law of motion for physical

capital stock but assuming that the stock of intangible capital evolves non-linearly in a com-

plementary Cobb-Douglas manner. The standard production-based asset pricing framework

deals with the evolution of intangible capital in the same way that physical capital develops

over time. More formally, Gt+1 = (1− δG)Gt +Rt where Gt is the stock of intangible capital

at time t, δG is the rate of depreciation, and Rt is R&D investment for the period. Griliches

(1979), Hall and Hayashi (1989), and Klette (1996) point out that this commonly-recognized
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accumulation process has unrealistic implications in two ways. First off, by assuming the

same law of motion for the two capital stocks, intangible capital is supposed to be symmet-

ric in correspondence with physical capital. The second problem is that the + sign between

already-acquired intangible capital (Gt) and current R&D spending (Rt) necessarily means

that Gt and Rt are substitutes. Taken together, R&D is supposed to be lumpy and intermit-

tent, comparably to physical investment, which is not the case in the data. Unlike the usual

law of motion, I have chosen a non-linear complementary knowledge-production function:

Gt+1 = G1−δG
t RδG

t . The new specification of intangible capital accumulation process allows

firms to persistently spend on R&D because the complementarity between the existing stock

of intangible capital and new R&D induces firms to continue to spend on R&D.

I derive the value premium and find that it is unconditionally positive ex ante in the

model. Once installed, re-adjusting the stock of physical capital at a fire sale price is highly

costly. Therefore, when the real economy is uncertain, firms take more precautions in phys-

ical investment to avoid selling off their tangible assets in the future, generating the real

option effect. On the contrary, investments in R&D projects are immediately expensed, and

current R&D investment complements the existing stock of technology capital. This comple-

mentarity between current R&D and the stock of already-acquired technology capital implies

that the marginal product of R&D is decreasing in the amount of the current R&D project

under standard assumptions. Firms thus have the incentive to stabilize R&D expenditures

over time. As a result, physical investment responds to fluctuating economic uncertainty

more negatively than R&D, implying that physical-capital-intensive firms are more exposed

to volatility risk. Since stocks whose dividends are more sensitive to volatility require higher

expected returns, the value premium is significantly positive.

The value spread is not only reliably positive but also responsive to transient volatility

shocks. Conditional upon a volatility shock in the economy, the expected return of value firms

surges temporarily, implying that the realized value premium plummets (often to negative

in the data). The volatility shock is not long-lasting but short-lived, so the realized value
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premium tends to revert back to the unconditional mean upon resolution of the volatility

shock. This channel lends support to Chen, Petkova, and Zhang (2008) in explaining the

puzzlingly low performance of value strategies in the 1990s.

My model offers a new channel through which to understand the determinants of stock

returns from the production side of the real economy. First, by linking the value premium to

the optimal investment decision with two types of capital under fluctuating uncertainty, this

paper provides a new economic explanation for the differences between glamour firms and

value firms. The new volatility shock channel explored in this paper adds to the literature

of the driving forces of the value premium3. Second, I present a real economic mechanism

of the characteristic-based asset pricing models, e.g., Berk, Green, and Naik (1999) and

Gomes, Kogan, and Zhang (2003). Book-to-market ratio is a proxy for the responsiveness

of corporate activities to volatility shock (or the state of the real economy) and thus has a

predictive power in explaining the cross-section of stock returns. Third, this paper proposes

a unified framework to analyze the determinants of corporate investment and financing deci-

sions (Graham and Harvey (2001)) such as financial flexibility, earnings, cash flow volatility,

and insufficient internal funds. Those determinants are intuitively telling, but it is hard to

quantify them in a rational expectations equilibrium. My model successfully captures the

three characteristics of corporate investment and financing decision.

The rest of the paper is organized as follows. Section 2 discusses the impact of time-

varying volatility on the production side of the real economy to validate the use of an

investment-based asset pricing framework. Section 3 extends the standard neoclassical

growth model to include technology capital and uncertainty fluctuation. Section 4 discusses

how to compute the model. A useful model is supposed to explain the data, therefore Section

4 also summarizes a detailed empirical assessment of the model. In Section 5, I present my

key findings on the value premium through the lens of the proposed investment-based asset

3 Several explanations have been advanced to explain the value premium. For example, rational variation
by Fama and French (1993), Fama and French (1996), and Zhang (2005), investor sentiment by Bondt
and Thaler (1985) and Lakonishok, Shleifer, and Vishny (1994), selection bias from Compustat by Kothari,
Shanken, and Sloan (1995), and data snooping Conrad, Cooper, and Kaul (2003).
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pricing model. Section 6 concludes the paper.

2. The Impact of Time-Varying Volatility

Aggregate volatility fluctuates over time. Figure 1 shows that monthly realized volatility

of the S&P 500 index, a measure of economic uncertainty at the aggregate level, is not only

time-varying but also clearly counter-cyclical. Volatility rises by 60% (7.96%p) on average

in recessions recognized by the National Bureau of Economic Research (the gray bars in

Figure 1).

[Insert Figure 1 Here]

In addition to the cyclical variation in economic uncertainty, market volatility appears

to jump up after major economic events and becomes attenuated in periods following imme-

diately after. For example, the Asian financial crisis in 1997 and the default of Long-Term

Capital Management in 1998 occurred in between the 1991 recession and the 2001 recession.

For the period from 1997 to 1998, market volatility surged three times higher than that of

the tranquil mid-1990s.

To investigate that stock market volatility does jump, I use Barndorff-Nielsen and Shep-

hard (2006)’s bipower variation test and find statistically significant evidence for volatility

jumps4. The bipower variation test rejects the null hypothesis that the realized monthly av-

erage volatility data reported in Figure 1 are driven by a continuous semi-martingale process

(H statistic = -1.4555 with p-value 0.07 and G statistic = -1.5366 with p-value 0.06). I fur-

ther test the null of no-jumps using the VXO index from Chicago Board Options Exchange

(CBOE)5. The test results using the monthly VXO index reveals much stronger evidence for

volatility jumps (H statistic = -6.0143 with p-value < 0.0001 and G statistic -8.7299 with

4 See Appendix A for the bipower variation test for jumps.
5 The VXO index is CBOE’s volatility index. The VXO index has a longer data than the canonical VIX

index. For more details, refer to CBOE’s VXO website (http://www.cboe.com/micro/vxo/).
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p-value < 0.0001)6.

The theoretical literature on the impact of time-varying economic uncertainty focuses

on the real option effect of uncertainty shock, e.g., Bernanke (1983), McDonald and Siegel

(1986), Eberly (1994), and Bloom (2009). For instance, firms have the option to open a

gold mine or undertake a new investment project but don’t need to exercise the option

immediately. Once the option is exercised, opportunity cost to reverse the option exercise is

large. Hence, the more uncertain the real economy is, the greater the incentive to keep the

irreversible option and wait for more information.

On the consumption side, when economic uncertainty increases, people’s confidence in

the future is shaken. For example, households may be thinking of buying a new car, but

they could buy now or wait until next year. A household may be concerned about its income

stability over the next few years due to high economic uncertainty. Rather than buying a new

car immediately, it makes sense to defer spending on a car to avoid re-adjusting quotidian

consumption items in the future7.

An analogous logic applies to firms. Physical investment or hiring decisions can’t be easily

reversed due to adjustment costs, so it is better to pause temporarily when the economy turns

bad. When the economy is highly uncertain, both productive firms and unproductive firms

become less sensitive to the economic conditions. Productive firms are not expanding their

capacity and unproductive firms are not contracting enough to the optimal point. The

caution induced by volatility risk hinders the reallocation of resources across firms. As a

result, high volatility makes firms temporarily intact in corporate activities and hence they

wait to evaluate the situation until the economic smoke abates as in Bloom (2009)8.

To establish the impact of volatility shock on the production side of the real economy,

6 Using the daily VXO data, the null hypothesis of no-jump is rejected at the 0.0001 significance level.
7 Deferring purchases of nondurable goods is not easy, so the real option effect is more prominent on

durable consumption (Bloom (2014)).
8 Real option effects arise when corporate decisions are not easily reversible. Thus, firms may continue

to hire unskilled workers even when volatility is high because it is not costly to lay off part-time employees.
Real option effects also depend on the degree of competition within an industry. For example, if firms are
racing for a patent or a new product, the option value to defer spending will erode (Bloom (2014) and
Patnaik (2015)).
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I follow Bloom (2009) and run a monthly “short-run” orthogonal structural vector auto-

regression (SVAR) in the order of the S&P 500 index, an indicator function for economic

uncertainty shock, federal funds rates (FFR), average hourly earnings, consumer price index

(CPI), weekly hours, employment, and industrial production. The idea of this order is

that volatility risk propagates into the economy through the stock market level first, prices

(FFR, wages, and CPI), and then quantities (weekly hours, employment, and industrial

production)9.

A key issue associated with the SVAR is how to estimate it correctly. My identification

allows for straightforward “structural” interpretation of volatility shocks in the sense that

those volatility shocks spread into the real economy through stock market, price variables,

and quantity variables. Using a non-stationary variable (e.g., the S&P 500 index) could cause

a problem. But, Sims, Stock, and Watson (1990) show that the estimated coefficients of the

SVAR with non-stationary variables remain consistent and the impulse response function is

also consistent in the short run.

The indicator function for high volatility states takes value 1 for each of the 17 shocks

from 1972 to 2015 in Table 1. In principal, the periods of volatility shocks are chosen to

be 1.65 standard deviation above the Hodrick-Prescott detrended mean with λ = 129, 600

(Ravn and Uhlig (2002)) of the monthly realized volatility of the S&P 500 index10. I then

link the economic uncertainty indicator function to economic events such as war, disaster,

or policy change as in Bloom (2009). I extend Bloom (2009)’s definition to include the

Loma Prieta earthquake (October 1989), the liquidity shortfall (August 2007), the global

financial crisis (October 2008), the Euro-zone crisis (May 2010), and the European sovereign

debt crisis (August 2011). Other volatility events overlap with Bloom (2009) and include

OPEC I (December 1973), Franklin National (October 1974), OPEC II (November 1978), the

Iran hostage (March 1980), the US monetary cycle change (October 1982), Black Monday

9 Appendix B details the data used for the SVAR model.
10 If one shock lasts for several consecutive months, I choose the first month. Bloom (2009) finds similar

results using the realized S&P 500 volatility before 1990 and the VIX index since 1990.
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(October 1987), Gulf War I (October 1990), the Asian financial crisis (November 1997),

the Russian moratorium (September 1998), the 9/11 terrorist attack (September 2001), the

WorldCom and Enron accounting scandal (September 2002), and Gulf War II (February

2003).

[Insert Table 1 Here]

To examine the impact of volatility shock on output across different industries, I choose

six major manufacturing industries based on R&D intensity reported in Table 2: 1) Chem-

ical (NAICS=325), 2) Computer (NAICS=334), 3) Medical Equipment (NAICS=3391), 4)

Machinery (NAICS=333), 5) Electrical Equipment (NAICS=335), and 6) Plastics and Rub-

ber Products (NAICS=326)11. I exclude highly concentrated industries measured by the

Herfindahl-Hirschman index because the real option effect of volatility shock depends on the

degree of competition within the chosen industry12. When an industry is highly concen-

trated, firms have more freedom to cope with the state of the real economy, e.g., Patnaik

(2015). Those six industries are chosen to be highly competitive, so that the industry struc-

ture doesn’t play a role in explaining the link between the magnitude of the real option effect

and R&D intensity.

[Insert Table 2 Here]

The percentage impact of volatility shock on industrial production, controlling for the

S&P 500 index, FFR, wage, CPI, weekly hours, and employment, is plotted in Figure 2. I

emphasize that the impact of stock market level on output is already controlled when backing

out the impact of volatility shock on output. The impulse response function in Figure 2

11 North American Industrial Classification System (NAICS) codes do not seamlessly match with Standard
Industrial Classification (SIC) codes. Hence, I tabulate R&D intensity for major manufacturing industries
from 1999 when the U.S. Department of Commerce first reported industrial R&D as a percent of net sales
by NAICS codes.

12 The Herfindahl-Hirschman index is a measure of the degree of competition in the industry. The index is
defined as H =

∑N
i=1 s

2
i in which N is the number of firms in the industry and si is the market share of firm

i in percentage. The index ranges from 0 to 10,000, moving from a competitive market to a monopolistic
market.
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shows that R&D-intensive industries in Panel A such as Chemical, Computer, and Medical

Equipment cope well with a sudden volatility shock. Given a volatility shock, industrial

production in those industries doesn’t decline over the next 36 months. The ±1 standard

error bound, denoted by dotted (+1 standard error) and dashed (−1 standard error) line,

highlights that the results are significant at the 5% level. On the other hand, low R&D (i.e.,

physical-capital-intensive) industries in Panel B such as Machinery, Electrical Equipment,

and Plastics and Rubber Products are highly responsive to volatility shocks. Industrial

production falls sharply by 2-3%p in three months, rebounding back to the original level

in six months, and overshooting over the next two years. In sum, the data suggest that

the output of R&D-intensive industries is less responsive to volatility shocks than that of

physical-capital-intensive industries.

[Insert Figure 2 Here]

Having established that the responsiveness of industrial production to market volatil-

ity shock is dichotomous between R&D-intensive industries and physical-capital-intensive

industries, it is clear that the cross-sectional dispersion of industry output growth rates is

positively associated with market volatility. To examine further the cross-section of cor-

porate performance, I compute quarterly output growth rates for 194 US manufacturing

industries for the period from 1972Q1 to 2015Q4. At each point in time, the cross-sectional

dispersion is defined by the standard deviation of 194 manufacturing industry output growth

rates. Figure 3 shows that, when aggregate volatility is high, the cross-sectional standard

deviation of industry output growth rates widens out due to the difference in sensitivities

to market volatility across industries13. More formally, the Pearson product-moment cor-

13 The observation that the cross-sectional dispersion of corporate performance surges when the real
economy is bad is not limited to the industry data. In fact, the cross-sectional dispersion rises sharply
during periods of high volatility at every disaggregation (e.g., firm, plant, or product) level. At the firm
level, Campbell et al. (2001) show that individual stock returns are 50% more volatile in economic downturns
than in booms. At the plant level, Kehrig et al. (2011) show that the empirical productivity distribution of
US manufacturing plants are more dispersed in recessions than in booms. Even at the individual product
level (e.g., beverage), the variation in item prices is almost 50% higher in recessions (Vavra (2014)). I use
this evidence to incorporate a jointly dynamic investment-uncertainty structure into the standard growth
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relation coefficient between cross-sectional standard deviation of quarterly industry output

growth rate and aggregate volatility is 0.2846 with p-value 0.0001.

[Insert Figure 3 Here]

I proceed to investigate asset pricing implications. The results in Figure 2 and Figure 3

predict that the dividends of growth stocks tend to be less responsive to volatility shocks

than those of value stocks. To check this prediction, I regress ten portfolio returns sorted on

book-to-market ratio on the volatility shock indicator function defined in Table 1:

ri,t = αi + βVi Ivolatility shock + εi,t (1)

ri,t = αi + βMi MKTt + βVi Ivolatility shock + εi,t (2)

where ri,t is the excess return of each of the book-to-market decile portfolios at time t,

Ivolatility shock is the volatility shock indicator function defined in Table 1, and MKTt is the

market excess return. I also run a more general regression on the innovations of the VXO

index:

ri,t = αi + βVi ∆V XOt + εi,t (3)

ri,t = αi + βMi MKTt + βVi ∆V XOt + εi,t (4)

[Insert Table 3 Here]

Table 3 summarizes the results from Eq.(1), Eq.(2), Eq.(3), and Eq.(4). Consistent

with the prediction in Figure 2 and Figure 3, the factor loadings of the value-minus-growth

portfolio are significantly negative in all of the regression specifications. The risk loading of

the value-minus-growth portfolio on volatility shock is -3.50 (t = −3.06) in Panel A. After

controlling for the market excess return, the risk loading is still significantly negative (-3.59

model at the firm level.
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with t = −3.02) in Panel B. Using innovations in the VXO index exhibits the same results.

In Panel C and D, we observe a significantly negative risk loading of the value-minus-growth

portfolio on the changes in the VXO index: -0.16 with t = −2.38 in Panel C and -0.24

with t = −2.59 in Panel D. Taken together, the result implies that when there is a market

volatility shock, value stocks would suffer more than growth stocks.

3. The Model

I take the canonical neoclassical growth model and incorporate technology capital (Mc-

Grattan and Prescott (2009)) and time-varying market volatility into it. As is standard

in the literature, I formulate an economy populated by a continuum of ex ante homoge-

neous consumers with unit mass and heterogeneous value-maximizing firms in a competitive

market. Time is monthly from 0 to ∞ throughout this paper.

As the focus of this paper is on the production side of the real economy, I don’t close

the economy in general equilibrium. I find it computationally more efficient to specify an

exogenous stochastic discount factor14. As long as I discipline the stochastic discount factor

to match the rich aggregate dynamics observed in the data, this approach seems reasonable.

A detailed assessment of the defined stochastic discount factor is discussed in Section 4.

3.1. Firms

3.1.1. Profit

A firm consists of N identical production units. Each production unit produces a ho-

mogeneous final good which is either consumed or used for the production of another final

goods. Technology capital that firm i possesses can be costlessly exploited at all plants simul-

14 Hence, aggregate consumption is exogenous, whereas aggregate dividends are endogenous in the model.
But, both are affected by the same aggregate productivity shock process in the model. To validate the pricing
kernel, I match the risk-free rate and the maximal Sharpe ratio induced by the assumed pricing kernel with
those observed in the data.
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taneously. Following McGrattan and Prescott (2009) and McGrattan and Prescott (2010),

I assume that the firm production function exhibits constant return-to-scale in technology

capital and composite production input. Gi units of technology capital together with Ki

units of physical capital produce:

Fi = Ã(GiN)φ(Kα
i )1−φ (5)

in which φ is the technology capital share, α is the physical capital portion in production

input, and Ã represents a stochastic productivity shock process which will be defined later.

The demand in the economy is iso-elastic with a constant elasticity ε and a stochastic

demand shifter B̃:

Q = B̃P−ε. (6)

This formulation leads to the following revenue function of firm i:

Yi = P × Fi

= Ã1−1/εB̃1/ε(GiN)φ(1−1/ε)K
α(1−φ)(1−1/ε)
i . (7)

Redefining a = φ(1− 1/ε), b = (1− φ)(1− 1/ε), and Ã1−1/εB1/ε = A1−a−b
i , I have

Yi = A1−a−b
i (GiN)a(Kα

i )b.

Here, I combine the productivity shock Ã and the stochastic demand shifter B̃ into one term

Ai. Let fK ≥ 0 be the fixed cost of production (i.e., operating leverage). The net output

produced by firm i is then:

Yi = A1−a−b
i (GiN)a(Ki)

b − fK (8)
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3.1.2. Technology

The economic condition Ai,t that firm i faces at time t is modeled as two different pro-

ductivity shocks: aggregate productivity shock xt and firm-level idiosyncratic productivity

shock zi,t with Ai,t = exp(xt + zi,t).

The aggregate productivity shock process xt is assumed to follow an exogenous stationary

Markov process:

xt+1 = x̄(1− ρx) + ρxxt + σxt ε
x
t+1, εxt+1∼N(0, 1) (9)

which aims to capture the total factor productivity at the macroeconomy (e.g., Cooley and

Prescott (1995)). The firm-level idiosyncratic productivity shock zi,t, which is crucial to

generate a non-trivial cross-section of firms (e.g., Zhang (2005)), follows a first-order auto-

regressive process:

zi,t+1 = ρzzi,t + σzt ε
zi
t+1 (10)

where εzit+1∼N(0, 1) is independent of each other for any i and t.

3.1.3. Economic Uncertainty

For simplicity, the stochastic processes for volatility are defined as a two-state Markov

chain with transition probability πi,j:

σxt ∈ {σxL, σxH} (11)

σzt ∈ {σzL, σzH} (12)

Pr
[
σt+1 = σj|σt = σi

]
= πi,j (13)

Eq.(11) and Eq.(12) are parsimonious but the process has been proven to be powerful

enough to capture the data (Bloom (2009)). Eq.(13) implies that the two stochastic con-
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ditional volatility processes are based on the same Markov process. Hence, high aggregate

volatility states are associated with high idiosyncratic volatility states as in Figure 3. This

formulation enables the technology distribution at the firm level to jointly depend on condi-

tional idiosyncratic volatility and in turn aggregate states of the economy, creating a mixed

non-linear structure for the technology distribution15.

3.1.4. Heterogeneous Capital

In constructing the model where firms optimally choose the stock of technology capital

and physical capital, a key empirical fact that I want to incorporate into the model is that

physical investment is intermittent and lumpy whereas R&D spending is highly persistent.

The first-order auto-correlation coefficient for yearly R&D spending of Compustat manufac-

turing firms in the United States for the period of 1981 to 2014 is 0.7693, while that of yearly

physical investment is 0.4818. The second-order auto-correlation coefficients are 0.4818 for

R&D and 0.3367 for physical investment. Although it may be because the adjustment cost

associated with physical investment is much higher than that of R&D investment, it may

also be due to a difference in the way the two types of capital are accumulated and exploited.

In short, a factory is different from an engineer. Both are capital goods but they serve

different purposes. Firms install fixed assets such as equipment, machinery, or plants to

produce final goods immediately. Those fixed assets are specific for each plant. In contrast,

technology capital (e.g., know-how, blueprints, or brand) is firm-specific in the sense that it

can be used for production at every plant where the firm operates.

Besides, the accumulation process of technology capital through R&D possesses unique

characteristics which make technology capital different from physical capital. First, more

15 Finite-state Markov chains evolve over time in a discrete way, so that Markov regime shifting models
are more suitable for modeling discontinuous changes (i.e., jumps) in volatility. GARCH models are also
simple enough but it is impossible to decouple productivity and volatility using GARCH. To illustrate this,
let us assume that productivity (zt) follows an AR(1) process: zt+1 = ρzzt + σtεt+1. σt is assumed to follow
a GARCH process, say σ2

t+1 = ω + α(σtεt+1)2 + βσ2
t . It is then impossible to disentangle a volatility shock

from a level shock since both the level and the conditional volatility of idiosyncratic productivity are driven
by one shock (εt+1). For more details, refer to Fernández-Villaverde and Rubio-Ramı́rez (2010).
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than half of R&D spending is the wages and salaries paid by firms to highly educated

engineers and scientists whose efforts create firm-specific intangible capital (Hall (2002)).

To the extent that the accumulated technology capital is impossible to fully codify, firms

have an incentive to smooth out their R&D spending in order to avoid frequently hiring

and firing talented engineers and key persons. Second, the gestation period for R&D is

longer than the conventional time-to-build period for ordinary physical investment. R&D is

often carried out for a prolonged period of time to aim to yield long-term profit. Third, the

marginal product of R&D may not be equal to unity. For example, two-year commitment

of five R&D engineers may not have the same productivity as five-year commitment of two

R&D engineers. Fourth, it is hard for outsiders to evaluate a firm’s tacit technology capital

stock. The more tacit an asset is, the lower its redeployability is (Williamson (1988)). That

is, there is no outside competitive market for technology capital. The resale value of firm-

specific technology capital is thus nearly zero.

I formulate this idea by assuming the usual law of motion for the stock of physical capital:

Ki,t+1 = (1− δK)Ki,t + Ii,t (14)

but assuming that technology capital is accumulated non-linearly in a complementary Cobb-

Douglas manner16:

Gi,t+1 =
(
Gi,t

)1−δG(Ri,t

)δG , δG ∈ (0, 1) (15)

Ri,t ≥ 0 (16)

where Ki,t is the stock of physical capital at time t, δK is the rate of physical capital de-

preciation, Ii,t denotes physical investment, Gi,t is the stock of technology capital at time t,

16 Hall and Hayashi (1989), Klette (1996), and Hall (2002) discuss how the stock of knowledge capital
evolves over time. Doraszelski and Jaumandreu (2013) investigate the impact of R&D on productivity and
provide empirical support for non-linearity in the knowledge capital accumulation process.
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δG is the portion of R&D in knowledge production17, and Ri,t indicates R&D expenditure.

Also, R&D spending is assumed to have no resale value and accordingly can’t be reversed

as in Eq.(16)18.

Both Eq.(14) and Eq.(15) are linearly homogeneous, but the marginal product of physical

investment is in sharp contrast to that of R&D. The marginal product of physical investment

is unity in Eq.(14), whereas the marginal return to R&D expenditure is decreasing in Ri,t in

Eq.(15) if δG ∈ (0, 1):

∂Ki,t+1

∂Ii,t
= 1 (17)

∂2Ki,t+1

∂I2
i,t

= 0 (18)

∂Gi,t+1

∂Ri,t

= δG
(
Gi,t

)1−δG(Ri,t

)δG−1
(19)

∂2Gi,t+1

∂R2
i,t

=
(
δG − 1

)
δG
(
Gi,t

)1−δG(Ri,t

)δG−2
< 0. (20)

Consequently, Eq.(14) and Eq.(15) can successfully capture the observed empirical pattern

that physical investment is lumpy and intermittent while R&D is spread out over time.

Physical investment involves large and lump-sum expenditures which can’t be easily reversed.

The unit marginal product of physical investment implies that firms time their business

conditions for physical investment to avoid costly reversing the physical capital stock back

to the previous level. On the contrary, lumpy R&D investment decreases the marginal

product of R&D due to Eq.(19), generating incentive to smooth out R&D spending over

time.

17 This can be interpreted as the rate of technology capital depreciation. Since δG is defined in a non-
arithmetic way, δG is not directly comparable with δK .

18 In computation, I use a normalizing constant ρ0 to keep the stock of technology capital from vanishing
if the firm doesn’t spend on R&D in a period: Gi,t+1 = G1−δG

i,t (ρ0 +Ri,t)
δG . The results are not affected by

the choice of ρ0.
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3.1.5. Adjustment Cost

Adjusting the stock of capital goods is subject to non-convex (or fixed) disruption cost

(Cooper and Haltiwanger (2006)) and convex adjustment cost (Hall (2001) and Zhang

(2005)). Following the literature, I specify a piece-wise quadratic adjustment cost function

for physical investment:

CK
i,t(Ii,t, Ki,t) =



b+
KKi,t +

c+
K

2

( Ii,t
Ki,t

)2

Ki,t if Ii,t > 0,

0 if Ii,t = 0,

b−KKi,t +
c−K
2

( Ii,t
Ki,t

)2

Ki,t if Ii,t < 0.

(21)

in which b−K > b+
K > 0 and c−K > c+

K > 0 capture the fact that it is more costly to adjust tan-

gible capital downward. Changing the stock of technology capital through R&D investment

also entails adjustment costs:

CG
i,t(Ri,t, Gi,t) =


0 if Ri,t = 0,

bGG
i
t +

cG
2

(Ri,t

Gi,t

)2

Gi,t if Ri,t > 0.

(22)

Here, I follow Hayashi (1982) and introduce a separate adjustment cost function. The

incurred adjustment costs are directly cashed out from internal funds. The evolution of

physical and technology capital (i.e., Eq. (14) and Eq. (15)) is therefore left intact19.

The adjustment cost associated with changing the stock of technology capital through

R&D, together with the complementarity in the technology capital accumulation process

defined in Eq.(15), may explain why differences in R&D intensity among firms persist over

time. That is, even within the same industry, some firms do R&D to accumulate technology

capital, while other firms don’t spend on R&D at all. Because it is costly to initiate an R&D

project, marginal firms don’t spend on R&D. Once a firm kicks off an R&D project to boost

19 Another way to introduce adjustment cost can be found in Uzawa (1969) where adjustment costs are
directly incorporated into the law of motion for capital.
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its production technology, the technology capital stock that the firm has acquired already

through past R&D investments makes future R&D investments more productive due to the

complementarity in Eq.(15), leading the firm to continue to spend on R&D.

3.1.6. Financing

Firms can issue equity at any point in time. I denote the net payout to equity holders by

Ei,t. Equity flotation is costly (e.g., Hennessy and Whited (2007)) and can be described by

Γ(Ei,t) =
(
γ0 + γ1|Ei,t|

)
I{Ei,t<0}. (23)

Denoting distributions to equity holders by Di,t = Ei,t−Γ(Ei,t), corporate financing and

investment decisions must satisfy the following resource constraint:

Di,t = Yi,t − Ii,t − CK
i,t −Ri,t − CG

i,t (24)

3.1.7. Equity Value Maximization

Equity holders optimally choose physical investment Ii,t and R&D investment Ri,t to

maximize the following Bellman equation:

Vi,t(Ki,t, Gi,t, σt, xt, zi,t) = max
[
0, max

Ii,t,Ri,t

[Di,t + Et(Mt,t+1Vi,t+1)]
]

(25)

subject to Eq.(14), Eq.(15), Eq.(16), and Eq.(24).

3.2. Households

Following Berk et al. (1999), Zhang (2005), and Kuehn and Schmid (2014), I don’t

close the model in general equilibrium. Rather, I take advantage of a parametric stochastic

discount factor because the focus of this paper is on the production of the economy. As far

as the assumed stochastic discount factor matches the aggregate dynamics observed in the
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data, this approach seems plausible. A detailed assessment of the assumed pricing kernel is

discussed in Section 4.

In particular, the stochastic discount factor is given by:

log(Mt,t+1) = log β + νt(xt − xt+1) (26)

νt = ν0 + ν1(xt − x̄), ν1 < 0 (27)

in which β is the representative consumer’s subjective discount factor, xt is the aggregate

productivity shock process defined in Eq.(9), and both ν0 and ν1 are constant.

The rationale behind Eq.(26) is the following. The pricing kernel implied by a power-

utility representative agent is given by:

log(Mt,t+1) = log β +RRA(ct − ct+1) (28)

where ct denotes the logarithm of aggregate consumption and RRA is the coefficient of

relative risk aversion. As in Zhang (2005), I tie ct with the aggregate state variable xt by

assuming ct = ac + bcxt for some constant ac and bc and defining νt = RRA× bc. The result

follows. The process νt = ν0+ν1(xt−x̄) with ν1 < 0 is clearly decreasing in (xt−x̄), therefore,

unlike the constant price of risk of power utility, the process νt with ν1 < 0 captures the fact

that the price of risk is counter-cyclical.

3.3. Rational Expectations Equilibrium

In a rational expectation equilibrium, the evolution Tµ of the cross-section of firms over

time, together with the mapping Tp from the aggregate state to the inter-temporal marginal

rate of substitution of the representative household-owner p, characterize the economy from
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an individual firm’s perspective. Letters with a prime denote next period’s values.

µ′ = Tµ(µ, σ, x) (29)

p′ = Tp(µ, σ, x) (30)

That is, given optimal policies, the cross-sectional distribution µ of firms at time t satisfies:

µ(σ′, x′, z′) = P
[
σt+1 = σ′, xt+1 ≤ x′, zt+1 ≤ z′

]
(31)

4. Computing the Model

A unique solution for continuous, concave, and bounded value function is guaranteed

thanks to Stokey and Lucas (1989). This means that numerical results will converge to

the unique solution due to the fixed point theorem. Hence, I adopt numerical dynamic

programming to approximate the competitive equilibrium.

I use iterative procedure to maximize the value function. I begin with an initial guess

for the value function and solve for the firm’s optimization problem in Eq.(25) on discrete

state space20. I iterate the procedure until the value function converges.

4.1. Approximating AR(1) Processes

I follow Rouwenhorst (1995) to approximate the aggregate productivity process (xt) de-

fined in Eq.(9)21. As the same procedure can be applied to the idiosyncratic productivity

shock process, I focus on how to discretize the aggregate productivity process below.

I assume that xt can take nx values, say {x1, . . . , xnx} over the interval [−ε̄, ε̄] with

20 I first confine the state space to a closed and bounded (hence, compact) set (e.g., [0, K̄]) to have a
unique solution in the dynamic programming. The state space is discretized using the McGrattan et al.
(1998) method.

21 Tauchen (1986), Tauchen and Hussey (1991), and Adda and Cooper (2003) are also available. Kopecky
and Suen (2010) show that the Rouwenhorst (1995) method is more robust than other approximation methods
when the Markov process is highly persistent.
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x1 = −ε̄ and xnx = ε̄. The variance of x is then given by

V ar[x] =
ε̄2

nx − 1
(32)

For any nx ≥ 2, two parameters p, q ∈ (0, 1) govern the transition matrix of the nx-state

Markov chain. Moreover, it can be shown that the first-order auto-correlation is equal to

p+ q − 1. Hence, the auto-correlation of Eq.(9) and its variance can be matched by setting

ε̄2

nx − 1
=

σ2
x

1− ρ2
x

(33)

p = q =
1 + ρx

2
(34)

For nx = 2, the two-state Markov chain transition matrix is defined as:

Θ2 =

 p 1− p

1− q q


Working forward recursively, the nx-state Markov chain transition matrix for any nx ≥ 3 is

defined as:

Θnx = p

Θnx−1 0

0′ 0

+ (1− p)

0 Θnx−1

0 0′

+ (1− q)

 0′ 0

Θnx−1 0

+ q

0 0′

0 Θnx−1


in which 0 is a (nx − 1) × 1 column vector of zeros. Because the conditional probability is

supposed to sum to one, the middle rows besides the top and bottom one are divided by

two.
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4.2. Calibration

The model requires me to calibrate 27 parameters: nine for business conditions, seven

for production function, three for pricing kernel, six for investment adjustment costs, and

two for external equity financing cost. I list all the parameters in Table 4.

[Insert Table 4 Here]

I begin with technology parameters on which we have strong prior beliefs. The aggregate

state variable xt follows a stationary auto-regressive process. The autoregressive coefficient of

the process is assumed to be 0.9933, and the conditional volatility is set to be 0.0040 for low

volatility state and 0.0080 for high volatility state, respectively. ρx = 0.9933 and σxL = 0.0040

at the monthly frequency are consistent with 0.98 = (0.9933)3 and 0.0070 = 0.0040 ×√
1 + (0.9933)2 + (0.9933)4 at the quarterly frequency in the real business cycle literature

(e.g., Cooley and Prescott (1995)). Following Bloom (2009), I assume that conditional

volatility becomes twice during periods of high volatility states, i.e., σxH = 2×σxL. The long-

run mean of the aggregate productivity process, x̄ = −4.4, is calibrated to match steady-state

capital stock.

The parameters ρz = 0.9800 and σzL = 0.20 denote the degree of persistence and cross-

sectional dispersion in the idiosyncratic productivity process. I thus restrict these two param-

eters to be able to unconditionally match the cross-sectional dispersion reported in Gomes

(2001), Campbell et al. (2001), and Pástor and Pietro (2003). Also, consistent with the

real business cycle literature (e.g., Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry

(2012)), I assume that micro uncertainty fluctuates more than aggregate uncertainty.

The calibrated idiosyncratic productivity shock is about fifty times as volatile as the

aggregated productivity shock. Such a high idiosyncratic volatility is necessary to generate

a non-trivial cross-section of firms. Nonetheless, I stress that the value of firm is not very

responsive to the idiosyncratic productivity shock process zt because zt affects only cash

flow. On the contrary, the aggregate productivity shock process xt affects both cash flow
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and discount rate simultaneously. When the economy is in recessions, a firm’s cash flow is

low, and the representative consumer’s marginal utility will be high. This two effects lead

firm value to be more sensitive to the aggregate productivity shock.

Volatility shock occurs once every three years (πL,H = 1/36) in the model, and its half

life is assumed to be two months (πH,H =
√

2). I borrow this numbers directly from Bloom

(2009) who figures out 17 uncertainty shocks in 46 years. The assumed transition probability

from low volatility state to high volatility state, πL,H = 1/36, is also close to 0.0278 reported

in Bloom et al. (2012).

The second set of parameters is related to the production side of the real economy. Hence,

I base my calibration on the macro-finance literature. The share of physical capital (α) in the

production input is 0.70. I set the technology capital share in output (φ) to be 0.07 following

McGrattan and Prescott (2009) and McGrattan and Prescott (2010). The constant demand

elasticity is assumed to be 4 as in Bloom (2009). This means that markup is 1/322.

The monthly rate of physical capital depreciation (δK) is set to be 0.01 following Cooper

and Haltiwanger (2006) and Zhang (2005), implying 12% per year as is usual in the literature.

The share of current R&D expenditure in generating technology capital is set at 0.05 at the

monthly frequency, largely consistent with Hall, Jaffe, and Trajtenberg (2000) and Falato

et al. (2013). The fixed cost of production f = 0.4580 is chosen to match the average book-

to-market of the model with that observed the data (e.g., Gomes (2001)). The number of

plants per firm (N) is assumed to be 10. I also try N = 5 and N = 20. The results are not

sensitive to the number of plants.

Given the parametric form of the stochastic discount factor, the gross risk-free rate can

22 dPQ

dQ
=
(

1− 1

ε

)
Q−1/εB̃1/ε. Hence, P =

ε

1− ε
dPQ

dQ
.
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be written in a closed-form as well:

Rf
t,t+1 =

1

Et[Mt,t+1]

=
1

β
exp

[
−[ν0 + ν1(xt − x̄)](1− ρx)(xt − x̄)− 0.5

[
σx
(
ν0 + ν1(xt − x̄)

)]2]
(35)

Any excess return Re
t+1 is supposed to obey:

Et[Mt,t+1R
e
t+1] = Et[Mt,t+1]Et[Re

t+1] + ρM,Rσt[Mt,t+1]σt[R
e
t+1] = 0 (36)

where |ρM,R| ≤ 1 is the correlation coefficient. The maximal Sharpe ratio of the pricing

kernel, i.e., the Hansen and Jagannathan (1991) bound is thus:

σt[Mt,t+1]

Et[Mt,t+1]
=

√
eσ

2
x

(
ν0+ν1(xt−x̄)

)2
− 1 (37)

≥
|Et[Re

t+1]|
σt[Re

t+1]
(38)

The pricing kernel is supposed to be volatile enough to match the observed Sharpe ratio.

I therefore discipline the stochastic discount factor to match the Sharpe ratio and the first

and second moments of risk free rate observed in the data. This can be accomplished by

setting β = 0.9933, ν0 = 26, and ν1 = −250. Table 5 compares model-generated key

aggregate moments with those observed the data. The data source is Campbell and Cochrane

(1999). The first and second moment of real interest rate generated under the benchmark

calibration are 0.0237 and 0.0356, respectively. Campbell and Cochrane (1999) also report

similar numbers using the postwar US data.

[Insert Table 5 Here]

Table 5 also reports Sharpe ratios computed on the aggregate productivity shock space.

The average Sharpe ratio is 0.4116 throughout the business cycle in the benchmark model.

The variation in Sharpe ratios is substantial. Sharpe ratios range between 0.0292 and 0.8014
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on the grid of the aggregate productivity shock. The model-generated average Sharpe ratio

is 0.6334 in recessions and 0.2271 in booms. The numbers are largely consistent with Lustig

and Verdelhan (2012) who report that the Sharpe ratio ranges from 0.14 to 0.85 and the

average Sharpe ratio is 0.66 in bad times and 0.35 in expansions. Having pinned down a set

of key aggregate moments using the benchmark calibration, I emphasize that the stochastic

discount factor has no more room to match the cross-section of stock returns, which is the

focus of this paper.

To calibrate the parameters of adjustment costs, I follow Cooper and Haltiwanger (2006),

Zhang (2005), Bloom (2009), and Belo, Lin, and Bazdresch (2014). There is no consistent

calibration in the literature, but the key idea is that it is more costly to adjust the stock of

capital downward. This goal can be accomplished by assuming b+
K << b−K and c+

K << c−K .

Hence, I set b+
K , b−K , c+

K , and c−K to be 0.02, 0.03, 3, and 30, respectively. The adjustment

cost of technology capital is not well-studied in the literature. I set bG = 0.03 and cG = 3

because it is presumably the case that R&D projects are more costly to initiate but less

costly to continue, compared to physical investment.

I am left with those parameters related to external equity issuance cost. Firms can raise

fund by issuing new equity whenever the cash flow is short of required physical and R&D

investment in return for equity flotation costs. Following Hennessy and Whited (2007) and

Kuehn and Schmid (2014), I assume that equity issuance incurs both fixed cost (γ0 = 0.0032)

and variable cost (γ1 = 0.01).

5. Quantitative Implications

5.1. The Value Premium

I now investigate the cross-section of stock returns. To compare the benchmark model

with the data, I first summarize the characteristics of book-to-market decile portfolios ob-

served in the data from 1962 to 2015. Panel A of Table 6 shows that the value premium is
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unconditionally positive (0.47% per month) in the data. Also, the alpha from the Capital As-

set Pricing Model (CAPM) for the high-minus-low book-to-market portfolio is significantly

positive (0.47% with t = 2.60).

[Insert Table 6 Here]

To see how the benchmark model matches the data, I simulate 100 artificial samples,

each with 1000 firms, from the benchmark model and compute means, standard deviations,

alphas, and betas from the CAPM. For each simulation, I generate a path for conditional

volatility, aggregate productivity shock, and idiosyncratic productivity shocks for 200 years

at the monthly frequency and remove the first 100 years to minimize the impact of initial

conditions. When constructing the samples, I match each sample with Fama and French

(1992) and Fama and French (1993)’s timing convention and run the CAPM regression.

Panel B of Table 6 shows that the benchmark model successfully generates a notably positive

value spread. The model-generated value spread closely matches that of the data. The value

premium in the benchmark model is 0.45% per month unconditionally, close to the observed

value premium of 0.47% per month in the data.

Even though the benchmark model does a reasonable job in explaining the value spread,

the model fails to capture the failure of the CAPM. The estimated CAPM alpha of the

high-minus-low book-to-market portfolio is not significantly different from zero in Panel

B. It is because the economy is modeled in a dynamic factor framework where exogenous

state variables perfectly capture the model economy and the cross-section of firms generated

by idiosyncratic shocks will be eventually integrated out. Given that I parameterize the

benchmark model in a dynamic factor structure, this failure suggests that the pricing kernel

should be more complex in the model. In fact, this problem is prevalent in most investment-

based asset pricing models. For example, Panel C, borrowed from Lin and Zhang (2013),

shows that the CAPM perfectly holds in Zhang (2005) because he models his economy in a

dynamic one-factor framework.
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5.2. The Impact of Volatility Shock on Stock Returns

I define an indicator function for model-implied volatility shock to compare the empirical

evidence reported in Table 3 with the model-generated data. The stochastic processes for

volatility are assumed to be a two-state Markov in Eq.(11) and Eq.(12). Hence, the model-

implied indicator function for volatility shock equals one when the two-state Markov chain

is in the high volatility state. I then run the same regression as in Eq.(1) and Eq.(2) using

simulated data to check the validity of the model.

[Insert Table 7 Here]

Table 7 summarizes the results from Eq.(1) and Eq.(2) using the model-generated data.

Consistent with the results from the real data in Table 3, the factor loading of the value-

minus-growth portfolio on volatility shock is significantly negative: -3.59 with t = −3.02 in

Panel A and -3.82 with t = −6.95 in Panel B in Table 7. Those numbers closely match the

results from the real data: -3.50 with t = −3.06 in Panel A and -3.59 with t = −3.02 in Panel

B of Table 3. This implies that growth stocks do better than value stocks during periods of

high volatility because the output of R&D-intensive growth firms are less responsive to that

of physical-capital-intensive value firms. Taken together, the benchmark model works well

to establish a causal link between volatility shock and the cross-section of stock returns.

5.3. Sensitivity Analysis

To examine further the robustness of the results, I conduct comparative sensitivity analy-

sis by varying 1) volatility shock, 2) adjustment cost, 3) price of risk, and 4) equity financing

cost. This experiments help demonstrate which channels contribute more significantly to the

value premium. Table 8 reports the results from comparative analysis.

[Insert Table 8 Here]

First off, I shut the volatility shock channel down. If the conditional volatility for both
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productivity shock processes is constant, the value premium significantly shrinks down to

0.09% per month (equivalent to 1.12% per annum) in Table 8. Secondly, I set the adjustment

cost function to be symmetric. The value spread is still notably positive and comparable

to that from the data and the benchmark model. Thirdly, the counter-cyclical price of risk

doesn’t significantly contribute to the value spread. Unlike the Zhang (2005) model where

the counter-cyclical price of risk and highly asymmetric adjustment cost are key drivers of

the value spread, the proposed investment-based model in this paper generates a significantly

positive value spread (0.40% per month) even with symmetric adjustment cost and constant

price of risk. Lastly, the existence of equity financing cost also marginally affects the value

premium. Given the external financing cost structure where the fixed cost (γ0 = 0.0032) is

smaller than the variable cost (γ1 = 0.01), value firms that issue equity in lump-sum bear

more equity flotation cost. Taken together, the value spread is reliably positive and doesn’t

vary much in all of the specifications in Table 8 except for the case of constant conditional

volatility, emphasizing the importance of the real option channel of time-varying volatility

shock.

5.4. Demystifying the Book-to-Market Ratio

Although firm characteristics are not directly linked to the aggregate productivity shock

process in Eq.(9), book-to-market ratio has a predictive power in explaining the cross-section

of equity returns. To see this, let’s consider the first-order condition of the value function

posited by Eq.(25) with respect to It:

− 1− ∂CK
t

∂It
+ Et

[
Mt,t+1

∂Vt+1

∂It

]
= 0 (39)

The law of motion for Kt implies that ∂Kt+1

∂It
= 1. Hence, we can replace ∂Vt+1

∂It
with ∂Vt+1

∂Kt+1
in

Eq.(39). Also, the gross investment return RI
t,t+1 from It is supposed to satisfy the following
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Euler equation:

Et[Mt,t+1R
I
t,t+1] = 1 (40)

Combining Eq.(39) and Eq.(40) yields:

RI
t,t+1 =

∂Vt+1

∂Kt+1

1 +
∂CK

t

∂It

(41)

where ∂Vt+1

∂Kt+1
is the marginal benefit of physical capital and 1 +

∂CK
t

∂It
is the marginal cost

of investment. The marginal cost of investment is nothing but the marginal q. Putting it

differently,

1 +
∂CK

t

∂It
= q = E[Mt,t+1

∂Vt+1

∂Kt+1
] (42)

The construction of the marginal benefit of investment on the right hand side of Eq.(42) has

been the focus of the literature so far. However, whatever structure we explore, the left-hand

side of Eq.(42) links the market-to-ratio to the assumed factor model23. In other words,

E
[
Mt,t+1

Kt

Vt

∂Vt+1

∂Kt+1

]
= 1 = Et[Mt,t+1R

I
t,t+1]

Taken together, book-to-market ratio captures the optimal investment decision under fluc-

tuating economic uncertainty. This result is in line with Berk et al. (1999) and Gomes et al.

(2003) who link the book-to-market ratio directly to the stock return.

6. Conclusions

I have developed a parsimonious investment-based asset pricing model in a dynamic

factor structure. By linking the cross-sectional dispersion of firms to the state of the real

economy, I create a non-orthogonal space-time continuum of firms. Technology capital accu-

23 Marginal q is equal to average q when production function is constant return-to-scale and adjustment
cost function is linearly homogeneous. The proof is in Appendix C. See Hayashi (1982) for more details.
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mulated from persistent R&D investment is central to explaining the dichotomous impact of

fluctuating economic uncertainty on production between R&D-intensive firms and physical-

capital-intensive firms. The key mechanism is that complementarity between past R&D and

current R&D incentivizes firms to continue to spend on R&D, leading R&D-intensive firms

to be less sensitive to the state of the real economy.

The benchmark model puts forth the canonical neoclassical production models in that my

model works well to explain the optimal investment decision under time-varying economic

uncertainty. The value spread arises naturally due to the difference in sensitivities to the

state of the economy. Value firms are more exposed to volatility risk and thus require higher

premium. Unlike other production models, the benchmark model generates significantly

positive abnormal return on portfolios sorted on book-to-market ratio. Moreover, the factor

loading of volatility shock on the return differential between high and low book-to-market

portfolio is reliably negative, implying that value firms are more negatively affected by sudden

volatility shocks than growth firms. Finally, I also show how characteristic-based asset pricing

models suggested by Berk et al. (1999) and Gomes et al. (2003) can be interpreted in an

investment-based asset pricing framework.

Future research is certainly necessary. The mechanism explored in this paper is asset

complementarity and uncertainty fluctuation. A natural extension of the model is to include

a separate stochastic uncertainty process and link the process to the productivity processes

conditionally. A study at a more disaggregated level (e.g., plant) is also called for.
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Appendix A. Bipower Variation Test for Jump

Let λt denote the log price of an asset. For continuous time t ≥ 0 and for any partition

0 = tt < ... < tn = t with supj[tj+1 − tj]→ 0 as n→ 0, the quadratic variation process of a

semi-martingale λt is:

[λt] = p-lim
n→∞

n−1∑
j=0

(λtj+1
− λtj)2 (43)

For some interval δ of time t, we define the δ−returns on a discretized λt on intervals

with length δ as:

yj = λjδ − λ(j−1)δ, j = 1, ..., bt/δc (44)

in which b·c is the integer part operator. The realized quadratic variation of the discretized

log price process can be defined as:

[λδ]t =

bt/δc∑
j=1

y2
j (45)

The 1,1-order bipower variation, if it exists, is:

{λt} = p-lim
δ↓0

bt/δc∑
j=2

|yj−1||yj| (46)

Similar to the realized quadratic variation process of the discretized log price process, the

realized bipower variation process can be defined as:

{λδ}[1,1]
t =

bt/δc∑
j=2

|yj−1||yj| (47)

Also, the realized quadpower variation process is:

{λδ}[1,1,1,1]
t = δ−1

bt/δc∑
j=4

|yj−3||yj−2||yj−1||yj| (48)
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If there is no jump, the realized quadratic variation is supposed to converge to the realized

bipower variation because a continuous semi-martingale process drives the two variations.

If the underlying process does jump, the realized quadratic variation would be greater than

the realize bipower variation because the magnitude of jumps is squared in the realized

quadratic variation process. Based on this intuition, Barndorff-Nielsen and Shephard (2006)

propose two feasible test statistics for jump. The linear jump test statistic has the asymptotic

distribution:

Ĝ =
δ−1/2

(
µ−2{λδ}[1,1]

t − [λδ]t
)√

θµ−4{λδ}[1,1,1,1]
t

→ N(0, 1) (49)

The ratio jump test rejects the null of no jumps if the following statistic is significantly

negative:

Ĥ =
δ−1/2√

θ{λδ}[1,1,1,1]
t /

(
{λδ}[1,1]

t

)2

[µ−2{λδ}[1,1]
t

[λδ]t
− 1
]
→ N(0, 1) (50)

in which µ = E|u| with u N(0, 1) and θ = π2

4
+ π − 5 ≈ 0.6090.
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Appendix B. Data for Vector Auto-Regression

I detail the data used for the structural vector auto-regression (SVAR) in Section 2.

The SVAR model is in the order of the S&P 500 index from the Center for Research in

Security Prices, an indicator function for volatility shocks defined in Table 1, effective federal

funds rates (series ID: FEDFUNDS from the Federal Reserve Research Database), average

hourly earnings (Series ID: CES3000000008 from the Bureau of Labor Statistics), consumer

price index (Series ID: CUSR0000SA0 from the Bureau of Labor Statistics), weekly hours

(Series ID: CES3000000007 from the Bureau of Labor Statistics), employment (Series ID:

CES3000000001 from the Bureau of Labor Statistics), and industrial production (Series

ID: IP.G325.S for Chemical, IP.G334.S for Computer, IP.N3391.S for Medical Equipment,

IP.G333.S for Machinery, IP.G335.S for Electrical Equipment, and IP.G326.S for Plastics

and Rubber Products from the Bureau of Labor Statistics). The data are monthly from

1972 to 2015. All variables are Hodrick-Prescott detrended with λ = 129, 600 to remove a

slow-moving cyclical component (Ravn and Uhlig (2002)).

34



Appendix C. Marginal q and Average q

I summarize Hayashi (1982). I intend to be brief as the proof is standard in the literature.

Following Hayashi (1982), I use Newton’s dot notation (e.g., K̇t) for differentiation below.

A price-taking firm maximizes the present value of the expected future stream of cash

flows

max
It,Lt

Vt =

∫ ∞
t

e−r(s−t)
[
Ys − wsLs − Is − A(Is, Ks)

]
ds (51)

subject to It− δKt = K̇t where Yt is output, At is the capital adjustment cost, Kt is physical

capital stock, Lt are hours worked, wt is the wage, δ is the depreciation ratio.

The current value Hamiltonian is

H = Yt − wtLt − It − A(It, Kt) + qt(It − δKt) (52)

where qt is the shadow price of the capital accumulation, (i.e., marginal q). Let me suppress

time subscript t. The first-order conditions are

∂H

∂L
= YL − w = 0 (53)

∂H

∂I
= −1− AI + q = 0 (54)

q̇ = rq − (YK − AK − δq) (55)

And, the transversality condition is given by:

lim
t→∞

e−rtqtKt = 0. (56)

We assume that Y (Kt, Lt) is constant return-to-scale (CRS) and A(It, Kt) is linearly

homogeneous. From the first-order conditions, we have:

q̇K = (r + δ)qK − YKK + AKK
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The differential equation for qK is

˙(qK) = qK̇ + q̇K

= q(I − δK) + (r + δ)qK − YKK + AKK

= (AI + 1)I + rqK − (Y − YLL) + AKK

= rqK − (Y − wL− I − A)

The third and last equality use the CRS assumption and the linearly-homogeneous adjust-

ment cost assumption, respectively. w is the labor-market-clearing wage. This leads to the

following equation:

−e−rt(Yt − wtLt − It − A(It, Kt)) = e−rt
(d(qtKt)

dt
− rqtKt

)
=

d(e−rtqtKt)

dt

Integrating both sides yields

−Vt = −
∫ ∞
t

e−r(s−t)(Ys − wsLs − Is − As)ds

=

∫ ∞
t

d[e−r(s−t)qsKs]

= −qtKt

Finally, marginal q is equal to average q (i.e., market-to-book ratio):

qt =
Vt
Kt
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Fig. 1. Monthly S&P 500 Volatility. This figure plots the monthly realized volatility of
the S&P 500 index from July 1962 to December 2015. Gray bars represent recessions as
recognized by the National Bureau of Economic Research.
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Panel A: High R&D Industries

Chemical Computer Medical Equip.

Panel B: Low R&D Industries

Machinery Electrical Equip. Plastics

Fig. 2. Impulse Response Function. This figure plots the impulse response function from the
structural vector auto-regression (SVAR) for six major manufacturing industries: 1) Chem-
ical (NAICS=325), 2) Computer (NAICS=334), 3) Medical Equipment (NAICS=3391), 4)
Machinery (NAICS=333), 5) Electrical Equipment (NAICS=335), and 6) Plastics and Rub-
ber Products (NAICS=326). The SVAR is in the order of the S&P 500 index from the
Center for Research in Security Prices, an indicator function for volatility shocks defined
in Table 1, effective federal funds rates (series ID: FEDFUNDS from the Federal Reserve
Research Database), average hourly earnings (Series ID: CES3000000008 from the Bureau of
Labor Statistics), consumer price index (Series ID: CUSR0000SA0 from the Bureau of Labor
Statistics), weekly hours (Series ID: CES3000000007 from the Bureau of Labor Statistics),
employment (Series ID: CES3000000001 from the Bureau of Labor Statistics), and indus-
trial production (Series ID: IP.G325.S for Chemical, IP.G334.S for Computer, IP.N3391.S
for Medical Equipment, IP.G333.S for Machinery, IP.G335.S for Electrical Equipment, and
IP.G326.S for Plastics and Rubber Products from the Bureau of Labor Statistics). The
data are monthly from 1972 to 2015. All variables are Hodrick-Prescott detrended with
λ = 129, 600 to remove a slow-moving cyclical component (Ravn and Uhlig (2002)). Dotted
and dashed lines represent the ±1 standard error bound, respectively.
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Fig. 3. The Cross-Sectional Standard Deviation of Industry Output Growth Rates. The
solid line denotes the cross-sectional standard deviation of quarterly industry growth rates.
For each quarter from 1972Q1 to 2015Q4, I compute the standard deviation of 194 US
manufacturing industries. The dotted line represents the S&P 500 index volatility for the
corresponding period.
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Event Time Type
Cuban Missile Crisis October 1962 Political
Assassination of JFK November 1963 Terror
Vietnam War August 1966 War
Cambodian Campaign May 1970 War
OPEC I December 1973 Economic
Franklin National October 1974 Economic
OPEC II November 1978 Economic
Iran Hostage March 1980 War
US Monetary Cycle Change October 1982 Economic
Black Monday October 1987 Economic
Loma Prieta Earthquake October 1989 Natural Disaster
Gulf War I August 1990 War
Asian Financial Crisis November 1997 Economic
Russia Moratorium and LTCM September 1998 Economic
911 Terrorist Attack September 2001 Terror
WorldCom and Enron July 2002 Economic
Gulf War II March 2003 War
Liquidity Shortfall August 2007 Economic
Global Financial Crisis October 2008 Economic
Euro-zone Crisis May 2010 Economic
European Sovereign Debt August 2011 Economic

Table 1: Major Volatility Shocks Since 1962. This table shows major volatility shocks since
1962. I detrend the monthly S&P 500 volatility data in Figure 1 using the Hodrick-Prescott
filter with λ = 129, 600 to remove a slow-moving cyclical component. Those shocks are
chosen to be 1.65 standard deviation above the Hodrick-Prescott detrended mean. If one
shock lasts for several consecutive months, I choose the first month.
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R&D Intensity (%)
Industry NAICS HHI 1999 2000 2001 2002 2003 2004 2005 2006 2007

Manufacturing 31-33 3.8 3.6 4.1 3.7 3.5 3.8 4.0 3.6 4.1
Food 311 94 0.4 D 0.5 D D 0.6 0.7 0.7 D
Beverage 312 797 D 0.7 0.4 0.5 0.5 1.3 1.4 1.3 0.4
Textile 313-6 N/A 0.7 D D D D 1.2 1.6 1.4 1.7
Wood 321 32 0.5 0.8 1.1 D D D D 0.7 D
Paper 322-3 N/A D D D D D D D 1.2 D
Petroleum 324 693 0.4 D D D D 0.4 D 0.3 D
Chemicals 325 139 5.2 5.9 4.9 6.0 5.7 D 6.9 7.5 D
Plastics 326 27 1.9 D D D 2.1 D 2.0 1.9 D
Mineral 327 104 D 1.8 2.4 D 1.0 1.8 1.8 1.9 1.8
Primary Metal 331 213 0.4 0.5 0.7 0.7 0.7 0.7 0.6 0.5 0.6
Fabricated Metal 332 7 1.5 1.4 1.7 1.5 1.6 1.5 0.8 1.4 1.7
Machinery 333 56 3.5 3.9 4.3 4.4 4.2 3.7 3.7 3.6 3.7
Computer 334 183 10.8 9.4 13.1 9.4 11.5 9.5 D 9.2 9.9
Electrical Equip. 335 99 D D 3.1 2.8 2.2 2.8 2.4 2.5 3.1
Transportation 336 371 4.2 4.0 4.2 3.5 D D D 2.9 D
Furniture 337 95 0.7 0.8 0.9 0.8 D 0.8 0.8 0.7 1.2
Medical Equip. 3391 69 D D D D 6.3 5.9 7.7 5.6 3.0
Others 3392-9 186 D D D D 3.3 3.2 2.9 3.5 3.7

Table 2: R&D Intensity by Industry from 1999 to 2007. HHI denotes the Herfindahl-
Hirschman index for 50 largest firms as of 2007 reported by the Economic Census. NAICS is
the North American Industry Classification System. D means the case that data are with-
held to avoid disclosing operations of individual firms. The R&D intensity data are from
the National Center for Science and Engineering Statistics. NAICS codes do not seamlessly
match with Standard Industrial Classification (SIC) codes. Hence, I tabulate R&D intensity
for major manufacturing industries from 1999 when the U.S. Department of Commerce first
reported industrial R&D as a percent of net sales by NAICS codes.
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Portfolios Sorted on Book-to-Market Ratio
Growth 2 3 4 5 6 7 8 9 Value V-G
Panel A: ri,t = αi + βVi Ivolatility shock + εi,t

αi 0.97 1.09 1.13 1.15 1.10 1.16 1.21 1.26 1.39 1.56 0.58
tαi [5.01] [6.31] [6.66] [6.52] [6.63] [6.93] [7.19] [7.46] [7.68] [7.09] [3.25]
βVi -3.18 -4.68 -4.77 -5.67 -4.69 -4.66 -4.19 -5.22 -5.80 -6.68 -3.50
tβV

i
[-1.48] [-2.28] [-2.34] [-3.14] [-2.54] [-2.44] [-2.50] [-2.89] [-3.42] [-2.91] [-3.06]

Panel B: ri,t = αi + βMi MKTt + βVi Ivolatility shock + εi,t
αi 0.24 0.42 0.47 0.50 0.49 0.54 0.62 0.68 0.77 0.84 0.60
tαi [3.32] [7.51] [8.44] [6.95] [6.54] [7.43] [7.20] [7.22] [8.01] [6.36] [3.31]
βMi 1.07 1.00 0.97 0.96 0.89 0.92 0.87 -0.87 0.92 1.05 -0.01
tβM

i
[53.24] [62.19] [58.13] [44.27] [41.40] [39.42] [31.01] [28.05] [28.97] [23.13] [-0.34]

βVi 1.59 -0.23 -0.43 -1.37 -0.70 -0.56 -0.31 -1.34 -1.70 -1.99 -3.59
tβV

i
[3.72] [-0.64] [-1.07] [-3.30] [-1.66] [-1.01] [-0.58] [-2.44] [-2.36] [-2.36] [-3.02]

Panel C: ri,t = αi + βVi ∆V XOt + εi,t
αi 0.94 0.97 1.04 1.00 0.97 0.92 1.01 0.89 1.05 1.14 0.20
tαi [4.11] [4.82] [5.11] [4.75] [4.95] [4.58] [5.04] [4.43] [4.98] [4.37] [0.83]
βVi -0.59 -0.61 -0.58 -0.61 -0.60 -0.62 -0.52 -0.56 -0.59 -0.76 -0.16
tβV

i
[-10.94] [-11.59] [-8.39] [-10.37] [-9.91] [-11.52] [-9.51] [-8.44] [-10.27] [-10.14] [-2.38]

Panel D: ri,t = αi + βMi MKTt + βVi ∆V XOt + εi,t
αi 0.25 0.35 0.42 0.39 0.42 0.33 0.47 0.37 0.48 0.53 0.27
tαi [2.64] [4.67] [5.32] [3.70] [3.83] [3.32] [3.78] [2.55] [3.59] [2.75] [1.08]
βMi 1.07 0.97 0.96 0.95 0.85 0.91 0.85 0.81 0.89 0.96 -0.11
tβM

i
[32.84] [37.43] [37.58] [22.67] [22.28] [24.02] [19.53] [12.91] [18.12] [13.52] [-1.25]

βVi 0.06 -0.02 0.00 -0.03 -0.07 -0.06 -0.00 -0.06 -0.04 -0.17 -0.24
tβV

i
[2.20] [-0.93] [0.09] [-0.86] [-2.20] [-1.97] [-0.02] [-0.92] [-1.04] [-2.46] [-2.59]

Table 3: Market Volatility Shock and Stock Returns. Panel A reports the regression of ten
portfolio returns sorted on book-to-market ratio on the volatility shock indicator function
defined in Table 1: ri,t = αi + βVi Ivolatility shock + εi,t. Panel B reports the same regression
controlling for the market excess return: ri,t = αi + βMi MKTt + βVi Ivolatility shock + εi,t. In
Panel C and D, I use innovations of the VXO index instead of the volatility shock indicator
function: ri,t = αi + βVi ∆V XOt + εi,t and ri,t = αi + βMi MKTt + βVi ∆V XOt + εi,t. ri,t is
the excess return of each of the book-to-market decile portfolios at time t. MKTt is the the
market excess return. The data are from Ken French’s website and span from July 1962 to
December 2015. The VXO index is from Chicago Board Options Exchanges and starts in
1986. Newey-West t-statistic is reported in square bracket.
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Parameter Value Economic Rationale

Economic Environments
ρx 0.9933 persistence of the aggregate productivity process
σxL, σxH 0.0040, 0.0080 conditional volatility of the aggregate productivity process
x̄ -4.40 constant term of the aggregate productivity process
ρz 0.9800 persistence of the idiosyncratic productivity process
σzL, σzH 0.20, 0.40 conditional volatility of the idiosyncratic productivity process
πL,H 1/36 one volatility shock per three years

πH,H
√

2 two-month half life

Production
α 0.70 physical capital share in the composite inputs of production
N 10 the number of plants per firm
ε 4 demand elasticity (i.e, markup=33%)
φ 0.07 technology capital share in output
δK 0.01 the rate of physical capital depreciation per month
δG 0.05 the share of current R&D on technology capital
f 0.4580 fixed cost of production

Pricing Kernel
β 0.9932 the representative consumer’s subjective discount factor
ν0 26 constant price of risk
ν1 -250 time-varying price of risk

Adjustment Cost
b+K , b−K 0.02, 0.03 non-convex parameter of physical capital adjustment cost
c+
K , c−K 3, 30 quadratic parameter of physical capital adjustment cost
bG 0.03 non-convex parameter of technology capital adjustment cost
cG 3 quadratic parameter of technology capital adjustment cost

External Financing Cost
γ0 0.0032 fixed equity flotation cost
γ1 0.01 proportional equity flotation cost

Table 4: Benchmark Calibration. The model is required to calibrate 27 parameters: nine
for economic environments, seven for production function, three for pricing kernel, six for
investment adjustment costs, and two for external equity financing cost. Economic envi-
ronments parameters are chosen to match the real business cycle literature (Cooley and
Prescott (1995)). Production function parameters are set to match the macro finance lit-
erature (Zhang (2005) and McGrattan and Prescott (2009)). I discipline the pricing kernel
parameters to match the risk-free rate and the Hansen-Jagannathan bound (Lustig and
Verdelhan (2012)), so that there is no more degree of freedom for the pricing kernel to
capture the cross-section of firms, which is the focus of this paper. Adjustment cost param-
eters are from Cooper and Haltiwanger (2006) and Bloom (2009). Finally, external equity
financing cost parameters are from Hennessy and Whited (2007) and Kuehn and Schmid
(2014).
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Moment Data Model
average annual real interest rate 0.02 0.0237
annual real interest rate volatility 0.03 0.0356
average Sharpe ratio through the business cycle 0.50 0.4116
average Sharpe ratio in expansions 0.38 0.2271
average Sharpe ratio in recessions 0.66 0.6334
maximum Sharpe ratio 0.82 0.8014
minimum Sharpe ratio 0.14 0.0292

Table 5: Key Aggregate Moments. This table compares model-generated key aggregate
moments with those observed in the data. The data are from Campbell and Cochrane
(1999) and Lustig and Verdelhan (2012). I generate a path for Eq.(9) for 200 years at the
monthly frequency and remove the first 100 years to minimize the impact of initial conditions.
I then compute the mean and standard deviation of real interest rate. To compute the
Hansen-Jagannathan bound, I discretize the aggregate productivity shock process using the
Rouwenhorst (1995) method into 15 discrete intervals. Expansions are from the median to
the largest xt over the discretized intervals. Recessions make up the remaining values.
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Portfolios Sorted on Book-to-Market Ratio
Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A: Data (1962-2015)
Mean 0.47 0.54 0.58 0.57 0.55 0.61 0.67 0.70 0.80 0.94 0.47
SD 5.11 4.67 4.59 4.70 4.43 4.49 4.42 4.52 4.77 5.84 5.84
α -0.09 0.02 0.06 0.05 0.07 0.12 0.21 0.23 0.31 0.37 0.47
tα [-1.26] [0.30] [1.10] [0.75] [0.95] [1.74] [2.56] [2.55] [3.36] [2.86] [2.60]
β 1.06 1.01 0.98 0.98 0.91 0.93 0.88 0.89 0.94 1.07 0.01
tβ [51.25] [65.28] [56.12] [45.91] [42.29] [41.24] [32.53] [28.46] [30.74] [23.32] [0.09]

Panel B: Benchmark Model
Mean 0.70 0.71 0.71 0.72 0.75 0.75 0.78 0.84 0.90 1.16 0.45
SD 3.58 3.85 4.07 4.16 4.56 4.61 4.88 5.34 5.67 7.04 4.01
α 0.10 0.05 0.01 0.01 -0.04 -0.04 -0.06 -0.07 -0.07 -0.02 -0.12
tα [2.46] [1.47] [0.52] [0.36] [-0.98] [-1.06] [-1.42] [-1.48] [-1.42] [-0.72] [-1.39]
β 0.79 0.86 0.91 0.93 1.02 1.03 1.09 1.19 1.26 1.54 0.75
tβ [60.94] [83.07] [98.89] [108.41] [109.64] [104.55] [80.82] [59.05] [53.04] [30.40] [12.09]

Panel C: Zhang (2005)
Mean 0.62 0.66 0.69 0.70 0.77 0.76 0.81 0.86 0.92 1.12 0.50
SD 5.9 6.3 6.5 6.6 7.1 7.0 7.4 7.8 8.2 9.5 3.9
α -0.02 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.02 0.04 0.10 0.11
tα [-0.80] [-0.60] [-0.50] [-0.40] [0.00] [-0.10] [0.50] [0.60] [1.00] [1.50] [1.40]
β 0.86 0.91 0.95 0.96 1.03 1.02 1.07 1.13 1.17 1.36 0.50
tβ [123.2] [164.4] [219.8] [162.5] [123.9] [227.4] [127.3] [112.2] [79.60] [42.2] [12.4]

Table 6: Properties of Portfolios Sorted on Book-to-Market. I simulate 100 artificial samples,
each with 1000 firms, from the model. For each simulation, I generate a path for conditional
volatility, aggregate productivity shock, and idiosyncratic productivity shocks for 200 years
at the monthly frequency and remove the first 100 years to minimize the impact of initial
conditions. When constructing the samples, I match each sample with Fama and French
(1992) and Fama and French (1993)’s timing convention and run the regression. Panel A
summarizes the results from the Capital Asset Pricing Model using the real data from 1962
to 2015. Panel B reports the results from the benchmark model of this paper. Panel C is
from Lin and Zhang (2013) and summarizes the Zhang (2005) model. Mean and SD are the
mean and standard deviation of monthly excess returns in each portfolio. α and β are the
CAPM alpha and beta. tα and tβ are the Newey-West t-statistics for the CAPM alpha and
beta.
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Portfolios Sorted on Book-to-Market Ratio
Growth 2 3 4 5 6 7 8 9 Value V-G
Panel A: ri,t = αi + βVi Ivolatility shock + εi,t

αi 0.24 0.42 0.47 0.50 0.49 0.54 0.62 0.68 0.77 0.84 0.60
tαi [3.32] [7.51] [8.44] [6.95] [6.54] [7.43] [7.20] [7.22] [8.01] [6.36] [3.31]
βVi 1.59 -0.23 -0.43 -1.37 -0.70 -0.56 -0.31 -1.34 -1.70 -1.99 -3.59
tβV

i
[3.72] [-0.64] [-1.07] [-3.30] [-1.66] [-1.01] [-0.58] [-2.44] [-2.36] [-2.36] [-3.02]

Panel B: ri,t = αi + βMi MKTt + βVi Ivolatility shock + εi,t
αi 0.25 0.35 0.42 0.39 0.42 0.33 0.47 0.37 0.48 0.53 0.27
tαi [2.64] [4.67] [5.32] [3.70] [3.83] [3.32] [3.78] [2.55] [3.59] [2.75] [1.08]
βMi 1.07 0.97 0.96 0.95 0.85 0.91 0.85 0.81 0.89 0.96 -0.11
tβM

i
[32.84] [37.43] [37.58] [22.67] [22.28] [24.02] [19.53] [12.91] [18.12] [13.52] [-1.25]

βVi 1.30 0.77 0.38 0.27 -0.22 -0.32 -0.55 -1.07 -1.34 -2.58 -3.87
tβV

i
[7.96] [5.69] [3.28] [2.23] [-1.82] [-2.44] [-3.91] [-5.07] [-5.61] [-5.91] [-6.95]

Table 7: Volatility Shock and Value Premium from the Benchmark Model. This table reports
the results from the regression of 10 portfolio returns sorted on book-to-market ratio on the
market excess return and the volatility shock indicator function using simulated data. Panel
A reports the baseline regression: ri,t = αi + βVi Ivolatility shock + εi,t. Panel B shows the same
regression controlling for the excess market return: ri,t = αi+β

M
i MKTt+β

V
i Ivolatility shock+εi,t.

ri,t. The indicator function for volatility shock takes value 1 when the two-state Markov chain
defined in Eq.(11) and Eq.(12) is in the high volatility state. I simulate 100 artificial samples,
each with 1000 firms, from the model. For each simulation, I generate a path for conditional
volatility, aggregate productivity shock, and idiosyncratic productivity shocks for 200 years
at the monthly frequency and remove the first 100 years to minimize the impact of initial
conditions. When constructing the samples, I match each sample with Fama and French
(1992) and Fama and French (1993)’s timing convention and run the regression. Newey-
West t-statistic is reported in square bracket.
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Monthly Excess Return of Portfolios Sorted on Book-to-Market Ratio
Growth 2 3 4 5 6 7 8 9 Value V-G

(1) Data 0.47 0.54 0.58 0.57 0.55 0.61 0.67 0.70 0.80 0.94 0.47
(2) Benchmark Model 0.70 0.71 0.71 0.72 0.75 0.75 0.78 0.84 0.90 1.16 0.45
(3) No Volatility Shock 0.47 0.47 0.47 0.48 0.49 0.49 0.50 0.52 0.53 0.57 0.09
(4) Symmetric Adj. Cost 0.74 0.73 0.73 0.74 0.76 0.76 0.79 0.86 0.90 1.15 0.41
(5) Constant Price of Risk 0.89 0.88 0.88 0.89 0.91 0.91 0.95 1.01 1.05 1.28 0.40
(6) No Financing Cost 0.70 0.70 0.70 0.72 0.73 0.73 0.75 0.81 0.86 1.09 0.39
(7) (4)+(5) 0.83 0.82 0.83 0.84 0.86 0.87 0.89 0.94 1.01 1.22 0.40
(8) (4)+(5)+(6) 0.86 0.86 0.86 0.88 0.90 0.89 0.91 0.96 1.00 1.22 0.35

Table 8: Sensitivity Analysis. This table reports the results from comparative sensitivity
analysis by varying volatility shock, adjustment cost, price of risk, and equity financing
cost. The numbers are monthly average excess return (%) for each of the book-to-market
portfolios.
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