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Abstract

Standard exchange rate models view high interest rate currencies as less risky, but

resolving the forward premium puzzle requires high interest rate currencies to be more

risky. This paradox can be explained by a decreasing curve of forward currency risk

premia. This paper proposes a two-economy affine term structure model of exchange

rates and interest rates with unspanned macroeconomic risks to account for the term

structure of currency and bond risk premia. In our setting, we can decompose pricing

kernels into two orthogonal components respectively linked to term-structure factors

and common unspanned macro factors. Our estimation shows that our model can

simultaneously explain the properties of currency and bond risk premia.

JEL Classifications: G1, E4, F3.

Keywords: Bond risk premia, currency risk premia, exchange rates, unspanned

macro risks, the term structure of interest rates.



1 Introduction

One of more puzzling facts in finance is the paradoxical implications of various ex-

change rate models: while the empirical failure of the uncovered interest rate parity

implies that a high interest rate currency is likely more risky, standard exchange rate

models (e.g., Dornbusch, 1976; Frankel, 1979) generally suggest that a high interest

rate currency is less risky. According to the uncovered interest rate parity (UIP), a

regression of exchange rate changes on interest rate differentials should produce a slope

coefficient of one. As opposed to UIP, however, empirical work following Hansen and

Hodrick (1980), Bilson (1981), and Fama (1984) often reveals a negative slope coeffi-

cient. This anomalous finding is termed as the forward premium puzzle. It suggests

a tendency of high interest rate currencies to appreciate. A risk-based explanation

of the forward premium puzzle requires that the Treasury bonds in the high interest

rate country are more exposed to risks of exchange rate movements so that there is a

negative correlation between the forward premium in the foreign exchange market and

the subsequent change in the spot exchange rate. Put more simply, high interest rate

bonds are more risky.

On the other hand, classic exchange rate models, such as the textbook Mundell-

Fleming model or the popular Dornbusch (1976) and Frankel (1979) models, assume

the UIP condition holds. They postulate that the level of the exchange rate is equal

to weighted average of rational expectations of future short-term interest differentials.

A natural prediction of these equilibrium models is that a high interest rate currency

should have a lower price. Though this relationship is borne out in the data, but the

price of the high interest currency is not low enough as predicted by the equilibrium

models (see Engel, 2016). This finding constitutes the exchange rate level puzzle.

Engel (2016) argues that this puzzling behavior of the level of exchange rates can be

attributed to a time-varying risk premium. If a high interest currency has the lower

risk premium, it would induce stronger currency. A risk-based explanation for the level

puzzle therefore implies that high interest rate bonds are less risky, as opposed to the
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risk-based explanation of the forward premium puzzle.

This paper attempts to understand these seemingly paradoxical implications of the

UIP condition and standard exchange rate models, which, to our knowledge, has not

been explored before. Whereas the forward premium puzzle indicates that a high

interest rate currency has higher expected returns in the short run, the exchange rate

level puzzle shows that a high interest rate currency has lower expected returns at

longer horizons. Combined together, the two puzzles imply a decreasing curve of

forward currency risk premia along the maturity spectrum. In particular, the currency

risk premium is positive initially, then it becomes negative at longer horizons. We

define the forward currency risk premia

ρ
(1)
t+j+1 = i∗t+j + st+j+1 − st+j − it+j for j ≥ 1, (1)

where st denote the logarithm of the exchange rate, expressed in terms of how many

units of the foreign currency with interest rate i∗ is needed in exchange for one unit of

the home currency with interest rate i.1 This decreasing curve of (forward) currency

risk premia constitutes the term structure of currency risk premia. It consolidates the

paradox proposed by Engel (2016) in a unified framework and is the central puzzle of

this paper.

To resolve the puzzling term structure of currency risk premia, we propose a two-

country affine term structure model (ATSM-X) of exchange rates and interest rates

with unspanned macroeconomic risks. We build our model upon the pioneering work

of Backus, Foresi, and Telmer (2001), who show that currency risk premia can be writ-

ten as a function of the higher moments of foreign and domestic pricing kernels. In

our setting, pricing kernels are lognormal, so currency risk premia link to the ratio of

the volatilities of pricing kernels. With this ratio, we are able to identify the unique

stochastic discount factor that prices both currencies and bonds in two countries ex-

1It is related to, but differs from the term structure of carry trade risk premia (Lustig, Stathopoulos,
and Verdelhan, 2014), which is the return arising from the currency carry trade based on various bonds
of different maturities.
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amined. Hence, the ATSM-X model can be used to simultaneously account for the

properties of currency risk premia and bond risk premia. The ATSM-X model guar-

antees the internal consistency across two economies without imposing some artificial

constraints on the dynamics of exchange rates. Naturally, the ATSM-X model indi-

cates that the forward exchange rate includes a time-varying risk premium for bearing

both currency and interest rate risks.

The ATSM-X model has an (m+ n) factor structure for the pricing kernel of each

economy. In the ATSM-X model, the m local term-structure factors capture cross-

sectional properties of interest rates. The other n factors are common macro variables.

In the spirit of Engel (2016), our empirical analysis uses the log difference of inflation

and industrial production growth rate in two economies as macro factors. To better

capture economic fundamentals in the two economies and retain parsimony, our set of

macro factors includes a unspanned latent common factor. We use these macro factors

to capture currency and bond risk premia in two markets. To see the point, a simple

regression shows that the macro factors account for approximately 60% of currency

risk premia at long horizons, though the explanatory power of the macro factors are

low at short horizons.

Importantly, these macro factors are unspanned (see, Joslin, Priebsch, and Single-

ton, 2014; Duffee, 2011)2 by the term structure factors because they contain additional

information for future bond risk premia but do not affect the cross section of inter-

est rates. Theoretically, we show that the pricing kernel of each economy can be

decomposed into two orthogonal terms respectively composed of macro factors and

term-structure factors. The martingale component of macro factors capture the inde-

pendent portion of currency and bond risk premia. Because macro factors unequally

affect bond risk premia, they warp the term structure of currency risk premia and play

an important role in understanding the decreasing curve of currency risk premia.

2Numerous studies (e.g., Ang and Piazzesi, 2003; Ludvigson and Ng, 2009; Cooper and Priestley,
2009; Duffee, 2011; Bakshi and Panayotov, 2013; Zhou and Zhu, 2015) reveal that macroeconomic
factors can predict time-varying risk premia in currency and bond markets.
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We estimate the ATSM-X model separately for four pairs of countries: the U.S. as

the home country and Canada, Germany, Japan, and the U.K. as the foreign countries.

Our first set of results relates to the currency bond risk premia. We find that our

model can largely account for the term structure of currency risk premia. Specifically,

when we run the Fama (1984) regression and the Engel (2016) regression, our model

is able to generate a slope coefficient of one, suggesting that the ATSM-X model is

able to account for the term structure of currency risk premia. Consistent with the

prediction of standard exchange rate models, we also generate a slope coefficient of

one for the Engel regression using real interest rates. If we remove unspanned macro

factors, however, the two-country term structure model cannot generate the decreasing

term structure of currency risk premia and resolve the Engel (2016) paradox. To

further provide insights on the importance of unspanned macro factors, we find that

currency risk premia are closely linked to economic activity. In contrast, currency

risk premia recovered from the joint term structure model without unspanned macro

factors are largely acyclical. We also find that our model can simultaneously fit the

term structure of bond risk premia. Consistent with Joslin, Priebsch, and Singleton

(2014) and Jotikasthira, Le, and Lundblad (2015), we find unspanned macro factors

play an important role in understanding the properties of bond risk premia.

Our model draws from several contributions in the literature that investigates the

behavior of currency and bond prices using joint term structure models of exchange

rates and interest rates. Some early attempts include Nielsen and Saá-Requejo (1993),

Saá-Requejo (1994), Bakshi and Chen (1997), and Bansal (1997). Concentrating on

affine term structure models, the important work of Backus, Foresi, and Bansal (2001)

extends affine class to a multicurrency setting. They find the extended models had

problems in accounting for the forward premium puzzle. Motivated by this deficiency,

Han and Hammond (2003) and Leippold and Wu (2007) extend the multicountry term

structure model to include independent exchange rate factors. They find that these

factors are essential in simultaneously fitting exchange rates and the term structure of

interest rates. Alternatively, Brandt and Santa-Clara (2002) and Anderson, Hammond,
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and Ramezani (2010) introduce market incompleteness into the joint term structure

model and investigate exchange rate excess volatility. Moreover, a strand of literature

(Dewachter, and Maes, 2001; Hodrick and Vassalou, 2002; Ahn, 2004; Inci and Lu,

2004) explores the effects of global factors on properties of currency risk premia. Based

on the assumption of an integrated capital market, Brennan and Xia (2006) examine

the relations between currency risk premia, exchange rate volatility, and the volatilities

of pricing kernels. More recently, Sarno, Schneider, and Wagner (2012) explore the

properties of foreign exchange risk premia. They develop a non-Gaussian multicurrency

affine term structure model to account for the forward premium puzzle and find a

tradeoff between fitting the term structure of interest rates and the forward premium.

Though their global model can account for the properties of foreign exchange risk

premia, but the fitting of the term structure has a relatively low accuracy. While all

these papers focus on spot currency risk premia, our paper attempts to account for the

term structure of currency risk premia. From a perspective of anomalies, these papers

attempt to resolve the forward premium puzzle, we try to explain the Engel (2016)

paradox.

Our paper is also related to the literature that attempts to resurrect the UIP condi-

tion. Earlier studies include applications of the capital asset pricing model to exchange

rates (e.g., Frankel and Engel, 1984; Mark, 1988), statistical methods of modelling

currency risk premia (e.g., Hansen and Hodrick, 1983; Domowitz and Hakkio, 1985;

Cumby, 1988), and behavioral explanations (e.g., Froot and Thaler, 1990; Eichenbaum

and Evans, 1995, Mankiw and Reis, 2002). Recent explanations includes return skew-

ness (e.g., Brunnermeier, Nagel, and Pedersen, 2009; Chen and Gwati, 2013; Jurek and

Xu, 2014; Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan, 2015), overconfidence

(e.g., Burnside, Han, Hirshleifer, and Wang, 2011), habit formation (e.g., Verdelhan,

2010), rare disaster (e.g., Farhi and Gabaix, 2014), long run risks (e.g., Bansal and

Shaliastovich, 2013), country size as a proxy of risk (Hassen, 2013), and infrequent

portfolio decisions (e.g., Bacchetta and Wincoop, 2010). Alternatively, a new strand of

literature using portfolio analysis to search risk factors for understanding currency risk
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premia, some important studies include Lustig and Verdelhan (2007), Lustig, Rous-

sanov, and Verdelhan (2011), and Menkhoff, Sarno, Schmeling, and Schrimpf (2012).

We proceed as follows. In Section 2 we discuss the economic intuition behind

the ATSM-X model and present some preliminary results on the importance of un-

spanned macro factors. We then propose the two-economy term structure model with

unspanned macroeconomic risks that takes a large step toward bringing joint term

structure models in line with the historical evidence. Section 3 discusses the economet-

ric methodology for estimating the ATSM-X model and estimates the model. Section

4 discusses the implications of the ATSM-X model for the forward premium puzzle,

the level of exchange rates, and term structure anomalies. Section 5 offers conclusions

and suggestions for further research. All proofs are in Appendices.

2 The ATSM-X Model

This section presents the ATSM-X model. In Section 2.1, we discuss the economic

intuition behind the relationship between exchange rates and interest rates and intro-

duce basic notations. Section 2.2 provides some preliminary results on the importance

of unspanned macro factors. Section 2.3 presents the settting of the ATSM-X model.

2.1 Economic Foundation

To obtain some intuition on the relationship between exchange rates and interest rates,

we first introduce some basic notations. As in (1), we define the spot n-period excess

currency return as

ρ
(n)
t+n = i∗t,n + st+n − st − it,n (2)

where st denote the log of exchange rate, expressed in terms of US dollar price per unit

of foreign currency, i∗t,n denote the n-period foreign nominal interest at time t and it,n

denote the domestic interest rate. Our analysis focus on the term structure of currency

risk premia, it also involve forward currency risk premia. Define at time t, the j-period
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forward 1-period excess currency return as

ρ
(1)
t+j+1 = i∗t+j + st+j+1 − st+j − it+j (3)

with i∗t+j and it+j represents the 1-period interest rates.

The corresponding ex anti risk premiums are defined as follows. The ex anti risk

premium for spot n-period currency return is defined as

v
(n)
t ≡ EP

t (ρ
(n)
t+n) (4)

where the expectation is taken under the physical measure. Furthermore, the ex anti

forward premium for j-period forward looking 1-period excess return is defined as

v
(n)
t,j ≡ EP

t (v
(1)
t+j) = EP

t (ρ
(1)
t+j+1) (5)

at time t.

By assuming that the market is rational and there is no-arbitrage opportunity, the

UIP condition postulates that investment in foreign countries should generate no risk

premium, or the excess return should be unpredictable. UIP also implies that the

forward rate should be an unbiased predictor of the future spot exchange rate. This is

termed as forward unbiased hypothesis (FUH). Empirical tests are usually facilitated

via the ‘Fama regression’ which studies the spot excess return with

ρ
(n)
t+n = α + γ(i∗t,n − it,n) + ε,

st+n − st = α + β(it,n − i∗t,n) + ε. (6)

If the UIP is valid, we should observe zero risk premium, which implies α = 0, γ = 0

and β = 1. However, a vast of empirical studies suggest that β is negative rather than

being 1, and γ is greater than 1 instead of being 0. This implies that the risk premium
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for investing in foreign countries positively covaries with the interest difference,

covt(ρ
(n)
t+n, i

∗
t,n − it,n) = covt(E

P
t (ρ

(n)
t+n), i∗t,n − it,n) > 0 . (7)

One rationale for this stylized fact is that when i∗ is relatively higher, invest in foreign

country becomes risker and thus it generates higher risk premium. The results of the

Fama regression is also termed as the forward bias puzzle in the literature because if

β 6= 1, the forward rate becomes an biased predictor of the future spot rate.

Engel (2016) proposes an alternative test to analyse the 1-period excess returns in

a forward looking manner,

ρ
(1)
t+j+1 = α + βj(i

∗
t − it) + ε, (8)

where ρ
(1)
t+j+1 is the excess return in the future time t + j, j varies from 0 to 10 years.

Note that, the above regression is identical to the Fama regression for j = 0. Again,

if UIP is valid, forward risk premium, v
(1)
t,j , should be equal to 0. This means taht

βj equals to 0 across all horizons. However, Engel (2016) finds that βj starts from a

positive value when j = 0 (Engel regression is identical with Fama regression for j = 0),

then decreases and turns to some negative values when j is large enough. The findings

violate the UIP, more important, the results are suggesting that βj changes sign, and

becomes negative. In fact, βj are deeper negative in term of real interest rates according

to Engel (2016). The findings further suggest the summation of forward excess returns

for all j negatively covaries with nominal or real interest difference (to consistent with

Engel (2016), we use real interest rate difference here),

covt(
∞∑
j=0

ρ
(1)
t+j+1 , r

∗
t − rt) = covt(E

P
t

∞∑
j=0

v
(1)
t+j , r

∗
t − rt) < 0, (9)

where Et
∑∞

j=0 ρ
(1)
t+j+1 represents the risk premium for rolling investing in foreign savings

account for a long time horizon, r∗t and rt represent the real interest rates. One rationale
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for this patten is that investing in foreign country for a long horizon becomes less risky

when interest rate in the foreign country is relatively higher. This forms a paradox with

the explanation of forward bias puzzle: high interest country become risker rather than

less risky. Note that, Fama regression studies a investment strategy for a short time

horizon, while Engel regression investigates the investment in foreign savings account

for a rather long period including short time horizon. Therefore, the property of the

term structure of the forward risk premium may shed the light on the above paradox.

Brennan and Xia (2006) explain the forward bias puzzle by the time-varying risk

premium v
(n)
t . If one takes the conditional expectation on the n-period spot excess

return, one would have

ρ
(n)
t+n = EP

t (ρ
(n)
t+n) + ε

= v
(n)
t + 0× (i∗t,n − it,n) + ε

st+n − st = v
(n)
t + 1× (it,n − i∗t,n) + ε (10)

The above equation is similar to the Fama regression but with the n-period spot risk

premium taking place of α. If v
(n)
t is stochastic and correlated with interests, it,n− i∗t,n,

it makes coefficient β diverge from 1. Furthermore, to literature argues that to generate

the patten as in Fama regression, the risk premium should has the following property

var(v
(n)
t ) > var(EP

t (dep
(n)
t ),

cov(vt, E
P
t (dep

(n)
t )) > 0, (11)

where dep
(n)
t ≡ st+n − st is the depreciation rate. If one models the risk premiums

correctly and then, substitute into equation (10), the puzzle vanishes. Thus equation

(10) is referred as the risk adjusted Fama’s regression.

On the other hand, Engel (2016) argues that the level puzzle could be explained by

the excess comovement of exchange rate: If iterating the excess return (2) to infinity,
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one gets

sTt = sIPt − Et(
∞∑
j=0

(ρ
(1)
t+j+1 − ρ)) (12)

with sTt = st − limk←∞(Etst+k − k(s+1 − s)) representing the detrended exchange rate

and sIPt = Et
∑∞

i=0(y
∗
t+iδ−yt+iδ−(y∗ − y)) represents the interest parity part. Empirical

findings directly yield,

covt(s
T
t , r

∗
t − rt) > covt(s

IP
t , r∗t − rt) , (13)

which can be interpreted as the detrended exchange rate covaries with interest dif-

ference greater than the interest parity supposes to. If the exchange rate has excess

volatility that can not be explained by the interest rates, covt(s
T
t , r

∗
t −rt) could becomes

larger than can be explained rationally. Thus, although the forward bias puzzle and

level puzzle have opposite rational explanations, the proposed reasons are not exclu-

sively contradicted with each other. We propose a novel two-country affine model to

solve this paradox by incorporating all proposed properties above into the model.

We explain our model in a general framework before introducing the specific dy-

namic process in the next section. we start from Backus, Foresi, and Bansal (2001),

St
S0

=
Π∗t/Π

∗
0

Πt/Π0

, (14)

where Π and Π∗ are the domestic and foreign global pricing kernels respectively. We

use the notation πt and π∗t to denote the log of corresponding pricing kernels. The

relationship between depreciations and pricing kernels could be derived in the following

stochastic differential equation (SDE),

dst = d(π∗t − πt). (15)

The relationship (14) has been discovered by Backus, Foresi, and Bansal (2001), how-

ever, it is important to mention that the domestic and foreign pricing kernels in (14)
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should be the ‘global’ pricing kernel that prices all traded assets rather than bonds

only. This indicates that the domestic and foreign pricing kernels may decompose into

2 parts: the bond market specific pricing kernel (Πb
t and Πb∗

t ) and an martingale (Πu
t

and Πu∗
t ) which is orthogonal to the bond market specific parts, s.t.

Πt = Πb
tΠ

u
t and Π∗t = Πb∗

t Πu∗
t (16)

and the short term bond yield can be expressed as it = − logEP
t (Πt+δ/Πt) = − logEP

t (Πb
t+δ/Π

b
t)

i∗t = − logEP
t (Π∗t+δ/Π

∗
t ) = − logEP

t (Πb∗
t+δ/Π

b∗
t )

. (17)

The SDE of exchange rates could thus be derived by,

dst = d(πb∗t − πbt ) + d(πu∗t − πut ) (18)

where d(πu∗t − πut ) is unspanned to the bond market by construction, which is similar

to Ludvigson and Ng (2009), Duffee (2011) and Joslin, Priebsch, and Singleton (2014).

In their papers, the authors link this unspanned part to macroeconomic variables via

a rotation of latent factors. We find the unspanned part provides excess volatility to

exchange rate that assure the excess comovement (13), which provides an potential

solution to long term risk premium documented by Engel (2016).

To further explain our idea, we decompose the excess return as follows,

ρ
(1)
t+1 = EP

t (ρ
(1)
t+1) + εt

= EP
t (st+1 − st) + i∗t − it + εt (19)

= πb∗t+1 − πbt+1 + y∗t − yt︸ ︷︷ ︸
spanned part (vSt )

+ πu∗t+1 − πut+1︸ ︷︷ ︸
unspanned part (vUt )

+εt.
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Thus, we can obtain an risk adjusted excess return as

ρ
(1)
t+1 − vSt − vUt = εt, (20)

which should be independent with all the information up to time t. We term the

following equation risk adjusted Engel regression

ρ
(1)
t+j+1 − vSt+j − vUt+j + i∗t − it = α + βj(i

∗
t − it) + ηt,j (21)

with j varies from 0 to 10 years. In case we correctly estimated vUt , the risk adjusted

Engel regression should yield β = 1, γ = 0. However, if vUt is omitted, ηt,T = εt+preUt ,

which is correlated with information at time t. This makes β diverge from 1, which

forms the level puzzle as documented in Engel (2016).

2.2 Importance of Unspanned Macro Risks

In this subsection, we discuss the importance of unspanned macro risks in excess cur-

rency and bond returns. Though several international no-arbitrage term structure

models have been proposed to simultaneously account for the properties of interest-

rate term structure and foreign exchange rates, these models generally imply that the

dynamics of interest rates and exchange rates are exclusively driven by term-structure

factors.3 In contrast, our ATSM-X model has two important implications about macro

risks. First, the ATSM-X model implies that macro risks are unspanned by yield-curve

factors. The second implication is that exchange rates are exclusively not spanned by

interest rates. Our model thus dissociates exchange rates from interest rates, without

violating the fundamental pricing equations that relate exchange rates, pricing kernels,

and interest rates.

With regard to the first implication, macroeconomic factors are unspanned if they

3A few studies (e.g., Leippold and Wu, 2007) incorporate unspanned exchange-rate factors into
international no-arbitrage term structure models to account for the features of exchange rate dynamics.
However, these models assume that macro factors are independent of term-structure factors.
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are not related to the contemporaneous cross section of interest rates but it does help

forecast future excess returns on the bonds. Duffee (2011) and Joslin, Le, and Singleton

(2013) demonstrate that macro-finance models that do not nest unspanned macro risks

counterfactually imply that macro factors are a transformation of bond yields. As

such, macro factors do not contain additional information for predicting future excess

bond returns. In light of the defficiency of traditional term structure models with

macro factors, Joslin, Priebschi, and Singleton (2014) propose a term structure model

with unspanned macro risks where macro factors predict bond risk premia, above and

beyond the predictive power of yield-curve factors.

To obtain some intuition on the importance of unspanned macro risks in under-

standing the properties of bond risk premia, we conduct a simple regression analysis.

In line with Cochrane and Piazzesi (2005), we use the following notation for a nominal

forward rate at time t for loans between time t+ n− 1 and t+ n is defined as

ft,n ≡ pt,n−1 − pt,n, (22)

where pt,n = log(Pt,n) is the log price of an n-period bond at time t. The log holding

period return from buying an n-year bond at time t and selling it as an n − 1 year

bond at time t+ 1 is

yt+1,n = pt+1,n−1 − pt,n. (23)

Naturally, the risk premium on an n-year discount bond over a short-term bond is

the difference between the holding period return of the n-year bond and the 1-period

interest rate

rxt+1,n ≡ yt+1,n − it. (24)

Following the vast literature, we investigate whether macro risks predict excess bond

returns above and beyond the information contained in the yield curve by running two

regressions. The first regression uses the principle components (PCs) to predict excess
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bond returns. The second regression uses both the PCs and unspanned macro risks to

forecast excess bond returns. Our macro factors are inflation and industrial production

growth rate. Panel A of Table 1 reports the regression results for predicting annual

excess bond returns. An important feature that emerges from the table is that macro

factors contain plentiful information for predicting future bond risk premia. Look

at the UK bond market, the regression without macro factors delivers a R-square of

8.32% for the two-year excess bond return, but the regression with macro factors (and

their lags) generates a R-square of 25.9%, more than triple the predictive power of the

regression without macro factors. Though to a less extent, the similar pattern shows

up for other bonds and in other markets.

Another interesting finding that comes from the table is that macro factors play

a more important role in predicting short-term excess bond returns than predicting

long-run excess bond returns. Let us take Germany as an example. For the excess

return of the two-year bond, by adding macro factors, the R-square of the predictive

regression almost triple from 7.18% to 21.58%. In contrast, for the excess return of the

ten-year bond, macro factors just increases the R-square of the predictive regression

from 17.82% to 23.60%. It is less than double. Overall, the finding that macro factors

are unspanned by yield-curve factors are largely consistent with the results presented

by Ludvigson and Ng (2008), Cooper and Priestly (2009), Duffee (2011), Joslin, Le, and

Singleton (2013), Joslin, Priebschi, and Singleton (2014), and Zhou and Zhu (2015).

[Insert Table 1 about Here]

Turning to the second implication, we also run a simple regression to shed light

on the importance of unspanned macro risks. We investigate the exchanges rates of

the major economies (Canada, Germany, Japan, and the U.K.) relative to the U.S.4

Specifically, we first run the excess currency return, ρ
(n)
t+n, on the PCs of the pair of term

4For the other two G7 countries (France and Italy), because they use the same currency as Germany
for most of our sample period, we do not separately investigate these two economies.
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structures in the corresponding two markets. Our second approach adds unspanned

macro factors for two economies into the regression. Panel B of Table 1 presents the

results for predicting excess currency returns. It is evident from the table that macroe-

conomic factors have additional predictive ability for forecasting future excess currency

returns. We take Canada as an example to illustrate the point. Considering the ex-

cess currency return for a 1-month holding period, when macro factors are excluded,

the R-square of the predictive regression is 2.64%. By contrast, with macro factors

included, the R-square of the predictive regression more than quadruples to a level of

14.78%. For all other markets, we observe a similar pattern.

We are not only interested in the excess currency return from buying/selling short-

term bonds, but also that from buying/selling longer maturity bonds. This is because

we investigate the term structure of currency risk premia instead of just the excess

currency return of holding short-term domestic/foreign bonds. In light of this, Panel B

also reports the predictive ability of excess currency returns from buying/selling longer

maturity bonds. Similarly, we find macro factors have additional predictive power for

future excess currency returns. Look at the exchange rate of the Japanese Yen against

the US dollar, when the underlying asset is the 10-year Treasury bond for computing

excess currency return, adding macro factors increases the R-square of the predictive

regression from 2.49% to 9.65%. Panel B also presents the predictive results for the

half-year holding period. We find that macro factors consistently lead to a higher R-

square of the predictive regression, suggesting that macro factors contain additional

information for predicting excess currency returns. Taken together with the results

from the predictive regressions of bond risk premia, we find that macro factors contain

important information for future currency and bond risk premia.

2.3 Affine Two-Country Model with Unspanned Macro Risks

In this section we propose a continuous-time, two-country dynamic affine term structure

model with unspanned macro factors (ATSM-X). Guided by the pioneering work of
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Backus, Foresi, and Bansal (2001), we assumes the joint dynamics of interest rates

and foreign exchange rates are depended on several latent factors. Furthermore, as

proposed in Joslin, Priebsch, and Singleton (2014) and Ludvigson and Ng (2009),

investors must be compensated for risks associated with macroeconomic activity, which

implies that macroeconomic variations explain at least part of time varying expected

risk premia, both in currency and bond market. Similar to Joslin, Priebsch, and

Singleton (2014), we incorporate Macro factors into our two-country affine model as an

unspanned component, which means Macro factors do not affect risk-neutral dynamics,

but do exist in real world dynamics.

According to Joslin, Singleton, and Zhu (2011), in an affine term structure frame-

work with n latent factors, we could rotate the factors for domestic interest rate into

the first n principle components (PCs), Pt, of annulized domestic bond yields without

losing any generality, which yields it = a0+a>1 Pt. This rotation turns latent factors into

observable factors, which greatly reduces the converge time to the global optimum for

the model estimation. Similarly, we employ the first n∗ PCs of the annulized yields of

the foreign interest rates, i∗t = a∗0+a∗1
>Pt. Furthermore, the economy is completed by m

macro-economic factors Mt. This is because, except by the bond market, the exchange

rate are also impacted by the information from the trade sector, which is highly related

to macroeconomic variables and not fully spanned by the risk facts from bond mar-

kets. Assume the 2n+m× 1 vector for all the observed factors Zt = (P>t , P
∗
t
>,M>

t )>

encompasses all risks in the economy, both domestic and foreign.

The dynamic process followed by the state variable Zt under the real world P

measure is,

d


Pt

P ∗t

Mt

 =



KP

0P

KP
0∗

KP
0M

+


KP

1PP KP
1P∗ KP

1PM

KP
1∗P KP

1∗∗ KP
1∗M

KP
1MP KP

1M∗ KP
1MM



Pt

P ∗t

Mt


 dt+ ΣZd


WP
P

WP
∗

WP
M

,

(25)
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where the volatility matrix

ΣZ =


ΣPP

ΣP∗ Σ∗∗

ΣMP ΣM∗ ΣMM

 (26)

is a lower triangular matrix. Observe that the p-SDE implies both Pt, P
∗
t , and Mt

are observable in the real world measure. The dynamics of p-SDE further assume Mt

is impacted by both Pt and P ∗t , which confirms the empirical findings suggested by

Joslin, Priebsch, and Singleton (2014), the projection errors of Mt onto Pt and P ∗t have

predictive power for both domestic and foreign interests. Furthermore, as indicated

in Litterman and Scheinkman (1991), the cross-section of bond yield is determined by

fewer number of factors, Pt in our case. We therefore derive the dynamic of Zt under

the domestic pricing measure Q as,

d


Pt

P ∗t

Mt

 =



KQ

0P

KQ
0∗

KQ
0M

+


KQ

1PP 0 0

KQ
1∗P KQ

1∗∗ 0

KQ
1MP KQ

1M∗ KQ
1MM



Pt

P ∗t

Mt


 dt+ ΣZd


WQ
P

WQ
∗

WQ
M

 .

(27)

Thus, the domestic annulized yield with time to maturity τ at time t is given as

i(t, τ) = A(τ) +B(τ)>Pt, (28)

where A(τ) is a length-n vector, and B(τ) is a square matrix, the detail derivation of

A(τ) and B(τ) is given in Appendix. In general, the equation implies i(t, τ) is only

determined by an n × 1 vector Pt, the domestic bond risk factors. Although there

are three type of risk factors, Pt, P
∗
t and Mt in our two-country economy, our model

preserves the empirical consensus in term structure literature that zero-coupon bonds

could be explained cross-sectionally by a few risk factors. Put differently, we treat the

foreign bond risk factors and Macroeconomic variables as unspanned factors in terms
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of calculating the local bond price.

Similarly, for symmetric and parsimonious, we assume the dynamic of Zt for foreign

pricing measure Q∗ as

d


Pt

P ∗t

Mt

 =



K∗0P

K∗0∗

K∗0M

+


K∗1PP K∗1P∗ 0

0 K∗1∗∗ 0

K∗1MP K∗1M∗ K∗1MM



Pt

P ∗t

Mt


 dt+ ΣZd


W ∗
P

W ∗
∗

W ∗
M


(29)

with annualized bond yield as

i∗(t, τ) = A∗(τ) +B∗(τ)>P ∗t , (30)

where A∗(τ) is a length-n vector, and B∗(τ) is a square matrix, the detail derivation of

A∗(τ) and B∗(τ) is identical to A(τ) and B(τ). Pt and Mt are treated as unspanned

factors in terms of pricing foreign zero-coupon bonds.

One of the most distinct feature for our model to Backus, Foresi, and Bansal (2001)

and Sarno, Schneider, and Wagner (2012) is that the global pricing kernel for each

country can be decomposed by a domestic bond market specific part and an orthog-

onal macro-economic related unspanned part. For domestic market, the bond market

specific pricing kernel ΠP is given by

dΠP

ΠP

= −itdt− ΛP (Zt)
>dW P

P (31)

with the bond market specific market price of risk ΛP (Zt)

ΛP (Zt) = Σ−1pp (µPP (Zt)− µQP (Zt)). (32)

where ΛP (Zt) is an affine function of state Zt even though the priced risk factors are

the substate Pt only. However, the bond market specific pricing kernel ΠP is unable

to determine the exchange rate as requested in equation (14). Since the pricing kernel
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in equation (14) should price all the risks rather than the bond market risk only. The

general pricing kernel should be able to price entire state Zt,

dΠZ

ΠZ

= −itdt− ΛZ(Zt)
>dW P

Z (33)

with the market price of risk ΛZ(Zt)

ΛZ(Zt) = Σ−1Z (µPZ(Zt)− µQZ (Zt)). (34)

where ΛZ(Zt) = (ΛP (Zt)
>,ΛP∗(Zt)

>,ΛM(Zt)
>)> with ΛP∗ prices the interest risks in

foreign country and ΛM(Zt) prices Macroeconomic risks. ΛP∗ and ΛM(Zt) together

form unspanned part of market price of risk to domestic bond market, ΛU(Zt) =

(ΛP∗(Zt)
>,ΛM(Zt)

>)>. The corresponding unspanned pricing kernel is

dΠU

ΠU

= −ΛU(Zt)
>dW P

U (35)

where ΠU is a martingale and orthogonal to ΠP , the global pricing kernel is therefore

defined by, ΠZ = ΠPΠU .

For the foreign country, the bond market specific pricing kernel and the global

pricing kernel, Π∗P∗ and Π∗Z can be defined analogously, with Λ∗P∗, Λ∗Z to be their

market price of risk respectively. The foreign market price of risk Λ∗Z is given by,

Λ∗Z(Zt) = Σ−1Z (µPZ(Zt)− µ∗Z(Zt)). (36)

where Λ∗Z = (Λ∗P ,Λ
∗
P∗,Λ

∗
M)>. The unspanned part of the pricing kernel for this foreign

country Π∗U and its corresponding unspanned market price of risk is formed by Λ∗P and

Λ∗M , i.e. Λ∗U = (Λ∗P ,Λ
∗
M)>. To make the structure affine, we further assume

ΛZ − ΛZ∗ = Σ (37)
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to be a vector of constants with Σ = (ΣP ,ΣP∗,ΣM)>.

By substituting (33) into (14), the dynamic of exchange rate st is given by

dst = dm∗t − dmt

= (rt − r∗t +
1

2
(Λ>ZΛZ − Λ∗Z

>Λ∗Z))dt+ (ΛZ − ΛZ∗)
>dWt (38)

which is affine to the state Zt. The 1-period risk premium for foreign country, v
(1)
t , is

vt ≈
δ

2
(Λ>PΛP − Λ∗P∗

>Λ∗P∗)︸ ︷︷ ︸
spanned part

+
δ

2
(Λ>UΛU − Λ∗U

>Λ∗U)︸ ︷︷ ︸
unspanned part

) (39)

with δ to be the time interval of 1-period investment. Observe that in equation (39),

both δ
2
(Λ>PΛP − Λ∗P∗

>Λ∗P∗) and δ
2
(Λ>UΛU − Λ∗U

>Λ∗U) forms affine function of Zt.

3 Model Estimation

3.1 Data Issues

We use end-of-month yield curve data for 5 countries: Canada, Germany, Japan, UK

and the United States. In order to align the starting date of each series, we use

maximal common divisor for 5 countries, 1986:01. The sample period is therefore from

1986:01 to 2015:02. The yield data in our study comes from smoothed curves. They

are constructed by respective Central banks using Svensson method, Nelson and Siegel

method or Spline methods.

[Insert Table 2 about Here]

Table 2 summarizes the detail of the data. The first column shows that the average

yield curve is increasing. Look at the yield curve of US, the average yield maturating at

6 months, 1 year, 5 years and 10 years are 4.14%, 4.51%, 5.47% and 6.15%, respectively.
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The third column suggests that the short end of the yield curve is more volatile than

the long end. For example, the standard deviation of yield maturating at 6 months,

1 year, 5 years and 10 years in Canada are 3.27, 3.17, 2.81 and 2.62, respectively.

Column six reports the minimal value for respective countries. Look at the interest

rate of German, the minimal values for 6 months, 1 year and 5 years bonds are negative,

which implies our Gaussian model may provide a better fitting for the term structure

of interest rates.

Throughout this paper, we use the U.S. as home country, and we denote exchange

rate as U.S. dollar per unit of foreign currency. We collect end-of-month exchange rate

series from 1986:01 to 2015:02. These data are collected from The Federal Reserve

Bank of St. Louis, which contains the following countries: Canada, Germany (Euro

from 1999:01), Japan, and United Kingdom. We use inflation and industrial production

index growth rate as our unspanned Macroeconomic factors, which are also collected

from The Federal Reserve Bank of St. Louis for five countries, from 1986:01 to 2015:02

on monthly basis.5

[Insert Table 3 about Here]

Panel A of Table 3 provides the summary statistics for end-of-month exchange

rates. The exchange rates for Canada and UK are more stable comparing to Japan

and German according to column 6 and column 7. Panel B of Table 3 reports the

summary statistics for macro variables. We observe a similar pattern for Japan and

German, while U.S, U.K and Canada seem belonging to another pattern.

3.2 Estimation Methods

The proposed model is an affine latent variable model. In our model, we apply a small

number, 2n + m, of driving state variables to jointly fit a large number of variables:

5inflation rate is constructed from the log difference of seasonality adjusted consumer price index.
Industrial production index growth rate is also calculated from the log difference of seasonality adjusted
industrial production index.
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both the interest rate pricing with different maturities and the first 2 moments of

the exchange rate with different time intervals. Inspired by Joslin, Singleton, and

Zhu (2011) and Joslin, Priebsch, and Singleton (2014), we rotate the state variables

Pt and P ∗t to the first n principle components of domestic and foreign bond yields.

We also rotate Mt to m observable macro economic variables. Thus the latent state

variables become observable ones so that we avoid the complicated filtering procedure

or Bayesian procedure as in previous literatures, see e.g. Sarno, Schneider, and Wagner

(2012). This makes our study simple and robust.

Another notable property of our model is that the Q and Q∗ parameters relative to

bond pricing, KQ
0P , KQ

1PP , K∗0∗ andK∗1∗∗ are irrelevant to the parameters that determines

exchange rate moments because of unspanned interest rate market setup. This implies

that our estimation procedure for matching depreciation rates and pricing bonds are

two different procedures. This also implies that we have a potential to both accurately

fit the exchange rate and price the bond, which is thought as a ’trade off’ in previous

literatures, see Sarno, Schneider, and Wagner (2012). A detailed canonic study for this

scenario is given in Appendix B.

Accordingly, we could thus divide our estimation procedure into 3 steps: (1) Because

the latent variables are now observable, we estimate P-measure parameters for the

observable factors Zt with a standard time series approach. Because the time series

analysis for observable factors Zt are rather standard, this makes our study even more

simple and robust. (2) Estimate Q and Q∗ parameters that is related to interest rate

pricing with a JSZ canonic representation, see Joslin, Singleton, and Zhu (2011). (3)

Estimate the remaining Q and Q∗ parameters with the information of exchange rate

moments. Details of the estimation procedure is given in Appendix C.

4 Model Performance

In this section, we investigate whether the ATSM-X model can account for the empirical

failure of the UIP condition and equilibrium exchange rate models. If the ATSM-X
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model can generate the appropriate time variation in expected excess returns, it can

provide a risk-based explanation for exchange rate anomalies. In Section 4.1, we run

the Fama and Engel regressions to show the presence of exchange rate anomalies.

In Section 4.2, we show that the ATSM-X model can generate a time-varying risk

premium that resolves the two exchange rate anomalies. We achieve this by showing

that the slope coefficient of the Fama and Engel regressions to unity, which cannot be

statistically rejected. One salient feature of the ATSM-X model is the incorporation

of unspanned macro factors. In Section 4.3, we examine the importance of unspanned

macro factors in currency and bond risk premia by decomposing the model-implied

currency and bond risk premia into two components, which are respectively driven by

term-structure factors and macro factors.

4.1 Results from the Fama and Engel Regressions

Two of the most important anomalies regarding exchange rate dynamics are the for-

ward premium puzzle and the empirical failure of classic equilibrium exchange rate

models. According to the UIP condition, if investors are risk-neutral and have rational

expectations, exchange rate changes will eliminate any gain arising from interest rate

differentials across markets. That is to say, forward premium should serve as unbiased

predictors of future currency depreciation. For example, if the forward exchange rate

exceeds the current spot rate by 2%, the future spot rate is expected to depreciate by

2%.

The UIP condition is intuitive and economically appealing, it therefore has been

investigated thoroughly using a variety of econometric methods and data. A typical

approach is to regress the ex post future exchange rate changes on current forward

discounts. Contrary to the prediction of the UIP, the estimated regression slope coeffi-

cient is generally found to be less than one and is often not significantly different from

minus one, which implies that high interest rate currencies tend to appreciate, and low

interest rate currencies tend to depreciate. This generates predictably positive excess
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returns for high interest rate currencies.

[Insert Table 4 about Here]

Motivated by the fact that the 2007-2008 world financial crisis has led to a crash

in carry trade returns, we re-examine the validity of the UIP condition. Our empirical

analysis is based on non-overlapping observations for prediction horizons of 1 month,

3 months, 6 months, 1 year, 3 years and 10 years. Our spot exchange rate data consist

of the bilateral Canadian dollar, German mark/euro, Japanese yen, and pound sterling

exchange rates viz-a-viz the US dollar.

Almost all empirical studies run the Fama regression (see equation (6)) using nom-

inal interest rates. In the line of this strand of literature, we conduct the Fama regres-

sion analysis using nominal interest rates. Table 4 summarizes the empirical results

for various interest rates of different maturities. The results confirm the usual finding

of a strong forward rate bias for the currencies under investigation. All the currencies

except for the Canadian dollar show coefficients that are usually statistically less than

zero at high significance levels. For the Canadian dollar, regression coefficients are

significantly less than one at short end of the maturity spectrum. At the long end

(n = 3 and 10 years), regression coefficients are close to one, not very against the UIP

condition. Taken together, we can generally reject the hypotheses that the regression

coefficient is one for all currencies.

In international finance, foreign exchange rates are often linked to interest rates.

Two of the best-known empirical relationships are the uncovered interest rate parity

and standard exchange rate models. The uncovered interest rate parity concerns the

rate of change of the exchange rate. Standard exchange rate models concern the level

of the exchange rate. Dornbusch (1976) and Frankel (1979) are the original papers to

draw the link between real interest differentials and the level of the exchange rate in

modern, asset-market approach to exchange rates. An important prediction of these

standard exchange rate models is that when a country has a higher than average relative
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interest rate, the price of foreign currency should be lower than average. In the data

for currencies of major economies relative to the U.S., a flood of research documents

this empirical relationship. However, it is generally found that the strength of the

home currency tends to be greater than is warranted by rational expectations of future

short-term interest differentials as model posit under interest parity.

The strength of the home currency implies excess comovement of the level of the

exchange rate and the interest differential. As discussed in Section 2, we can ex-

press this excess comovement mathematically. This excess comovement means that

the covariance of the stationary component of the exchange rate with the foreign

less U.S. interest rate is more negative than would hold under interest rate parity:

cov(Et
∑∞

0 ρt+j+1, r
∗
t,1− rt,1) < 0. Though this empirical finding of excess comovement

is not very puzzling in itself, it has opposite implications with the UIP: This finding im-

plies high interest rate currency is less risky, the empirical failure of the UIP indicates

that high interest rate is riskier.

To shed light on the empirical relationship between interest rate differentials and

exchange rate levels implied by standard exchange rate models, we run Engel (2016)

regression (8) using the data for currencies of major economies relative to US. Our pre-

liminary empirical analysis uses nominal interest rates. Such an analysis is comparable

to the Fama regression based on nominal interest rates. Another advantage of using

nominal interest rates is that we do not need to calculate inflation expectations, which

are not observable. Furthermore, Engel (2016) stresses that results from the regression

based on nominal interest rates are roughly consistent with those from the regression

based on real interest rates.

[Insert Table 5 about Here]

We run the Engel regression using the ex post forward currency risk premium.

Table 5 presents the results of the Engel regression using the data for currencies of

major economies relative to US. In the Fama regression, the independent variable is
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exchange rate changes or the spot n-period forward risk premium ρ
(n)
t+1. In contrast,

the regressand in Engel regression is the forward one-period currency risk premium

ρ
(1)
t+j+i for j ≥ 1. If the currency risk premium is a constant over the entire spectrum,

we should observe a regression slope that equals to 0. However, in the short spectrum,

we typically find a large positive slope coefficient, which is significant for the US dollar

against Japanese yen, the British pound, the merged Deutsch mark and euro series. For

the US dollar against Canadian dollar, though the slope coefficient is insignificant, it

is still positive. These results are consistent with the results from the Fama regression,

suggesting that high interest rate currencies are riskier.

However, when we move to the long end of the spectrum, a striking thing that

emerges from the Table is that the slope coefficient are consistently negative, which are

statistically significant at the long end. These findings suggest that the term structure

of currency risk premia is downward sloping. More importantly, this downward-sloping

term structure of currency risk premia indicates that high interest rate currencies are

less risky, as opposed to the implication of the uncovered interest rate parity. This

constitutes the paradox proposed by Engel (2016). Another interesting pattern that

emerges from the table is that the term structure of currency risk premia in some

markets is not monotonically decreasing. For instance, the slope coefficient of the

Engel regression is very volatile for the exchange rate of the Canadian dollar against

the US dollar.

[Insert Table 6 about Here]

We now conduct empirical analysis using real interest rates. This is important

because the standard equilibrium models of the level of the exchange rate (e.g., Dorn-

busch, 1976; and Frankel, 1979) link the stationary component of the exchange rate

to real interest differentials. Table 6 reports the empirical results using ex post for-

ward currency risk premia as the regressand. It is evident that the slope coefficient of

the Engel regression is often negative. Compared to the evidence from the regression
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based on nominal interest rates, we find that even at the short spectrum, the slope

coefficient is often negative. As such, the evidence is more against the evidence from

the empirical test of the UIP conditions, making the paradox proposed by Engel even

more puzzling. Another interesting thing that emerges from the table is that the term

structure of currency risk premia is not monotonic and currency risk premia is very

volatile. Overall, the results from the Fama and Engel regressions suggest the empirical

failure of the UIP and the presence of the exchange rate paradox.

4.2 The ATSM-X Model and Puzzles

As a preliminary analysis, we examine how well the ATSM-X model fits the US and

foreign term structure of interest rates and exchange rate changes born out in the data.

As discussed above, the fitness of the yield curve in the ATSM-X model is determined

by three local term-structure factors and two unspanned macro factors. In our exercise,

local term-structure factors are the first 3 principle components of all interest rates. In

Table 7 we present statistics that describe the in-sample fit. Specifically, we report the

root mean-squared pricing errors (RMSE) of the domestic US yields and the respective

foreign yields measured in basis points.6 As shown in Panel A of Table 7, average yield

pricing errors are small, ranging between 2.1 and 11.6 basis points.

[Insert Table 7 about Here]

Panel B summarizes the fitness of exchange rates. In the ATSM-X model, exchange

rate dynamics are simultaneously driven by term-structure factors of two markets as

well as unspanned macro factors. We report the results from regressing observed ex-

change rate changes on model-implied exchange rate changes. The regression results

suggest that intercepts (α) are virtually zero, though we reject the null hypothesis

6We estimate independently the US term structure of interest rates for all four pairs of exchange
rates. The fitness are very similar. We report in Table 7 the results from the ASTM-X model for the
exchange rate of US dollar against Mark/Euro.
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that intercepts are statistically different from 0. Slope coefficients (β) are close to one,

and we cannot reject the hypothesis that slope coefficients are equal to one. The re-

sults show that exchange rate dynamics implied by the ATSM-X model closely match

observed exchange rate changes.

In addition to the fitness, what is the extent to which the ATSM-X model can

account for the predictability of excess bond returns? A striking empirical finding in

recent finance research is the predictability of excess bond returns. On the theoretical

side, the predictability of excess bond returns are consistent with economic theories,

which suggests that Insofar as economic variables affect future consumption and in-

vestment opportunities, they are important state variables for predicting excess bond

returns. In this spirit, a number of studies (e.g., Fama and Bliss, 1987; Campbell and

Shiller, 1991; Ludvigson and Ng, 2009; Joslin, Priebsch, and Singleton 2014) show that

numerous macro and financial factors have important forecasting power for future bond

risk premia.7 In particular, forward rates are found to have strong predictive power for

future excess bond returns. Since investors’ beliefs about future bond prices determine

what investors are willing to pay for bonds. This indicates that forward rates contains

all information relevant to predicting bond risk premia. Along this line, Cochrane and

Piazzesi (2005) find that a tent-shaped linear combination of forward rates strongly

predicts excess bond returns. Toward this end, we investigate how well the ATSM-X

model can account for the predictability of excess bond returns, a major anomaly in

the bond pricing literature.

Given the excess bond return, rxt,n, defined in equation (24), the average excess

log return across the maturity spectrum is defined as

rxt+1 ≡
1

4

5

n=2
rxt+1,n. (40)

7Zhu (2015) reviews the academic literature that investigates the predictability of excess bond
returns.
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According to finance theories, investors’ beliefs about future bond prices are impounded

into current prices. As such, the time-t term structure should contain substantial

information about future changes in excess bond returns. In this spirit, Cochrane and

Piazzesi (2005) extend the Fama and Bliss (1987) approach and run regressions of

excess returns on all forward rates:

rxt+1,n = β0,n + β1,nit,1 + β2,nft,2 + ...+ β5,nft,5 + εt+1,n. (41)

Drawing on the fact that the same function of forward rates predicts holding period

returns at all maturities, Cochrane and Piazzesi (2005) construct a tent-shaped linear

combination of forward rates, namely the CP factor, to parsimoniously predict one-year

ahead excess bond returns. Specifically, the CP factor is constructed by regressing the

average excess return across maturities at each time t on the one-year yield and four

forward rates ft≡ [it,1 ft,2 ft,3 ft,4 ft,5]
′:

rxt+1 = γ0 + γ′ft + ε̄t+1, (42)

where γ = [γ1 γ2 γ3 γ4 γ5]
′. The CP factor is the fitted value of regression (42).

Cochrane and Piazzesi (2005, 2008) show that the predictive ability of the CP factor

cannot be captured by the popular yield curve factors of level, slope and curvature.

Recently, the tent-shaped linear combination of forward rates has been viewed as a

stylized fact to be matched by term structure models. In particular, Kessler and

Scherer (2009) and Sekkel (2011) demonstrate that show that the empirical finding

of Cochrane and Piazzesi (2005) hold for other developed countries. For Germany,

Japan, and UK, they find that a single-factor model captures well the predictability

of international excess bond returns. This factor in these markets tend to have a

tent-shape.

[Insert Figure 1 about Here]
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We first check whether a single-factor can capture well the predictability of bond

risk premia. Because five forward rates create a near-perfect colinearity problem, we

report results for forward rates with n = 1, 3, 5 years (see, also, Lettau and Wachter,

2011), though these results are robust to alternative choices. As shown in the left

panels of Figure 1, the tent-shape finding of Cochrane and Piazzesi (2005) is quite

apparent, suggesting the robustness of the tent-shape. Next, we examine whether

the ambiguity model can replicate the tent-shape. The right panels of Figure 1 plots

the model-implied coefficients. It is evident that the ambiguity model replicates the

tent-shape and explains the prediction capability of forward rates for excess returns.

An implication of many economic models is that high interest rate currencies tend

to appreciate. However, numerous empirical studies suggest the opposite: future ex-

change rate changes and current interest rate differentials are negatively correlatively.

Our analysis in Section 3 also indicates a tendency for high interest rate currencies to

appreciate. This departure from uncovered interest parity, which is usually termed as

the forward premium anomaly, has spawned a second generation of papers attempting

to account for it. The ATSM-X model generates the time-varying currency risk pre-

mium, which is jointly driven by term-structure factors and unspanned macro factors.

In the setting of ATSM-X, the forward exchange rate is the sum of the expected spot

rate plus a time-varying risk premium which compensates both for unspanned macro

risks, interest rate risk, and currency risk. As a consequence, the ATSM-X model is

likely to provide a risk-based explanation for the forward premium puzzle.

[Insert Table 8 about Here]

To examine whether the ATSM-X model is able to generate the time-varying risk

premium that can account for the empirical failure of the UIP condition, we run risk-

adjusted Fama regression (10). If the ATSM-X model is successful in producing a risk

premium with the requisite properties, we should observe a slope coefficient of one in
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the risk-adjusted regression. Table 8 provides an overview on how well the ATSM-

X model explain the forward premium puzzle for four exchange rates. Our evidence

clearly shows that the slope coefficient is significantly positive and close to one for all

four currencies and for all maturities. We also statistically test the null hypothesis that

the slope coefficient is equal to one. In more than half cases, we cannot reject the null

hypothesis.

Compared to the Fama regression results presented in Table 4, a striking feature

is the increase in regression R-square. We illustrate the point using the 1-month, 1-

year, and 10-year regressions. For the US dollar against Japanese yen, the merged

Deutsch mark and euro series, the British pound, and the Canadian dollar, R-square

increases respectively from 0.042, 0.254, and 0.140 to 0.063, 0.468, and 0.759. For

the US dollar against the merged Deutsch mark and euro series, R-square increases

respectively from 0.001, 0.041, and 0.412 to 0.133, 0.218, and 0.485. For the US dollar

against the British pound, R-square increases even more dramatically. The US dollar

against the Canadian dollar shows a similar pattern. The change in R-square further

confirms the importance of the time-varying risk premium in accounting for the forward

premium puzzle.

In Section 3, using both nominal and real interest rates, we document that the

covariance of the stationary component of the exchange rate with the foreign less U.S.

interest rate is more negative than would hold under interest parity,

cov(Et

∞∑
0

ρ
(1)
t+j+1, r

∗
t,1 − rt,1) < 0. (43)

We thus need to explain why it is more negative. In particular, when this fact is

combined with the forward premium puzzle, it constitutes a puzzling paradox: the

forward premium puzzle requires high interest currencies to be riskier, but this fact

implies currencies with higher interest rate to be less risky.

The paradox implies a decreasing curve of forward currency risk premia along the

maturity spectrum. We already show that the time-varying risk premium generated
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by the ATSM-X model is able to account for the forward premium puzzle. In the same

spirit, we also run risk-adjusted Engel regression (21). If the risk premium delivered

by the ATSM-X model can resolve the puzzle proposed by Engel (2016), it means that

the ATSM-X can generate the decreasing curve of forward currency risk premia. As

a consequence, it can simultaneously account for the forward premium puzzle and the

Engel puzzle.

[Insert Table 9 about Here]

As a preliminary analysis, we run the risk-adjusted Engel regression using nominal

interest rates. Table 9 provides an overview on how well the ATSM-X model can resolve

the Engel puzzle. It is evident from the table that the slope coefficients are consistently

close to one for all currencies and for all maturities, as suggested by standard exchange

rate models. Statistically, these coefficients are significant at the 1 percent level. To

provide insights on the confidence level of the slope coefficient of one, we test the null

hypothesis that the slope coefficient is equal to one. We find that the null hypothesis

is rarely rejected, suggesting the fitness of the ATSM-X model. A more salient feature

of the risk-adjusted Engel regression that emerges from the table is explanatory power.

Compared with the Engel regression results reported in Table 5, for the US dollar

against Japanese yen, the merged Deutsch mark and euro series, the British pound,

and the Canadian dollar, the average R-square increases respectively from 3%, 1%, 1%,

and less than 1% to 37%, 52%, 43%, and 52%. The dramatic increase in the average

R-square suggests the importance of the time-varying risk premium in understanding

the link between exchange rate changes and interest rate differentials.

[Insert Table 10 about Here]

We also run the risk-adjusted Engel regression using real interest rates. Since stan-

dard exchange rate models are typically focus on the link between real interest rate
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differentials and exchange rate dynamics, it seems such an analysis is very important.

Table 10 summarizes the risk-adjusted Engel regression results using real interest rate

differentials. For all currencies and all forward maturities, we consistently find that the

slope coefficient is statistically significant and is close to one, which is the theoretical

value of the slope coefficient. In most cases, we cannot reject the null hypothesis that

the slope coefficient is equal to one. More notably, the average R-square increases

respectively from 1%, 1%, less than 1%, and 2% to 98%, 96%, 98%, and 98% for

the US dollar against Japanese yen, the merged Deutsch mark and euro series, the

British pound, and the Canadian dollar. Taken together with the findings from the

risk-adjusted Fama regression and the risk-adjusted Engel regression based on nominal

interest rates, our analysis suggests that the ATSM-X model can generate the decreas-

ing term structure of forward currency risk premia and can resolve the paradox stressed

by Engel (2015).

4.3 Decomposition of Currency and Bond Risk Premia

In Section 4.2, we show that the time-varying risk premium implied by the ATSM-X

model can account for exchange rate puzzles and the predictability of bond risk premia.

The ATSM-X model thus provides a risk-based explanation for asset pricing puzzles.

In this section we analyze the nature of the time variation in expected excess returns

implied by the ATSM-X model.

In a complete market, the percentage change in the exchange rate reflects the

difference between the log of the domestic and the foreign pricing kernels. In this spirit,

we decompose currency and bond risk premia into a macro-factor-specific component

and a yield-factor-specific component. In our setting, macro factors are unspanned

by term-structure factors. So, macro factors affect contemporaneous bond yields and

exchange rates only through their correlation with term-structure factors, but they

are allowed to independently predict future currency and bond risk premia. As a

consequence, expected excess currency and bond returns implied by macro factors
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and by term-structure factors are independent. Our way of examining the nature of

expected excess returns is to check how the two components of currency and bond risk

premia are related to global risk measures and to economic activity.

In line with Sarno, Schneider, and Wagner (2012) as well as Lustig, Roussanov,

and Verdelhan (2014), our proxy for global risk is based on the V IX S&P500 implied

volatility index traded at the Chicago Board Options Exchange (CEOE), which is

highly correlated with similar volatility indexes in other countries. In addition to

being a proxy for global risk, the V IX index can also be viewed as a proxy for funding

liquidity constraints (see, Brunnermeier, Nagel, and Pedersen, 2008). As such, ”flight-

to-quality” and ”flight-to-liquidity” arguments, which posit that investors demand a

higher risk premium in bad times, suggest that short-horizon expected currency risk

premia should be negatively correlated with the V IX multiplied by the sign of the

current yield differential: in times of global market uncertainty and higher funding

liquidity, market participants require higer risk premia on high yield currencies but

accept lower risk premia on low yield currencies.

For the US dollar against Japanese yen, the merged Deutsch mark and euro series,

the British pound, and the Canadian dollar, the contemporaneous correlations of 1-

month-ahead expected currency risk premia with the VIX multiplied by the sign of the

interest rate differential, sV IX ≡ V IX×sign[it,1− i∗t,1], are respectively −0.40, −0.57,

−0.18, and −0.24. Using block-bootstrapped methods, we find these contemporaneous

correlations are consistently significant at the 1% level. The singificantly negative

correlations provide the supporting evidence on our priors that foreigen exchange risk

premia are driven by global risk perception in a way that is consistent with economic

intuition.

[Insert Figure 2 about Here]

Figure 2 illustrates economically large effects of unspanned macro factors on risk

premiums in currency markets. The first striking fact that emerges from the figure is
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that a large portion of currency risk premia is attributable to unspanned macro risks.

In contrast, only a small portion of risk premia is driven by term-structure factors.

The second fact that emerges from the figure is that currency risk premia driven by

unspanned macro factors are very volatile. Two resolve the forward premium puzzle

from a risk-based perspective, Fama (1984) Fama shows that implied risk premium on

a currency must be negatively correlated with its expected rate of depreciation and

has greater variance. The volatile risk premium implied by unspanned macro factors

might account for why the ATSM-X model can resolve the forward premium puzzle. As

currency risk premia implied by macro factors vary along the sprectrum, they deliver a

decreasing term structure of currency risk premia and account for the Engel paradox.

Numerous recent studies (e.g., Lustig and Verdelhan, 2007; De Santis and Fornari,

2008; and Lustig, Roussanov, and Verdelhan, 2014) demonstrate that risk premia

on US exchange rates are countercyclical to the US economy. In this spirit, we use

industrial production as a measure of the state of the US economy and examine how

currency risk premia are related to IP growth rate. If the model-implied risk premium

is countercyclical, the relation between expected excess currency returns and output

growth should be negative. It is evident from the figure that macro-factor-specific

risk premia are countercyclical. In contrast, yield-factor-specific currency risk premia

appear to be acyclical. These results thus suggest that foreign exchange risk premia

are driven by macroeconomic fundamentals in a way that is consistent with economic

intuition.

[Insert Figure 3 about Here]

We also document economically large effects of the unspanned macro factors on risk

premiums in international Treasury bond markets. Figure 3 respectively plots the “in-

two-years-for-one-year” forward term premia for five markets. We can attribute a large

portion of movements in bond risk premia to unspanned macro factors. These results

are consistent with those from Joslin, Priebsch, and Singleton (2014) and Jotikasthira,
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Le, and Lundblad (2015). It is also consistent with the findings from the analysis of

currency risk premia. Overall, these findings indicate the importance of unspanned

macro factors in understanding the behavior of currency and bond risk premia.

Economic theories suggest that rational, utility-maximizing investors must be com-

pensated for bearing macroeconomic risks. In economic recessions, investors are reluc-

tant to take on risk. Heightened risk aversion during economic downturns thus pushes

up the risk premium. In light of this, we examine fluctuations in bond risk premia

over the business cycle. Notably, the risk premia from the ATSM-X model show a

pronounced cyclical pattern with peaks during recessions (the shaded areas). For the

purpose of comparison, we also estimate a two-economy term structure model without

unspanned macro factors. Figure 3 displays the “in-two-years-for-one-year” forward

term premia imlied by the model without macro factors. “in-two-years-for-one-year”

forward term premia for five markets. The figure indicates that there are systematic

differences between the two ”in-two-years-for-one-year” forward term premia. Indeed,

the risk premia from the model without macro factors appears to be acyclical.

5 Conclusions

In this paper, we propose a two-economy affine term structure model with unspanned

macroeconomic risks (ATSM-X). The ATSM-X model has an (m + n) factor struc-

ture and can simultaneously model the term structure of interest rates from different

countries, as well as the exchange rates between them. Importantly, the pricing kernel

implied by the ATSM-X model has two orthogonal components: a component driven

by m term structure factors and a component driven by n unspanned macro factors.

As such, both currency risk premia and bond risk premia are driven by m term struc-

ture factors and n unspanned macro factors. The affine model enables us to maintain

internal consistency, but it explicitly accounts for the fact that a predominant portion

of the exchange rate movement and bond excess return dynamics is independent of the

movements in the cross section of interest rates in either country.
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Our empirical analysis shows that the ATSM-X model can account for the paradox-

ical implications of the empirical failure of UIP and standard exchange rate models.

Specifically, based on risk premia implied by the ATSM-X model, we show that the

risk-adjusted Fama regression is able to generate a slope coefficient of one. In addition,

the risk-adjusted Engel regression can recover a slope coefficient of zero, both for nom-

inal and real interest rates and real interest rates. On the other hand, the ATSM-X

model fits the term structure of interest rates in each country well. It also recovers the

tent-shape of bond return predictability. Overall, these findings indicates the ATSM-X

model generates a downward-sloping term structure forward currency risk premia and

an appropriate term structure of bond risk premia.

We show the important role of unspanned risks in explaining the links between

global macroeconomic fundamentals and the cross section of international interest rates

and exchange rates. Indeed, currency and bond risk premia driven by term-structure

factors are acyclical. In sharp contrast, currency and bond risk premia driven by

unspanned macro factors are somewhat countercyclical, as most economic theories

suggest. We view our results as suggestive for further research on the links between

macroeconomic variables and exchange rates using modern asset pricing methods.

Appendix A: Bond Pricing

The price of an zero coupon bond with maturity T is given by

P (t, T ) = EQ
t

(
e−

∫ T
t isds

)
= eφ0(T−t)+φ1(T−t)

>Pt , (44)

where φ0 and φ1 satisfy the following system of Riccati equations

∂φ0(τ) =
1

2
φ>1 ΣPPΣ>PPφ1 +KQ

0P

>
φ1 − a0

∂φ1(τ) = KQ
1PP

>
φ1 − a1 (45)
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with the initial condition φ0(0) = 0, φ1(0) = 0. The annualized bond yield is thus

given by

i(t, τ) = A(τ) +B(τ)>Pt (46)

with A = −φ0(τ)/τ and B = −φ0(τ)/τ .

Appendix B: A Canonical Study to ATSM-X

In this appendix, we study how many parameters can be identified at most by our

model. And we will also show that the parameters for bonding pricing is irrelevant to

the exchange rate estimation, which forms the crucial distinctiveness for our empirical

research.

At first, let us show that given all the P-parameters and Q-measure parameters

that are related to bond pricing, KQ
0P , KQ

1PP , K∗0∗ and K∗1∗∗, the exchange rate are still

free to estimate. According to the SDE of exchange rates, we find that its dynamic is

determined by the drift

1

2
(Λ>ZΛZ − Λ∗Z

>Λ∗Z) = (ΛZ − Λ∗Z)>ΛZ −
1

2
(ΛZ − Λ∗Z)>(ΛZ − Λ∗Z) (47)

and the diffusion parameters

(ΛZ − Λ∗Z)> (48)

with Zt to be an 2 ∗ n + m vector. According to our simplification setup, we assume

ΛZ − Λ∗Z to be a vector of constants, thus ΛZ − Λ∗Z can be written as follows

ΛZ − Λ∗Z = Σ−1Z


K∗0P −K

Q
0P

K∗0∗ −K
Q
0∗

K∗0M −K
Q
0M

 . (49)

One can immediately finds that even KQ
0P and K∗0∗ is given, diffusion parameters ΛZ −
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Λ∗Z are still free to estimate because K∗0P and KQ
0∗ are not restricted. For the diffusion

term of the exchange rate, it can be split into a constant

(ΛZ − Λ∗Z)>Σ−1Z (µP − µQ)− (ΛZ − Λ∗Z)>(ΛZ − Λ∗Z) (50)

and a linear combination of the latent factor Zt

(ΛZ − Λ∗Z)>Σ−1Z


KQ

1PP 0 0

KQ
1∗P KQ

1∗∗ 0

KQ
1MP KQ

1M∗ KQ
1MM

Zt. (51)

Since the constant (50) is determined by 2 additional constants parameters K∗0M and

KQ
0M , even assuming ΛZ − Λ∗Z is given, the constant (50) is still free to estimate.

Furthermore, for the linear combination of Zt, since parameters KQ
1MP , KQ

1M∗ and

KQ
1MM are unrestricted, this linear combination is also free to estimate. Thus all the

P-parameters and Q-measure parameters that are related to bond pricing, KQ
0P , KQ

1PP ,

K∗0∗ and K∗1∗∗ are irrelevant to exchange rate distribution. Furthermore, since the

exchange rate SDE in our setup is affine, we can simply rewrite it as

dst = (it − i∗t + a+ b>Zt)dt+ Σ>s dWt (52)

with a to be a scalar, b to be a (2n + m) × 1 vector of constants and Σs to be a

(2n + m) × 1 vector of constants. a b and Σs are all the parameters we can identify

except the P-parameters and KQ
0P , KQ

1PP , K∗0∗ and K∗1∗∗.

The identification of the bond pricing part of our model is similar to Joslin, Priebsch,

and Singleton (2014). This includes the identification of all P-measure parameters and

Q-measure parameters that are related to bond pricing. According to Joslin, Singleton,

and Zhu (2011) and Joslin, Priebsch, and Singleton (2014), all P parameters, including
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ΣPP are identifiable. The Q-SDE related to domestic bond pricing is given by,

dPt = (KQ
0P +KQ

1PPPt)dt+ ΣPPdW
Q
P . (53)

There are at most n + 1 parameters are identifiable in the above Q-SDE: kQ∞ for the

long term mean and λQ for the eigenvalues of KQ
1PP . For simplicity, we assume the

eigenvalues are real and distinct, therefore, λQ is an n× 1 vector of real numbers. For

Q∗-parameters that price foreign bonds, the Q∗-SDE for foreign bonds is given by,

dP ∗t = (K∗0∗ +K∗1∗∗P
∗
t )dt+ Σ∗∗dW

∗
∗ (54)

and except for Σ∗∗ (which is obtained when estimating P-SDE for the whole system),

we can further identify the long term mean k∗∞ and a real and distinct vector λ∗ for

the eigenvalues of K∗1∗∗. And these are all the parameters our model is able to identify.

Appendix C: Estimation Details

In this section, we describe the details of our 3-step estimation.

At first, we estimate the P-parameters that determine the distribution of our fac-

tors Zt. We use the notation θP to denote all P-parameters, φ(y;u,Ω) to denote the

density of the multi-variate normal distribution. Given the observable factors Zt, the

conditional density is given by,

p(Z|θP ) =
N∏
i=1

φ
(
Zn;EP

n−1(Zn|Zn−1), V P
n−1(Zn|Zn−1)

)
. (55)

By maximizing the log likelihood function log(p(Z|θP )), we estimate all the P-parameters.

The second step is to fit the government bond yield. Denote by im(t, τ) the model

implied bond yield. We assume that the annulized interest rate yields i(t, τ)/τ are
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observed with cross-sectionally i.i.d errors ηt ∼ φ(0, ση),

i(t, τ)/τ = im(t, τ)/τ + ηt. (56)

We further assume an invariant ση across all the maturities with Ση = diag(ση, · · · , ση).

The conditional density is therefore given by,

p(y|ΣZ ; kQ∞, λ
Q, k∗∞, λ

∗, ση) =
N∏
i=1

φ (yn; ymn ,Ση) . (57)

By maximizing the log likelihood function log(p(y|ΣZ ; kQ∞, λ
Q, k∗∞, λ

∗, ση)), we estimate

the bond pricing relevant parameters KQ
0P , KQ

1PP , K∗0∗ and K∗1∗∗.

The third step fits the model-implied depreciation rates to the exchange rate data.

Given εt = (ε1m, ε3m, ε6m, ε1Y , ε3Y , ε10)
> the depreciation rates of exchange rate such

that

εT = st+T − st (58)

with T varies from 1 month upto 10 years. The expectation and variance of the

depreciation rate is denoted by EP
t (εt) and V P

t (εt), which is derived from our affine

term structure currency model, ASTM-X. The likelihood function can be written as,

p(s+|s−, Z; a, b,Σs) =
N∏
i=1

φ
(
εn;EP

t (εt), V
P
t (εt)

)
. (59)

Thus, parameters a b and Σs can be estimated by maximizing the log of this likelihood

function. Observe that since we divide our estimation procedure in 3 steps, the pa-

rameters are naturally divided into 3 groups. In each step, the parameters need to be

estimated become even fewer, which again makes our estimation process parsimonious

and robust.

41



References

[1] Ahn, D., 2004. Common Factors and Local Factors: Implications for Term Struc-

tures and Exchange Rates. Journal of Financial and Quantitative Analysis 39,

69–102.

[2] Anderson, B., P. Hammond, and C. Ramezani. 2010. Affine Models of the Joint

Dynamics of Exchange Rates and Interest Rates. Journal of Financial and Quan-

titative Analysis 45, 1341–1365.

[3] Ang, A., and M. Piazzesi. 2003. A No-Arbitrage Vector Autoregression of Term

Structure Dynamics with Macroeconomic and Latent Variables. Journal of Mon-

etary Economics 50, 745–787.

[4] Bacchetta, P., and E. Wincoop, 2010. Infrequent Portfolio Decisions: A Solution

to the Forward Discount Puzzle. American Economic Reivew 100, 870–904

[5] Backus, D., S. Foresi, and C. Telmer. 2001. Affine Term Structure Models and the

Forward Premium Anomaly. Journal of Finance 56, 279–304.

[6] Bakshi, G., and Z. Chen. 1997. Equilibrium Valuation of Foreign Exchange Claims.

Journal of Finance 52, 799–826.

[7] Bakshi G., and G. Panayotov. 2013. Predictability of Currency Carry Trades and

Asset Pricing Implications. Journal of Financial Economics 110, 139–163.

[8] Bansal, R., 1997. An Exploration of the Forward Premium Puzzle in Currency

Markets. Review of Financial Studies 10, 369–403.

[9] Bansal, R., and I. Shaliastovich. 2013. A Long-Run Risks Explanation of Pre-

dictability Puzzles in Bond and Currency Markets. Review of Financial Studies

26, 1–33.

[10] Bilson, J.,1981. The Speculative Efficiency Hypothesis. Journal of Business 54,

435–451.

42



[11] Brandt, M., and P. Santa-Clara. 2002. Simulated Likelihood Estimation of Diffu-

sions with An Application to Exchange Rate Dynamics in Incomplete Markets.

Journal of Financial Economics 63,161–210.

[12] Brennan, M., and Y. Xia. 2006. International Capital Markets and Foreign Ex-

change Risk. Review of Financial Studies 19, 753–795.

[13] Brunnermeier, M., and L.H. Pedersen,2009, Market Liquidity and Funding Liq-

uidity. Review of Financial Studies 22, 2201–2238.

[14] Burnside, C., B. Han, D. Hirshleifer, and T.Y. Wang, 2011. Investor Overconfi-

dence and the Forward Premium Puzzle. Review of Economic Studies 78, 523–558.

[15] Campbell, J.Y., and R. Shiller. 1991. Yield Spreads and Interest Rates: A Bird’s

Eye View. Review of Economic Studies 58, 495–514.

[16] Chen, Y., and R. Gwati, 2013. FX Options and Excess Returns: A Multi-Moment

Term Structure Model of Exchange Rate Dynamics. Working Paper.

[17] Cheridito, P., D. Filipovic, and R.L. Kimmel. 2007. Market Price of Risk Specifi-

cations for Affine Models: Theory and Evidence. Journal of Financial Economics

83, 123–70.

[18] Cochrane, J. H., and M. Piazzesi. 2005. Bond risk premia. American Economic

Review 95, 138–160.

[19] Cooper, I., and R. Priestley. 2009. Time-Varying Risk Premiums and the Output

Gap. Review of Financial Studies 22, 2801–2833.

[20] Cumby, R., 1988. Is It Risk? Explaining Deviations from Uncovered Interest

Parity. Journal of Monetary Economics 22, 279–299.

[21] Dewachter, H., and K. Maes. 2001. An Admissible Affine Model for Joint Term

Structure Dynamics of Interest Rates. Unpublished working paper, KU Leuven.

43



[22] De Santis, R., and F. Fornari, 2008. Does Business Cycle Risk Account for System-

atic Returns from Currecy Positioning? Unpublished Working Paper, European

Central Bank.

[23] Du, D., 2013. General Equilibrium Pricing of Currency and Currency Options.

Journal of Financial Economics 111, 527–553.

[24] Domowitz, I., and C. Hakkio, 1985. Conditional Variance and the Risk Premium

in the Foreign Exchange Market. Journal of International Economics 19, 47–66.

[25] Dornbusch, R, 1976. Expectations and Exchange Rate Dynamics. Journal of Po-

litical Economy 84, 1161-1176.

[26] Duffee, G. R., 2002. Term Premia and Interest Rate Forecasts in Affine Models.

Journal of Finance, 57, 405–443.

[27] Duffee, G. R., 2011. Information in (and not in) the Term Structure. Review of

Financial Studies 24, 2895–2934.

[28] Egorov, A. V., H. Li, and D. Ng. 2011. A Tale of Two Yield Curves: Modeling the

Joint Term Structure of Dollar and Euro Interest Rates. Journal of Econometrics

162, 55–70.

[29] Eichenbaum, M., and C.L. Evans. 1995. Some Empirical Evidence on the Effects

of Shocks to Monetary Policy on Exchange Rates. Quarterly Journal of Economics

110, 975–1009.

[30] Engel, C., 2016. Exchange Rates, Interest Rates, and the Risk Premium. American

Economic Review, forthcoming.

[31] Fama, E.F., 1984. Forward and Spot Exchange Rates. Journal of Monetary Eco-

nomics 14, 319–338.

[32] Fama, E.F. and R.R. Bliss. 1987. The Information in Long-Maturity Forward

Rates. American Economic Review 77, 680–692.

44



[33] Farhi, E., S.P. Fraiberger, X. Gabaix, R. Ranciere, and A. Verdelhan, 2009. Crash

risk in currency markets. Working paper, MIT Sloan.

[34] Farhi, E., and X. Gabaix, 2014. Rare Disasters and Exchange Rates. Manuscript,

Department of Economics, Harvard University.

[35] Frankel, J.A., 1979. On the Mark: A Theory of Floating Exchange Rates Based

on Real Interest Differentials. American Economic Review 69, 610-622.

[36] Froot, K.A., and R.H. Thaler. 1990. Anomalies: Foreign Exchange. Journal of

Economic Perspectives 4, 179–192.

[37] Han, B., and P. Hammond, 2003. Affine Models of the Joint Dynamics of Exchange

Rates and Interest Rates. Working Paper.

[38] Hansen, L. P., and R. J. Hodrick.1980. Forward Exchange Rates as Optimal Pre-

dictors of Future Spot Rates: An Econometric Analysis. Journal of Political Econ-

omy 88, 829–853.

[39] Hansen, L.P, and R. Hodrick, 1983. Risk Averse Speculation in the Forward For-

eign Exchange Market. In J.A. Frankel, ed.: Exchange Rates and International

Macroeconomics, University of Chicago Press, Chicago, IL.

[40] Hassen, T.A., 2013. Country Size, Currency Unions, and International Asset Re-

turns. Journal of Finance, 68, 2269–2308.

[41] Hodrick, R., and M. Vassalou, 2002. Do We Need Multi-Country Models to Ex-

plain Exchange Rate and Interest Rate and Bond Return Dynamics? Journal of

Economic Dynamics and Control 26, 1275–1299.

[42] Inci, A. C., and B. Lu, 2004. Exchange Rates and Interest Rates: Can Term

Structure Models Explain Currency Movements? Journal of Economic Dynamics

and Control 28, 1595–1624.

45



[43] Joslin, S., A. Le, and K. J. Singleton. 2013. Why Gaussian macro-finance term

structure models are (nearly) unconstrained factor-vars. Journal of Financial Eco-

nomics 109, 604–622.

[44] Joslin, S., M. Priebsch, and K. J. Singleton. 2014. Risk Premiums in Dynamic

Term Structure Models with Unspanned Macro Risks. Journal of Finance 69,

1197–1233.

[45] Joslin, S., K. J. Singleton, and H. Zhu. 2011. A New Perspective on Gaussian

Dynamic Term Structure Models. Review of Financial Studies 24, 926–970.

[46] Jotikasthira, C., A. Le, and C. Lundblad. 2015. Why Do Term Structures in

Different Currencies Co-move? Journal of Financial Economic, forthcoming.

[47] Jurek, J.W., and Z. Xu, 2014. Option-Implied Currency Risk Premia. Working

Paper.

[48] Kessler, S., and Scherer, B., 2009. Varying Risk Premia in International Bond

Markets. Journal of Banking and Finance 33, 1361–1375.

[49] Leippold, M., and L. Wu, 2007. Design and Estimation of Mulit-Currency

Quadratic Models. Review of Finance 11, 167–207.

[50] Lettau M., M. Maggiori, and M. Weber. 2015. Conditional Risk Premia in Cur-

rency Markets and Other Asset Classes. Journal of Financial Economics, forth-

coming.

[51] Lettau, M., and J. A. Wachter. The Term Structure of Equity and Interest Rates.

Journal of Financial Economics 101, 90–113.

[52] Litterman, R. B., and J. Scheinkman. 1991. Common factors affecting bond re-

turns. The Journal of Fixed Income 1, 54–61.

[53] Ludvigson, S. C., and S. Ng. 2009. Macro Factors in Bond Risk Premia. Review

of Financial Studies 22, 5027–5068.

46



[54] Lustig, H., N. Roussanov, and A. Verdelhan, 2011. Common Risk Factors in Cur-

rency Markets. Review of Financial Studies 24, 3731–3777.

[55] Lustig, H., N. Roussanov, and A. Verdelhan, 2014. Countercyclical currency risk

premia. Journal of Financial Economics 111, 527–553.

[56] Lustig, H., and A. Verdelhan. 2007. The Cross-Section of Currency Risk Premia

and US Consumption Growth Risk. American Economic Review 97, 89–117.

[57] Mankiw, N.G., and R. Reis. 2002. Sticky Information versus Sticky Prices: A

Proposal to Replace the New Keynesian Phillips Curve. Quarterly Journal of Eco-

nomics 117, 1295–1328.

[58] Menkhoff, L., L. Sarno, M. Schmeling, A. Schrimpf, 2012. Carry Trades and Global

Foreign Exchange Volatility. Journal of Finance 67, 681–718.
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Table 2: Summary statistics of interest rates

Mean Median Std Dev Skew Kurt Min Max
U.S.
6m 4.1371 4.7200 2.7859 0.0570 -0.8953 0.0400 10.6100
1y 4.5101 4.8797 2.9896 0.1046 -0.8220 0.0994 11.9854
5y 5.4740 5.4064 2.8544 0.3313 -0.3930 0.6273 13.2869
10y 6.1544 5.8634 2.5498 0.4931 -0.1686 1.5522 13.5680

Canada
6m 4.6386 4.1677 3.2726 0.6947 -0.3504 0.2536 13.0732
1y 4.7355 4.1802 3.1714 0.5674 -0.5936 0.4107 12.8582
5y 5.4043 5.1311 2.8078 0.2456 -0.9992 0.6482 11.8613
10y 5.8611 5.4296 2.6201 0.1875 -1.1487 1.2577 11.0873

German
6m 3.8014 3.6450 2.5449 0.3103 -0.4705 -0.2600 9.6300
1y 3.8761 3.7900 2.5188 0.2341 -0.5358 -0.2700 9.4700
5y 4.6722 4.7800 2.3980 -0.1443 -0.6994 -0.1200 9.2400
10y 5.2463 5.2900 2.1529 -0.2940 -0.7189 0.2200 9.2300

Japan
1y 2.0019 0.4905 2.5069 0.9693 -0.6164 -0.0200 8.5540
5y 2.5329 1.2155 2.4261 0.7992 -0.8040 0.0260 8.2490
10y 3.0008 1.7405 2.2895 0.6814 -0.9567 0.2250 8.0590

UK
6m 5.8443 5.4967 3.8098 0.1975 -0.7781 0.1951 14.0365
1y 5.8295 5.5627 3.7118 0.1135 -0.8599 0.1725 14.3113
5y 6.2310 5.7003 3.2555 0.0697 -1.1114 0.5721 12.9316
10y 6.4676 5.2305 2.9579 0.2126 -1.2420 1.3867 12.3681

Notes: The table presents descriptive statistics at different maturities for the U.S.,
Canada, German, Japan and UK, including mean, median, standard deviation
etc. The sample period is from 1986:01 to 2015:02. The frequency is monthly.
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Table 3: Summary statistics of Exchange rates and macro variables

Panel A: Exchange rates
Mean Median Std Dev Skew Kurt Min Max

Canada 1.2726 1.3019 0.1878 -0.0686 -1.2239 0.9553 1.5997
German 1.8440 1.7901 0.3852 1.3839 2.3968 1.2411 3.3025
Japan 0.0081 0.0084 0.0018 -0.5962 0.2775 0.0038 0.0122
U.K. 1.6298 1.6084 0.1794 0.1764 0.0208 1.0931 2.0701

Panel B: Macro variables
Mean Median Std Dev Skew Kurt Min Max

U.S.
Inflation % 0.0010 0.0010 0.0011 -1.4871 11.5979 -0.0078 0.0059
IPI % 0.0009 0.0011 0.0027 -1.4838 8.8299 -0.0189 0.0088

Canada
Inflation % 0.0013 0.0014 0.0058 -0.9459 2.4412 -0.0238 0.0155
IPI % 0.0015 0.0015 0.0021 -0.0905 1.5155 -0.0070 0.0082

German
Inflation % 0.0007 0.0005 0.0013 0.9537 3.1431 -0.0033 0.0075
IPI % 0.0007 0.0010 0.0077 -0.1576 8.9077 -0.0432 0.0504

Japan
Inflation % 0.0002 0.0000 0.0018 0.8647 2.4210 -0.0047 0.0089
IPI % 0.0005 0.0012 0.0070 -1.5149 7.1652 -0.0380 0.0185

U.K.
Inflation % 0.0011 0.0013 0.0019 1.1499 8.3257 -0.0042 0.0144
IPI % 0.0003 0.0005 0.0045 -0.5526 2.0651 -0.0215 0.0140

Notes: The table reports exchange rates (using the U.S. as the home country) and
macro variables including inflation rate and industrial production growth rate. The
sample period is from 1986:01 to 2015:02. The frequency is monthly. Panel A re-
ports the exchange rates for Japan, Canada, German and UK. Panel B reports the
inflation rate and industrial production growth rate for the U.S., Japan, Canada,
German and UK.
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Table 4: Fama regressions

1M 3M 6M 1Y 3Y 10Y
Japan
α 0.0104 0.0324 0.0700 0.1364 0.2087 -0.1290
se(α) (0.0028) (0.0059) (0.0091) (0.0127) (0.0327) (0.0597)
β -3.5192*** -3.5839*** -3.5169*** -3.3396*** -1.0743*** 1.1249***
se(β) (1.0575) (0.7300) (0.5146) (0.3593) (0.3019) (0.1747)
t[β = 1] -4.2736 -6.2793 -8.778 -12.0779 -6.8697 0.7149
R2 0.0418 0.0867 0.1553 0.2538 0.0475 0.1403

German
α -0.0011 -0.0032 -0.0051 -0.0076 -0.003 0.1169
se(α) (0.0017) (0.0036) (0.0054) (0.0084) (0.0133) (0.0180)
β -0.4216 -0.4553 -0.6588 -1.1244*** -2.0889*** -1.4841***
se(β) (0.8247) (0.5800) (0.4217) (0.3427) (0.2136) (0.1113)
t[β = 1] -1.7238 -2.5090 -3.9334 -6.199 -14.4642 -22.3217
R2 0.0010 0.0024 0.0095 0.0407 0.2736 0.4118

UK
α -0.0045 -0.0124 -0.0111 -0.0033 0.1048 0.1029
se(α) (0.0036) (0.0072) (0.0093) (0.0129) (0.0152) (0.0147)
β -2.1194* -2.0384** -1.1397* -0.4496 1.5149*** 0.5991***
se(β) (1.2702) (0.8593) (0.5836) (0.4513) (0.2350) (0.1008)
t[β = 1] -2.4558 -3.536 -3.6663 -3.2123 2.1916 -3.9754
R2 0.0153 0.0305 0.0209 0.0055 0.1885 0.1647

Canada
α -0.0023 -0.0072 -0.014 -0.0223 -0.0127 0.2288
se(α) (0.0010) (0.0019) (0.0024) (0.0041) (0.0098) (0.0172)
β 0.0901 -0.0875 0.1897 0.1702 0.9438*** 1.5685***
se(β) (0.7706) (0.4972) (0.3300) (0.2963) (0.2795) (0.1581)
t[β = 1] -1.1808 -2.187 -2.4554 -2.8005 -0.2012 3.5957
R2 0.0001 0.0002 0.0025 0.0025 0.0795 0.4272

Notes: The table shows the results from estimating, by ordinary least squares, the regression
st+T − st = α+β(y(t, T )− y∗(t, T )) + εt,T , for the horizons indicated in the column headers.
Values in parentheses are standard errors. t[β = 1] is the t-statistic for testing β = 1. R2 is
the in-sample coefficient of determination. *, **, and *** indicate significance at the 10%,
5%, and 1% levels, respectively.
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Table 5: Engel regressions using nominal interest rates

1M 3M 6M 1Y 3Y 10Y
Japan
α 0.0111 0.0117 0.0110 0.0077 -0.0028 -0.0061
se(α) (0.0028) (0.0028) (0.0028) (0.0029) (0.0028) (0.0027)
β 4.7983*** 5.1463*** 4.6031*** 3.223*** -1.0163 -2.2274**
se(β) (1.0523) (1.0457) (1.0567) (1.0764) (1.0526) (1.0053)
R2 0.0757 0.0870 0.0695 0.0341 0.0037 0.019

German
α -0.0010 -0.0011 -0.0009 -0.0012 -0.0005 0.0012
se(α) (0.0017) (0.0017) (0.0017) (0.0017) (0.0016) (0.0015)
β 1.4479* 1.3781* 1.9152** 2.0231** 0.7567 1.5158*
se(β) (0.8247) (0.8248) (0.8232) (0.8195) (0.7753) (0.7276)
R2 0.0120 0.0109 0.0209 0.0234 0.0037 0.0168

UK
α -0.0040 -0.0029 0.0003 0.0027 0.0051 0.0055
se(α) (0.0036) (0.0036) (0.0037) (0.0037) (0.0033) (0.0023)
β 2.9711** 2.326* 1.1296 0.1569 -1.174 -1.0846
se(β) (1.2684) (1.2721) (1.2812) (1.2783) (1.1643) (0.8123)
R2 0.0297 0.0183 0.0043 0.0001 0.0056 0.0099

Canada
α -0.0023 -0.0024 -0.0019 -0.0012 0.0012 0.0036
se(α) (0.0010) (0.0010) (0.0010) (0.0011) (0.0013) (0.0018)
β 0.9258 0.8301 -0.0004 0.7287 -0.6131 -0.3701
se(β) (0.7705) (0.7679) (0.7847) (0.8813) (1.0013) (1.4308)
R2 0.0108 0.0088 0.0000 0.0052 0.0028 0.0005

Notes: The table shows the results from estimating, by ordinary least squares, the
regression ρt+T+1 = α + β(y∗t − yt) + εt,T+1, for the horizons indicated in the col-
umn headers. Values in parentheses are standard errors. t[β = 1] is the t-statistic
for testing β = 1. R2 is the in-sample coefficient of determination. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Engel regressions using real interest rates

1M 3M 6M 1Y 3Y 10Y
Japan
α 0.0006 0.0014 0.0009 0.0006 -0.0009 -0.0013
se(α) (0.0018) (0.0018) (0.0018) (0.0018) (0.0017) (0.0017)
β -0.1371 0.2353** -0.1351 -0.105 -0.0851 0.0431
se(β) (0.1171) (0.1165) (0.1172) (0.1173) (0.1130) (0.1089)
R2 0.0054 0.0158 0.0052 0.0031 0.0022 0.0006

German
α -0.0015 -0.0016 -0.0014 -0.0018 -0.0007 0.0007
se(α) (0.0017) (0.0017) (0.0017) (0.0017) (0.0016) (0.0015)
β 0.1309 0.374** -0.3549** -0.0372 -0.1759 0.0526
se(β) (0.1674) (0.1659) (0.1666) (0.1675) (0.1565) (0.1482)
R2 0.0024 0.0196 0.0176 0.0002 0.0049 0.0005

UK
α 0.0028 0.0027 0.0031 0.0028 0.0025 0.0030
se(α) (0.0021) (0.0021) (0.0021) (0.0021) (0.0019) (0.0013)
β 0.0967 -0.0322 -0.0567 0.1124 -0.0879 -0.0122
se(β) (0.1220) (0.1218) (0.1218) (0.1210) (0.1106) (0.0775)
R2 0.0035 0.0004 0.0012 0.0048 0.0035 0.0001

Canada
α -0.0025 -0.0023 -0.0017 -0.0012 0.0009 0.0033
se(α) (0.0009) (0.0010) (0.0010) (0.0011) (0.0013) (0.0018)
β 0.4186*** 0.0687 -0.1496 0.244* 0.1323 0.2663
se(β) (0.1216) (0.1262) (0.1279) (0.1432) (0.1639) (0.2333)
R2 0.0824 0.0022 0.0103 0.0215 0.0049 0.0098

Notes: The table shows the results from estimating, by ordinary least squares,
the regression ρt+T+1 = α+ β(r∗t − rt) + εt,T+1, for the horizons indicated in the
column headers. Values in parentheses are standard errors. t[β = 1] is the t-
statistic for testing β = 1. R2 is the in-sample coefficient of determination. *,
**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 7: Yield fitting and matching depreciation rates

Panel A: Yield fitting
1m 3m 6m 1Y 2Y 3Y 5Y 10Y

US 4.3453 2.1827 0.6583 3.8098 5.3072 3.3456 4.0298 5.6131
Japan - - - 4.4908 4.2038 5.8243 4.1309 6.6907
German - - 3.0320 4.4474 2.6058 2.1050 3.4222 3.5110
UK 11.5954 8.6758 17.9456 7.9036 5.8675 4.0877 7.2056 10.6627
Canada 5.1180 3.0693 0.5773 3.5534 6.8897 6.0244 2.7867 5.8242

Panel B: Matching depreciation rates
α se(α) β se(β) R2

Japan -0.0005 0.0002 0.9794 0.0088 0.9743
German -0.0005 0.0002 0.9805 0.0083 0.9768

UK -0.0007 0.0004 0.9345 0.0149 0.9389
Canada -0.0002 0.0002 0.9458 0.0129 0.9625

Notes: The table reports yield fittings for five counties as well as results for how well
model-implied depreciation rate match observed rates. Panel A reports annualized root
mean-squared errors in basis points for different yield maturities indicated in the header.
Panel B reports correlations of model-implied and observed rates, while α denotes the
intercept, β denotes the slope coefficient, and se(.) denotes the standard errors in paren-
theses. R2 is the in-sample coefficient of determination.
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Table 8: Adjusted Fama regressions

1M 3M 6M 1Y 3Y 10Y
Japan
α -0.0011 -0.0041 -0.0094 -0.0173 -0.0173 -0.0299
se(α) (0.0020) (0.0041) (0.0058) (0.0072) (0.0113) (0.0133)
β 0.8734*** 0.972*** 1.0818*** 1.1676*** 1.0972*** 1.1275***
se(β) (0.2121) (0.1630) (0.1244) (0.0847) (0.0583) (0.0399)
t[β = 1] -0.5972 -0.1717 0.658 1.979 1.6683 3.1968
R2 0.0626 0.1228 0.2295 0.4279 0.5826 0.7588

German
α 0.0004 0.0002 0.0005 0.0072 0.0029 0.0109
se(α) (0.0016) (0.0035) (0.0053) (0.0078) (0.0111) (0.0141)
β 1.2934*** 1.0089*** 1.0198*** 1.4715*** 1.6016*** 1.2643***
se(β) (0.2068) (0.2158) (0.2044) (0.1750) (0.1079) (0.0817)
t[β = 1] 1.4185 0.0414 0.0966 2.6936 5.5746 3.2335
R2 0.1334 0.0792 0.0892 0.2177 0.4644 0.4851

UK
α -0.0007 -0.0046 -0.0122 -0.0173 0.0063 0.0008
se(α) (0.0021) (0.0038) (0.0046) (0.0051) (0.0067) (0.0071)
β 0.715*** 0.956*** 1.1120*** 1.1719*** 1.0418*** 0.9696***
se(β) (0.1421) (0.1012) (0.0752) (0.0562) (0.0545) (0.0358)
t[β = 1] -2.0053 -0.4342 1.4894 3.0575 0.7679 -0.8489
R2 0.1239 0.3325 0.5501 0.7082 0.6716 0.8041

Canada
α -0.0012 -0.0037 -0.0081 -0.0067 0.0072 -0.0182
se(α) (0.0011) (0.0019) (0.0023) (0.0030) (0.0043) (0.0084)
β 0.6110** 0.6117*** 0.5654*** 0.8149*** 0.9944*** 1.0770***
se(β) (0.2454) (0.154) (0.0969) (0.0676) (0.0401) (0.0317)
t[β = 1] -1.5847 -2.5208 -4.4849 -2.7374 -0.1402 2.4291
R2 0.0448 0.1067 0.205 0.5239 0.8233 0.8973

Notes: The table shows the results from estimating, by ordinary least squares, the re-
gression rxt,T = α+βEt(rxt,T )+εt,T , for the horizons indicated in the column headers.
Values in parentheses are standard errors. t[β = 1] is the t-statistic for testing β = 1.
R2 is the in-sample coefficient of determination. *, **, and *** indicate significance at
the 10%, 5%, and 1% levels, respectively.
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Table 9: Adjusted Engel regressions using nominal interest rates

1M 3M 6M 1Y 3Y 10Y
Japan
α 0.0007 0.002 0.0025 0.0018 0.0018 -0.0051
se(α) (0.0028) (0.0028) (0.0028) (0.0028) (0.0027) (0.0026)
β 1.0913*** 1.1384*** 1.1366*** 1.1065*** 1.0803*** 0.7627***
se(β) (0.0870) (0.0867) (0.0866) (0.0868) (0.0849) (0.0823)
t[β = 1] 1.0495 1.596 1.5766 1.2275 0.9463 -2.8839
R2 0.3823 0.4041 0.4039 0.3904 0.3893 0.2527

German
α 0.0002 0.0000 0.0002 -0.0001 0.0006 -0.0001
se(α) (0.0016) (0.0016) (0.0016) (0.0016) (0.0015) (0.0014)
β 1.0119*** 1.009*** 1.0442*** 1.0587*** 1.0228*** 1.0611***
se(β) 0.0639 0.0639 0.0639 0.0637 0.0599 0.0579
t[β = 1] 0.1859 0.1408 0.6917 0.9216 0.3812 1.0549
R2 0.4964 0.4956 0.5126 0.5207 0.5342 0.5690

UK
α -0.0062 -0.0078 -0.0080 -0.0075 0.0016 -0.0036
se(α) (0.0035) (0.0035) (0.0035) (0.0035) (0.0033) (0.0024)
β 1.1465*** 1.1852*** 1.2018*** 1.1814*** 0.9192*** 0.9401***
se(β) (0.1023) (0.1014) (0.1018) (0.1014) (0.0951) (0.0685)
t[β = 1] 1.4313 1.8268 1.9825 1.7883 -0.8499 -0.8745
R2 0.4121 0.4329 0.4378 0.4311 0.3428 0.5131

Canada
α -0.0005 -0.0008 -0.0006 -0.0006 0.0004 0.0024
se(α) (0.0010) (0.0010) (0.0010) (0.0011) (0.0012) (0.0018)
β 0.9657*** 0.9715*** 0.9153*** 1.0166*** 1.0322*** 0.7438***
se(β) (0.0635) (0.0633) (0.0625) (0.0686) (0.0777) (0.1150)
t[β = 1] -0.5403 -0.4507 -1.3554 0.2416 0.4146 -2.2283
R2 0.6365 0.6405 0.6188 0.6248 0.5718 0.2407

Notes: The table shows the results from estimating, by ordinary least squares, the re-
gression ρt+T+1 = α + β(y∗t − yt) + εt,T+1, for the horizons indicated in the column
headers. Values in parentheses are standard errors. t[β = 1] is the t-statistic for test-
ing β = 1. R2 is the in-sample coefficient of determination. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.
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Table 10: Adjusted Engel regressions real nominal interest rates

1M 3M 6M 1Y 3Y 10Y
Japan
α -0.0016 -0.0015 -0.001 -0.0008 0.0001 0.0013
se(α) 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017
β 0.9995*** 1.0001*** 0.9963*** 1.0049*** 1.0133*** 1.0146***
se(β) 0.0094 0.0094 0.0093 0.0093 0.0091 0.0089
t[β = 1] -0.0586 0.007 -0.4007 0.5249 1.4644 1.6327
R2 0.9782 0.9783 0.9782 0.9786 0.98 0.9807

German
α 0.0001 0 0.0001 -0.0003 0.0005 -0.0003
se(α) 0.0016 0.0016 0.0016 0.0016 0.0015 0.0014
β 0.9995*** 1.0126*** 0.9693*** 0.9965*** 0.9875*** 0.9985***
se(β) 0.0129 0.0129 0.0128 0.0129 0.0121 0.0117
t[β = 1] -0.0363 0.9816 -2.4033 -0.2749 -1.0308 -0.1241
R2 0.9593 0.9605 0.9577 0.9592 0.9634 0.9661

UK
α -0.0019 -0.0029 -0.0022 -0.0024 0.0000 -0.0048
se(α) 0.002 0.002 0.002 0.002 0.0018 0.0013
β 0.9929*** 1.0116*** 0.9958*** 0.9982*** 0.9754*** 0.9834***
se(β) 0.0098 0.0097 0.0098 0.0097 0.0089 0.0064
t[β = 1] -0.7258 1.1943 -0.4305 -0.1825 -2.7829 -2.6049
R2 0.983 0.9839 0.9831 0.9833 0.9855 0.9925

Canada
α -0.0008 -0.0009 -0.0007 -0.0007 0.0005 0.0021
se(α) 0.0009 0.001 0.0009 0.001 0.0012 0.0018
β 1.0231*** 1.0029*** 0.9836*** 1.0177*** 1.003*** 1.0152***
se(β) 0.0102 0.0104 0.0102 0.0111 0.0127 0.0192
t[β = 1] 2.2634 0.2814 -1.6017 1.5874 0.2363 0.7916
R2 0.987 0.9861 0.986 0.9844 0.9791 0.9551

Notes: The table shows the results from estimating, by ordinary least squares, the re-
gression ρt+T+1 = α + β(r∗t − rt) + εt,T+1, for the horizons indicated in the column
headers. Values in parentheses are standard errors. t[β = 1] is the t-statistic for test-
ing β = 1. R2 is the in-sample coefficient of determination. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.
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Figure 1: Tent-shape of Cochrane and Piazzesi (2005) factor

−2

0

2

4

−2

−1

0

1

2

−5

0

5

10

−5

0

5

10

−2

0

2

4

−2

−1

0

1

2

−10

0

10

20

−4

−2

0

2

4

1 3 5
−5

0

5

1 3 5
−1

−0.5

0

0.5

1

German

Japan

Canada

UK

US

59



F
ig

u
re

2:
T

h
e

d
ec

om
p

os
it

io
n

of
cu

rr
en

cy
ri

sk
p
re

m
iu

m

1
9

8
6

1
9

9
3

2
0

0
0

2
0

0
7

2
0

1
5

−
0

.0
2

−
0

.0
1

5

−
0

.0
1

−
0

.0
0

50

0
.0

0
5

0
.0

1

0
.0

1
5

J
a

p
a

n

1
9

8
6

1
9

9
3

2
0

0
0

2
0

0
7

2
0

1
5

−
0

.0
1

−
0

.0
0

50

0
.0

0
5

0
.0

1
G

e
rm

a
n

1
9

8
6

1
9

9
3

2
0

0
0

2
0

0
7

2
0

1
5

−
0

.0
1

−
0

.0
0

50

0
.0

0
5

0
.0

1

0
.0

1
5

U
K

1
9

8
6

1
9

9
3

2
0

0
0

2
0

0
7

2
0

1
5

−
0

.0
1

5

−
0

.0
1

−
0

.0
0

50

0
.0

0
5

0
.0

1

0
.0

1
5

C
a

n
a

d
a

60



F
ig

u
re

3:
T

h
e

d
ec

om
p

os
it

io
n

of
b

on
d

ri
sk

p
re

m
iu

m

83
86

90
94

98
02

06
10

14
−0

.0
10

0.
01

0.
02

0.
03

83
86

90
94

98
02

06
10

14
−0

.0
10

0.
01

0.
02

0.
03

86
89

93
96

10
03

07
11

14
−0

.0
10

0.
01

0.
02

0.
03

83
86

90
94

98
02

06
10

14
−505101520

x 
10

−3

83
86

90
94

98
02

06
10

14
−0

.0
1

−0
.0

050

0.
00

5

0.
01

0.
01

5

0.
02

Ja
pa

n

U
K

U
S

C
an

ad
a

G
er

m
an

61


