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Uncertain Market Making

Abstract

This paper argues that market makers’ presence is uncertain over any short time interval, as their
operations are subject to shocks and constraints of, e.g., capital, technology, and attention. Such
uncertain market making implies a random pricing equilibrium in a noise rational expectations
framework. Implications for risk, liquidity, and efficiency are discussed. A structural model
captures from data the predicted dispersion of random pricing. In 2014, the estimated dispersion
is around 10 times of the average price impact, compared to only 2 times in the early 2000s. The
evidence suggests deteriorated short-run order flow pricing efficiency in the U.S. equity market.
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1 Introduction

Market makers play a central role in financial securities markets. They provide liquidity to investors

and, in the meantime, update prices to reflect new information. The canonical assumption of

competitive market making—typical in frameworks pioneered by Kyle (1985) and Glosten and

Milgrom (1985)—requires market makers perfectly monitor and timely react to all news and

events. Only this way does the market achieve price efficiency and maximum liquidity via an

implicit Bertrand competition. Do market makers always manage to achieve such perfection?

This paper argues no. In today’s fast and fragmented market, effectively monitoring market

conditions in real time is very challenging, despite the tremendous advancement in technology

and speed. This is because speed is a double-edged sword. On the one hand, traders can process

information faster and more efficiently. On the other, they generate more market events to be

processed per unit of time—trades, order submission and revision, etc. The net effect is arguably

unclear. However, unlike the former, the latter effect is compounded by the number of traders

gaining speed. For example, if each of m traders is now able to submit one more order per unit of

time, then every trader in the market needs to parse m—not just one—more events. Thus, the more

traders gaining speed, the heavier is the burden of monitoring the market for everyone.

Further, product complexity and market fragmentation also add to the cost of monitoring.

O’Hara (2015) cites Berman (2014) for an example of strenuous market making across 14 exchange-

traded products linked to gold, involving 91 distinct pairs of arbitrage relationships that must be

monitored continuously in time. It seems onerous to effectively monitor and react to, in real time,

all events like quotes, trades, and news flashing on all these manifold marketplaces.

In view of such challenge in monitoring the market, this paper argues that market making is

hardly perfect and, specifically, is subject to two disturbances. First, market makers face time

constraints. Given the high speed at which the market moves, it is hard to imagine that market

makers will always have sufficient time to fully agree on the price for each and every trade (e.g. by

1



undercutting each other’s quotes in a Bertrand fashion). Second, relatedly, within the short time

interval, the presence of (sufficiently many) market makers is uncertain. Some might be unable to

respond due to technology-related search frictions, some might be confined by capital constraints,

and some others might be intentionally focusing on other markets because of limited attention.1

Taken together, the above two frictions—1) the time constraint and 2) the uncertain presence of

competing market makers—imply that there is “uncertain market making”. That is, no individual

market participant knows the exact number of market makers who are actively providing liquidity

at any given point of time.

This paper first develops a theory of uncertain market making and examines the implications

on market quality. A structural model is then built to incarnate the theoretical concept of uncertain

market making into a concrete statistic measure. Applied to real-world trading data, the structural

model finds evidence consistent with the theory. It is shown that market making uncertainty is an

order of magnitude larger in recent years than was one decade ago.

The theory builds on the informed trading model of Kyle (1985) by blending in the price

dispersion model of Burdett and Judd (1983). Relaxing the perfectly competitive market makers,

the model assumes that they independently bid for the aggregate order flow once and only once (time

constraint) and that, when bidding, they do not know against how many others they are competing

(uncertain presence). A noise rational expectations equilibrium exists in which, conditioning on

the order flow size, the trading price is always random. The random pricing feeds back to investors’

optimal trading behavior via their rational expectations, affecting market quality in all aspects.

More concretely, the random pricing for a given order flow involves two components: 1) an

efficient price impact, which is deterministic given the order size, as is standard in Kyle-type models;

and 2) a novel random markup, due to market makers’ strategic behavior in view of uncertain market

making. Such a decomposition of trading price contributes to the understanding of market quality

1 The notion of “market makers” in this paper is meant to be broad. It can refer to designated market makers
registered with the exchange or any individual who supplies liquidity (e.g. by posting limit orders).
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in three aspects. First, price efficiency is adversely affected by uncertain market making in two

different ways: Directly, there is more (transitory) noise due to market makers’ random markup.

Indirectly, informed trader trades less aggressively in anticipation of the costly random markup.

While the indirect channel suggests reduced order flow informativeness, which hurts the long-run

price efficiency, the direct channel negatively affects the immediate (short-run) pricing efficiency

of the order flow.

Second, the model distinguishes the notions of “trading cost”, “(il)liquidity”, and “adverse

selection”, which are largely treated as synonyms in models with perfect market making. Specifi-

cally, investors’ trading cost is jointly determined by 1) the market makers’ adverse selection cost

(Kyle’s λ) and 2) the random markup, both of which affect market liquidity but reflect different

economics. The former is the marginal cost of providing liquidity (like firms’ manufacturing cost),

while the latter reflects the price premium charged by market makers (like firms’ market power

from lack of competition). By distinguishing these related notions, the model predicts scenarios of

very illiquid market with little informed trading—e.g., few oligopolistic market makers might be

charging high markups—and vice versa.

Third, the random markup affects the price return in several ways: 1) It multiplicatively scales

up, rather than simply adding to, the price return volatility. The more severe is the market making

uncertainty, the stronger is the volatility amplification by the random markup. 2) The random

markup is shown to have a positively skewed supported bounded from below by zero (so that

market makers make profit from competitors’ uncertain presence). The price return inherits such

skewness. That is, the model predicts positive (negative) skewness in price returns following buys

(sells), conditional on the order flow sign and size. 3) The random markup fattens the tails of

the price return distribution (amplified kurtosis), increasing the frequency of observing extreme

price movements. These aspects highlight the importance of market structure on the risk aspect of

financial securities.

The model also finds that limited attention endogenously gives rise to uncertain market making.
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In an extension, market makers are offered a menu of marketplaces—a key characteristic of the

fragmented financial market nowadays—but constrained by limited attention, they can only choose

a subset of the venues to provide liquidity (in a short period of time). It is shown that there

is a symmetric mixed-strategy equilibrium in which all market makers split their attention across

marketplaces. As each marketplace only gets a fraction of market makers’ attention, market making

uncertainty aggravates across the board. The model extension thus provides a formal equilibrium

argument for the “limited attention hypothesis” analyzed by Corwin and Coughenour (2008) and

the model predictions echo their empirical evidence on the NYSE specialists.

A structural model is then developed to capture market making uncertainty from real-world

trading data as a measurable statistic. The structural model is most closely related to the state space

models in, e.g., Menkveld (2013) and Brogaard, Hendershott, and Riordan (2014). As inspired by

the theory, a price impact dispersion term that scales with the order flow is added to the pricing error

equation. That is, instead of being restricted to a constant parameter, the price impact is allowed

to deviate from its (long-run) mean momentarily. While the conventional measure captures the

(long-run) average effect of order flows on price, market making uncertainty affects its temporary

dispersion. Economically, the dispersion can be understood as the (in)efficiency of how order flows

are priced in the short-run.2

The structural model is then applied to intraday trading data of 500 randomly picked stocks

from S&P 1500 index over a one-year sample period (January to December 2014). The estimates

suggest that an order flow of size $10,000 on average generates a permanent price impact of 1.47

basis points. However, this price impact is accompanied by a large dispersion of 22.51 basis points

(per $10,000) in the short-run, about 15 times as large as the long-run effect. The magnitude of the

dispersion decreases along stock sizes. On average, a small stock sees a contemporaneous price

impact dispersion about 19 times as large as the mean, while it is roughly 12 times for a large stock.

2 For example, on average the price impact might be 2 basis points per trade, but the immediate, trade-to-trade
effect might be sometimes 1 basis point, sometimes 3 or 4 basis points. If market making is certain, the dispersion will
be virtually zero, implying that order flows are priced very efficiently; and vice versa.
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This dispersion reflects the uncertain market making proposed by the theory: The data suggests

positive correlation between the dispersion and the lack of competition of quoting activity, measured

by a number of Herfindahl indices, following Hasbrouck (2015). That is, the higher Herfindahl

indices of quoting activity (lack of competition), the larger is the dispersion.

The same structural model is applied to a 15-year sample (2000 to 2014) of the component

stocks of Dow Jones Industrial Average. The long time series demonstrates how the dispersion of

contemporaneous price impact—market making uncertainty—evolved over the one and half decade.

At the beginning of the century, the dispersion was around two to three times. Starting from year

2007, it began to rise, gradually to the level of about 10 times by 2014. In the meantime, the

conventional average price impact measure is found to decrease over the same period, suggesting

improved (long-run) price efficiency. However, the increase of the dispersion suggests that the

market has become less efficient in pricing an order flow in the short-run over the years.

The rest of the paper is organized as follows. Section 2 reviews related literature. Section 3

sets the benchmark model of uncertain market making and discusses the implications. Section 4

then builds an extension with market makers’ limited attention. A structural model is developed in

section 5 and is applied to real-world trading data in section 6. Section 7 then concludes.

2 Related literature

The model developed in this paper is largely inspired by Baruch and Glosten (2013), who show

that random quoting can be optimal in a dynamic limit order market environment. Similarly,

Dennert (1993) studies an equilibrium in the context of a dealership market where dealers also

quote according to a mixed-strategy. Apart from the market structure difference, the equilibrium

random pricing (or quoting) in this paper originates from the unknown number of active market

makers (attributable to their limited attention), while in both above papers, the population of market

makers is known and fixed. Such uncertain market making is a friction prevalent in the current
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financial markets and less well understood in the literature.

Jovanovic and Menkveld (2015) analyze non-zero entry costs in a first-price auction. They

show that there is a unique equilibrium where bidders endogenously choose to randomly enter the

auction and, if enters, bid according to a symmetric mixed-strategy. They then apply the model to

high-frequency bidding for S&P500 stocks and identify the model parameters from realized quote

price dispersion in the limit order book. Their work and the current paper complement mainly in

two ways. First, while Jovanovic and Menkveld (2015) focuses on prices, the current paper, relying

on the canonical framework of Kyle (1985), encompasses strategic order flows submission via

rational expectations. Second, whereas Jovanovic and Menkveld (2015) generate their probabilistic

participation from an unspecified, exogenous participation cost, this paper suggests that market

makers’ limited attention can contribute to such cost, as those who choose to bid in one marketplace

forgo the opportunity of bidding in some other marketplaces.

There is a large body of literature studying equilibrium price dispersion in different contexts.

Notable examples include Hausch and Li (1993) and Cao and Shi (2001) in auction; Butters (1977)

and Burdett and Judd (1983) in search; Salop and Stiglitz (1977) and Varian (1980) in industrial

organization. More recently, Duffie, Dworczak, and Zhu (2015) also establish a similar mixed-

strategy equilibrium for dealers’ price offers to study benchmarks in over-the-counter markets.

More broadly, this paper contributes to the literature studying market makers’ competition. The

uninformed traders in Kyle (1989) serve the role of market making and their strategic behavior

affects the equilibrium pricing and market quality. Bondarenko (2001) studies a dynamic extension

of Kyle (1985) with finite strategic market makers. Moving to the quote-driven market setting,

competition among dealers or limit order traders is studied by, to name a few, Glosten (1989),

Biais, Martimort, and Rochet (2000, 2013), and Back and Baruch (2013). This paper adds to this

literature the new element of market makers’ uncertain presence.

There is a recent strand of literature studies how uncertainty, in addition to asset payoffs, affects

trading and market. While this literatue (to name a few, Banerjee and Green, 2015; Rossi and Tinn,
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2014; Back, Crotty, and Li, 2014; Yang, 2015) mostly focus on the uncertainty on the investor side,

this paper studies the uncertainty on the market making side.

The structural model and its estimation relate to the empirical literature studying price impact,

trading cost, and market liquidity (see, e.g., Glosten and Harris, 1988; Hasbrouck, 1991, 1993;

Brennan and Subrahmanyam, 1996; Sadka, 2006). The model specification is seen in Hasbrouck

(2007) and the state space model treatment is pioneered by Menkveld, Koopman, and Lucas (2007),

with recent applications like Menkveld (2013); Hendershott and Menkveld (2014); and Brogaard,

Hendershott, and Riordan (2014). The innovation of this paper lies in the empirical identification of

price impact dispersion, which is argued to represent the short-run order flow pricing efficiency. In

addition, the state space model is estimated with a novel generalized method of moments (GMM).

In particular, the GMM approach does not require disturbances be Gaussian and identifies the

skewness (and other higher moments, if needed) of the price impact dispersion.

In the current paper, the estimates from component stocks of Dow Jones Industrial Average

suggest the short-run pricing efficiency of order flows began to deteriorate around 2007. A few

recent studies also document a notable market structure “breakpoint” around year 2007 in the U.S.

equity market. Skjeltorp, Sojli, and Tham (2013) demonstrate an increasing trend of quote-to-

trade ratio from 1999 to 2012 for a large cross-section of stocks. While a mild slope is seen

from 1999 to early 2006, a abrupt rise is saliently seen in 2007 and most noticeable for large-

cap stocks. Lyle, Naughton, and Weller (2015) find a turning point around 2007, since when

the reduction of bid-ask spread, presumably associated with the rise of algorithmic trading, has

stagnated. These observations are consistent with the argument that too much market events

(e.g. quoting activity) impair participants’ ability to parse information timely, raising concerns of

uncertain market making.
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3 A model of uncertain market making

This section develops a model of uncertain market making. The model builds on the static model

of Kyle (1985) but enriches the market making process with just necessary frictions that lead to

uncertain market making.

3.1 Model setup

As a notation convention in this paper, capital letters indicate random variables while their corre-

sponding lower case letters indicate the realizations.

Assets. There is a risky asset and a risk-free numéraire (money). Each unit of the risky asset will

pay off a random amount of V units of the numéraire. Without loss of generality and to simplify

notation, EV is normalized to 0.

Investors. There is one risk-neutral informed trader, the “insider”, who privately observes the

realization of V and chooses his optimal order size X = x(V )—as a function of V—to maximize

his expected profit from trading. There is one noise trader who submits an order of size U (e.g. due

to unmodeled liquidity demand). V and U are referred to as the fundamentals of the asset. They

are independently normally distributed, with zero means and respective variances σ2
V and σ2

U .

Market makers. There are in total m (possibly infinite) risk-neutral market makers indexed by

i ∈ {1, ...,m}. However, not all of them are “active” and ready to absorb the incoming order

flow. Denote the event that market maker i is active by a successful Bernoulli draw of 1i = 1.3

The joint distribution of {1i}mi=1 is common knowledge and, in particular, it is independent of the

fundamentals V or U. The total number of active market makers, M :=
∑m

i=1 1i, is also random
3 This structure of market makers’ activeness is assumed to be exogenously given in this section. Jovanovic and

Menkveld (2015) show, in a more general auction setting, that the Bernoulli arrival draws are a unique equilibrium
outcome when market makers (limit order traders) endogenously choose whether to pay a non-zero entry cost. Section 4
below endogenizes this participation cost via market makers’ limited attention.
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and the realization is not known to any agent in the economy. Later in the analysis, a specific

distribution will be adopted to ensure the tractability of the model. Only these M active market

makers can participate in the trading process described below.

Trading process. The insider and the noise trader first submit orders independently and their

orders pool into Y = X + U . Then, just like in Kyle (1985), the active market makers observe

the pooled order flow realization y and bid to absorb it. However, rather than perfect competition,

the bidding process is specifically modeled: Each active market maker i independently submits a

uniform price pi, agreeing to absorb the order flow y at cost of piy. Denote by P = {pi | 1i = 1 } the

set of all submitted prices. The winning price is the lowest (highest) price if the pooled flow is a

buy when y > 0 (sell when y < 0):

P := arg min
p∈P

py.(1)

The order flow then executes at this winning price against the market maker who bids it. After

the trade, the risky asset pays off and all players consume. Such a trading process requires at least

M ≥ 1 active market makers. In the case of M = 0, it is assumed that the submitted order flows

are nullified and no transaction takes place.

Equilibrium. There are two types of strategic players under this setup: the insider, choosing order

size x(V ), and active market makers, bidding pi (Y ) upon seeing the aggregate flow Y = x(V ) +U .

This section focuses on an equilibrium in which all active market makers choose a symmetric

strategy. Therefore, the equilibrium is a pair {x(·), pi (·)}, such that the informed trader maximizes

her expected profit

x ∈ arg max
x
E[(V − P)x | V ],(2)
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where P is the winning price defined in equation (1), and that each active market maker maximizes

his expected profit

pi ∈ arg max
pi
P
(
pi = P

)
E
[(

pi − V
)
Y |Y = x(V ) +U, pi = P

]
.(3)

Note that in equation (3), market maker i earns zero with probability P
(
pi , P

)
as the trade does

not occur to him in this case. (As will be seen later, in equilibrium, ties almost surely do not occur.)

Some remarks of the model setup

Compared with the original Kyle (1985) model, the model setup presented here differs only in the

price setting behavior by market makers. Note that equilibrium condition (3) states an optimality

condition, which differs from the original price efficiency condition saying P = E[V |Y = x(V )+U].

In this model, trading price P is efficient only when market makers’ optimized profit is forced to

zero (e.g. by competition). To see this, set the right-hand side of condition (3) to zero (due to

competition) and take expectation (over P) to get E
[
(pi − V )Y |Y = x(V ) +U

]
= 0, which implies

that every market maker bids the efficient price pi = E[V |Y = x(V ) +U ]. Without the zero-profit

condition, the trading price is, in general, different from the (semi-strong) efficient price E[V |Y ].

The trading process is modeled as a first-price, sealed-bid auction (with unknown number of

rivals). Such an auction implies that the winner takes all, a key simplifying assumption that keeps

the tractability of the model. Effectively, the insider (and the noise trader) always trades with one

and only one market maker. This makes sure that the realized trading price is not “contaminated”—

in the sense of analytic tractability—by the uncertainty from the random number of market makers.

To compare, consider an alternative setup a la Kyle (1989) but with random number of uninformed

traders, i.e. market makers. In such a rational expectations equilibrium, the trading price implied

by the market clearing condition would also reflect the realized number of market makers. The

resulting equilibrium strategy turns nonlinear through Bayesian updating and has limited analytic

tractability. It should be emphasized that the winner-takes-all simplifying assumption is not the
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driver of all the results to be derived below. Rather, it is the uncertain number of market makers.

The setup recalls the price dispersion model of Burdett and Judd (1983). Indeed, one can

think of the informed and the noise traders in the model as liquidity demanders (consumers) and

the market makers as liquidity suppliers (firms). Then an equivalent interpretation of the model

can be as follows: Let the demand side be given the initiative. The liquidity consumer searches

and finds a random number of firms, who independently quote for the liquidity consumer’s order

flow, and then trades with the firm quoting the cheapest price. A large body of literature has

extended the original price dispersion model by Burdett and Judd (1983). This section adds to

the literature the rational expectations perspective of firms (market makers) who learn the adverse

selection cost from consumers’ demand (order flow), while consumers anticipate their demand to

have price impact. Very relatedly, Jovanovic and Menkveld (2015) in an auction setting endogenize

the distribution of the random number of bidders (i.e. firms), which is exogenously given in Burdett

and Judd (1983). A similar endogenization is deferred to section 4 where a friction of market

makers’ limited attention is introduced.

3.2 Equilibrium analysis

3.2.1 The insider

The insider privately knows the risky asset’s true value v. Based on this, she chooses her order size

x(v) to maximize her expected profit from trading:

max
x
E[(V − P)x | V = v ],

where P = p(x +U;11, ..., 1m) is the winning bid price as defined in equation (1). Note that the

insider is unsure of the execution price P of her order, for two reasons: 1) her order is going to be

pooled with the noise flow, U; and 2) the number of active market makers, M , is unknown. This

second reason is borrowed from the “noisy search” in Burdett and Judd (1983) but is new to the

original Kyle (1985) framework. To facilitate the analysis, conjecture the following for the insider
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(recall the normalization of EV = 0):

Conjecture (Kyle, 1985). The insider’s optimal order size is

x(v) = βv(4)

for some aggressiveness parameter β > 0.

This conjecture will be verified later in subsection 3.2.3.

3.2.2 Market makers

To begin with, the following heuristic argument (similar to the case of Burdett and Judd, 1983)

is useful to understand why there is no pure-strategy equilibrium for market makers. Given the

conjectured linear strategy x(v) = βv by the insider, a Bertrand competitive price ofE[V |x(V )+U =

y] is known to all active market makers. However, due to uncertain market making, this Bertrand

price is not an equilibrium. If knowing that all others were to bid this Bertrand price, an active

market maker i will deviate: He will want to bid a higher price of E[V |x(V ) +U = y] + markup

so that with probability P(M = 1| 1i = 1 ) he is the only present market maker. Because of

uncertain market making, the above probability is not zero. In expectation, hence, the market

maker earns P(M = 1| 1i = 1 )markup, which is strictly larger than zero profit implied by the

Bertrand price. Note, however, that the markup cannot be deterministic, because then the standard

Bertrand argument would apply to drive down the price to the perfectly competitive level, which

is not an equilibrium per the above argument. The analysis below formally establishes a mixed-

strategy equilibrium for market makers.

Let the realization of the pooled order flow be y, which is observed by all active market makers.

Suppose market maker i is active, i.e. 1i = 1. Then he knows the probability of competing against

other 0 ≤ k ≤ m − 1 active market makers is P(M = k + 1i | 1i = 1 ). Suppose further that all other

M − 1 active market makers follow a symmetric linear strategy of bidding p j (y) = Λ j y, for all

j , i and 1 j = 1, whereΛ j is i.i.d. from some known distribution (possibly degenerate). The active
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market maker i realizes that the probability of winning with a price pi is

P
(
pi = P | 1i = 1

)
=

m−1∑
k=0
P(M = k + 1i | 1i = 1 )P

(
piy < min

{
(Λ j y)y

}
j,i
| M = k + 1i , 1i = 1

)
=

m−1∑
k=0
P(M = k + 1i | 1i = 1 )P

(
λi < min

{
Λ j

}
j,i
| M = k + 1i , 1i = 1

)
,

where the second equality rewrites pi = λiy. Note that this is merely a rewriting and it does not

restrict the strategy space market maker i enjoys, since no constraint on λi is imposed. Therefore,

market maker i also knows his expected profit with price pi = λiy is
m−1∑
k=0
P(M = k + 1i | 1i = 1 )P

(
λi < min

{
Λ j

}
j,i
| M = k + 1i

) (
λiy − E

[
V |Y = y

] )
y

=

m−1∑
k=0
P(M = k + 1i | 1i = 1 )P

(
λi < min

{
Λ j

}
j,i
| M = k + 1i

)
(λi − λ)y2,(5)

where, exactly as in Kyle (1985),

λ := E
[
V |Y = y

]
/y =

βσ2
V

β2σ2
V + σ

2
U

(6)

follows the conditional expectation of bivariate normal distribution. That is, λ is the efficient price

impact factor (under the conjecture that the insider’s aggressiveness is β).

Equivalently, each market maker can be viewed as choosing a random markup that adds to the

efficient price impact λ by Z j times:

Λ j =
(
1 + Z j

)
λ(7)

where Z j is i.i.d. from some distribution F (·) to be determined. Similarly, by choosing pi = λiy,

the market maker i is equivalently choosing his markup zi = λi/λ − 1. Then market maker i’s

expected profit simplifies to4

λy2
m−1∑
k=0
P(M = k + 1i | 1i = 1 )(1 − F (zi))k zi .(8)

4 The simplification uses the minimum statistics: For a sample of k observations i.i.d. from F (·), the minimum of
the sample has c.d.f. (1 − F (·))k .
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Is market maker i also going to use a mixed-strategy where he randomizes the markup zi? If so,

he must be indifferent across all zi on the relevant support. The partial derivative of the above

expected profit with respect to zi must satisfy5

�
��λy2

m−1∑
k=0
P(M = k + 1i | 1i = 1 )(1 − F (zi))k−1

[
1 − F (zi) − kzi Ḟ (zi)

]
= 0,(9)

where the notation Ḟ (·) is the probability density function of zi. The result is a first-order ordinary

differential equation of F (zi), which does not depend on order flow y but only on the joint

distribution of {1 j }. Therefore, an equilibrium exists if all active market makers play the linear

mixed-strategy of p j = Λ j y by marking up λ with Z j drawn from F (·).

It remains to solve F (·) (and its support) from the differential equation (9). To ensure analytic

solution and to develop further implications from the model, assume the following specific joint

distribution for market makers’ activeness:

Assumption 1 (Market makers’ activeness). Each market maker’s activeness is determined through

i.i.d. Bernoulli draws with success probability θ ∈ (0, 1).

Under assumption 1, the parameter θ can be interpreted as an average market maker’s activeness.

It measures how likely a market maker is able to react to market events (within some limited

amount of time). Among others, such activeness can be affected by the market maker’s technology,

liquidity constraints, or his strategic allocation of attention. Section 4 studies how θ can be affected

by market makers’ endogenous allocation of their limited attention.

One more technical assumption is needed. Observe that the profit expression (8) at m = 1 (i.e.

monopoly) becomes λy2zi, which is strictly monotone increasing in the markup zi. That is, lacking

sufficient force of competition, a monopolist will want to charge infinite price to clear the order

flow. To rule out such unrealistic infinite profit, a cap on zi is needed.

Assumption 2 (Maximum markup). The support of the markup zi is confined to be a subset of [0, a],

where 0 < a < ∞.

5 The analysis here restricts to the search only for differentiable F (·).
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The cap can be motivated by the maximum possible bid-ask spread that market makers are required

to quote by the exchange. When the spread exceeds this threshold, a “circuit breaker” will be

triggered and trading will halt, as was the case in the Flash Crash on May 6, 2010. In their auction

setting, Jovanovic and Menkveld (2015) endogenize the cap by assuming a fixed cost for bidders to

pay before participating in the auction.6

The differential equation 9 can now be solved.

Lemma 1 (Solution to differential equation 9). Under assumption 1, the solution to F (·) is

F (z; θ,m) =
1
θ
− 1 − θ

θ

(a
z

) 1
m−1

for z ∈
[
(1 − θ)m−1a, a

]
and some a ∈ R++.(10)

The solution in equation (10) describes the distribution and support according to which the market

makers will randomize their price impact markup Zi. The markup is positive because, intuitively,

there is non-zero probability that i is actually the only active market maker and he would like to

profit from such probabilistic monopoly power. To see this, evaluating a market maker’s expected

profit, conditional on he being active and on the observed flow y, gives:

π(y; θ,m) = (1 − θ)m−1︸       ︷︷       ︸
probability of being the monopolist

monopoly profit︷︸︸︷
aλy2 .(11)

It can be seen that the expected profit is simply the monoply profit scaled by the probability of

being the monopolist. This observation also motivates the necessity of assumption 2.

3.2.3 The equilibrium

With the optimal strategy of market makers (lemma 1), it remains to verify the conjecture about

the insider’s linear strategy as stated on page 12. Since all active market makers use the symmetric

6 Very helpful discussion with Shmuel Baruch is acknowledged in understanding the importance of such an upper
bound a for the existence of the equilibrium. The discussion also reveals that the exogenous cap a on the markup
implies an endogenous cap on the price impact: Λ j = (1 + Z j )λ ≤ (1 + a)λ < ∞. An alternative of directly imposing
an exogenous cap of Λ j ≤ λ̄, similar to the consumers’ reservation price p̃ in Burdett and Judd (1983), achieves the
same purpose. The exogenous λ̄, however, complicates the algebra behind comparative static analysis (section 3.3)
without affecting the qualitative predictions. As such, the analysis here sticks to the cap a on zi .
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mixed-strategy of pi = Λiy = (1 + Z j )λy, the winning price (equation 1) simplifies to

P = (1 + Z )λy, with Z := min{Zi | 1i = 1 }.(12)

Denote EZ = ζ . Hence, the insider’s optimization problem becomes

max
x
E[(V − (1 + Z )λ · (x +U))x | V = v ] =⇒ max

x

(
v − (1 + ζ )λx

)
x

which has a unique linear solution of x(v) = v · (2(1 + ζ )λ)−1, confirming the conjecture on page

12 with β = (2(1 + ζ )λ)−1, under the second-order condition of β > 0. Using lemma 1, the

distribution of Z can be found to evaluate ζ . The following lemma summarizes the equilibrium.

Lemma 2. There is a linear strategy equilibrium, in which the insider submits x(v) = βv and

all active market makers follow a symmetric mixed-strategy of pi (y) = (1+ Zi)λy by drawing Zi

independently from F (·) stated in lemma 1. The equilibrium aggressiveness β and the efficient

price impact λ are given by

β =
1√

1 + 2ζ
σU

σV
and λ =

√
1 + 2ζ

2(1 + ζ )
σV

σU

where ζ = Emin
{
Z j

���1 j = 1
}
= (1 − θ)m−1θma/(1 − (1 − θ)m).

Compared with the original Kyle (1985) equilibrium, the novel feature is the random markup Z ,

which is the result of uncertain market making. In the context of Burdett and Judd (1983), Z is

just a rewriting of the random prices offered by the (liquidity) suppliers. Yet, the fact that the

equilibrium is in rational expectations allows a rich set of implications for market quality due to

the strategic interaction between the insider (the liquidity consumer) and the market makers (firms

“producing” liquidity). These implications are explored next in section 3.3.

3.3 Properties and implications of the equilibrium

The key feature of the equilibrium sought above is that each market maker marks up the efficient

price impact factor λ by a random proportion zi. As only the minimum random markup Z matters
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(b) Varying the number of market makers, m
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Figure 1: Distribution of price impact markup Z . Panel (a) plots the cumulative distribution function of
Z under various activeness parameter, θ ∈ {0.1, 0.2, 0.4, 0.7}, fixing m = 5. Panel (b) plots the cumulative
distribution function of Z under various number of market makers, m ∈ {2, 5, 10, 20}, fixing θ = 0.2. The
other primitive parameters are σ2

V = 1, σ2
U = 2, and a = 5.

for realized trades, this section focuses on its properties and implications.

3.3.1 Uncertain market making, competition, and the random markup

The random markup Z on the efficient price impact factor λ adds to market makers’ expected

profit. As either market makers’ activeness θ or the number of market makers m increases, the

profit reduces to zero (see equation 11). This suggests market makers become more competitive

and the market making uncertainty reduces accordingly:

Lemma 3 (Stochastic dominance). Denote by G(z; θ,m) the cumulative distribution function

for the minimum price impact markup Z . Then for θ ′ > θ and m
′
> m, G(·; θ,m) first-order

stochastically dominates both G(·; θ ′,m) and G(·; θ,m′
).

Figure 1 illustrates how the distribution of Z changes as θ or m increases. The more active are the

market makers, the less likely the random markup will be large. The effect is similar when there
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are increasingly more market makers. More probability mass is allocated to the left tail, closer to

0, hence making the minimum markup Z more likely to be small (closer to zero).

In the limit of θ → 1 (or m → ∞), Z degenerates to 0 almost surely and hence, EZ = ζ = 0.

In this extreme case, the equilibrium converges to the original static Kyle (1985) (as can be easily

verified via the expressions in lemma 2). Uncertain market making and (lack of) market makers’

competition are synonyms in this context. Since both θ and m have similar effects, the rest of this

subsection focuses on θ to avoid repetitiveness. For convenience, θ as market makers’ activeness

measure will also be discussed as the (inverse of) market making uncertainty.

3.3.2 Order flow aggressiveness, price efficiency, and trading cost

The random markup makes trading more costly for both the insider and the noise traders. Knowing

this, hence, the strategic insider bids less aggressively: β = 1/(2(1 + ζ )λ) < 1/(2λ); c.f. Kyle

(1985). Panel (a) of figure 2 shows this effect. The horizontal axis, σu/σv , is the noise-to-

information ratio in the pooled order flow. The dashed line plots the insider’s aggressiveness in

a perfectly competitive market making environment, where β = σu/σv as in Kyle (1985). The

solid lines plot the insider’s aggressiveness under the current environment where there is uncertain

market making (following lemma 2).

The insider’s reduced aggressiveness, in turn, lowers the price efficiency, simply because there

is a lower amount of information compounded into the order flow. Panel (b) of figure 2 shows the

the efficient price adjustment λ is lower than the case of no market making uncertainty (the dashed

line). As the market making uncertainty increases (θ reduces), the inefficiency is also elevated.

From investors’ point of view, the “total (marginal) cost” of their order flows is measured as

Λ = (1 + Z )λ, which is the marginal price to pay for the additional unit of order. In this total

cost, λ reflects the efficient price impact cost and Z reflects the (random) cost of uncertain market

making. Panel (c) of figure 2 plots the expected value of this total cost. As can be seen, contrary to

the reduction of price efficiency λ, the total trading cost increases with market making uncertainty
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(c) Total trading cost
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(d) Total trading cost decomposition
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Figure 2: Price impact and insider aggressiveness. Panel (a) and (b) plot the insider’s aggressiveness β and
the efficient price impact λ, respectively, for different levels of market maker activeness, i.e. θ ∈ {0.1, 0.4, 0.7}.
Panel (c) plots how the total trading cost, as the sum of the efficient price impact and the expected minimum
markup, varies across different θ values. Panel (d) decomposes investors’ total trading cost into λ and Z ,
fixing θ = 0.4. The shaded area shows the possible range of variation of (1 + Z )λ. The top solid line is
the expected price impact, (1 + ζ )λ. The middle dashed line is the competitive efficient price impact, i.e.
σv/(2σu ) as in Kyle (1985). The bottom dot-dashed line shows the efficient price impact λ. For all panels,
the remaining primitive parameters are set at m = 5 and a = 5.
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(lower θ). This suggests that it is the cost of uncertain market making ζ , instead of the efficient

price impact λ, that dominates investors’ trading cost. Similarly, panel (d) visually decomposes

this total marginal cost. Notably, as shown by the shaded area, the variation of the total trading

cost can be very large due to uncertain market making. The following proposition summarizes the

above discussion.

Proposition 1 (Uncertain market making and market quality). As market making uncertainty

increases (smaller θ), the insider trades less aggressively (smaller β), the efficient price impact

reduces (smaller λ), and the average total trading cost increases (larger (1 + ζ )λ).

Another way of interpreting the total trading cost Λ is that it is the total price impact per unit

of the order flow (see equation 13 below). The total price impact thus has two components: λ and

Zλ. The former is the long-run efficient price impact, as it reflects the permanent price change

per unit of the order flow. The later Zλ is a measure of short-run order flow pricing (in)efficiency,

which will die out in the long-run in a dynamic setting. The structural model developed later in

section 5 builds on such a decomposition of Λ.

3.3.3 Market (il)liquidity

In this type of models, market illiquidity is often measured by Kyle’s λ, which is a measure of the

asset price elasticity to the order flow. The larger is the sensitivity, the less liquid is the asset—often

interpreted as reduced order book depth. Kyle’s λ is essentially a cost measure: It exactly reflects

market makers’ competitive marginal price for executing an additional unit of order. In the same

spirit, with uncertain market making, market illiquidity can be measured by the total trading cost

(1 + Z )λ. When compared to the canonical expression λ, the new expression sheds light on the

understanding of market liquidity.

First, the random markup Z indicates a new source of market illiquidity. Conventionally,

market illiquidity is only attributed to the information asymmetry in the order flow, in which

case λ = σV/(2σU ). The new component of Zλ arises only from uncertain market making, a
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feature related to the market structure but independent of the asset fundamentals like σ2
V or σ2

U .

From market makers’ point of view, the information asymmetry component λ is the necessary

cost to provide liquidity, just like the production cost for a manufacturer. The market making

uncertainty component λZ , instead, reflects the suppliers’ competitiveness. This component of

market illiquidity does not exist in the classic framework where perfectly competitive market

makers are typically assumed. Because of the multiplicative structure, the effect of uncertain

market making on market illiquidity is expected to be economically sizable. Section 5 introduces

a structural model to estimate the magnitude of such a component.

Second, the effects of uncertain market making (reflected by Z) and information asymmetry

(reflected on λ) can go in opposite ways. In particular, proposition 1 suggests that a thin market (e.g.

low depth, wide spread) is not necessarily related to information asymmetry. The lack of liquidity

can simply be due to uncertain market making. Similarly, more informed trading and increased

market liquidity can coexist: If market makers are very active in a stock’s trading, the average

market making uncertainty cost EZ = ζ reduces and informed trader will trade more aggressively,

raising λ. The net effect, as can be seen in panel (c) of figure 2, is improved market liquidity

(lower trading cost). This is because the insider always optimally chooses her aggressiveness so

that the increase in the efficient price impact λ does not exceed the reduction in the expected

markup ζ—overall, she pays a lower trading cost.

Finally, because the markup Z is random, it also affects the variation of market illiquidity, i.e.

the liquidity risk: var[(1 + Z )λ] > 0. Following the stochastic dominance property (lemma 3),

higher liquidity risk is expected when market makers are relatively inactive.
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3.3.4 Price volatility, skewness, and tail risk

The random price impact markup, Z , has a novel scaling effect on asset price volatility. To see this,

write the equilibrium price return as7

∆p = (1 + Z )λY = Λ · (βV +U).(13)

where Λ := (1 + Z )λ as in equation (7) and Y = x(V ) +U = βV +U . Then the variance of the

return becomes

var
[
∆p

]
= EΛ2 ·

(
β2σ2

V + σ
2
U

)
=

[
varΛ + (EΛ)2

] (
β2σ2

V + σ
2
U

)
The term

(
β2σ2

V + σ
2
U

)
represents the two fundamental sources of the price return volatility,

the innovation V and the noise demand U. It can be seen via varΛ = var(1 + Z )λ2 > 0 that

market making uncertainty multiplicatively scales up, rather than adding to, the fundamental return

volatility components. This scaling effect is only present due to the randomness in the markup Z .

Panel (a) of figure 3 illustrates the effect. Notably, when market maker’s activeness is relatively

low, the scaling effect on the return volatility can be sizable. When activeness is high, the market

makers’ competition becomes more fierce and the markup Z diminishes (in a stochastic dominance

sense; see lemma 3). Eventually, the return volatility converges to the perfectly competitive case.

The higher moments of the markup Z also affect the price return distribution.

Proposition 2 (Conditional positive skewness). Conditional on the order flow, the price return

exhibits positive (negative) skewness following a buy (sell).

To emphasize, proposition 2 is a conditional statement saying there is still skewness in price return

after controlling the potential skewness in the order flow, if any.

7 For exposition clarity, the return equation (13) assumes that prior to this order flow, the (traded) asset price is at
its (semi-strong) efficient price, EV (which is normalized to zero).
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(a) Return volatility amplification
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Figure 3: Price return volatility and kurtosis. Panel (a) and (b) plot, respectively, the volatility and kurtosis
of the price return (∆p) against market maker activeness θ, i.e. the inverse of market making uncertainty. In
both panels, the dashed lines show the asymptotic values as θ → 1, i.e. the limit result of Kyle (1985). The
other primitive parameters are set at m = 5, a = 5, σ2

V = 1, and σ2
U = 2.

Proposition 3 (Tails of price return distribution). Uncertain market making fattens the tail of

the price return distribution. Statistically, the kurtosis of the asset return is larger when there is

uncertain market making than when there is not.

Panel (b) of figure 3 illustrates this inflated kurtosis and finds that it is non-monotone in the market

making activeness: With moderately large θ, the tail of the asset return appears to be the fattest

(the kurtosis is the largest).

4 Limited attention and uncertain market making

There are many reasons why a market maker might not be always active. He might be constrained by

his technology accessing the market; he might be just given a margin call and need time to raise fund

for further operation; his analyst team might need more time to study a company’s financial report.
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This section explores how one particular type of constraint, market makers’ limited attention, affects

uncertain market making through a model with endogenous attention allocation.

4.1 Setting

The setting extends from section 3.1. There are n ≥ 2 marketplaces, indexed by j ∈ {1, ..., n}, each

trading one risky security with random payoff Vj . In each marketplace, there is one informed trader

who privately knows the realization of Vj and strategically submits informed order flow x j (Vj ).

As before, there is noise flow Uj in each marketplace as well. Only the pooled order flow y j =

Uj + x j (Vj ) is observable by market makers who are active in market place j. The random

variables
{
Vj

}
and

{
Uj

}
are assumed to follow a joint normal distribution with zero mean. The

noise flow Uj is assumed to be independent of the payoff Vj . The variances are denoted by σ2
V j

and σ2
U j . No other restriction is imposed on how these n risky assets are related. For example, the

security payoffs can be identical (only the trading venues are fragmented) and the cross-sectional

noise flows can be correlated.

Trading is facilitated by m (≥ 2) identical, risk-neutral market makers. At the beginning of the

game (“attention allocation period”), each active market maker chooses in which market(s) he wants

to be active. Specifically, a market maker i chooses whether 1i, j = 1 for all venues j ∈ {1, ..., n}.

Limited attention is modeled as a constraint n̄ that for each market maker i, such that∑
j∈{1,...,n}

1i, j < n̄ < n.

That is, no market maker can be active in all marketplaces. For ease of exposition, this paper

only considers the special case of n̄ = 1. In particular, mixed-strategy is allowed: A market

maker i can choose to operate in a marketplace j with some probability P
(
1i, j = 1

)
= θi, j , subject

to 0 ≤ ∑n
j=1 θi, j ≤ 1. The choice variable θi, j is market maker i’s attention paid to marketplace j.

After all market makers have allocated their attention
{
θi, j

}
, ∀(i, j) ∈ {1, ...,m} × {1, ..., n},

trades take place as described in section 3.1 (“trading period”). Figure 4 sketches the time line.
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Figure 4: Time line of the attention allocation game. This figure illustrates the time line of the extended
game presented in section 4. The shaded part of the time line corresponds to the trading game presented in
section 3. The dashed-line box indicates that the extension of market makers’ attention allocation.

4.2 Equilibrium attention allocation

The equilibrium is found backwardly by first solving for a market maker i’s expected profit from the

trading period and then by imposing an indifference condition in the attention allocation period.

4.2.1 Market makers’ expected profit from trading

Consider an arbitrary market maker i, who happens to be active in marketplace j, i.e. 1i, j = 1.

Suppose that he knows that all other market makers’ attention choice for this marketplace is the

same θ j ∈ [0, 1] (to be determined). By assumption 1, M−i, j :=
∑

h,i 1i, j follows a Binomial

distribution with m − 1 Bernoulli draws of success rate θ j .

Suppose further that the informed trader in marketplace j believes that all market makers’

attention choices for marketplace j are the same θ j . Lemma 1 and lemma 2 then apply to each

individual marketplace. In particular, given 1i, j = 1, market maker i’s expected profit from

marketplace j is (c.f. equation 11)

π j (θ j,m) := Eπ j (Yj ; θ j,m) =
(
1 − θ j

)m−1
aλ jEY 2

j =
(
1 − θ j

)m−1
a β jσ

2
V j(14)

where the last equality follows the expressions from lemma 2.

The expression (14) explains how the average attention choice θ j affects a market maker i’s
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profit, in two ways: 1) The “competition channel” reduces the profit: The probability of being

the monopolist in marketplace j, (1 − θ j )m−1, is reducing in θ j . As more attention is paid to

marketplace j by all market makers, the monopoly probability reduces for each of them and hence

lower rent remains. 2) The “participation channel” increases the profit: Note that the informed

trader’s strategy is affected by market makers’ activeness, θ j , via her aggressiveness β j . This is

because, intuitively, the more attention paid to the marketplace, the less market making uncertainty

remains and the reduced illiquidity (proposition 1) makes the informed trader willing to trade more,

increasing the order flow size. Since market makers’ profit is scaling on the order flow size EY 2
j , a

higher rent, therefore, follows. In the proof of lemma 4, it is shown that the net effect of the two is

negative, i.e. the competition channel dominates.

4.2.2 Attention allocation

A critical assumption underlying the expected profit expression (14) is that all market makers pay

the same attention to a marketplace. If there is such an equilibrium, the resulting expected profit

from any marketplace equate each other. Otherwise, the market makers will deviate to paying more

attention to the marketplace that generates a higher expected profit.

More rigorously, a market maker i’s optimization problem is to allocate his attention
{
θ̂ j

}
:

max
0≤θ̂ j≤1

n∑
j=1

θ̂ jπ j
(
θ j,m

)
, s.t.

n∑
j=1

θ̂ j ≤ 1,

given that all other market makers are choosing
{
θ j

}
and that each informed trader in marketplace j

expects the same attention θ j from all market makers. This linear optimization problem, in

general, will have a bang-bang solution unless the other market makers’ attention allocation satisfies

π j (θ j,m) = πh(θh,m) > 0 for all marketplaces j and h. If such an indifference condition holds, no

market maker will have incentive to deviate from the same allocation of
{
θ j

}
. Such an equilibrium

always exists.

26



0.0 θ1 θ2 1.0

Expected profit, π j (θ j,m)

(for an active market maker)

Attention θ j

j
= 1

j
=

2
Figure 5: Equilibrium attention allocation. This figure illustrates the market makers’ equilibrium attention
allocation for n = 2 marketplaces. Each solid curve corresponds to the expected profit function π j (θ j ) for
marketplace j. The equilibrium is found for θ1 and θ2 such that θ1 + θ2 = 1 and that the profits equate each
other: π1 = π2.

Lemma 4 (Equilibrium attention allocation). There exists a unique, symmetric-strategy equi-

librium in which all market makers mix to pay attention 0 ≤ θ j < 1 to marketplace j such that∑n
j=1 θ j = 1.

Figure 5 illustrates this equilibrium with n = 2 marketplaces. The two marketplaces have

different characteristics in terms of σ2
V j and σ2

U j . Depending on these characteristics, the shapes

of π j differ but the proof of lemma 4 establishes that they are always strictly downward sloping

and positive on θ ∈ [0, 1]. In equilibrium, all market makers derive the same expected profit from

each marketplace. The equilibrium is found for some {θ1, θ2} such that π1(θ1,m) = π2(θ2,m) and

θ1 + θ2 = 1.
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4.3 Implications of equilibrium attention allocation

Market makers’ limited attention forces them to strategically allocate their attention across the

marketplaces. Which marketplace gets more attention and hence is subject to less market making

uncertainty? The answer lies in the drivers behind an active market maker’s expected profit.

Expanding the expression (14) by substituting the expression of β j from lemma 2 gives

π j (θ j,m) =

(
1 − θ j

)m−1
a√

1 + 2ζ j
σV, jσU, j .

It can be seen that when either σU, j or σV, j is higher, market makers derive higher expected

profit from marketplace j and will want to allocate more attention there. The two fundamental

parameters reflect, respectively, the liquidity demands by the noise traders (e.g. hedging needs) and

by the informed traders (relative magnitude of non-public information).8

As such, a “liquidity-beget-liquidity” phenomenon occurs: Marketplaces with higher liquidity

demand—larger σU, j or σV, j—tend to attract more market makers’ attention, lowering the market

making uncertainty, which, in turn, reduces the total trading cost in that marketplace (recall

proposition 1). The following comparative static result formally states this result.

Proposition 4 (Comparative statics of attention allocation). The equilibrium attention θ j paid

to a marketplace j is monotone increasing in insider’s information σ2
V j and in noise trading σ2

U j .

Proposition 4 can be alternatively interpreted as a way to understand how market makers reallocate

attention when there is a shock in market fundamentals. Consider two marketplaces 1 and 2.

Suppose a shock strikes marketplace 1 and either σ2
V1 or σ2

U1 increases, then market makers will

all want to allocate more attention to marketplace 1. This suggests that while marketplace 1 gets

more attention and sees less market making uncertainty and higher liquidity, marketplace 2 will

experience more market making uncertainty and lower liquidity. Therefore, from the point view of

market quality, limited attention can lead to illiquidity spillover.
8 The “liquidity demand” in this context broadly refers to investors’ general interest for trading. It encompasses

demands from both informed traders and noise traders. The terminology could be misleading as, in a narrower sense,
“liquidity demand” sometimes specifically refers to noise traders’ order flows only.
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Figure 6: Illiquidity spillover. This figure illustrates how illiquidity can propagate from one marketplace
to another without interconnected fundamentals. An information shock on σ2

V1 hits marketplace 1, where
the pre-shock value is σ2

V1 = 1.0. The shock size, ranging from −0.5 to 0.5, is indicated on the horizontal
axis. Other characteristics of the marketplaces do not change: σ2

U1 = σ
2
U2 = 2.0 and σ2

V2 = 1.0. The solid
curves show the post-shock market illiquidity (total trading cost), λ j + ζ j for j ∈ {1, 2}, on the left axis. The
dashed curves plot the post-shock equilibrium attention allocation of θ1 and θ2 by market makers, shown on
the right axis. The other primitive parameters are set at m = 5 and a = 5.

Corollary 1 (Illiquidity spillover). Positive shocks in the fundamentals of marketplace j—either

insider’s information σ2
V j or noise trading σ2

U j—reduce market makers’ attention in the other

marketplaces, resulting in higher trading cost (illiquidity) there.

Figure 6 illustrates such an illiquidity spillover from marketplace 1 to marketplace 2, due to an

idiosyncratic information shock specific to the asset traded on marketplace 1. The shock size ∆σ2
V1

is shown on the horizontal axis. It can be seen that a positive shock drives up the illiquidity (total

trading cost) (1+ ζ )λ in both marketplaces. The reasons, however, are different. In marketplace 1,

the increased level of information asymmetry σ2
V1 determines that market makers require higher

compensation for adverse selection, λ1. (Although more market makers’ attention is drawn to

marketplace 1, the reduction in the market making uncertainty ζ1 is still dominated by the increase
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in λ1.) The increase in σ2
V1 drives up the expected trading volume in marketplace 1 and more

market makers’ attention is drawn from marketplace 2. The reduced θ2 implies a marketplace 2

with higher market making uncertainty, implying higher ζ2—the main source of higher illiquidity

in marketplace 2.9

The predictions above echo the empirical findings in Corwin and Coughenour (2008), who

examine NYSE specialists’ portfolio choice and the liquidity provision and document higher trading

cost for stocks whose specialist has turned attention elsewhere. Consistent with proposition 4, they

also find such phenomenon is most evident for least active stocks. The theory developed on market

makers’ limited attention and the effects on uncertain market making formalizes the “limited

attention hypothesis” proposed by Corwin and Coughenour (2008) as an equilibrium outcome.

To emphasize, such a spillover arises even the shock in the “originating” marketplace is com-

pletely independent of the assets traded in the “infected” marketplaces. In fact, in the example

illustrated in figure 6, there is no fundamentals changed in marketplace 2. The only reason that

market illiquidity rises there is because market makers have turned more attention to marketplace 1

and market making becomes more uncertain. The illiquidity spillover here has a very different

mechanism from the learning channel proposed by Cespa and Foucault (2014).

5 A structural model

This section develops a structural model that based on the theory developed in section 3. After

laying out the model structure, the interpretation of parameters as well as estimation techniques are

discussed. Appendix A shows how the structural specification relates to price return heteroskedas-

ticity.

9 The implicit assumption underlying such illiquidity spillover is that the total number of market makers is fixed,
i.e. there is no free entry, not at least in the short time frame considered. This is perhaps a reasonable characterization
for the high-frequency trading world as traders’ entry decisions are typically decided off trading hours: They need to
pay an arguably high fixed cost to setup the equipment and to develop algorithms.
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5.1 Model structure and assumptions

Consider the following generic structure of an asset’s unobservable efficient price mt , the unob-

servable pricing error st , and the observed price pt :

mt = mt−1 + wt

pt = mt + st

where wt is the permanent increment of the efficient price at time t. This specification is seen

in Hasbrouck (2007) and the state space model treatment is pioneered by Menkveld, Koopman,

and Lucas (2007). More recent applications include Menkveld (2013), Hendershott and Menkveld

(2014), and Brogaard, Hendershott, and Riordan (2014). Specifically, the efficient price innovation

wt and the pricing error st are affected by the order flow yt and its surprise y∗t in the following

standard way:

wt = λy
∗
t + µt(

1 − ϕ(L)
)
st = ψ(L)yt + νt

where ϕ(L) and ψ(L) are some arbitrary lag polynomials. In words, the efficient price increment

wt features two components, 1) λy∗t from the surprise in the order flow and 2) µt from information

unrelated to trading (e.g. public news). The pricing error has an autoregressive structure on the

possibly lagged order flows ψ(L)yt and some disturbance νt .

To ensure the stationarity of the pricing error, it is assumed that all roots to the polynomial 1 −

ϕ(L) fall strictly inside the unit circle. For example, when ϕ(L) = 0, i.e. there is no lasting effect

of pricing error st on subsequent prices, the structural specifications above imply a price return of

∆pt = λy
∗
t + µt + (1 − L)

[
ψ(L)yt + νt

]
, which is reminiscent of the structural models laid down

in, for example, Brennan and Subrahmanyam (1996) and Sadka (2006). When ϕ(L) = ϕL (for

|ϕ| < 1), the pricing error becomes st = ϕst−1+ψ(L)yt+νt , i.e. the same specification in Menkveld

(2013) and Brogaard, Hendershott, and Riordan (2014) with ψ(L) = ψ.
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This paper further imposes a structure on the disturbance term of the pricing error:

νt = εt + λzt y
∗
t .

Hence, the price pressure process becomes

(
1 − ϕ(L)

)
st = ψ(L)yt + εt + λzt y

∗
t .(15)

This structure suggests three components contributing to the pricing error. The first two are

standard: ψ(L)yt reflects the order flows’ price impact and εt is the part unrelated to trading. The

third term λzt y
∗
t is new and is inspired by the model developed in section 3. It reflects the idea

that uncertain market making generates a random markup of size λzt y
∗
t , where the process zt is

designed to capture the random multiplicative scaling effect. Of course, all three components only

contribute to the pricing error st and will die out in the long run.

To gauge market making uncertainty, the main econometric objective is to estimate sample

moments of the random markup zt . The following assumption is needed for identification:

Assumption 3 (White noise disturbances). Conditional on order flow series {yτ}τ≤t (and, hence,

also {y∗τ}τ≤t), the disturbances {µt }, {εt }, and {zt } are independent white noises, whose first k̄ (≥ 2)

moments exist.

The white noise assumption about zt perhaps requires a bit more elaboration. In particular,

a white noise process is zero-mean and, yet, the theory from section 3 predicts that the random

markup zt has strictly positive mean of ζ (lemma 2). Here in the structural model, assuming a

zero-mean {zt } process is, in fact, necessary. To see this, suppose the true random markup process

is z̃t with unconditional mean ζ , i.e. z̃t = ζ + zt . Consider a general specification of st akin to

equation (15):

(
1 − ϕ(L)

)
st = b(L)yt + εt + λ z̃t y

∗
t =

(
b(L)yt + λζ y

∗
t
)︸               ︷︷               ︸

:=ψ(L)

+εt + λzt y
∗
t .(16)

To the extent that the innovation y∗t can be written as some c(L)yt , the above is equivalent to

32



equation (15) by writing ψ(L) := b(L) + λζc(L).

The insight by comparing the structures (15) and (16) is that the unconditional mean of the

random markup, ζ , is unfortunately not identifiable, unless additional condition exists for the

structure b(L). In a sense, ζ is already “absorbed” in the lag polynomial ψ(L) and the {zt } process

should be interpreted as the demeaned random markup. In view of the above concerns, this paper

turns to the second moment of the random markup, denoted by σ2
Z := Ez2

t , for measuring market

making uncertainty.

Using σ2
Z as a measure for market making uncertainty has intuitive economic interpretation.

Consider a shock y∗t in the order flow. From the structure model above, this surprising order flow

generates a “net contemporaneous price impulse response”, denoted by ξt , of size

ξt = λy
∗
t +

(
λzt + ψ(0)

)
y∗t

where λy∗t is the permanent price impact and ψ(0)y∗t + λzt y
∗
t is the transitory impact. This impulse

response ξt is still random conditional on y∗t , due to the white noise markup zt . Its conditional

variance is var
[
ξt �� y∗t ]

= λ2σ2
Z
(
y∗t

)2. Hence, σZ can be written as

σZ =

√
var

[
ξt

��� y∗t ]
���λy∗t ��� .(17)

This expression measures how disperse the contemporaneous price response is relative to the long-

term price impact, per unit of order flow surprise y∗t . The wider is the dispersion, the more volatile

is the random markup, reflecting higher degree of market making uncertainty and worse short-run

order flow pricing efficiency.

5.2 Parameter estimation

This subsection discusses how to estimate the above structural model from a dataset of observed

prices {pt } and order flows {yt } (hence, also {y∗t }). The parameters of interest are the market making

uncertainty measure σ2
Z , the (permanent) price impact λ, how order flows affect pricing errors as
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described by ψ(L), and the autoregressive structure ϕ(L) for the pricing error.

This paper proposes to estimate these parameters using generalized method of moments (GMM).

GMM is deemed advantageous over conventional maximum likelihood estimation (MLE) for this

particular model. Notably, GMM requires no additional assumption on the joint distribution of µt ,

ηt , and zt apart from they being independent white noises (unlike MLE, which typically would need

Gaussianity). This is particularly relevant because, as will be seen shortly, the empirical estimates

suggest positive skewness in zt , rejecting Gaussianity, as the theory predicts.

Sufficiently many moment conditions are needed in order to apply GMM. To begin with, observe

that the time t price returns can be written as (assuming 1 − ϕ(L) is invertible)

∆pt = (1 − L)pt = (1 − L)(mt + st ) = wt + (1 − L)st

=
(
λy∗t + µt

)
+

1 − L
1 − ϕ(L)

(
ψ(L)yt + εt + λzt y

∗
t
)

= λy∗t + ŷt + µt +
1 − L

1 − ϕ(L)
(
εt + λzt y

∗
t
)

︸                             ︷︷                             ︸
the “remainder”

(18)

where, in the third line, ŷt is defined as (1 − ϕ(L)) ŷt := (1 − L)ψ(L)yt . (A feasible way of

constructing ŷt is discussed in the next subsection.) Note from above that by removing λy∗t and ŷt

from ∆pt , the remainder part has mean zero and is uncorrelated with all lags of yt , thanks to the

white noise assumption 3. The above allows to generate as many moment conditions as needed for

identifying the lag polynomials ϕ(L) and ψ(L) as well as λ:

Ey
[
∆pt − λy∗t − ŷt

]
= 0

Ey
[(
∆pt − λy∗t − ŷt

)
yt−k

]
= 0,∀k ∈ {0, 1, ...}

(19)

The subscript of the expectation operators above are understood as being conditional on all order

flows {yτ, y∗τ}τ≤t .

To identify the second (and higher) moments of zt , higher moments of the remainder are
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exploited. Observe that the remainder can always be restructured into

rt =
(
1 − ϕ(L)

) (
∆pt − λy∗t − ŷt

)
=

(
1 − ϕ(L)

)
µt + (1 − L)εt + (1 − L)λzt y

∗
t

= ηt + λ ·
(
zt y
∗
t − zt−1y

∗
t−1

)
,

where the last equality rewrites ηt :=
(
1 − ϕ(L)

)
µt+ (1−L)εt , which is a collection of disturbances

unrelated to trading (the “non-trade residual”). Note that {ηt } has zero mean and its first k̄ moments

exist. Then the following second moment conditions holds:

Ey

[
r2

t − σ2
η − λ2σ2

Z ·
((
y∗t

)2
+

(
y∗t−1

)2)]
= 0

Ey

[(
r2

t − σ2
η − λ2σ2

Z ·
((
y∗t

)2
+

(
y∗t−1

)2)) (
y∗t

)2
]
= 0,

(20)

which are just enough to identify σ2
η and σ2

Z The third moment of zt can be identified in a similar

way (requiring k̄ ≥ 3 in assumption 3).

The above moment conditions demonstrate the strength of the GMM approach. There is no

need to assume Gaussian disturbances, a much stronger assumption than assumption 3. The GMM

approach can identify as many moments about zt so long they exist. In section 6, the structure model

is brought to data and both the second and the third moments of zt are estimated. In particular, the

estimates suggest positive skewness in zt .

The disadvantage of this GMM approach is that it does not immediately identify moments of µt

and εt separately. Instead, only the moments of ηt =
(
1 − ϕ(L)

)
µt + (1 − L)εt is identified. This

is, however, not an important concern in the current paper where the focus is on measuring market

making uncertainty σ2
Z . Nevertheless, as shown in Chapter 8 of Hasbrouck (2007), for structural

models of this type, the variance of wt—the efficient price increment—can always be identified.

That is, there exists an estimator for σ2
w = λ

2var
[
y∗t

]
+ σ2

µ, which can then be used together with

the estimate of λ from GMM and var
[
y∗t

]
from data to determine σ2

µ. Further, from the second

moment of ηt , σ2
η can then also be recovered. Hence, all parameters governing the data generating

process can be properly estimated and, when Gaussian disturbances are valid, be applied to Kalman

35



filter to predict, filter, and smooth the unobservable states and disturbances without maximizing

the likelihood.

5.3 Implementation

To utilize the GMM approach above, the series {y∗t }, { ŷt }, and {rt }must be constructed from the raw

data which only contains {yt, pt }. The order flow innovation {y∗t } can be readily estimated from an

autoregressive regression on yt . For example, Brogaard, Hendershott, and Riordan (2014) include

10 lags in their estimation. To construct { ŷt } and rt , the lag polynomials must be fixed first. For

exposition clarity, consider the simple example of ϕ(L) = ϕL with |ϕ| < 1 and ψ(L) = ψ. Through

a Taylor expansion, ŷt can be written as

ŷt =
1 − L

1 − ϕL
ψyt = ψyt − (1 − ϕ)ψ

∞∑
k=1

ϕk−1yt−k .

Because |ϕ| < 1, the above infinite sum converges quickly. Truncating it at some large number

of lags, ŷt can be constructed as a linear combination of the observable order flow series {yt } to

arbitrary accuracy. Then rt can be constructed by εt = (1 − ϕL)
(
∆pt − λy∗t − ŷt

)
. The same

method applies to any other ϕ(L) and ψ(L) structure.

It is perhaps useful to point out that because of the way ŷt is constructed, the moment conditions

are non-linear in the ϕ(L) coefficients. Numerical optimization is needed. For estimation efficiency,

the applications in this paper adopt the continuously-updating GMM.

6 Empirical findings

This section applies the GMM approach to estimate the structural model, using real-world trading

data. The preliminary empirical findings provide evidence supporting the theory of uncertain

market making.
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6.1 Data

While the theory speaks to general financial securities trading, the empirical analysis has to be

specific. This section studies the U.S. equity market. To provide a representative and up-to-date

overview, a sample of 500 stocks is randomly chosen from the S&P 1500 index for a one-year

period from January to December 2014. The intraday trading data of these stocks are collected

from the Monthly Trade and Quote (TAQ) database, accessed via Wharton Research Data Service

(WRDS). The algorithm developed by Holden and Jacobsen (2014) is applied in order to alleviate

the potential data issues associated with Monthly TAQ data. The authors’ SAS script (dated June

26, 2014; retrieved from authors’ websites) is directly adopted.

Daily stock information is collected from the Center for Research in Security Price (CRSP)

for these 500 stocks from October to December 2013, i.e. three months before the sample period.

These 500 stocks are then sorted into three groups—small, medium, and large—according to their

daily average dollar trading volume during the three months. The large and medium stock groups

have 150 stocks each, and the small stock group has the rest. Sorting on dollar volume is inspired

by the theory prediction that market makers pay more attention to securities that have more activity

(proposition 4). The grouping would be almost the same if instead the stocks are sorted on average

daily market capitalization, which is the conventional choice in portfolio formation.

The structural model is estimated for each stock, each day. In each stock-day, series of {pt }

and {yt } are constructed by sampling the 23,400 one-second snapshots of the trading hours. To

avoid bid-ask bounces, the national best bid-offer (NBBO) midquote price at the end of each

second is used for {pt }. Each trade is signed using the algorithm proposed by Ellis, Michaely, and

O’Hara (2000) (the results are robust to alternative signing algorithms). To facilitate comparison

across stocks, the net order flow in each second {yt } is measured per $10,000, following Brogaard,

Hendershott, and Riordan (2014). The clock-time sampling follows the motivation of uncertain

market making: In a short time interval, market makers’ presence is uncertain. Instead, the time

interval between two adjacent trades (event-time sampling) is endogenous of market conditions
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like information, liquidity, etc., which might complicate the interpretation. The estimate results are

qualitatively robust to other frequencies of clock-time snapshots (e.g., 5-second) and to share-based

order flows.

6.2 Estimation result

The structural model developed in section 5 is estimated with lag polynomials of ϕ(L) = ϕL and

ψ(L) = ψL in the pricing error equation (15). This parsimonious specification is consistent with

Menkveld (2013) and Brogaard, Hendershott, and Riordan (2014) and, hence, allows comparison

with their results. In constructing ŷt , 10 lags of yt are used.

There are 248 trading days in the one-year sample period, which, together with the 500-stock

cross-section, yields a maximum of 248×500 stock-day observations. The number of valid estimates

falls short of this maximum for two reasons. First, if a stock-day has fewer than 1,000 trades or

20 intraday price changes, it is excluded from estimation. Second, even for stock-days passing this

threshold, the numerical optimization does not always converge. The overall convergence rate is

about 97.3%, with a breakdown of 98.6%, 98.1%, and 95.1% respectively for large, medium, and

small stocks. The converged estimates yield a panel of 109,897 stock-day observations. Table 1

reports the estimation results. Figure 7 plots the time series of σZ for small, medium, and large

stocks in the sample.

The estimates show that the order flows of the sample stocks, on average, generate a permanent

price impact of λ = 1.47 basis points per $10,000 in 2014. However, this permanent impact

has a dispersion of σZ = 15.31 times large, or approximately 22.51 basis points (per $10,000

order flow). Across the size terciles, the magnitude of dispersion—the standard deviation of the

random markup zt—is decreasing from 19.22 times for small stocks to 11.65 times for large stocks.

Consistent with the theory, the cross-sectional variation of σZ suggests uncertain market making

is more severe in less active stocks (where market makers are less attentive).

Such a large dispersion of permanent price impact is one source of the contemporaneous pricing
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Percentile in the full sample

Unit All Large Medium Small 5% 25% 50% 75% 95%

λ bps/$10,000 1.47** 0.04** 0.20** 10.23** 0.01 0.03 0.10 0.37 3.04

(12.84) (18.34) (15.55) (12.01)

ψ bps/$10,000 -0.69** -0.02** -0.10** -3.79** -1.58 -0.15 -0.03 -0.01 0.01

(-12.58) (-15.56) (-12.87) (-12.06)

σZ times 15.31** 11.65** 15.56** 19.22** 3.75 6.41 9.08 14.08 43.46

(60.28) (43.71) (39.10) (45.42)

ση bps 0.78** 0.57** 0.68** 1.08** 0.32 0.50 0.67 0.95 1.59

(45.99) (41.59) (38.77) (43.25)

skew[zt] 2.94** 2.39** 2.93** 3.57** -4.81 0.31 2.49 4.96 11.35

(61.63) (39.00) (43.99) (38.53)

skew[ηt] 0.05 0.04 0.09 -0.01 -7.80 -1.66 -0.06 1.52 8.21

(1.05) (1.12) (1.29) (-0.18)

ϕ 0.18** 0.15** 0.19** 0.19** -0.39 -0.09 0.10 0.53 0.82

(21.86) (10.13) (12.94) (17.95)

count 109,897 37,020 36,928 35,949

Table 1: Estimates of the structural model. This table reports the summary statistics of the estimated
parameters of the structural model (see more detailed discussion in section 5):

observed price: pt = mt + st
efficient price: mt = mt−1 + λy

∗
t + µt

pricing error: st = ϕst−1 + ψyt + εt + λzt y∗t
non-trade residual: ηt = µt − ϕµt−1 + εt − εt−1

The reported estimates include 1) the permanent price impact λ, 2) the contemporaneous pricing error
correction ψ, 3) the volatility σZ of the random markup zt , 4) the volatility ση of the non-trade residual ηt ,
5) the skewness of the random markup zt and of the non-trade residual ηt , and 6) the autoregressive
coefficients ϕ for the pricing error. The sample averages of the estimates are separately reported for the
full sample as well as the size terciles. The t-statistics, reported in brackets, are calculated using two-way
clustered (stock and day) standard errors. In addition, selected percentiles of the estimates in the full sample
are reported. The superscript ** indicates 1% statistical significance based on two-sided t-test.
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error, which eventually reverts to zero for two reasons: 1) It is corrected by order flows at ψ = −0.69

basis points (per $10,000 order flow); and 2) it quickly decays at a rate of ϕ = 0.18 (per second).

Also reported in table 1 are the estimated skewness of the dispersion zt and of the non-trade

residual ηt . A statistically significant skewness is found for zt (but not for ηt), consistent with the

theory prediction (proposition 2). Also consistent with the friction of attention allocation, large

stocks are found to have lower skewness in the markup than small stocks. Intuitively, the skewness

exists because uncertain market making incentivizes market makers to mark up, but not down, the

competitive price impact λ by a positive amount. Hasbrouck (2015) also finds more skewed price

returns when there is more high-frequency quoting activity. The difference lies in that the skewness

here specifically originates from a component of pricing error λzt y
∗
t , which is uncorrelated with

order flows. This finding also justifies the GMM approach in estimating the parameters, as the

positive skewness rejects Gaussianity in zt .

6.3 Uncertain market making and competition in quoting

Econometrically, the structural model in section 5 uses σZ to capture the transitory dispersion of

the efficient price change λy∗t (equation 17). Does this dispersion indeed reflect the economic

force—market makers’ competitiveness—as argued by the theory? A tentative answer is provided

in this subsection by showing statistical significant correlation between σZ and some competition

measures.

Following Hasbrouck (2015), four Herfindahl indices are constructed to measure the compet-

itiveness in quoting activities. The quote files from TAQ data do not identify individual order

submitters but document the reporting exchanges. The Herfindahl indices are thus calculated based

on the exchange identifiers. As such, the result in this subsection should be cautiously read as

indicative but not conclusive. Specifically, for each stock-day, let τAsk
j denote exchange j’s 1)

milliseconds at the best ask price, 2) milliseconds at the best ask price alone, 3) milliseconds

multiplying the depth (in shares) at the best quotes, or 4) number of price improvements (reducing
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Figure 7: Time series of market making uncertainty. This figure plots the estimated the market making
uncertainty—the dispersion of the net contemporaneous price impact, σ̂Z—over the one-year sample period
of 2014. The series is plotted for large, medium, and small stocks respectively. The 5-day (weekly) moving
averages of the σZ estimates are used for each size tercile throughout in 2014.

the best ask price). The bid side is defined symmetrically. The corresponding Herfindahl index is

h :=
∑

j

*.,
τAsk

j + τBid
j∑

k

(
τAsk

k + τBid
k

) +/-
2

.

Note that for the first three Herfindahl measures, interpolated time stamps in milliseconds are used

to overcome the data limitation of Monthly TAQ data (Holden and Jacobsen, 2014). Rounding

errors due to the interpolation are acknowledged.

To investigate whether and how uncertain market making connects with the competitiveness in

the quoting activity, the following regressions are performed:

h(i, t) ∼ σZ (i, t) + controls(i, t) + stock fixed effects(i) + residual(i, t)

where for stock i on day t, h(i, t) is one of the four Herfindahl indices above and σZ (i, t) is the
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Percentile in the full sample

Unit All Large Medium Small 5% 25% 50% 75% 95%

hTime % 16.46 14.87 16.15 17.94 10.60 13.15 15.16 17.39 23.40

hAlone time % 28.18 25.14 26.24 32.01 15.23 19.66 23.77 32.37 51.60

hDepth×Time % 21.81 20.48 20.83 23.61 12.68 17.38 20.03 23.89 33.32

hImproves % 31.91 27.64 29.55 37.00 18.14 22.94 27.62 37.83 54.33

quotes/trades 11.64 10.61 10.58 13.32 4.72 7.16 9.74 13.52 21.56

ln($-volume) 82.20 216.20 48.47 10.53 3.48 11.97 37.54 98.42 364.02

net $-volume $million -0.30 -1.03 -0.04 -0.03 -7.69 -1.03 -0.02 0.81 6.16

spread bps 11.59 3.70 7.16 21.38 2.03 3.63 6.40 12.47 25.95

depth $1,000 0.03 0.07 0.03 0.02 0.01 0.01 0.01 0.02 0.16

return volatility, 1s bps 0.95 0.66 0.80 1.30 0.41 0.58 0.77 1.08 1.80

variance ratio, 1s/10s 1.13 1.11 1.17 1.12 0.59 0.85 1.01 1.21 1.98

count 111,471 37,198 37,088 37,185

Table 2: Summary statistics of the Herfindahl indices and other market quality measures. This table
reports the summary statistics of the Herfindahl indices measuring the competitiveness of quoting activity
as well as other market liquidity and volatility variables.

estimate of market making uncertainty from the structural model. The control variables include

other structural estimates and a number of market quality measures. Specifically, for each stock-day,

the following statistics are calculated to measure liquidity: “Quotes/trades” is the quote-to-trade

ratio, defined as the number of quote activities (at the best prices) divided by the number of trades.

“ln($-volume)” is the log dollar volume. “Net $-volume” is the net dollar volume. “Spread” is

the time-weighted average bid-ask spread divided by the midquote price, measured in basis points.

“Depth” is the time-weighted average dollar depth at the best quotes. The following two measures of

market volatility is also included: “Volatility” is the realized standard deviation of returns sampled

at one-second frequency. “Variance ratio” is the ratio of the one-second realized return variance

over the 10-second realized return variance. Table 2 provides summary statistics for these variables.
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hTime hAlone time hDepth×Time hImproves

(1) (2) (3) (4) (5) (6) (7) (8)

Market making uncertainty

σZ/100 0.29** 0.20* 0.95** 0.78** 0.37* 0.33* -0.41 -0.40

(2.81) (2.10) (3.04) (2.81) (2.49) (2.26) (-1.65) (-1.77)

Other structural variables

λ/100 3.82** 2.16* 12.24** 7.87** 4.07** 2.12 5.08* 0.07

(4.03) (2.40) (4.32) (2.98) (2.65) (1.44) (2.19) (0.03)

ψ/100 -3.78* -2.93 -0.43 3.11 -1.00 0.35 1.43 6.34

(-2.10) (-1.65) (-0.08) (0.61) (-0.36) (0.12) (0.33) (1.49)

ϕ -0.25** -0.21** -0.23* -0.15 -0.34** -0.25** -0.27* 0.03

(-5.55) (-4.66) (-2.26) (-1.45) (-4.62) (-3.52) (-2.56) (0.26)

ση 0.64** 0.73** -1.36** -0.42 -0.26 0.42 3.82** 3.26**

(4.60) (5.14) (-3.03) (-0.94) (-1.28) (1.76) (11.38) (8.72)

skew[zt] 0.00 0.00 0.02** 0.02** 0.01** 0.01** -0.02** -0.01**

(1.21) (1.00) (3.17) (2.91) (2.96) (3.01) (-3.16) (-2.64)

skew[ηt] 0.00 0.00 0.01 0.01 0.00 0.01 0.01* 0.02**

(0.91) (1.10) (1.21) (1.56) (1.10) (1.48) (2.51) (3.23)

Liquidity variables

quote/trade -0.01 -0.02 0.06** 0.29**

(-1.14) (-0.48) (4.04) (9.13)

ln($-volume) -0.50** -1.29** -0.55** -0.78**

(-4.93) (-3.78) (-3.67) (-3.21)

net $-volume 0.01* 0.03** 0.01** 0.01

(2.27) (2.78) (2.63) (0.99)

spread 0.01 0.03 -0.06** -0.13**

(0.66) (0.70) (-2.70) (-2.79)

Continue on the next page ...

43



... continued from the previous page

(1) (2) (3) (4) (5) (6) (7) (8)

Liquidity variables (continued)

$-depth -5.42** 3.08 7.31** -0.36

(-5.03) (1.46) (4.81) (-0.19)

Volatility variables

volatility, 1s -0.02 -0.20 -0.02 0.69*

(-0.16) (-0.64) (-0.12) (2.38)

variance ratio, 1s/10s 0.04 0.01 0.07 -0.05

(1.48) (0.07) (1.55) (-0.79)

stock dummies yes yes yes yes yes yes yes yes

R2 0.004 0.012 0.003 0.006 0.001 0.007 0.021 0.054

observations 109,079 109,015 109,079 109,015 109,079 109,015 109,079 109,015

Table 3: Uncertain market making and competition in quoting activity. This table shows the result of
regressing h(i, t) on σZ (i, t), where h is one of the four Herfindahl indices (time at best prices, time alone
at best prices, depth×time at best prices, and number of quote improvements) estimated for each stock i on
each trading day t. The explanatory variable is the market making uncertainty measure σz (i, t) for stock i on
day t (scaled by 1/100). The coefficients of other controls (see table 2) are also tabulated. For all regression
specifications, a firm fixed-effect dummy is included. Two-way cluster (stock and day) robust standard errors
are computed and the t-statistics are reported in brackets. The superscripts * and ** indicate 5% and 1%
statistical significance, respectively, based on two-sided t-tests.

The estimation results are presented in table 3.10 For each Herfindahl index, two separate

models, with and without the market quality controls, are estimated with different explanatory

variables. A significant positive coefficient of σZ on the Herfindahl indices is seen across all

model specifications, except for quote improvements. As high Herfindahl indices suggest lack of

competition, the regressions provide evidence consistent with the theory prediction that lack of

market making competition is associated with more severe uncertain market making, proxied by

10 In the regression, all structural variables are winsorized at 2% at tails, because outlier-like estimates are found in
the numerical estimation. The results are robust to a range of winsorization thresholds.
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the price impact dispersion σZ .

6.4 Market making uncertainty over the years

Conceptually, uncertain market making is not necessarily a new phenomenon pertaining to the

market structure nowadays. So long as there are frictions preventing market makers from perfect

competition in a short time interval, the argument for a random pricing equilibrium works. How the

magnitude of market making uncertainty evolves over the years—especially in the recent decade

witnessing the leap of technology—is an empirical question.

This subsection takes a first stab into this question by examining the evolution of σz over a

fifteen-year sample period from the beginning of 2000 to the end of 2014. The sample is comprised

of the 19 Dow Jones Industrial Average index components stocks that survived all these fifteen

years. For each stock, the TAQ data of every trading Wednesday are collected and used to estimate

the structural model (section 5) for that stock-Wednesday. The intraday TAQ data is aggregated

into 4,680 5-second snapshots based on clock time11 on which the structural model is estimated

for each stock-Wednesday. This procedure yields 19 time series, each containing roughly 750

stock-Wednesday observations spanning the fifteen years. These 19 time series are then aggregated

into a monthly average series which is plotted in figure 8.

Market making uncertainty is illustrated by the solid line in panel (a). A clear rising trend,

most prominently after 2007, is observed. Before 2007, market making uncertainty remained at a

relatively stable level of σZ slightly below 2.0. That is, before 2007, the net contemporaneous price

impact has a dispersion of roughly 2 times of its mean. This dispersion soon swelled to roughly 6

times (of the mean) in mid 2007 and has since been rising up until roughly 10 times in 2014.

Panel (b) shows the general reduction trend in the permanent price impact (λ) over the fifteen-

year period. The noticeable exception stands around the 2008-2010 financial crisis. The general

11 Compared to subsection 6.2, the choice of 5-second snapshots here is made in order to account for the relatively
low-frequency of market events in earlier years. Other sampling frequencies (e.g., 1-second, 10-second, and 30-second)
have been explored and the patterns shown in figure 8 below remain qualitatively robust.
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(a) Market making uncertainty
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(b) Price impact
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Figure 8: Fifteen years of market making uncertainty and price impact. This figure plots both the
market making uncertainty σZ in panel (a) and the price impacts λ and λ+ψ in panel (b) for a sample period
of fifteen years, from the beginning of 2000 to the end of 2014. The dashed line in panel (a) also plots the
quote-to-trade ratio (computed using only the quotes at the best prices and all trades) for the same period.
The sample is comprised of the 19 Dow Jones Industrial Average index component stocks that survived all
these fifteen years. The estimates are based on the structural model developed in section 5.
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reduction in the price impact is consistent with the finding of improved market liquidity and

reduced trading cost over the years (see, e.g., Angel, Harris, and Spatt, 2010; Hendershott, Jones,

and Menkveld, 2011). Comparing panel (a) and (b) suggests that although the long-run price

impact is reducing, in sharp contrast, its short-run dispersion—the second moment—does not seem

narrowing.

This rising trend of market making uncertainty coincides in time with several other well-known

phenomena, e.g. increasing algorithm and high-frequency trading, increasing quote-to-trade ratio,

and market fragmentation. See, for example, the increasing quote-to-trade ratio demonstrated by

the dashed line in panel (a). All of these market structure changes could have, at least to some

extent, impaired market makers’ ability to perfectly monitor the market in a short period of time.

(To emphasize, the structural analysis in this paper is mainly descriptive and does not attempt to

draw any causal conclusion.)

The turning point of 2007 is also evidenced by findings from other researches. Skjeltorp, Sojli,

and Tham (2013) illustrate how the quote-to-trade ratio, a measure of algorithmic trading, evolves

from 1999–2012. While a mild increase of the ratio is seen from 1999 to 2006, an abrupt rise is

seen in 2007 and is most noticeable for large-cap stocks. Lyle, Naughton, and Weller (2015) find

that the reduction in bid-ask spread starting from the beginning of this century stagnated around

2007. They emphasize the difference in market monitoring and algorithmic trading in general and

find evidence that only the improvement in the former contributes to the reduction in the bid-ask

spread. These observations are consistent with the theory of uncertain market making that too

many market events (e.g. quoting activity) might negatively affect market monitoring efficiency.

This in turn will worsen the pricing efficiency of order flows in the short-run, as is reflected in the

rising σZ in panel (a) of figure 8.
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7 Conclusion

This paper studies uncertain market making, a phenomenon due to the fact that 1) market makers

face time constraint and that 2) they do not know how many competitors they are facing (during the

constrained time). These two frictions are arguably more phenomenal in modern financial markets

because of the increasingly challenge task of market making. Under uncertain market making,

an analytically tractable model is developed and it is shown that there exists a random pricing

equilibrium: Conditional on the order flows, market makers price the asset randomly.

By explicitly modeling the profit maximization of market makers, this paper offers several

new implications for market quality based on the theory of uncertain market making. Prima facie

evidence via the estimation of a structural model is provided in support of the theory of uncertain

market making. Estimates show that in 2014, the order flows’ (net contemporaneous) price impact

has a dispersion of around 10 times of its sample mean, while in early 2000s this dispersion was

only twice as large as the mean. This evidence suggests worsening short-run order flow pricing

efficiency in the U.S. equity markets over the last decade.

48



Appendix

A Heteroskedasticity in the structural model

This appendix briefly discusses how price return heteroskedasticity is embedded in the structural
model developed in section 5. Observe from equation (18) that the price return can always be
written as

∆pt = A(L)yt + ςt

ςt = µt +
1 − L

1 − ϕ(L)
(
εt + λzt y

∗
t
)

where A(L) is some generic lag polynomial. Note that the residual rt is uncorrelated with yt even
though yt is part of its linear construction, because µt , εt , and zt are all assumed to be independent
of yt (assumption 3).

However, the time-t conditional variance of ςt is not uncorrelated with yt . To see this, consider a
simple example of ϕ(L) = 0 (which is consistent with, among others, Brennan and Subrahmanyam,
1996; and Sadka, 2006). Then

ς2
t =

(
µt + εt + λzt y

∗
t
)2
+

(
εt−1 + λzt−1y

∗
t−1

)2

− 2
(
µt + εt + λzt y

∗
t
) (
εt−1 + λzt−1y

∗
t−1

)
Conditional on the realized order flows, therefore,

E
[
ς2

t | yt, yt−1, ...
]
= varµ + 2varε + λ2σ2

Z ·
((
y∗t

)2
+

(
y∗t−1

)2)
,

which depends on the realization of order flows y∗t . Since the conditional variance of the residual
to the price return is time-varying, such a structural model implies heteroskedasticity in the data.

Note that such heteroskedasticity exists only because of uncertain market making. In the case
of σ2

Z = 0, i.e. without uncertain market making, E
[
r2

t | yt, yt−1, ...
]

is not time-varying. (This holds
true irrespective of the specification of ϕ(L).)

Further properties of the heteroskedasticity can be derived but those are beyond the scope of this
current manuscript. To emphasize, this appendix shows that uncertain market making contributes to
the price return heteroskedasticity. It is acknowledged that alternative sources of heteroskedasticity
exist (e.g., model misspecification, time-varying parameters, etc.). Further research is required
to understand to what extent the heteroskedasticity predicted by uncertain market making can be
differentiated from alternative explanations.
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B Proofs

Lemma 1

Proof. Under assumption 1, the differential equation (9) simplifies to, using binomial formula,

(1 − θF (z)) − (m − 1)θḞ (z)z = 0

and it can be verified easily that the function F (·) stated in the lemma satisfies the above differential
equation. In solving the differential equation, a positive constant a arises and establishes the support
for Zi. □

Lemma 2

Proof. The market makers’ strategy follows lemma 1. The insider’s strategy is given by x(v) =
v/(2(1+ ζ )Λ), as derived in the paragraphs immediately before the proposition. It remains to solve
ζ = EZ , where Z is defined as the minimum price impact markup among all active market makers’
prices. To do so, note the c.d.f. of Z , conditional on M ≥ 1, is:

P(Z < z | M ≥ 1 ) =
m∑

k=1

(
m
k

)
θk · (1 − θ)m−k

(
1 − (1 − F (z))k

)
/
(
1 − (1 − θ)m)

=

m∑
k=0

(
m
k

)
θk · (1 − θ)m−k

(
1 − (1 − F (z))k

)
/
(
1 − (1 − θ)m)

=
(
1 − (1 − θF (z))m)

/
(
1 − (1 − θ)m)

where the second equality adds a zero in the numerator, so that the third equality follows binomial
formula. Substituting F (·) with the solution from lemma 1 yields

G(z) := P(Z < z | M ≥ 1 ) =
1 − (1 − θ)m(a/z)

m
m−1

1 − (1 − θ)m(B.1)

and density

Ġ(z) =
m

m−1 (1 − θ)ma
m

m−1 z−
m

m−1−1

1 − (1 − θ)m(B.2)

for (1 − θ)m−1a ≤ z ≤ a. Using this density, it can be evaluated that

ζ = EZ =
(1 − θ)m−1θma
1 − (1 − θ)m .
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Hence, the insider’s aggressiveness parameter satisfies β = 1/(2(1 + ζ )λ). From market makers’
learning, λ = βσ2

V/(β2σ2
V +σ

2
U ). Together, these two conditions solve the equilibrium coefficients

as stated in the lemma. □

Lemma 3

Proof. The expression of G(z; θ,m) is derived in equation (B.1). Its support is on [(1− θ)m−1a, a],
whose left bound decreases as either m or θ increases and the right bound does not change. Hence,
when θ to θ ′ (or when m increases to m

′), it suffices to verify whether G(z; ·) increases or decreases
for z on the original support [(1 − θ)m−1a, a]. From expression (B.1), it is easy to verify that
∂G(·)/∂m < 0 and ∂G(·)/∂θ < 0. Therefore, as either m or θ increases, G(z; ·) also increases,
proving the stochastic dominance. □

Lemma 4

Proof. The first step in this proof is to establish that the expected profit function (14) is monotone
decreasing in the attention argument θ j . To see this, substitute β j with the expression of lemma 2
to get (for notation simplicity, the argument m is omitted)

π j (θ j ) =

(
1 − θ j

)m−1√
1 + 2ζ (θ j )

aσV, jσU, j,(B.3)

where ζ j is written as a function of θ j following lemma 2. Evaluating the derivative of ζ with
respect to θ j yields

∂ζ

∂θ j
=

m − 1
1 − θ j

ζ (θ j ) +
ζ (θ j )
θ j
−
ζ (θ j )2

θ j a
> −m − 1

1 − θ j
ζ (θ j ).

The last inequality follows because by definition, ζ (θ j ) = EZ ≤ a, where Z has a support with
upper bound a. Hence, evaluating the derivative of π j with respect to θ j gives

∂π j

∂θ j
= −

(1 − θ j )m−1

(1 + 2ζ (θ j ))3/2

[
m − 1
1 − θ j

(1 + 2ζ (θ j )) +
∂ζ

∂θ j

]
< −

(1 − θ j )m−1

(1 + 2ζ (θ j ))3/2

[
m − 1
1 − θ j

(1 + 2ζ (θ j )) − m − 1
1 − θ j

ζ (θ j )
]

= −
(1 − θ j )m−1

(1 + 2ζ (θ j ))3/2
m − 1
1 − θ j

(
1 + ζ (θ j )

)
< 0.(B.4)

Above it is shown that π j is a monotone decreasing function in θ j on 0 ≤ θ j ≤ 1. It has
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maximum of π j (0) = aσV, jσU, j and minimum of π j (1) = 0. Because the monotonicity is strict,
there exists an inverse function defined as

π−1
j (π) =


θ j, for π ∈ [0, aσV, jσU, j]

0, for π > aσV, jσU, j

.

This inverse function is also strictly monotone decreasing on [0, aσV, jσU, j].
Summing over all marketplaces,

∑n
j=1 π

−1
j (·) is a continuous function monotone decreasing

from n to 0 on the support of
[
0,max j

{
aσV, jσU, j

}]
. Clearly, by continuity, there exists a unique

π∗ on this support such that
n∑

j=1
π−1

j (π∗) = 1.

This π∗ is the equilibrium expected profit for all market makers. Correspondingly, the equilibrium
attention allocated to marketplace j is solved from the inverse function: θ j = π

−1
j (π∗). Note that

it is possible that some of the marketplaces are assigned with no attention at all, if the maximum
expected profit is too low in those marketplaces (i.e. if aσU, jσV, j < π∗). □

Proposition 1

Proof. From lemma 3, it immediately follows that as either θ or m reduces, the expected markup
ζ (= EZ) increases. Importantly, ζ is uniquely determined by θ, m, and a following the expression
given in lemma 2. It then remains to connect ζ to β and λ.

First, from lemma 2, β = σU/(σV
√

1 + 2ζ ), which is clearly decreasing in ζ . Hence, as θ or m

reduces, ζ increases, and the insider’s aggressiveness β reduces.
Second, from equation (6), it can be easily seen that λ is monotone increasing in β for

0 ≤ β ≤ σU/σV . Therefore, as θ or m reduces, ζ increases, and both β and λ decrease.
Finally, from the insider’s first order condition, the total trading cost (1 + ζ )λ is simply the

inverse of 2β. As a result, the total trading cost increases with market making uncertainty. □

Proposition 2

Proof. The skewness of ∆p conditional on order flow is defined as

E
[(
∆p − E[∆p|Y ] )3 |Y

]
(
var

[
∆p|Y ] )3/2 =

E
[(

Z − ζ )3]
(var[1 + Z])3/2 ,
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the sign of which only depends on the numerator. Using the density of Z derived in equation (B.2),
it can be easily shown that the numerator above is indeed positive for all m ≥ 2. □

Proposition 3

Proof. Consider two arbitrary independent random variables, Y and Λ. The kurtosis of a random
variable is defined as κ[Y ] = E(Y − EY )4/(E(Y − EY )2)2. Note that kurtosis is invariant of the
mean of the random variable. Without loss of generality, therefore, suppose EY = 0. Then

κ[ΛY ] =
E(ΛY )4

(E(ΛY )2)2 =
EΛ4EY 4

(EΛ2)2(EY 2)2 =
EΛ4

(EΛ2)2 κ[Y ].

Denote X = Λ2. Then EΛ4 = EX2 = varX + (EX )2. Hence,

κ[ΛY ] =
(

varX
(EX )2 + 1

)
κ[Y ] ≥ κ[Y ].

The inequality is strict as long as varX > 0, i.e. when Λ is not degenerate. In the model,
Λ = (1 + Z )λ, where Z reflects market making uncertainty. □

Proposition 4

Proof. From the proof of lemma 4, it is established that there exists an inverse function θ j = π
−1
j (π)

strictly decreasing on π ∈ [0, a · σU, j · σV, j]. Fix any expected profit level π. Then by implicit
function theorem,

∂θ j

∂σU, j
= −

∂π j/∂σU, j

∂π j/∂θ j
> 0,

where the inequality holds because the numerator ∂π j/∂σU, j > 0 (from equation B.3) and the
denominator is negative (equation B.4).

Now consider an equilibrium where
∑n

j=1 π
−1
j (π∗) = 1 for some π∗ (see the proof of lemma 4)

and denote by θ∗j the equilibrium attention in marketplace j. Suppose in marketplace h, σ2
Uh

increases (and nothing else changes). Then, π−1
h (π;σ ′U,h) ≥ π−1

h (π;σU,h) for σ ′U,h ≥ σU,h at any
fixed level of π. Holding everything else the same, hence,

π−1
h (π∗;σ

′
U,h) +

∑
j,h

π−1
j (π∗) > 1,

implying the new equilibrium must be some π# > π∗, as each of these inverse function is monotone
decreasing. In this new equilibrium, θ#

j = π−1
j (π#) < π−1

j (π∗) = θ∗j , ∀ j , h, because π−1
j is

monotone decreasing. That is, in the new equilibrium, the attention allocated to all marketplaces
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other than h is lower than in the old equilibrium. Since the sum of all attention allocated should be
unity,

θ#
h = 1 −

∑
j,h

π−1
j (π#) > 1 −

∑
j,h

π−1
j (π∗) = θ∗h.

Therefore, in the new equilibrium, the attention allocated to marketplace h, where σU,h increased
to σ ′U,h, is higher than in the old equilibrium. The same analysis holds true for shocks in σV,h and
is omitted for brevity. □

Corollary 1

Proof. From the proof of proposition 4, if either σ2
U j or σ2

V j increases, in the new equilibrium, the
attention allocated to all marketplaces other than j is lower than in the old equilibrium. Proposition 1
then applies. □
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