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Abstract

Governments and corporations frequently sell assets with embedded real options to

competing buyers using security bids. Examples include the sales of natural resources,

real estate, patents and licenses, and start-up firms with growth options. This paper

models these auctions of real options, incorporating both endogenous auction timing

and post-auction option exercise. I characterize the ways common security bids distort

investments and strategic auction timing affects auction initiation, security ranking,

equilibrium bidding, and investment. Revenue-maximizing sellers inefficiently delay

auctions, including optimal auctions which align investment incentives using a combi-

nation of down payment and royalty payment. When sellers do not restrict security

design, bidding and allocation outcomes are equivalent to cash auctions. Finally, in-

formed bidders always initiate the auctions when they could. The results are broadly

consistent empirical observations and underscore that auction timing and sellers’ com-

mitment should be jointly considered with security design in selling real options.
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1 Introduction

On March 30, 2013, the Bureau of Ocean Energy Management held an oil lease auction

that netted the U.S. government $1.2 billion. Exxon-Mobil emerged as the highest bidder

and was entitled, but not obliged, to explore and drill on seven of the 320 auctioned tracts in

the Central Gulf of Mexico for 5–10 years, and was to pay 18.75% royalty of future revenues

from oil production to the Department of the Interior.1 Less than two years later, Shire

PLC acquired NPS Pharmaceutical, Inc. for approximately $5.2 billion in cash to grow

NPS’s portfolio of licenses and products through its global footprint, market expertise in

gastrointestinal disorders, and core capabilities in rare disease patient management.2 These

two deals involve classic examples of a large class of assets with embedded real options

whose sale and exercise underlie some of the most crucial decisions for entrepreneurs, firm

executives, and government officials. These transactions also routinely involve competing

bids in combinations of cash and contingent securities, and can be effectively viewed through

the lens of security-bid auctions.3 Why did Shire make an all-cash offer? Why are nearly

72% of oil and gas tracts offshore, and 56% of those are on federal lands that are neither

producing nor under active exploration?4 More fundamentally, how should a seller trade off

rent extraction and incentive provision in using security bids? How does one jointly decide

the optimal security choice and auction timing? What is the role of the seller’s commitment

and who initiates a competitive negotiation in equilibrium?

Without a model of auctions of real options, simultaneously addressing these important

1ENERCOM Consulting, 360 articles: Central Gulf of Mexico Lease Sale - Come on in, the Water if Fine!
(March 21, 2013), http:oilandgas360.comcentral-gulf-of-mexico-lease-sale-come-on-in-the-water-is-fine.

2Shire News: Shire to Acquire NPS Pharma as Further Step in Building a Leading Biotech.
http://www.shire.com/shireplc/en/investors/irshirenews?id=1052

3Oil leases have been auctioned using cash, bonus-bid, royalty and profit-share contracts. In technology
transfers, such as the licensing in pharmaceuticals, rivals bid contingent contracts (Vishwasrao (2007) and
Bessy and Brousseau (1998)). In sales of large assets, such as the wireless spectrum auction for FCC
bandwidth, aggressive bidders can declare bankruptcy and the bids are essentially debts (Board (2007a) and
Zheng (2001)). Equities, preferred convertibles, and call options are frequently used in M&A and venture
capital financing (Martin (1996), Kaplan and Stromberg (2003), and Hellmann (2006)). Other examples
include advance and royalty payments in publishing contracts (Dessauer (1981) and Caves (2003)), motion
picture deals (Chisholm (1997)), business licenses such as electronic gambling machines with pre-specified
profit tax, and military procurement contracts (McAfee and McMillan (1987b)).

4“Oil and Gas Lease Utilization,”. Report to the President” by Department of the Interior dated May
2012. This revelation has triggered a huge public outcry and heated debate in Congress on the reason for
the purported sluggish development of natural resources despite the imbalance in supply and demand, and
has policy implications in the backdrop of Obama’s proposal to increase onshore royalties by 50%.
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questions is difficult. This paper does so by endogenizing auction timing and tying together

optimal stopping with selling mechanisms in a tractable framework. I derive the following

main results under the unifying intuition that economic agents enjoy different optionalities

in the sale and operation of an asset: First, common security bids cause inefficient and often

suboptimal investments, and unlike results in previous studies, security ranking depends

on auction timing and the number of bidders. Second, strategic auction timing should

be considered jointly with security design and option exercise. In particular, all security-

bid auctions are inefficiently delayed, including cash auctions and auctions with optimal

security design that combines cash and royalties. Third, when a seller lacks commitment to

the auction design, bidding equilibria are equivalent to those in cash auctions, and bidders

always initiate the auction when feasible. These findings imply that many conclusions from

traditional auction and real-options models need to be modified in dynamic settings with

learning and strategic interactions.

Auctions of real options are prevalent in licensing and patent acquisitions, leasing of

natural resources, real estate development, M&A deals, venture capital and private equity

markets, and privatization of large national enterprises.5 They entail tremendous financial

resources and mainly come in two categories in practice.6 Whereas in formal settings such as

oil lease auctions, wireless spectrum auctions, or privatization auctions, the seller specifies

explicitly and commits to allocation rules and an ordered set of security bids, many other

sales to competitive buyers can be thought of as informal auctions in which the seller lacks

such commitment; that is, bidders bid anything they want and can potentially revise their

offers.7 Prominent examples of informal auctions include corporate takeovers and project

finance, where bidders decide what to offer and often can initiate the contact or negotiation.

Still others, such as licensing agreements and contracts in the entertainment industry, appear

in both categories. This paper addresses both formal and informal auctions.

Prior studies on security-bid auctions typically take auction initiation as exogenous and

do not consider how security design influences post-auction investments. Similarly, studies

5Bolton, Roland, Vickers, and Burda (1992) describe the privatization policies in Central and Eastern
Europe. Pakes (1986) and Schwartz (2004) discuss patents as real options.

6In the Gulf of Mexico alone, the oil and gas leases auctioned by the U.S. federal government in 1954-2007
have exceeded $300 billion, and annual licensing deals by pharmaceutical giants exceed $20 billion even in
the aftermath of the financial crisis. M&A volume worldwide is also in the trillions of dollars annually.

7DeMarzo, Kremer, and Skrzypacz (2005) introduce a similar concept but rule out offer adjustments.

2



on real options analyze the sales and exercise of real options in isolation. This paper differs

by considering how auction timing, security design, and post-auction investment interact.

It therefore attempts to bridge the gap between auction theory and corporate finance, and

adds to the emerging literature both on agency conflicts in real options and on auction

initiation and security bids. Specifically, this paper models the sale and exercise of a typical

investment option with endogenous participation. The baseline model involves a seller and

multiple potential bidders who are risk neutral and maximize their expected payoffs. Time is

continuous and in three sequential stages. In the first stage, the seller strategically times the

auction. In the second stage, participants bid cash and contingent securities and the seller

allocates the asset. The key difference between formal and informal auctions in this stage is

whether the seller can commit to not entertaining offers outside a pre-specified ordered set.

In the final stage, the winning bidder rationally times the exercise of the investment option

and delivers the contingent payment to the seller.

The model contains two key frictions. The first is the non-contractibility of the bidders’

private information. Contingent payment does not account for the bidders’ private costs, and

thus distorts investment incentives in the third stage. This misalignment leads to a tradeoff

for the seller between the post-auction moral hazard in investments and the benefits of

contingent bids, such as enhanced rent extraction.8 As contingent bids become increasingly

prevalent, this tradeoff could have a first-order impact on projects with high option values,

such as the development of real estate and natural resources, as well as the transfer and

licensing of technologies. Moreover, no “one-size-fits-all” exists in security ranking, because

any comparison has to be made in conjunction with considerations of auction timing and

the market environment.

The second friction is the cost associated with the ownership transfer that is well-

recognized in the literature. Examples include the initial opportunity cost to the winning

bidder, the seller’s discontinued benefit from the asset’s alternative use, or the irreversible

loss of the option for more efficient allocation of the asset in the future.9 Delaying the auc-

8Prima facie, the type of bids should not matter as a cash equivalent always exists. One advantage to
contingent bids is that they enhance the seller’s revenue by effectively linking payoff to a variable affiliated
with bidders’ private information—the “linkage” principle in Milgrom (1985). Contingent bids also mitigate
liquidity or legal constraints and reduce valuations gaps among various parties.

9One illustration of the benefit from the asset’s alternative use is Ecuador’s estimation of $3.6 billion in
environmental benefits for not selling the Ishpingo-Tiputini-Tambococha oil block in the Yasuni National
Park in its pristine rainforest.
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tion saves the time value of money on these costs and encourages greater participation, but

risks missing the opportune exercise of the investment option. These tradeoffs endogenize

auction timing in the first stage. The seller times the auction to maximize the option value

less the information rent, and a bidder times the auction to maximize the information rent,

neither of which maximizes social welfare. I argue that strategic auction timing is a salient

feature in real-life business practice and is integral to auction outcome, especially when an

entrepreneur considers when to sell a startup, or when target and acquirer firms decide when

to solicit or make an offer.

With standard security bids and endogenous auction timing, I show the seller faces a real

option with an added exercise cost, namely, the information rent. In an optimal security

design, the seller can pass this cost to the winning bidder by combining cash and royalty

payments, which is consistent with the popular use of negotiated royalty payments and down

payments in sales of marketing rights, licensing agreements, publishing and movie contracts,

and many other franchise business practices. More generally for security-bid auctions, the

seller’s real option becomes in the money at a higher threshold due to the information rent,

prompting her to inefficiently delay the auctions to delay incurring the cost of ownership

transfer.

Furthermore, the seller’s commitment to security design significantly influences the bid-

ding and investment outcomes. Absent such commitment, bidding equilibria in both first-

price and ascending informal auctions are equivalent to those in cash auctions. The intuition

is that cash-like bids allow a bidder to generate the maximum social surplus, and at the

same time outbid competitors in the cheapest way. For example, a bidder with higher valu-

ation can more easily outbid others using cash versus equity shares, because the same shares

cost him more than they cost someone with a lower valuation. When bidders can initiate,

Bayesian updates of beliefs on the types that are present absent initiation further compli-

cates the auction timing game.. In equilibrium, bidders always initiate, and consistent with

empirical findings, invest more efficiently conditional on initiation.

These results offer insights to understand several puzzling empirical observations, and

add to conventional theory. In particular, a high royalty rate in oil and gas lease auctions

causes the winning bidder to delay exploration beyond efficient rational waiting due to op-

tionality, especially in highly uncertain environments, which potentially explains the large
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number of idle tracts reported. Although having more bidders is often revenue-enhancing

(Bulow and Klemperer (1996)), sellers in some corporate auctions still restrict the number

of bidders (Hansen (2001) and French and McCormick (1984)). I show that even absent

the entry-cost channel in Samuelson (1985), more bidders could decrease revenue and social

welfare by exacerbating moral hazard associated with security bids. Another widely held

belief is that security bids generate higher revenue than cash, but this paper argues cash

dominates common securities as the bidders’ market becomes very competitive. This paper

also highlights the important role of endogenous auction timing and the seller’s commitment.

While many studies have focused on security design or security ranking, their conclusions are

sensitive to auction timing. Post-auction investment distortion is only a concern in formal

auctions, but we should pay attention to inefficient auction timing that is present even in

auctions traditionally deemed efficient (including cash auctions).

This paper builds on studies of security-bid auctions and their applications in corporate

finance.10 DeMarzo, Kremer, and Skrzypacz (2005) give an extensive exposition of security-

bid auctions, showing “steeper” securities lead to higher expected value to the seller. Samuel-

son (1987) suggests adverse selection and moral hazard complicate the effect. Che and Kim

(2010) and Rhodes-Kropf and Viswanathan (2000) demonstrate, respectively, that adverse

selection could reverse the ranking of securities and lead to inefficiencies in bankruptcy reor-

ganizations and privatizations. This paper examines post-auction moral hazard—the second

issue Samuelson (1987) emphasized. Kogan and Morgan (2010) compare equity and debt

auctions under moral hazard in an experimental study. Laffont and Tirole (1987), Eső and

Szentes (2007), and Riordan and Sappington (1987) also study how post-auction decisions

affect auctions. McAfee and McMillan (1987a) is another earlier study that derives an opti-

mal linear incentive contract under competition, information asymmetry, and moral hazard.

Povel and Singh (2010) and Liu (2012) relate security-bid auctions to external financing.

This paper is unique in considering post-auction moral hazard in a dynamic setting with

persistent private information, emphasizing endogenous auction timing.

10Hansen (1985), Crémer (1987) and Riley (1988) are among the early contributions. Also related are
the theories of incentive contracting, typically applied to defense procurement (Engelbrecht-Wiggans (1987),
McAfee and McMillan (1986), and Laffont and Tirole (1987)). Hansen (2001) reviews the corporate auction
process. Dasgupta and Hansen (2007) and Boone and Mulherin (2007) justify viewing corporate takeovers
as auctions. Eckbo, Giammarino, and Heinkel (1990) consider the role of non-cash bids. Skrzypacz (2013)
gives an overview.
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This paper also complements the emerging literature on agency issues and auction initi-

ation in a real-options framework. Maeland (2002), Grenadier and Wang (2005), and Cong

(2012) study distortion of investment incentives due to adverse selection and moral hazard.

Board (2007b) derives optimal selling mechanisms of options. This paper differs primarily

in considering auction timing and linking the agency conflicts to a broader class of security

bids. Gorbenko and Malenko (2014) examine bidder-initiated takeover attempts in cash and

stocks with heterogeneous cash constraints. Gorbenko and Malenko (2015) offer another

detailed study on auction initiation, focusing on time-varying types and signaling through

initiation in cash auctions. This paper complements theirs by examining initiations driven

by aggregate market conditions and Bayesian learning. In addition, I highlight the role of

the seller’s commitment, and link auction initiation to post-auction investment.

The remainder of the paper proceeds as follows. Section 2 describes the economic envi-

ronment, sets up the model, and analyzes optimal investment strategies. Section 3 derives

bidding equilibria, security ranking, and auction timing of formal auctions. Section 4 char-

acterizes informal auctions as games of signaling, timing, and Bayesian learning. Section 5

concludes. The appendix contains all the proofs.

2 Setup and Optimal Stopping

A risk neutral revenue-maximizing seller with discount rate r > 0 owns a project with

an embedded option. Once developed, the project generates a verifiable lump sum cash

flow whose value Pt is publicly observed and evolves stochastically according to a geometric

Brownian motion (GBM)

dPt = µPtdt+ σPtdBt, (1)

where Bt is a standard Brownian motion under the equivalent martingale measure, µ < r is

the instantaneous conditional expected percentage change per unit time in Pt, and σ is the

instantaneous conditional standard deviation per unit time.11

The seller does not have the expertise to exploit the option but can auction the project

to N risk neutral potential bidders with the same discount rate r who have the expertise

11r > µ ensures a finite value of the option. See McDonald and Siegel (1986) or Dixit and Pindyck (1994).
The lump sum could represent the present value of a stream of future cash flows.
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to exploit the option.12 When the seller holds the auction, a bidder i knows his private

investment cost for the project θi.
13 He also learns that the distribution of types for other

bidders is i.i.d. with positive support [θ, θ]. Denote the cumulative distribution and density

function by F (θ) and f(θ), respectively. The project is worthless to him if it is never

developed.

I assume that whereas the revenue from exercise P is observable and contractible, the cost

θ and thus the profit P −θ are not. This assumption is realistic because contracts or security

designs based on profit are rare due to high monitoring costs, limited comparability, and

landowners’ risk aversion (Robinson (1984)). The procurement literature has also established

that profit reporting is subject to manipulations, and contracting on revenue is more feasible.

Past experience in oil lease auctions has also shown considerable difficulties in reaching

agreement on the proper profits (Opaluch, Grigalunas, Anderson, Trandafir, and Jin (2010)).

In addition, ownership transfer entails both benefits and costs. These “transaction costs”

borne potentially by either the seller or the bidders are typically small for financial assets,

but are often rather significant for real assets, especially when they are illiquid and complex.

Similar to DKS, the winning bidder has to pay an up-front cost X ≥ 0, which we can

interpret as the initial resources the project requires, such as illiquid human capital, the

social cost of underwriting securities, or simply his opportunity cost. The seller also loses

a reservation value Y ≥ 0 when the asset is sold. For example, she may lose a continuous

stream of cash flow rY through alternative uses of the asset before the auction, or the option

value of more efficient allocation of the asset when technology improves.14 In the case of

leasing natural resources, the winning bidder has to assemble a team and equipments to be

ready for drilling any time, and the seller loses the environmental benefits or income from

utilizing the land as a national park.15 Basically, X + Y represents in reduced form the

12For clarity, I refer to the seller as female and the bidders as male.
13The analysis also applies when bidders differ in other quantities, such as production capacities.
14Bleakley and Ferrie (2014) show that after an initial allocation of the frontier land in Georgia, land use

took over a century to converge to post-allocation efficiency and land value was depressed by 20%. Another
example is the FCC spectrum auction, where the government selling certain bandwidth to multiple firms
has to consider the cost of losing the option to allocate it in the future to firms with better technology,
because even for the federal government, repurchasing the bandwidth is hard because of the well-known
hold-up problem involved in multilateral bargaining. Y could also simply be the intermediary fee, or legal
and professional costs of holding the auction, which could be higher than 10% of the value for small firms.
Other pre-contract costs are common too (French and McCormick (1984)). Hansen (2001) and Gorbenko
and Malenko (2014) discuss costs associated with revealing proprietary information to rivals.

15X+Y may be insignificant, especially when a winning bidder can contract with the seller to continue the
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ownership-transfer frictions. In fact, either X or Y can be negative; to make the auction

timing non-trivial, we need X + Y > 0. Even when X + Y is small in magnitude, auction

timing is still relevant in adverse market conditions, that is, when P is also small.

When the auction is held at time ta, bidders compete by offering security bids that are

combinations of contingent payments from the cash flow of the project and non-contingent

payments that, for simplicity, can be viewed as upfront cash at the time of the auction. Un-

less stated otherwise, the remainder of the paper focuses on standard security

bids as defined next.

DEFINITION. A standard security bid is an upfront cash payment C ∈ R and a con-

tingent payment at the time of investment τ given by continuous function S(Pτ ) ∈ R.16

Standard security bids are simple and intuitive, and as discussed later, can implement the

optimal auction design even in the augmented universe of security bids. They admit most

securities and contracts used in practice. For example, with equity bids, the seller receives a

fraction α of the payoff: S(P ) = αP ; with call option bids, the seller can pay a strike price

k for the project cash flow: S(P ) = [P − k]+; with bonus bids on fixed royalty rate φ, the

seller receives bonus C and royalty payment S(P ) = φP .

The agents interact in continuous time as shown in Figure 1. To analyze the dynamics,

I work backward to first solve for the optimal investment strategy for the winning bidder,

then derive the bidding equilibrium given the bidders’ valuations based on their investment

strategies, and then study the impact of strategically timing the auction.

Formal auctions and informal auctions mainly differ in the seller’s commitment to the

original use before the option is exercised. Although such scenarios occur in professional sports, where teams
sometimes buy a player and then immediately loan them back to the original team, in many business settings
such efficient contracts are exceptions rather than norms, due to factors outside the model. For example, the
federal government typically auctions areas of land or sea involving multiple leases in a shared ecosystem,
and cannot contract with individual winners to keep certain areas intact to derive environmental benefits
while allowing drilling in a neighboring tract. Due to political and ideological differences, the managers of
national parks and environmental organizations are unlikely to collaborate with oil firms to maintain their
operations before the oil firms start drilling. Moreover, as soon as a tract of land is sold, either the seller
or the bidder has to pay preparation costs to relocate local habitats so that exploratory studies can be
conducted.

16As known in practice and earlier studies, directly contracting on private cost θ faces problems of validating
profits reported. Consequently, payments are usually contingent on top-line revenue in the development of
natural resources, contracts on marketing and licensing rights, as well as franchise chain operations.
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tt0 Pre-Auction Timing ta Post-Auction Timing

t0 = 0: Interaction starts.
↪→ ta: Auction held at Pa, project allocated, cash part

C of bid paid, auction frictions X & Y incurred.
↪→ τ : Project invested at Pτ , θ incurred,

τ

contingent part S(Pτ ) of bid paid.

Figure 1: Timeline

auction timing and design. Throughout the paper, I focus on first-price auctions (FPAs)

and second-price auctions (SPAs) in which the bidder with the highest bid wins and pays

the highest bid or the second-highest bid, respectively. I assume the seller commits to no

renegotiation post-auction, and to no contracting or resale to losing or non-participating

bidders.

Welfare is defined as the total payoff to the seller and bidders, and efficiency

in this paper means constrained efficiency from a global optimizer’s perspec-

tive; that is, welfare maximizing under the same informational or institutional

constraints as individual agents.

Cash Auctions as a Benchmark

In cash auctions, a bidder of type θ owns the project entirely upon winning, and optimally

develops the project at time t ≥ ta to maximize E[e−r(t−ta)(Pt − θ)]. The optimal strategy

for this standard problem involves immediate investment upon reaching an upper threshold

P ∗(θ).17 Let Pa denote the cash-flow level when the auction is held. The value of the

investment option W and P ∗(θ) are independent of X and t, and are given by

P ∗(θ) = max

{
Pa,

β

β − 1
θ

}
, where β =

1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1, and (2)

W (Pa; θ) = D(Pa;P
∗(θ))(P ∗(θ)− θ), where D(P ;P ′) =

(
P

P ′

)β
for P ≤ P ′. (3)

Note that D(Pt;P
′) corresponds to the time-t price of an Arrow-Debreu security that pays

one dollar when the first moment threshold P ′ ≥ Pt is reached. The option value of the

17See, for example, McDonald and Siegel (1986) and Dixit and Pindyck (1994).
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project is simply the total value of Arrow-Debreu securities that replicate the payoff of the

investment option at exercise.

Bidder i’s private valuation is then W (Pa; θi)−X, which decreases in θi, and his bidding

strategies are the same as those in standard cash FPAs and SPAs. A cutoff type exists for

participation θc = min{θ, θBE}, where the break-even type θBE solves W (Pa; θ)−X = 0 and

is given explicitly as θBE = (β−1)(P β
a β
−βX−1)

1
β−1 1{Pa>βX}+(Pa−X)1{Pa≤βX}. Types with

costs higher than θc do not participate. Because post-auction investments are not distorted,

FPAs and SPAs generate equivalent revenues to the seller, and efficiently allocate the project

to type θ(1) if θ(1) ≤ θc, where θ(j) is the jth lowest realized θ. The cases with a reserve price

or entry fee are similar.

Optimal Investments Post-auction

Next I characterize the optimal investment strategy taking as given the standard security

bid in equilibrium.

Suppose the winning bidder of type θ pays standard security {C, S(Pt)} when project is

invested at time t ≥ ta. His private valuation at ta is

Ṽ (C, S(·), θ) = max
τ≥ta

EP [e−r(τ−ta)(Pτ − S(Pτ )− θ)]−X − C, (4)

where τ is any stopping time. S(P ), being of general form, distinguishes this problem from

traditional real-options models. Whether V (θ) is well-defined a priori is unclear, but the

following lemma dispels such concern.

Lemma 1. A threshold investment strategy exists that is optimal among all stopping times.

Moreover, the valuation Ṽ (C, S(·), θ) is continuously decreasing in θ.

The strategy generally involves both upper and lower thresholds that are dependent on Pa—

auction timing clearly matters.18 The remainder of this paper assumes the following

for standard security bids S(P ):

18For notational simplicity, except in the discussion of auction timing, I do not explicitly write Pa as an
argument for the valuation.
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Assumption (Conv): For any type, P−β[P − S(P ) − θ] of P is quasi-concave with a

maximum achieved at some P̃ (θ). For P ≥ P̃ (θ), S(P ) is piecewise twice-differentiable with

only positive jumps in S ′(P ), and S ′′(P ) (when exists) satisfies PS ′′(P ) ≥ (1−β)[1−S ′(P )].

Condition (Conv) requires that the security is not too “concave” at large P , and is non-

restrictive since it holds for most securities used in real life and in equilibria in this paper,

such as equities, call options, and the optimal securities derived later. As the following

lemma shows, (Conv) allows us to focus on simple threshold strategy that is standard and

often implicitly assumed in the real-options literature:

Lemma 2. With assumption (Conv), the optimal investment follows an upper threshold

strategy with threshold P̃ (θ). If, in addition, P − S(P ) is non-decreasing in P , Ṽ (C, S(·), θ)
is non-decreasing in Pa.

Compared to the investment threshold β
β−1θ in Equation (2), the threshold with security

payment may be higher because intuitively, the bidder faces an additional cost S(P ). On

the other hand, the sensitivity of the security payment to cash flow implies a smaller option

premium.19 Depending on which effect dominates, the threshold could be either higher

or lower, whereas in prior literature agency conflicts mostly delay investments. I show in

Appendix A.3 that the direction of distortion depends on whether the cash flow elasticity

of winning security bid (CES) ES = PS′(P )
S(P )

is bigger than β, which depends on equilibrium

bidding that I analyze next.

3 Formal Auctions

The knowledge of optimal investment strategies allows bidders to value the real option.

This section continues to analyze bidding equilibria in formal auctions. Besides extending

the analysis in DKS and Board (2007b) to the standard real-options setting, I also show how

equilibrium security bids can both delay and accelerate investments and how conventional

results in security-bid auctions are modified. Then I prove the main theorem of the section in

which all formal auctions are inefficiently delayed, before deriving the optimal auction design

19As in Grenadier (2002) and Grenadier and Malenko (2011), option premium is the NPV of investment

at the moment of exercise divided by the total cost: OP (θ) = P̃ (θ)−S(P̃ (θ))−θ
S(P̃ (θ))+θ

.
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that can be implemented using standard securities combining cash and royalty payments. I

conclude the section by discussing extension to interdependent value settings and relating it

to the auctions and development of oil and gas tracts.

In formal auctions, the seller times the auction and commits to a pre-specified, well-

ordered set of allowed bids, which in real life are ranked by simple, easily implementable

rules. A variant of the definition in DKS formalizes this notion of well-orderedness:

DEFINITION An ordered set of securities ranked by index s is defined by a left-

continuous map Π(s) = {C(s), S(s, ·)} from [sL, sH ] ⊂ R to the set of standard security

bids such that for each voluntary participant of type θ, V (s, θ) ≡ Ṽ (C(s), S(s, ·), θ) is

non-negative and non-increasing in s on [sL, s̃] and negative on (s̃, sH ] for some s̃ ∈ [sL, sH).

This definition simply requires that in addition to being standard, an ordered set of securities

admits one-dimensional ranking with index s for any payoff from the project, and permissible

bids cover a wide range such that each participant earns a non-negative profit by bidding

low enough but earns no profit by bidding too high. Any such sets can be represented by

the mapping defined above up to an order-preserving transformation of the index. The seller

commits to allocating the project to the bidder with the highest index. The winning bidder

pays a security using the highest-bid index in FPAs or the next-highest-bid index in SPAs.

This notion of an ordered set of securities subsumes a definition based on securities’ values

to the seller, because the latter is necessarily an ordered set here. In fact, most security bids

I examine including the optimal security derived later are also well-ordered in terms of their

values to the seller. Moreover, this definition is more inclusive of contingent bids used in real

life: s could be the fraction of shares α in a pure equity auction {C(α) = 0, S(α, P ) = αP},
the (negative) strike price k in a call-option auction {C(−k) = 0, S(−k, P ) = max{P−k, 0}},
or the bonus b in a bonus-bid auction with royalty rate φ fixed {C(b) = b, S(b, P ) = φP}.20

M&As, VC contracts, and lease auctions routinely uses such securities, and indeed the bidder

offering the highest s wins.21

20One could equivalently define an ordered set based on monotonicity of security values to the seller and
derive almost all the results, but that approach rules out auctions with commonly used security bids, such
as equity bids without a minimum share retention.

21In M&As with the acquirer’s stocks as bids, C simply corresponds to the value of the acquirer’s cash
flows that are independent of the acquisition, X corresponds to the opportunity cost of incorporating the

12



3.1 Bidding Strategies in Formal Auctions

Throughout the paper, I assume that the standard “single-crossing” (as described in

Lemma 3) for formal security-bid FPAs, and that buyers resolves any indifference in bidding

by bidding higher s. Lemma 1 allows me to characterize equilibrium bidding strategies

similar to those in DKS.

Lemma 3. (DKS Lemma 3) In FPAs, when lnV (s, θ) is absolutely continuous in s with

the derivative (when exists) decreasing in θ, a unique symmetric Bayesian Nash equilibrium

exists that is decreasing, differentiable, and is characterized by:

s′(θ) =
(N − 1)f(θ)

1− F (θ)

V (s(θ), θ)

V1(s(θ), θ)
(5)

for θ ≤ θ̂ with the boundary condition s(θ̂) = sup{s ∈ [sL, sH ] | V (s, θ̂) = 0}. The cut-off

type for participation is θ̂ = sup{θ ≤ θ | maxs V (s, θ) ≥ 0}.

Lemma 4. (DKS Lemma 2) In SPAs, the unique Bayesian Nash equilibrium in weakly

undominated strategies is for type θ to bid s(θ) = sup{s ∈ [sL, sH ] | V (s, θ) ≥ 0}, which is

decreasing in θ. The cut-off type for participation is θ̂ = sup{θ ≤ θ | maxs V (s, θ) ≥ 0}.

Because the bidding strategies are monotone, the investment option is allocated, if at all,

to a bidder with the lowest cost. Moreover, the level of participation is the same for FPAs

and SPAs, and is weakly smaller than that in cash auctions. In addition, it can be shown

that bidders bid more aggressively (weakly greater s for all types, and strictly greater s for

a positive measure of types) in FPAs as N increases or X decreases, or if V and V/V1 are

increasing in Pa, as Pa increases. They bid more aggressively in SPAs as X decreases or if

V is increasing in Pa, as Pa increases.

Given the existence of bidding equilibria and optimal exercise of the real option, I next

illustrate that investments can be both delayed and accelerated.

Investment Delays and Accelerations

Lemmas 3 and 4 hold for equity auctions with S(α, P ) = αP where α is the shares bid,

and C(α) = C is the reserve price. The equilibrium α(θ) is continuous and decreasing, and

target firm, and P is the payoff from the acquired assets and projects, and the synergy created.
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the winning bidder invests when cash flow first reaches P equity(θ) = max
{
Pa,

βθ
(β−1)(1−α)

}
≥

P ∗(θ). Investments are therefore inefficiently delayed.

Standard security bids can also lead to investment accelerations. Consider call-option

auctions with S(−k, P ) = max{P − k, 0} and C(−k) = 0, where k is the strike price. In

both FPAs and SPAs, if a bidder of type θ bids a strike less than X + θ, with non-trivial

probability he wins with a required strike k < X + θ and fails to break even. If he bids a

strike greater than P ∗(θ), he always invests with the threshold P ∗(θ) and the call is never

exercised. But he could bid lower k to increase the chance of winning. Therefore, a bidder

of type θ always bids k ∈ [X + θ, P ∗(θ)], and upon winning, invests when the cash flow first

reaches P call(θ) = max{Pa, k} ≤ P ∗(θ). Inefficiency thus lies in the potential acceleration

of investments. The seller never makes a profit if Pa < k for the winner. Nonetheless, as

long as Pa > max{X + θ, β
β−1θ}, i.e., some real options are sufficiently in the money, the

seller expects to raise positive revenue. Whereas existing real-option models with agency,

such as that in Grenadier and Wang (2005), often predict decreased or delayed investments,

the security choice in selling real options could be an alternative to empire-building-based

explanations of overinvestments.22

Figure 2 illustrates how different security leads to different investment thresholds and

timings. The figure includes another common form of security: friendly debt S(B,P ) =

min(P,B), where B is a fixed promise of payment.23

Number of Bidders

The literature has established that in private-value auctions increasing the number of

bidders enhances the seller’s revenue (e.g. Bulow and Klemperer (1996)), but more bidders

implies more aggressive bidding, as seen earlier, resulting in greater moral hazard. Simula-

tions in Figure 3 illustrate in the spirit of Samuelson (1985) that revenue and welfare could

vary in almost any way with N . The impact of competition clearly depends on the security

design. The result generalizes to auctions with standard securities such as friendly debts

and call options (see Figure 5), and is robust to distributional assumptions and endogenous

22Gryglewicz and Hartman-Glaser (2014) underscore this point in a setting with dynamic agency.
23Friendly debts are esssentially debts without interests, also known as Qard/Qardul hassan in Islamic

finance. They are popular in contractual agreements in Islamic banking and microfinance, and are equivalent
to granting the winning bidder instead of the seller call options - the exact opposite situation to that for call
option bids.
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entries with entry costs. Since the expected social welfare and revenue to the seller need not

increase with the number of potential bidders, limiting participation may improve revenue

or welfare. This channel is different from that in Samuelson (1985) and consistent with that

sellers in real life restrict the number of bidders even absent entry fees (see Hansen (2001)

and French and McCormick (1984)).

The number of bidders also matters for security choice. Prior studies indicate that

security bids usually perform better than cash bids. Rhodes-Kropf and Viswanathan (2000)

show that any securities auction generates higher expected revenue to the seller than a cash

auction. But since the linkage advantage of security bids lies in the extraction of the winning

bidder’s rent, it decreases in expectation when N increases. Yet moral hazard persists with

many standard securities. In appendix A.6, I define M-regular securities that include or

can closely approximate most common securities, and show cash bids dominate M -regular

securities in FPAs and SPAs in terms of expected revenue and social welfare, as the number

of bidders gets large. The size of the bidders’ market is thus an important consideration in

security choice. The result also suggests security bids are rarely used when the number of

bidders is large.

3.2 Security Design and Auction Timing

DKS show that “steeper” securities yield higher revenues for the seller. This ranking

breaks down due to post-auction moral hazard: a “steeper” security extracts more from the

winning bidder’s information rent, but it also reduces his incentive to invest efficiently post-

auction. This subsection approaches security ranking from a mechanism-design perspective

and allows general structures of security payments. I first demonstrate that there is no ”one

size fits all” regarding ranking standard security bids; in particular, the ranking depends

on the auction timing. I then show the optimal mechanism in Board (2007b) extends to

this setting and can be implemented using a standard security combining cash and royalty

payments. Most importantly, I show optimal auction timing exists and is inefficiently late.

The direct revelation principle allows us to focus on a truth-telling mechanism. Sup-

pose the seller times the auction at taand specifies the security choice of the general form

S(θ̃i, θ−i, It) at time t ≥ ta, where θ̃i is the reported type by i, θ−i are other participants’
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reported types, and Iτ is the set of contractible information up to time t.24 I assume for

the remainder of the paper that z(θ) = θ + F (θ)/f(θ) is increasing .25

Ranking Security Design

Through deriving an integral form of the bidders’ incentive compatibility conditions, I

first extend Board (2007b)’s analysis to standard real-options settings with standard security

bids and interdependent values.

Proposition 1. The seller’s revenue in formal FPA and SPA held at ta with standard

security bids is given by

E
[
1{θ(1)≤θ̂}

[
e−r(τ

∗
1−ta)(Pτ∗1 − z(θ(1)))−X − Y

]]
, (6)

where θ(1) is the smallest realized cost, and τ ∗1 is the bidder’s corresponding optimal stopping

time for investment according to Lemmas 1, 3, and 4, with the cutoff type θ̂ given therein.

The seller’s payoff thus depends on the “virtual valuation” of the best type rather than the

actual valuation.26 The seller essentially owns the best type’s real option with an additional

stochastic cost. In general, the winning bidder’s optimal investment timing differs from the

seller’s. This proposition, together with the bidding equilibria for formal auctions derived

earlier, allow computational ranking of various security designs in either FPAs or SPAs.

Importantly, security ranking depends on auction timing as seen in Figure 4(a): among

several pure contingent securities, equity gives the highest expected revenue and call option

the lowest at Pa = 280, whereas call option is the highest and debt is the lowest at Pa = 360.

The worst security design at Pa = 300 more than doubles the revenue from the best security

design at Pa = 220. Welfare is similarly affected (Figure 4(b)). In this regard, strategic

timing is as important as security design. Security ranking also depends on parameters such

24Standard security bids is a special case under this general form. Though written in flow payment, S
could be a lump-sum payment when it is a Delta function. For standard security bids, Iτ contains cash flow
from project Pτ when invested at τ , but in general It could include the history of P up to t, and t itself if
they are contractible.

25This assumption is standard in the auctions literature, for example, see Krishna (2009). One sufficient
condition is the “inverse hazard function” F (θ)/f(θ)’s being non-decreasing. The general intuition still
applies without this assumption, though one has to introduce ”ironing” techniques which complicates the
discussion.

26This payoff is equivalent to the expected marginal revenue (MR), see Bulow and Roberts (1989).
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as N and σ, such as shown in Figure 5. In sum, security ranking has to be considered in

conjunction with potential misalignment of incentives, timing of auctions, and the number

of bidders.

Endogenous Auction Timing

In formal auctions, a seller also chooses time ta to hold an auction to maximize

E
[
e−rta1{θ(1)≤θ̂}

[
e−rτ

∗
1 (Pτ∗1 − z(θ1))−X − Y

]]
, (7)

where θ̂ and τ ∗i depend on both auction timing and security design.

Theorem 1. Given a security design and allocation rule, an optimal threshold strategy for

timing a formal auction exists. The auctioneer inefficiently delays the auction and never

sells the project when she expects no chance of immediate investment.

Intuitively, option values erode as Pa increases, thus it would not be optimal to postpone the

auction indefinitely. But because the seller effectively bears X + Y , she can profitably delay

the incidence of this cost, especially if she expects no bidder to invest right away and she

can wait for greater participation. The bigger X + Y is, the more the seller endogenously

delays the auction.27 As the seller does not get the information rent, she faces lower virtual

valuation the auction surplus than a social planner, and inefficiently delays the auction. The

inefficient delay depends on the specific security used, as the latter affects auction timing

through τ ∗1 , yet the result holds even in cash auctions, because as long as virtual valuation

differs from true option value, changing auction timing leads to substantial variations in

revenue. Figure 6 illustrates this effect by plotting time zero present values of the expected

revenues and welfare from cash auctions held when Pt first reaches Pa. Hence, for regulators

concerned with welfare, auction timing is as important a consideration as market power.

Optimal Auction

Optimal auction involves both security design and auction timing. Despite the complexity

in security ranking, Theorem 2 in Board (2007b) extends to the current setting, and the

optimal security design can be implemented using an auction with standard security bids.

27X + Y < 0 clearly implies immediate auctions to avoid missing optimal investments.
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Proposition 2. An optimal auction design exists and FPAs using well-ordered securities

indexed by s implement it: denote θ̂ as the solution to P β
a (β − 1)β−1 = (X + Y )ββz(θ)β−1,

C(s) =


s

1−β

[
Pa

P ∗(z(−s))

]β
−X −

∫ s
sL

[
1−F (−s′)
1−F (−s)

]N−1 [
Pa

P ∗(z(−s′))

]β
ds′, if s ∈ [sL,−θ]

C(−θ) + θ + s, if s > −θ
(8)

S(s, P ) = φ(s)P, where φ(s) =
F (−s)1{s∈[sL,−θ]}
F (−s)− sf(−s)

, and sH =∞, sL = max{−θ,−θ̂}.

In equilibrium, type θ bids s = −θ. Recall P bonus = β
β−1

θ
1−φ = P ∗(z(θi)), which implies that

when the bidder equates his marginal benefit of waiting to his marginal cost of waiting, he

and the seller face the same optimization problem. This is exactly Board (2007b)’s insight,

but instead of using revenue-independent strike payment F (−s)
f(−s) for option exercises, the seller

can use royalty payments to align incentives, and the delays in investments depends on the

optimal auction timing, as well as the optimal security. The interpretation of the optimal

security as a cash down payment plus a royalty payment relates to common discussions on

security-bid auctions, and the contingent payment satisfies limited liability S(·, P ) ∈ [0, P ]

and double monotoniticy (S(P ) and P −S(P ) being non-decreasing), as is typically required

in security design.28 Variable royalties with upfront cash are indeed frequently observed in the

sales of licensing or marketing rights and contracts in publishing or movie production. These

results also show that McAfee and McMillan (1987a)’s optimal linear incentive contracts are

robust to time discounting, despite the fact that the discounted project payoff is actually

decreasing in contractible output P .

Note that the royalty rate is increasing in θ if and only if θ
z(θ)

is decreasing in θ. The

type with smaller actual cost relative to virtual cost thus pays less upfront cash and higher

royalty rate. This result makes sense as higher royalty rate is needed to make him invest

as if he bears the virtual cost. This prevents him from mimicking others, lest he pays more

cash, and has a contingent residual that is more sensitive to his investment timing, which

is more distorted in equilibrium. Optimal security thus involves negatively correlated cash

down payments and contingent royalty payments, a novel and testable prediction that is of

interests for empirical studies.

In Appendix A.9, I show Theorem 1 also generalizes to the case where we do not constraint

28See Hart and Moore (1995), DeMarzo and Duffie (1999), and DeMarzo, Kremer, and Skrzypacz (2005).
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the security design and allocation rule:

Corollary 1. Optimal formal auction occurs later than a constrained-efficient formal auc-

tion.

These results relate to Myerson (1981)’s analysis in a static setting on the wedge be-

tween the seller’s revenue and welfare. In addition to bidder exclusion, option exercises are

inefficiently delayed under the current settings to increase revenue (see Board (2007b) and

Proposition 2). Moreover, auction timing leads to several distinct features in an optimal

auction. Although the seller still excludes bidders, the auction is held under better market

conditions (higher Pa), which encourages participation and mitigates the exclusion. This

implies that in real life one may not see sellers excluding bidders as much using entry fees

or reserve prices, because she has the alternative tool of choosing a more propitious time to

hold the auction. For example, an entrepreneur selling a startup seldom excludes potential

acquirers, but rather waits for the product to have a higher valuations before going onto the

market. Inefficiencies in dynamic settings are thus multi-dimensional.

3.3 Implication for Oil Lease Auctions

One key application of the model is the sales of natural resources, such as oil lease

auctions. In many countries, the predominant design for auctioning oil leases involves fixing

a royalty rate φ and having contractors bid up-front ”bonus” in FPAs.29. As such auctions

are typically modeled as auctions with interdependent values, I generalize in Appendix A.10

Propositions 1 and 2 to interdependent settings and show that the inefficient delay in drilling

is increasing and convex in volatility and royalty rate, and has positive cross partials. The

social cost of the investment lag due to the distortion associated with royalty is increasing

and convex in the royalty rate φ.

These predictions are consistent with available empirical evidence. The US Department

of the Interior experimented with royalty auctions in 1978–1983, where the government fixed

a small up-front “bonus” payment and allowed the bidders to compete on royalty rates.

29In the United States, the Minerals Lands Leasing Act prescribes the base share of royalty rate at 1/8
the value of production for onshore leases, and the Outer Continental Shelf Lands Act used 1/6 for offshore
leases. The offshore rate for leasing beginning in 2008 is set at 18.75%. See Hendricks, Porter, and Tan
(1993) and Haile, Hendricks, and Porter (2010) for more details.
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Many bidders bid extremely high royalty rates and the tracts were never drilled.30 Oil

price and volatility were indeed extremely high during that period. Moreover, Humphries

(2009) reports that the royalty relief programs in the 1990s significantly increased interest

in deep-water leases, and oil production increased sharply. Opaluch, Grigalunas, Anderson,

Trandafir, and Jin (2010) and Cong (2013) also conclude that increased royalty rates would

have a net negative effect on the social value of offshore development. The distortion gives a

potential explanation for why large tracts of land remain idle.31 Without prescribing detailed

policy changes, this paper suggests that any useful policy recommendations should first focus

on reducing the post-auction moral hazard that is inimical to both the revenue and social

welfare. Moreover, instead of uniformly raising the royalty rate, allowing bidders to self

select into differential rates as described in Proposition 2 could be a more effective way in to

increase revenue to the government, in both private-value and common-value frameworks.

4 Informal Auctions

Many economic interactions such as corporate takeovers, competition for supply con-

tracts, and talent recruitment have characteristics of auctions because buyers are competing

with one another to make offers.32. Yet unlike formal auctions in which the sellers restrict

security bids to a pre-specified ordered set, bidders often come up with their own offer terms

that sellers typically cannot ignore, essentially leaving the security design of the auction

to the bidders who can bid any contingent payment. A seller would consider all bids and

choose the most desirable one ex post. Because of the lack of commitment to explicit auction

design, I follow DKS and call these transactions informal auctions.33 For example, in Shire’s

acquisition of NPS Pharmaceutical, Shire repeatedly proposed various deal terms and NPS

30See Dougherty and Lohrenz (1980) and Binmore and Klemperer (2002).
31In reality, many other strategic interactions among the bidders complicate the issue. For example,

Beshears (2011) shows alliances in oil and gas drilling perform better than solo bidders; Hendricks and
Porter (1996) attributes the delays in exploratory drilling to free-rider problem and war of attrition. The
above analysis complements these studies.

32When an asset of a Delaware corporation is for sale, the Revlon rule imposes upon directors a duty
to solicit competitive bids to maximize shareholders’ value. It may seem that many takeovers occur after
one-on-one negotiations, but as demonstrated in Aktas, De Bodt, and Roll (2010), even in such cases latent
competition such as the threat of sale to a rival buyer is significant.

33DKS do not consider offer adjustments from winning and losing bidders as I do in ascending informal
auctions defined later.

20



was considering deals with other pharmaceutical companies as well.

Investments are always efficient conditional on auction timing when the seller cannot

commit to pre-specified security design, and in equilibrium, every bid is equivalent to cash.

This strengthens the conclusion in DKS: cash is not only the cheapest way for a better

type to separate from worse types; it is also the most efficient way. This section further

shows the seller times the auctions inefficiently late, and when the bidders can initiate in

an ascending informal auction, they always do so in equilibrium. Because auction timing,

bidding, and investment involve sequential actions, the equilibrium concept for informal

auctions is Perfect Bayesian Equilibrium.

4.1 A Signaling and Timing Game

If the seller commits to neither a pre-specified timing of the auction nor a bidding and

allocation rule, she holds the auction at the most opportune time, and then chooses the bid

that gives her the highest expected payoff based on her beliefs regarding the type of each

bidder at the time the auction is held. A first-price informal auction therefore exhibits

features of a signaling and timing game of the following form:

1. The seller initiates the auction at some time ta ≥ 0, the bidders learn the support [θ, θ]

and their own types.

2. Participating bidders submit informal bids simultaneously. An informal bid Πi by

bidder i is a cash payment Ci and a standard security payment Si(P ).

3. The seller chooses the winning bidder rationally according to the valuation function

R(Πi) = Ci + E[Rθ(S
i)|Θ(Πi)] provided she values the bid more than the reservation

value Y . Θ(Πi) is her belief of bidder i’s type upon seeing the bid and all available

information, and Rθ(S
i) = E[e−rτ

i
θSi(Pτ iθ)], where τ iθ is the optimal stopping rule for

type θ when bidding Πi, that is, τ iθ = argmaxτ≥ta E[e−rτ (Pτ − Si(Pτ )− θ)]−X − Ci.

4. The winning bidder i pays the upfront cash Ci and the initial cost X at ta, and then

invests rationally at τ iθi and makes the contingent payment.

Note the seller’s valuation R(Πi) is not necessarily the same as the value of the security to

bidder i, Ci+Rθi(S
i). One may question if the setup of the game misses out on any informal
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offers, such as contracting on the timing of investment when feasible. The results are robust

to additional side contracts because one can enlarge the security space from S(Pt) to S(It)
where It is the entire contractible information set, as long as limited liabilities hold. The

proofs apply with minor changes in notations.34

I work backward to solve for the bidding equilibrium before deriving the seller’s endoge-

nous timing of the auction.

Lemma 5. The seller and a participating bidder i have the same valuation for bid Πi, that

is, R(Πi) = Ci +Rθi(S
i).

If this were not the case, at least one bidder would find the seller values his security payment

less than he does, and would rather pay the seller’s valuation in cash, which keeps his

marginal probability of winning the same.

Lemma 6. In a bidding equilibrium, a participating bidder i has τ iθi = τ ∗i , where τ ∗i is the

stopping time corresponding to the threshold strategy with investment trigger P ∗(θi).

The intuition is that if a bidder does not invest efficiently upon winning, he can always

deviate to a bid that results in efficient investment, and offer more cash to the seller to

increase his marginal probability of winning without reducing the payoff upon winning.

Lemma 7. Informal auctions only admit fully-separating equilibria.

Because every bidder upon winning invests efficiently, a better type generates greater social

surplus and can offer more to separate from worse types. This lemma also implies that no

two bidders place the same bid. These results lead to the next key result of the paper:

Theorem 2. An essentially unique bidding equilibrium exists for an informal FPA, which is

equivalent, in terms of allocation outcome and expected payoffs, to a first-price cash auction

with reserve price Y . In particular, post-auction investment is efficient.

In equilibrium, the bids are all cash-like, that is, their values are independent of beliefs

on bidders’ types. A better type finds it cheaper to use a security that is less sensitive

to the true type and creates more social surplus. For example, using equities to separate

from worse types not only inefficiently delays investment, but also costs better types more

34The results also hold for non-standard security bids as long as optimal investment strategy exists.
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because their α shares are worth more than the worse types’. Cash-like securities ensure

efficient investment and cheap separation and are thus most attractive. Moreover, because

a better type is indifferent to mimicking a marginally worse type in equilibrium, all bidders

must be using cash-like securities.

Given Proposition 2, and the revenue equivalence between FPAs and SPAs in cash, the

seller’s auction timing problem is equivalent to the strategic timing of a first-price or second-

price cash auction. From Theorem 1,

Corollary 2. The seller inefficiently delays holding a first-price informal auction.

The intuition is the same as in timing cash auctions. A welfare maximizer initiates only

when the auction payoff exceeds the cost of ownership transfer by a certain threshold. But

the seller faces the additional cost in the form of information rent paid to the winning

bidder; thus, her option value starts to erode only with higher Pa, commanding a higher

option premium for holding the auction. Compared to formal auctions, informal auctions

are inefficient solely due to auction timing.

4.2 Ascending Informal Auctions

As McAdams and Schwarz (2007) point out, in real life committing to a sealed-bid auction

is hard, especially in corporate acquisitions.35 The board of directors of a target firm has

to disclose all bids to shareholders, and considers subsequent offers to avoid shareholder

lawsuits. In reality, informal auctions either entail sellers and buyers’ engagement in multiple

rounds of negotiations and repeated communications, or manifest themselves in two-stage

auctions used in privatization, takeover, and merger and acquisitions.36 The former resembles

an informal English auction in which buyers raise their bids until one winner emerges, Perry,

Wolfstetter, and Zamir (2000) show the latter are typically robust mechanisms equivalent to

an English auction. This calls for the definition of an ascending informal auction:

1. The seller initiates the auction at some time ta and all agents enter the bidding stage.

35Even in formal auctions, such a commitment is difficult to maintain. in ”Lawsuit Seeks to Block Sale
of G.M. Building”, New York Times, September 20, 2003, Charles Bagli documents how General Motors
entertained a late offer after auctioning its Manhattan building in a first-price auction.

36For example, see Frankel (2011).
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2. The seller gradually increases a numerical score R from R = Y , and a bidder remains

in the auction if he can deliver an informal bid from a ”feasible set” {Π : R(Π) ≥ R}.
The auction ends when only one bidder is left, and he chooses an informal bid from

the final “feasible set.”

3. The winning bidder i pays the upfront cash Ci and the initial cost X at ta, and then

invests rationally at τ iθi and makes the contingent payment Si(Pτ iθi
), where Ci and Si

are given by his chosen final bid.

Note this variant of the English auction is equivalent to SPAs, in which bidders bid a score

they generate and the winner pays the second-highest score bid.37 This a priori is different

from SPAs in which the winning bidder pays the informal bid corresponding to the second

highest score. This distinction is important because the same security bids generally cost

the buyers differently. In what follows, I show this ascending informal auction leads to the

same auction timing and expected revenue for the seller, and is not subject to renegotiation

from the bidders.

Lemma 5 applies to the winner’s final bid and the losers’ drop-out bids, and since bidder

i can bid a maximum value of W (Pa; θi) − X, bidding until the score reaches this value is

an undominated strategy. This implies Lemma 7 is true for ascending informal auctions.

Finally, Lemma 6 applies to the winner’s bid; otherwise, a profitable deviation using cash

exists.

Theorem 3. An ascending informal auction has an essentially unique bidding equilibrium

that is equivalent to a second-price cash auction with reserve price Y . Post-auction invest-

ment is efficient, and the optimal auction timing strategy is the same as in cash auctions

and first-price informal auctions.

Theorems 2 and 3 establish useful benchmark outcomes for endogenous timing, informal

bidding, and post-auction investment. They do not imply bidders only use cash in informal

auctions, but when bidders are not liquidity constrained, they would use contingent securities

that result in the same outcomes as using cash. Moreover, other complicating factors exist

37Defining an ascending auction with multiple security bids is challenging, and Gorbenko and Malenko
(2014), another pioneering study to formalize an English auction with security bids (both cash and equity),
is closely related to this paper.
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in reality, such as the seller’s informational advantage, or risk-sharing and tax considerations

that would alter the results. For example, Malmendier, Opp, and Saidi (2012) show that

when an acquirer firm’s stocks are overvalued, the acquirer tends to use stocks as a payment,

but when such issues are absent, it indeed uses cash - consistent with this paper’s findings.

This paper abstracts from these considerations and focuses on signaling through contingent

securities and post-auction moral hazard of investment timing - key issues in the literature

of security-bid auctions.

4.3 Bidder Initiation

So far, we have assumed the bidders have no knowledge of the investment option until the

auction, which is realistic when the seller possesses key proprietary information about the

asset that is costly to reveal or communicate prior to the auction. Yet, in real life, especially

in M&As and patent sales, we often see bidders who possess information about the asset

and can initiate the auction.38 This section analyzes the case in which “informed” bidders

know their types and the support of types prior to the auction and both seller and bidders

can initiate. The fact that all parties dynamically update their beliefs about the distribution

of types complicates the game. Although a bidding equilibrium with first-price informal

auction can be derived that involves mixing strategies by the initiating bidder, it does not

survive bidders’ offer adjustments and renegotiations. Therefore I focus on the more realistic

ascending informal auctions and on symmetric equilibria with a weakly monotone threshold

for initiation; that is, if θ < θ′, the initiation threshold for bidder θ is weakly lower than that

for θ′.

To avoid extended discussions of off-equilibrium-path beliefs and bidders’ signaling to the

seller, let us restrict our attention to cases in which the seller does not observe the initiating

bidder’s identity, which is the case in oil and gas auctions.39 The ensuing analysis would also

apply to cases in which initiations involve cash-like offers only or the seller does not form

beliefs about the initiating type. Basically, this assumption allows us to isolate the learning

and timing aspect of bidders’ initiation.40 I also assume indifference in timing is resolved by

38See Fidrmuc, Roosenboom, Paap, and Teunissen (2012), and Gorbenko and Malenko (2014).
39Prior to the introduction of Area Wide Leasing (AWL) in May 1983, energy firms could nominate oil

and gas tracts to be auctioned but the seller does not use the nomination record. Firms thus could initiate
an auction without being identified.

40This setup still allows signaling to other bidders. If the bidder could also signal his identity to the seller
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initiating later.41

Proposition 3. With informed bidders, an ascending informal auction admits an essen-

tially unique auction timing equilibrium42, whereby bidders always initiate with threshold

max{PI(θ), P0} where PI(θ) is weakly increasing in θ and uniquely solves

∫ θ̂

θ

d

dP

W (P ; θ)−W (P ; θ′)

P β

∣∣∣∣
P=PI

f(θ′)[1− F (θ′)]N−2dθ′ = 0, (9)

and θ̂ solves W (PI ; θ̂) = X + Y .

The intuition is that if the auction has not been initiated at P , everyone updates their

beliefs about types that are present. The seller times the auction to maximize the second-

highest valuation, whereas type P−1I (P ) times the auction to maximize the present value

of informational rent (difference between his valuation and the second-highest valuation).

The latter starts to erode earlier than the former as the initiation threshold Pa increases.

Therefore, the seller always waits in such an equilibrium.

The prediction that bidders initiate when informed is broadly consistent with empirical

evidence. For example, the above result predicts that a bidder initiates only when his real

option is in the money, which implies an investment option is, on average, exercised more

quickly when bidders initiate than when a seller initiates strategically or randomly. Cong

(2013) uses the data on leasing and exploration of oil and gas tracts in the Gulf of Mex-

ico with over 20,000 leases to test this implication, and by estimating a Cox proportional

hazards model with time-varying covariates for the window of 1978-1989, finds that when

bidders could initiate before the implementation of Area-Wide Leasing (AWL) in May 1983,

they did so and explore-drilled at least 10% faster than after AWL. This difference trans-

lates into waiting time being doubled after AWL. Another example is that patent holders

rarely organize an auction and instead are often approached by acquirers when details of

the patent are public information. Also, because strategic bidders are more likely to have

via initiation, the bidding strategy would depend on auction initiation. In the context of ascending informal
auction, we would need complicated restrictions of off-equilibrium-path beliefs that are beyond the scope of
this paper. Gorbenko and Malenko (2014) consider such signaling effect in details.

41This assumption can be formally justified by a small initiation cost, then taking the cost to zero.
42This is a Markovian Perfect Bayesian Equilibrium if we use both Pt, and P̂ := sup{Pt′ , t′ ≤ t} as state

variables, though on the equilibrium path they coincide
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information regarding valuation than financial bidders, acquisitions by strategic bidders in

informal negotiations are primarily bidder-initiated, whereas private equity deals are more

often target-initiated.43 The analysis here can be extended to situations, in which the bid-

ders are informed with certain probabilities, in which case the seller initiates the auction if

the informed bidders with highest valuations are absent. This result implies that when the

seller initiates, the surplus generated tends to be smaller, consistent with the fact that the

adjusted acquisition premium is lower for target-initiated deals (see Fidrmuc, Roosenboom,

Paap, and Teunissen (2012)).

5 Conclusion

Auctions of real options are ubiquitous, involve tremendous financial resources, and have

policy implications. To better understand these business transactions, this paper extends

prior studies on security-bid auctions and real options to incorporate endogenous auction

timing and moral hazard of option exercise. I find that both endogenous auction initiation

and the seller’s commitment to the auction design significantly influences equilibrium out-

comes and are integral to selling real options. Commitments to common security designs

lead to inefficient and often sub-optimal accelerations or delays in investment, but without

such commitments, the bidding equilibria are equivalent to cash auctions, and post-auction

investments are efficient. Most auctions are inefficiently timed, and informed bidders always

initiate when feasible. I also find that optimal auction design involves combinations of cash

and royalty payments in real life, and entails inefficient sales and investments. Taken to-

gether, the results of the paper challenge earlier approaches that analyze auction initiation,

security design, and corporate investments separately: the interactions of these factors in dy-

namic settings provide a rich interplay that is not accessible otherwise, and as a consequence,

many conventional beliefs should be revised.

As an initial attempt to capture the salient features of auctions of real options under

various settings, this paper adds insights to security bids, endogenous initiation, and agency

issues in the real-options framework, and helps understand real-life observations. More work

43For example, Fidrmuc, Roosenboom, Paap, and Teunissen (2012) document almost 80% are bidder-
initiated. Note the current model is more applicable to strategic acquisitions, in which bidders are more
likely to have private information regarding valuation than in financial acquisitions.
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is clearly needed, in particular, selling real options with renegotiation and resales is worth

exploring further. Incorporating sellers; private information is also important in many ap-

plications, especially M&As. Moreover, some of the novel predictions are consistent with

stylized facts, which is reassuring, and further empirical examinations may reveal more

quantitative relations.
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Appendix: Derivations and Proofs

A.1 Proof of Lemma 1

Proof. First note Ṽ ∈ [−X − C,W (Pa; θ) − X − C], thus the valuation is finite. The value function of

the optimal stopping is thus the infimum of a class of C2 functions with non-positive drift that majorize

P−S(P )−θ, and the stopping time is first-hitting. (Proposition 5.8, and 5.10 in Harrison (2013)). Therefore,

Ṽ (C, S(·), θ) = D(Pa;PL, PU ) [PL − S(PL)− θ] +D(Pa;PU , PL) [PU − S(PU )− θ]− C −X,

where D(Pa;PL, PU ) is the Arrow-Debreu security that pays one dollar when P first hits before PL before

hitting PU , and D(Pa;PU , PL) is similarly defined. And PL ∈ [0, Pa] and PU ∈ [Pa,∞] are the optimal

lower and upper thresholds for investment. D(Pa;PL, PH) satisfies 1
2σ

2P 2DPP + µPDP − rD = 0 with

the boundary conditions D(PL;PL, PU ) = 1 and D(PU ;PL, PU ) = 0. The solution is D(Pa;PL, PU ) =(
P βa − P γa P

β−γ
U

)(
P βL − P

γ
LP

β−γ
U

)−1

, and similarly, D(Pa;PU , PL) =
(
P βa − P γa P

β−γ
L

)(
P βU − P

γ
UP

β−γ
L

)−1

,

where β is given in (2) and γ = 1− 2µ/σ − β < 0. The optimal PL and PH are obviously independent of X

and C and are functions of θ and Pa in general.

Finally, type θ can always do strictly better than θ̃ > θ by using θ̃’s strategy, thus Ṽ (C, S(·), θ) is

decreasing in θ. For Pt in the exercise region, Ṽ (C, S(·), θ) = Pt−S(Pt)−θ−C−X is obviously continuous in

θ. For Pt in the continuation region, consider a change of ∆θ > 0, 0 < Ṽ (C, S(·), θ)−Ṽ (C, S(·), θ+∆θ) ≤ ∆θ

because type θ+∆θ does weakly better than simply mimicking θ’s strategy. As ∆θ → 0, Ṽ (C, S(·), θ+∆θ)→
Ṽ (C, S(·), θ). The case of ∆θ < 0 is similar. Continuity in θ follows.

A.2 Proof of Lemma 2

Proof. Since an upper threshold strategy has payoff
(
Pa
P

)β
[P −S(P )−θ] for P ≥ Pa, threshold P̃ is optimal

among all upper threshold strategies. I now verify that it is optimal among all stopping times by showing

the expected value following any stopping time is bounded above by the expected value associated with the

P̃ -threshold strategy.

Let xt = e−rtŴ (Pt), where Ŵ (Pt) = D(Pt; P̂ )[P̂ − S(s, P̂ ) − θ] and P̂ = max{Pt, P̃}. For P ≤ P̃ ,

using an extended version of Itô’s formula (as, for example, in Karatzas and Shreve (1988), page 219),

dxt = e−rt[DŴ (Pt)− rŴ (Pt)]dt+ e−rtŴP (Pt)σPtdBt, where DŴ (P ) = ŴP (P )µP + 1
2ŴPP (P )σ2P 2. ŴP

is bounded as seen by direct computation, thus by Proposition 5B in Duffie (2009) (also found in Protter

(2004)), the last term in dxt is a martingale under the current measure. The drift is DŴ (P )− rŴ (P ) = 0

by the definition of β in (2). For P > P̃ , apply Tanaka’s Formula (Revuz and Yor (1999), also Karatzas

and Shreve (1988)), the drift DŴ (P ) − rŴ (P ) = µP [1 − S′(P )] − r[P − S(P ) − θ] − 1
2σ

2P 2S′′(P ) <

[µ+ 1
2 (β−1)σ2]P [1−S′(P )]−r[P−S(P )−θ] < [µβ+ 1

2σ
2β(β−1)−r][P−S(P )−θ] = 0, using (Conv) and the

definition of β. Since to the discounted occupancy measure, there is a discounted local time l (Stokey (2009),

Theorems 3.6 and 3.7), the additional local time term in dxt when S′(P ) jumps is 1
2σ

2
∫
R+ l(P, t, r)ν(dP ),

where ν((a, b]) ≡ Ŵ ′(b)−Ŵ ′(a), is non-positive due to (Conv). Therefore, xt is a super-martingale, implying

for any stopping time τ , Ŵ (P0) = x0 ≥ E[xτ ] = E[e−rτŴ (Pτ )] ≥ E[e−rτ (Pτ − S(s, Pτ ) − θ)]. The equality

holds for the first-hitting time with threshold P̃ , establishing its optimality. Finally, when P − S(P ) is

non-decreasing in P , Ṽ is non-decreasing in Pa since the optimal exercise involves upper-threshold only.
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A.3 Characterization of Investment Distortion

Relative to what is socially efficient ex post the auction, (a) a project rationally invested at P is weakly

delayed if βS(P ) − PS′(P ) > 0, and weakly accelerated if βS(P ) − PS′(P ) < 0, regardless of the winning

bidder’s type; (b) a winning bidder of type θ will invest weakly late if (β − 1)S
(

β
β−1θ

)
> θS′

(
β
β−1θ

)
, and

weakly early if (β − 1)S
(

β
β−1θ

)
< θS′

(
β
β−1θ

)
.

These results follow directly from Lemma 2 and (Conv). If a project rationally invested at P is acceler-

ated, then βθ − (β − 1)P > 0. If in addition βS(P ) − PS′(P ) exists and is positive, waiting for a slightly

higher P for exercise would be better by (Conv), contradicting the project is rationally invested. Therefore

βS(P )−PS′(P ) > 0 implies a project rationally invested cannot be accelerated. Similarly, βS(P )−PS′(P ) <

0 implies a project rationally invested cannot be delayed. Next if (β− 1)S
(

β
β−1θ

)
> θS′

(
β
β−1θ

)
, a winning

bidder of type θ would prefer delaying further at P = β
β−1θ. With (Conc), the optimal threshold must be

weakly higher than P = P ∗(θ), hence the investment is weakly delayed. The rest of result (b) follows a

similar argument.

Basically if the contingent payment as a fraction of total cash flow grows too quickly (slowly) as cash

flow increases, the bidder may choose invest earlier (later) than what is socially efficient.

A.4 Proof of Lemma 3

Proof. For s1 < s2 and θ1 < θ2, because V (s, θ) is absolutely continuous with derivative in s decreasing in

θ,

ln

(
V (s1, θ1)V (s2, θ2)

V (s1, θ2)V (s2, θ1)

)
=

∫ s2

s1

∂V (s′, θ2)

∂s
ds′ −

∫ s2

s1

∂V (s′, θ1)

∂s
ds′ < 0 (10)

i.e., V (s, θ) is log-submodular, and thus strictly submodular. Let Q(s) be the probability of winning.

Because s(θ) ∈ argmaxsQ(s)V (s, θ) = argmaxs ln(Q(s)V (s, θ)), by Topkis (1978), s(θ) is non-increasing in

θ. If s(θ) < sH were constant on an interval, the bidder with the lower θ can increase his bid marginally and

increase his probability of winning (thus his payoff) by a discrete amount. Therefore s(θ) must be decreasing

in type for types bidding less than sH . Therefore, Q(s(θ)) = [1− F (θ)]N−1. Note s is also continuous in θ,

lest a type right below a discontinuity could lower his bid marginally without affecting the chance of winning.

Next, by direct revelation, θ ∈ argmaxθ′∈[θ,θ]Q(s(θ′))V (s(θ′), θ). For any θ′ < θ,

Q(s(θ))V (s(θ), θ) ≥ Q(s(θ′))V (s(θ′), θ) = Q(s(θ′))[V (s(θ), θ) + V1(s∗, θ)[s(θ′)− s(θ)]]

for some s∗ between s(θ′) and s(θ). Since V1 < 0, the above expression can be written as

Q(s(θ′))−Q(s(θ))

θ′ − θ
V (s(θ), θ)

−Q(s(θ′))V1(s∗, θ)
≥ s(θ′)− s(θ)

θ′ − θ

Similarly, exchanging θ and θ′, for some s∗∗ between s(θ) and s(θ′),

Q(s(θ′))−Q(s(θ))

θ′ − θ
V (s(θ′), θ′)

−Q(s(θ))V1(s∗∗, θ′)
≤ s(θ′)− s(θ)

θ′ − θ

Taking the limit we get (5).

As V (s, θ) is continuous in s over [sL, sH ] and decreasing in θ, maxs V (s, θ) exists and sup{θ ≤ θ|[1 −
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F (θ̂)]N−1 maxs V (s, θ̂) ≥ 0} gives the cutoff type. In equilibrium, s(θ̂) = sup{s ∈ [sL, sH ]|V (s, θ̂) ≥ 0},
otherwise bidding slightly more increases the winning probability discretely from zero while still breaking

even upon winning. As V (s(θ̂), θ̂) ≤ W (Pa; θ̂) − X and W (Pa; θ̂) − X = 0 in cash auctions, the cutoff

type for security bids is in general weakly smaller than that in cash auctions. With the absolute continuity

assumption in the proposition, the cutoffs are the same as in cash auctions.

This establishes uniqueness of the equilibrium, whose existence follows from the sufficiency of bidders’

F.O.C. - the quasiconcavity of ln(Q(s)V (s, θ)). For any s′ ∈ (s(0), s(θ)), ∃θ′ ∈ (0, θ) such that s(θ′) = s′.

Submodularity of V implies ∂
∂s ln[Q(s′)V (s′, θ)] > ∂

∂s ln[Q(s′)V (s′, θ′)] = 0. Similarly, ∂
∂s ln[Q(s′)V (s′, θ)] <

0 for s′ ∈ (s(θ), s(θ)). Therefore for every θ, there exists a unique s maximizing Q(s)V (s, θ).

A.5 Proof of Lemma 4

Proof. Since Π is a left-continuous map, V (s, θ) is left-continuous in s by an argument similar to the one in

Lemma 1 for V (s, θ) to be continuous in θ. Therefore s(θ) is well-defined. Suppose a participating bidder

of type θ bids s > s(θ), he benefits from decreasing s to reduce the states of the world in which he wins

but receives negative payoff. Similarly, he wants to increase s when s < s(θ), assuming any indifference in

bidding is resolved by bidding higher. As V (s, θ) is decreasing in θ, for θ′ > θ, V (s(θ), θ′) < V (s(θ), θ) = 0 =

V (s(θ′), θ′). Thus s(θ) > s(θ′), leading to s(θ) being decreasing. The cut-off type is the same as in FPAs by

an argument similar to that in the proof of Lemma 3.

A.6 Discussion of Cash Dominating M-regular Securities

Proof. Suppose s is the security the type θ bids, without loss of generality, bi(s) ≤ bj(s) if i ≤ j. I define

M-regular security to be a class of contingent securities in the form
∑
i∈I ai(s)[P − bi(s)]+, where I is a

countable set and
∑
i ai(s) ≤ 1 ∀s, such that for M > 0, and β

β−1θ ∈ [bm, bm+1),

min

∣∣∣∣ β

β − 1
θ − bm

∣∣∣∣ , ∣∣∣∣ β

β − 1
θ − bm+1

∣∣∣∣ ,
∣∣∣∣∣∣
∑
i≤m

aibi − θ
∑
i≤m

ai

∣∣∣∣∣∣
 > M. (11)

Most common securities are M-regular securities or can be closely approximated by M-regular securities.

For example, equity corresponds to a1 = α(θ), a2 = b1 = 0, b2 = ∞. For any M > 0, cash bids dominate

M -regular securities in FPAs and SPAs in terms of expected revenue and social welfare, as the number of

bidders gets large.

To show this, consider pure contingent securities. Extension to include cash is straightforward. Condi-

tional on an auction timing, cash auctions lead to efficient investments and obviously dominate in terms of

welfare. For the seller’s revenue, first consider SPAs. The revenue is E[e−rτ̃S(s(θ(2)), Pτ̃ )1{θ(2)≤θ̂}]

= E[
(
e−rτ̃ (Pτ̃ − θ(1))− U(τ̃ , s(θ(2)), θ(1))

)
1{θ(2)≤θ̂}] ≤ E[

(
e−rτ̃ (Pτ̃ − θ(1))−X

)
1{θ(1)≤θ̂}] ≡ R0, where τ̃ =

argmaxτU(τ, s(θ(2)), θ(1)) and U(τ, s, θ) = E[e−rτ (Pτ − S(s, Pτ ) − θ)]. Similarly in FPAs, the revenue is

bounded above by R0 with τ̃ = argmaxτU(τ, s(θ(1)), θ(1)). Let sw denote the index the winning bidder pays

in general. Then in FPAs and SPAs, the revenue is bounded above by R0 with τ̃ = argmaxτU(τ, sw, θ(1))

The revenue from cash auction would be the expected second highest valuation R2 ≡ E[(W (Pa; θ(2)) −
X)1{θ(2)≤θ̂}]. When N →∞, θ(2) − θ(1)

a.s.→ 0. Thus W (Pa; θ(2))−W (Pa; θ(1))
a.s.→ 0. Now 1{θ(2)≤θ̂} and the

above are bounded, by bounded convergence, R2 converges a.s. to R1 ≡ E[(W (Pa; θ(1))−X)1{θ(1)≤θ̂}].
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If R1 − R0 converges to a quantity bounded below by a positive constant, the claims follow. First

note U(τ, sw, θ(1)) admits an optimal stopping solution involving threshold strategies. To see this, write

U(τ, sw, θ(1)) = D(Pa;P )[P − θ(1) −
∑
i∈I ai(sw)[P − bi(sw)]+], which admits a maximizer P̃ (θ(1)). Then

use that as an investment trigger and apply the standard verification argument. Next, as θ(1) − θ
a.s.→ 0,

the investment trigger in cash auctions converges to P ∗ = β
β−1θ, and P̃ (θ(1)) to P̃ ∗ = P̃ (θ). Whether

P̃ ∗ ∈ [bm, bm+1) or not, |P̃ ∗ − P ∗| ≥ M . Since P ∗ is the optimal trigger for E[e−rτ (Pτ − θ)], R1 − R0
a.s.→ ε

for some ε > f(M), where f(M) is a function of M that is positive and independent of N . Therefore as N

becomes big, R2 converges to R1 which dominates R0 in the limit. Thus cash auctions yield higher revenue

than the security-bid auctions.

A.7 Proof of Proposition 1

Proof. Let Q(θ̃i, θ−i) be the probability of allocating the project to bidder i, who has investment cost

K(θi, θ−i), where K is symmetric in other bidders’ report types, and has positive derivative in θi denoted

by K1 that is uniformly bounded by a constant A > 0. In the main model of this paper, K(θi, θ−i) = θi,

but this specification allows other cases with interdependent values such as common-value auctions.

The expected utility at time zero to type θi upon participating and optimally investing is

U(θi, θ̃i) = Eθ−i
[
Q(θ̃i, θ−i) max

τ≥ta
EP
[
e−rτ (Pτ −K(θi, θ−i))−

∫ ∞
ta

e−rtS(θ̃i, θ−i, It)dt− e−rtaX
]]
.

As S(θ̃i, θ−i, It) could be artificially constructed that an optimal stopping time for exercising the real option

may not exist, it is reasonable to focus attention on the set of S(θ̃i, θ−i, It) such that an optimal stopping

time exists for all types under a direct mechanism. With this restriction, let τ∗(θi, θ̃i, θ−i) denote the optimal

stopping time that is almost surely bigger than ta, and τ∗i = τ∗(θi, θi, θ−i). Incentive compatibility requires

U(θi) ≡ U(θi, θi) ≥ U(θi, θ̃i) and the individual rationality requires U(θi) ≥ 0.

The IC constraint can be written as θi ∈ argmaxθ̃i∈[θ,θ] U(θi, θ̃i) ∀ i. Let a = (τ, θ̃) denote the action

pair of reporting θ̃ and rationally exercise following the stopping time τ . Let

g(a, θ) = Q(θ̃, θ−i)EP
[
e−rτ (Pτ −K(θi, θ−i))−

∫∞
ta
e−rtS(θ̃, θ−i, It)dt− e−rtaX

]
Then following the argument in Milgrom and Segal (2002), for any θ′,θ′′ ∈ [θ, θ] with θ′ < θ′′,

|U(θ′)− U(θ′′)| =Eθ−i
[∣∣∣∣sup

a′
g(a′, θ′)− sup

a′′
g(a′′, θ′′)

∣∣∣∣]
≤Eθ−i

[
sup
a
|g(a, θ′)− g(a, θ′′)|

]
= Eθ−i

[
sup
a

∣∣∣∣∣
∫ θ′

θ′′
gθ(a, θ)dθ

∣∣∣∣∣
]

≤Eθ−i

[∫ θ′′

θ′
sup
a
|gθ(a, θ)| dθ

]
≤ A|θ′′ − θ′|

This implies U(θ) is absolutely continuous, and thus differentiable everywhere. U(θ) = U(θ)−
∫ θ
θ
U ′(θ′)dθ′.

By Theorem 1 in Milgrom and Segal (2002), U ′(θ) = gθ(a
∗, θ). Writing it in the integral form gives that any
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incentive compatible and individually rational mechanism satisfies

U(θi) = Eθ−i

[∫ θ

θi

Q(θj , θ−i)EP [e−rτ
∗
j ]K1(θj , θ−i)dθj

]
+ U(θ) (12)

where U(θ) ≥ 0. Moreover τi ≥ ta ∀i for time consistency.

The ex-ante social welfare is NE~θ[Q(θi, θ−i)
(
EP [e−rτ

∗
i (Pτ∗i −K(θi, θ−i))]− e−rta(X + Y )

)
], and the

seller’s ex ante revenue is the social welfare less the agents’ ex-ante utilities: NE~θ[Q(θi, θ−i)(EP [e−rτ
∗
i (Pτ∗i −

K(θi, θ−i))] − e−rta(X + Y ))] −NE~θ[U(θi)]. Using (12) and taking expectations over the winning bidder’s

type, it becomes

NE~θ[Q(θi, θ−i)(EP [e−rτ
∗
i (Pτ∗i −K(θi, θ−i)− F (θi)/f(θi))]− e−rta(X + Y ))]−NU(θ) (13)

When K(θi, θ−i) = θi, this simplifies to NE~θ[Q(θi, θ−i)(EP [e−rτ
∗
i (Pτ∗i − z(θi))]− e

−rta(X + Y ))]−NU(θ).

With standard securities, a participant with the least cost wins, the proposition follows.

A.8 Proof of Proposition 2

Proof. To maximize seller’s revenue, for every realization of the types and any allocation rule, the seller

wants winner θi to invest when P first hits P ∗(z(θi)). The proposed contingent payment achieves this

outcome because given the royalty rate for type θ, the investment threshold is P bonus = β
β−1

θ
1−φ = β

β−1z(θ).

Moreover, U(θ) = 0 and the project is only allocated to types that contribute positively to the revenue. z is

increasing in θ leads to the unique cutoff type θ̂ proposed and allocation to a participant with the smallest

θ. With interdependent values, for the same set of realized types, assume K(θi, θ−i) ≤ K(θj , θ−j) if θi ≤ θj .
Then the cutoff type is well defined and the type with the smallest θ gets allocated the real option, if at all.

That U(θi) is decreasing in θi implies any mechanism satisfying the above meets IR of all types. Suppose

θi < θ̃i, (12) leads to U(θi, θ̃i) = U(θ̃i)−
∫ θ̃i
θi
U1(θ, θ̃i, τ

∗(θ, zi(θ̃i, θ−i, ·)))dθ ≤ U(θ̃i)−
∫ θ̃i
θi
U1(θ, θ, τ∗(θ, zi(θ, θ−i, ·)))dθ

= U(θi), where the inequality follows from the differential form of (12) and the fact that reporting a higher

investment cost leads to a lower probability of winning and a later investment. Similarly, U(θi, θ̃i) ≤ U(θi)

for θi > θ̃i. Thus incentive compatibility holds if (12) holds, which requires the C(θi, θ−i) given in the

proposition.

A.9 Proof of Theorem 1

Proof. Denote Pτ∗(θ(1),θ(2) as Pτ∗ . The seller’s expected utility for holding auction when Pa is first reached

can be written as

D(P0;Pa)

∫ θ̂

θ

∫ θ̂

θ

N(N − 1)

2
f(θ)f(θ′)[1− F (θ)]N−2[D(Pa;Pτ∗)[Pτ∗ − θ − χ

F (θ)

f(θ)
]−X − Y ]dθ′dθ. (14)

where χ = 1, Pτ∗(θ) is the winning bidder’s investment threshold according to Lemma 2, and θ̂ is the cutoff

type. The derivative w.r.t. Pa is

D(P0;Pa)

Pa

∫ θ̂

θ

∫ θ̂

θ

N(N − 1)

2
f(θ)f(θ′)[1− F (θ)]N−2

[
β (X + Y ) + I{Pa>Pτ∗} [βz(θ)− (β − 1)Pa]

]
dθ, (15)
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where I have used the fact that marginal revenue from an interior cutoff type is zero. This expression is

continuous in Pa with derivative positive for Pa < P where P = minθ,θ′ Pτ∗(θ) and negative for a big enough

constant P Thus there exists Pa in the compact region [P , P ] that maximizes (14). This proves the existence

of optimal threshold strategy for auction timing, and the fact that the seller never holds the auction when

no bidder would exercise immediately.

Now apply the above argument to welfare, an efficient threshold strategy exists, and the derivative of

social surplus w.r.t. Pa is

D(P0;Pa)

Pa

∫ θ̂

θ

∫ θ̂

θ

N(N − 1)

2
f(θ)f(θ′)[1− F (θ)]N−2

[
β (X + Y ) + I{Pa>Pτ∗} [βθ − (β − 1)Pa]

]
dθ, (16)

which is smaller than (15) for every Pa. At the optimal threshold Popt, integrating (15) over [Popt, Pa] must

be negative for any Pa > Popt. Thus integrating (16) over [Popt, Pa] must also be negative for any Pa > Popt,

implying the efficient threshold Peff ≤ Popt. Another way to see this is that Equation (14) with χ = 0

corresponds to welfare, and the equation is supermodular in (Pa, χ). Thus a seller optimally delays the

auction beyond the socially efficient threshold given the same security design and allocation rule.

Finally, if the security design is not fixed, the above argument combined with the Envelop Theorem give

the result in Corollary 1.

A.10 An Extension to the “Mineral Rights Model”

In addition to being analytically tractable when analyzing auction timing, the private-value framework

is not unrealistic in the sense that the dispersion of bidder types over the common component, such as

signals on the amount of oil reserve has decreased in recent years due to technological improvement, and the

government typically provides as much information as possible to the buyers. By contrast, firms often have

private drilling technologies, and retail and transportation contractors, which fit private-value settings.

Given that the literature has usually adopted the “Mineral Rights Model” with interdependent values,

it is important discuss how the key insights in the optimal design generalize in such settings. To do this,

let the investment cost is K(θi, θ−i), where K is symmetric in other bidders’ report types, and has positive

derivative in θi denoted by K1 that is uniformly bounded by a positive constant. In the main model of

this paper, K(θi, θ−i) = θi, but this specification allows other cases with interdependent values such as

common-value auctions where K(θi, θ−i) = 1
N

∑
j θi.

In “bonus-bid” auctions, the winning bidder owns a fraction 1− φ of the project and has a real option

value L(θ, θ−1) = maxτ E[e−r(τ−ta)((1 − φ)Pτ − K(θi, θ−i))] − X. Scaling the cash flow in Eq.(2) gives

the optimal investment threshold P bonus(θ) = max{Pa, β
β−1

K(θi,θ−i)
1−φ } ≥ P ∗(K(θi, θ−i)), thus investment

is inefficiently delayed. The equilibrium bidding strategies are standard from Proposition 6.3 in Krishna

(2009):

C(θ) =

∫ θ̂

θ

E[L(θ′, θ′−1)|θ′(1) = θ′]

1− F (θ)
f(θ′)dθ′ (17)

where θ′(1) is the type with least cost among the remaining bidders, and θ̂ is the cut-off type for participation.

In the proofs of Propositions 1 and 2, I have generalized Propositions 1 and 2 to interdependent-value

settings. I show that when K is such that θi ≤ θj implies K(θi, θ−i) ≤ K(θj , θ−j), the optimal security

design is still a combination of cash and royalty payment, with the equilibrium royalty rate for type θi
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modified to

φ(θi, θ−i) =
F (θi)

f(θi)K(θi, θ−i) + F (θi)
(18)

Thus a bonus-bid auction with a uniform royalty rate would not generate the highest revenue. Moreover,

investments are inefficiently delayed with both bonus-bid auction and auction with optimal security design.

Using the properties of the Wald distribution, the expected inefficient time delay when a royalty rate φ is

used is Γ = − ln(1−φ)/[µ− σ2

2 ], where we have assumed µ− σ2

2 > 0 for the expectation to exist.44 Moreover,
∂Γ
∂φ > 0, ∂Γ

∂µ < 0, ∂Γ
∂σ > 0, ∂2Γ

∂φ2 > 0, ∂2Γ
∂σ2 > 0, ∂2Γ

∂σ∂φ > 0. Not only do more volatile markets or high royalty

rates result in longer delays, but they are mutually reinforcing, with increasing marginal effects. What is the

social cost of the investment lag? It can be shown that the option value is a fraction (1 − φ + φβ)(1 − φ)β

of the socially efficient value, and the fractional loss L satisfies ∂L
∂φ > 0, ∂2L

∂φ2 > 0. Again, royalty rate has a

compounding effect on social cost.

A.11 Proof of Lemma 5

Proof. This is obviously true if only one type uses Πi. If more than one type use this bid, either it holds

or one of the types θ1 has Rθ1(Si) + Ci 6= R(Πi). Then ∃ θ2 (potentially = θ1) s.t. R(Πi) < Ci + Rθ2(Si).

Consider the deviation for bidder 2 in the subgame to a cash bid equal to R(Πi) and invest efficiently. This

deviation is profitable because he creates weakly greater social surplus, pays less, and has the same marginal

probability of winning. Thus by contradiction R(Πi) = Ci +Rθi(S
i) always.

A.12 Proof of Lemma 6

Proof. Now suppose τ iθi 6= τ∗i , consider deviating to a cash bid C = R(Πi). The payoff from deviation

E[e−rτ
∗
i (Pτ∗i −θi)]−R(Πi) dominates the original payoff E[e−rτ

i
θi (Pτ iθi

−θi−Si(Pτ iθi ))]−C
i = E[e−rτ

i
θi (Pτ iθi

−
θi)]−Rθi(Si)− Ci. Thus the deviation is profitable and the claim follows.

A.13 Proof of Lemma 7

Proof. Suppose a non-singleton set Θp of types pool to bid Π in FPAs, or have the same drop-out bid in

SPAs. The claim follows if there is always a profitable deviation by a type in this set.

From Lemma 6, a type θ in expectation pays C +D(Pa;P ∗(θ))S(P ∗(θ)). Let θk = argmaxθ′∈Θp Rθ′(S)

where Rθ′(S) = D(Pa;P ∗(θ′))S(P ∗(θ′)). Then R(Π) ≤ C + D(Pa;P ∗(θk))S(P ∗(θk)). If the inequality is

strict, type k can profitably deviate to cash bid R(Π). Otherwise, Rθi(S) = Rθj (S) = R(Π) − C, for some

θi < θj both in Θp, but there is still a profitable deviation:

We first argue that Θp contains a positive measure of types. For any θn ∈ (θi, θj)
⋂

Θc
p, call his bid Π̃.

Let Q and Q̃ be the probability of winning when bidding Π and Π̃. Since θi does not want to deviate to cash

bid R(Π̃), Q[W (Pa; θi) − R(Π) − X] ≥ Q̃[W (Pa; θi) − R(Π̃) − X]. Similarly, Q[W (Pa; θj) − R(Π) − X] ≥
Q̃[W (Pa; θj)−R(Π̃)−X]. As θi 6= θj , the equality signs cannot hold simultaneously. Thus for θn ∈ (θi, θj),

Q[W (Pa; θn) − R(Π) −X] > Q̃[W (Pa; θn) − R(Π̃) −X]. This means θn can profitably deviate to cash bid

R(Π). Therefore, it has to be that [θi, θj ] ∈ Θp.

44If µ < σ2/2, the median lag M can be considered instead.
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Next, note W (Pa; θi) − X − Rθi(S) − C > W (Pa; θj) − X − Rθj (S) − C ≥ 0. Type θi can deviate

profitably to cash bid ε+R(Π) which reduces his payoff by ε upon winning but increases his marginal chance

of winning by a discrete amount (because he separates from a positive measure of types).

A.14 Proof of Theorem 2

Proof. Consider the bidding strategy from a FPA in cash. The valuations for the bids are simply the cash

amounts. I show there exists a belief that supports an equilibrium with this bidding strategy in the informal

auction. First, there would not be any deviation to another cash amount since the bidding strategy comes

from the equilibrium in FPA cash auction. Next, for beliefs such that upon seeing an out-of-equilibrium

bid Πi, the auctioneer believes it comes from θ̃i = argminθ∈[θ,θ][Rθ(S
i) + Ci] and gives it a valuation R̃.

If bidder i finds this deviation attractive (yielding an expected payoff more than the original amount after

cash payments), then he also finds deviating to cash bid R̃ weakly more attractive, contradicting the fact

that no deviation to another cash amount is profitable. Thus the equilibrium from a first-price cash auction

is an equilibrium in the informal auction. The argument also applies to cash-like bid Π such that R(Π) is

independent of the seller’s belief on the bidders’ types.

Next I show any bidding equilibrium in the informal auction has the same allocation outcome and

expected payoffs as cash auctions. The seller forms correct beliefs about types since Lemma 7 rules out

pooling. Bidder i’s bid Si can be replaced by an equivalent cash bid. This would not change the marginal

probability of winning by Lemma 5, neither does it change the payoff upon winning as Lemma 6 implies the

total surplus is the same. Since the bidders face the same maximization problem as in a FPA with cash,

almost every bid is cash-like in terms of its expected payoff.

A.15 Proof of Theorem 3

Proof. In equilibrium, the proof of Lemma 5 goes through for the winner’s final bid and each type’s drop-out

bids, otherwise there must be multiple types using the same bid and for some type, its bid is undervalued

and he can profitably deviate to bidding cash. Since by bidding cash, bidder i has a value of W (Pa; θi)−X,

so he would remain in the game before the score surpasses this value. Since W (Pa; θi)−X 6= W (Pa; θj)−X
for θi 6= θj , different types drop out at different score values, resulting in a separating equilibrium strategy

of dropping out. When there is one bidder remaining, he has to pay a score at which the second last bidder

drops out. If the bid does not lead to efficient investment, the winning bidder can simply bid cash equal to

the score, and increase his own profit by investing efficiently. Therefore Lemma 6 holds.

With these results, the allocations, payoffs, and investment outcomes in a bidding equilibrium are iden-

tical to those in an ascending second price auction in cash. By revenue equivalence theorem, they are

equivalent to those in first-price and second-price cash auctions too. The auction timing strategy by the

seller is thus the same as that in a first-price informal auction.

A.16 Proof of Proposition 3

Proof. Conjecture that in equilibrium bidder θ initiates the auction with threshold PI(θ), which is increasing,

and the seller initiates with a threshold PS . Let θ(Pa) = sup{θ : PI(θ) ≤ Pa}. The expected payoff to the
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bidder θ following initiation threshold Pa ≤ PS is∫ θ(Pa)

θ

dθ′(N − 1)f(θ′)[1− F (θ′)]N−2

(
P0

PI(θ′)

)β [
[W (PI(θ

′); θ)−X − Y ]+ − [W (PI(θ
′); θ′)−X − Y ]+

]+
+

∫ θ

θ(Pa)

dθ′(N − 1)f(θ′)[1− F (θ′)]N−2

(
P0

Pa

)β [
[W (Pa; θ)−X − Y ]+ − [W (Pa; θ′)−X − Y ]+

]+
(19)

where θ′ is basically the first-order statistic of the remaining N−1 bidders; similarly the payoff when P > PS

is∫ θ(PS)

θ

dθ′(N − 1)f(θ′)[1− F (θ′)]N−2

(
P0

PI(θ′)

)β [
[W (PI(θ

′); θ)−X − Y ]+ − [W (PI(θ
′); θ′)−X − Y ]+

]+
+

∫ θ

θ(PS)

dθ′(N − 1)f(θ′)[1− F (θ′)]N−2

(
P0

PS

)β [
[W (PS ; θ)−X − Y ]+ − [W (PS ; θ′)−X − Y ]+

]+
(20)

Denote the solution to W (Pa, θ) = X + Y by P̂ (θ). Note when Pa ≤ PS , (P0/Pa)β ([W (Pa; θ)−X − Y ]+ −
[W (Pa; θ′)−X − Y ]+), if positive, is decreasing when Pa > P ∗(X + Y + θ), increasing at P̂ , and constant

for Pa < P̂ . Differentiating (19) w.r.t. Pa and applying Leibniz’s formula gives that in equilibrium P̂ ≤
PI(θ) ≤ P ∗(θ +X + Y ). Now for the seller, if she uses threshold Pa, the expected payoff is,

∫ θ(Pa)

θ

dθ′N(N − 1)f(θ′)F (θ′)[1− F (θ′)]N−2

(
P0

PI(θ′)

)β
[W (PI(θ

′); θ′)−X − Y ]+

+

∫ θ

θ(Pa)

dθ′N(N − 1)f(θ′)F (θ′)[1− F (θ′)]N−2

(
P0

Pa

)β
[W (Pa; θ′)−X − Y ]+. (21)

Suppose Pa < PI(θ). For any θ′ > θ(Pa), the earlier argument leads to Pa < P ∗(θ′ +X + Y ), for otherwise

θ′ would initiate earlier than Pa - a contradiction. The derivative of (21) is thus positive for any PS unless

PS = PI(θ). Thus almost surely the seller never initiates.

Now the bidder’s problem is reduced to expression (19). The derivative at Pa has the same sign as

∫ θ

θ(Pa)

dθ′f(θ′)[1− F (θ′)]N−2 d

dP

[
[W (P ; θ)−X − Y ]+ − [W (P ; θ′)−X − Y ]+

P β

]+
∣∣∣∣∣
P=Pa

, (22)

which is positive at P̂ (θ) and non-positive at P ∗(θ + X + Y ). The integrand is weakly monotone in Pa

path-by-path, thus (22) changes sign at a unique Pa = PI(θ).

Given (19) is concave in Pa with non-negative cross-partial in Pa and θ, and there exists unique maximizer

PI(θ), Implicit Function Theorem gives that PI(θ) is indeed non-decreasing. A similar argument would rule

out a decreasing equilibrium in which the initiator always loses. This ensures (22) is continuous, establishing

the optimality of PI and the FOC in the proposition. There could be multiple equilibria with different

initiation thresholds below P0, but in terms of initiation outcome and payoffs, they are all equivalent,

making the proposed equilibrium essentially unique.

Given that a bidder’s threshold for holding the auction is lower than his threshold if he were maximizing

social welfare, the initiation is accelerated in the ex post sense. Moreover, he would invest in the project

right away, making the exercise of the real option faster than in seller-initiated auctions where the realized

A-9



winning type might still wait after the auction.

Tables and Figures

Friendly Debt SPA

Equity SPAOptimal Security

Bonus-bid

Cash

Call Option SPA

Calendar Time

Figure 2: Investment thresholds under various security designs. Simulated with µ = 0.06, σ = 0.2,
r = 0.16, θ ∼ Unif [1.5, 5], X = 0.4, Y = 0, Pa = 3.



0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

N

E
xp

ec
te

d 
S

oc
ia

l W
el

fa
re

(a) Unif[20, 50], Pa = 35,
β = 2, X = 10, Y = 0
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(d) Unif[30, 60], Pa = 45,
β = 5, X = 2.5, Y = 0
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(b) Unif[20, 50], Pa = 35,
β = 8, X = 1, Y = 0
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(e) Unif[20, 50], Pa = 35,
β = 25, X = 0.1, Y = 0
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(c) Unif[30, 60], Pa = 45,
β = 5, X = 2.5, Y = 0

0 5 10 15 20 25 30
2

3

4

5

6

7

8

9

N

E
xp

ec
te

d 
R

ev
en

ue

(f) Unif[20, 50], Pa = 35,
β = 8, X = 1, Y = 0

Figure 3: Plots of expected social welfare (a)(b)(c) and seller’s revenue (d)(e)(f) against number
of bidders N . One million simulations in SPA with equity bids and uniformly distributed θ. For
exposition, β is specified instead of the primitives r, µ, and σ.
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(a) β = 5, X = 10, Y = 0, N = 5
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(b) β = 6, X = 8, Y = 0, N = 30

Figure 4: Plots of expected seller’s revenue and social welfare against the auction threshold for SPAs
with equities, friendly debts as defined in Section 3.1, and call options. One million simulations
for θ uniformly distributed in [200, 500], P0 = 210. For exposition, β is specified instead of the
primitives r, µ, and σ.
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Figure 5: Plots of expected social welfare and seller’s revenue against number of bidders N for SPAs
with equities, friendly debts as defined in Section 3.1, and call options. One million simulations
with θ uniformly distributed in [20, 50], Pa = 35, r = 0.123, µ = 0.001, σ = 0.05, and X + Y = 1.



Figure 6: Revenues and Welfare for cash auctions following threshold timing Pa. 200,000 sim-
ulations for θ ∼ Unif [10, 40], r = 0.06, µ = 0.01, σ = 0.2, X = 15, Y = 0, N = 7, Pa = 40.
Welfare-maximizing auction timing threshold is lower than revenue-maximizing timing.
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