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tion has a noisy rational expectations equilibrium. Equilibrium is in closed form, except for a

coefficient satisfying a Riccati equation. Costly information production generates asynchronous

private and public information flows. Private information dissemination reduces price volatility.

Intertemporal hedging amplifies this decrease. Asynchrony between information flows increases

volatility over time. A decomposition of ex-ante and interim utilities, identifying the sources

of welfare, is obtained. Necessary and sufficient conditions for Pareto efficiency of equilibrium

are derived. Under these conditions speculation is socially beneficial. A contingent information

trading tax enforces the Pareto optimal equilibrium and is shown to be implementable.
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1 Introduction

Information and speculation are fundamental motives underlying securities trading. Individuals

with superior information have different assessments of returns, therefore find it beneficial to trade.

Individuals with different beliefs resulting from fundamental differences in views about the future,

also have their own assessments of returns. They find it optimal to speculate on the difference

between their beliefs and those of others. These motives for trade have long been sources of interest

as well as concerns. Regulatory limits on informed trading have been enacted in a variety of countries

to curb the rents extracted by certain types of informed agents. Current debates also question the

role of speculation in the recent financial crisis and regulatory proposals seeking to limit such activity

have been circulated. This paper seeks to shed light on these issues in a setting with endogenous

information flows. It examines the effects of information and speculation on the dynamic properties

of financial market equilibria. In particular, it attempts to identify the welfare benefits and costs

associated with regulations affecting information-based trading or speculation.

The model under consideration has two key features, costly information production infrastructure

and speculation based on utility maximizing noise trading. Costly information infrastructure implies

that information arrives at different frequencies depending on its nature. Public information is

costless. Its arrival rate is therefore dictated by the frequency of news releases by the exogenous

underlying source. Private information, in contrast, is under the control of the acquirer. It is

usually difficult to extract and does not update automatically. It requires meeting the managers of

a company or poring over documents and data to extract a few bits of useful information regarding

future prospects. The costly nature of the information gathering technology implies that the rate of

arrival is dictated by decisions of the acquirer. This paper captures this basic asymmetry between

public and private information flows. It shows, in particular, that private information stabilizes

the market by reducing volatility and that the endogenous asynchrony in news arrivals leads to

an increasing volatility pattern over time. It also reveals that the information infrastructure, by

determining the optimal frequency of news, dictates the strength of the stabilizing role of private

information and the extent of associated welfare gains.

Speculation is a powerful motive underlying a fraction of trades in financial markets. Beliefs-

fueled speculation has long been recognized as an important ingredient for market models. This

paper develops a model where some individuals speculate by trading on noise (Black (1986)).1 Such

individuals have the same conditional beliefs as informed agents, but instead of conditioning on fac-

tual private information, they base their views on irrelevant noise. In other respects, they behave

rationally and maximize preferences by choosing the best allocation among the assets available. This

noise trading model enables us to endogenize the noise trading demand and conduct a meaningful

welfare analysis. It has the property that noise traders do not systematically lose money by specu-

lating on noise. It also resolves a problem of non-existence of noisy rational expectations equilibria

(NREE) when noise trading is exogenous. Speculative behavior shapes the informational properties

1“Noise trading is trading on noise as if it were information. People who trade on noise are willing to trade even
though from an objective point of view they would be better off not trading. Perhaps they think the noise they are
trading on is information. Or perhaps they just like to trade.” Black (1986).
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of equilibrium and incentives to collect information. It plays a critical role for the welfare of society.

Our study is based on a continuous time setting in which the firm pays a liquidating dividend at

the terminal date and information flows are asynchronous due to costly acquisition. Public informa-

tion, regarding the fundamental underlying the dividend, arrives continuously. Private information,

about the terminal dividend, arrives at discrete dates determined by the endogenous acquisition

technology. In the base model, it arrives once, at the initial date, which can be rationalized as the

endogenous outcome of the infrastructure selection process. This asynchrony has multiple effects.

When private information disseminates, expectations become less responsive to public news, which

lowers volatility. The subsequent frequent arrival of public information exerts conflicting pressures

on the local value of private information, the market price of risk and the incentives of investors. A

prominent effect is that it reduces the usefulness of the private information collected by the informed

at the outset and of the endogenous information extracted from equilibrium by the uninformed. This

basic mechanism puts upward pressure on volatility as time passes. As private information becomes

more stale, the sensitivity of the stock price to public news increases, leading to a volatility increase.

This is the sole effect when investors are myopic. Investors with CARA utility, however, care about

fluctuations in the opportunity set, therefore hedge intertemporally (Merton (1971)). Hedging tames

the response of optimal portfolios to shocks, thereby reducing the sensitivity of the equilibrium price

to shocks. It is the source of a further reduction in the volatility level, uniformly over time.

The dissemination of private information has two effects on welfare. The first is due to the

immediate change in the stock price (price impact), the second to the gains from trade associated

with the improved information of agents (trading impact). Asynchrony has multiple effects on these

components. One set of effects arises through volatility, which influences both the price and the

trading impacts. Another effect arises through the hedging demand of an agent, distinct from the

effect of hedging on volatility. This hedging effect is an important determinant of the trading impact.

In the absence of hedging, welfare improves uniformly across agents upon dissemination of private

information, when risk tolerance is either sufficiently low or sufficiently high. The immediate decrease

in volatility is accompanied by an increase in the stock price which raises the value of the initial

allocation of shares, leading to a positive price impact. At the same time, it reduces the market price

of risk, therefore the size of stock holdings and the resulting gains from trade. The sum of these two

effects is positive. The immediate increase in informational efficiency works in the opposite direction

as far as gains from trade are concerned. It fine-tunes the risk taking behavior of an agent, leading to

an increase in gains from trade. Volatility effects are tamed by (inversely related to) risk tolerance.

Trading effects are enhanced by (positively related to) risk tolerance. When risk tolerance is low,

volatility effects dominate, leading to a welfare improvement. At the other end of the spectrum,

when risk tolerance is high, the informational efficiency gains dominate, also leading to a welfare

gain. In both cases, these universal benefits associated with the dissemination of private information

offset the informational disadvantage of uninformed agents.

Hedging affects both the price and trading impacts. As explained, it further decreases volatility,

hence magnifies the welfare improvements for low risk tolerance. But, it also curbs the agents’ risk-

taking behavior, hence reduces the gains from trade associated with the dissemination of information.
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Nevertheless, when risk tolerance is high, the hedging motive weakens so that the previous conclusions

remain valid. Informational efficiency gains dominate, leading to a welfare improvement. In these

instances, it is Pareto optimal (PO) to permit trading based on private information.

Speculation plays a critical role for the welfare of market participants. In its absence, incentives

to collect information vanish. An equilibrium with homogeneous information flow, determined by

the fundamental, then prevails. In this equilibrium, volatility is driven by the volatility of the

fundamental, hence exceeds the volatility in the NREE. Information is also less precise than in the

NREE, worsening investment decisions. Both effects are sources of welfare reductions. Under the

conditions for Pareto optimality, prohibiting speculation leads to a Pareto dominated equilibrium.

The existence of cases where the NREE is or is not PO is a challenge for regulation. Ideally,

the regulator would like to encourage (deter) informed trading when the NREE is (not) PO. We

show that a properly designed contingent Tobin tax, the Information Trading Tax (ITT), enforces

the PO equilibrium. Moreover, the ITT is implementable based solely on fundamental and price

information.

When the skilled (informed) investor selects the information gathering infrastructure and the cost

is an increasing function of the number of signals produced, it is optimal to choose a finite sampling

frequency under mild conditions. Two opposite forces determine the outcome. On the one hand,

an increase in the number of signals produced increases the precision of the information collected,

which improves decision-making and welfare. On the other hand, the cost increases. As long as

the asymptotic precision of the private information is finite and the marginal cost of sampling is

bounded away from zero, the second effect will eventually dominate. In this instance, public and

private information flow at different frequencies. Asynchrony ensures that the fundamental effects

and trade-offs documented in the base model will arise. Moreover, at private information arrival

times, the stock volatility experiences downward jumps. This phenomenon reinforces the stabilizing

role of private information documented in the base model with an endogenously single private signal.

Aside from the questions discussed above, the model also has practical implications for the fund

management industry. Academic debates regarding the skills of fund managers figure prominently

in the literature.2 Evidence seems to suggest that a number of funds lack skill. Our model of

speculative noise traders captures one possible view of unskilled management, namely the implicit

suggestion of knowledge and skill through the promotion of sophisticated investment strategies, but

the actual lack of true information extraction skill and the absence of superior information in the

implementation of these strategies. Speculative noise traders, in our setting, behave exactly as

truly informed (skilled) agents because they seek to be identified as skilled, but they operate on

the basis of noise. Our model shows that this behavior serves useful purposes. The existence of an

active unskilled sector effectively clouds the price system, thus provides incentives for information

collection. The information conveyed by the price system furthermore allows uninformed (retail)

investors to improve their decision-making, which is a source of welfare.

It is important to stress that our dynamic model with speculative noise trading is essential for the

results described above. With exogenous noise trading, a NREE does not exist. As a result, there

2See, for instance, Jensen (1968), Ferson and Schadt (1996) and Jagannathan, Malakhov and Novikov (2010).
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are no incentives for information acquisition and the stock price volatility equals the fundamental

volatility. These properties show that basic insights from static models cannot be straightforwardly

extrapolated to intertemporal settings.

The paper also contributes on the methodological front. Equilibrium is constructed based on the

private information price of risk (PIPR).3 The approach has three steps. The first determines the

structure of the PIPR and the candidate equilibrium information flows. This step does not require

knowledge of the hedging demands and stock price. The second derives a system of equations for

the hedging demands and stock price, conditional on the information flows identified. The final step

solves the system of equations and verifies the informational content of equilibrium. This approach

is constructive. It relies on the fact that the PIPR is the ultimate source of all effects in the model.

1.1 Related Literature

Classical studies pertaining to informational efficiency are based on static models. The seminal

articles of Grossman (1976, 1978) and Grossman and Stiglitz (1980) identify basic determinants of

efficiency in competitive markets. Non-competitive behavior is examined by Hellwig (1980), Kyle

(1989) and Leland (1992). The last study focuses more specifically on insider trading and properties

of equilibrium in a static model with production and monopolistic insider. It finds that private

information increases the average stock price, decreases the return’s expectation and variance for the

uninformed, reduces the liquidity of the market and can increase or decrease welfare.4

Dynamic models with asymmetric hierarchical information and competitive behavior were pio-

neered by Wang (1993, 1994). In these settings, the stock is an infinitely-lived asset that pays divi-

dends continuously/periodically through time. Informed investors observe the state variable driving

the expected future dividend. Uninformed investors do not, but they learn through dividends and

prices. Noise trading injects supply stochasticity and prevents full revelation. Wang (1993) derives

a stationary competitive noisy rational expectations equilibrium (NREE). Asymmetric information

is shown to increase the stock’s long run risk premium. It can also increase the price volatility and

enhance negative serial correlation. Asymmetric information can therefore have a destabilizing effect.

Wang (1994) focuses on issues pertaining to the volume of trade in a similar setting. The article

highlights the relation between volume and price changes. Further insights are provided by He and

Wang (1995) in a model with terminal dividend, differential private information signals across agents,

hence non-hierarchical information flows, and a common frequency of private and public information

arrivals as well as trades. Assuming the existence of a competitive NREE, they study the relation

between information flow and trading volume. The common frequency implies that there are no

3This notion is introduced in Detemple and Rindisbacher (2013) in a portfolio problem with private information.
4Extensions of Leland (1992) can be found in Bhattacharya and Spiegel (1991), Bernhardt, Hollifield and Hughson

(1995), Repullo (1999) and Vives and Medrano (2004). Earlier studies documenting negative effects of insider informa-
tion include Manove (1989), Ausubel (1990) and Fishman and Hagerty (1992). Possible negative effects of information
disclosure in various economic settings are documented in Angeletos and Pavlan (2007), Amador and Weill (2010),
Peress (2010) and Kurlat and Veldkamp (2015).
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dynamic effects between arrival times of private information signals.5,6

Albuquerque and Miao (2014) extend Wang (1994) by allowing for private advance information

about future dividends. Time is discrete and advance information pertains to the temporary com-

ponent of the dividend paid at the next date. Myopic agents derive utility from next period wealth,

ignoring future consumption. They solve for the stationary equilibrium and study the effects of

information on the stock price and risk premium.

Brennan and Cao (1996) develop the only model with (exogenous) asynchronous information

flows. An initial private signal is followed by a sequence of public signals at later dates. Information

arrival dates are also trading dates. In other respects, the setting is similar to He and Wang (1995).

Assuming the existence of a NREE, they examine the impact of an increase in the number of trading

dates and the effects of financial innovation.

The present model builds on this literature. The main economic differences are threefold, (i) the

information production infrastructure is endogenous, (ii) noise traders are expected utility maximiz-

ers who trade on noise (iii) the NREE exists and is obtained in closed form. Costly information

infrastructure implies that information flows endogenously arrive at different frequencies. This asyn-

chrony is the source of novel effects documented. Utility maximization enables us to endogenize the

demand of noise traders and conduct a comprehensive welfare analysis. It opens up the possibility

of Pareto ranking equilibria. The specific beliefs model developed reflects Black’s (1986) idea that

some investors trade on noise. The existence of a NREE is a consequence of the optimizing behavior

of the noise traders. The structure of their demand ensures that the residual demand cannot be

inverted to recover the private signal of the informed.

Other differences pertain to the scope of the analysis or the nature of the results. In that regard,

it could first be noted that equilibrium coefficients are explicit functions of the horizon. The timing

effects identified are driven by the asynchrony in information flows and the hedging motives of agents.

Second, the nature of the informational advantage of the informed differs. Relative to Wang (1993,

1994), this advantage is finitely lived in our setting. Relative to Albuquerque and Miao (2014), it

is non-transitory. This follows, because the time between the reception of the private signal and

the resolution of the uncertainty pertaining to the dividend payment is a finite interval. This has a

critical impact on optimal behavior and pricing. Third, a detailed welfare analysis is carried out. A

novel decomposition of the welfare of each agent into two parts, one associated with the value of the

initial share endowment, the other with the dynamic gains from trade, is derived. This decomposition

is particularly useful to analyze the impact of regulation governing private information usage and

speculation.7 Fourth, a novel solution method introduced. The approach relies on the construction

5Effects of imperfect competition and asymmetric information on dynamic properties of prices and liquidity are
examined in Vayanos and Wang (2012). In a three-period model, they show that asymmetric information and imperfect
competition can have opposite effects on ex-ante expected returns.

6A vast microstructure literature also deals with non-competitive informed trading. Fundamental contributions
are in Kyle (1985) and Glosten and Milgrom (1985). In these models, risk neutral market makers extract private
information from the aggregate order flow and set the price so as to break even on average. This pricing rule does not
account for the endogenous interactions between risk, price appreciation and price level. The absence of diversification
benefits implies that trading is purely informational. The price evolution is typically determined by the exogenous
noise trading behavior and is locally orthogonal to fundamental risk.

7The dynamic welfare results obtained extend the static analysis in Leland (1992), as they identify a new and
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of the PIPR, which isolates the effects of private information. Its structure can be used to formulate

natural conjectures about the informational content of the price. More significantly, it does not

depend on the intertemporal hedging behavior of agents.

Recently, Banerjee and Green (2015) develop a model where noise traders also trade on a signal

believed to be informative. Uninformed investors, unsure about whether they face an informed or

a noise trader, learn over time. Uncertainty about the identity of the counterparty generates a

nonlinear equilibrium price. The dynamic version of their model considers successive generations

of mean-variance investors, each living for two dates. They show numerically that the model can

produce expected return predictability and volatility clustering. Our framework shares aspects of the

noise traders’ specification. It differs as the identity of parties is common knowledge. It also differs

in that we consider long-lived agents with CARA utility. The implied hedging behavior amplifies the

volatility impact of private information trading and enhances the related welfare gains for low risk

tolerance levels. The endogeneity of information flows and the focus on welfare also differ. Finally,

the explicit nature of equilibrium enables us to derive analytical results.

Our analysis also builds on a literature dealing with dynamic portfolio selection and costly in-

formation acquisition; see Detemple and Kihlstrom (1987), Huang and Liu (2007), Hasler (2012),

and Andrei and Hasler (2014). The present paper considers a related costly information production

problem, but in an equilibrium setting with heterogeneously informed agents. It studies the relation

between the endogenous price/volatility and the asynchrony of news. It also addresses welfare and

regulatory questions pertaining to the use of private information and the relevance of speculation.8

The notion of speculation based on differences in beliefs has been widely discussed. Foundations

appear in Working (1962) and Hirshleifer (1975). Black (1986) introduces the view that “noise

trading is trading on noise as if it were information.” Beliefs of noise traders therefore differ from

those of truly informed individuals. Beliefs-based speculation has received recent attention in the

context of financial reforms pertaining to derivatives. Posner and Weil (2012) argue for regulation, on

the ground that such an activity reduces consumption smoothing and is therefore socially harmful.

Duffie (2014) discusses various challenges to beliefs-based regulation and stresses the importance to

base policies on social welfare principles. The analysis carried out here sheds light on some of these

issues in the context of a stock market model. It shows that a ban on beliefs-based speculation could

increase price volatility and reduce informational efficiency, leading to welfare losses. It provides

explicit conditions under which stock market speculation is PO.

The regulation of insider trading has been a long standing issue. Arguments in favor of the

deregulation of insider trading can be found in Manne (1966). Medrano and Vives (1994) study the

effect of a disclose-or-abstain rule in a static Leland (1992) setting. In the present paper, we show

that a contingent Tobin tax can be effective at enforcing PO equilibria as well as implementable.

Section 2 describes a benchmark model with asynchronous information flows and endogenous

acquisition at the initial date. Section 3 presents the demand functions. Section 4 shows the non-

existence of a NREE when noise trading is exogenous. Section 5 studies the NREE with endogenous

significant source of welfare gains. The analysis is comprehensive in that it encompasses all agents in the model.
8For information acquisition in static NREE see Verrechia (1982), Diamond (1985), and Goldstein and Yang (2015).
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noise trading. Section 6 examines welfare properties. The optimal information infrastructure with

endogenous frequency is analyzed in Section 8. Extensions are in Section 9 and conclusions follow.

Proofs are in the appendix.

2 The Economy

This section describes benchmark model. The financial market is presented in Section 2.1, agents and

their information sets in Section 2.2 and candidate stock price processes in Section 2.3. Preferences

and optimal demands are in Sections 2.4 and 2.5. Equilibrium is defined in Section 2.6.

2.1 Assets and Markets

A riskless asset and a risky stock are available for trade. The riskless asset is a money market account

paying interest at the rate r. In the absence of intertemporal consumption, which will be assumed,

the interest rate can be set at zero (r � 0). The risky stock pays a liquidating dividend DT at the

terminal date T . The dividend is the terminal value of the process dDt � µDdt � σDdWD
t , where

µD is a constant drift coefficient and σD is a constant and positive volatility coefficient. WD is a

Brownian motion process with filtration FD
p�q

, defined on a probability space
�

Ω,FD, P
�

. The process

D can be viewed as a fundamental factor that eventually determines the terminal dividend.

One share of stock, perfectly divisible, is outstanding. It trades at an endogenously price S.

Trading takes place in continuous time. There are no restrictions on stock holdings or borrowing.

2.2 Agents, Noise and Information Signal

Three groups of investors operate in the financial market, informed, uninformed and noise traders.

The respective fractions of the three groups in the population are ωi, ωu and ωn, with ωi
�ωu

�ωn
� 1.

Each group is treated as a homogeneous entity with a representative individual.

The (representative) informed investor is a skilled individual, able to extract at cost C information

about the future stock payoff DT . In the benchmark model, information extraction is carried out

at the initial date t � 0 and generates the noisy signal G � DT� ζ, where ζ � N

�

0,
�

σζ
�2
	

. Skill

is measured by the precision vζ �
�

σζ
�

�2
of the signal. When

�

σζ
�2

increases, precision falls and

the informational content of the signal decreases. Thus, skill decreases. In the limit
�

σζ
�2
Ñ8, the

signal becomes pure noise and skill vanishes. The “informed” investor effectively becomes unskilled

(uninformed). The optimality of an information infrastructure producing a single signal at t � 0

is discussed in Section 8 (see Remark 11). Throughout sections 3-6, we will assume C � 0, unless

explicitly stated.

The uninformed investor does not have extraction ability. He/she observes prices and other

quantities that are in the public information set. Let Fm
p�q

be the public information filtration. The

uninformed filtration is the public filtration Fu
p�q

� Fm
p�q

. The last investor trades on noise. His/her

beliefs are similar to the beliefs of the informed, but depend on an independent random variable φ

as opposed to true private information. A precise description is provided below.
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The three groups are identically endowed at the outset. The distribution of initial stock shares

in the population is
�

ωi, ωu, ωn
�

.

2.3 Stock Price and Information Flows

The opportunity set of investors depends on the stock price structure. In this environment, there are

two sources of uncertainty, WD associated with fundamental information and φ with noise trading

speculation. Standard arguments can be invoked to write any candidate price process as,

dSt � µS
t dt� σS

t dW
S
t , ST � DT . (1)

In this structure, W S is a Brownian motion relative to the public information filtration Fm
p�q

. It is

endogenous and, ultimately, relates to the underlying source of fundamental uncertainty WD. The

coefficients
�

µS, σS
�

of the price process are also endogenous and adapted to Fm
p�q

. The uninformed

observes the stock price, hence can retrieve the volatility coefficient from its quadratic variation.

The Brownian motion dW S
t �

�

σS
t

�

�1 �
dSt � µS

t dt
�

is an innovation process in their filtration. The

information filtration FS
p�q

generated by S is in the public information flow Fm
p�q

. That is, FS
p�q

� Fm
p�q

.

The information flow of the informed is augmented by the private signal G. Private information is

carried by the enlarged filtration F i
p�q

� Fm
p�q

_σ pGq. As private information modifies the perception

of the risk-reward trade-off, the fundamental source of risk WD is no longer Brownian motion relative

to the enlarged filtration. Instead, the translated process,

dWG
t � dW S

t � θ
G|m
t pGq dt where θ

G|m
t pGq dt � E

�

dW S
t

�

�F
i
t

�

becomes a Brownian motion. The translation θ
G|m
t pGq is the private information price of risk (PIPR),

which is a function of the private signal G. Relative to private information, the stock price evolu-

tion is dSt �

�

µS
t � σS

t θ
G|m
t pGq

	

dt� σS
t dW

G
t . The superior information is reflected in the private

information premium σS
t θ

G|m
t pGq. Given that public information Fm

p�q

is endogenous, the private

information premium is endogenous as well.

2.4 Informed and Uninformed Preferences

Throughout the paper, superscripts i and u are used to distinguish the informed piq from the un-

informed puq investor. Let X
j
t denote the wealth of investor j at time t, j P ti, uu. Conditional

preferences have the von Neumann-Morgenstern representation,

U j
�

F
j
0

	

� E
�

u
�

X
j
T

	

�

�

�

F
j
0

�

for j P ti, uu (2)

where the utility function has constant absolute risk aversion, u pXq � �Γ exp p�X{Γq. The pa-

rameter Γ ¡ 0 is the common absolute risk tolerance coefficient. Preferences of the informed (resp.

uninformed) are conditional on private (resp. public) information. For welfare comparisons, it is

useful to consider expected utility conditional on public information at date zero, called interim
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expected utility. Interim expected utility is U i
� E

�

U i
�

F i
0

�

�

�Fm
0

�

for the informed agent and

Uu
� E rUu

pFu
0 q|F

m
0 s � Uu

pFu
0 q for the uninformed. The last equality holds because Fu

0 � Fm
0 .

Let N j be the number of shares held. Investors maximize (2) subject to the dynamics of wealth,

dX
j
t �

#

N i
t

��

µS
t � σS

t θ
G|m
t pGq

	

dt� σS
t dW

G
t

	

for j � i

Nu
t

�

µS
t dt� σS

t dW
S
t

�

for j � u
(3)

and the informational constraint that N j be adapted to F
j
p�q

for j P ti, uu.

2.5 Noise Trading: Beliefs and Preferences

The decisions of the informed are based on the conditional distribution of states given the realization

of the private signal,

P i
pdωq � P pdω|G � xq

|x�G �

�

P pG P dx|ωq

P pG P dxq




|x�G

P pdωq .

Informed beliefs are based on the conditional Wiener measure P pdω|G � xq. As the unconditional

and conditional distributions of the signal, P pG P dxq and P pG P dx|dωq, as well as the distribution

of states P pdωq are common knowledge, the conditional measure P pdω|G � xq is known.

The noise trader is aware of the availability of private information and can calculate the con-

ditional beliefs P pdω|G � xq, but does not observe the realization of the private signal. Instead,

he/she relies on a forecast of this realization, x � φ, and evaluates conditional beliefs at φ. Thus,

Pn
pdωq � P pdω|G � xq

|x�φ �

�

P pG P dx|ωq

P pG P dxq




|x�φ

P pdωq

P pG P dx|ωq

P pG P dxq
� exp

�

» T

0

θ
G|m
t pxq dW S

t �
1

2

» T

0

θ
G|m
t pxq2 dt




.

The distribution of the forecast φ can be arbitrary. In the sequel, φ is assumed to be independent and

normally distributed with mean µφ and standard deviation σφ. If µφ
� E rGs and

�

σφ
�2
� V AR rGs,

the forecast is an unbiased and identically distributed estimate of G. Irrespective of the distributional

structure, φ is noise.

Ultimately, the noise trader is an agent with bounded rationality who attempts to replicate the

behavior of the informed, but without the benefit of observing the private signal. The noise trader

and the informed share conditional beliefs, therefore have the same demand structures. The realized

demands nevertheless differ, because one is truly informed, while the other is not. The noise trader,

effectively, speculates by trading on noise (Black (1986)).

The noise trader’s conditional preferences are Un
pφq � En

ru pXn
T q|F

m
0 s � E0 ru pX

n
T q|G � xs

|x�φ
,

where the expectation En
r �|Fm

0 s is with respect to the beliefs Pn evaluated at a given realiza-

tion of the forecast φ and the utility function is CARA with absolute risk tolerance parame-

ter Γ. Under the beliefs Pn, the stock price evolves as dSt �

�

µS
t � σS

t θ
G|m
t pxq

	

dt �σS
t dW

x
t ,
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where W x
�

� WD
�

�

³

�

0
θ
G|m
t pxq dt is a Fm

p�q

-Brownian motion under the conditional Wiener measure

P pdω|G � xq, evaluated at x � φ. The associated stock price of risk is θφt � θmt � θ
G|m
t pxq. Interim

expected utility is Un
� E rUn

pφq|Fm
0 s � E rUn

pGqLφ,G pG|F
m
0 q|F

m
0 s, where,

Lφ,G px|F
m
0 q �

P pφ P dx|Fm
0 q

P pG P dx|Fm
0 q

is a density measuring the beliefs distortion relative to the informed investor. If µφ
� E rGs and

�

σφ
�2
� V AR rGs, then Lφ,G px|F

m
0 q � 1 and the beliefs distortion vanishes.

Given x � φ, the noise trader maximizes Un
pφq over the Fm

p�q

-progressively measurable num-

ber of shares Nn, subject to the dynamic budget constraint under conditional beliefs, dXn
t �

Nn
t

��

µS
t � σS

t θ
G|m
t pxq

	

dt� σS
t dW

x
t

	

. Note that even in the absence of a beliefs distortion, i.e.,

when Lφ,G px|F
m
0 q � 1, the noise trader exhibits bounded rationality as the optimal policy is cho-

sen adapted to the public information flow Fm
p�q

, given a fixed realization φ, rather than adapted to

the enlarged filtration Fm
p�q

�

σ pφq. Full rationality fails, as the joint information conveyed by the

realized forecast φ and the public information flow Fm
p�q

is ignored.9

2.6 Equilibrium

A competitive rational expectations equilibrium (REE) for the economy under consideration is a

triplet of demands
�

Nu, N i, Nn
�

and a price process dSt � µS
t dt �σ

S
t dW

S
t , ST � DT , such that (i)

Individual rationality: N j is optimal for agent j P tu, i, nu taking the price process as given, and (ii)

Market clearing: ωuNu
�ωiN i

�ωnNn
� 1. The competitive REE is noisy (NREE) if the informed

and uninformed filtration differs, Fu
p�q

� F i
p�q

.

3 Optimal Stock Demands and Residual Demand

The next two propositions describe the stock demands of the various agents in the economy.

Proposition 1 The optimal number of shares held by the uninformed and informed investors are,

Nu
t � Γ

θmt � hut σ
D

σS
t

and N i
t � Γ

θmt � θ
G|m
t pGq � hit pGq σ

D

σS
t

where θm is the price of risk for the uninformed and, with Et r�s � Et r �|F
m
t s,

hut � �

1

2

» T

t

BDtEt

�

ξmt,v pθ
m
v q

2
�

dv

hit pxq � hut �
1

2

» T

t

BDtEt

�

ξmt,v

�

θG|mv pxq2 � 2θmv θG|mv pxq
	�

dv � hut � h
G|m
t pxq .

9The beliefs distortion and the absence of Bayesian updating is similar to the bounded rational behavior studied
in Dumas, Kurshev and Uppal (2009). Alternatively, under the assumption of uncertainty about the counterparty and
learning, the uncertainty structure becomes similar to the one in Banerjee and Green (2015).
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The terms Γhut σ
D
{σS

t ,Γh
i
tσ

D
{σS

t are the intertemporal hedging demands for the uninformed and

informed. The informed holds more shares than the uninformed if and only if the private information

premium exceeds the adjusted difference in hedging terms, σS
t

�

θ
G|m
t pGq � h

G|m
t pGq σD

	

¡ 0.

An investor with CARA utility seeks to hedge stochastic fluctuations in the opportunity set

(Merton (1971)). The optimal stock demand has a mean-variance component as well as a dynamic

hedging component. The demands in Proposition 1 have this basic structure in common.

The fundamental difference between the two investors resides in their evaluation of the expected

stock return. The informed evaluates the return on the basis of private information as well as public

information. The resulting expected return has two components. The first one, µS
t � σ

S,D
t θmt , is the

expected return based on public information. The second one, σS
t θ

G|m
t pGq, is the additional premium

calculated on the basis of private information. This premium is affine in the PIPR θ
G|m
t pGq, i.e., the

private information price of risk (Detemple and Rindisbacher (2013)). The PIPR is the incremental

price of risk assessed in light of information that is not revealed by public information sources. It

represents the private information price of risk conditional on public information. Thus, the informed

mean-variance component has a public information part, Γθmt {σ
S
t , and a private information part,

Γθ
G|m
t pGq {σS

t . The uninformed mean-variance demand has only a public information part, Γθmt {σ
S
t .

The difference in assessed expected returns induces a difference in hedging behavior. The informed

agent hedges stochastic fluctuations in the market price of risk as well as in the PIPR. The total

hedging demand can be decomposed as hit pGq � hut� h
G|m
t pGq, where hut , h

G|m
t pGq capture the two

separate motives. The uninformed hedging demand stems entirely from the stochastic behavior of

the price of risk. It is also of interest to note that the hedging demand depends on the information

set of the agent considered. For the informed, the hedge is conditional on the private information

filtration, hence parameterized by the private signal. For the uninformed, the hedge depends on

the public filtration. The hedging demand formulas are valid for any given, but arbitrary, diffusion

opportunity set. The specific functional form depends on the structure of the latter.

Proposition 2 The optimal number of shares held by the noise trader is,

Nn
t � Γ

θmt � θ
G|m
t pφq � hnt pφqσ

D

σS
t

� Γ
θmt � θ

G|m
t pφq � hit pφq σ

D

σS
t

(4)

where θm is the uninformed price of risk, θ
G|m
t pφq is a speculative premium/discount reflecting the

departure from rationality and Γhnt σ
D
{σS

t is the intertemporal hedging demand. The hedging demand

of the noise trader has the same functional form as that of the informed, but evaluated at φ instead of

G. The noise trader holds more (resp. less) shares than the uninformed if and only if the speculative

premium exceeds the adjusted difference in hedging terms, σS
t

�

θ
G|m
t pφq � h

G|m
t pφqσD

	

¡ 0.

The optimal noise trading demand has a mean-variance component and a hedging component.

The mean-variance component has two parts. The first part, Γθmt {σ
S
t , is the usual mean-variance

demand of an uninformed rational agent. It reflects a demand based on public information. The

second part, Γθ
G|m
t pφq {σS

t , is a speculative demand associated with an informational signal consisting
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of pure noise. The hedging component can also be split in two parts, hnt pφq � h
n,mpr
t pφq � h

n,pipr
t pφq,

reflecting hedging motives stemming from stochastic fluctuations in the MPR and in the PIPR.

Because the noise trader and the informed seek to hedge the same objects, the structures of their

hedges are the same. The only difference is the conditioning factor, consisting of the true signal G

for the informed and the independent random variable φ for the noise trader. Thus, hnt pφq � hit pφq,

h
n,mpr
t pφq � hut and h

n,pipr
t pφq � h

G|m
t pφq. In the end, the noise trader demand mimics the informed

demand. It effectively corresponds to the demand of an investor with randomized beliefs, i.e., an

unskilled active investor.

Remark 1 The combined demand of the informed and noise trader, i.e., the residual demand, is,

Nt � ωiN i
t � ωnNn

t � Γ
ωθmt � ωi

�

θ
G|m
t pGq � hit pGq σ

D
	

� ωn
�

θ
G|m
t pφq � hnt pφq σ

D
	

σS
t

where ω � ωi
� ωn. The residual demand is an affine function of the weighted average price of

risk (WAPR) Θt

�

G,φ;ωi, ωn
�

� ωiθ
G|m
t pGq � ωnθ

G|m
t pφq and of the weighted average normalized

hedge (WANH) ht
�

G,φ;ωi, ωn
�

� ωihit pGq � ωnhnt pφq. If the PIPR and hedges are also affine

functions, the residual demand depends on Θt pZ;ωq � θ
G|m
t pZ;ωq and ht pZ;ωq � hit pZ;ωq, which

are functions of the signal Z � ωiG� ωnφ and the combined population weight ω � ωi
� ωn.

4 Non-Existence of NREE with Exogenous Noise Trading

In order to put our noise trading model in perspective, it is useful to consider the traditional approach

with exogenous noise trading (or stochastic supply). This section shows that a competitive NREE

does not exist in such an economy.

Suppose that noise trading is exogenous and given by Nn
t � φ where φ is an independent random

variable with Gaussian distribution.10 Throughout the section, assume that σD
¡ 0, σζ

  8 and

ωi, ωn
P p0, 1q. The next proposition gives a necessary condition for the existence of a NREE in this

setting with exogenous Gaussian noise trading. To state the result, let N be an arbitrary stochastic

process and let ∇MNt for M P tG,φu be the perturbation of the random variable Nt with respect

to the random variable M . The stochastic process t∇MNt : t P r0, T su is the first variation process

of N with respect to M (e.g., Kunita (1990)).

Proposition 3 Consider the model with exogenous noise trading described above. A necessary con-

dition for the existence of a NREE is,

∇GN
i
t∇φN

n
s � ∇GN

i
s∇φN

n
t ; P b lebb leb� a.e. on Ω� r0, T s � r0, T s (5)

10The setting with exogenous noise trading is observationally equivalent to a model with stochastic supply φs where
φs

� 1 � ωnφ or a setting without noise trading where the informed holds a non-traded asset with terminal payoff
DTφ

i where φi
P F

i
0 is a privately known random variable independent of fundamental information F

D
p�q

and private

signal G, and is given by φi
� �

�

ωn
{ωi

�

φ. The optimal informed portfolio is N i,p
t � N i

t �φ
i where N i

t is the portfolio
without the private asset. The residual demand becomes Na,p

t � ωiN i
t � ωiφi

� Na
t . Models where the source of

noise is the availability of a correlated private asset are considered by Medrano and Vives (2004) in the static case and
Albuqueruqe and Miao (2014) in the dynamic case under the assumption of myopia.
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where leb is the Lebesgue measure, ∇GN
i
t is the first variation process of the optimal informed demand

with respect to G and ∇φN
n
t the first variation process of the exogenous noise trading with respect to

φ. As ∇φN
n
t � 1, (5) can be restated as ∇GN

i
t � ∇GN

i
s on Ω� r0, T s � r0, T s.

Condition (5) is tied to the informational content of the residual demand function, given by,

Nt � ωiN i
t � ωnNn

t � ωiΓ
θmt � hut σ

D
� θ

G|m
t pGq � h

G|m
t pGqσD

σS
t

� ωnφ

in the model with exogenous noise trading. The residual demand function is observed by the unin-

formed, therefore belongs to the public information flow (see Kreps (1977)). To prevent revelation,

it must be that observations at different times do not reveal the private signal. That is, the vector

pNt, Nsq cannot be inverted for any pair of times t, s P r0, T s. Invertibility fails if and only if the

determinant of the Jacobian of pNt, Nsq is null, which leads to condition (5).

Proposition 4 A competitive NREE does not exist in the model with exogenous noise trading.

The reason for non-existence is that condition (5) fails, ensuring the revelation of the private

signal G. The accumulation of information and the evolving volatility of the stock price lie at the

core of this revelation property. These features ensure that the informational content of the residual

demand is carried by Zt � ωiδ ptqG� ωnφ for some function of time δ ptq. The time dependence of

δ ptq ensures full revelation.

Remark 2 (i) It has become standard practice to solve for equilibrium in asymmetric information

models by postulating a linear equilibrium price function. Propositions 3 and 4 show that it is essential

to verify the information flow generated by the residual demand. Equilibrium filtrations in these

models can be non-Markovian in the price and contain the private signal, i.e., residual demands can

be fully revealing. (ii) The NREE described in Brennan and Cao (1996) does not exist for arbitrary

coefficients of the underlying processes. Generically, the price can be inverted to recover the private

signal.

The results above show that the model with exogenous noise trading and terminal dividend does

not have a NREE. This provides further economic motivation for the study of speculative noise

trading behavior, carried out next.

5 The NREE with Beliefs-Based Speculation

The competitive NREE is described in Section 5.1. Properties of the PIPR and the WAPR are

examined in Section 5.2. Price and return properties are discussed in Section 5.3.
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5.1 Equilibrium Structure

In order to present the main result, define the combined share of the informed and the noise trader

ω � ωi
� ωn and the functions of time,

α̂ ptq � α ptq � αh
ptq , β̂ ptq � β ptq � βh

ptq , γ̂ ptq � γ ptq � βh
ptq (6)

where
�

αh, βh, γh
�

are associated with the aggregate hedging behavior of the agents and defined in

the Appendix, and

α ptq �
1� κtω

H ptq
σD, β ptq � �ω

1� κtω
i

H ptq
σD, κt �

ωiH ptq

M ptq
(7)

γ ptq � �ω

�

1� κtω
i
�

µD
pT � tq � ωnκtµ

φ

H ptq
σD, λ pt, sq �

ωi
�

σD
�2
ps� tq

M ptq
, s P rt, T s (8)

H ptq �
�

σD
�2
pT � tq �

�

σζ
	2

, M ptq �
�

ωi
�2

H ptq � pωn
q

2
�

σφ
	2

. (9)

The function H ptq � V ar
�

G|FD
t

�

is the conditional variance of the private signal G given fundamen-

tal information at t. The function M ptq � V ar
�

Z|FD
t

�

is the conditional variance of an endogenous

signal Z � ωiG � ωnφ given fundamental information at t. The coefficients κt �
COV pG,Z|FD

t q

V ARpZ|FD
t q

and

λ pt, sq �
COV pDs,Z|F

D
t q

V ARpZ|FD
t q

are regression coefficients. The next proposition presents the NREE.

Proposition 5 A competitive NREE exists. The equilibrium stock price is,

St � Â ptqZ � B̂ ptqDt � F̂ ptq where Z � ωiG� ωnφ (10)

B̂ ptq � B ptqBh
ptq , B ptq �

�

H pT q

H ptq


ω �
M pT q

M ptq


1�ω

, Bh
ptq � eσ

D
³T
t
βh

pvqdv (11)

Âptq � λ pt, T q � σD

�

» T

t

B̂ psq
�

α̂ psq � β̂psqλpt, sq
	

ds




(12)

F̂ ptq � B̂ ptqµD
pT � tq �

�

σD
�2

Γ

» T

t

B̂ psq2 ds� σD

» T

t

B̂ psq γ̂ psq ds� ωnÎ ptqµφ (13)

Î ptq � λ pt, T q � σD

» T

t

B̂ psq β̂ psqλ pt, sq ds (14)

and
�

α̂, β̂, γ̂, λ
	

as in (6)-(9). The coefficients of the equilibrium stock price process (1) are,

µS
t �

�

σS
t

�2

Γ
� σS

t

�

Θt pZq � hmt pZqσ
D
�

, σS
t � B̂ ptq σD (15)

Θt pZ;ωq � α ptqZ � β ptqDt � γ ptq (16)

hmt pZ;ωqσD
� αh

ptqZ � βh
ptqDt � γh ptq (17)
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where Θt pZ;ωq � ωiθ
G|m
t pGq �ωnθ

G|m
t pφq is the endogenous WAPR and hmt pZ;ωq � hut �hit pZ;ωq

is the endogenous aggregate hedging. The innovation in the uninformed filtration is dW S
t � dWD

t �

θ
D|m
t dt, an Fm

p�q

� F
D,Z
p�q

-Brownian motion, where,

θ
D|m
t �

E
�

dWD
t |F

m
t

�

dt
�

ωiσD

M ptq

�

Z � ωi
�

Dt � µD
pT � tq

�

� ωnµφ
	

. (18)

The competitive equilibrium price in (10) is an affine function of the fundamental D and of the

random variable Z. This random variable is a noisy translation of the private information signal G.

It provides information about the terminal dividend, but is less informative than the private signal.

Both the price S and the fundamental D are in the public information set Fm
p�q

. It follows that Z

is publicly observed as well. Thus, Z P Fm
p�q

and F
D,Z

p�q

� F
D,S

p�q

� Fm
p�q

. Conversely, the pair pD,Zq

reveals the price S, i.e., FS
p�q

� F
D,Z

p�q

. Thus, FD,S

p�q

� F
D,Z

p�q

� Fm
p�q

.

In equilibrium, the uninformed extracts the noisy signal Z from the pair pD,Sq. The uninformed

also observes the residual aggregate demand function ωiN i
t � ωnNn

t , described in Remark 1. At

equilibrium, the residual demand is also affine in D and Z. It therefore fails to reveal any informa-

tion beyond what is already contained in pD,Sq: condition (5) holds. In the end, the equilibrium

public information set consists of the pair pD,Zq. That is, FD,S
p�q

� F
D,Z
p�q

� Fm
p�q

. The equilibrium

uninformed filtration is Fu
p�q

� Fm
p�q

� F
D,S
p�q

� F
D,Z
p�q

. The equilibrium informed filtration is strictly

more informative, F i
p�q

� Fm
p�q

_ σ pGq � Fm
p�q

� Fu
p�q

. The equilibrium is a NREE.

The specific impact of intertemporal hedging on equilibrium can be identified by comparing to the

solution above with that for
�

αh, βh, γh
�

� p0, 0, 0q. This benchmark case corresponds to a model

in which all agents behave myopically and have traditional mean-variance demands. As revealed

by Proposition 5, intertemporal hedging modifies the coefficients of the equilibrium relationships,

not their overall structure. A surprising aspect is that the information content of equilibrium does

not change. Indeed, the endogenous signal Z � ωiG � ωnφ is the same as in the benchmark pure

mean-variance setting. This follows, because neither the PIPR, nor the WAPR, are affected by the

hedging activities of agents. Both only depend on the public and private information structure.

Remark 3 (Limit economy with small informed) Consider the limit economy with an infinitesimal

informed population (ωi
Ñ 0 and ωn

Ñ 1�ωu
� ω). The limit equilibrium price is Ssi

t � Âsi
ptqZsi

�

B̂si
ptqDt � F̂ si

ptq, where Zsi
� ωnφ and,

µ
S,si
t �

�

σ
S,si
t

	2

Γ
� σ

S,si
t

�

Θsi
t

�

Zsi;ω
�

� h
m,si
t

�

Zsi;ω
�

σD
	

, σ
S,si
t � B̂si

ptq σD

Θsi
t

�

Zsi;ω
�

� αsi
ptqZsi

�βsi
ptqDt�γsi ptq , h

m,si
t

�

Zsi;ω
�

σD
� αh,si

ptqZsi
�βh,si

ptqDt�γh,si ptq

with coefficients defined in (44)-(55). The limit WAPR is Θsi
t

�

Zsi;ω
�

� ωθ
G|m,si
t pφq. Innovations in

the uninformed filtration vanish dW S
t � dWD

t because θ
D|m
t Ñ 0 when ωi

Ñ 0. The limit equilibrium

fails to reveal any private information. If, in addition, there is no noise trader (ωi, ωn, ω Ñ 0), the
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equilibrium collapses to a no-trade equilibrium where,

S
si,0
t � Dt �

�

µD
�

�

σD
�2

Γ

�

pT � tq , σ
S,si,0
t � σD, µ

S,si,0
t �

�

σD
�2

Γ
.

In the absence of hedging, price volatilities in the two limit economies and the economy of Proposition

5 rank as σS
t   σ

S,si
t   σ

S,si,0
t � σD for t   T . Intertemporal hedging can alter this ranking.

Indeed, with a small informed, the market price of risk becomes more sensitive to the fundamental

(�βsi
¡ �β ¡ 0). Hedging amplifies this sensitivity (�βh,si

¡ βh
¡ 0). Volatility, which is

negatively related to the sensitivity of the market price of risk, decreases. Thus σS
t » σ

S,si
t depending

on parameter values. In all cases, max
�

σS
t , σ

S,si
t

	

  σ
S,si,0
t � σD for t   T . As the payment date

approaches, the volatilities converge, limtÑTσ
S
t � limtÑTσ

S,si
t � limtÑTσ

S,si,0
t � σD. Informed

trading increases the informational efficiency of the market. It stabilizes the market by reducing the

stock’s exposure to fundamental shocks if the hedging effect does not dominate (i.e., B̂ ptq   B̂si
ptq).

Remark 4 (Limit economy with small uninformed) Consider the limit economy with an infinitesimal

uninformed population (ωu
Ñ 0 and ωi

Ñ 1�ωn). The limit equilibrium price is Ssu
t � Âsu

ptqZsu
�

B̂su
ptqDt� F̂ su

ptq, where Zsu
� p1� ωn

qG� ωnφ and,

µ
S,su
t �

�

σ
S,su
t

	2

Γ
� σ

S,su
t

�

Θsu
t pZsu; 1q � h

m,su
t pZsu; 1q σD

�

, σ
S,su
t � B̂su

ptqσD

Θsu
t pZsu; 1q � αsu

ptqZsu
�βsu

ptqDt�γ
su
ptq , h

m,su
t pZsu; 1q σD

� αh,su
ptqZsu

�βh,su
ptqDt�γ

h,su
ptq

with coefficients defined in (56)-(69). If, in addition, there is no noise trader (ωi
Ñ 1, pωu, ωn

q Ñ 0),

the equilibrium collapses to a no-trade equilibrium where,

S
su,0
t � Âsu,0

ptqG� B̂su,0
ptqDt � F̂ su,0

ptq , Zsu
� G

µ
S,su,0
t �

�

σ
S,su,0
t

	2

Γ
, σ

S,su,0
t � σ

S,su
t � B̂su

ptqσD, Θsu
t pZsu; 1q � h

m,su
t pZsu; 1q � 0

with
�

Âsu,0, B̂su,0, F̂ su,0
	

as in (70)-(75). The pair
�

D,Ssu,0
�

, in the limit economy, is fully revealing.

Stock price volatilities in the three equilibria rank as σ
S,su
t � σ

S,su,0
t   σS

t   σD for t   T . As the

payment date approaches, limtÑTσ
S,su
t � limtÑTσ

S,su,0
t � limtÑTσ

S
t � σD. Equilibrium prices

in economies with small uninformed (large informed) populations are less sensitive to fundamental

shocks and have lower volatility.

Remark 5 (Limit economy with small noise trader) Consider the limit economy with an infinites-

imal noise trader population (ωi
Ñ 1 � ωu and ωn

Ñ 0). The limit equilibrium price is Ssn
t �

Âsn
ptqZsn

� B̂sn
ptqDt� F̂ sn

ptq, where Zsn
� G and,

µ
S,sn
t �

�

σ
S,sn
t

	2

Γ
� σ

S,sn
t

�

Θsn
t

�

Zsn;ωi
�

� h
m,sn
t

�

Zsn;ωi
�

σD
�

, σ
S,sn
t � B̂sn

ptqσD
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Θsn
t

�

Zsn;ωi
�

� αsn
ptqZsn

�βsn
ptqDt�γ

sn
ptq , h

m,sn
t

�

Zsn;ωi
�

σD
� αh,sn

ptqZsn
�βh,sn

ptqDt�γ
h,sn

ptq

with coefficients defined in (76)-(86). The pair pD,Ssn
q, in the limit economy, is fully revealing.

Stock price volatilities in the three equilibria rank as σ
S,sn
t   σS

t   σD for t   T . As the payment

date approaches, limtÑTσ
S,sn
t � limtÑTσ

S
t � σD. The equilibrium price in the economy with small

noise trader population is less sensitive to fundamental shocks and has lower volatility.

5.2 PIPR and WAPR Properties

To provide further insights about the structure of equilibrium, it is instructive to start with the PIPR.

The PIPR is the (negative of the) instantaneous volatility of the growth rate of the conditional density

of the private information signal given public information. In equilibrium, with Fm
t � F

D,Z
t ,

θ
G|m
t pGq � vol

�

dpGt pGq

pGt pxq




�

G� µ
G|D,Z
t

�

σ
G|D,Z
t

	2
vol

�

µ
G|D,Z
t

	

�

G� µ
G|D,Z
t

�

σ
G|D,Z
t

	2

�

1� κtω
i
�

σD.

In the model under consideration, given the linearity of the endogenous signal Z revealed, the

conditional density is normal. The conditional mean alone depends on the dividend. The conditional

variance is a function of time. The PIPR therefore reduces to the volatility of the conditional mean

suitably normalized. It is affine in the private signal. As noted in Remark 1, it follows that the

WAPR becomes Θt

�

G,φ;ωi, ωn
�

� Θt pZ;ωq and that the residual demand is an affine function of

Θt pZ;ωq. The equilibrium risk premium inherits this affine structure. Moreover, the equilibrium

residual demand, being affine in Θt pZ;ωq, also reveals the signal Z � ωiG� ωnφ.

The next corollary describes the behavior of the endogenous PIPR.

Corollary 1 The equilibrium PIPR is,

θ
G|m
t pGq �

G� µ
G|D,Z
t

�

σ
G|D,Z
t

	2

�

1� κtω
i
�

σD
� α1 ptqG� α2 ptqZ � β0 ptqDt � γ0 ptq

α1 ptq �
σD

H ptq
, α2 ptq � �

κtσ
D

H ptq
� �

ωiσD

M ptq
, β0 ptq �

β ptq

ω
, γ0 ptq �

γ ptq

ω
(19)

where ω � ωi
� ωn and β ptq , γ ptq are defined in (7)-(9). The coefficients α1 ptq , α2 ptq and β ptq

are the sensitivities with respect to the private signal G, the endogenous public signal Z and the

fundamental Dt. The coefficient γ ptq is a translation factor. The following properties hold,

(i) Sensitivity to information: α1 ptq ¡ 0, α2 ptq   0, β ptq   0.

(ii) Dynamic behavior: Bα1ptq
Bt

¡ 0, Bα2ptq
Bt

  0, Bβptq
Bt

  0

The reaction of the equilibrium PIPR to news is intuitive. Indeed, a larger private signal indicates

a greater terminal dividend, thus provides more valuable information. In contrast public information,

be it endogenous or exogenous, reduces the local value of private information.

The evolution of these sensitivities is also intuitive. The reaction to private information α1 ptq

is tamed by the unconditional variance of the signal H ptq in the denominator. Over time, the
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informed observes the fundamental and updates the content of the private signal. Effectively, the

residual private information is G�Dt. This residual signal becomes more informative over time, as

uncertainty resolves, thereby enhancing the value of information. For the same reason, the precision

of the endogenous public signal increases. This reduces the (negative) sensitivity of the PIPR to the

endogenous signal, which decreases the value of private information. The reaction to fundamental

information reflects the same effect. Its decrease further reduces the value of information.

The WAPR is closely related to the PIPR and inherits most of its properties.

Corollary 2 The equilibrium WAPR is given by (16). The coefficients α ptq and β ptq are the sensi-

tivities with respect to the endogenous public signal and the fundamental information. The coefficient

γ ptq is a translation factor. The properties of β ptq are the same as those of β0 ptq in Corollary 1.

The behavior of α ptq differs in the following respects,

(i) Sensitivity to information: α ptq ¡ 0 if and only if
�

σφ
�2
¡ sH ptq.

(ii) Dynamic behavior: α ptq increases with time if and only if κ2t   1{ωiω.

The behavior of α ptq � α1 ptq � α2 ptqω is more intricate because α1 ptq , α2 ptq have different,

sometimes opposite properties. The evolution of α ptq is especially noteworthy. If ωiωκ20   1, the

coefficient increases over time. If ωiωκ20 ¡ 1 and ωiωκ2T   1, it initially decreases, then increases. If

ωiωκ20 ¡ 1 and ωiωκ2T ¡ 1, it decreases throughout. The possibility of a U -shaped pattern reflects

conflicting effects on α1 ptq and α2 ptq. Under the conditions stated, the decrease in α2 ptq dominates

early on, then is overtaken by the increase in α1 ptq. An illustration is in Figure 1.

5.3 Price and Return Properties

Fundamental information accumulates with the passage of time, providing more precise estimates

of the next dividend payment. Information accumulation affects the properties of equilibrium. The

next corollary describes these dynamic aspects of the price and return components. For transparency,

it first presents the pure mean-variance case, then describes the incremental effects of hedging.

Corollary 3 (i) Suppose that αh
ptq � βh

ptq � γh ptq � 0 for all t P r0, T s (pure mean-variance

case). The stock price sensitivity to the fundamental increases over time. The volatility of the stock

price, σS
t � B ptqσD, increases over time. The minimal and maximal volatility values are obtained

at the initial and terminal dates,

σS
0 � B p0q σD

�

�

H pT q

H p0q


ω �
M pT q

M p0q


1�ω

σD, lim
tÑT

σS
t � B pT qσD

� σD.

The stock’s price of risk µS
t {σ

S
t � B ptq σD

{Γ� pα ptqZ � β ptqDt � γ ptqq becomes more sensitive to

the fundamental over time (i.e., �β ptq ¡ 0 increases for all t P r0, T s).

(ii) Suppose that αh
ptq , βh

ptq , γh ptq are given by their equilibrium values. Relative to case (i),

the stock price is less sensitive to the fundamental (B̂ ptq   B ptq), the stock’s price of risk is more

sensitive (β̂ ptq ¡ β ptq) and volatility decreases (B̂ ptqσD
  B ptqσD). The coefficient β̂ ptq can

increase or decrease over time. The coefficient B̂ ptq and the volatility σS
t � B̂ ptq σD increase over
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time. Volatility converges to the volatility of the fundamental, limtÑT σS
t � σD, and can reach a

minimal value at some intermediate time t
�

P p0, T q.

In order to understand the behavior of the price and its characteristics, it is useful to start with

the benchmark pure mean-variance case (i). At the initial date, the uninformed extracts the noisy

signal Z from the price. In the absence of a hedging motive, this information is most valuable

when there is no other source of information, i.e., at the initial date. In the early stages of the

economy, the price is heavily influenced by this initial information and, for this reason, does not

react significantly to fundamental information. Over time, fundamental information accumulates,

reducing the usefulness of the initial piece of information extracted. The impact of fundamental

information (resp. the endogenous noisy signal) on the stock price grows (resp. decreases), thereby

increasing the stock’s volatility. The same phenomenon applies to the price of risk. Its sensitivity to

fundamental information increases, implying that the price of risk volatility increases over time.

Intertemporal hedging, in case (ii), has intricate effects on some of these patterns. The positive

correlation between the stock’s price of risk and the fundamental induces agents to hedge so as to

reduce the sensitivities of their demands to the fundamental. The aggregate demand inherits this

property. Market clearing implies that the sensitivity of the equilibrium market price of risk is

negatively related to the sensitivity of the aggregate hedging demand,

θmt �

σS
t

Γ
�Θt pZq � hmt pZqσ

D
ùñ

Bθmt
BDt

� �

BΘt pZq

BDt
�

Bhmt pZq

BDt
σD.

The sensitivity of the MPR therefore increases. So does the sensitivity of the risk premium. The

price, inversely related to the premium, becomes less sensitive. Volatility therefore decreases relative

to the mean-variance case. Moreover, hedging incentives have a cumulative effect on volatility, which

becomes stronger as the horizon recedes. The volatility discount Bh
ptq � B̂ ptq {B ptq is therefore

smaller at longer horizons (Bh
ptq decreases as T � t increases). When the time to dividend payment

is sufficiently long, volatility can become a small fraction of the volatility of the fundamental and

the volatility of the equilibrium mean-variance price. In such a scenario, private information, which

is the ultimate source of all effects, is a dominant stabilizing force. At the opposite end, when the

payment date approaches, the hedging motive weakens, to eventually vanish, and volatility behaves

as in the pure mean-variance setting. Figure 2 illustrates typical volatility patterns.

Remark 6 Standard local volatility estimators motivated by weak form informational efficiency,

that only condition on the price, are biased in the presence of private information. These esti-

mators converge to the Markovian volatility coefficient σ
S,M
t �

a

limhÑ0 V AR rSt�h � St|Sts {h �

σD
pB ptq

b

1� 2ωi
pAptq{ pBptq rather than σS

t � σD
pB ptq. The bias, σS

t

�

b

1� 2ωi
pAptq{ pBptq � 1




, is

positive if and only if Âptq is positive. A sufficient condition for upward bias is α̂ ptq ¡ 0. This

condition is satisfied for sufficiently large noise trading variance or low informed weight. Even if the

condition fails, Âptq tends to be positive due to the positive leading coefficient in (12). See Figure 2.
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6 Welfare Analysis

This section examines the welfare properties of equilibrium when trading based on private informa-

tion and/or speculation are permitted. In order to carry out a meaningful comparison of welfare

across equilibria with and without private information, expected utilities conditional on initial pub-

lic information, i.e., interim expected utilities, are calculated and compared. The equilibrium with

private information is interim PO if and only if the interim welfare of all agents improves.

6.1 Welfare of Informed and Uninformed Agents

The certainty-equivalent (CE) value of private information is an important component of the welfare

of the informed. It captures the utility gain from the use of private information for trading. It equals,

I
i
pG|Zq �

1

2
E

�

ξiT

» T

0

θ
G|m
t pGq

�

θ
G|m
t pGq � 2θmt

	

dt

�

�

�

�

F
i
0

�

�

1

2
E

�

ξmT

» T

0

θ
G|m
t pGq

�

θ
G|m
t pGq � 2θmt

	

dt

�

�

�

�

F
m
0

�

(20)

where the second equality follows because the informed state price density depends on the in-

verse of the density process of the conditional Wiener measure, i.e., ξGT � ηGT ξ
m
T where ηGT �

pPT pG P dxq {P pG P dxqq�1.11 In the NREE, the value of private information quantifies the dif-

ference between the welfare of the informed and that of the uninformed investor.

In order to compare welfare across economies with and without private information, the equi-

librium public information structure matters. In the economy without private information, in-

formation is homogeneous and generated by the fundamental. In the NREE, the uninformed ex-

tracts the endogenous signal Z from equilibrium. The CE value of this signal for the uninformed

stems from the associated trading gains. It is a quadratic function of the hedge-adjusted WAPR

ϑ pZ|Dtq � Θt pZ;ωq � hmt pZ;ωq, given by,

I
u
pZq �

1

2
E0

�

ξmT

» T

0

ϑt pZ|Dtq
2 dt

�

�

1

2
E

�

ξmT

» T

0

ϑt pZ|Dtq
2 dt

�

�

�

�

F
u
0

�

(21)

where we recall that E0 r�s � E r �|Fm
0 s. The weighted average structure of the WAPR implies that

it can also be written as a linear function of the value of private information for the informed.

Proposition 6 In the equilibrium without private information, all agents are uninformed. Initial

(interim) utilities and wealth levels are,

U
j,ni

� u
�

X
j
0

	

exp

�

�

1

2Γ2

» T

0

�

σ
S,ni
t

	2

dt




, j P tu, iu (22)

11Note that the expectation of a random variable based on the conditional Wiener measure, E r �|G � xs, is the
same as the unconditional expectation of the random variable scaled by the density process of the conditional Wiener
measure, E r �|G � xs � E

�

pηxT q
�1
�

�

.
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X
j
0 � N

j
0

�

D0 �

�

µD
�

�

σD
�2

Γ

�

T

�

, σ
S,ni
t � σD. (23)

Optimal share allocations are equal to the initial share endowments, N i
v � Nu

v � Nn
v � 1 for all v P

r0, T s.12 Consider the NREE with initial share endowments N j
0 � 1 for j P tu, i, nu. Interim expected

utilities differ by the interim value of private information, E0

�

U i
�

� UuE0

�

exp
�

�I i
pG|Zq

��

, where

I i
pG|Zq ¥ 0 is given by (20) and,

U
u
� u pXu

0 q exp

�

�

1

2Γ2

» T

0

�

σS
t

�2
dt�

1

Γ

» T

0

σS
t ϑt pZ|E0 rξ

m
t Dtsq dt� I

u
pZq




  0 (24)

Xu
0 � N

u
0

�

pA p0qZ �

pB p0qD0 �
pF p0q

	

, σS
t �

pB ptqσD (25)

with ϑ pZ|Dtq � Θt pZ;ωq � hmt pZ;ωq.

Interim utilities, in the NREE, can be decomposed as,

U
u
� E0 ru pX

u
T qs � �Γ exp

�

�

Xu
0

Γ




exp p�E0 rξ
m
T log ξmT sq

E0
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� �Γ exp
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0

Γ




E0

�

exp
�

�E
�

ξGT log ξGT
�

�F i
0

���

with Xu
0 � Xi

0 � S0. The first term, in each decomposition, is the value of initial stock holdings,

which is measurable relative to public information. These values are the same because initial endow-

ments correspond to the equilibrium holdings in the economy without private information and are

therefore the same across representative agents.13 The second term, related to the value of the gains

from trade, captures the benefits of trading. The value of the gains from trade for the informed is,

E
�

ξGT log ξGT
�

�F
i
0

�

� E
�

ξGT log ξmT
�

�F
i
0

�

�E
�

ξGT log ηGT
�

�F
i
0

�

� E rξmT log ξmT |F
m
0 s�E rξmT log ηxT |F

m
0 s

|x�G

where E rξmt log ξmT |F
m
0 s is the value of the gains from trade for the uninformed. The increment,

E rξmt log ηxT |F
m
0 s

|x�G �

1

2
E0

�

ξmT

» T

0

θG|mv pxq
�

θG|mv pxq � 2θmv

	

dv

�

|x�G

� I
i
pG|Zq

corresponds to the value of private information (20). It is positive, implying that the informed is

always better off than the uninformed.

It is also instructive to examine the constituents of the value of the gains from trade for the

uninformed. As shown by (24), this value splits in three parts,

�E0 rξ
m
T log ξmT s � �

1

2

» T

0

E0

�

ξmt pθmt q
2
�
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1

2Γ2

» T

0

�

σS
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�2
dt�

1

Γ

» T

0

σS
t ϑt pZ|E0 rξ

m
t Dtsq dt�I

u
pZq .

12 Optimal demands are identical N j
t � Γθmt {σ

S
t . In equilibrium

°

j ω
jN

j
t � 1 so that N j

t � 1 for j P ti, u, nu.
13By assumption, the distribution of initial shares is

�

ωi, ωu, ωn
�

. The representative individual of each group
therefore owns 1 share at the outset. Aggregate endowment is ωi1� ωu1� ωn1 � 1, where 1 is the supply of shares.
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To shed light on this expression, note that θmt � σS
t {Γ � ϑt pZ|Dtq so that pθmt q

2
�

�

σS
t {Γ

�2
�

2σS
t ϑt pZ|Dtq {Γ� ϑt pZ|Dtq

2. The first term, 1
2Γ2

³T

0

�

σS
t

�2
dt, therefore reflects the variance impact

on the endogenous market price of risk. This term is positive because a greater riskiness induces an

increased equilibrium price of risk. The last term, Iu
pZq � 1

2

³T

0
E0

�

ξmt ϑt pZ|Dtq
2
�

dt, is the value

of the endogenous information signal extracted from equilibrium adjusted by the corresponding

hedging term. It is also positive, because information improves the efficiency of the pricing of

risk and the resulting gains from trade. The middle term, 1
Γ

³T

0
σS
t ϑt pZ|E0 rξ

m
t Dtsq dt, captures the

interaction between the risk and information components of the price of risk. This specific form

emerges because the stock volatility is deterministic and the hedge-adjusted WAPR is an affine

function of the fundamental (implying E0 rξ
m
t ϑt pZ|Dtqs � ϑt pZ|E0 rξ

m
t Dtsq). In the equilibrium

without private information, investors are symmetric in all respects. The market price of risk is then

entirely determined by the riskiness of the stock. The value of the gains from trade are completely

driven by the stock’s variance.

The relation between informed and uninformed utilities in the NREE simplifies welfare compar-

isons across equilibria. Both agents are better off if the welfare of the uninformed improves.

Proposition 7 The uninformed is better off in the NREE, ∆u
� Uu

� Uu,ni
¥ 0, if and only if

∆ pPu
pZq

Γ
� ∆pT u

pZq ¥ 0, where ∆P u
pZq � S0�Sni

0 is the gain/loss from the valuation of initial share

endowments (price impact) and ∆T u
pZq is the gain/loss from dynamic trading (trading impact). The

price and trading impacts are,
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pI p0qµφ (26)

∆pT u
pZq �

∆pV
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m
t Dtsq dt� Iu
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where ∆pV �

�

σD
�2 ³T

0

�

pB ptq2 � 1
	

dt   0 is the reduction in the realized variance of the price. The

welfare of the uninformed improves, in particular, if risk tolerance is sufficiently large (limΓÑ�8

∆u
�

�8). For sufficiently small risk tolerance, limΓÑ0∆
u
� �sgn

�

∆pV �∆ pH
	

� 8 where ∆ pH �

2∆ pHS
�∆ pHT , defined in (89)-(90), captures the net effect of hedging on the price impact (2∆ pHS)

and the trading impact (∆ pHT ).

Proposition 7 identifies the sources of welfare gains and losses for the uninformed when private

information trades are allowed. The first effect, ∆ pP u
pZq, captures the price impact on the initial

stock holdings of the uninformed. It can be positive or negative depending on parameter values. It is

positive if the partial dissemination of private information in the NREE causes a sufficient reduction

in risk. The second effect, ∆pT u
pZq, captures the change in the gains from trade. This component

splits into three parts, a riskiness effect (∆V {2Γ2), an informational efficiency effect (Iu
pZq) and

a noise trading beliefs effect (�
³T

0
σS
t ϑ pZ|E0 rξ

m
t Dtsq dt{Γ). Allowing private information trading

reduces the volatility of the stock (
³T

0
pB ptq2 dt   T ). As a result, the market price of risk decreases,

which also reduces welfare. The first part is then negative. It also disseminates private information
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and increases the informational efficiency of the market. Better information improves investment

allocations and leads to welfare gains. The second part is positive. Finally, permitting the use of

private information will prompt the emergence of noise traders, whose activity limits efficiency gains.

The bias induced by their activities can be a source of welfare gains or losses. The third part can

take either sign. Overall, when risk tolerance is large, the positive informational efficiency effect

dominates and the welfare of the uninformed improves. When risk tolerance is small, the riskiness

effect dominates. It increases (decreases) the stock price when hedging does not (does) dominate,

implying a positive (negative) price impact. It also reduces (increases) the price of risk, generating

a negative (positive) trading impact. The price impact dominates leading to an overall welfare gain

(loss).

The next corollary provides further insights. To simplify notation, define,

J �
�

K∆U
1,T

�2
� 4K∆U

0,T K
∆U
2,T , Γ

�

�

2K∆U
0,T

�K∆U
1,T �

?

J
, Γ0 � �

K∆U
1,T

K∆U
2,T

where the coefficients K∆U
j,T for j P t0, 1, 2u are defined in (91)-(93). The coefficients K∆U

0,T ,K
∆U
1,T

depend on Z. In contrast, K∆U
2,T � �

1
2

�

∆pV �∆ pH
	

is independent of Z. With this notation,

Corollary 4 The uninformed is as well off in the NREE as in the equilibrium without private in-

formation under the following conditions,

K∆U
0,T ¡ 0 K∆U

0,T � 0

J ¡ 0 Γ ¤ Γ
�

_ 0 or Γ
�

_ 0 ¤ Γ K∆U
1,T ¡ 0 Γ ¥ Γ0 _ 0

K∆U
1,T   0 Γ ¤ Γ0 _ 0

J ¤ 0 Γ ¥ 0 K∆U
1,T � 0 and K∆U

2,T ¥ 0 Γ ¥ 0

Corollary 4 shows that the welfare of the uninformed depends on hedging. Generically, K∆U
0,T ¡ 0.

Thus, if ∆pV �∆ pH ¤ �2
�

K∆U
1,T

	2

{K∆U
0,T , the uninformed is better off in the NREE as in this case

J ¤ 0. If ∆pV � ∆ pH ¡ �2
�

K∆U
1,T

	2

{K∆U
0,T , the reverse can hold. In this case, an improvement is

nevertheless assured for Γ sufficiently large, i.e., Γ ¥ Γ
�

. Moreover, a necessary condition for the

dominance of the equilibrium without private information is that the net effect of hedging be strictly

positive and sufficiently large, ∆ pH ¡ � ∆pV ¡ 0. Ultimately, the corollary identifies parameter

regions where banning private information reduces the welfare of the uninformed. Figure 3 illustrates

possible configurations.

Remark 7 Utility gains are not monotone in the realized variance change ∆V . The uninformed

can therefore be worse off in the presence of private information despite the fact that volatility de-

creases. This property cannot hold in a static model where maximizing CARA utility is equivalent to

mean-variance maximization. In dynamic models, intertemporal hedging alters the monotone relation

between volatility and welfare found in static models.
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6.2 Welfare of Noise Trader

Let fφ|Z px|Zq (resp. fG|Z px|Zq be the Gaussian density of φ (resp. G) conditional on Z. The

likelihood ratio Lφ,G px|Zq � fφ|Z px|Zq {fG|Z px|Zq captures the beliefs divergence between the

noise trader and the informed. Explicit formulas are in the proof of Corollary 6 in Appendix B.

Corollary 5 The noise trader’s interim utility is E0 rU
n
pφqs � UuE0

�

exp
�

�I i
pG|Zq

�

Lφ,G pG|Zq
�

where Lφ,G pG|Zq � fφ|Z pGq {fG|Z pGq. The noise trader is as well off as the uninformed trader if

and only if E0

�

exp
�

�I i
pG|Zq

�

Lφ,G pG|Zq
�

¤ 1. The noise trader is as well of as the informed if

ωi
� ωn, V AR rGs � V AR rφs and E rφs � E rGs, so that Lφ,G pG|Zq � 1.

The corollary expresses the interim welfare of the noise trader relative to that of the uninformed.

The interim utility differential stems from the difference in the gains from trade, reflected in the CE

I i
pG|Zq, and the difference in beliefs, reflected in the likelihood ratio Lφ,G pG|Zq. If the noise trader

happens to have the same conditional beliefs as the informed, i.e., if the conditional distributions of

φ and G given public information coincide, then Lφ,G pG|Zq � 1. In this case, the interim utilities

coincide, E0 rU
n
pφqs � UuE0

�

exp
�

�I i
pG|Zq

��

� E0

�

U i
pGq

�

.

6.3 Pareto Optimal NREE

The relations between interim utilities in the NREE simplify welfare comparisons across equilibria.

Pareto dominance of the NREE over an equilibrium where investors are symmetric is ensured if the

interim welfare of the uninformed and the noise trader improves.

Corollary 6 The NREE is (weakly) interim PO if and only if ∆u
¥ 0 and the certainly equiv-

alent gain of the noise trader gain is sufficiently high, �Γ logE0

�

exp
�

�I i
pG|Zq

�

Lφ,G pG|Zq
�

¡

�∆ pP pZq � Γ∆pT u
pZq. If µφ

� E rGs, ωi
� ωn and V AR rφs � V AR rGs, then the interim and

therefore also the ex-ante utilities of the noise trader and the informed are identical, E0 rU
n
pφqs �

E0

�

U i
pGq

�

and E rUn
pφqs � E

�

U i
pGq

�

. In this case, the NREE is (weakly) PO under the conditions

of Corollary 4.

The conditions for weak Pareto optimality ensure that all agents are as well off. When risk

tolerance converges to zero, the uninformed utility eventually becomes at least as large in the NREE

because of the price impact (Proposition 7). At the same time, if beliefs are unbiased, the differ-

ential trading impact vanishes, ensuring that the noise trader attains the same ex-ante utility as

the uninformed. The NREE becomes PO. If the noise trader happens to have the same beliefs as

the informed, he/she reaches the same ex-ante utility. The NREE is then PO under the conditions

ensuring that the uninformed agent is as well off.

Corollary 6 has ramifications for market regulation. Permitting private information trades is

Pareto efficient when risk tolerance is sufficiently low, or sufficiently large and 0 ¤ ∆u
�In

� ∆T n

holds. In those cases, either the informational efficiency gains or the decrease in the riskiness of the

stock market dominate, leading to a welfare improvement. Scope for regulation exists in intermediate

cases. In these cases, factors such as the behavior of the noise trader, the properties of dividends
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and the weights of the various investor populations matter, and have to be evaluated to determine

the relevance of regulatory constraints.

Corollary 7 Suppose that ∆ pP pZq � Γ∆pT u
pZq ¡ Γ logE0

�

exp
�

�I i
pG|Zq

�

Lφ,G pG|Zq
�

and that

the conditions of Corollary 4 hold. The NREE is then (weakly) PO.

Under the corollary’s conditions, regulation banning usage of private information reduces welfare.

Remark 8 The results above extend Leland’s (1992) analysis to a dynamic competitive setting. In

a static framework, the dynamic trading components p∆T n,∆T u
q are absent. So are intertemporal

aspects of the price impacts p∆Pn,∆P u
q, such as volatility (∆V ). As conjectured by Leland, some

dynamic effects, e.g., hedging effects, can dampen the price impact.14 However, for sufficiently high

risk tolerance, the trading impact dominates and ensures Pareto optimality.

Remark 9 Suppose that information production costs C ¡ 0. The assertions in this section re-

main valid under the additional condition that the certainty equivalent gain for the informed be

non-negative, GA � CEi,wa
� CEi,na

¥ 0. Here CEi,wa
� �Γ logE

�

U i
�

� C with log U i
�

�

S0

Γ
�E

�

ξGT log ξGT
�

�F i
0

�

is the ex-ante certainty equivalent of the informed in the NREE with infor-

mation and CEi,na
� D0�µDT�

p

σD
q

2

2Γ
is the ex-ante certainty equivalent in the no-trade equilibrium

without information.

6.4 Speculation and Pareto Optimality

In order to pinpoint the role of speculation, suppose that the noise trader behaves as an uninformed

agent. The population weights are then ωn
� 0 and ωu

� 1 � ωi. Let Ens denote the resulting

equilibrium without speculation. Also assume that the information production cost is C ¡ 0.

Corollary 8 Under the conditions of Corollary 7 and Remark 9, the NREE Enree Pareto dominates

the equilibrium without speculation Ens . Dominance holds whether informed agents act independently

or coordinate and act as a group.

In the absence of speculation, the stock price conditional on information acquisition is fully

revealing. In this equilibrium, all individuals observe the signal G which becomes public information.

The CE value of private information is then null, I i
pG|Zq � 0. The absence of a reward for

information acquisition combined with its cost imply that the representative informed is worse off

than the uninformed. There are no incentives to acquire.

Recall now that the representative informed is actually composed of a continuum of identical

informed agents. If these individuals act independently, they will each choose not to acquire infor-

mation (free rider problem). The resulting equilibrium is a no information equilibrium in which all

agents are identical and common information flows are generated by the fundamental.

14“Insider trading “moves up” the resolution of uncertainty. This one time benefit may be relatively more important
in a two-period model than in a multiperiod model. If so, my results may overestimate the benefits from insider trading.
But we must await the development of multiperiod rational expectations models to answer this question definitively.”
(Leland (1992), p. 885).
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If all agents coordinate and act as a group, they compare their ex-ante utilities with and without

acquisition. In both cases equilibrium is fully revealing. The informational content, however, differs

across equilibria. With acquisition, the private signal G is disclosed and the common information flow

is F i
p�q

� FD
p�q

�

σ pGq. Without acquisition, the common flow is FD
p�q

. Again, information acquisition

is not rewarded. The corresponding ex-ante CEs for the informed are,

CEi,wa
� E rSwa

0 s �

1

2Γ
V AR pSwa

0 q �

1

2Γ

» T

0

�

σS,wa
v

�2
dv � C

CEi,na
� E rSna

0 s �

1

2Γ
V AR pSna

0 q �

1

2Γ

» T

0

�

σS,na
v

�2
dv

where,

E rSwa
0 s � D0 � µDT �

1

Γ

» T

0

�

σS,wa
v

�2
dv, σ

S,wa
t �

�

σζ
�2

H ptq
σD

E rSna
0 s � D0 � µDT �

1

Γ

» T

0

�

σS,na
v

�2
dv, σ

S,na
t � σD

V AR rSwa
0 s �

�

σD
�2

T

H p0q
V AR pGq �

�

σD
�2

T, V AR rSna
0 s � 0.

The gain for acquiring GA � CEi,wa
� CEi,na is therefore,

GA � �

1

2Γ

�

» T

0

�

�

σS,wa
v

�2
�

�

σS,na
v

�2
	

dv � V AR rSwa
0 s � V AR rSna

0 s

�

�C � �

» T

0

�

σ
S,wa
v

	2

2Γ
dv�C

where the right hand side follows from
³T

0

�

σ
S,na
v

	2

dv � V AR rSwa
0 s. This gain is strictly negative.

The optimal choice under coordination is again to forego information acquisition.15,16

In summary, in the absence of speculation, the equilibrium is non-informative irrespective of the

behavior of the informed. With speculation and acquisition, equilibrium is the NREE described in

previous sections. The conditions in Corollary 7 ensure that the NREE is weakly PO, hence Pareto

dominates the non-informative equilibrium. Under these conditions, regulation banning beliefs-based

speculation is welfare reducing (see Figure 4).

7 Regulating Informed Trading: an Implementable Optimal Rule

Informed trading is a major challenge for regulatory agencies. Commonly advocated policies, such

as short sales constraints, restrict the choices of all investors and have adverse welfare consequences.

15The CE expressions apply to all agents in the economy. The optimal choice under coordination is to forego
acquisition even if costs are shared across agents.

16The expression for informed utility in Proposition 6 shows that the information acquisition decisions in static and
dynamic NREE differ. In a static CARA setting, more precise information decreases volatility, which increases the
interim informed utility. Likewise, more speculation (higher σφ) increases the incentive to acquire information. In a
dynamic setting, the informed utility is not monotone in volatility and more speculation does not always increase the
incentive to acquire information.
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Recent regulations, such as disclose-or-abstain, eliminate incentives for information collection and

reduce market efficiency. This section studies the properties of an Information Trading Tax (ITT).

The ITT is a contingent Tobin tax, so a transaction tax, designed to enforce the PO outcome. It

can be implemented by a regulatory agency relying solely on public information.

To pave the way, the next proposition examines the issue of recoverability of structural parameters

under public information. Before stating this result, note that the observation of D,S reveals the

volatilities σD, σS .17 The volatility coefficient pB ptq � σS
t {σ

D, as well as its growth rate Φ ptq �

Bt log pB ptq, are therefore known. Likewise, the informational variable dχ ptq �
�

σS
t {σ

D
�

dDt � dSt is

observed. With these preliminaries,

Proposition 8 Consider an agent with information filtration F
D,S

p�q

. The unknown parameters ω, σζ ,

β, pβ, βh, ωu can be recovered from the limit growth rate ΦT � limtÑT Φ ptq and Φ pτq for some

τ P r0, T q. The remaining unknown parameters µD, µφ, σφ, ωi, ωn,Γ and the endogenous signal Z

can be inferred by sampling χ ptq at a finite number of time points. All other equilibrium quantities,

with the exception of the private signal G and the noisy signal φ, are functions of observables and

the recovered parameters.

The recoverability result in Proposition 8 is strong. It establishes that price and fundamental

information are sufficient to identify the unknown parameters of the economy, including the risk

tolerance Γ and the endogenous public signal Z. Knowledge of the volatilities σD, σS ensures that

the volatility ratio pB ptq � σS
t {σ

D is known and that the parameters ω, σζ , pβ, βh affecting it can

be identified. This follows because pB ptq can be written solely as a function of ω, s, σD and ΦT ,

where s �
�

ωn
{ωi

�2 �
σφ
{σζ

�2
. Inverting the pair pB ptq , pB pvq at two dates t, v yields ω, s, which also

reveals
�

σζ
�2
�

�

1�ωs
1�s

	�

�

σD
�2
{ΦT

	

. The coefficients β, pβ, βh, that can also be expressed in terms

of ω, s, σD,ΦT are then known.

Information contained in the synthetic informational variable dχ ptq �
�

σS
t {σ

D
�

dDt � dSt is

instrumental as well. A simple calculation shows that χ ptq is locally deterministic with drift
�

σS
t {σ

D
�

µD
�

�

µS
t � σS

t θ
D|m
t

	

. This drift is therefore observed and contains information about

the fundamental drift µD, the stock’s risk premium µS
t and the price of risk θ

D|m
t associated with

the endogenous signal Z. In fact, it can be written as a function of observables and the unknowns

µD, µφ, σφ, ωi, ωn,Γ, Z. Using a sufficiently large, but discrete sample, and inverting will then reveal

the unknown parameters.

Proposition 9 Let Ξ �

 

ω, σζ , µD, σD, µφ, σφ, ωi, ωn,Γ
(

be the collection of parameters and P be

the set of parameters in Corollaries 4 and 7 such that the NREE is Pareto dominated. A regulator

observing the fundamental and stock price can implement a contingent trading tax, the ITT, that en-

forces a PO equilibrium. The ITT equals
�

CEi,wa
� C �CEi,na

�

1σS
0
 σD

XΞPP , with CEi,wa, CEi,na

as defined in Remark 9.

By observing the fundamental and stock price, a regulator can make two key inferences. First,

the regulator can determine whether informed trading has occurred or not. The price volatility

17Note that 2 pdSt{St � d log Stq {dt �
�

σS
t

�2
, respectively,

�

dD2
t � 2DtdDt

�

{dt �
�

σD
�2
.
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is revealing in that regard. There is conclusive evidence of informed trading if it is less than the

volatility of the fundamental. Second, as per Proposition 8, the regulator can determine all the

unknown parameters of the economy. This includes the risk tolerance Γ and the endogenous signal

Z. Based on that information, the regulator can infer the thresholds Γ
�

,Γ0 and determine whether

trading based on private information is Pareto improving or not. If it is not, a contingent trading

tax equal to the informed gross CE gain, i.e., gross of production cost, can be imposed on all traders.

Such a tax will deter informed trading irrespective of the cost of information production and ensure

that the PO equilibrium without private information prevails. The revenues from this contingent

tax are therefore null.

8 Optimal Information Production Infrastructure

This section endogeneizes the frequency at which private information is produced.

Let ℑ pnq �
!

tnj : j � 0, ..., n
)

be an equidistant partition of the time interval r0, T s, with tn0 � 0

and tnn � T . The last date tnn is the dividend payment date. Each other date tnj represents an

information arrival (production) time. The interarrival time is tnj � tnj�1 � ∆n. It represents the time

required to produce the next signal. The partition ℑ pnq is an information production infrastructure

with n arrival dates. Such an infrastructure has an upfront cost C pnq, an increasing function of

the number of arrival dates. Once the upfront cost has been paid, the infrastructure produces a

proprietary signal Gj � DT �ζj at time tnj , j � 0, ..., n� 1, where ζj � N

�

0,
�

σ
ζ
j

	2



and the noise

process ζ � tζj : j � 0, ..., nu is independent of all other uncertainty (but ζj, ζk could be correlated

for j � k). The ex-ante utility associated with the infrastructure ℑ pnq is V i
pnq. The informed

selects n so as to maximize ex-ante utility subject to his/her budget constraint.18

Once the information infrastructure is set up, it enters production and generates the sequence of

private signals described above. Let Nt be a deterministic counting process that tallies the number of

signals received up to time t. The vector of private signals received by time t is G1

t � rG1, . . . , GNts.

This vector increases in size every time a new signal arrives.

The noise trader emulates the behavior of the informed, but based on the sequence of irrelevant

forecasts φ1t � rφ1, . . . , φNts instead of Gt. Noise trading beliefs are identical to informed beliefs,

except that they are parameterized by φ instead of G. The rest of the economy remains unchanged.

The certainty equivalent of the information infrastructure ℑ pnq is,

CEi
pnq � �Γ logE

�

exp

�

�

Sn
0

Γ
�Kn

0 �E

�

n�1̧

k�0

k
¹

i�0

ξmtni ,t
n
i�1

∆DKL
tn
k

�

�

�

�

�

F
m,n
0

���

�C pnq

where Sn
0 � E

�

±n�1
i�0 ξmtni ,t

n
i�1

DT

�

�

�

Z1

�

and ∆DKL
tn
k

is the change in the Kullback-Leibler divergence

18The cost of modifying the infrastructure once it is built is assumed to be prohibitive.
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measure between the signal density conditional on initial information F
m,n
0 and information F

m,n
t ,

∆DKL
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k
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2
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�
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Finally, denote by ζNt the Nt � 1 vector of signals before time t.

Proposition 10 The optimal information structure has n� information production dates, where

n� ¥ 1 solves the inequality,

�Γ log
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�

�

�
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�
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m,n�

0
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¤ C pn� � 1q�C pn�q .

Furthermore, if 1{11Nt
V AR rζNts

�1 1Nt Ó

�

σζ
�2

for some constant
�

σζ
�2

P p0,�8q (no-singularity

condition) and the cost increment ∆kn � C pn� 1q �C pnq is bounded away from zero (boundedness

condition), then n�   8.

The choice of an optimal information production infrastructure trades off the marginal utility

benefit with the marginal cost. The marginal utility benefit depends on the incremental CE value

of the information structure. When the latter falls below the marginal cost, raising the frequency

at which information is produced becomes suboptimal. The optimal frequency is the solution of the

equality that attains the highest expected utility.

The no-singularity (NS) condition prevents an asymptotic arbitrage. As shown in Proposition

11, an increase in the number of signals is isomorph to a reduction of the variance of the signal error.

If the signal error disappears, there is an asymptotic arbitrage opportunity because the limiting risk

neutral probability measure is not absolutely continuous. Condition NS guarantees that information

remains noisy in the limit.

Remark 10 Condition NS is a weak restriction on the information infrastructure. For instance, it

holds when the noise process is ζtnk � ζ � ζ̄tn
k
where ζ is a common component. In this case,

V AR rζNts �

�

σζ
	2

1Nt1
1

Nt
� V AR

�

ζ̄Nt

�

V AR
�

rζt

�

�

1

11Nt
V AR rζNts

�1 1Nt

�

�

σζ
	2

�

1

11Nt
V AR

�

ζ̄Nt

�

�1
1Nt

Ó

�

σζ
	2

as Nt Ñ 8. Information is asymptotically incomplete and it is therefore optimal to acquire a finite

number of signals when the cost increment is bounded away from zero.
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The boundedness (B) condition on the cost increment also represents a mild restriction. In

practice, it becomes prohibitively costly to increase the private information frequency beyond some

level. Information production methods, which are typically time intensive, are simply unable to

generate arbitrarily large numbers of non-redundant signals.

Under conditions NS and B, the optimal information structure produces signals at a finite

frequency. The endogenous arrival frequency of private news is therefore lower than the arrival

frequency of public news. The asynchrony of information flows is an endogenous phenomenon.

Remark 11 The optimal infrastructure consists of a single signal at the initial date if the maximal

solution of the inequality in Proposition 10 is n� � 1. This outcome arises, in particular, if the cost

of producing multiple signals is sufficiently large.

The next result describes equilibrium in this multi-signal environment.

Proposition 11 The information flow generated by the vector signal process G1

t � rG1, . . . , GNts

is equivalent to the information flow generated by the univariate process rGt � DT �

rζt where

rζt �
ζ1Nt

V AR
r

ζNts
�1

1Nt

11Nt
V AR

r

ζNts
�1

1Nt

. The noise trader using the conditional beliefs of the informed evaluated at the

vector randomization process φ1t � rφ1, . . . , φNts is identical to a noise trader using conditional beliefs

based on the distribution of rGt and evaluated at the univariate randomization φ̃t �
φ1Nt

V AR
r

φNts
�1

1Nt

11Nt
V AR

r

ζNts
�1

1Nt

.

The resulting NREE has the same structure as in Proposition 5, but with
�

σζ
�2
� V AR rζs replaced

by the time-varying variance
�

σ
rζ
t

	2

� V AR
�

rζt

�

,
�

σφ
�2
� V AR rφs replaced by

�

σ
φ̃
t

	2

� V AR
�

rφt

�

and Z replaced by rZt � ωi
rGt � ωn

rφt.

Proposition 11 is an information aggregation result. It shows that the sequential observation of

the collection of noisy signals pertaining to the terminal dividend payment, Gt, is informationally

equivalent to the reception of a univariate signal with time-varying noise, G̃t. The filtration generated

by the two signal structures is effectively the same. Simple adjustments to the formulas in Section

5, as described in the proposition, lead to the NREE in this multi-signal setting.

Corollary 9 The volatility of the stock price σS
t �

pB ptqσD jumps down at information arrival times

t � tj, j � 1, ..., J and increases in between private information arrival times t � tj , j � 1, ..., J .

Private information has a stabilizing effect on price volatility.

Each time a new private signal arrives, it partially disseminates through the market. Dissemina-

tion is partial, because the activity of the noise trader hides the true value of the signal. Nevertheless,

instantaneously, all market participants acquire new information about the future dividend. They

immediately become less responsive to public news, such as information carried by the fundamental.

This instantaneous reaction lowers volatility at arrival times. Between arrival times, the information

related to past private signals does not change, whereas new fundamental information keeps mate-

rializing. Investors therefore become progressively more responsive to public news. The sensitivity

of demands to public news increases, ultimately leading to an increase in the stock price volatility.
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In the limit, as the dividend date approaches, past private information becomes irrelevant and the

stock price volatility converges to the volatility of the fundamental. Overall, private information

has a stabilizing effect. It lowers the price volatility relative to an economy without private signals.

With multiple signals, it lowers volatility at each arrival time. As described in earlier sections, this

recurring reduction in volatility is a source of welfare benefits for all agents involved.

9 Extensions

Various extensions of the model are now considered. Section 9.1 studies heterogeneous risk tolerances.

Section 9.2 deals with differential information. Section 9.3 allows for a dividend surprise. It is shown

that these extensions can all be mapped into the structure analyzed in Sections 2-5. Section 9.4

presents the NREE in a setting with a stochastic speculation process.

9.1 Heterogeneous Risk Tolerances

Suppose that risk tolerances are heterogenous, Γu
� Γi

� Γn. The NREE is described next.

Proposition 12 Consider the economy with heterogeneous risk tolerances Γu
� Γi

� Γn. A com-

petitive NREE exists. It is given by the formulas in Proposition 5, where risk tolerance Γ is replaced

by the aggregate risk tolerance Γa
�

°

jPtu,i,nu ω
jΓj and where population weights

�

ωi, ωn, ω
�

are re-

placed by risk-tolerance-adjusted weights prωι, rωn, rωq with rωι
� ωιΓι

{Γa for ι P ti, nu and rω � rωi
�rωn.

The endogenous public signal becomes rZ � rωiG� rωnφ, thus depends on risk tolerance. The WAPR

and the stock price volatility also depend on risk tolerance.

The heterogeneity in risk tolerances has an effect on the informational content of equilibrium.

When the ratio Γn
{Γi increases, the endogenous signal becomes less precise and informational effi-

ciency decreases. The noise trader invests more aggressively, relatively speaking, which clouds the

information conveyed by the residual demand. In the limit, when the noise trader becomes infinitely

more risk tolerant than the uninformed so that Γn
{Γi

Ñ8, the endogenous signal is overwhelmed by

noise and the private signal of the informed remains concealed. At the opposite end of the spectrum,

when Γn
{Γi

Ñ 0, equilibrium fully reveals the private information available.

The diversity in risk attitudes has multiple effects on volatility. The next corollary describes the

impact of an increase in the ratio of risk tolerances between the noise trader and the informed.

Corollary 10 Suppose that Γn
{Γi increases, but Γa stays constant. Then, BB ptq ¡ 0, Bβh

ptq   0

and BB̂ptq   0 for all t P r0, T s. Thus, BσS
t   0 for all t P r0, T s. Intertemporal hedging has a taming

effect on the reaction of volatility to the increase in the tolerance ratio Γn
{Γi.

Under the conditions of the corollary, the endogenous information revealed becomes less precise.

In the absence of hedging, investors increase their reliance on fundamental information, which in-

creases the price volatility (BB ptq ¡ 0). Intertemporal hedging has a taming effect. It causes agents

to reduce the sensitivities of their individual demands to the fundamental, which reduces the sensi-

tivity of the aggregate demand (Bβh
ptq   0). To ensure market clearing, the sensitivity, hence the
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volatility, of the equilibrium market price of risk must increase. The negative relation between the

stock price and its risk premium explains the taming effect on the stock price volatility.

9.2 Differential Information

Suppose that there is a continuum of informed investors, ι P r0, 1s , distributed on the unit interval

according to the measure µ pdιq. Informed agent ι receives the private signal Gι
� DT � ζ � ζι,

where ζ i, ζ are mutually independent Gaussian random variable with mean zero. Assume further

that there is a continuum of noise traders, so that each informed agent has a follower. Noise trader

ι has the same beliefs as informed agent ι , but evaluated at φι
� φ � ει. The random forecast φι

consists of a common component φ and an independent Gaussian random variable ει with mean

zero. All other components of the economy remain the same as before.

Let ςιt � V AR rζιs {V ARt rG
ι
s be the ratio of the idiosyncratic signal noise relative to the public

signal, i.e., the inverse signal-to-noise ratio.

The next proposition shows that the NREE is given by the formulas in Proposition 5 with

adjusted coefficients. The adjustments required depend on population moments involving the signal-

to-noise ratios, namely ̺
r1s
t �

³1

0

µpdιq
1�ςιt

and ̺
r2s
t �

³1

0

�

1
1�ςιt

	2

µ pdιq. They modify the coefficients of

the ODEs that determine the parameters β̌
h
, α̌h, γ̌h of the aggregate hedging demand.

Proposition 13 Suppose that,

(i) The signal noise has a systematic component ζ and an idiosyncratic component ζι:
³1

0
ζιµ pdιq �

limNÑ8

N�1
°N

i�1 ζ
i
� 0.

(ii) The speculative signal forecasts of noise traders have a systematic component φ and an idiosyn-

cratic component ει:
³1

0
ειµ pdιq � limNÑ8

N�1
°N

i�1 ε
i
� 0.

Under conditions (i) and (ii), the equilibrium with differentially informed investors is identical

to the NREE with a representative informed investor described in Proposition 5, but with coefficients

αh, βh, γh replaced by α̌h, β̌
h
, γ̌h where:

(a) β̌
h
solves the same Riccati ODE as βh in (37) but with κ0, κ1 in (38) replaced by κ̌0, κ̌1 in (94),

(b) α̌h, γ̌h are as αh, γh in (39), but with κj, j � 2, ..., 5 in (40)-(43) replaced by κ̌j , j � 2, ..., 5 in

(95)-(98).

A competitive NREE for an economy with purely differential information (non-hierarchical infor-

mation structure) is obtained by setting ωu
� 1� ωi

� ωn
� 0. The NREE in Proposition 5 without

differential private information is recovered by setting ςit � 0.

Coefficients in the NREE with differential information are modified by the inverse signal-to-noise

ratio ςιt of the idiosyncratic components ζι. The assumption that the private information signals differ

by idiosyncratic noise components implies that the infinite regress problem, typically associated with

non-hierarchical information structures (see Townsend (1983)), does not arise. This assumption

ensures that only the systematic information component matters in the aggregate. It implies that

the equilibrium information flow is generated by D,Z, as in the equilibrium without differential

information. A NREE exists and is given by the formulas in Proposition 5, with suitably adjusted
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parameters. All properties documented in Sections 5 and 6 continue to hold. In particular, welfare

implications and Pareto rankings of equilibria are as in the model without differential information.

The price impact and gains from trade impact are obtained by using the adjusted coefficients.

If ζ � ωu
� 0, the model specializes to a setting with differential information similar to He and

Wang (1995), but with endogenous noise trading demand instead of exogenous stochastic supply.

9.3 Dividend Surprise

Suppose that rDT � DT� � ǫ where ǫ represents a surprise, i.e., a jump. The jump size ǫ is assumed

to be normally distributed and independent of the signal noise ζ and of FD
T . Furthermore, suppose

that private information pertains to the continuous part of the dividend, G � DT� � ζ.19

Proposition 14 The equilibrium stock price rSt is,

rSt �

#

St �E rǫs �
V ARrǫs

Γ
for t   T

St � ǫ for t � T
(28)

where St is the price in the absence of a surprise, described in Proposition 5. The price jump at T

is ∆rST � ǫ � E rǫs �
V ARrǫs

Γ
. The volatility and risk premium are unaffected by the surprise. The

risk premium converges to ET�

�

∆rST

�

�

V ARrǫs
Γ

as T approaches. The conditional variance of the

terminal price jump converges to V ART�

�

∆rST

�

� V AR rǫs. The equilibrium at T
�

is a symmetric

no-trade equilibrium where N ι
T� � 1 for ι P tu, i, nu.

The dividend surprise at the terminal date does not affect the informational content of equilib-

rium, prior to the payment date. It also leaves the structure and properties of equilibrium unchanged.

The reason for this irrelevance result is the absence of information regarding the eventual surprise.

The stock price volatility in this setting is still driven by the volatility of the fundamental.

Volatility, in the NREE, has the same properties relative to the equilibrium without private infor-

mation. The welfare properties of equilibrium and the Pareto dominance of the NREE under the

conditions outlined in Section 6 continue to apply.

9.4 Equilibrium with stochastic speculation process

Consider now a speculative noise trader who uses the signal process φt � φ0�Vt where φ is a Gaussian

random variable and Vt �
³t

0
σφ
ps, tq dW

φ
v with deterministic function σφ

ps, tq is a Gaussian process

independent of φ and FD
t . The random variable φ represents speculation about the private signal

G. The process V is extraneous speculative noise. The NREE is described next.

Proposition 15 A NREE exists if the system (104)-(111) has a solution. The endogenous signal

is Z0 � ωiG � ωnφ0 and the public information flow is Fm
p�q

� F
D,Wφ

p�q

�

σ pZ0q. In the NREE, the

19 The dividend paid, DT , differs from the terminal value of the fundamental DT� by the independent random
variable ǫ. Private information pertains to the fundamental value DT�.
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stock price and the market price of risk are,

St � ΥZ
ptqZ0 �ΥD

ptqDt �ΥV
ptqVt �Υ0

ptq

θSt �
µS
t

σS
t

� ϕZ
ptqZ0 � ϕD

ptqDt � ϕV
ptq Vt � ϕ0

ptq

where ΥZ ,ΥD,ΥV ,Υ0 are deterministic coefficients defined in (112)-(113) and ϕZ , ϕD, ϕZ , ϕ0 are

deterministic coefficients satisfying (104)-(107). The stock price volatility is σS
t � }σt} where σ1t �

�

σ
S,D
t , σ

S,Wφ

t

�

solves (111). The stock price evolves as dSt � µS
t dt� σS

t dW
S
t where

dW S
t � ρ

S,D
t

�

dWD
t � θ

Z|D
t dt

	

�




1�
�

ρ
S,D
t

	2

dW
φ
t

is a Brownian motion, ρS,Dt � σ
S,D
t {σS

t is the correlation coefficient between the stock price and the

fundamental and θ
Z0|D
t , the information price of risk of the endogenous signal, is as in the equilibrium

with non time-varying belief-based speculation (Vt � 0).

The equilibrium filtration is now generated by the independent Brownian motions WD and W φ,

enlarged by the initial endogenous signal Z0. The financial market is therefore incomplete. Given

CARA utility and constant interest rate, the shadow price of incompleteness is null, i.e., the minimal

martingale measure solves the dual problem. The structure of equilibrium is then as before except

for the additional noise factor Vt in the price. This stochastic factor is a source of excess volatility.

Corollary 11 There is excess volatility, σS
t ¡ σD, at t   T if and only if }̺ ptq } ¡ 1, where,

̺ ptq �

�

1

0

�

�

» T

t

�

σD
�

ϕD
pvq ρ

S,D
v � βD

pvq
	

σφ
pt, tqϕV

pvq ρ
S,D
v

�

dv.

A necessary condition for excess volatility is,

9σS
t �

�

ρ
S,D
t

	2

ϕD
ptqσD

� σDβD
ptq ρ

S,D
t � ρ

S,D
t




1�
�

ρ
S,D
t

	2

ϕV
ptq σV

  0 for some t P r0, T s.

If t Ñ T , then ρ
S,D
t Ñ 1 and ϕD

ptq Ñ �β pT q, so that limtÒT 9σS
t � �

�

β pT q � βD
pT q

�

σD
¡ 0. As

T approaches, the price volatility converges to the volatility of the fundamental σD from below.

As there are two Brownian motions, the stock price is imperfectly correlated with the funda-

mental. This can give rise to excess volatility in periods where correlation is low. As the dividend

payment date approaches, the correlation converges to one and the stock price volatility falls below

the fundamental volatility. As discussed next, the presence of private information reduces volatility.

Remark 12 Consider the economy without private information and where the noise trader speculates

based solely on the extraneous noise V . The equilibrium filtration is Fm
p�q

� F
D,Wφ

p�q

. The equilibrium

stock price and market price of risk are St � Dt �ΥV,ni
ptqVt�Υ0,ni

ptq and θS,ni ptq � ϕV,ni
ptqVt�
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ϕ0,ni
ptq where coefficients satisfy (116)-(117) and (121). The volatility σ

S,ni
t in (115) is larger than

the fundamental volatility σD before T and converges to σD from above as T approaches. There is

excess volatility. Consider next the economy with private information and noise trading based on

both an irrelevant forecast φ0 of G and the extraneous noise process V . In this NREE, volatility is

lower than in the benchmark economy. Private information again stabilizes the market.

10 Conclusion

This paper studied the effects of information production and speculation on the structure and prop-

erties of a non-stationary noisy rational expectations equilibrium. Private information dissemination

was found to have a stabilizing effect, as it reduces the volatility of the stock price. Costly in-

formation production, resulting in asynchrony between private and public information flows, leads

to an increase in volatility in between information arrival dates. Private information, although

fundamentally detrimental to non-informed agents, has nevertheless welfare benefits for all market

participants. By lowering risk, it increases the value of the stock and therefore of initial allocations.

By disseminating through the market, it improves the decisions of investors and the resulting gains

from trade. For economies with sufficiently high or low risk tolerances, the welfare benefits offset

the costs for all agents involved. Under these conditions, the NREE with private information trades

Pareto dominates the equilibrium without private information collection. Speculation plays a central

role. In its absence, incentives for information collection vanish and the potential welfare benefits of

information are lost.

The dynamic model developed in the paper is tractable and produces closed form solutions for

the NREE, with the exception of a single coefficient. It therefore offers a useful platform to examine

complex issues related to information asymmetry in financial markets. For instance, it provides

a natural setting to further study policy questions. Should trades based on private information be

banned? The results in this paper suggest that an outright ban may not be best for society and that a

contingent trading tax may be a useful regulation to consider. Admittedly, such a regulation requires

some degree of distributional knowledge as well as monitoring and inference skills by the regulator.

Nevertheless, in the context of the model, it implements the PO equilibrium. Likewise, should

speculation be restricted and if so in what ways? These questions are fundamental for the smooth

functioning of financial markets and the welfare of market participants. Further analysis requires

extensions of the model incorporating more general specifications of the economic environment and is

therefore beyond the scope of the present study. Issues such as these could prove interesting avenues

for future research.

Appendix

Appendix A: Conditional Moment Formulas

The next lemma provides formulas for the conditional moments of the fundamental under a change of measure.
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Lemma 1 Define d rP z
� exp

�

�

1

2

³T

0
f pzq

2
dv �

³T

0
f pzq dWD

v

	

dP where f pzq � �

�

rα ptq z � rβ ptqDt � γ ptq
	

and

rα, rβ, γ are functions of time. The first two conditional moment of D under rP z for s ¥ t are,

rE
z
�

Ds|F
D
t

�

� a1 pt, sq z � b1 pt, sqDt � g1 pt, sq (29)

rE
z
�

D
2

s

�

�F
D
t

�

� a2 pt, sq z � b2 pt, sqDt � c2 pt, sqDtz � d2 pt, sq z
2
� b1 pt, sq

2
D

2

t � g2 pt, sq (30)

where,

a1 pt, sq � σ
D

» s

t

b1 pv, sq rα pvq dv, b1 pt, sq � exp

�

σ
D

» s

t

rβ puq du




, g1 pt, sq �

» s

t

b1 pv, sq k pvq dv

a2 pt, sq � 2

» s

t

b1 pv, sq
2

�

k pvq a1 pt, vq � σ
D
rα pvq g1 pt, vq

	

dv, k pvq � µ
D
� σ

D
γ pvq

b2 pt, sq � 2

» s

t

b1 pv, sq
2
k pvq b1 pt, vq dv, c2 pt, sq � 2σD

» s

t

b1 pv, sq
2
rα pvq b1 pt, vq dv

d2 pt, sq � 2σD

» s

t

b1 pv, sq
2
rα pvq a1 pt, vq dv, g2 pt, sq � 2

» s

t

b1 pv, sq
2

�

�

σD
�2

2
� k pvq g1 pt, vq

�

dv.

Moreover, BDt
rEz
�

Ds|F
D
t

�

� b1 pt, sq and BDt
rEz
�

D2
v

�

�F
D
t

�

� b2 pt, vq � c2 pt, vq z � 2b1 pt, vq
2
Dt.

Proof of Lemma 1. Using rEz
�

Ds|F
D
t

�

� Dt � µD
ps� tq � σD

rEz
�

WD
s �WD

t

�

�F
D
t

�

, rEz
�

WD
s �WD

t

�

�F
D
t

�

�

�

rEz
�

³s

t

�

θmv � θ
Z|D
v pzq

	

dv
�

�

�

FD
t

�

and rEz
�

θmv � θ
Z|D
v pzq

�

�

�

FD
t

�

� �

�

γ pvq � rβ pvq rEz
�

Dv|F
D
t

�

� rα pvq z
	

gives,

rE
z
�

Ds|F
D
t

�

� Dt � µ
D
ps� tq � σ

D

» s

t

pγ pvq � rα pvq zq dv � σ
D

» s

t

rβ pvq rE
z
�

Dv|F
D
t

�

dv.

Defining k pvq � µD
� σDγ pvq and solving gives (29). Also, as rEz

�

dWD
v

�

�F
D
t

�

� �

rEz
��

θmv � θ
Z|D
v pzq

	

�

�

�

F
D
t

�

dv,

rE
z

�

» s

t

DvdDv

�

�

�

�

F
D
t

�

�

» s

t

rE
z
�

Dv |F
D
t

�

dvµ
D
� σ

D
rE
z

�

» v

t

Dv

�

θ
m
v � θ

Z|D
v pzq

	

dv

�

�

�

�

F
D
t

�

rE
z
�

Dv

�

θ
m
v � θ

Z|D
v pzq

	

�

�

�

F
D
t

�

� �

rE
z
�

Dv

�

γ pvq � rβ pvqDv � rαz
	

�

�

�

F
D
t

�

it follows that,

rE
z
�

D
2

s

�

�F
D
t

�

� D
2

t � 2 rEz

�

» s

t

DvdDv

�

�

�

�

F
D
t

�

�

�

σ
D
	

2

ps� tq � D
2

t � 2µD

» s

t

rE
z
�

Dv |F
D
t

�

dv

�2σD

» s

t

rE
z
�

Dv

�

γ pvq � rβ pvqDv � rα pvq z
	

�

�

�

F
D
t

�

dv �
�

σ
D
	

2

ps� tq

� D
2

t � 2

» s

t

�

k pvq � σ
D
rα pvq z

	

rE
z
�

Dv|F
D
t

�

dv � 2σD

» s

t

rβ pvq rE
z
�

D
2

v

�

�F
D
t

�

dv �
�

σ
D
	2

ps� tq .

Solving this linear equation gives

rE
z
�

D
2

s

�

�F
D
t

�

� b1 pt, sq
2
D

2

t �

�

σ
D
	2
» s

t

b1 pv, sq
2
dv � 2

» s

t

b1 pv, sq
2

�

k pvq � σ
D
rα pvq z

	

rE
z
�

Dv |F
D
t

�

dv

� b1 pt, sq
2
D

2

t �

�

σ
D
	

2
» s

t

b1 pv, sq
2
dv

�2

» s

t

b1 pv, sq
2

�

k pvq � σ
D
rα pvq z

	

pg1 pt, vq � b1 pt, vqDt � a1 pt, vq zq dv

� b1 pt, sq
2
D

2

t �

�

σ
D
	2
» s

t

b1 pv, sq
2
dv � 2

» s

t

b1 pv, sq
2
k pvq g1 pt, vq dv

�2

» s

t

b1 pv, sq
2
k pvq b1 pt, vq dvDt � 2

�

» s

t

b1 pv, sq
2
k pvqa1 pt, vq dv � σ

D

» s

t

b1 pv, sq
2
rα pvq g1 pt, vq dv




z

�2σD

» s

t

b1 pv, sq
2
rα pvq b1 pt, vq dvzDt � 2σD

» s

t

b1 pv, sq
2
rα pvq a1 pt, vq dvz

2
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Defining the coefficients as in the lemma leads to the expressions stated.

Appendix B: Proofs

Proof of Proposition 1. The state price density (SPD) for the uninformed is,

ξ
m
t � exp

�

�

1

2

» t

0

pθ
m
v q

2
dv �

» t

0

θ
m
v dW

S
v




� E

�

�

»

�

0

θ
m
v dW

S
v




t

.

Optimal terminal wealth equals Xu
T � �Γ log yu � Γ log ξmT where the shadow price of initial wealth yu solves Xu

0 �

�Γlogyu � ΓE rξmT log ξmT s. Intermediate wealth is Xu
t � �Γ log yu � Γ log ξmt � ΓEt

�

ξmt,T log ξmt,T
�

. Using log ξmt,T �

�

³T

t
θmv

�

dW S
v � θmv dv

�

�

1

2

³T

t
pθmv q

2
dv gives Et

�

ξmt,T log ξmt,T
�

�

1

2
Et

�

ξmt,T
³T

t
pθmv q

2
dv
�

. If the conditional expecta-

tion is Markovian in Dt, which will be shown to hold in equilibrium, the optimal demand is Nu
t σ

S
t � Γθmt �

Γ

2
BDtEt

�

ξmt,T
³T

t
pθmv q

2
dv
�

σD. The formulas for the mean-variance and hedging components follow.

For the informed ξit � ξmt η
G
t where ηxt,T � P pG P dx|Fm

T q {P pG P dx|Fm
t q

�1
� E

�

³t

0
θ
G|m
v pxq dW S

v

	

�1

t
. Optimal

terminal wealth is Xi
T � �Γ log yi � Γ log ξiT , where y

i solves Xi
0 � �Γlogyi � ΓE

�

ξiT log ξiT
�

�F i
0

�

. Thus,

X
i
t � �Γ log yi � Γ log ξit � ΓE

�

ξ
i
t,T log ξit,T

�

�

�

F
i
t

�

because log ξit � log ξmt � log ηGt and E
�

ξit,T log ξit,T
�

�F
i
t

�

�

1

2

³T

t
E

�

ξit,v

�

θmv � θ
G|m
v pGq

	

2
�

�

�

�

F
i
t

�

dv, where,

E

�

ξ
i
t,v

�

θ
m
v � θ

G|m
v pGq

	

2
�

�

�

�

F
i
t

�

� E

�

ξ
m
t,v

�

θ
m
v � θ

G|m
v pxq

	

2
�

�

�

�

F
m
t

�

|x�G

� Et

�

ξ
m
t,v pθ

m
v q

2

�

� Et

�

ξ
m
t,vθ

G|m
v pxq

2

�

|x�G
� 2Et

�

ξ
m
t,vθ

m
v θ

G|m
v pxq

�

|x�G
.

Thus, Xi
t � Xu

t � Γ log
�

yu{yi
�

� Γ log ηGt �

Γ

2

³T

t
Et

�

ξmt,vθ
G|m
v pxq

�

θ
G|m
v pxq � 2θmv

	�

dv
|x�G. If the conditional expec-

tation is Markovian in Dt, as will be shown to hold in equilibrium, the portfolio of the informed follows.

The proofs of Theorems 3 and 4 are provided in Appendix C. They use Proposition 5. The proof of Proposition 5

relies on auxiliary Lemmas 2-10.

Lemma 2 Suppose that public information is carried by the filtration F
m
p�q

� F
D,Z

p�q

. The PIPR is the affine function,

θ
G|m
t pxq �

x� µ
G|D,Z
t

�

σ
G|D,Z
t

	

2

�

1� κtω
i
	

σ
D
�

x� µ
G|D,Z
t

H ptq
σ
D

µ
G|D,Z
t � Dt � µ

D
pT � tq � κt

�

Z � ω
i
�

Dt � µ
D
pT � tq

	

� ω
n
µ
φ
�

�

σ
G|D,Z
t

	

2

�

�

�

σ
D
	

2

pT � tq �
�

σ
ζ
	

2



�

1� κtω
i
	

� H ptq
�

1� κtω
i
	

κt �
ωiH ptq

M ptq
, H ptq �

�

σ
D
	2

pT � tq �
�

σ
ζ
	2

, M ptq �
�

ω
i
	2

H ptq � pω
n
q

2

�

σ
φ
	2

.

Proof of Lemma 2. The PIPR satisfies d
�

log pG pxq ,W S
�

� θ
G|m
t pxq dt, where pG pxq is the conditional density at

time t of the signal G, given public information F
m
p�q

. To determine the conditional density, note that,

G � DT � ζ � Dt � µ
D
pT � tq �

» T

t

σ
D
dW

D
s � ζ

Z � ω
i
G� ω

n
φ � ω

i
�

Dt � µ
D
pT � tq

	

� ω
i

�

» T

t

σ
D
dW

D
s � ζ




� ω
n
φ.

Under the assumption F
m
p�q

� F
D,Z

p�q

, the conditional density is pGt pxq �

1

σ
G|D,Z
t

n

�

x�µ
G|D,Z
t

σ
G|D,Z
t




with parameters
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µ
G|D,Z
t , σ

G|D,Z
t as defined in the lemma (M ptq is the variance of Z�ωi

�

Dt � µD
pT � tq

�

� ωi
�

³T

t
σDdWD

s � ζ
	

�ωnφ).

An application of Ito’s lemma establishes the result announced.

Lemma 3 Suppose that Fm
p�q

� F
D,Z

p�q

. The WAPR is an affine function of Z, Θt pZ;ωq � ωiθ
G|m
t pGq � ωnθ

G|m
t pφq �

α ptqZ � β ptqDt � γ ptq where,

α ptq �
1� κtω

H ptq
σ
D
, β ptq � �ω

1� κtω
i

H ptq
σ
D
, γ ptq � �ω

�

1� κtω
i
�

µD
pT � tq � ωnκtµ

φ

H ptq
σ
D
, ω � ω

i
� ω

n
.

Proof of Lemma 3. From Lemma 2 and the definition of the WAPR,

Θt pZ;ωq � ω
i
θ
G|m
t pGq � ω

n
θ
G|m
t pφq �

Z �
�

ωi
� ωn

�

µ
G|D,Z
t

H ptq
σ
D
�

Z � ωµ
G|D,Z
t

H ptq
σ
D

�

Z � ω
��

1� κtω
i
� �

Dt � µD
pT � tq

�

� κt

�

Z � ωnµφ
��

H ptq
σ
D

�

�

1� κtω

H ptq
Z � ω

1� κtω
i

H ptq
Dt � ω

�

1� κtω
i
�

µD
pT � tq � ωnκtµ

φ

H ptq

�

σ
D
� α ptqZ � β ptqDt � γ ptq .

This establishes the claim.

Lemma 4 Suppose that Fm
p�q

� F
D,Z

p�q

. The optimal hedging demand of the uninformed is Nh,u
t � Γhu

t pZqσ
D
{σS

t where

hu
t pZq � ψu

1tZ � ψu
2tDt � ψu

3t with,

ψ
u
1t � �

» T

t

�

pα pvq b1 pt, vq �
1

2
pβ pvq

2
c2 pt, vq




dv, ψ
u
2t � �

» T

t

pβ pvq
2
b1 pt, vq

2
dv

ψ
u
3t � �

» T

t

�

pβ pvq pγ pvq b1 pt, vq �
1

2
pβ pvq

2
b2 pt, vq




dv

and the functions b1, b2, c2 are defined in Lemma 1 with γ ptq � rγ ptq �
σS
t

Γ
. The remaining coefficients are pα pvq �

α pvq � αh
pvq, pβ pvq � β pvq � βh

pvq and pγ pvq � γ pvq � γh
pvq.

Proof of Lemma 4. Uninformed hedging demands are determined by Hm
t,T � �

1

2
E
�

ξmt,T
³T

t
pθmv q

2
dv
�

�

�

F
m
t

�

. As

E rK|Fm
t s � E

�

E

�

³

�

t
θ
Z|D
v pzq dWD

v

	

T
K
�

�

�

F
D
t

�

|z�Z
for arbitrary K (recall that F

m
p�q

� F
D,Z

p�q

) and dWm
v � dWD

v �

θ
Z|D
v dv it follows that,

H
m
t,T � �

1

2
E

�

E

�

»

�

t

θ
Z|D
v pzq dW

D
v




T

E

�

�

»

�

t

θ
m
v pzq dW

m
v




T

» T

t

pθ
m
v pzqq

2
dv

�

�

�

�

F
D
t

�

|z�Z

� �

1

2
E

�

E

�

�

»

�

t

�

θ
m
v pzq � θ

Z|D
v pzq

	

dW
D
v




T

» T

t

θ
m
v pzq

2
ds

�

�

�

�

F
D
t

�

|z�Z

� �

1

2
rE
z

�

» T

t

θ
m
v pzq

2
dv

�

�

�

�

F
D
t

�

where the last equality uses the definition d rP z
{dP � E

�

�

³

�

0

�

θmv pzq � θ
Z|D
v pzq

	

dWD
v

	

T
, the next to last E pMq E pNq �

E pM �N � rM,Nsq and θZ|Dt pzq is the volatility of the conditional density of DT given Z,

θ
Z|D
t pzq � α

D
ptq z � β

D
ptqDt � γ

D
ptq

α
D
ptq �

ωiσD

M ptq
, β

D
ptq � �ω

i
α
D
ptq , γ

D
ptq � �α

D
ptq
�

ω
i
µ
D
pT � tq � ω

n
µ
φ
	

. (31)

It follows from Propositions 1 and 2, and from market clearing that θmt � σS
t {Γ� h

u
t pzqσ

D
�Θt pZ;ωq � ht pZ;ωqσ

D,

where ht pz;ωq � ωih
G|m
t pGq � ωnh

G|m
t pφq is the weighted sum of the informational hedge of the informed and the

corresponding hedge of the noise trader. The aggregate hedging demand depends on hm
t pzq � hu

t pzq � ht pz;ωq.

To proceed, let us conjecture an affine aggregate hedging demand and a time-dependent equilibrium volatility,

h
m
t pzqσ

D
� ph

u
t pzq � ht pz;ωqqσ

D
� α

h
ptq z � β

h
ptqDt � γ

h
ptq and σ

S
t non-stochastic. (32)
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Under this double conjecture,

θ
m
t �

σS
t

Γ
�

�

α ptq � α
h
ptq
	

z �
�

β ptq � β
h
ptq
	

Dt �

�

γ ptq � γ
h
ptq
	

�

σS
t

Γ
� pα ptqZ � pβ ptqDt � pγ ptq

θ
m
t pzq � θ

Z|D
t pzq �

σS
t

Γ
�

�

pα ptq � α
D
ptq
	

z �
�

pβ ptq � β
D
ptq
	

Dt �

�

pγ ptq � γ
D
ptq
	

�

σS
t

Γ
�

�

rα ptq z � rβ ptqDt � rγ ptq
	

� �

�

rα ptq z � rβ ptqDt � γ ptq
	

where γ ptq � rγ ptq � σS
t {Γ. Substituting in the expression for hu

t pZq � BDtH
m
t,T gives,

h
u
t pzq � �

1

2

» T

t

BDt
rE
z
�

θ
m
v pzq

2
�

�F
D
t

�

dv � �

1

2

» T

t

BDt
rE
z

�

�

pγ pvq � pβ pvqDv � pα pvq z
	

2
�

�

�

�

F
D
t

�

dv

� �

» T

t

�

pβ pvq ppγ pvq � pα pvq zq BDt
rE
z
�

Dv|F
D
t

�

�

1

2
pβ pvq

2
BDt

rE
z
�

D
2

v

�

�F
D
t

�




dv

� �

» T

t

�

pβ pvq ppγ pvq � pα pvq zq b1 pt, vq �
1

2
pβ pvq

2
�

b2 pt, vq � c2 pt, vq z � 2b1 pt, vq
2
Dt

�




dv.

Collecting terms and defining coefficients as indicated leads to the formulas stated.

Lemma 5 Suppose that F
m
p�q

� F
D,Z

p�q

. If the conjectures in (32) are satisfied, the optimal hedging demand of the

informed is Nh,i
t � N

h,u
t � Γh

G|m
t pG|ZqσD

{σS
t , where h

G|m
t pG|Zq � h

G|m
1t pG|Zq � h

G|m
2t pG|Zq with,

h
G|m
1t pG|Zq � ψ

i,G
11

ptqG� ψ
i,Z
11

ptqZ � ψ
i
21 ptqDt � ψ

i
31 ptq

h
G|m
2t pG|Zq � ψ

i,G
12

ptqG� ψ
i,Z
12

ptqZ � ψ
i
22 ptqDt � ψ

i
32 ptq

ψ
i,G
11

ptq � �

» T

t

α1 pvqβ0 pvq b1 pt, vq dv, ψ
i,Z
11

ptq � �

» T

t

�

α2 pvqβ0 pvq b1 pt, vq �
1

2
β0 pvq

2
c2 pt, vq




dv

ψ
i
21 ptq � �

» T

t

β0 pvq
2
b1 pt, vq

2
dv, ψ

i
31 ptq � �

» T

t

�

γ0 pvqβ0 pvq b1 pt, vq �
1

2
β0 pvq

2
b2 pt, vq




dv

ψ
i,G
12 ptq �

» T

t

pβ pvqα1 pvq b1 pt, vq dv, ψ
i,Z
12 ptq �

» T

t

��

pβ pvqα2 pvq � β0 pvq pα pvq
	

b1 pt, vq � pβ pvq β0 pvq c2 pt, vq
	

dv

ψ
i
22 ptq � 2

» T

t

β0 pvq pβ pvq b1 pt, vq
2
dv, ψ

i
32 ptq �

» T

t

��

γ0 pvq pβ pvq � γ̌ pvq β0 pvq
	

b1 pt, vq � β0 pvq pβ pvq b2 pt, vq
	

dv

where γ̌ ptq � pγ ptq � σS
t {Γ and b1, b2, c2 are defined in Lemma 1. The optimal hedging demand of the noise trader has

the same structure, but is evaluated at φ instead of G.

Proof of Lemma 5. The proof proceeds as for the uninformed. Optimal wealth is,

X
i
t � c0 pZ,Gq �X

u
t � Γ log

�

η
G
t

	

�

Γ

2

» T

t

Et

�

ξ
m
t,vθ

G|m
v px|zq

�

θ
G|m
v px|Zq � 2θmv pzq

	�

|x�G
dv

� c0 pZ,Gq �X
u
t � Γ log

�

η
G
t

	

�

Γ

2

» T

t

rE
z
�

θ
G|m
v px|zq

�

θ
G|m
v px|zq � 2θmv pzq

	

�

�

�

F
D
t

�

|z�Z,x�G
dv

� c0 pZ,Gq �X
u
t � Γ log

�

η
G
t

	

� ΓHG|m
1t,T pG,Zq � ΓHG|m

2t,T pG|Zq

where c0 pZ,Gq � Γ log
�

yu{yi
�

and

H
G|m

1t,T px|zq � �

1

2

» T

t

rE
z
�

θ
G|m
v pxq

2

�

�

�

F
D
t

�

dv, H
G|m

2t,T px|zq � �

» T

t

rE
z
�

θ
G|m
v pxq θ

m
v pzq

�

�

�

F
D
t

�

dv.

The hedging demand of the informed can be decomposed as hu
t � h

G|m
t pG|Zq where h

G|m
t pG|Zq � h

G|m
1t pG|Zq �

h
G|m
2t pG|Zq with h

G|m
1t pG|Zq � BDtH

G|m
1t,T pG|Zq and h

G|m
2t pG|Zq � BDtH

G|m
2t,T pG|Zq. Given the affine structure of the
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PIPR, θG|m
t pxq� α1 ptqx� α2 ptq z � β0 ptqDt�γ0 ptq,

2h
G|m
1t px|zq � �

» T

t

�

2 pα1 pvqx� α2 pvq z � γ0 pvqq β0 pvq BDt
rE
z
�

Dv|F
D
t

�

� β0 pvq
2
BDt

rE
z
�

D
2

v

�

�F
D
t

�	

dv

� �

» T

t

�

2 pα1 pvqx� α2 pvq z � γ0 pvqq β0 pvq b1 pt, vq � β0 pvq
2
�

b2 pt, vq � c2 pt, vq z � 2b1 pt, vq
2
Dt

��

dv

� �2

�

» T

t

α1 pvq β0 pvq b1 pt, vq dv




x�

�

» T

t

�

2α2 pvq β0 pvq b1 pt, vq � β0 pvq
2
c2 pt, vq

�

dv




z

�2

�

» T

t

β0 pvq
2
b1 pt, vq

2
dv




Dt �

» T

t

�

2γ0 pvqβ0 pvq b1 pt, vq � β0 pvq
2
b2 pt, vq

�

dv

and using θmt �

σS
t

Γ
� pα ptqZ � pβ ptqDt � pγ ptq � �

�

pα ptqZ � pβ ptqDt � γ̌ ptq
	

where γ̌ ptq � pγ ptq � σS
t {Γ,

h
G|m
2t px|zq �

» T

t

�

pα1 pvqx� α2 pvq z � γ0 pvqq pβ pvq � pγ̌ pvq � pα pvq zqβ0 pvq
	

BDt
rE
z
�

Dv|F
D
t

�

dv

�

» T

t

β0 pvq pβ pvq BDt
rE
z
�

D
2

v

�

�F
D
t

�

dv

�

» T

t

�

pα1 pvqx� α2 pvq z � γ0 pvqq pβ pvq � pγ̌ pvq � pα pvq zqβ0 pvq
	

b1 pt, vq dv

�

» T

t

β0 pvq pβ pvq
�

b2 pt, vq � c2 pt, vq z � 2b1 pt, vq
2
Dt

�

dv

�

» T

t

pβ pvqα1 pvq b1 pt, vq dvx�

» T

t

��

pβ pvqα2 pvq � β0 pvq pα pvq
	

b1 pt, vq � pβ pvqβ0 pvq c2 pt, vq
	

dvz

�2

» T

t

β0 pvq pβ pvq b1 pt, vq
2
dvDt �

» T

t

��

γ0 pvq pβ pvq � γ̌ pvq β0 pvq
	

b1 pt, vq � β0 pvq pβ pvq b2 pt, vq
	

dv.

Defining the coefficients as indicated in the lemma establishes the result.

Lemma 6 Suppose that Fm
p�q

� F
D,Z

p�q

. If the conjectures in (32) are satisfied, the information-related component of the

residual hedging demand depends on,

ht pZ;ωq � ω
i
h
G|m
t pG|Zq � ω

n
h
G|m
t pφ|Zq � h1t pZ;ωq � h2t pZ;ωq

h1t pZ;ωq �
�

ψ
i,G
11

ptq � ωψ
i,Z
11

ptq
	

Z � ωψ
i
21 ptqDt � ωψ

i
31 ptq

h2t pZ;ωq �
�

ψ
i,G
12

ptq � ωψ
i,Z
12

ptq
	

Z � ωψ
i
22 ptqDt � ωψ

i
32 ptq .

The aggregate hedging demand depends on,

h
m
t pZq � h

u
t pZq � ht pZ;ωq � ψ

m
1tZ � ψ

m
2tDt � ψ

m
3t

ψ
m
1t � ψ

u
1t � ψ

i,G
11

ptq � ψ
i,G
12

ptq � ω
�

ψ
i,Z
11

ptq � ψ
i,Z
12

ptq
	

ψ
m
2t � ψ

u
2t � ω

�

ψ
i
21 ptq � ψ

i
22 ptq

	

, ψ
m
3t � ψ

u
3t � ω

�

ψ
i
31 ptq � ψ

i
32 ptq

	

.

The aggregate hedging demand is an affine function of Z.

Proof of Lemma 6. Substituting the formulas from Lemmas 3 and 4 in h
G|m
t pZ;ωq � ωih

G|m
t pG|Zq�ωnh

G|m
t pφ|Zq

and hm
t pZq � hu

t pZq� ht pZ;ωq leads to the expressions stated.

The coefficients of the aggregate hedging demand depend on the coefficients of the conjectures in (32). That is,

hm
t pZq � αh

ptqZ� βh
ptqDt� γh

ptq � ψm
1tZ �ψ

m
2tDt �ψ

m
3t . For consistency, the following integral equations must be

satisfied, αh
ptq � ψm

1tσ
D, βh

ptq � ψm
2tσ

D, γh
ptq � ψm

3tσ
D. Simplifying the expressions for pψm

1t , ψ
m
2t , ψ

m
3tq gives,

ψ
m
1t � �

» T

t

�

pα pvq b1 pt, vq �
1

2
pβ pvq

2
c2 pt, vq




dv �

» T

t

α1 pvq β0 pvq b1 pt, vq dv �

» T

t

pβ pvqα1 pvq b1 pt, vq dv
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�ω

» T

t

�

α2 pvq β0 pvq b1 pt, vq �
1

2
β0 pvq

2
c2 pt, vq




dv

�ω

» T

t

��

pβ pvqα2 pvq � β0 pvq pα pvq
	

b1 pt, vq � pβ pvqβ0 pvq c2 pt, vq
	

dv

� �

» T

t

�

pα pvq � α1 pvq β0 pvq � pβ pvqα1 pvq � ω
�

α2 pvq β0 pvq �
�

pβ pvqα2 pvq � β0 pvq pα pvq
			

b1 pt, vq dv

�

» T

t

�

1

2
pβ pvq

2
� ω

�

1

2
β0 pvq

2
�

pβ pvq β0 pvq





c2 pt, vq dv

� �

» T

t

�

p1� β pvqq pα pvq � α pvq
�

β0 pvq � pβ pvq
		

b1 pt, vq dv

�

1

2

» T

t

�

pβ pvq
2
� ωβ0 pvq

�

β0 pvq � 2pβ pvq
		

c2 pt, vq dv

ψ
m
2t � �

» T

t

pβ pvq
2
b1 pt, vq

2
dv � ω

�

�

» T

t

β0 pvq
2
b1 pt, vq

2
dv � 2

» T

t

β0 pvq pβ pvq b1 pt, vq
2
dv




� �

» T

t

�

pβ pvq
2
� 2ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b1 pt, vq
2
dv

ψ
m
3t � �

» T

t

�

pβ pvq pγ pvq b1 pt, vq �
1

2
pβ pvq

2
b2 pt, vq




dv � ω

» T

t

�

γ0 pvq β0 pvq b1 pt, vq �
1

2
β0 pvq

2
b2 pt, vq




dv

�ω

» T

t

��

γ0 pvq pβ pvq � γ̌ pvqβ0 pvq
	

b1 pt, vq � β0 pvq pβ pvq b2 pt, vq
	

dv

� �

» T

t

�

pβ pvq pγ pvq � ω
�

pβ pvq � β0 pvq
	

γ0 pvq � ωγ̌ pvq β0 pvq
	

b1 pt, vq dv

�

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b2 pt, vq dv

and substituting in the equations for αh , βh , γh gives,

αh
ptq

σD
� �

» T

t

�

p1� β pvqq pα pvq � α pvq
�

β0 pvq � pβ pvq
		

b1 pt, vq dv

�

1

2

» T

t

�

pβ pvq
2
� ωβ0 pvq

�

β0 pvq � 2pβ pvq
		

c2 pt, vq dv (33)

βh
ptq

σD
� �

» T

t

�

pβ pvq
2
� 2ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b1 pt, vq
2
dv (34)

γh
ptq

σD
� �

» T

t

�

pβ pvq pγ pvq � ω
�

pβ pvq � β0 pvq
	

γ0 pvq � ωγ̌ pvqβ0 pvq
	

b1 pt, vq dv

�

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b2 pt, vq dv. (35)

where α pvq � α1 pvq � ωα2 pvq. The system (33)-(35) can be solved sequentially. As will be shown next, σS
t depends

only on βh. Hence, (34) is autonomous and determines βh. The coefficients
�

αh, γh
�

follow from (33) and (35).

Lemma 7 Suppose that F
m
p�q

� F
D,Z

p�q

. If the conjectures in (32) are satisfied, the equilibrium stock price is St �

pA ptqZ� pB ptqDt �
pF ptq where,

pB ptq � B ptqB
h
ptq , B ptq �

�

H pT q

H ptq


ω �
M pT q

M ptq




1�ω

, B
h
ptq � e

σD
³

T
t

βh
pvqdv

pAptq � λ pt, T q � σ
D

�

» T

t

pB psq
�

pα psq � pβpsqλpt, sq
	

ds
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pF ptq � pB ptqµ
D
pT � tq �

�

σD
�2

Γ

» T

t

pB psq
2
ds� σ

D

» T

t

pB psq pγ psq ds� ω
n
pI ptqµ

φ

pI ptq � λ pt, T q � σ
D

» T

t

pB psq pβ psqλ pt, sq ds, λ pt, sq �
ωi
�

σD
�2

ps� tq

M ptq
.

The stock price volatility equals σS
t �

pB ptqσD, a function of time.

Proof of Lemma 7. Straightforward calculations give,

St � E

�

DT �

» T

t

µ
S
s ds

�

�

�

�

F
m
t

�

� Dt � µ
D
pT � tq � σ

D
E

�

W
D
T �W

D
t

�

�

�

F
D,Z
t

�

�

1

Γ

» T

t

�

σ
S
s

	2

ds�

» T

t

E

�

σ
S
s

�

pαpsqZ � pβpsqDs � pγpsq
	

�

�

�

F
D,Z
t

�

� Dt � µ
D
pT � tq �

1

Γ

» T

t

�

σ
S
s

	2

ds�

» T

t

σ
S
s pγpsqds�

�

» T

t

σ
S
s pαpsqds




Z

�σ
D
E

�

W
D
T �W

D
t

�

�

�

F
Z,D
t

�

�

» T

t

σ
S
s
pβpsqE

�

Ds|F
D,Z
t

�

ds

� Dt �
pG0 pt, T qZ � F

�

σ
S
, t
	

� σ
D
E

�

W
D
T �W

D
t

�

�

�

F
D,Z
t

�

�

» T

t

σ
S
s
pβ psqE

�

Ds|F
D,Z
t

�

ds

where pG0 pt, T q �
³T

t
σS
s pα psq ds and F

�

σS, t
�

� µD
pT � tq � p1{Γq

³T

t

�

σS
s

�2
ds�

³T

t
σS
s pγ psq ds. Moreover,

E

�

» T

t

σ
D
dW

D
s

�

�

�

�

F
D,Z
t

�

� λ pt, T q
�

Z � ω
i
�

Dt � µ
D
pT � tq

	

� ω
n
µ
φ
	

� λ pt, T qZ � ω
i
λ pt, T qDt � λ pt, T q

�

ω
i
µ
D
pT � tq � ω

n
µ
φ
	

E

�

Ds|F
D,Z
t

�

� Dt � µ
D
pT � tq � λ pt, sq

�

Z � ω
i
�

Dt � µ
D
pT � tq

	

� ω
n
µ
φ
	

�

�

Dt � µ
D
pT � tq

	�

1� ω
i
λ pt, sq

	

� λ pt, sqZ � ω
n
λ pt, sqµ

φ

where λ pt, sq �
ωi
p

σD
q

2
ps�tq

Mptq
, so that,

» T

t

σ
S
s
pβpsqE

�

Ds|F
D,Z
t

�

ds � pG1 pt, T q
�

Dt � µ
D
pT � tq

	

�

pG2 pt, T q
�

Z � ω
n
µ
φ
	

pG1 pt, T q �

» T

t

σ
S
s
pβpsq

�

1� ω
i
λpt, sq

	

ds, G2 pt, T q �

» T

t

σ
S
s
pβpsqλpt, sqds.

Hence,

St � Dt �
pG0 pt, T qZ � F

�

σ
S
, t
	

� λ pt, T qZ � ω
i
λ pt, T qDt

�λ pt, T q
�

ω
i
µ
D
pT � tq � ω

n
µ
φ
	

�G1 pt, T q
�

Dt � µ
D
pT � tq

	

�G2 pt, T q
�

Z � ω
n
µ
φ
	

�

�

1� ω
i
λ pt, T q � pG1 pt, T q

	

Dt �

�

pG0 pt, T q � λ pt, T q � pG2 pt, T q
	

Z � F
�

σ
S
, t
	

�

�

�ω
i
λ pt, T q � pG1 pt, T q

	

µ
D
pT � tq �

�

λ pt, T q � pG2 pt, T q
	

ω
n
µ
φ
�

pAptqZ � pBptqDt �
pF ptq

where,

pAptq � pG0 pt, T q � λ pt, T q � pG2 pt, T q � λ pt, T q �

» T

t

σ
S
s

�

pα psq � pβpsqλpt, sq
	

ds

pBptq � 1� ω
i
λ pt, T q � pG1 pt, T q � 1� ω

i
λ pt, T q �

» T

t

σ
S
s
pβpsq

�

1� ω
i
λpt, sq

	

ds

pF ptq � F
�

σ
S
, t
	

�

�

pB ptq � 1
	

µ
D
pT � tq �

�

pB ptq �

» T

t

σ
S
s pα psq ds




ω
n
µ
φ
.
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An application of Ito’s lemma gives σS
t �

pB ptqσD. The volatility coefficient is deterministic as conjectured. This

validates the construction of the equilibrium stock price to this stage. Substituting in the coefficients above yields,

pAptq � λ pt, T q � σ
D

» T

t

pB psq
�

pα psq � pβpsqλpt, sq
	

ds, pBptq � 1� ω
i
λ pt, T q � σ

D

» T

t

pB psq pβpsq
�

1� ω
i
λpt, sq

	

ds

pF ptq � F
�

pB ptqσ
D
, t
	

�

�

pB ptq � 1
	

µ
D
pT � tq � pI ptqω

n
µ
φ
, pI ptq � pB ptq � σ

D

» T

t

pB psq pα psq ds.

Inserting F
�

B ptqσD, t
�

� µD
pT � tq � 1

Γ

�

σD
�2 ³T

t
pB psq

2
ds� σD

³T

t
pB psq pγ psq ds in the last coefficient and collecting

terms leads to,

pF ptq � pB ptqµ
D
pT � tq �

�

σD
�2

Γ

» T

t

pB psq
2
ds� σ

D

» T

t

pB psq pγ psq ds� pI ptqω
n
µ
φ

pI ptq � λ pt, T q � σ
D

» T

t

pB psq pβ psqλ pt, sq ds.

In these expressions, with ω � ωi
� ωn,

pα ptq � α ptq�α
h
ptq , pβ ptq � β ptq� β

h
ptq , pγ ptq � γ ptq � γ

h
ptq , α ptq �

1� κtω

H ptq
σ
D
, β ptq � �ω

1� κtω
i

H ptq
σ
D

γ ptq � �ω

�

1� κtω
i
�

µD
pT � tq � ωnκtµ

φ

H ptq
σ
D
, λ pt, sq �

ωi
�

σD
�2
ps� tq

M ptq
.

Equilibrium exists if the backward Volterra equation,

pBptq � 1� ω
i
λ pt, T q � σ

D

�

» T

t

pB psq pβpsq
�

1� ω
i
λ pt, sq

	

ds




, pB pT q � 1 (36)

for the coefficient pB p�q has a solution. This issue is addressed in the next lemma.

Lemma 8 The unique solution of (36) is pB ptq � B ptqBh
ptq where B ptq �

�

HpT q

Hptq

	ω �
MpT q

Mptq

	1�ω

with M ptq �
�

ωi
�2
H ptq � pωn

q

2
�

σφ
�2

, ω � ωi
� ωn and Bh

ptq � exp
�

σD
³T

t
βh
pvq dv

	

. Moreover, pB ptq ¡ 0 for t P r0, T s.

Proof of Lemma 8. With M ptq �
�

ωi
�2
H ptq� pωn

q

2
�

σφ
�2

, note that,

1� ω
i
λ pt, T q � 1�

�

ωi
�2 �

σD
�2

pT � tq

M ptq
�

�

ωi
�2 �

σζ
�2

� pωn
q

2
�

σφ
�2

M ptq
�

M pT q

M ptq

1� ω
i
λpt, sq �

�

ωi
�2
�

�

σD
�2
pT � sq �

�

σζ
�2
	

� pωn
q

2
�

σφ
�2

M ptq
�

M psq

M ptq
.

Substituting in (36) and using the change of variables Cptq � pBptqM ptq leads to,

pBptq � 1� ω
i
λ pt, T q � σ

D

�

» T

t

pB psq pβpsq
�

1� ω
i
λpt, sq

	

ds




�

M pT q

M ptq
� σ

D

�

» T

t

pB psq pβpsq
M psq

M ptq
ds




ðñ

pBptqM ptq �M pT q � σ
D

�

» T

t

pB psq pβpsqM psq ds




ðñ Cptq �M pT q � σ
D

�

» T

t

C psq pβpsqds




subject to the boundary condition CpT q � M pT q. Equivalently, dC ptq � �σDC ptq pβptqdt. The solution is C ptq �

M pT q exp
�

σD
³T

t
pβpsqds

	

. Substituting, pβ ptq � β ptq � βh
ptq,

β ptq � �

ω

H ptq

�

1� κtω
i
	

σ
D
� �

ω

H ptq

�

1�

�

ωi
�2
H ptq

M ptq

�

σ
D
� �ωσ

D

�

1

H ptq
�

�

ωi
�2

M ptq

�
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and performing the integration,

C ptq �M pT q exp

�

ω

�

log

�

H pT q

H ptq




� log

�

M pT q

M ptq






B
h
ptq �M pT q

�

H pT q

H ptq


ω �
M pT q

M ptq




�ω

B
h
ptq .

Substituting Cptq � BptqM ptq and rearranging leads to the formula stated.

Under the conjectures in (32), pB depends on pβ. To validate the construction of hedging demands and equilibrium,

conditional on the information structure, it remains to show the existence of pβ. This is done next.

Lemma 9 The coefficient βh solves the Riccati equation,

9β
h
ptq � κ0 ptq � κ1 ptqβ

h
ptq � σ

D
β
h
ptq

2 ; β
h
pT q � 0 (37)

κ0 ptq �

�

1� ω

ω




β ptq
2
σ
D
, κ1 ptq � �2σD

�

β ptq � β
D
ptq
	

(38)

where β ptq is defined in (6). A unique solution exists.

Proof of Lemma 9. Differentiating (34) relative to time and using Btb1 pt, vq
2
� �2σDb1 pt, vq

2
rβ ptq yields,

9β
h
ptq

σD
�

pβ ptq
2
� 2ωβ0 ptq

�

pβ ptq �
1

2
β0 ptq




� 2σD β
h
ptq

σD
rβ ptq

with boundary condition βh
pT q � 0. Using the definitions rβ � β � βh

� βD, pβ � β � βh and β ptq � ωβ0 ptq gives,

after simplifications, 9β
h
ptq �

�

1�ω
ω

�

β ptq
2
σD

�2σD
�

β ptq � βD
ptq
�

βh
ptq �σDβh

ptq
2. Defining κ0, κ1 as in (38) proves

(37). Existence of a unique solution follows from continuity of the ODE and the fact (see Technical Appendix) that

βh
ptq P

�

β ptq , 0
�

where βh
ptq � �

³T

t
exp

�

�

³s

t
k1 puq du

�

k0 psq ds   0.

The next lemma gives closed form expressions for
�

αh, γh
�

.

Lemma 10 The coefficients
�

αh, γh
�

are given by,

α
h
ptq � �

» T

t

exp

�

�

» s

t

κ2 pvq dv




κ3 psq ds, γ
h
ptq � �

» T

t

exp

�

�

» s

t

κ4 pvq dv




κ5 psq ds (39)

where, with K pt, T q �
³T

t

�

βh
pvq

2
�

κ0pvq

σD

	

b1 pt, vq
2
dv,

κ2 ptq �
�

1� β ptq � rβ ptq
	

σ
D
�

�

σ
D
	2

K pt, T q (40)

κ3 ptq � α ptq

�

1� β ptq

�

1� ω

ω




�

pβ ptq




σ
D
�

�

σ
D
	2

K pt, T q
�

α ptq � α
D
ptq
	

(41)

κ4 ptq � �

�

β ptq � β
D
ptq
	

σ
D
� σ

D
K pt, T q (42)

κ5 ptq � β ptq

�

1� ω

ω
γ ptq �

σS
t

Γ




σ
D
� σ

D
K pt, T q

�

µ
D
� σ

D

�

γ ptq � γ
D
ptq �

σS
t

Γ





. (43)

Proof of Lemma 10. As α ptq � α1 ptq � ωα2 ptq, b1 pt, tq � 1, c2 pt, tq � 0, Btb1 pt, vq � �σDb1 pt, vq rβ ptq and

Btc2 pt, vq � �2σDb1 pt, vq
2
rα ptq �σDc2 pt, vq rβ ptq, it follows from (33) that,

9αh
ptq

σD
� p1� β ptqq pα ptq � α ptq

�

β0 ptq � pβ ptq
	

� σ
D α

h
ptq

σD
rβ ptq

�2σD

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

1

2
β0 pvq � pβ pvq





b1 pt, vq
2
dvrα ptq

�

�

1� β ptq � rβ ptq � 2σD

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

1

2
β0 pvq � pβ pvq





b1 pt, vq
2
dv




α
h
ptq

�α ptq
�

1� β ptq � β0 ptq � pβ ptq
	

�2σD

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

1

2
β0 pvq � pβ pvq





b1 pt, vq
2
dv
�

α ptq � α
D
ptq
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with boundary condition αh
pT q � 0. Expression (39) follows because,

2

�

1

2
pβ pvq

2
� ωβ0 pvq

�

1

2
β0 pvq � pβ pvq





�

�

β pvq � β
h
pvq
	2

� β pvq

�

β pvq

ω
� 2

�

β pvq � β
h
pvq
	




� β
h
pvq

2
� β pvq

2

�

1

ω
� 1




� β
h
pvq

2
�

κ0 pvq

σD

where κ0 pvq is given in (38).

Using Btb2 pt, vq � �σDb2 pt, vq β̃ ptq�2b1 pt, vq
2
�

µD
� σD

�

γ ptq � γD
ptq � σS

t {Γ
��

�2σDb1 pt, vq
2
γh
ptq and b1 pt, tq �

b2 pt, tq � 0, γ̌ ptq � pγ ptq � σS
t {Γ, ωβ0 ptq � β ptq, ωγ0 ptq � γ ptq and differentiating the integral equation gives,

9γh
ptq

σD
�

�

β
h
ptq pγ ptq � ω

�

pβ ptq � β0 ptq
	

γ0 ptq �
σS
t

Γ
β ptq




� σ
D γ

h
ptq

σD
rβ ptq

�2

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b1 pt, vq
2
dv
�

µ
D
� σ

D
�

γ ptq � γ
D
ptq � σ

S
t {Γ� γ

h
ptq
		

�

�

β
h
ptq � rβ ptq � 2

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b1 pt, vq
2
dv




γ
h
ptq

�

�

β
h
ptq γ ptq � ω

�

pβ ptq � β0 ptq
	

γ0 ptq �
σS
t

Γ
β ptq




�2

» T

t

�

1

2
pβ pvq

2
� ωβ0 pvq

�

pβ pvq �
1

2
β0 pvq





b1 pt, vq
2
dv
�

µ
D
� σ

D
�

γ ptq � γ
D
ptq � σ

S
t {Γ

		

.

The expressions for the coefficients in the Lemma and the representation of γh in (39) follow.

Proof of Proposition 5. Lemmas 2-10 establish that an equilibrium exists under the assumption Fm
p�q

� F
D,Z

p�q

. To

complete the proof of existence, it remains to verify that the endogenous public filtration is indeed Fm
p�q

� F
D,Z

p�q

. To

this end, use the relations,

h
m
t � ψ

m
1 ptqZ � ψ

m
2 ptqDt � ψ

m
3 ptq , h

m
t � h

u
t � ht pZ;ωq

Θt pZ;ωq � α ptqZ � β ptqDt � γ ptq , θ
m
t �

σS
t

Γ
�Θt pZ;ωq � h

m
t pZ;ωqσD

to write the residual demand as,

Na
t σ

S
t

Γ
� ω

i
�

θ
m
t � θ

G|m
t pGq � ph

u
t � ht pG;ωqqσD

	

� ω
n
�

θ
m
t � θ

G|m
t pφq � ph

u
t � ht pφ;ωqqσ

D
	

� ω

�

σS
t

Γ
�Θt pZ;ωq � h

m
t pZ;ωqσD




�Θt pZ;ωq � pωh
u
t � ht pZ;ωqqσ

D

� ω
σS
t

Γ
� p1� ωq

�

Θt pZ;ωq � ht pZ;ωqσ
D
	

� ω
σS
t

Γ
� p1� ωq

��

α ptq � ψ
i
1 ptqσ

D
	

Z �
�

β ptq � ψ
i
2 ptqσ

D
	

Dt � γ ptq � ψ
i
3 ptqσ

D
	

.

As Na
t , σ

S
t and Dt are observed, the product

�

α ptq � ψi
1 ptqσ

D
�

Z is known. If α p0q � ψi
1 p0qσ

D
� 0, the endogenous

signal Z is revealed. If α p0q� ψi
1 p0qσ

D
� 0, then α ptq �ψi

1 ptqσ
D
� 0 for t � 0�. In both cases Fm

p�q

� F
D,Z

p�q

and the

candidate equilibrium constructed is a rational expectations equilibrium. Moreover, as Fm
p�q

� F
D,Z

p�q

� Fm
p�q

� F i
p�q

�

F
D,G

p�q

, the equilibrium is a NREE.

Proof of Remark 3. Fix ωu and let ωi
Ñ 0 and ωn

Ñ 1� ωu
� ω. Then,

α
si
ptq �

σD

H ptq
, β

si
ptq � �ω

σD

H ptq
, κ

si
t � 0, γ

si
ptq � �ω

µD
pT � tq

H ptq
σ
D
, λ

si
pt, sq � 0, s P rt, T s (44)

H ptq �
�

σ
D
	2

pT � tq �
�

σ
ζ
	2

, M
si
ptq � ω

2

�

σ
φ
	2

(45)

α
D,si

ptq � β
D,si

ptq � γ
D,si

ptq � 0 ùñ rα
si
ptq � pα

si
ptq , rβ

si
ptq � pβ

si
ptq , rγ

si
ptq � pγ

si
ptq (46)

pα
si
ptq � α

si
ptq � α

h,si
ptq , pβ

si
ptq � β

si
ptq � β

h,si
ptq , pγ

si
ptq � γ

si
ptq � γ

h,si
ptq (47)
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9β
h,si

ptq � κ
si
0 ptq � κ

si
1 ptqβ

h,si
ptq � σ

D
β
h,si

ptq
2 ; β

h,si
pT q � 0 (48)

α
h,si

ptq � �

» T

t

exp

�

�

» s

t

κ
si
2 pvq dv




κ
si
3 psq ds, γ

h,si
ptq � �

» T

t

exp

�

�

» s

t

κ
si
4 pvq dv




κ
si
5 psq ds (49)

κ
si
0 ptq �

�

1� ω

ω




β
si
ptq

2
σ
D
, κ

si
1 ptq � �2σD

β
si
ptq , κ

si
2 ptq �

�

1� β
si
ptq � pβ

si
ptq
	

σ
D
�

�

σ
D
	2

K
si
pt, T q (50)

κ
si
3 ptq � α

si
ptq

�

1� β
si
ptq

�

1� ω

ω




�

pβ
si
ptq




σ
D
�

�

σ
D
	2

K
si
pt, T qα

si
ptq (51)

κ
si
4 ptq � �β

si
ptqσ

D
� σ

D
K

si
pt, T q

κ
si
5 ptq � β

si
ptq

�

1� ω

ω
γ
si
ptq �

σ
S,si
t

Γ




σ
D
� σ

D
K

si
pt, T q

�

µ
D
� σ

D

�

γ
si
ptq �

σ
S,si
t

Γ





(52)

where Ksi
pt, T q �

³T

t

�

βh,si
pvq

2
�

κsi
0
pvq

σD

	

bsi1 pt, vq
2
dv with bsi1 pt, vq as in Lemma 1, but with rβ

si
ptq instead of rβ ptq.

The stock price becomes Ssi
t � Âsi

ptqZsi
� B̂si

ptqDt � F̂ si
ptq where Zsi

� ωφ and,

B̂
si
ptq � B

si
ptqB

h,si
ptq , B

si
ptq �

�

H pT q

H ptq


ω

, B
h,si

ptq � e
σD

³

T
t

βh,si
pvqdv (53)

Â
si
ptq � σ

D

�

» T

t

B̂
si
psq α̂

si
psq ds




, Î
si
ptq � 0 (54)

F̂
si
ptq � B̂

si
ptqµ

D
pT � tq �

�

σD
�2

Γ

» T

t

B̂
si
psq

2
ds� σ

D

» T

t

B̂
si
psq γ̂

si
psq ds. (55)

The pair
�

Ssi, D
�

in the limit economy is uninformative.

If in addition ωn
Ñ 0 (i.e., ωu

Ñ 1), then Msi
ptq � Zsi

� 0 and,

α
si
ptq �

σD

H ptq
, β

si
ptq � γ

si
ptq � κ

si
t � λ

si
pt, sq � 0,

βsi
ptq

ω
� �

σD

H ptq
,

γsi
ptq

ω
� �

µD
pT � tq

H ptq
σ
D

κ
si
0 ptq � κ

si
1 ptq � 0, κ

si
2 ptq �

�

1� pβ
si
ptq
	

σ
D
�

�

σ
D
	2

K
si
pt, T q

κ
si
3 ptq � α

si
ptq

�

1�
βsi

ptq

ω
�

pβ
si
ptq




σ
D
�

�

σ
D
	2

K
si
pt, T qα

si
ptq

κ
si
4 ptq � σ

D
K

si
pt, T q , κ

si
5 ptq � σ

D
K

si
pt, T q

�

µ
D
� σ

D σ
S,si
t

Γ




α
D,si

ptq � β
D,si

ptq � γ
D,si

ptq � 0 ùñ rα
si
ptq � pα

si
ptq , rβ

si
ptq � pβ

si
ptq , rγ

si
ptq � pγ

si
ptq

pα
si
ptq � α

si
ptq � α

h,si
ptq , pβ

si
ptq � β

h,si
ptq , pγ

si
ptq � γ

h,si
ptq

α
h,si

ptq � �

» T

t

exp

�

�

» s

t

κ
si
2 pvq dv




κ
si
3 psq ds, γ

h,si
ptq � �

» T

t

exp

�

�

» s

t

κ
si
4 pvq dv




κ
si
5 psq ds.

Thus, 9β
h,si

ptq � �σDβh,si
ptq

2, βh,si
pT q � 0, which has solution βh,si

� 0. It follows that rβ
si
ptq � pβ

si
ptq �

βh,si
ptq � Ksi

pt, T q � κsi
4 ptq � κsi

5 ptq � γh,si
ptq � 0 and κsi

2 ptq � σD, κsi
3 ptq � αsi

ptq
�

1� βsi
ptq

ω

	

σD. Finally,

B̂si
ptq � Bsi

ptq � Bh,si
ptq � 1 and Zsi

� 0 so that Ssi,0
t � Dt � F̂ si,0

ptq with F̂ si,0
ptq �

�

µD
�

p

σD
q

2

Γ




pT � tq and

σ
S,si,0
t � σD for all t P r0, T s.

Note that 0   B ptq   Bsi
ptq   1 for t   T and B pT q � Bsi

pT q � 1. Moreover,

9β
h
ptq �

�

1� ω

ω




β ptq
2
σ
D
� 2σD

�

β ptq � β
D
ptq
	

β
h
ptq � σ

D
β
h
ptq

2 ; β
h
pT q � 0

9β
h,si

ptq �

�

1� ω

ω




β
si
ptq

2
σ
D
� 2σD

β
si
ptqβ

h,si
ptq � σ

D
β
h,si

ptq
2 ; β

h,si
pT q � 0

β ptq � β
D
ptq � �ω

1� κtω
i

H ptq
σ
D
�

�

ω
i
	

2 1

M ptq
σ
D
� �ω

�

pωn
q

2
�

σφ
�2

H ptq

�

σD

M ptq
�

�

ω
i
	

2 σD

M ptq
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β
si
ptq �

�

β ptq � β
D
ptq
	

� �ω
�

ω
i
	

2 σD

M ptq
�

�

ω
i
	

2 σD

M ptq
�

�

ω
i
	

2 σD

M ptq
p1� ωq ¡ 0

U �

�

1� ω

ω




β ptq
2
�

�

1� ω

ω


�

�ω
1� κtω

i

H ptq
σ
D


2

� ω p1� ωq

�

pωn
q

2
�

σφ
�2

M ptq

�2
�

σD

H ptq


2

U
si
�

�

1� ω

ω




β
si
ptq

2
�

�

1� ω

ω


�

�ω
σD

H ptq


2

� ω p1� ωq

�

σD

H ptq


2

so that ∆ � Usi
� U ¡ 0. Thus, 9β

h,si
pT q � 9β

h
pT q � ∆ ¡ 0. Moreover, if βh,si

ptq � βh
ptq at any t   T , then

9β
h,si

ptq � 9β
h
ptq � ∆σD

� 2σD
�

β
si
ptq �

�

β ptq � β
D
ptq
		

β
h,si

ptq ¡ 0.

Thus, βh,si
ptq   βh

ptq   0 for all t P r0, T s and βh,si
pT q � βh

pT q � 0. Therefore Bh,si
ptq   Bh

ptq. As 0   B ptq  

Bsi
ptq   1, the overall effect on price volatility is ambiguous: σS,si

t » σS
t for t   T . However, max

�

σ
S,si
t , σS

t

	

 

σ
S,si,0
t � σD for t   T and limtÑTσ

S
t � limtÑTσ

S,si
t � limtÑTσ

S,si,0
t � σD.

Proof of Remark 4. Fix ωn and let ωu
Ñ 0 and ωi

Ñ 1� ωn. Then, ω Ñ 1 and,

α
su
ptq �

1� κsu
t

H ptq
σ
D
, β

su
ptq � �

1� κsu
t ωi

H ptq
σ
D
, κ

su
t �

ωiH ptq

Msu
ptq

(56)

γ
su
ptq � �

�

1� κsu
t ωi

�

µD
pT � tq � ωnκsu

t µφ

H ptq
σ
D
, λ

su
pt, sq �

ωi
�

σD
�2
ps� tq

Msu
ptq

, s P rt, T s (57)

H ptq �
�

σ
D
	2

pT � tq �
�

σ
ζ
	2

, M
su
ptq �

�

ω
i
	2

H ptq � pω
n
q

2

�

σ
φ
	2

(58)

rα
su
ptq � pα

su
ptq � α

D,su
ptq , rβ

su
ptq � pβ

su
ptq � β

D,su
ptq , rγ

su
ptq � pγ

su
ptq � γ

D,su
ptq

pα
su
ptq � α

su
ptq � α

h,su
ptq , pβ

su
ptq � β

su
ptq � β

h,su
ptq , pγ

su
ptq � γ

su
ptq � γ

h,su
ptq

α
D,su

ptq �
ωiσD

Msu
ptq
, β

D,su
ptq � �ω

i
α
D,su

ptq , γ
D,su

ptq � �α
D,su

ptq
�

ω
i
µ
D
pT � tq � ω

n
µ
φ
	

(59)

9β
h,su

ptq � κ
su
1 ptqβ

h,su
ptq � σ

D
β
h,su

ptq
2 ; β

h,su
pT q � 0 (60)

α
h,su

ptq � �

» T

t

exp

�

�

» s

t

κ
su
2 pvq dv




κ
su
3 psq ds, γ

h,su
ptq � �

» T

t

exp

�

�

» s

t

κ
su
4 pvq dv




κ
su
5 psq ds (61)

κ
su
0 ptq � 0, κ

su
1 ptq � �2σD

�

β
su
ptq � β

D,su
ptq
	

, κ
su
2 ptq �

�

1� β
su
ptq � rβ

su
ptq
	

σ
D
�

�

σ
D
	2

K
su
pt, T q

κ
su
3 ptq � α

su
ptq
�

1� pβ
su
ptq
	

σ
D
�

�

σ
D
	2

K
su
pt, T q

�

α
su
ptq � α

D,su
ptq
	

κ
su
4 ptq � �

�

β
su
ptq � β

D,su
ptq
	

σ
D
� σ

D
K

su
pt, T q

κ
su
5 ptq � β

su
ptq

σ
S,su
t

Γ
σ
D
� σ

D
K

su
pt, T q

�

µ
D
� σ

D

�

γ
su
ptq � γ

D,su
ptq �

σ
S,su
t

Γ





where Ksu
pt, T q �

³T

t
βh,su

pvq
2
bsu1 pt, vq

2
dv with bsu1 pt, vq as in Lemma 1, but with rβ

su
ptq instead of rβ ptq. As the

solution of (60) is βh,su
ptq � 0, it follows that Ksu

pt, T q � 0 and,

κ
su
0 ptq � 0, κ

su
1 ptq � �2σD

�

β
su
ptq � β

D,su
ptq
	

, κ
su
2 ptq �

�

1� β
su
ptq � rβ

su
ptq
	

σ
D (62)

κ
su
3 ptq � α

su
ptq
�

1� pβ
su
ptq
	

σ
D
, κ

su
4 ptq � �

�

β
su
ptq � β

D,su
ptq
	

σ
D
, κ

su
5 ptq � β

su
ptq

σ
S,su
t

Γ
σ
D (63)

rα
su
ptq � pα

su
ptq � α

D,su
ptq , rβ

su
ptq � pβ

su
ptq � β

D,su
ptq , rγ

su
ptq � pγ

su
ptq � γ

D,su
ptq (64)

pα
su
ptq � α

su
ptq � α

h,su
ptq , pβ

su
ptq � β

su
ptq , pγ

su
ptq � γ

su
ptq � γ

h,su
ptq (65)

B̂
su
ptq � B

su
ptq , B

su
ptq �

H pT q

H ptq
, B

h,su
ptq � 1 (66)
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Â
su
ptq � λ

su
pt, T q � σ

D

�

» T

t

B
su
psq

�

α̂
su
psq � β̂

su
psqλ

su
pt, sq

	

ds




(67)

F̂
su
ptq � B

su
ptqµ

D
pT � tq �

�

σD
�2

Γ

» T

t

B
su
psq

2
ds� σ

D

» T

t

B
su
psq γ̂

su
psq ds� ω

n
Î
su
ptqµ

φ (68)

Î
su
ptq � λ

su
pt, T q � σ

D

» T

t

B
su
psq β̂

su
psqλ

su
pt, sq ds. (69)

If, in addition, ωn
Ñ 0, then ωi

Ñ 1, Msu
ptq � H ptq, κsu

t � 1 and,

α
su
ptq � β

su
ptq � γ

su
ptq � 0, λ

su
pt, sq �

�

σD
�2

ps� tq

H ptq
, s P rt, T s (70)

κ
su
0 ptq � κ

su
3 ptq � κ

su
5 ptq � 0, κ

su
1 ptq � �2σD

β
D,su

ptq , κ
su
2 ptq �

�

1� rβ
su
ptq
	

σ
D
, κ

su
4 ptq � �β

D,su
ptqσ

D (71)

α
h,su

ptq � γ
h,su

ptq � 0, pα
su
ptq � pβ

su
ptq � pγ

su
ptq � 0 (72)

rα
su
ptq � α

D,su
ptq , rβ

su
ptq � β

D,su
ptq , rγ

su
ptq � γ

D,su
ptq (73)

B̂
su
ptq � B

su
ptq , B

su
ptq �

H pT q

H ptq
, B

h,su
ptq � 1, Â

su
ptq � Î

su
ptq � λ

su
pt, T q (74)

F̂
su
ptq � B

su
ptqµ

D
pT � tq �

�

σD
�2

Γ

» T

t

B
su
psq

2
ds� σ

D

» T

t

B
su
psq γ̂

su
psq ds. (75)

As Zsu,0
� G, the pair

�

D, Ssu,0
�

is fully revealing. Price volatilities in the different economies are σS,su,0
t � σ

S,su
t �

B̂su
ptqσD

� Bsu
ptqσD

  B ptqσD
� σS

t   σD for t   T . As tÑ T, σ
S,su,0
t � σ

S,su
t Ñ σD and σS

t Ñ σD.

Proof of Remark 5. Fix ωu and let ωi
Ñ 1� ωu and ωn

Ñ 0. Then, ω Ñ ωi
Ñ 1� ωu and,

M
sn
ptq �

�

ω
i
	2

H ptq , κ
sn
t �

ωiH ptq

Msn
ptq
, κ

sn
t ω

i
� 1 (76)

α
sn
ptq � β

sn
ptq � γ

sn
ptq � 0, λ

sn
pt, sq �

ωi
�

σD
�2

ps� tq

Msn
ptq

(77)

rα
sn
ptq � pα

sn
ptq � α

D,sn
ptq , rβ

sn
ptq � pβ

sn
ptq � β

D,sn
ptq , rγ

sn
ptq � pγ

sn
ptq � γ

D,sn
ptq (78)

pα
sn
ptq � α

h,sn
ptq , pβ

sn
ptq � β

h,sn
ptq , pγ

sn
ptq � γ

h,sn
ptq (79)

α
D,sn

ptq �
ωiσD

Msn
ptq
, β

D,sn
ptq � �ω

i
α
D,sn

ptq , γ
D,sn

ptq � �α
D,sn

ptqω
i
µ
D
pT � tq (80)

9β
h,sn

ptq � κ
sn
1 ptqβ

h,sn
ptq � σ

D
β
h,sn

ptq
2 ; β

h,sn
pT q � 0 (81)

α
h,sn

ptq � �

» T

t

exp

�

�

» s

t

κ
sn
2 pvq dv




κ
sn
3 psq ds, γ

h,sn
ptq � �

» T

t

exp

�

�

» s

t

κ
sn
4 pvq dv




κ
sn
5 psq ds (82)

κ
sn
0 ptq � 0, κ

sn
1 ptq � �2σD

β
D,sn

ptq , κ
sn
2 ptq �

�

1� rβ
sn
ptq
	

σ
D
�

�

σ
D
	2

K
sn
pt, T q

κ
sn
3 ptq �

�

σ
D
	

2

K
sn
pt, T qα

D
ptq , κ

sn
4 ptq � �β

D,sn
ptqσ

D
� σ

D
K

sn
pt, T q

κ
sn
5 ptq � σ

D
K

sn
pt, T q

�

µ
D
� σ

D

�

γ ptq � γ
D
ptq �

σ
S,sn
t

Γ





where Ksn
pt, T q �

³T

t
βh,sn

pvq
2
bsn1 pt, vq

2
dv with bsn1 pt, vq as in Lemma 1, but with rβ

sn
ptq instead of rβ ptq. As the

solution of (81) is βh,sn
ptq � 0, it follows that pβ

sn
ptq � 0, rβ

sn
ptq � βD,sn

ptq and Ksn
pt, T q � 0. Then,

κ
sn
0 ptq � κ

sn
3 ptq � κ

sn
5 ptq � 0, κ

sn
1 ptq � �2σD

β
D,sn

ptq , κ
sn
2 ptq �

�

1� β
D,sn

ptq
	

σ
D
, κ

sn
4 ptq � �β

D,sn
ptqσ

D

(83)

α
h,sn

ptq � γ
h,sn

ptq � 0, pα
sn
ptq � pβ

sn
ptq � pγ

sn
ptq � 0 (84)

B̂
sn
ptq � B

sn
ptq , B

sn
ptq �

H pT q

H ptq
, B

h,sn
ptq � 1 (85)

48



Â
sn
ptq � Î

sn
ptq � λ

sn
pt, T q , F̂

sn
ptq � B

sn
ptqµ

D
pT � tq �

�

σD
�2

Γ

» T

t

B
sn
psq

2
ds. (86)

The pair pD, Ssn
q, in the limit economy, is fully revealing because Z � ωiG. The stock price volatility is σS,sn

t �

B̂sn
ptqσD

� Bsn
ptqσD where Bsn

ptq   B̂ ptq. Volatilities rank as σS,sn
t   σS

t   σD
t for t   T .

The proofs of Corollaries 1-3 follows from Lemma 11, given next. The proofs for Lemma 11 are straightforward,

but long and tedious. They are in a companion Technical Appendix.

Lemma 11 The following holds,

BH ptq

Bt
� �

�

σ
D
	2

  0,
BM ptq

Bt
�

�

ω
i
	2
BH ptq

Bt
  0,

Bκt

Bt
�

ωi
pωn

q

2
�

σφ
�2

M ptq
2

BH ptq

Bt
  0

Bλ pt, sq

Bt
� �ω

i
�

σ
D
	2 M psq

M ptq
2
  0,

BB ptq

Bt
� �B ptq

�

ω

H ptq
�

p1� ωq
�

ωi
�2

M ptq

�

BH ptq

Bt
¡ 0,

Bα ptq

Bt
� �

pωn
q

2
�

σφ
�2
ωκt � p1� κtωqM ptq

M ptqH ptq
2

BH ptq

Bt
σ
D
» 0ðñ κ

2

t º
1

ωiω

Bβ ptq

Bt
� ω

pωn
q

4
�

σφ
�4

� 2
�

ωi
�2
H ptq pωn

q

2
�

σφ
�2

M ptq
2
H ptq

2

BH ptq

Bt
σ
D
  0

Bγ ptq

Bt
�

ωσD

H ptq
2

�

Bκt

Bt

�

ω
i
µ
D
pT � tq � ω

n
µ
φ
	

H ptq � ω
n
κtµ

φ
�

σ
D
	

2

�

�

1� κtω
i
	

µ
D
�

σ
ζ
	

2



#

Bγ ptq {Bt ¡ 0ðñ 0 ¤ H ptq   H ptq
�

Bγ ptq {Bt   0ðñ H�

  H ptq
, H

�

�

�b�
?

b2 � 4ac

2a
(87)

a � s
2

�

s
�

σ
D
	2

µ
φ
�

�

σ
φ
	2

µ
D




, b � �2s2
�

σ
φ
	2

µ
D
�

σ
ζ
	2

, c � �

�

σ
φ
	2 �

σ
φ
	2

µ
D
�

σ
ζ
	2

, s �
ωi

ωn
(88)

Proof of Proposition 6. Marginal utility is exp p�Xu
T {Γq � yuξmT where the shadow price of initial wealth yu satisfies

Xu
0 � �Γ log pyuq � ΓE0 rξ

m
T log ξmT s, and therefore, yu � exp p�Xu

0 {Γ� E0 rξ
m
T log ξmT sq. Interim expected utility of

the public investor is Uu
� E0 ru pX

u
T qs � �Γexp

�

�

Xu
0

Γ
� E0 rξ

m
T log ξmT s

	

. In the presence of private information,

θmv � σS
v {Γ � ϑv pZ|Dvq. It follows that �E0 rξ

m
T log ξmT s �

1

2Γ2

³T

0

�

σS
v

�2

dv� 1

Γ

³T

0
σS
v ϑv pZ|E0 rξ

m
v Dvsq � I

u. Initial

wealth is Xu
0 � Nu

0 S0 � Nu
0

�

pA p0qZ � pB p0qD0 �
pF p0q

	

. In the absence of private information, θm,ni
v � σD

{Γ

such that �E r ξmT log ξmT |F
m
0 s � �

1

2Γ2

�

σD
�2
T . The corresponding expression for the insider is E

�

u
�

Xi
T

�

�

�F
i
0

�

� �Γ

exp
�

�

Xi
0

Γ
� E

�

ξGT log ξGT
�

�F
i
0

�

	

. As E
�

ξGT log ξGT
�

�G0

�

� E0

�

ξmt,T log pξmT η
x
T q

�

|x�G
� E0 rξ

m
T log ξmT s �E0 rξ

m
T log ηxT s

|x�G

and Nu
0 � N

j
0
� 1, we have Xi

0 � N i
0S0 � Nu

0 S0 � Xu
0 and E

�

u
�

Xi
T

�

�

�F i
0

�

� Uu exp
�

�Ii
pG|Zq

�

. The informed is

always better off, i.e. U
u
  0 and I

i
pG|Zq ¥ 0. This inequality follows as by optimality of the informed investor’s

choice and F
m
p�q

� F
i
p�q

, necessarily, U i
¥ U

u
�

exp
�

�I
i
pG|Zq

�

� 1
�

. This establishes the results announced.

Proof of Proposition 7. Proposition 6 shows that Uu
� U

u,ni exp
�

�

�

∆ pPu
pZq

Γ
�∆ pT u

pZq
		

with

∆ pP
u
pZq � S0 � S

ni
0 �

�

pB p0q � 1
	�

D0 � µ
D
T
	

�

pA p0qZ �
∆pV

Γ
� σ

D

» T

0

pB psq pγ psq ds� ω
n
pI p0qµφ

∆ pT
u
pZq �

∆pV

2Γ2
�

1

Γ

» T

0

σ
S
t ϑ pZ|E0 rξ

m
t Dtsq dt� I

u
pZq and ∆pV �

�

σ
D
	

2
» T

0

�

pB pvq
2
� 1

	

dv.

Hence,

∆U �U
u
� U

u,ni
�

�

exp

�

�

�

∆ pPu
pZq

Γ
�∆ pT

u
pZq

��

� 1

�

U
u,ni

and, as Uu,ni
¤ 0, ∆U ¥ 0 if and only if ∆ pPu
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To study the limit behavior, note that limΓÑ8
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pt;8q � pγ pt;8q where

γ
h
ps;8q � �

» T

s

exp

�

�

» v

s

κ4 puq du




κ5 pv;8q dv

49



κ5 pt;8q �
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Moreover, as γh
psq ¤ γh

ps;8q uniformly in Γ for all s P r0, T s, Lebesgue’s dominated convergence theorem gives,
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The third equality above follows from the Lebesgue dominated convergence theorem and �ξmT
³T

0
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2
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uniformly in Γ. But limΓÑ8
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0
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m
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0
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m
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The price effect is,
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measures the impact of hedging on the price effect. To find the trading impact for small risk tolerance, note that
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where Hm
0,T � �

1
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Using Γk psq � σDΓγ psq � σD
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s
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and rγ psq � γD
psq � pγ psq gives,
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where ∆ pHT measures the effect of hedging on the trading impact,
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Thus,
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Proof of Corollary 4. As,
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Proposition 7 shows that the behavior of welfare gains for small risk tolerance depends on the sign of ∆pV �∆ pH .

In fact,
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Proof of Corollary 5. The noise trader maximizes CARA utility under the conditional beliefs dP x
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� V AR rGs, then Lφ,G px| zq � 1. This establishes the result.

Proof of Corollary 6. Note that,
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As Uu,ni
  0, welfare improves only if,
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This condition can be expressed in terms of the certainty equivalent gain for the noise trader. The fact that Lφ,G pG|φq �

1 under unbiasedness, equal weights and equal variances of the noise and private signals, and the fact that the noise

trader attains the interim utility of the informed are proved in Corollary 5.

Proof of Corollary 7. The condition ∆ pP pZq � Γ∆ pT u
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¡ 0. It follows that the noise trader is better off.

Proof of Corollary 8. Let ωn
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The ex-ante certainty equivalent is,
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Next, consider the case where the informed does not acquire information. The common information filtration is then
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Hence, information acquisition is always suboptimal if acquisition is costly. In the absence of speculation, the no-

information equilibrium prevails.

To evaluate the welfare implications of speculation, it remains to compare interim utilities with and without

speculation. But, the equilibrium without speculation corresponds to the equilibrium without information. Thus,

welfare improves under the conditions of Corollary 7.

Proof of Proposition 10. Consider the information infrastructure ℑ pnq with n signals equally spaced in time
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nu. The interim utility is as in the one period model,
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Interim utility at tnn�2 is,
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Iterating this argument gives,
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The corresponding ex-ante certainty equivalent is,
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The informed is a price-taker and takes Sm,n
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as given when making the information acquisition decision.
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It remains to show that the optimal number of signals n� (i.e., the frequency) is finite. As limnÑ8

Cpnq � �8 by

assumption, it is shown that given the market price of risk and the state price density, the certainty equivalent gain of

the informed is bounded. For this, note that � log is a convex function so that, by Jensen’s inequality,
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By Proposition 11, the information structure is isomorphic to one with signal process Gt � DT �

rζt where rζt �
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Proof of Proposition 11. The private information process is Gt � DT 1Nt � ζNt where 1Nt is an Nt � 1 vector and

ζNt is an Nt � 1 vector of independent noises. The PIPR is,
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In between information arrival times, as vζt is constant, the time-behavior of the stock price volatility is determined

by the same factors as in the benchmark model with a single private signal. Price volatility therefore increases. At

information arrival times, the jump in volatility is determined by the jump in vζt and the impact of vζt on volatility.

To find the latter, note that, in the absence of hedging,
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ptq ¡ 0 implying that the hedging factor jumps down as well. Hence, Bvζσ
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t ¡ 0 and price volatility

decreases at information arrival times tj , j � 1, ..., J .

Proof of Proposition 12. Assume heterogeneous risk tolerances. The market clearing condition gives,
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The WAPR and weighted average of the informational hedging components follow. The equilibrium market price of

risk is identical to the one under homogeneous information modulo the parameter substitution announced.
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b̌2 pt, vq � č2 pt, vqZ � 2b̌1 pt, vq
2
Dt

��

̺
r2s

v

k2,t,v �

»

1

0

BDtEt

�

ξ̌
m

t,v θ̌
m

v θ
Gι

|m
v pxq

�

|x�Gι
µ pdιq �

»

1

0

̺
ι
vBDtEt

�

ξ̌
m

t,v θ̌
m

v θ
G|m
v pxq

�

|x�Gι
µ pdιq

�

��

σ̌S
v

Γ
� α pvqZ � γ pvq




β0 pvq � pα1 pvqG� α2 pvqZ � γ0 pvqqβ pvq




b̌1 pt, vq

»

1

0

̺
ι
vµ pdιq

�α1 pvq β pvq b̌1 pt, vq

»

1

0

̺
ι
vζ

ι
µ pdιq � β pvq β0 pvq

�
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|Zqµ pdιq � ψ̌

i,G

12 ptqG� ψ
i,Z
12 ptqZ � ψ̌

i

22 ptqDt � ψ̌
i

32 ptq

where,

ψ̌
i,G
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» T

t

α1 pvqβ0
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v dv, ψ̌
i,Z
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» T

t

�
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1

2
β
0
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2
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̺
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v dv

ψ̌
i
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» T

t

β
0
pvq

2
b̌1 pt, vq

2
̺
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v dv, ψ̌
i

31
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» T

t

�

γ
0
pvq β

0
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1

2
β
0
pvq

2
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̺
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v dv
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ψ̌
i,G

12
ptq �

» T

t

β pvqα1 pvq b̌1 pt, vq ̺
r1s

v dv, ψ
i,Z
12

ptq �

» T

t

��

β pvqα2 pvq � β
0
pvqα pvq

�

b̌1 pt, vq � β pvqβ
0
pvq č2 pt, vq

�

̺
r1s

v dv

ψ̌
i

22 ptq � 2

» T

t

β0 pvq β pvq b̌1 pt, vq
2
̺
r1s

v dv

ψ̌
i

32 ptq �

» T

t

��

γ0 pvq β pvq �

�

γ pvq �
σ̌S
v

Γ




β0 pvq




b̌1 pt, vq � β0 pvq β pvq b̌2 pt, vq




̺
r1s

v dv.

The hedging components associated with the MPR depend on hu
t pZq � ψ̌

u

1tZ � ψ̌
u

2tDt � ψ̌
u

3t where,

ψ̌
u

1t � �

» T

t

�

α pvq b̌1 pt, vq �
1

2
β pvq

2
č2 pt, vq




dv, ψ̌
u

2t � �

» T

t

β pvq
2
b̌1 pt, vq

2
dv

ψ̌
u

3t � �

» T

t

�

β pvq γ pvq b̌1 pt, vq �
1

2
β pvq

2
b̌2 pt, vq




dv.

The aggregate hedging demand is the same as in Lemma 4 with coefficients,

ψ̌
m

1t � ψ̌
u

1t � ψ̌
i,G

11 ptq � ψ̌
i,G

12 ptq � ω
�

ψ̌
i,Z

11 ptq � ψ̌
i,Z

12 ptq
	

ψ̌
m

2t � ψ̌
u

2t � ω
�

ψ̌
i

21
ptq � ψ̌

i

22
ptq
	

, ψ̌
m

3t � ψ̌
u

3t � ω
�

ψ̌
i

31
ptq � ψ̌

i

32
ptq
	

still to be identified. Given the conjecture about the aggregate structure of hedging demands, it must be that α̌h
ptq �

ψ̌
m

1tσ
D, β̌

h
ptq � ψ̌

m

2tσ
D and γ̌h

ptq � ψ̌
m

3tσ
D. Therefore,

α̌h
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σD
� �

» T

t

��

1� β pvq ̺
r1s

v

	

α pvq � α pvq
�

β
0
pvq ̺

r2s

v � β pvq ̺
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v

		

b̌1 pt, vq dv

�

1

2

» T

t

�

β pvq
2
� 2ωβ

0
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�

β pvq ̺
r1s

v �

1

2
β
0
pvq ̺
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v
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h
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� �
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t

�

β pvq
2
� 2ωβ

0
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�

β pvq ̺
r1s

v �

1

2
β
0
pvq ̺
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v





b̌1 pt, vq
2
dv
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� �

» T

t

�
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�

γ
0
pvqβ pvq ̺

r1s

v �

��

γ pvq �
σ̌S
v

Γ




̺
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v � γ
0
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v




β
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�
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t

�

1

2
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2
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�
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v �

1

2
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v





b̌2 pt, vq dv.

Using Btb̌1 pt, vq
2
� �2σD b̌1 pt, vq

2

�

β ptq � β̌
h
ptq � βD

ptq
	

and β ptq � ωβ0 ptq leads to,

Btβ̌
h
ptq

σD
� β ptq

2
� 2ωβ

0
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�
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t �

1

2
β
0
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t
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�

�
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t

�

β pvq
2
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0
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�
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t �

1

2
β
0
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2
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σ
D
�

β ptq � β̌
h
ptq � β

D
ptq
	

� β ptq
2
� 2ωβ

0
ptq

�

β ptq ̺
r1s

t �

1

2
β
0
ptq ̺
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t




� 2β̌
h
ptq
�

β ptq � β̌
h
ptq � β

D
ptq
	

� β ptq
2
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�
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t �

1

2
β
0
ptq ̺
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t




� 2β̌
h
ptq
�

β ptq � β
D
ptq
	

� 2β̌
h
ptq

2
.

Straightforward simplifications, with the definitions β ptq � β ptq � β̌
h
ptq and β ptq � ωβ0 ptq, give,

Btβ̌
h
ptq

σD
�

�

β ptq � β̌
h
ptq
	

2

� 2β ptq

�

�

β ptq � β̌
h
ptq
	

̺
r1s

t �

1

2
β
0
ptq ̺

r2s

t




� 2β̌
h
ptq
�

β ptq � β
D
ptq
	

� 2β̌
h
ptq

2

�

�

1� 2̺r1st

	

β ptq
2
� β ptq β

0
ptq ̺

r2s

t � 2β̌
h
ptq
�

β
D
ptq � β ptq ̺
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t

	

� β̌
h
ptq

2

�

�

1� 2̺
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t �

̺
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t

ω

�
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2
� 2β̌

h
ptq
�

β
D
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t

	

� β̌
h
ptq

2
�

κ̌0 ptq

σD
�

κ̌1 ptq

σD
β
h
ptq � β

h
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2(94)
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where κ̌0 ptq �
�

1� 2̺r1st �

1

ω
̺
r2s

t

	

β ptq
2
σD and κ̌1 ptq � �2σD

�

β ptq ̺
r1s

t � βD
ptq
	

.

Using b̌1 pt, tq � 1, č2 pt, tq � 0, Btb1 pt, vq � �σDb1 pt, vq
�

β ptq � β̌
h
ptq � βD

ptq
	

and

Btč2 pt, vq � �2σD
b̌1 pt, vq

2

�

α ptq � α̌
h
ptq � α

D
ptq
	

� σ
D
č2 pt, vq

�

β ptq � β̌
h
ptq � β

D
ptq
	

gives,

Btα̌
h
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�

�
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t

	�
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h
ptq
	

� α ptq
�

β
0
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t � β ptq ̺
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�
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t
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1� β pvq ̺
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v

	

α pvq � α pvq
�

β
0
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v � β pvq ̺
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v

		�

�σ
D
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�
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h
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D
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�

1

2
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t

�
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2
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0
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�
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v �

1

2
β
0
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�
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D
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�

β ptq � β̌
h
ptq � β

D
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2
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�
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�

β pvq ̺
r1s

v �

1

2
β
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v





�
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2
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�
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h
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D
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�

�
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t

	�
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h
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�

β
0
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D

�
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�
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D
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t

�

1

2
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2
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�
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2
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�

α ptq � α̌
h
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D
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�
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σD
α̌
h
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where,

κ̌2 ptq

σD
� 1�β ptq ̺
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t �

�

β ptq � β̌
h
ptq � β

D
ptq
	

�2σD
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t

�

1

2
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2
� β pvq

�

β pvq
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2
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κ̌3 ptq

σD
� α ptq

�

1� β ptq ̺
r1s

t �
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ω
̺
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t � β ptq ̺
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�2σD
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t

�

1

2
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2
� β pvq

�

β pvq
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̺
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2
dv
�

α ptq � α
D
ptq
	

. (96)

Likewise, using b̌2 pt, tq � 0, b ptq � β ptq � β̌
h
ptq, β ptq � ωβ0 ptq, γ ptq � ωγ0 ptq and

Btb1 pt, vq � �σ
D
b1 pt, vq

�

β ptq � β̌
h
ptq � β

D
ptq
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D
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�
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h
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D
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� 2b̌1 pt, vq
2

�

µ
D
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D

�
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2
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h
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h
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�

γ
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0
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β
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γ
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0
pvq ̺

r2s

v




β
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2
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�

γ
0
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σ̌S
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̺
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0
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β
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�
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D
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1

2
β pvq

2
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�
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D
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�
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D
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�
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where,
κ̌4 ptq
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� �β
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ptq � β ptq ̺
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» T

t

�

1

2
β pvq

2
� β pvq

�

β pvq ̺
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2
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ω
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2
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2
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�

µ
D
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D

�
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D
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σ̌S
t

Γ





(98)

and where σ̌S
t {Γ is as σS

t in (15) but with βh replaced by β̌
h
.

Proof of Proposition 14. Continuity of the fundamental process D implies DT� � DT , at time T
�

. At T
�

, the

informational advantage of the informed has disappeared. The Gaussian structure and the conditional independence

of dividend jumps, implies that optimal demands at T
�

are N ι
T� � Γ

�

DT� �E rǫs � rST�

	

{V AR rǫs for ι P tu, i, nu.

Market clearing,
°

ιPtu,i,nuN
ι
T� � 1, gives V AR rǫs {Γ � DT� � E rǫs � rST�, or equivalently, rST� � DT� � E rǫs �

V AR rǫs {Γ. The value function of an informed is,

U
ι
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Xι
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,Nι
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�

�ΓE

�
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�

�
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E
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�

∆Xι
T
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�

�

�

F
m
T�

�

�

�

�

�

F
ι
0

�


where ∆Xι
T � N ι

T�

�

DT� � ǫ� rST�

	

� N ι
T� pǫ�E rǫs � V AR rǫs {Γq. At the equilibrium price, optimal holdings are

N ι
T� � 1, ∆Xι

T � ∆S̃T � ǫ� E rǫs � V AR rǫs {Γ. As ET�

�
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�

�

∆Xι
T

Γ

	�
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�

1
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�

, it follows that,

U
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�
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�
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�

�

�

�

F
ι
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�
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�

1

2Γ2
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.

For t P r0, T q, the signal structure of the informed is the same as in Section 2. The optimal Xι
T� is the same as the

optimal Xι
T in the model without jumps. The same holds for the optimal portfolio demands, the WAPR and the market

price of risk. As rST� � DT� � E rǫs � V AR rǫs {Γ, the stock price now solves the BSDE, drSt � σ
rS
t pθ

m
t dt� dWm

t q

subject to rST� � DT� � E rǫs � V AR rǫs {Γ. Therefore, for t   T ,

rSt � Et

�

rST�

�

�

» T

t

σ
rS
vEt rθ

m
v s dv � Et rDT�s � E rǫs � V AR rǫs {Γ�

» T

t

σ
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m
v s dv.

Volatility solves the BSDE σ
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t �

�

BDtEt rDT�s �

³T

t
σ
rS
v BDtEt rθ

m
v s dv

	

σD. As Et rDT�s � Et rDT s, by continuity of

the fundamental process, this BSDE is the same as without dividend surprises. It follows that σ
rS
t � σS

t with σS
t as

in Proposition 5. For t   T , the only effect of the surprise is that the price shifts by the constant E rǫs � V AR rǫs {Γ.

Given the price jump ∆rST �
rST �

rST� � ǫ�E rǫs � V AR rǫs {Γ at T , the formulas stated follow.

Proof of Proposition 15. The residual demand and market clearing imply Zt � ωiG � ωnφ0 � ωnVt �

E
�

ωiG� ωnφ0 � ωnVt

�

�F
m
t

�

and therefore Zt P F
m
t . As G,φ0, Vt are mutually independent and F

D
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is indepen-

dent of FWφ

p�q

, it follows that the endogenous initial signal is Z0 � ωiG�ωnφ0 and, as dZt � ωndVt, the public filtration
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� F
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�
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ξ
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F
D,Wφ

t

�
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where, as Z0 is independent of F
Wφ

t , θ
Z|D
t pzq � σD z�ErZ0|Dts
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ptq z � βD
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Thus Ψz
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The uninformed and informed hedging demands are,
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� α0 ptqG� α1 ptqZ0 � β0 ptqDt � γ0 ptq

by independence of G and FWφ

t . The coefficients α0, α1, β0, γ0 are the same as in the model with φt � φ. Define the

correlation coefficients ρS,Dt � σ
S,D
t {σS

t and ρS,W
φ

t � σ
S,Wφ

t {σS
t . Market clearing implies,
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Γ
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t
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Θt pZ0;ωq �

�

Z0 � ωE rG|Dt, Z0s

V AR rG|Dt, Zs




σ
D
� α ptqZ0 � β ptqDt � γ ptq (101)

ht,v pz, xq � ωh
G
t,v pz, xq � h

m
t,v pzq , ω � ω

i
� ω

n (102)

with coefficients α, β, γ as in the model with φt � φ. Next, conjecture that
µS
t

σS
t

� ϕZ
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D
ptqDt�ϕ

V
ptqVt�ϕ
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for deterministic functions ϕZ , ϕD, ϕV , ϕ0. Then,
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�
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�
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�
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�
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�

|z�Z0

E
�
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The volatility now solves,

σ
1

t �

�

σ
D
, 0
�

� σ
D
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t

�

h
σ
t,v

�

1

dv where h
σ
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Finally, Mt,v pzq
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E
�

Ψz
t,vξ
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t,v Vv

�

�F
D,Wφ

t

�

, E
�

Ψz
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t,v Dv
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solves the linear ODE,

Mt,v pzq �
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�

�
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Given market clearing in (100) and the conjecture µS
t {σ

S
t � ϕZ

ptqZ0�ϕ
D
ptqDt�ϕ

V
ptqVt�ϕ

0
ptq, the NREE is fully

characterized by the system of backward ODEs,

ϕ
D
ptq � �β ptq ρ

S,D
t �

ωKtσ
1

t
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t
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t

Y
ϕ
v N

D
t,vdv (104)

ϕ
V
ptq � �ω

n
α0 ptq ρ

S,D
t �

ωKtσ
1

t

σS
t

» T

t

Y
ϕ
v N

V
t,vdv (105)

ϕ
Z
ptq � �α ptq ρ

S,D
t �

ωKtσ
1

t

σS
t

» T

t

Y
ϕ
v N

Z
t,vdv (106)

ϕ
0
ptq � �γ ptq ρ

S,D
t �

σS
t

Γ
�

ωKtσ
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t
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t
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t

Y
ϕ
v N
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where,

Y
ϕ
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0 β0ϕ
V ρS,D

�

pvq �

�

ϕV ϕD
�

�

ϕD
�2

ϕV
�

�

ϕV
�2

ϕD

�

pvq
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t,vDt �NV
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Y
N
s N

D
t,sds, N

V
t,v �

�

1

0

�

�

» T

t

Y
N
s N

V
t,sds (108)
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N
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Y
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with

Y
N
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φ
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Thus,
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1

0
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�Kt
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t
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ϕV ρS,D
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(111)

with σS
t � }σt}, ρ

S,D
t � σ

S,D
t {σS

t , ρ
S,Wφ

t � σ
S,Wφ

t {σS
t and Kt as in (103). If the system (104)-(111) has a solution,

a NREE exists. Using the coefficients ϕZ , ϕD, ϕV , ϕ0 in (104)-(108) and the valuation formula (99), the stock price

becomes St � ΥZ
ptqZ0 �ΥD

ptqDt �ΥV
ptqVt �Υ0

ptq where,

ΥZ
ptq � �σ

D
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t

�

ϕ
Z
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S,D
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D
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dv, ΥD
ptq � 1� σ
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�

ϕ
D
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S,D
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D
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N
D,D
t,v dv (112)

ΥV
ptq � �σ

D

» T

t

ϕ
V
pvq ρ

S,D
v N

V,V
t,v dv, Υ0

ptq � µ
D
pT � tq � σ

D

» T

t

�

ϕ
0
pvq ρ

S,D
v � γ

D
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dv (113)

with ND,D
t,v � e12N

D
t,v, N

V,V
t,v � e11N

V
t,v, e

1

1 � r1, 0s and e12 � r0, 1s.

Proof of Corollary 11. Using 9σS
t � σ1t 9σt{σ

S
t gives 9σS

t �

�

ρ
S,D
t

	2

ϕD
ptqσD

� σDβD
ptq ρ

S,D
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1�
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ρ
S,D
t

	2

ϕV
ptqσV

with boundary condition σS
T � σD. As limtÒT ρ

S,D
t � 1, limtÒT 9σS

t �

�

ϕD
pT q � βD

pT q
�

σD
� �

�

β pT q � βD
pT q

�

σD
¡

0. As limtÒT σ
S
t � σD, the stock volatility converges to σD from below. If σS

t ¡ σD for some t   T , necessarily 9σS
v   0
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for some v ¥ t.

Proof of Remark 12. Consider the economy without private information and where the noise trader speculates

based solely on the extraneous noise V . In this economy, the WAPR is null. Market clearing gives,

σ
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Γ
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µ
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σ
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where θS,ni
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ptq and
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The vector of volatility coefficients now solves,

σ
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and the stock price volatility becomes,
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2

¥ σ
D (115)

with strict inequality for t   T . This establishes the behavior of the volatility in the absence of private information.

The equilibrium coefficients satisfy,

ϕ
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n
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1
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ϕ
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where,
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N
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The corresponding price coefficients are,
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D
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ϕ
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pvq ρ
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V,V,ni
t,v dv, Υ0,ni
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D
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D
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t

ϕ
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pvq ρ
S,D,ni
v dv. (121)

Appendix C: Proofs of non-existence with exogenous noise trading

Proof of Proposition 3. Optimal informed and uninformed demands of CARA investors are related by N i
t �

Nu
t �N

i,G
t pGq for t P r0, T s. The residual demand is Na

t � ωiN i
t� ωnφ. By market clearing, ωuNu

t �N
a
t � 1, so that

Na
t � 1�ωuNu

t for t P r0, T s. Thus, Na
t is Fm

t -measurable for t P r0, T s, i.e., Na is adapted to the public filtration F
m
p�q

.

It follows that the process Z, where Zt � ωi
�

N
i,G
t pGq �E

�

N
i,G
t pGq

�

�

�

F
m
t

�	

� ωnφ is adapted to F
m
p�q

and therefore
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Zt � E rZt|F
m
t s � ωnE rφ|Fm

t s. The joint Gaussianity of Zt, G,Dt, φ implies that Zt � ωiδ ptqG � ωnφ for some

function of time δ ptq. Define T � tt P r0, T s : δ ptq � δ p0qu and note that if (5) does not hold, necessarily leb pT q ¡ 0.

Then, for t P T ,
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Z
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Proof of Proposition 4. If (5) holds, then the equilibrium filtration becomes Fm
p�q

� FD
p�q

�

σ pZ0q where Z0 �

ωiδ p0qG� ωnφ. The proof of the proposition uses the next lemma identifying admissible endogenous signals Z0.
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n
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Moreover, the condition ωn
¥ 2ωi

{

�

σφσζ
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is then necessary for the existence of a NREE.

Proof of Lemma 12. Under (5), if ∇φN
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(123)

and ωnσφσζ
¥ 2ωi is necessary for existence.

Proof of Proposition 4 (continued). Let δ p0q be any real solution of (123) with associated signal Z
�

defined in

(122). As P pG P dx|Fm
t q � P

�

G P dx|FD
t
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θ
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t pxq and the information price of risk of the endogenous signal, θ
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t pzq, are as in the model with endogenous noise

trading except that Z is replaced by Z
�
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As δ ptq � δ p0q for all t P r0, T s, it must be that 0 � 9δ
m
ptq � g pt, tq δm ptq �

³T

t
Btg pt, vq δ

m
pvq dv and therefore

that 9δ
m
pT q � g pT, T q δm pT q � 0. The limit expression in this equation are determined next. First, given that
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(124)

where,

β
D
pT q � �

�

ωi
�2
σD

�

pωi
q

2
pσζ

q

2
� pωn

q

2
pσφ

q

2
� , β0 pT q � �

σD
pωn

q

2
�

σφ
�2

�

pωn
q

2
pσφ

q

2
� pωi

q

2
pσζ

q

2
�

pσζ
q

2
.

If ωi
¡ 0, ωn

¡ 0 and σφ
¡ 0, then δ p0q given in (123) does not solve (124). Therefore, δ ptq cannot be constant and a

NREE does not exist.
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Figure 1: Sensitivity of WAPR to private information: The figure shows the dynamic behavior
of α ptq for t P r0, T s. Parameter values are T � 1, σD

� 0.2, µD
� 0.05, µφ

� E rGs, σφ
� STD rGs,

σζ
� 0.1. The weight of the informed is ωi

� 1{10. The weight of the speculating noise trader varies
between ωn

� 1{125 (left panel), ωn
� 1{60 (middle panel) and ωn

� 1{4 (right panel).
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Figure 2: Stock volatility with and without hedging, Markovian volatility and sensitivity

of WAPR and stock price to fundamental information: The figure shows the dynamic behav-
ior of σS

t (with hedging), σS,nh
t (no hedging), σS,M

t (Markovian), pβ ptq, β ptq and pB ptq, B ptq for t P

r0, T s. The Markovian volatility is σS,M
t �

a

limhÑ0 V AR rSt�h � St|Sts � σS
t

b

1� 2ωi
pA ptq { pB ptq.

Parameter values are Γ � 1{4, T � 1, σD
� 0.2, µD

� 0.05, µφ
� E rGs, σφ

� STD rGs. The weights
of informed and the speculating noise traders are ωi

� 1{10 and ωn
� 1{5. Signal noise volatility

varies between σζ
� 0.25 (left panel), σζ

� 0.1 (middle panel), and σζ
� 0.05 (right panel).
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Figure 3: Pareto ranking of equilibria: This figure shows the different components of ∆P̂ {Γ�∆T̂ u

as a function of risk tolerance Γ. Parameter values are T � 1{24, D0 � 1, ωi
� 1{10, ωn

� 1{5,
σD

� 1.18, µD
� 0.05, µφ

� E rGs, σφ
� STD rGs. The precision of the private information

signal varies between σζ
� 0.5 (left panels), σζ

� 0.1, (middle panels) and σζ
� 0.05 (right panels).

The top row shows welfare components based on optimal demands. The bottom row shows welfare
components based on demands excluding hedging components.
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Figure 4: Information acquisition gains without speculative noise trading: This figure shows
the gains from information acquisition in the absence of speculative noise traders as a function of risk
tolerance Γ (GA � CEi,wa

� CEi,na) where CEi,wa and CEi,na are the certainty equivalents of the
informed with and without information production. Parameter values are T � 1, D0 � 1, ωi

� 1{10,
σD

� 0.2, µD
� 0.05, µφ

� E rGs, σφ
� STD rGs. The precision of the private information signal is

σζ
� 0.25 (left panel), σζ

� 0.10 (middle panel) and σζ
� 0.05 (right panel). Certainty equivalent

acquisition costs are C � 0.5
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