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Abstract

In this paper, we propose a formal test for density forecast evaluation in presense

of dependent data. Apart from accepting or rejecting the tested model, our smooth

test identi�es the possible sources (such as the location, scale and shape of the

distribution) of rejection, thereby helping in revising the initial model. We also

propose how to augment the smooth test to investigate explicit forms of dependence

in the data within the same test framework. An extensive application to S&P 500

returns indicate capturing time-varying volatility and non-gaussianity signi�cantly

improve the performance of the model. Although we are dealing with index returns,

the proposed smooth test can be applied to other �nancial data for exchange rates,

futures or forward markets, options prices, in�ation rate, analyst forecasts among

many others.

Keywords: Score test, probability integral transform, model selection, GARCH
model, simulation based method, sample size selection, dependence test, Davies�

problem



1 Introduction and Motivation

In the statistical estimation literature there was a natural progression of point es-

timation to interval estimation, and then to the full (non-parametric) density esti-

mation. In the context of time series forecasting, we also observe similar pattern

of advancement from point-forecast to interval-forecast (Christo¤ersen, 1998), and

then �nally to density-forecast, though construction of density forecast in empirical

work is a relatively recent phenomenon (Liu, Shackleton, Taylor, Xu, 2007; Shack-

leton, Taylor, Yu, 2010). There has been only a few papers, we are aware of, that

directly address the question of a formal test of evaluation of density forecasts; such

as Diebold, Gunther and Tay (1998), Berkowitz (2001), Hong (2001), Wallis (2003),

Sarno and Valente (2004), Bai (2003), Hong and Li (2005), Yun (2014), see Corradi

and Swanson (2006 a,b) for a review. The importance of density forecast evaluation

cannot be overemphasized. Recent developments in risk evaluation clearly indicate

that we can no longer rely on a few moments or certain regions of the distribution;

very often we will need to forecast the entire distribution (Shackleton et al., 2010).

Also, as demonstrated by Diebold et al. (1998) and Granger and Pesaran (2000),

only when a forecast density coincides with the true data generating process, then

that forecast density will be preferred by all forecast users regardless of their attitude

to risk (loss function). The importance of density forecast evaluation in economics

has been aptly depicted by Crnkovic and Drachman (1997, p. 47) as follows: �At

the heart of market risk measurement is the forecast of the probability density func-

tions (PDFs) of the relevant market variables ... a forecast of a PDF is the central

input into any decision model for asset allocation and/or hedging ... therefore, the

quality of risk management will be considered synonymous with the quality of PDF

forecasts.�

Sarno and Valente (2004) suggested a test based on integrated squared di¤erence

of the kernel density functions of the competing predictive density forecast mod-

els, using a norm similar to Li (1996) as discussed in Pagan and Ullah (1999, pp.

68-69). The asymptotically normal test statistic thus obtained is a natural analog

of Diebold-Mariano test (Diebold and Mariano 1995) for forecast accuracy in the

domain of point forecasts. The simulation results reported show attractive size and

power properties with very little, if any, size distortion. The test statistic requires

bootstrap replications in order to calculate its standard error, and would be unsuit-

able for either applications in a time series context with time-dependent parameters,

or for adaptive model selection for �nding the "best" model. Using Kullbeck Leibler
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Information criterion (KLIC) Amisano and Giacomini (2007) explored weighted like-

lihood ratio tests for dependent data proposed originally for the independent case by

Vuong (1989) for non-nested hypotheses. They compared competing, possibly mis-

speci�ed, models of density forecast using decision theory based methods or "scoring

rules" (Granger and Pesaran 1999, 2000). However, KLIC based methods give an

overall divergence measure and tests for deviation over a smaller range of values

could be harder to implement (Corradi and Swanson, 2006a, page 55). To address

this problem, Corradi and Swanson (2005, 2006b) proposed tests of distributional

accuracy to complement White�s (2000) Reality Check methodology for evaluation

of predictive density (and predictive intervals) for several competing models against

a benchmark model using weighted integrated squared deviations. A tail minimum

KLIC divergence measures on censored likelihood functions were also used by Bao,

Lee and Saltoglu (2007) to compare the "discrepancy" from the true model using

the White�s Reality Check type forecast loss function to compare across several dif-

ferent, possibly misspeci�ed, distribution and volatility models. While Corradi and

Swanson (2005, 2006b) method yields a Kolmogorov-Smirnov type test, the KLIC

based test proposed by Bao, Lee and Saltoglu (2007) is a likelihood ratio test that

is related to the asymptotic �2 test proposed test in the current paper.

It is important to di¤erentiate between two main techniques existing in the lit-

erature in this respect. One is the comparison among several approximate models

in a horse-race, and second the comparison of a candidate model against the "true

but unknown" data generating process. Sequential speci�cation testing even if con-

sistent can give rise to the sequential test bias. Bai (2003) proposed a Kolmogorov

type of the estimated cumulative distribution function (CDF) and the uniform dis-

tribution. In order to alleviate the problem of parameter estimation uncertainty in

the form of a nuisance parameter in the asymptotic distribution he used a novel

martingalization approach. The major drawback of this work is that while it has

unit power against a departure from uniformity, its power against the lack of inde-

pendence (through dynamic speci�cation error) is debatable. Hong and Li (2005)

used transition densities to obtain generalized residuals, and designed a joint test

for departures of both uniformity and independence where the parameter estima-

tion error vanishes asymptotically. Possible shortcomings of their non-parametric

omnibus tests are the bandwidth choice ("In practice, the choice of h (bandwidth)

is more important than the choice of k (:) (kernel function)," Hong and Li, 2005, p.

8) and the slow rate of convergence to the asymptotic normal distribution. Unlike

tests based on marginal distributions, this test has power against alternative models
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with common marginal distributions. It signi�cantly improves on the small sample

size distortion and power performance of existing models (for example, Ait-Sahalia,

1996), and reduces boundary bias by boundary modi�ed non-parametric bivariate

kernel densities. Upon rejection of the null hypothesis a separate test is suggested in

line with Hong (2001) generalized spectrum methodology to ascertain the direction

or reason for rejection using another asymptotic normal test statistic that takes into

account parameter estimation uncertainty but involves a choice of a kernel and rele-

vant lag order. Egorov, Hong and Li (2005) extends Hong and Li (2005) methodology

to evaluating out-of-sample joint density forecasts for a¢ ne term structure models

in bond yields. Egorov, Hong and Li (2005) show that although a¢ ne models are

below par in predicting out-of-sample conditional means compared to a simple ran-

dom walk (Du¤ee, 2002), they might be good at predicting higher order moments, or

more generally the entire distribution of bond yields. They propose a portmanteau

type omnibus test statistic from those developed in Hong and Li (2005). Corradi

and Swanson (2005) proposed a K-S type test based on empirical processes (similar

to Bai, 2003) that takes into account both parameter estimation uncertainty and dy-

namic misspeci�cation. However, they do have a nuisance parameter in the limiting

distribution that necessitates simulating bootstrap critical values.

It might be an opportune time to note that although density forecast evaluation

is in its early stage of development almost all the "tools of the trade" that are utilized

like the Kolmogorov-Smirno¤ (K-S) or Cramér-von Mises (C-vM) type techniques,

probability integral transforms or KLIC have had a much longer history. In general,

an omnibus test of predictive density evaluation can di¤erentiate models based on

their closeness to the unknown data generating process using divergence measures

like the K-S or C-vM or KLIC (Bai, 2003, Hong and Li, 2005, Corradi and Swan-

son, 2006a, Amisano and Giacomini, 2007). Bontemps and Meddahi (2005, 2006)

developed a GMM type-test based on moment conditions that hold under the null

hypothesis. The moment conditions ensure that the estimation uncertainty vanishes

asymptotically. They also give possible directions of departure from the null hypothe-

sis from failed moment conditions if the null hypothesis is rejected. Thompson (2008)

proposed a test based of generalized residuals separately on time series and contem-

poraneous data that tests jointly for uniformity and independence jointly through

"intelligently selected" moment conditions to re�ect possible sources of dependence.

Being iid U (0; 1) under the null hypothesis of correct speci�cation, Thompson (2008)

argued that the generalized residuals have better small sample size distortion that

Ait-Sahalia�s (1996) speci�cation test for di¤usion processes might have (Pritsker,
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1998).

One important aspect of our test is that in the spirit of the test proposed by

Neyman (1937) who coined the word "smooth" to represent local or contiguous al-

ternative distribution, we use disjoint intervals to do estimation and evaluation of

the density forecasts. The central issue driving the focus on out-of-sample evalua-

tion is that the parameter estimates are independent of the data, so reducing the

possibility that under the null hypothesis the probability integral transforms are not

independent. In point forecast it has been noted that to compare tests of predictive

accuracy out-of-sample behavior is of vital importance (Granger, 1980). Corradi and

Swanson (2006a Page 36) states:

The literature on point forecast evaluation does indeed acknowledge

that the objective of interest is often to choose a model that provides the

best (loss function speci�c) out-of-sample predictions.

Further, Egorov, Hong and Li (2005) noted that a¢ ne term structure models focus

on in-sample performance of density forecasts with relatively little or no importance

to out-of-sample performance (Du¤ee, 2002). Over�tting idiosyncratic noise terms

might lead to data snooping biases (Lo and McKinlay, 1989) and thus deviating from

the true data generating process (DGP). Last but not the least, it has been widely

accepted over-parametrization leads is loss of e¢ ciency which also exacerbates the

e¤ect of parameter uncertainty (West, 1996). Out-of-sample evaluation of predictive

performance alleviates many of these issues (Yun, 2014).

Our work is similar in spirit with Bontemps and Meddahi (2005), Hong and Li

(2005) and Thompson (2008) but unlike them the proposed test enjoys the optimal-

ity bene�ts of a classical score test. We explicitly used moment conditions to capture

dependencies, and the resultant augmented smooth test statistic has an asymptotic

�2 distribution. After incorporating the type of depndence explicitly in the para-

metric model for the generalized residual (i.e., the probability integral transform),

the proposed test alleviates the parameter estimation uncertainty and reduce the

size distortion by allowing the sample size of the estimation diverge to in�nity faster

than evaluation sample sizes.

From a pure statistical perspective, density forecast evaluation is essentially a

goodness-of-�t test problem. In a seminal paper, though rarely used directly in

econometrics, Neyman (1937) demonstrated how �all�goodness-of-�t testing prob-

lems can be converted into testing only one kind of hypothesis. Speci�cally, Neyman

considered the probability integral transform (PIT) of the density f (x) : Under the
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null hypothesis of correct speci�cation of f (x) ; PIT is distributed as U (0; 1) ir-

respective of the form of f (x) : As an alternative to the U (0; 1) density, Neyman

speci�ed a smooth density using normalized Legendre polynomials. A major ben-

e�t of Neyman�s formulation is that in addition to a formal test procedure we can

identify the speci�c sources of rejection when the data is not compatible with the

tested density function. Therefore, Neyman�s smooth test provides natural guidance

to speci�c directions to revise a model. The purpose of the paper is to use Neyman�s

idea to devise a formal test for density forecast evaluation.

As an illustration from Hong (2001), consider a normal GARCH(1,1) formulation:

Xt = "t
p
ht

ht = �0 + �1X
2
t�1 + �2ht�1

"t
iid� N (0; 1) ;

where �i � 0; i = 0; 1; 2. We can write the conditional density function of Xt

f (Xtj�0;
t) =
1p
2�ht

e
�X2t

ht ; for Xt 2 (�1;1) ;

and the probability integral transform Yt for "true" �
0
= (�0; �1; �2)

0 as

Yt =

Z Xt

�1

1p
2�ht

e
� z2

ht dz = �("t)
iid� U (0; 1) :

If we have a special "non-stationary" IGARCH(1,1) process with �2 = 1��1 and
�0 = 0; (J.P. Morgan Riskmetrics, 1996)

ht = (1� �1)
1X
j=1

�j�11 X2
t�j:

Thus there is only one parameter to estimate�1. The joint test of independence

and uniformity provides an opportunity of correctly sized optimal tests based on the

score test principle after taking into account parameter estimation uncertainty. This

model also illustrates how dependent structure in the volatility term can be incor-

porated in the model explicitly by including selected conditional moment conditions

to accommodate for speci�c types of dependence.

The plan of the rest of the paper is as follows. In Section 2 we review Neyman
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(1937) smooth test approach, for a fuller account see Bera and Ghosh (2001). Section

3 uses the framework of Diebold et al. (1998) and proposes a smooth test for density

forecast evaluation. We augment the smooth test to explicitly test for the failure of

the independence assumption in Section 4. An application to S&P 500 returns data is

given in Section 5. Section 6 provides Monte Carlo results to examine size properties

of the proposed test. Section 7 concludes.

2 Neyman Smooth Test

We want to test the null hypothesis (H0) that our assumed density f (x) is the true

density function for the random variable X, based on n independent observations

x1; x2; :::; xn. The speci�cation of f (x) will be di¤erent depending on the problem

at hand. Neyman (1937, pp. 160-161) �rst transformed any hypothesis testing prob-

lem of this type to testing only one kind of hypothesis using the probability integral

transform (PIT). Neyman suggested this test to rectify some of the drawbacks of

Pearson�s (1900) goodness-of-�t statistic and called it a smooth test since the alter-

native density is close to the null density and has few intersections with the null

density.

We construct a new random variable Y by de�ning Yi = F (Xi) ; i = 1; 2; :::; n;

that is, the probability integral transform (PIT) dropping the condition under H0
for notational convenience

yi =

Z xi

�1
f (ujH0) du �

Z xi

�1
f (u) du = F (xi) : (1)

Suppose under the alternative hypothesis, the density and the distribution func-

tions of X is given by g (:) and G (:) ; respectively. Then, in general, the distribution

function of Y is given by

H (y) = Pr (Y � y) = Pr (F (X) � y)
= Pr

�
X � F�1 (y)

�
= G

�
F�1 (y)

�
= G (Q (y)) ; (2)

where Q (y) = F�1 (y) is the quantile function of Y: Therefore, the density of Y can
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be written as

h (y) =
d

dy
H (y) = g (Q (y))

d

dy
F�1 (y) =

g (Q (y))

f (Q (y))
; 0 < y < 1: (3)

Although this is the ratio of two densities, h (y) is a proper density function when

F and G are absolutely continuous distribution functions on (0; 1) (F is strictly

increasing). We will call h (:) the ratio density function (RDF) since it is both a

ratio of two densities and a density function itself. When f (:) is the true density we

have Y � U (0; 1) : And, under the alternative hypothesis h (y) will di¤er from 1 and
that provides a basis for the Neyman smooth test.

Neyman (1937, p. 164) considered the following smooth alternative to the uniform

density:

h (y) = c (�) exp

"
kX
j=1

�j�j (y)

#
; (4)

where � = (�1; �2; :::; �k)
0 ; c (�) is the constant of integration and �j (y) are orthonor-

mal polynomials of order j satisfyingZ 1

0

�i (y)�j (y) dy = �ij; where �ij = 1 if i = j

= 0 if i 6= j:
(5)

)
Z 1

0

�i (y) dy = 0 if i 6= 0 as �0 (y) = 1: (6)

Under H0 : �1 = �2 = ::: = �k = 0, since c (�) = 1; h (y) in (4) reduces to the uniform

density.

Under the alternative, we take h (y) as given in (4) and test �1 = �2 = ::: = �k = 0.

Therefore, the test utilizes (3) which looks more like a �likelihood ratio�. To get an

idea of the the exact nature of h (y), let us consider some particular cases. When

the two distributions di¤er only in location; for example, f (:) � N (0; 1) and g (:) �
N (�; 1) ; ln(h (y)) = �y� 1

2
�2; which is linear in y: Similarly, if the distributions di¤er

in scale parameter, such as, f (:) � N (0; 1) and g (:) � N (0; �2) ; �2 6= 1; ln (h (y)) =
y2

2

�
1� 1

�2

�
� 1
2
ln�2; a quadratic function of y: Considering some commonly used non-

normal densities as alternatives, we note that f (:) � N (0; 1) and g (:) � �24 yield

ln (h (z)) = 1
2
z2� 1

2
z+ln z+ln

�p
2�
4

�
: If we have f (:) � N (0; 1) and g (:) � t4; then

we have ln (h (z)) = z2

2
+ 5
2
ln
h
1 + z2

4

i
+ln

�p
2�
2

�
: These illustrative examples suggest

that departures from the null hypothesis can be tested using an appropriate function

(or functions) estimating the RDF, h (y). From observing the plots of the di¤erent
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ordered normalized Legendre polynomials, we believe that the test will not only be

powerful but also informative on identifying particular source(s) of departure(s) from

H0 (Bera and Ghosh, 2001).

Using the multiparameter version of the generalized Neyman-Pearson lemma,

Neyman (1937) derived the locally most powerful unbiased (LMPU) symmetric test

for H0 : �1 = �2 = ::: = �k = 0 against the alternative H1 : at least one �i 6= 0, for
small values of �0is. The test is symmetric in the sense that the asymptotic power of

the test depends only on the Euclidean distance,

� =
�
�21 + :::+ �

2
k

� 1
2 ; (7)

between H0 and H1. The test statistic is

	2k =
kX
j=1

1

n

"
nX
i=1

�j (yi)

#2
; (8)

which under H0 asymptotically follows a �2k; and under H1 follows a non-central �
2
k

with non-centrality parameter �2.

We now show that the test statistic 	2k can be simply obtained using Rao�s (1948)

score (RS) test principle. Taking (4) as the PDF under the alternative hypothesis,

the log-likelihood function l (�) can be written as

l (�) = n ln c (�) +
kX
j=1

�j

nX
i=1

�j (yi) : (9)

The RS test for testing the null H0 : � = �0 is given by

RS = s (�0)
0 I (�0)�1 s (�0) ; (10)

where s (�) is the score vector @l (�) =@�; I (�) is the information matrix E
h
�@2l(�)
@�@�0

i
and in our case, �0= 0: It is easy to see that

s (�j) =
@l (�)

@�j

= n
@ ln c (�)

@�j
+
p
nuj; j = 1; 2; :::; k; (11)

with uj =
nX
i=1

�j (yi) =
p
n:
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Di¤erentiating the identity
R 1
0
h (z) dz = 1 with respect to �j, we have

@c (�)

@�j

Z 1

0

exp

"
kX
j=1

�j�j (y)

#
dy + c (�)

Z 1

0

exp

"
kX
j=1

�j�j (y)

#
�j (y) dy = 0: (12)

Evaluating (12) under � = 0; we have @ ln c(�)
@�j

���
�=0

= @c(�)
@�j

� 1
c(�)

���
�=0

= 0; and there-

fore, under the null hypothesis

s (�j) =
p
nuj: (13)

To get the information matrix, let us �rst note from (11) that

@2l (�)

@�j@�l
= n

@2 ln c (�)

@�j@�l
, (14)

which is deterministic. Therefore, under H0 the (j; l)
th element of the information

matrix I (�) is simply �n@2 ln c (�) =@�j@�l evaluated at � = 0: Di¤erentiating (12)
with respect to �l and evaluating it at � = 0; after some simpli�cation, we have

@2c (�)

@�j@�l

����
�=0

+

Z 1

0

�j (y)�l (y) dy = 0: (15)

Using the orthonormal property in (5)

@2c (�)

@�j@�l

����
�=0

= ��jl: (16)

Further, using (12), c (�) = 1 and @c(�)
@�j

= 0 for any j, we have

@2 ln c (�)

@�j@�l
=
@

@�l

�
@c (�)

@�j

1

c (�)

�
=

@2c(�)
@�j@�l

c (�)� @c(�)
@�j

@c(�)
@�l

(c (�))2
;

and, hence

I (�0) = nIk; (17)

where Ik is a k � k identity matrix. Combining (10), (13) and (17) the RS test
statistic has the simple form

RS =
kX
j=1

u2j : (18)

Neyman�s approach was to compute the smooth test statistic in terms of the
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probability integral transform Y de�ned in (1). It is, however, easy to recast the

testing problem in terms of the original observations on X and PDF, say, f (x; )

where  is a parameter to be estimated. Writing (1) as y = F (x; ) and de�ning

�i (y) = �i(F (x; )) = qi (x; ) ; we can express the orthogonality condition (5) asZ 1

0

f�i (F (x; ))g f�j (F (x; ))g dF (x; ) =
Z 1

0

fqi (x; )g fqj (x; )g f (x; ) dx = �ij:
(19)

Then, from (3) and (4) the density under the alternative hypothesis takes the form

g (x; ; �) = h (F (x; ))
dy

dx

= c (�; ) exp

"
kX
j=1

�jqj (x; )

#
f (x; ) : (20)

Under this formulation we have the same test statistic 	2k, but now written in terms

of the original observations, x1; x2; :::; xn:

	2k =
kX
j=1

1

n

"
nX
i=1

qj (xi; )

#2
: (21)

In order to implement this we need to replace the nuisance parameter  by an e¢ cient

estimate ̂; and that will not change the asymptotic distribution of the test statistic

(Thomas and Pierce 1979), although there could be some possible change in the

variance of the test statistic (see, for example, Boulerice and Ducharme, 1995).

3 Smooth Test for Density Forecast Evaluation

Suppose that we have time series data (say, the daily returns to the S&P 500 Com-

posite Index) given by fxtgmt=1. One of the most important questions that we would
like to answer is, what is the sequence of the true density functions fgt (xt)gmt=1 that
generated this particular realization of the data? At time t we know all the past

values of xt; i.e., the information set at time t is 
t = fxt�1; xt�2; :::g : Let us denote
the one-step-ahead forecast of the sequence of densities as fft (xt)g conditional on

t. Our objective is to determine to what extent the forecast density fftg depicts
the true density fgtg : The main problem in performing such a test is that both

the actual density gt (:) and the one-step-ahead predicted density ft (:) could depend
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on the time t and, thus, on the information set 
t: This problem is unique, since,

on one hand, it is a classical goodness-of-�t problem but, on the other, it is also a

combination of several di¤erent, possibly dependent, goodness-of-�t tests.

One approach to handling this particular problem would be to reduce it to a more

tractable one in which we have the same, or similar, hypotheses to test, rather than

a host of di¤erent hypotheses. Following Neyman (1937) this is achieved using the

probability integral transform

yt =

Z xt

�1
ft (u) du: (22)

which has the density function

ht (yt) = 1; 0 < yt < 1; (23)

under the null hypothesis H0 : gt (:) = ft (:) ; i.e., our forecasted density is the true

density.

The fundamental basis of Neyman�s smooth test is the result that when x1; x2; :::; xn
are independent and identically distributed (IID) with a common density f (:) ; then

the probability integral transforms y1; y2; :::; yn de�ned in equation (22) are IID,

U (0; 1) random variables. In econometrics, however, we very often have cases in

which x1; x2; :::; xn are not IID. In that case we can use Rosenblatt�s (1952) general-

ization of the above result.

Theorem 1 (Rosenblatt) Let (X1; X2; :::; Xn) be a random vector with absolutely

continuous density function f (x1; x2; :::; xn) : Then, if Fi (:) denotes the distribution

function of the ith variable Xi, the n random variables de�ned by

Y1 = F1 (X1) ; Y2 = F2 (X2jX1 = x1) ;

:::; Yn = Fn (XnjX1 = x1; X2 = x2; :::; Xn�1 = xn�1)

are IID U (0; 1) :

The above result can immediately be seen using the Change of Variable theorem
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that gives

P (Yi � yi; i = 1; 2; :::; n) =
Z y1

0

Z y2

0

:::

Z yn

0

f (x1) dx1f (x2jx1) dx2:::f (xnjx1; :::; xn�1) dxn

=

Z y1

0

Z y2

0

:::

Z yn

0

dt1dt2:::dtn (24)

= y1y2:::yn:

Hence, Y1; Y2; :::; Yn are IID U (0; 1) random variables.

Neyman�s smooth test provides an analytic tool to determine the structure of

the density under the alternative hypothesis using orthonormal polynomials (nor-

malized Legendre polynomials). Speci�cally, Neyman used �j (y) as the orthogonal

polynomials that can be obtained by using the following conditions,

�j (y) = aj0 + aj1y + :::+ ajjy
j; ajj 6= 0;

given the restrictions of orthogonality given in (5). The normalized Legendre polyno-

mials are the natural orthogonal polynomials derived from the uniform distribution

(see for example, Bontemps and Meddahi, 2006, pp.8-9). Solving these the �rst �ve

�j (y) are (Neyman 1937, pp. 163-164) �0 (y) = 1; �1 (y) =
p
12
�
y � 1

2

�
; �2 (y) =p

5
�
6
�
y � 1

2

�2 � 1
2

�
; �3 (y) =

p
7
�
20
�
y � 1

2

�3 � 3 �y � 1
2

��
; �4 (y) = 210

�
y � 1

2

�4�
45
�
y � 1

2

�2
+ 9

8
:

There is one issue that is central to any test applied to real data when the density

function f (:) under the null hypothesis is completely unknown. Hence, we have to

estimate the PDF generating the data using an estimation sample. Let us assume

that we know a general functional form of the density function f (:; �) generating the

data but have to estimate the parameter � based on the estimation sample of size

m: As we mentioned earlier our test is based on a sample of size n: The "true" test

statistic is given in (8), with

yi = F (xi; �) =

Z xi

0

f (u; �) du; i = 1; 2; :::; n: (25)

However, since we do not know the true value of �; we estimate it using �̂ to get

	̂2k =

kX
j=1

û2j =

kX
j=1

1

n

 
nX
i=1

�j (ŷi)

!2
; (26)
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where ŷi = F
�
xi; �̂

�
=
R xi
0
f
�
u; �̂

�
du; i = 1; 2; :::; n; are the estimated PITs and �̂

is any
p
m�consistent estimator of �: We have the following theorem which shows

that for certain values of m and n; we can ignore the e¤ect of parameter estimation

on our results.

Theorem 2 Let m and n be the estimation and test sample sizes, respectively, �̂ be

a
p
m�consistent estimator of the parameter � and E

h
d�j(F (xi;�))

d�

i
< 1. Then, if

n = O
�
m

1
2

�
, under the null hypothesis H0; 	̂2k �	2k = op (1).

Proof. See Ghosh and Bera (2015) or APPENDIX A1.

4 Augmented Smooth Test

In order to give a formal test of the dependent structure for the graphical procedure

suggested by Diebold et al. (1998), Berkowitz (2001) proposed a formal likelihood

ratio test. An advantage of his proposed test is that it gives some indication of

the nature of the violation when the goodness-of-�t test is rejected. Berkowitz used

the likelihood ratio test based on the inverse standard normal transformation of

the probability integral transforms of the data. The main driving force behind the

proposed transformation is the tractability of the Gaussian distribution. If zt =

��1
�
F̂ (yt)

�
is the standard normal transform, an AR(1) model can be written as

zt � � = � (zt�1 � �) + "t: (27)

To test for independence, we can test H0 : � = 0 in the presence of nuisance para-

meters � and �2 (the constant variance of the error term "t). A joint likelihood ratio

test for the parameters � = 0; � = 0 and �2 = 1 is based on

LR = �2
�
l (0; 1; 0)� l

�
�̂; �̂2; �̂

��
; (28)

which is asymptotically distributed as a �2 with three degrees of freedom, where

l (�) = lnL (�) is the log-likelihood function, and where �̂ =(�̂; �̂2; �̂) are the unre-

stricted maximum likelihood estimators. Explicit but separate tests of dependence

have been proposed by Egorov, Hong and Li (2005) based on the methodology of

Hong and Li (2005) in the out-of-sample case, while Thompson (2008) proposed a

GMM type technique where moment conditions for dependence were explicitly used.

The null hypothesis that we are keen on testing is whether the PIT�s are indepen-

dently and identically distributed as U(0; 1). The main drawback of the Berkowitz

13



(2001) procedure is that it tests only the independence aspect through only a �rst-

order dependence as an alternative hypothesis. We show if dependence is included

in a constructive way, it is possible to identify the cause and nature of departures

from the null hypothesis. We discuss this below.

Let (X1; X2; :::; Xn) has a joint probability density function (PDF) g (x1; x2; :::; xn) :

De�ne ~X1 = fX1g ; ~X2 = fX2jX1 = x1g ; ~X3 = fX3jX2 = x2; X1 = x1g ; :::; ~Xn =

fXnjXn�1 = xn�1; Xn�2 = xn�2 :::; X1 = x1g : Then we have

g (x1; x2; :::; xn) = fX1 (x1) fX2jX1 (x2jx1) :::fXnjXn�1Xn�2:::X1 (xnjxn�1; xn�2; :::; x1) :

Furthermore, using Theorem 1 if we de�ne (Y1; Y2; :::; Yn) as conditional cumulative

distribution functions (CDF) of (X1; X2; :::; Xn) or the probability integral transforms

(PIT) evaluated at (x1; x2; :::; xn) ;

Y1 = FX1 (x1) ; Y2 = FX2jX1 (x2jx1) ; :::; Yn = FXnjXn�1Xn�2:::X1 (xnjxn�1; xn�2; :::; x1)

are then distributed as IID U (0; 1) : Suppose now, under null hypothesis H0 of the

true speci�cation of the model CDF F (:) or PDF f (:) ; (Y1; Y2; :::; Yn) = (U1; U2; :::; Un)

where Ut � U (0; 1) ; t = 1; 2; :::n; so the joint PDF is

h (y1; y2; :::; ynjH0) = h1 (y1)h2 (y2jy1) :::hn (ynjyn�1; yn�2; :::; y1)
= 1:1::::1 = 1:

Under the alternative H1; Y 0i s are neither uniformly distributed nor are they IID.

Let us suppose the conditional density function of Yt depends on p lag terms, that

is to say,

h (ytjyt�1; yt�2; :::; y1) = h (ytjyt�1; yt�2; :::; yt�p)

= c (�; �) exp

"
kX
j=1

�j�j (yt) +

qX
l=1

�l�l (yt; yt�1; :::; yt�p)

#
; (29)

where we have assumed for now k � q: For simplicity, we start with p = 1; this could
be more general than it sounds in one-step-ahead forecasts as we can test pairwise

dependence including models like AR(1), ARCH(1) etc.

Theorem 3 If the conditional density function under the alternative hypothesis is

14



given by equation (29) and p = 1, the augmented smooth test statistic is given by

	̂2k =

"
U 0U + U 0BEB0U � V 0EB0U

�U 0BEV + V 0EV

#
= U 0U + (V �B0U)0E (V �B0U)

has a central �2 distribution with k + q degrees of freedom where U is a k�vector
of components uj = 1p

n

Pn
t=1 �j (yt) ; j = 1; :::; k; V is a q�vector of components

vl =
1p
n

Pn
t=1 �l (yt; yt�1) ; l = 1; :::; q; B = E [��], D = E[��] are components of the

information matrix de�ned in equation (83) in Addendum A and E = (D �B0B)�1.

Proof. See Bera and Ghosh (2015) or APPENDIX A2.
As an illustration of Theorem 3, let us now consider a very simple example of the

smooth test for autocorrelation for

yt � � = � (yt�1 � �) + �t"t (30)

where E ("t) = 0, V ("t) = 1, �t = � and a1 = 1p
12
: We de�ne,

�1 (yt; yt�1) = (yt � 0:5) yt�1 =
1p
12
�1 (yt) yt�1 = a1�1 (yt) yt�1: (31)

Then, we can denote v1 = 1p
n

Pn
t=1 �1 (yt; yt�1) =

1p
n

Pn
t=1 (yt � 0:5) yt�1: Given

information set 
t = fyt�1; yt�2; :::g ; applying the Law of Iterative Expectation,Z 1

0

a1�j (yt) (yt � 0:5) yt�1dyt

= yt�1

Z 1

0

�j (yt)�1 (yt) dyt =

(
a1yt�1 j = 1

0 j 6= 1
;

) E

�
E

�Z 1

0

�j (yt) (yt � 0:5) yt�1dytj
t
��
=

(
a1E [yt�1] = a1� j = 1

0 j 6= 1
: (32)
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Applying the Law of Iterative Expectation once againZ 1

0

((yt � 0:5) yt�1)2 dyt

= a21 (yt�1)
2

Z 1

0

�21 (yt) dyt

= a21 (yt�1)
2

) E

�
E

�Z 1

0

((yt � 0:5) yt�1)2 dytj
t
��
= a21E

�
y2t�1

�
= a21

�
�2 + �2

�
: (33)

Hence, it follows that

E [��] =
�
a1E [yt�1] 0 0 ::: 0

�0
= B

E [��] = a21E
�
y2t�1

�
= D; (34)

which in turn gives the information matrix

I = n

264 1 00k�1 a1�

0k�1 Ik�1 0k�1

a1� 00k�1 a21 (�
2 + �2)

375 (35)

where Ip is the identity matrix of order p and 0p is a pth order vector of 00s: In order

to evaluate the inverse of the information matrix in (35) we use the following results:

D �B0B = a21
�
E
�
y2t�1

�
� (E (yt�1))2

�
= a21�

2;

U 0BEB0U = a21u
2
1�
2=
�
a21�

2
�
;

V 0EB0U = v1u1�=
�
a21�

2
�
;

V 0EV = v21=
�
a21�

2
�
: (36)

Hence, using (86) we have a correction term as an LM test for autocorrelation

(Breusch, 1978)

	2k+1 =
kX
j=1

u2i +
1

(a21�
2)

�
a21u

2
1�
2 � 2a1v1u1�+ v21

�
=

kX
j=1

u2i +
(v1 � a1u1�)2

(a21�
2)

=
kX
j=1

u2i +
12
�
v1 � u1�=

p
12
�2

�2
a� �2k+1 under H0:

(37)
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The sample counterpart of the second expression in (37) is given by

12

0@
q

1
n

Pn
t=2 (yt � 0:5) yt�1 �

q
1
12n

Pn
t=1 (yt � 0:5) 1n

Pn
t=1 ytq

1
n�1

Pn
t=1 (yt � y)

2

1A2

a� �21. (38)

It is evident that this will give us a test for autocorrelation of the �rst order in a

global sense. In order to further illustrate this technique, let us consider a test for

ARCH (1) type alternative with mean equation (30),

�2t = �0 + �1�
2
t�1"

2
t�1 (39)

where we can de�ne a function �2 for testing dependence

�2 (yt; yt�1) = y
2
t y
2
t�1 �

1

3
y2t�1 = y

2
t�1

�
y2t �

1

3

�
= y2t�1 (a1�1 (yt) + a2�2 (yt)) (40)

where a1 = 1p
12
and a2 = 1

6
p
5
, and a3 = a21 + a

2
2 =

4
45
for notational convenience.

Hence, the smooth test statistic incorporating an ARCH(1) e¤ect is

	̂2k =
kX
j=1

u2j +

�
4

45

�
m4 �m2

2

���1 �
v1 �

1p
12
m2u1 �

1

6
p
5
m2u2

�2
� �2k+1 (0) (41)

where as de�ned before mj = E
�
yjt�1

�
(see Ghosh and Bera, 2004). Similarly, we

can obtain a test only for leverage e¤ect with

�3 (yt; yt�1) = yt�1

�
y2t �

1

3

�
= yt�1 (a1�1 (yt) + a2�2 (yt))

that yields the test statistic as a correction term

	̂2k =
kX
j=1

u2j +

�
4

45

�
m2 �m2

���1 �
v1 �

1p
12
m2u1 �

1

6
p
5
m2u2

�2
� �2k+1 (0) : (42)

The joint test of both Leverage e¤ect and ARCH type e¤ects is more involved but
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can be derived from the shortcut matrix formula for the correction term given

E =
1

�

"
a3�22 �a3�12
�a3�12 a3�11

#
; V �B0U =

"
v1 � (a1u1 + a2u2)�
v2 � (a1u1 + a2u2)�2

#

where �ij = �i+j � �i�j and � = a23 (�11�22 � �212) as

1

�

264 (v1 � (a1u1 + a2u2)�)2 a3�22
�2 (v1 � (a1u1 + a2u2)�) (v2 � (a1u1 + a2u2)�2) a3�12

+(v2 � (a1u1 + a2u2)�2)2 a3�11

375 � �22: (43)

Similarly, a joint test of AR(1) and ARCH(1) e¤ects can be shown to be function of

the �rst 4 raw moments mj; j = 1; :::; 4 of yt�1; besides the score functions u0js and

v0ls (Ghosh and Bera, 2015).

Unfortunately, the choice of the dependency function �l (yt; yt�1) ; l = 1; 2; :::; q (a

moment condition to capture the dependent structure) involves a trade-o¤. On one

hand, the smaller the number q there are fewer parameters to estimate, however,

there will be a loss of power owing to the types of dependencies that are ignored;

on the other, if q is large we will su¤er from a curse of dimensionality as there will

be several parameters to be estimated based on the same data. In the following

examples we illustrate how to incorporate more general dependence structures like

ARMA(1,1), GARCH (1,1) and several ARCH parameters, and not to increase the

dimensionality of the problem substantially under certain regularity conditions.

Suppose we want to incorporate an ARMA (1,1) error term of the following form

(See Bera and Ra, 1994; Andrews and Ploberger, 1996)

yt � (�+ �) yt�1 = "t � �"t�1; (44)

where "t is IID N (0; �2") ; � and (�+ �) 2 (�1; 1) and t = 1; 2; :::; n. Here, to test
for white noise we can test H0 : � = 0 against H1 : � 6= 0: It is worth noting that

underH0; the parameter � becomes unidenti�ed, hence we have a nuisance parameter

under the null which is often termed as the Davies�problem (Davies 1977, 1987). We

will start of assuming that the parameter � is �xed and then relax that assumption

to do the test. De�ne the dependency function

�1 (yt; yt�1; :::; y1) = �1 (yt)

t�1X
s=1

�s�1yt�s: (45)
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Hence, if � is a known constant, as shown in the Addendum A subsection 7.2, the

smooth test statistic incorporates the LM test similar to Andrews and Ploberger

(1996),

	̂2k =

kX
j=1

u2j + v
2
1

(1� �2)
�2"

� �2k+1 where v1 =
1p
n

nX
t=1

�i (yt)
t�1X
s=1

�s�1yt�s: (46)

It is worth noting that putting � = 0 we get back the test using AR(1) terms. In

order to test for dependence alone of ARMA(1,1) form we can simply look at the

second expression in (93) and follow a test procedure like the suggested in Bera and

Ra (1994) or Andrews and Ploberger (1996).

Let us now work out the example for a GARCH(1,1) type dependent structure

with the conditional variance of the form

ht = (1� !1)� + !1ht�1 + �1u2t�1
) ht + u

2
t = (1� !1)� � !1

�
u2t�1 � ht�1

�
+ !1u

2
t�1 + �1u

2
t�1 + u

2
t

) u2t � 1u2t�1 = (1� !1) � + wt � !1wt�1; (47)

where 1 = (�1 + !1) and wt = u2t � ht is serially uncorrelated shows that u2t is
ARMA(1,1). In order to test whether the errors are simply white noise against the

alternative that they are GARCH (1,1) we can test H0 : �1 = 0 against H1 : �1 6= 0:
It is easy to see that under H0; (47) gives

u2t � !1u2t�1 = (�1 + !1) � + wt � !1wt�1
)
�
u2t � �

�
� !1

�
u2t�1 � �

�
= wt � !1wt�1 under H0 : �1 = 0

) ~u2t = wt where ~u
2
t = u

2
t � �: (48)

Although, we have shown that (48) gives us a valid test procedure for testing white

noise against GARCH (1,1) errors however the nuisance parameter !1 only appears

under the alternative. Let us �rst assume that !1 is a known constant. Then from
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(47) we can write

wt = !1wt�1 + �t � �; where � = (1� !1)�; �t = u2t � 1u2t�1

=

1X
s=0

!s1�t�s �
1X
s=0

!s1(1� !1)�

=

1X
s=0

!s1�t�s � �: (49)

Hence,

wt =
1X
s=0

!s1
�
u2t�s � 1u2t�s�1

�
� � = ~u2t � (1 � !1)

1X
s=1

!s�11 u2t�s

) ht = � + (1 � !1)
1X
s=1

!s�11 u2t�s: (50)

Since, we have data t = 1; :::; n we have to truncate ht = �+(1 � !1)
Pt�1

s=1 !
s�1
1 u2t�s:

We can derive a RS type test (like the supLM or AvgLM test , Andrews and Ploberger

1996) of white noise against GARCH (1,1) error or obtain a range of the p-value of

a RS test for di¤erent values of !1 (Davies 1977, 1987) given that !1 is actually not

known.

Let us now de�ne the function

�1 (yt; yt�1; :::; y1) = �2 (yt)
t�1X
s=1

!s�11 y2t�s (51)

to capture GARCH (1,1) type dependence in the data. Hence, we have the score

function related to �1 is given by

v1 =
1p
n

nX
t=1

�2 (yt)
t�1X
s=1

!s�11 y2t�s: (52)

In Addendum A, subsection 7.3, we have worked out the corresponding smooth test.

If !1 is a known constant, the test statistic is

	̂2k =

kX
j=1

u2j +

�
v1 �

E (y2t )u2
1� !1

�2 
E (y4t )

1� !21
�
�
E (y2t )

1� !1

�2!�1
� �2k+1:
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If we put !1 = 0; we would get back a test for ARCH(1) dependence. However, in

general since !1 is unknown we will have to use methods described for the ARMA(1,1)

case to handle this problem of nuisance parameter which exists only under the al-

ternative in this setup. Although this setup is quite general for dealing with the

GARCH(1,1) case, however, the problem with the nuisance parameter existing only

under the alternative makes the decision problem non-trivial, whether to use a max-

imum Rao Score statistic or give the p-values over a whole range of values of !1 or

equivalently give probability bounds for the test statistic. We would �nally suggest

a procedure inspired by Engle (1982, 1983) where we considered a weighted ARCH

type alternative. The conditional variance function suggested by Engle (1982, 1983)

was

ht = �0 + �1

rX
s=1

wsu
2
t�s; where ws =

(r + 1)� s
1
2
r (r + 1)

for some �xed r: (53)

We explicitly derive the RS test for testing H1 : �1 = 0 against H1 : �1 6= 0 which
tests whether there is an ARCH term against a constant variance in Addendum A,

subsection 7.4. From our results, if r is a known constant, the smooth test statistic

	̂2k =
kX
j=1

u2j +
�
v1 � E

�
y2t
�
u2
�2

�
�
2

3

(2r + 1)

r (r + 1)
E
�
y4t
�
�
�
E
�
y2t
��2��1

� �2k+1:

Unfortunately, this formulation also su¤er from the Davies� problem through the

choice of r; though to a lesser degree. We can choose the r through maximization of

some likelihood based information criterion or model selection.

5 Application to Asset Return on S&P 500 Index

We consider the daily returns on the value-weighted S&P 500 Composite Index from

July 3, 1962 to December 31, 2003. The sample is split into in-sample and out-

of-sample periods for model estimation and density forecast evaluation. There are

8431 in-sample observations (07/03/62-12/29/95) and 2016 out-of-sample observa-

tions (01/02/96-12/31/2003). The summary statistics of the data are given in Table

1. In order to obtain a test with desirable actual size using the smooth test principle,

we chose a signi�cantly smaller sample size for the evaluation sample compared to
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the estimation sample. Diebold et al. (1998) also used daily data on the value-

weighted S&P 500 returns with dividends, from 02/03/62 through 12/29/95 in order

to demonstrate the e¤ectiveness of a graphical procedure based on the probability

integral transform, however in their case the sample split was at the middle of the

data range. Figure 1 compares the density estimates between the in-sample and the

out-of-sample data.

Insert Figure1 here.

Following Diebold et al. (1998), we used progressively richer models to �nd the

best model to �t the estimation sample and then freeze it to do forecasting of the

evaluation data. Using the empirical distribution function (EDF) of the estimation

sample, we generate the PIT of the evaluation data and present an estimate of its

density (histogram) in Figure 2 From a visual analysis of the histogram it is clear that

the PITs do not seem to follow an U (0; 1) distribution, the conclusion is more ap-

parent if we compare the PDF of U (0; 1) distribution with the ratio density function

(RDF) of the PIT (Bera, Ghosh and Xiao, 2013). In order to better �t the model for

forecasting future observations, we use a naive MA(1), MA(1)- normal-GARCH(1,1),

MA(1)-GJR-GARCH(1,1), MA(1)-EGARCH(1,1), MA(1)-t-GARCH(1,1) , MA(1)-

t-GJR-GARCH(1,1) and �nally, MA(1)-t-EGARCH(1,1) model to the estimation

sample where the degrees of freedom of the t-distribution is obtained through max-

imum likelihood method. From visual analysis of the histograms we can infer that

introducing a time varying conditional heteroskedasticty term clearly improves the

forecast and it also causes the histograms of the PITs to be closer to that of an

U (0; 1) PDF. However, the improvement is not very apparent with the introduction

of a non-Gaussian error term (Figure 4 and Figure 5).

Insert Figure 2 here.

Insert Figure 3 here.

Insert Figure 4 here.

Insert Figure 5 here.

Insert Table 1 here.

Insert Table 2 here.

As attractive as it may seem, this graphical procedure is a subjective method of
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identifying the problems of a forecasted PDF after comparison with the true distri-

bution (See Figure 1). This also implies that we cannot evaluate the performance

of such an informal test of hypothesis with other existing tests of goodness-of-�t

like the Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM) or Anderson-Darling

(A-D) reported in Table 2 in terms of size and power characteristics. Although, to

do full justice to the precursor of the current paper we should also mention that

Berkowitz (2001, p. 466) commented on the Diebold et al.(1998) procedure: �Be-

cause their interest centers on developing tools for diagnosing how models fail, they

do not pursue formal testing.�

Our aim is to use a formal test using Neyman�s smooth test principle. We use

order k = 4 which we believe is su¢ cient to capture most of the global characteristics

of distribution of value-weighted S&P 500 returns. In Table 3 and Table 4, we report

the results of the smooth test and the augmented smooth test respectively

Insert Table 3 here

Insert Table 4 here

Initially, we used the empirical distribution function of the estimation sample to

calculate the PIT of each observation of the test sample and computed the smooth

test statistic. We should mention that this is a non-parametric procedure since we do

not assume any structure of the underlying PDF generating the model. However, this

does not take account of the dependent structure of the data. Using an order k = 4;

we get a score test statistic of 608.2575 which is statistically highly signi�cant. We

also can identify that the main sources of this deviation in the overall 	̂24 statistic are

the second (û22) and fourth (û
2
4) components. From analyzing this we can infer that,

there are departures, mainly, in the directions of the second and the fourth order

polynomials, which in turn would indicate the sources of departure are most likely in

the second and fourth moments. Therefore, through pure non-parametric estimation

of the EDF with no assumption of time varying conditional heteroskedasticty, we can

conclude that there are possible deviations in the directions of the second and fourth

order polynomials that can be related to second and fourth moments (Neyman, 1937,

Bera and Ghosh, 2001) One caveat to the above statement is that the normalized

Legendre polynomials indicate that the second order term is present in the fourth

order polynomial, hence it would be di¢ cult to identify whether the main direction
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of departure is in the second or the fourth moments of the distribution.

At the next stage to start with a simple parametric model, we estimate an MA(1)

model with Gaussian error terms, and we obtain a highly signi�cant 	̂24 statistic of

390.3732. The discrepancy from the null hypothesis seems to be again in the direc-

tions of the second (û22 =203.33619) and fourth (û
2
4 =185.20897) orders polynomials.

However, in this case the discrepancy in the fourth order term seems to be more pro-

nounced than the purely non-parametric case. We still do not �nd the third order

term to be statistically signi�cant. Keeping this result in mind, we proceed to incor-

porate a time varying volatility model through a GARCH(1,1) model for conditional

heteroskedasticty keeping the MA(1) component for the conditional mean (or level)

equation with Gaussian errors. This more general framework nests the previously

used naive MA(1) model with normal errors. The 	̂24 statistic is now reduced sub-

stantially (390.3732 to 17.9702), although it is still highly signi�cant at the 1% level.

A cursory inspection of the components revealed that only the second component is

still signi�cant although by a much lesser degree (û22 is now 16.5625 compared to the

earlier value of 203.3362). Therefore, introduction of conditional heteroskedasticty

into the forecast density model substantially improves its performance.

It has been noted that returns to �nancial indices are often conditionally asym-

metric distribution and also re�ect e¤ects of signi�cant "leverage e¤ect." We intro-

duce two special types of GARCH models GJR-GARCH (Glosten, Jagannathan and

Runkle, 1993) and Nelson�s EGARCH (Nelsen, 1991) models that take account of

the leverage e¤ect and asymmetry simultaneously. Introduction of leverage e¤ect

term to the MA(1)-Normal GARCH model (often called the GJR-GARCH) does not

make the signi�cance of the overall of the overall 	̂2 change substantially, in fact

in our sample it increases marginally (	̂24 =17.9702 to 	̂
2
4 =22.6123). However, the

third moment now becomes more signi�cant (û23 = 0:086 to û23 = 5:0333), which

probably indicates that leverage e¤ect does not play a very signi�cant role in our

sample period. We also �t the EGARCH model with normal errors that introduces

signi�cant asymmetry in the original GARCH model. The overall 	̂2 changes from

17.9702 for the MA(1)-GARCH(1,1) to 	̂2 = 75:075 in the EGARCH(1,1) model.

This indicates that asymmetry in the form of the EGARCH(1,1) model is also not

the "best" model for the density forecast with divergence in the direction of the sec-

ond and fourth moments. It is worth noting that there is no e¤ect in the direction

of the third moment i.e., û23 = 0:2219 is not signi�cant.

Finally, we introduce a non-Gaussian error term in the form of Student�s t dis-

tribution along with the MA(1)-GARCH(1,1) formulation. With this general model,
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we �nd that 	̂2k =1.6993, which is not in the rejection region of �
2
4, and so are all its

4 components. This implies that a time varying conditional heteroskedasticty com-

ponent together with the MA(1) conditional mean model with Student�s t density

for the error term provides an acceptable model. We do further investigate the e¤ect

of asymmetry and leverage e¤ects in the model with GJR-GARCH and EGARCH

models with Student�s t�error. GJR-GARCH(1,1) is still an acceptable model with
overall 	̂2 = 8:3782 is not statistically signi�cant with the main departure coming

from the third order polynomial û23 = 5:6706: Finally, for the smooth test that allows

from Student�s t errors the EGARCH speci�cation does not seem to be an overall

good �t (	̂2 = 17:9108):

We also tried higher orders beyond k = 4 but the marginal impact was negligible

in the �nal model. Therefore, we believe k = 4 is su¢ cient for the data on hand. We

applied data-driven smooth test methods proposed by Ledwina (1994), and in most

cases k was between 2 and 4. We chose t distribution with 8 degrees of freedom,

since that was the closest integer value that maximizes the likelihood functions. We

should mention that, although we have chosen to divide our sample into 8431 and

2016 observations, this is not necessarily an optimal split. We used a 4:1 split as a

rule of thumb as this was an acceptable choice using cross-validation type methods

(see Bera, Ghosh and Xiao, 2013). In fact, we have seen that the actual size of

the test goes up on average as we increase the size of the test sample keeping the

estimation sample �xed. Diebold et al. (1998) used 4133 and 4298 split, and we

surmise that in a formal score type test the true null hypothesis would be rejected

more frequently than the nominal size. In a previous version of this paper we kept

the estimation sample 4133 (with a test sample size of 1000) so as to compare the

results obtained by Diebold et al. and our formal test procedure. Our current results

turned out to be quite similar to those of the previous ones, with some di¤erences,

particularly in the signi�cance of the fourth order Legendre polynomial.

From Table 3, overall, we can conclude that there is no evidence to suggest that

the forecasted model MA(1)-t-GARCH(1,1) fails to predict the density of the future

realizations of S&P 500 returns. We can also see from the results based on the EDF

that there is more of unaccounted volatility than other departures. Looking at the

û22 and û
2
4 components we can say that, introduction of conditional heteroskedasticty

improved the model by reducing the �butter�y�pattern in the PIT histogram (or the

ratio density function). It is not clear from pure visual inspection of Figures 4 and

5 that a non-Gaussian error term should be incorporated in the model [see Diebold

et al. (1998)]. However, application of the smooth test indicated a better �t for
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the model with the errors following a Student�s t distribution where û22 component

reduced from highly signi�cant 16:5625 to statistically insigni�cant 0:0002 (see Table

3). Although the smooth test did not directly address whether there was dependence

in the data, it did pick up the e¤ect of this unaccounted dependence in the data

incorporating conditional heteroskedasticty.

One possible interpretation of the apparent failure of the normal GARCH(1,1)

could be the possibility of a hidden Markov type model that Weigend and Shi (2000)

discussed in evaluating the density of daily returns of S&P 500 index. They assumed

one of several �states�or �experts�generates the true observation in certain �nancial

time series data, like S&P 500 returns, where the signal to noise ratio is pretty small

and the discrete number of states jump from one to the other with a time-varying

or time invariant transition probability matrix. They reported that their model

performed slightly better than normal GARCH(1,1) model. In fact, they worked

under a more restrictive Gaussian framework although a more general exponential

family distribution would have been more appropriate.

Our results from the smooth test indicate that part of the reason for the strong

signi�cance of the fourth order orthogonal polynomial in our naive models, a term

connected to the kurtosis of the distribution of the PIT, is a deviation in the second

and fourth moments. This also indicates leptokurtic nature of the original data. We

should, however, note that since both the second and the fourth order terms are

present in the normalized Legendre polynomial �4 (y) ; it is not possible to exactly

separate out these two e¤ects.

We used the augmented smooth test to explicitly incorporate dependence into

the model, the results of our tests are given in Table 4. It should be bourne in

mind that the beauty of the smooth test technique in particular, and using the

orthonormal polynomials in general, means that we do not have to recalculate the

individual components û2i : We just need to calculate the additional term we would

call the correction term. The resulting test statistic is distributed as �2 with k +

q degrees of freedom where q is the number of moment conditions of dependence

included. We have incorporated an explicit test for GARCH(1,1) type disturbance

in the augmented smooth test by introducing a weighted ARCH framework (linear

or r�weighting-Engle 1982,1983; exponential or ��weighting-Bollerslev, 1986). Due
to the existence of the non-regular Davies�problem we face, we have to look at a

SupLM or AveLM type statistic and relevant method for calculating p-values through

simulation suggested as proposed by Andrews and Ploberger (1996), If we use the

linear weighting proposed �rst by Engle (1982), we avoid the severity of the Davies�
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problem as now the only issue is selection of the number of terms used r:

When we use the EDF, the overall augmented 	̂2 is strongly rejected due to

ARCH e¤ects using both exponential and linear weighting (Linear weighted Aug-

mented 	̂2 =750.1082), while the exponential weighted adjustment term (aveLM

statistic) 4773.425 which is strongly statistically signi�cant. A naive MA(1) model

is also strongly rejected (Linear weighted Augmented 	̂2 =394.9528). So far the

results from the di¤erent weighting schemes has been similar, however, while a

MA(1)-GARCH(1,1) seemed to be reasonable using a linear weighting scheme (Linear

weighted ARCH score is 3.1251, p-value=0.0771), but the adjustment with exponen-

tial weights rejects the the model strongly. This could be an indication of a more

complex dependence structure including stochastic volatility (Kim, Shephard and

Chib, 1998).

We have also used component tests for leverage e¤ects and a joint test for lever-

age e¤ect and ARCH(1) terms in the probability intergral transform or general-

ized residuals (Table 4). When testing jointly, we �nd there is unaccounted for

leverage e¤ect in the naive EDF based (score term=2909.57, pvalue=0) and normal

MA(1) models (score=61.424, p-value=4.59�10�014). The joint augmented smooth
test of leverage and ARCH(1) e¤ects in the generalized residual strongly indicates

that these a¤ects have been unaccounted for in the MA(1)-GARCH (1,1) model

(Joint test statistic=48.7539, p-value=2.59�10�011). Including leverage e¤ect term
in the estimating model like GJR GARCH(1,1) reduces the overall augmented 	̂2;

the exponential weighted squared ARCH lags is still signi�cant but to a lesser de-

gree (score =12.0132, p-value=0) and the linear weighted squared lags is not sta-

tistically signi�cant (score=2.2001, p-value=0.138). One surprising result is that

leverage e¤ect score in the gereneralized residuals by itself doesn�t seem to be signif-

icant in either MA(1)-GARCH(1,1) or GJR-GARCH(1,1) models. This seemingly

is an anomaly from the existing literature as GJR models are better at handling

asymmetry and leverage e¤ects although the former is probably a better model (see

Bao, Lee and Saltoglu, 2007). MA(1)�EGARCH is also rejected strongly as the

true model with linear weighted ARCH dependence (Augmented 	̂2 =.77.5246, p-

value=2.78�10�015). We also observe that the MA(1)-EGARCH(1,1) model doesn�t
seem to capture leverage e¤ect completely, either individually (score=128.5709) or

jointly with ARCH (1) type errors (score=45.6711). This might be an indication

of unexplained and unmodeled volatility like a stochastic volatility model. As be-

fore, introduction of a conditional Student�s t�distribution remarkably improves the
performance almost thrughout the board with both exponential and linear weights
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with an overall augmnted 	̂24 = 4:822 (p-value=0.438) which is an acceptable "true"

model. Accounting for leverage e¤ect and asymmetry GJR-GARCH with Student�s

t-error is also an acceptable model although it doesn�t fully capture the joint e¤ect

of leverage and ARCH(1) type errors (score=52.99, pvalue=3.11�10�012). However,
EGARCH with t-error does not seem to �t the data well, in particular, the e¤ects of

leverage e¤ect although the linear weighted ARCH dependence is accounted for. Our

results indicate that there could be possibility of a more involved volatility process

that cannot be modeled in this framework.

6 Monte Carlo Study

Figure 6 shows the distribution of the 	̂24 statistic under the null hypothesis of correct

speci�cation of the model, t-GARCH(1,1), with the �24 distributions for samples of

size 1000. We also inspect the plots (presented in Figure 7) of the components to

check whether the individual u2i asymptotically follow the �
2
1 distribution.

Insert Figure 6 here.

Insert Figure 7 here

.

However, since we are using estimated parameters in place of the true parameters

of the distribution, we must estimate the distribution with su¢ cient accuracy in order

to do evaluate the performance of forecasts. We generated a sample of size 2500 from

a t7 �GARCH(1; 1) distribution:

yt =

r
5ht
7
t7

ht = 0:2 + 0:15y
2
t�1 + 0:65ht�1: (54)

After estimating the parameters of the sample with the �rst 2000 observations (m =

2000) we freeze it and generate the density forecast for the last 500 observations

(n = 500). Hence we obtain the probability integral transform of the latter 500

observations using the estimated PDF. We performed the modi�ed smooth test on

the forecasted sample and replicated it to get the size properties of this test. Our

results, though not reported here but available upon request, show that even with

estimated parameters the 	24 statistic seem to follow a central �2 distribution with
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4 degrees of freedom, and also, the individual component u2i seem to follow the �21
distribution under the correct speci�cation of the model.

One of the very important questions that left to be answered is what should be

the sample split in order to estimate the parameters to a fair degree of accuracy so

that the modi�ed smooth test is consistent and an empirical level of signi�cance close

to the nominal size: We kept the initial estimation sample size m = 2000 �xed and

considered several testing sample sizes (n). The actual sizes for di¤erent values of n

with 200 replications are plotted in Figure 8 when the nominal level is 5%. We note

that with n; the empirical size tends to go up, and after the value of n = 500; the size

goes up considerably (with m being �xed at 2000). Therefore, for our smooth test

on S&P 500 returns with m = 8431, we chose the maximum 4:1 split of the sample

size, i.e., selected the test sample size n = 2016; close to m=4.

Insert Figure 8 here:

For small sample sizes we can use cross validation based method to decide on

the sample split. Since, our main objective is to minimize size distortion in �nite

or small samples we can select the sample size that minimizes the distance from the

distribution under H0 or in other words, minimizes distance between the density of

PIT and the uniform distribution. We should admit that where the exact sample

split should occur is not a easy problem to solve analytically and this investigation

is part of our ongoing research.

We further investigated the size and power properties of the smooth test statistic

under di¤erent hypothesis and data generating process. We start of with the following

MA(1)�GARCH(1; 1) model with error distributed as t7 given by the model

yt = "t + 0:2"t�1; "t =

r
5ht
7
t7;

ht = 0:2 + 0:15y
2
t�1 + 0:80ht�1: (55)

The distributions of the unmodi�ed smooth test statistic b	2k; and the augmented
smooth test is given in Figure 9 below. We compare the kernel density estimates with

normal kernel (default for optimal bandwidth selection on MATLAB), and compare

with the �24 and �
2
6 distributions respectively under the null hypoethesis H0 : F = G:

We have used the joint test for AR(1) and ARCH(1), and weighted ARCH with

!1 = 0:1 from (51). We also truncated the in�nite lag series at 20 lags. We observe

that with sample size m = 5000 and n = 1000; gave close forecast distribution of the
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model for the unmodi�ed smooth test in Figure 9. However, Figure 9 shows that the

augmented (modi�ed) smooth test has more size distortion which is true for many

Score-type tests with estimated parameters, and can be adjusted using �nite sample

correction (see Bera and Billias, 2001b and references therein). One further note is

that the weighted AR and ARCH models given in Table 5 and Figure 9 are using

�xed value of � and !, ideally due to the the Davis�problem we should look at a

Sup LM or Sup LR type test which should substantially reduce size distortion (see

Andrews and Ploberger, 1994)

Insert Figure 9 here:

Now, lets generate the data from a MA(1)-GJR-GARCH(1,1) where

yt = "t + 0:2"t�1; "t =

r
5ht
7
t7; (56)

ht = 0:2 + (0:15 + 0:2I fyt�1 < 0g)y2t�1 + 0:70ht�1:

using the leverage coe¢ cient L = 0:2 multiplying I fyt�1 < 0g We estimated a naive
GARCH(1,1) model with gaussian error

yt = "t
p
ht; "t~N (0; 1) ; (57)

ht = a0 + a2y
2
t�1 + a1ht�1:

to calculate the probability integral transforms. The distribution of the smooth test

statistic b	24 and the central �24 distribution under the null hypothesis are given in
Figure 10.

Insert Figure 10 here:

It is fairly obvious that the smooth test statistic b	24 has very good power properties
overall. Further, with 2000 replications at 5% level of signi�cance we observe that

the component tests

7 Conclusion and Future Research

One of the main problems in the area of market risk management has been the

evaluation of the probability density forecasts. Using Neyman�s (1937) smooth test

procedure we suggest an easily implementable formal test to achieve that. When

a forecast probability density is rejected, this procedure can identify the speci�c
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source(s) of rejection. Our approach is illustrated with an application to S&P 500

returns. Our test can also be used in areas of macroeconomics such as evaluating

the density forecasts of realized in�ation rates. Diebold, Tay and Wallis (1999)

used a graphical technique for the density forecasts of in�ation from the Survey of

Professional Forecasters.

Neyman�s smooth test can also be extended to a multivariate setup of dimension

N for m time periods, by taking a combination of Nm sequences of univariate densi-

ties as discussed by Diebold, Hahn and Tay (1999). This could be particularly useful

in �elds like �nancial risk management to evaluate densities for high-frequency �nan-

cial data like stock or derivative (options) prices and foreign exchange rates. While

our smooth test using estimated parameters provides speci�c directions for the alter-

native models based on the data on S&P 500 returns, it should be bourne in mind

that originally the smooth test was not designed for dependent data. In our empirical

applications to stock returns, we have tried to capture dependence through condi-

tional heteroskedasticty. It will be more interesting to incorporate the dependence

structure directly into the density function. Currently, we have works-in-progress

along that direction. Since the smooth test is essentially a score test, it enjoys cer-

tain optimal properties, and also, we do not need to estimate the parameters under

the alternative hypothesis. The latter bene�t makes it conducive to models with a

large number of parameters, particularly when we want to incorporate complicated

dependence structures. Although we are dealing with index returns, the proposed

smooth test can be applied to other �nancial data for exchange rates, futures or

forward markets, options prices, in�ation rate, analyst forecasts among many others.
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Data Estimation Test

Observations 8431 2016

Mean 0.00032 0.00037

Standard Deviation 0.00858 0.01246

Skewness Coe¢ cient -1.5624 -0.0089

Excess Kurtosis 43.7935 2.3472

Minimum -0.20467 -0.06867

1st Quartile -0.00394 -0.00649

Median 0.00036 0.00039

3rd Quartile 0.00457 0.00744

Maximum 0.09099 0.05731

Table 1. Summary Statistics for return distributions for estimation

and test samples of S&P 500 returns for density forecast evaluation

Test Critical Values

Statistic Upper .1%

D+ 4.19843 1.859

D� 4.89182 1.859

KS 4.89182 1.95

CvM 10.62024 1.167

A-D 94.37819 6.0

Table 2. Goodness-of-Fit statistics based on EDF with m = 8431 and n = 2016,

Critical values are from D�Agostino and Stephens (1986), shows statistically signi�cant

di¤erence in distributions using Kolmogorov-Smirnov statistics (D+,D�, max(D+,D�)=KS),

Cramer-von Mises Statistics (CvM) and Anderson-Darling statistics (A-D).
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Hypothesis 	̂24 û21 û22 û23 û24

EDF 608.2575��� 0.2304 522.0063��� 0.0197 86.0012���

(0.00000) (0.63123) (0.00000) (0.88843) (0.00000)

MA(1) 390.3732��� 1.6088 203.3362��� 0.2192 185.209���

with Normal error (0.00000) (0.20466) (0.00000) (0.63966) (0.00000)

MA(1)- 17.9702��� 1.0806 16.5625��� 0.086 0.2411

Normal GARCH (1,1) (0.00125) (0.29856) (0.00005) (0.76937) (0.62339)

MA(1)- 22.6123��� 1.68 14.8608��� 5.0333�� 1.0381

GJRGARCH (1,1) (0.00015) (0.19493) (0.00012) (0.02486) (0.30826)

MA(1)- 73.075��� 1.3444 27.557��� 0.2219 43.9517

EGARCH(1,1) 5.107�10�15 (0.24626) (0.00000) (0.63757) (0.00000)

MA(1)- 1.6993 1.0727 0.0002 0.32275 0.3036

t8 GARCH (1,1) (0.79085) (0.30034) ( 0.9879) (0.57) (0.58164)

MA(1)- 8.3782 1.8233 0.0512 5.6706 0.8331

t8 GJRGARCH (1,1) (0.07867) (0.17692) (0.82097) (0.01725) (0.3614)

MA(1)- 17.9108��� 0.9332 14.3319��� 0.2252 2.4206

t8 EGARCH (1,1) (0.00128) (0.33403) (0.00015) (0.63513) (0.11975)

��� significant at 1% level:�� significant at 5% level:

Table 3.Smooth statistics and components (p-values are in parenthesis). Column 1 shows the

parametric model of the evaluation sample estimation, and density forecast of the test sample.

If the model is correct, the sample statistic for column 2 would follow a Chi-squared with 4

degrees of freedom and each component in the following 4 columns will follow Chi-squared

with 1 degree of freedom. If the model is not correct, then the overall smooth test will be

rejected. The components will show the direction of departure is in which moment-direction.
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Hypothesis Aug. 	̂24 L. E¤ect Lev-ARCH ��ARCH r�ARCH
EDF 750.1082��� 865.2929��� 2909.57��� 4773.425��� 141.8506���

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

MA(1) 394.9528��� 476.265��� 61.42434��� 1008.378��� 4.5796��

(0.0000) (0.0000) (4.59�10�014) (0.0000) (0.03235)

MA(1)-Normal 21.0953��� 0.0234 48.7539��� 208.7223��� 3.1251

GARCH(1,1) (0.0008) (0.8783) (2.59�10�011) (0.0000) (0.0771)

MA(1)-GJR 24.81235��� 0.7434 52.9411��� 12.0132��� 2.2001

GARCH(1,1) (0.0002) (0.3886) (3.19�10�012) (0.0000) (0.138)

MA(1)- 77.5246��� 128.5709��� 45.6711��� 180.1875��� 4.4496��

EGARCH (1,1) ( 2.78�10�015) (0.0000) (1.21�10�010) (0.0000) (0.0349)

MA(1)- 4.822 34.1214 55.34966 2.1067 3.1228

t8GARCH (1,1) (0.438) (5.18�10�009) (9.57�10�013) (0.232) (0.0772)

MA(1)-t8GJR 10.6468 32.3637��� 52.9959��� 0.8905 2.2685

GARCH (1,1) (0.0589) (1.28�10�008) (3.11�10�012) (0.972) (0.132)

MA(1)-t8 20.3171��� 114.2006��� 55.8364��� 103.7763��� 2.4063

EGARCH (1,1) (0.0011) (0.0000) (7.504�10�013) (0.0000) (0.1209)

���significant at 1% level:��significant at 1% level:

Table 4.Neyman�s smooth statistics with leverage e¤ect and weighted ARCH type dependence

(p-values in parenthesis). Col. 1 shows the distributional assumption of the density forecast.

Overall smooth test in col. 2 gives the smooth test which is Chi-squared with 4 degrees of

freedom under H0: In column 3 and 4, we see the augmented smooth test statistic for leverage

e¤ect and joint leverage-ARCH e¤ect, respectively with chisquared 1 d.f. Cols. 6 and 7 give

augmented smooth test with multiplicative and linear weighted ARCH models, respectively.

Source ( r = 2000) b	24 û21 û22 û23 û24
b	25(AR(1)) b	26(joint) b	25(wtd:ARCH)

Empirical Size 0.08 0.08 0.09 0.05 0.06 0.09 0.35 0.35

Source (r = 2000) b	24 û21 û22 û23 û24
b	25(AR(1)) b	26(joint) b	25(wtd:ARCH)

Empirical Power 0.92 0.16 0.9 0.05 0.55 0.9 0.97 1.0

Table 5: Size and Power Properties of the Unmodi�ed and Augmented Smooth Test (� = 5%; )
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Figure 1: Kernel Density Estimates of S&P 500 Returns.

Figure 2: Histogram for the probability integral transforms using EDF.

Figure 3: Histogram for the probability integral transform with MA(1)-normal

model.

Figure 4: Histogram for the probability integral transform with MA(1)-normal

GARCH(1,1) model.

Figure 5: Histogram for the probability integral transform with MA(1)-t-GARCH

(1,1).

Figure 6: Histogram and distribution of 	̂24 under the null hypothesis.

Figure 7: Distribution of individual û2 under the null hypothesis.

Figure 8. Plot of the size of the test as a function of n (m = 2000).

Figure 9: Smooth Test Statistic under the Null (Size) (m = 8000; n = 1000)

Figure 10: Smooth test statistic under the Alternative (Power) (m = 5000; n =

1000)
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Figure 1: Kernel Density Estimates of S&P 500 Returns
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Figure 2: Histogram for the probability integral transforms using EDF
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Figure 3: Histogram for the PIT with MA(1)-normal model

PIT

pr
ob

ab
ilit

y

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Histogram for the PIT with MA(1)-normal GARCH(1,1) model
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Figure 5: Histogram for the PIT with MA(1)-t-GARCH (1,1)
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Figure 7: Distribution of individual u2

Figure 8. Plot of the size of the test as a function of n (m = 2000)
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Figure 9: Smooth Test Statistic under the Null (Size)
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Part I

Appendices: Online Material
available in Ghosh and Bera (2015)
APPENDIX A1 (PROOF OF THEOREM 2)
Proof. From equations (8), (25) and (26)

	̂2k �	2k =
kX
j=1

1

n

24 nX
i=1

�j

�
F
�
xi; �̂

��!2
�
 

nX
i=1

�j (F (xi; �))

!235
=

kX
j=1

�
û2j � u2j

�
: (58)

Now applying the Mean Value Theorem, we get

û2j =
1

n

"
nX
i=1

�j

�
F
�
xi; �̂

��#2

=
1

n

"
nX
i=1

�j (F (xi; �))

#2
+
1

n

�
�̂ � �

� d

d�

"
nX
i=1

�j (F (xi; �))

#2������
�=��

where �� is such that
����̂ � ���� � j�� � �j :

Hence, û2j � u2j =
2

n

�
�̂ � �

�" nX
i=1

�j (F (xi; �
�))

#"
nX
i=1

d�j (F (xi; �
�))

d�

#

= 2

�
np
m

�hp
m
�
�̂ � �

�i" 1
n

nX
i=1

�j (F (xi; �
�))

#
(59)

�
"
1

n

nX
i=1

d�j (F (xi; �
�))

d�

#
:

Furthermore, we know that under H0 : yi = F (xi; �) is distributed as U (0; 1) for

i = 1; 2; :::; n: Hence, using orthogonality of �j (:) under H0 for j = 1; 2; :::; k;

E (�j (yi)) =

Z 1

0

�j (u) du = 0: (60)
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Applying the WLLN (Khinchine�s theorem, Rao (1973 p. 112) we have as n!1

1

n

nX
i=1

�j (F (xi; �))
p! E (�j (yi)) = 0: (61)

For arbitrary but �xed m; �� is �xed. For i = 1; 2; :::; n; F (xi; �
�) is a ( an

absolutely) continuous function of xi: Hence, if X1; X2; :::; Xn are IID random vari-

ables having a CDF F (x; �) then, y�i = F (xi; �
�) ; i = 1; 2; :::; n are also IID with a

density function (called the ratio density function or RDF)

h (y) =
f (x; �)

f (x; ��)
=

f (F�1 (y; �) ; �)

f (F�1 (y; ��) ; ��)
:

Hence, y1; y2; ::; yn are IID random variables with a density function h (y) and have

a �nite �rst moment. Using the WLLN, for j = 1; 2; :::; k;

1

n

nX
i=1

�j (F (xi; �
�))

p! E [�j (F (xi; �
�))] : (62)

Now, we have �̂
p! � as �̂ is a

p
m�consistent estimator of �: Since,

����̂ � ���� �
j�� � �j ; �� is also converges to � in probability. Since, �j (F (x; �)) is a continuous
function of � at � = ��; we have

E [�j (F (x; �
�))]

p! E [�j (F (x; �))] , j = 1; 2; :::; k: (63)

Hence, as m and n go to in�nity, using results in (60), (61), (62) and (63), we

have

1
n

Pn
i=1 �j (F (xi; �

�))
p! E [�j (F (xi; �

�))]
p! E [�j (F (x; �))] = 0;

i.e., 1
n

Pn
i=1 �j (F (xi; �

�)) = a1 = op (1) :
(64)

We should note that this result holds only under H0, otherwise we will only have
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1
n

Pn
i=1 �j (F (xi; �

�)) =Op (1). Applying the WLLN again, for su¢ ciently large m;

1

n

nX
i=1

d�j (F (xi; �
�))

d�

p! E

�
d�j (F (xi; �

�))

d�

�
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d�

�
<1

) 1
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nX
i=1

d�j (F (xi; �
�))

d�
= a2 = Op (1) : (65)

By assumption E
h
d�j(F (xi;�))

d�

i
< 1; hence 1

n

Pn
i=1

d�j(F (xi;�
�))

d�
= Op (1) : Since, �̂ is

a
p
m�consistent estimator,

p
m
�
�̂ � �

�
= a3 = Op (1) : (66)

Hence from equation (59) using the results in (64), (65) and (66), we obtain

û2j � u2j = 2
�
np
m

�hp
m
�
�̂ � �

�i" 1
n

nX
i=1

�j (F (xi; �
�))

#

�
"
1

n

nX
i=1

d�j (F (xi; �
�))

d�

#
= 2

np
m
a1a2a3

=
np
m
op (1) : (67)

From (58) using (67) for �xed k;

	̂2k �	2k =
np
m
op (1) : (68)

which proves Theorem 2.

APPENDIX A2 (Proof of Theorem 3)

7.1 Proof of Theorem 3

Proof. In order to test for uniformity and as well as for dependence, one would test
H0 : �1 = �2 = ::: = �k = 0; �1 = �2 = ::: = �q = 0 against the alternative H1 :

�j 6= 0 for at least one j or �l 6= 0 for at least one l: However, we have not speci�ed
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the forms of the functions �j (:) and �l (:) : The log-likelihood function is

nX
t=1

ln (h (ytjy1; y2; :::; yt�1)) =
nX
t=1

ln f (yt; yt�1)

=

nX
t=1

ln c (�; �) +
nX
t=1

kX
j=1

�j�j (yt) +

nX
t=1

qX
l=1

�l�l (yt; yt�1)

= n ln c (�; �) +

kX
j=1

�j

nX
t=1

�j (yt) +

qX
l=1

�l

nX
t=1

�l (yt; yt�1)

= lnL = l; say: (69)

So, if we use � = (�1; �2; :::; �k)
0 and � = (�1; �2; :::; �q)

0 then under the null hypothesis

H0

@l
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�=0;�=0
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@ ln c (�; �)
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����
�=0;�=0

+
nX
t=1

�j (yt)

) 1p
n

@l

@�j

����
�=0;�=0

=
p
n
@ ln c (�; �)

@�j

����
�=0;�=0

+
1p
n

nX
t=1

�j (yt) : (70)

Similarly, we have
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@�l
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�=0;�=0

= n
@ ln c (�; �)
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����
�=0;�=0

+
nX
t=1
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) 1p
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=
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@ ln c (�; �)
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�=0;�=0

+
1p
n

nX
t=1

�l (yt; yt�1) :

(71)

Further, if we take derivative twice and evaluate at H0 : � = 0; � = 0; from (69)

@2l

@�i@�j

����
�=0;�=0

= n
@2c (�; �)

@�i@�j

����
�=0;�=0

; (72)

@2l

@�l@�j

����
�=0;�=0

= n
@2c (�; �)

@�l@�j

����
�=0;�=0

; (73)

@2l

@�i@�l

����
�=0;�=0

= n
@2c (�; �)

@�i@�l

����
�=0;�=0

: (74)
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Since (29) is a density function under H1; we have for each value of yt�1

c (�; �)

Z 1

0

exp

"
kX
j=1

�j�j (yt) +

qX
l=1

�l�l (yt; yt�1)

#
dyt = 1: (75)

Evaluating the identity in (75) at �j = 0; j = 1; :::; k and �l = 0; l = 1; :::; q;

c (0; 0) = 1: Also, if we di¤erentiate (75) and evaluate at � = 0, � = 0 the following

results are obtained:1

(i)
@c (�; �)

@�j

����
�=0;�=0

+ c (0; 0)

Z 1

0

�j (yt) dyt = 0

) @c (�; �)

@�j

����
�=0;�=0

= 0; since
Z 1

0

�j (yt) dyt = 0; j 6= 0: (76)

(ii)
@c (�; �)

@�l

����
�=0;�=0

+ c (0; 0)

Z 1

0

�l (yt; yt�1) dyt = 0

) @c (�; �)

@�l

����
�=0;�=0

= �
Z 1

0

�l (yt; yt�1) dyt = 0. (77)

(iii)
@2c (�; �)

@�i@�j
+
@c (�; �)

@�j

Z 1

0

�i (yt) dyt+

@c (�; �)

@�i

Z 1

0

�j (yt) dyt + c (�; �)

Z 1

0

�i (yt)�j (yt) dyt = 0

) c�i�j + c�j :0 + c�i :0 +

Z 1

0

�i (yt)�j (yt) dyt = 0

) c�i�j = ��ij; (78)

1For (ii) we can choose �l appropriately to make
R 1
0
�l (yt; yt�1) dyt = 0; this can be achieved by

using ~�l (yt; yt�1) = �l (yt; yt�1)�
R 1
0
�l (yt; yt�1) dyt if indeed

R 1
0
�l (yt; yt�1) dyt 6= 0:
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where �ij = 1 if i = j; �ij = 0 if i 6= j; c�i�j �
@2c(�;�)
@�i@�j

���
�=0;�=0

and c�j =
@c(�;�)
@�j

���
�=0;�=0

:

Similarly, it can be shown that

(iv)
@2c (�; �)

@�l@�j
+
@c (�; �)

@�j

Z 1

0

�l (yt; yt�1) dyt+

@c (�; �)

@�l

Z 1

0

�j (yt) dyt + c (�; �)

Z 1

0

�j (yt) �l (yt; yt�1) dyt = 0

) c�l�j = �
Z 1

0

�j (yt) �l (yt; yt�1) dyt; where c�l�j =
@2c (�; �)

@�l@�j

����
�=0;�=0

: (79)

Finally, using the same procedure we can obtain

(v) c�i�l =
@2c (�; �)

@�i@�l

����
�=0;�=0

= �
Z 1

0

�i (yt; yt�1) �l (yt; yt�1) dyt: (80)

Using (i)� (v) ; the score functions under the null are given by

@l

@�j
=

nX
t=1

�j (yt) ; j = 1; :::; k;

@l

@�l
=

nX
t=1

�l (yt; yt�1) ; l = 1; :::; q: (81)

The information matrix under H0; I is given by

I = �

24 E
h
@2l
@�@�0

i
E
h

@2l
@�l@�

0
j

i
E
h

@2l
@�l@�

0
j

i0
E
h

@2l
@�i@�l

i 35
������
�=0;�=0

; (82)

where given Ik is the k � k identity matrix

E

�
� @2l

@�@�0

�
= nIk;

E

�
� @2l

@�l@�0j

�
= n

�
E

�Z 1

0

�j (yt) �l (yt; yt�1) dyt

��
j=1;:::;k; l=1;:::;q

= E [��] ;

E

�
� @2l

@�i@�l

�
= n

�
E

�Z 1

0

�i (yt; yt�1) �l (yt; yt�1) dyt

��
j=1;:::;k; l=1;:::;q

= E [��] : (83)
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So, using the well-known results of the Rao score test, de�ning uj = 1p
n

Pn
t=1 �j (yt) ;

j = 1; :::; k and vl = 1p
n

Pn
t=1 �l (yt; yt�1) ; l = 1; :::; q;" p

nU
p
nV

#0 "
nIk nE [��]

nE [��]0 nE [��]

#�1 " p
nU

p
nV

#
� �2k+q (0)

)
"
U

V

#0 "
Ik E [��]

E [��]0 E [��]

#�1 "
U

V

#
� �2k+q (0) ; (84)

where U = (u1; u2; :::; uk)
0, V = (v1; v2; :::; vq)

0 and �2d (0) means a central �
2 dis-

tribution with d degrees of freedom. Simplifying the notation further, and de�ning

B = E [��], D = E [��] ;from results on block matrices we have"
Ik B

B0 D

#�1
=

"
Ik +BEB

0 �BE
�EB0 E

#
(85)

where E = (D �B0B)�1 : From (84) and (85),"
U

V

#0 "
Ik E [��]

E [��]0 E [��]

#�1 "
U

V

#

=

"
U 0U + U 0BEB0U � V 0EB0U

�U 0BEV + V 0EV

#
a� �2k+l: (86)

As E is non-singular there exists a non-singular matrix L; such that E = LL0:

Substituting this in equation (86), we can rewrite as

U 0BEB0U � V 0EB0U � U 0BEV + V 0EV
= U 0BLL0B0U � V 0LL0B0U � U 0BLL0V + V 0LL0V
= (L0V )

0
L0V � (L0V )0 L0B0U

� (L0B0U)0 L0V + (L0B0U)0 L0B0U
= (L0V � L0B0U)0 (L0V � L0B0U)
= (L0 (V �B0U))0 (L0 (V �B0U))
= (V �B0U)0 LL0 (V �B0U)
= (V �B0U)0E (V �B0U) (87)
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From (86) this gives

U 0U + (V �B0U)0E (V �B0U) a� �2k+l: (88)

APPENDIX B (Illustrative: Examples of Weights)

7.2 Case 1: (Fixed �) Test for Weighted Autoregressive

Terms

In our usual formulation with q = 1; �1 (yt; yt�1; :::; y1) = �1 (yt)
Pt�1

s=1 �
s�1yt�s; we

can obtain

v1 =
1p
n

nX
t=1

�1 (yt)
t�1X
s=1

�s�1yt�s: (89)

as the score function related to �1: Furthermore, given the model in (44), E (yt) =

� = 0;

E

�Z 1

0

�j (yt) �1 (yt; yt�1; :::; y1) dyt

�
= E

"Z 1

0

�j (yt)�1 (yt)
t�1X
s=1

�s�1yt�sdyt

#

=

(
E
�Pt�1

s=1 �
s�1yt�s

�
if j = 1

0 otherwise.

=

(
1��t�1
1�� � = 0 if j = 1

0 otherwise.
(90)

since under H0, E (yt�s) = E (yt) = � = 0; for all s: Similarly,

E

�Z 1

0

[�1 (yt; yt�1; :::; y1)]
2 dyt

�
= E

24Z 1

0

�21 (yt)

 
t�1X
s=1

�s�1yt�s

!2
dyt

35
= E

"
t�1X
s=1

�s�1yt�s

#2
=
1� �2(t�1)
1� �2 �2" (91)
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since under H0 all yts are independent and E
�
y2t�s

�
= E (y2t ) = �2" . Hence, the

asymptotic information matrix is given by

I =

264 1 00 0

0 Ik�1 0

0 00 �2"
1��2

375 = " Ik B

B0 D

#
: (92)

Using the same notations as before we obtain the following results:

(i)D �B0B = �2"
1��2 �

�
0
1��

�2
= �2"

(1��2) ) E = (D �B0B)�1 = (1��2)
�2"

:

(ii)U 0BEB0U =
�

�2u21
(1��)2

�
E =

(1+�)�2u21
�2"(1��)�2��2

= 0:

(iii)U 0BEV =
�
�u1v1
(1��)

�
E = (1��)(1+�)�u1v1

�2"(1��)�2��2
= 0:

(iv)V 0EV = v21E =
(1��2)v21

�2"
:

Hence, if � is a known constant,

kX
j=1

u2j +

"�
�u1

(1� �)

�2
� 2

�
�u1v1
(1� �)

�
+ v21

#
E

=
kX
j=1

u2j + v
2
1

(1� �2)
�2"

� �2k+1: (93)

7.3 Case 2: (Fixed �) Test for Weighted Autregressive Con-

ditional Heteroscdasticty Terms (GARCH(1,1))

E

�Z 1

0

�j (yt) �1 (yt; yt�1; :::; y1) dyt

�
= E

"Z 1

0

�j (yt)�2 (yt)
t�1X
s=1

!s�11 y2t�sdyt

#

=

(
E
�Pt�1

s=1 !
s�1
1 y2t�s

�
if j = 2

0 otherwise.

=

(
1��t�11

1�!1 E (y
2
t ) if j = 2

0 otherwise.
(94)
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since under H0, E
�
y2t�s

�
= E (y2t ) ; for all s: Similarly,

E

�Z 1

0

[�1 (yt; yt�1; :::; y1)]
2 dyt

�
= E

24Z 1

0

�22 (yt)

 
t�1X
s=1

!s�11 y2t�s

!2
dyt

35
=

(
E
�Pt�1

s=1 !
s�1
1 y2t�s

�2
if j = 2

0 otherwise.

=

(
1�!2(t�1)1

1�!21
E (y4t ) if j = 2

0 otherwise.
(95)

since under H0 all yts are independent and E
�
y4t�s

�
= E (y4t ). Hence, the asymptotic

information matrix is given by

I =

2666664
1 0 00 0

0 1 0
E(y2t )
1�!1

0 0 Ik�1 0

0
E(y2t )
1�!1 00

E(y4t )
1�!21

3777775 =
"
Ik B

B0 D

#
: (96)

Using the same notations as before we obtain the following results:

(i)D �B0B = E(y4t )
1�!21

�
�
E(y2t )
1�!1

�2
) E = (D �B0B)�1 :

(ii)U 0BEB0U =

�
E(y2t )u2
1�!1

�2
E:

(iii)U 0BEV =

�
E(y2t )u2v2
1�!1

�
E:

(iv)V 0EV = v21E:

Hence, if !1 is a known constant,

kX
j=1

u2j +

"�
E (y2t )u2
1� !1

�2
� 2

�
E (y2t )u2v2
1� !1

�
+ v21

#
E

=
kX
j=1

u2j +

�
v1 �

E (y2t )u2
1� !1

�2 
E (y4t )

1� !21
�
�
E (y2t )

1� !1

�2!�1
� �2k+1: (97)
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7.4 Case 3: Weighted ARCH Model

The log-likelihood function is

L = Const� 1
2

nX
t=1

lnht �
1

2

nX
t=1

u2t
ht

= Const� 1
2

nX
t=1

ln

"
�0 + �1

rX
s=1

wsu
2
t�s

#
� 1
2

nX
t=1

u2t
�0 + �1

Pr
s=1wsu

2
t�s
: (98)

Di¤erentiating (98) with respect to �1,

@L

@�1
= �1

2

nX
t=1

�Pr
s=1wsu

2
t�s
�

[�0 + �1
Pr

s=1wsu
2
t�s]

+
1

2

nX
t=1

u2t
�Pr

s=1wsu
2
t�s
�

[�0 + �1
Pr

s=1wsu
2
t�s]

2

) @L

@�1

����
H0

=
1

2�20

nX
t=1

~u2t

rX
s=1

wsu
2
t�s; where ~u

2
t = u

2
t � �0: (99)

From (99) di¤erentiating again

@2L

@�21
=
1

2

nX
t=1

�Pr
s=1wsu

2
t�s
�2

[�0 + �1
Pr

s=1wsu
2
t�s]

2 �
2

2

nX
t=1

u2t
�Pr

s=1wsu
2
t�s
�2

[�0 + �1
Pr

s=1wsu
2
t�s]

3

) � @2L

@�21

����
H0

=
1

2�30

nX
t=1

�
2u2t � �0

� " rX
s=1

wsu
2
t�s

#2
: (100)

Now taking expectation of (100) as n!1 the asymptotic information matrix is

lim
n!1

1

n
E

"
� @2L

@�21

����
H0

#
= lim

n!1

1

n

�0
2�30

nX
t=1

E

"
rX
s=1

wsu
2
t�s

#2

=
1

2�20
lim
n!1

1

n

nX
t=1

rX
s=1

w2sE
�
u4t�s

�
; IID under H0

=
1

2�20
E
�
u4t
� rX
s=1

[(r + 1)� s]2�
1
2
r (r + 1)

�2
=

1

2�20
E
�
u4t
� 1
6
r (r + 1) (2r + 1)�

1
2
r (r + 1)

�2
=

1

2�20
E
�
u4t
� 2
3

(2r + 1)

r (r + 1)

=
(2r + 1)

r (r + 1)
putting E

�
u4t
�
= 3�20: (101)
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Hence, the Rao Score Statistic is

RS = n�1

"
1

2�̂20

nX
t=1

~u2t

rX
s=1

wsu
2
t�s

#2
r (r + 1)

(2r + 1)
= n

r (r + 1)

(2r + 1)

�Pn
t=1 ~u

2
t

Pr
s=1wsu

2
t�s
�2

4 [
Pn

t=1 u
4
t ]
2

(102)

which for testing for ARCH(1) becomes

RS =
n

12

�Pn
t=1 ~u

2
tu
2
t�1
�2

[
Pn

t=1 u
4
t ]
2 : (103)

Now let us setup the augmented Neyman Smooth test for incorporating several

ARCH e¤ects using a linear weighting scheme suggested by Engle (1982, 1983).

We choose

�1 (yt; yt�1; :::; y1) = �2 (yt)
rX
s=1

wsy
2
t�s; where ws =

(r + 1)� s
1
2
r (r + 1)

) v1 =
1p
n

nX
t=1

�2 (yt)
rX
s=1

wsy
2
t�s is the score function. (104)

Furthermore,

E

�Z 1

0

�j (yt) �1 (yt; yt�1; :::; y1) dyt

�
= E

"Z 1

0

�j (yt)�2 (yt)
rX
s=1

wsy
2
t�sdyt

#

=

(
E
�Pr

s=1wsy
2
t�s
�
if j = 2

0 otherwise.

=

(
E (y2t )

Pr
s=1ws if j = 2

0 otherwise.

=

(
E (y2t ) if j = 2

0 otherwise.
(105)
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since under H0, E
�
y2t�s

�
= E (y2t ) ; for all s: Similarly,

E

�Z 1

0

[�1 (yt; yt�1; :::; y1)]
2 dyt

�
= E

24Z 1

0

�22 (yt)

 
rX
s=1

wsy
2
t�s

!2
dyt

35
=

(
E
�Pr

s=1wsy
2
t�s
�2

if j = 2

0 otherwise.

=

( Pr
s=1w

2
sE (y

4
t ) if j = 2

0 otherwise.

=

(
E (y4t )

2
3
2r+1
r(r+1)

if j = 2

0 otherwise.
(106)

since under H0 all yts are independent and E
�
y4t�s

�
= E (y4t ). Hence, the asymptotic

information matrix is given by

I =

266664
1 0 00 0

0 1 0 E (y2t )

0 0 Ik�1 0

0 E (y2t ) 00 2
3
(2r+1)
r(r+1)

E (y4t )

377775 =
"
Ik B

B0 D

#
: (107)

Using the same notations as before we obtain the following results:

(i)D �B0B = 2
3
(2r+1)
r(r+1)

E (y4t )� (E (y2t ))
2 ) E = (D �B0B)�1 :

(ii)U 0BEB0U = (E (y2t )u2)
2
E:

(iii)U 0BEV = (E (y2t )u2v2)E:

(iv)V 0EV = v21E:

Hence, if r is a known constant,

kX
j=1

u2j +
h�
E
�
y2t
�
u2
�2 � 2 �E �y2t �u2v2�+ v21iE

=

kX
j=1

u2j +
�
v1 � E

�
y2t
�
u2
�2�2

3

(2r + 1)

r (r + 1)
E
�
y4t
�
�
�
E
�
y2t
��2��1

� �2k+1: (108)
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