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The Peso Problem: Evidence from the S&P 500

Options Market

Abstract

The concern about possible market crashes has important consequence on asset pric-

ing. Such tail events in a given sample period mat not realize, driving a wedge between

the ex-ante risk perceived by investors and the ex-post losses during the given sample.

This Peso problem has been proposed to explain high equity risk premiums, but its exis-

tence has not been rigorously verified. We propose a methodology to verify the existence

and to measure the extent of the Peso problem by using information from both asset

returns and prices of options written on the asset jointly. Applying the framework to the

S&P 500 Index over the period from 1996 to 2013, we find supportive evidence of the ex-

istence of Peso problem and document pro-cyclical dynamics of the Peso problem measure.
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1 Introduction

Tail events are infrequent events with extreme economic outcomes. A case in point in the

financial history of the U.S. is the Great Depression, during which the level of aggregate

corporate earnings and aggregate stock prices declined dramatically. Such tail events,

however, occur infrequently and hence they may fail to materialize in a given sample

period. The absence of tail events drives a wedge between ex-ante risk perceived by

investors and ex-post realized risk in a give sample, known as the “Peso problem”.1 The

Peso problem has profound implications on asset pricing. In particular, it has a potential

to resolve the well-known equity premium puzzle, raised by Mehra and Prescott (1985),

that the average realized return on U.S. equity appears too high, relative to the risk free

rate, to be justified by the observed volatility of the aggregate consumption growth in a

Lucas (1978) endowment economy. Rietz (1988) first proposes a Peso problem explanation

of the puzzle within Mehra and Prescott (1985)’s framework. The realized high equity

premium is attributed to compensation for bearing the risk of a consumption disaster that

is expected rationally by investors but is under-represented by the historical consumption

data. Extending the Rietz’s model, Barro (2006), Barro and Ursúa (2008, 2009) and

Nakamura et al. (2010) match the observed U.S. equity premium using international

consumption data as benchmark.

While many studies have demonstrated that an assumed Peso problem can resolve the

equity premium puzzle, whether there is an actual Peso problem in equity returns and

how large the extent of the problem is have not yet been rigorously examined empirically.

The difficulty is that conditional distributions perceived by investors in ex-ante are not

1Mexican Peso was pegged to the US dollar in the early 1970s. As its economy deteriorated, investors
had expected that the peg would go and such expectation was reflected in the large difference between
spot and forward exchange rates. Over a very long period, however, devaluation of Peso did not happen
until 1976 when Peso was allowed to float and plummeted by 46%. Such tail events that were expected
to happen but did not happen until much later are known as Peso events. The term Peso problem was
coined by Milton Friedman to describe the situation in which forward looking return distribution is more
left skewed than an empirical distribution from the past realizations.
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directly observable. We propose a framework to measure the extent of the Peso problem

by using information from time series of equity returns and cross-section options written

on the equity jointly. From cross-sectional options prices at a given point of time, we first

obtain the option-implied conditional distribution of future equity returns at constant

maturity under the risk-neutral measure, convert it to the conditional distribution under

the physical measure in conjunction with a specification of the stochastic discount factor,

and compare it with the conditional physical distribution of equity returns implied by

a time series model, estimated on a finite sample of realized returns. The key notion is

that the conditional physical distribution implied from options prices captures the ex-ante

risk perceived by investors, no matter they realize in the given sample or not, while the

equity return-based conditional physical distribution only represents the extent of realized

losses in ex-post. To quantify the wedge in the left tail between the two conditional

physical distributions, we define a Peso measure as the proportional difference between the

conditional probabilities of one month gross return of the asset below a certain threshold,

say 0.9, from the option prices-implied physical distribution and from the equity return-

implied physical distribution. We apply our method to study the Peso problem for the

S&P 500 Index, a broad market index for the U.S. equity market, over the period from

1996 to 2013. Using the S&P 500 Index returns and its European options, we find that

there exists a Peso problem over this sample period and the average value of the Peso

problem measure is about 1.1. The Peso problem measure is time-varying and exhibits

pro-cyclical variations. It is high in economic expansions, increases during the stock

market boom, and vanishes after realizations of large stock market downturns. These

findings fill the void in the Peso problem literature.

The advantage of our methodology is twofold. First, options prices embed investors’

ex-ante perceived risk, which may not materialized in a given sample. Therefore our

approach sidesteps the empirical difficulty in measuring the ex-ante perceived risk by

investors. The common approach in the literature to quantify the ex-ante perceived
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probability and magnitude of a peso component in consumption growth or equity return

is calibration. For instance, parameters of asset fundamental are calibrated from historical

consumption and dividend data by matching model-implied moments with their sample

counterparts (e.g., Rietz (1988), Longstaff and Piazzesi (2004), Barro (2006) and Gabaix

(2012), among others). However, by the nature of the Peso problem, matching the ex-

post (unconditional) sample moments may not adequately capture the ex-ante concerns of

tail events. Secondly, options prices reflect market participants’ conditional assessment of

future asset movements and options markets provide a wide spectrum of options contracts

at each given point of time. Consequently we are able to recover the ex-ante perceived

distributions of equity returns and calculate the difference between the ex-ante perceived

risk by investors and ex-post realized losses at each time point over the entire sample

period. To our best knowledge, quantifying the extent of the Peso problem in this way

has not yet been done previously.

Recently several papers also employ options to study the Peso problem in equity and

currency returns. Using a novel mixed jump-diffusion process jointly calibrated from time

series of S&P 500 Index returns and European options, Santa-Clara and Yan (2010) pro-

vide model-specific evidence of the Peso problem hypothesis for the S&P 500 Index. Over

the sample period from 1996 to 2002, they find substantial time-varying jump risk with

the expected percentage jump size -9.8%, though negative jumps with such magnitude

never occurred in the sample. Thus, the Peso problem in their paper manifests as the

divergence in the expected jump size between the ex-ante perceived distribution and the

ex-post empirical distribution of realized jumps. By contrast, we characterize the extent

of the Peso problem as the left tail of the cumulative distribution of equity returns, which

incorporates the cumulative effect associated with either single or multiple price jumps

and we make less parametric assumptions on tail behaviors of asset returns than they do.

Burnside et al. (2011) use foreign currency options to study the Peso problem explanation

for the high premium earned by currency carry trade strategiesand find evidence in favor
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of the Peso problem hypothesis. However, they do not quantify the ex-ante perceived risk

in currency carry trade strategies, whereas borrow it from the calibration in the disaster

risk literature (Nakamura et al. 2010). By contrast, quantifying the ex-ante probability

of tail events perceived by investors is the key component of our paper.

Finally, it should be noted that in our analyses we maintain the assumption that the

options market is fully integrated with the spot market and there is no options market

specific friction that segment the options market from the spot market, otherwise the

ex-ante perceived risk implied from options prices will be biased (Pan, 2002).

The rest of the paper is organized as follows. Section 2 provides a brief literature

review of the peso problem, focusing on its implication for the equity premium puzzle.

Section 3 lays down the framework of how to measure the extent of the peso problem.

Section 4 and 5 apply the framework to study the extent of the peso problem of the S&P

500 Index. Section 4 describes the data for empirical analyses. Section 5 discusses the

empirical results and the asset pricing implication of the peso problem on equity premium.

Finally, Section 6 concludes.

2 A Brief Literature Review

Our paper is closely related to the Peso problem explanation of the equity premium puzzle.

In this section, we briefly review the literature.

Rietz (1988) first put forward a simple yet power Peso problem explanation for the

equity premium puzzle within the framework of Mehra and Prescott (1985). He attributes

high equity premium to compensation for bearing the risk of a consumption disaster s-

tate (large contraction in aggregate consumption) that is expected rationally by investors

but are under-represented in the historical consumption data. Building upon the Rietz

model, Barro (2006), Barro and Ursúa (2008, 2009) and Nakamura et al. (2010) suc-

cessfully match the observed U.S. equity premium with reasonable relative risk aversion
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parameters. To mitigate the concerns of the Peso problem of the historical U.S. aggre-

gate consumption and equity returns data, they allow the ex-ante perceived consumption

disaster probability and magnitude to be different from the U.S. sample frequencies and

calibrate them from cross-country data over the twentieth century2. Other important

contributions in the literature include Danthine and Donaldson (1999), Veronesi (2004)

and the survivorship bias hypothesis proposed by Brown, Goetzmann and Ross (1995)

and Jorion and Goetzmann (1999), which shares the same spirits as the Peso problem

hypothesis.

The main critique of the Peso problem explanation for the equity premium puzzle,

initialized by Mehra and Prescott (1988), concentrates on whether a disaster model cal-

ibrated to the U.S. historical consumption and dividend data can match the observed

U.S. equity premium with reasonable risk aversions. Longstaff and Piazzesi (2004) and

Julliard and Ghosh (2012) argue that if calibrated to the U.S. historical evidence, dis-

aster models can not match the level of realized equity premium with reasonable risk

aversions. Backus, Chernov and Martin (2011) uncover the unconditional probability and

distribution of consumption disasters from S&P 500 Index options prices. They extract

the index option-implied unconditional distribution of equity returns by Merton (1976)’s

jump-diffusion model and link index returns to the aggregate consumption growth in a

Lucas economy with a representative agent with CRRA preference. The index option-

implied probability of consumption disasters turns out to be substantially lower than that

calibrated by Barro and his coauthor from international consumption data.

Our paper differs from this stream of literature in several dimensions. First, taking

the prospective of an investor who holds the equity market in equilibrium, we examine

2The probability of consumption disasters in Rietz (1988), Longstaff and Piazzesi (2004) and Barro
(2006) is constant and all of them assume that the representative agent has CRRA preference. Recent
advances in the literature focus on the asset pricing implication of time-varying disaster risk, generalized
utility functions of the representative agent, e.g., recursive preference and habit formation, and recoveries
after disasters (e.g., Gourio (2008), Du (2011), Gabaix (2012), Wachter (2013) and Martin (2013), among
others).

5



whether there is a Peso problem for the U.S. aggregate equity market. Another reason of

studying equity returns directly is that there are measure errors and temporal aggregation

problems of the aggregate consumption data (Campbell, 1993 and the reference therein).

Second, we examine whether there is a Peso problem by explicitly characterizing the gap

between the ex-ante perceived risk and ex-post realized risk, rather than assuming the

existence of the Peso problem in the first place, which is very different from Rietz (1988).

We infer the ex-ante perceived probability of disasters in U.S. aggregate equity market

from the broad market index options (S&P 500 Index options) rather than calibrating

from international consumption data (Barro (2006) and Barro and Ursúa (2008, 2009)).

More importantly, we use index options prices jointly with equity returns to infer the

ex-ante perceived crash risk by investors rather than solely relying on ex-post realized

observations (Longstaff and Piazzesi (2004) and Julliard and Ghosh (2012)). Finally

our paper also differs from Backus, Chernov and Martin (2011) who also use S&P 500

Index options to quantify the ex-ante perceived unconditional probability of consumption

disasters, in that we estimate the perceived conditional probability of market crashes and

study the time variation of the extent of the Peso problem.

3 Methodology

3.1 The Framework

In this section, we propose a methodology to quantify the extent of the Peso problem of an

asset. Since options prices incorporate investors’ ex-ante assessment of future movement

of the underlying asset, a Peso phenomenon emerges when large losses have not been found

in a given sample period, but the concerns that they may occur are actually reflected in

options prices. Naturally, the extent of the Peso problem can be captured by the gap

between ex-ante concerns of large market downturns and their ex-post realizations. A
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novel feature of our framework is that we explicitly characterize the gap. Specifically, we

capture the ex-ante perceived risk by the conditional physical distribution (also known as

objective or data-generating distribution) of the asset return implied from its European

options and measure the extent of realized risks by the conditional physical distribution,

obtained from a time series model estimated from past realized asset returns. The gap in

the left tail between the two conditional physical distributions reflects the extent of the

Peso problem.

Formally, let Rt,t+τ be the gross return on an asset from the end of period t to the

end of period t+ τ , let a be a number, say 0.85 to represent 15% loss during the period,

let P S
t (Rt,t+τ ≤ a) be the conditioning probability of the gross return over the period

less than a, obtained from a time series model estimated from past realized returns only,

and let PO
t (Rt,t+τ ≤ a) be the conditioning probability obtained from a physical distri-

bution implied from option prices. The Peso problem measure (PPM (a)) is defined as a

percentage difference between the two conditional probabilities as follows:

PPM(a) = logPO
t (Rt,t+τ ≤ a)− logP S

t (Rt,t+τ ≤ a). (1)

The prices of European options written on the asset are used to recover the option-implied

conditional risk-neutral distribution of Rt,t+τ and a projected stochastic discount factor is

necessary to transform the option-implied conditional risk neutral distribution to option-

implied conditional physical distribution and derive PO
t (Rt,t+τ ≤ a).

The remaining subsections are organized as follows. Subsection 3.2 outlines the pro-

cedure of recovering option-implied risk-neutral distributions. Subsection 3.3 discusses

the construction of a projected stochastic discount factor to transform the option-implied

risk-neutral distribution to physical distributions and how to estimate it. Subsection

3.4 explains how the asset return-based conditional physical distribution, P S
t (Rt,t+τ ), is

constructed.

7



3.2 Recover Risk-Neutral Densities from Options Prices

In the absence of arbitrage opportunities, the price of a European option is the expected

discounted value of its terminal payoff under the risk-neutral probability measure P̃, where

the discounted rate is the prevalent risk-free interest rate over the life of the option.

Specifically, let C(t, T,K) denote the time-t price of a European call option with strike

price K and maturity τ ≡ T − t, then

C(t, T,K) = Ẽt[(ST −K)+/Rf
t,t+τ ] =

∫ ∞
K

[(ST −K)/Rf
t,T ]f̃t(ST )dST (2)

where ST is the value of the underlying asset at option expiry date T , f̃t(ST ) is the time-

t conditional density function of ST under the risk-neutral measure, Rf
t,t+τ denotes the

(unannualized) gross risk-free interest rate for the period t to t + τ and Ẽt indicates the

mathematical expectation under the risk-neutral measure conditioning on time-t informa-

tion. Through out this paper, the risk-free interest rate is assumed to be deterministic.

When there are continuum European call options with strikes from zero to infinity,

Breeden and Litzenberger (1978) (hereafter BL) show that a unique conditional risk-

neutral density function of ST can be recovered by twice differentiating of European call

option prices with respective to their strikes (See also (Ross, 1976; Banz and Miller, 1978)),

Rf
t,t+τ

∂2C(t, T,K)

∂K2
= f̃t(ST )|ST=K (3)

In practice, however, only a finite number of call options with strikes surrounding the

current price of the underlying asset are available. Proper smoothness of call option prices

within the region of available strikes is necessary before applying the BL’s formula. The

literature of recovering option-implied risk-neutral density is vast and has been extended

from equity options to options written on other asset classes.3 Following the literature,

3For example, see Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (1998, 2000), Ait-Sahalia and
Duarte (2003), Bliss and Panigirtzoglou (2002, 2004) for equity index options, Li and Zhao (2009) for
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we transform call options prices into their Black’s (1976) implied volatilities (IV), use

local linear regression to smooth the IV, and convert the smoothed IV back to call option

prices at pre-specified grids. Finally, a second order numerical derivative is applied to

obtain the value of the risk-neutral density at those grids. The implementation details

will be discussed in detail in Section 4.

Limited strikes of available options result truncation errors to the option-implied con-

ditional risk-neutral densities. Since the information of perceived probabilities of tail

events is contained in the left tail of conditional risk-neutral densities, how to deal with

the left tail is important for studying the peso problem. A common practice in previous

studies is to smoothly paste log-normal tails to option-implied risk-neutral densities (e.g.,

Bliss and Panigirtzoglou (2004)). The underlying assumption is that the tails of index re-

turns follows normal distribution, which is inconsistent with the well documented evidence

of stochastic volatility and jump risks in option pricing literature. The tail-completion

method by Figlewski (2009) is highly flexible in the heaviness of the tails attached. The

method consists of two steps. First, the values of conditional risk-neutral densities within

the region of available strikes are recovered as usual. Next, both left and right tails are

completed by smoothly attaching the density in the Generalized Extreme Value (GEV)

distribution family. In the following empirical analyses, we apply the method to com-

plete tails of the risk-neutral density recovered from S&P 500 Index options. Appendix A

details the implementation procedure and summary statistics on parameters of attached

GEV densities.4 Notice that the Figlewski’s approach is not arbitrary since it requires

that the GEV densities are smoothly attached and have the same probability in the both

tails as the original option-implied risk-neutral densities have.

interest rate floors and caps, and Kitsul and Wright (2013) for options on consumer price index inflation.
Jackwerth (1999, 2004) and Figlewski (2009) provide survey of the literature.

4The choice of the GEV distribution family is justified by the Fisher–Tippett–Gnedenko Theorem,
which states that the maximum of a sample of i.i.d random variables (after proper re-normalization) can
only converge in distribution to one of three types of distributions, all of which belong to the family of
the GEV distribution.
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3.3 Construction and Estimation of the Projected SDF

The difference between risk-neutral probabilities and physical probabilities is that the

former also incorporate risk premium attached to each state. Hansen and Richard (1987)

show that the absence of arbitrage opportunities implies the existence of a strictly positive

random variable, known as Stochastic Discount Factor (hereafter SDF) or pricing kernel,

denoted by Mt,t+τ , such that for each time t, the price of a tradable asset is given by the

expectation of its future payoffs weighted by Mt,t+τ , conditioning on the time-t informa-

tion. We rely on this non-arbitrage condition to transform the conditional risk-neutral

distribution to the conditional physical distribution. Since we examine the Peso problem

of a particular asset, i.e., the S&P 500 Index in our context, we focus on a specific SDF

that can price S&P 500 Index returns and its contingent claims. Specifically we consider

the projected SDF, which is the market-wide SDF Mt,t+τ projecting on the space spanned

by the index returns, conditioning on time-t information (Ait-Sahalia and Lo, 2000 and

Rosenberg and Engle, 2002). Unlike the true SDF, which is defined on the fundamental

states of the economy, the projected SDF is defined on the states represented by the

asset returns. As Cochrane (2005) points out, the projected SDF has the same pricing

implication as the true SDF for contingent claims on the underlying asset.

Formally, let M̃t,t+τ (Rt,t+τ ) ≡ Et(Mt,t+τ |Rt,t+τ ) be the (unobservable) projected SDF

where Rt,t+τ is the gross return of the index over the period [t, t + τ ]. Let f̃t(Rt,t+τ ) be

the time-t conditional density of Rt,t+τ under the risk-neutral measure, which is recovered

from time-t options prices with maturity τ . Let ft(Rt,t+τ ) be the conditional density

of Rt,t+τ under the physical measure P. In the absence of arbitrage opportunities, the

relation between f̃t(Rt,t+τ ), ft(Rt,t+τ ) and the projected SDF M̃t,t+τ (Rt,t+τ ) is given by,

f̃t(Rt,t+τ ) = ft(Rt,t+τ )
M̃t,t+τ (Rt,t+τ )

Et[M̃t,t+τ (Rt,t+τ )]
(4)
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Given the option-implied conditional risk-neutral density f̃t(Rt,t+τ ) and the projected SDF

M̃t,t+τ (Rt,t+τ ), the option-implied conditional physical density ft(Rt,t+τ ) is determined by

ft(Rt,t+τ ) =
f̃t(Rt,t+τ )/M̃t,t+τ (Rt,t+τ )∫∞

0
f̃t(R)/M̃t,t+τ (R)dR

(5)

There are many ways to construct and estimate a projected SDF. One approach is to

specify a functional form, which can be derived from more preliminary assumptions about

preferences and endowments. Given the functional form, say, M̃t,t+τ (R; θ), we estimate

the projected SDF via non-linear least squares with the following two conditions. The

first condition takes from the definition of the SDF,

Et[M̃t,t+τ (Rt,t+τ ; θ)] = 1/Rf
t,t+τ

(6)

The second condition exploits the property that time-t conditional expected return should

be the optimal ex-ante estimate of the ex-post realized return, conditioning on the time-t

information. Since the time-t conditional expected return is determined by the conditional

physical density ft(Rt,t+τ ), which in turn is determined jointly by the conditional risk-

neutral density f̃t(Rt,t+τ ) in conjunction with the specified projected SDF. Since f̃t(Rt,t+τ )

summarizes all the available information embedded in options prices in a non-parametrical

manner, the estimation of the projected SDF boils down to find the parameter θ such that

the time-t option-implied conditional physical density can best predict the next period

asset return.

Denote R?
t,t+τ as the realized gross return of the S&P 500 Index. The error ηt+τ (θ) of

the two least square conditions is simply,

ηt+τ (θ) ≡

 R?
t,t+τ − Et[Rt,t+τ ; θ]

1/Rf
t,t+τ − Et[M̃t,t+τ (R; θ)]

 (7)
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where the conditional expected gross return Et[Rt,t+τ ; θ] is evaluated numerically via the

adaptive Gaussian quadrature method. The nonlinear least square estimates θ by mini-

mizing the summation of weighted errors, where Σt is a weighting matrix, which is allowed

to be time-varying,

θ̃ = Argminθ

T∑
t=1

ηt+τ (θ)
′
Σtηt+τ (θ) (8)

We use bootstrap method to compute the confidence interval of parameters. Specifical-

ly, we re-sample the estimated residual ηt+τ (θ̃) with replacement, add re-sampled residuals

back to the fitted value to generate bootstrap sample of (R?
t,t+τ , 1/R

f
t,t+τ ) and re-estimate

θ using the new sample. We repeat the procedure 500 times and compute the bootstrap

percentile intervals for each parameter.

3.4 Construction and Estimation of the Empirical Distribution

In constructing the conditional physical distributions estimated from past realized asset

returns, three related dimensions are to be considered. The first is whether a parametric

time series model, for instance a structural stochastic process with latent state variables,

should be chosen for returns or pure non-parametric approach is more appropriate. The

second is whether a fixed window of past sample should be chosen or all the available past

data should be used. The third choice is whether all the data in the chosen sample should

be treated equally or more emphasis should be given to more recent data. While all these

choices will generate different conditional physical distributions, a valid inference should

maintain a reasonable degree of robustness.

We implement various combinations of the choices above and present the results in

the paper using a specified return distribution, over all the available data from a starting

point, and give exponentially declining weights to the data in the past relative the current

time point. Alternatively, our empirical results are qualitatively similar when we use a

structural stochastic process to describe the dynamics of the S&P 500 Index returns,
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a continuous-time square-root stochastic volatility with compound Poisson jumps model

(hereafter SVJ). SVJ models are commonly used in the option pricing literature to describe

the time series behavior of equity index returns. We adopt the Bates’s (2006) specification

in which the jump intensity of the compound Poisson process is allowed to depend on the

time-varying volatility and estimate the model by the approximate maximum likelihood

method in Bates (2006).

4 Data

We apply the our framework in the previous section to study the Peso problem hypothesis

of the S&P 500 Index. In this section, we describe data and the procedure of recovering

conditional risk-neutral densities from S&P 500 Index options.

4.1 Data and Summary Statistics

Our sample period spans from January 1996 to January 2013, 18 years (205 months) in

total. Data on S&P 500 Index options, obtained from the OptionMetrics Ivy DB database,

consists of closing quotes, trading volumes and open interests of options written on the

S&P 500 Index (symbol SPX). SPX options are European cash-settled options expired

on the third Friday of each month and are the most actively traded options listed on the

Chicago Board Options Exchange (CBOE). The risk-free interest rates are proxied the

U.S. LIBOR rates, obtained from Data Stream. The closing values of the S&P 500 Index

and the CBOE VIX index are from the Center for Research in Security Prices (CRSP)

and CBOE, respectively. The CBOE VIX index is the expected risk-neutral variance

of the S&P 500 Index returns over the subsequent 30 calendar days, calculated by the

CBOE using SPX options prices in a model-free manner.5 In the later empirical analyses,

5See Demeterfi et al. (1999), Britten-Jones and Neuberger (2000), Carr and Madan (2001) and Jiang
and Tian (2005) for more details about the underlying theory and design of the CBOE VIX index.
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we square the VIX index and divided it by 12 since the VIX index is expressed in the

annualized volatility unit and we want to translate it into monthly variance unit. The

VIX term structure data, downloaded from Travis L. Johnson’s homepage, consists of the

expected risk-neutral variance of the future S&P 500 Index returns at constant maturities

of 2, 3, 6, 9 and 12 months, which are constructed in the exact model-free manner as the

CBOE VIX index.6

To clean the SPX option data, first, any option contracts with missing values of bid, ask

quotes or implied volatility computed by OptionMetrics is excluded. Then two standard

filters are applied: (1) options whose bid price is zero or higher than ask price are excluded

to avoid market microstructural noises; (2) options whose mid-quotes, i.e., the averages

of bids and asks, violate non-arbitrage bounds, and options with maturity greater than

one year or less than one week, are dropped. Through our empirical analyses, we take

closing mid-quotes as the observed option prices.

To mitigate the concern of non-synchronous trading of index components and reduce

the potential errors introduced by estimating the index dividends, we follow Ait-Sahalia

and Lo (1998) to compute the option-implied forward price using Put-Call Parity. At each

month-t, for every maturity, we identify the at-the-money (ATM) put and call pair7 as

the one which has the minimal absolute difference between their mid quotes. The time-t

S&P 500 forward price Ft,t+τ for each maturity τ is then implied from the ATM put and

call pair by Put-Call Parity, which should hold if there is no arbitrage opportunity,

C(t, T,K) +K/Rf
t,t+τ = P (t, T,K) + Ft,t+τ/R

f
t,t+τ

where Rf
t,t+τ is the gross LIBOR rate over the remaining life of the option, interpolated

from adjacent LIBOR rates whenever needed. Because out-of-money (OTM) puts are

6http://faculty.mccombs.utexas.edu/johnson/data.html
7For a put/call pair, we mean that it consist of two options with the same maturity and strike, but

one is put and another is call.
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very liquid while in-the-money (ITM) calls are often illiquid, we use the implied forward

prices and OTM put prices to obtain the associated ITM call options prices by Put-Call

Parity. Finally we discard all put options since information embedded in OTM puts is

already extracted by Put-Call Parity.

In what follows, we focus on the Peso problem at one-month horizon (or 30 calendar

days) and hence fix τ = 1, though our method can be applied to other horizons. Conse-

quently, we keep SPX options observations on the third Wednesday of each month only,

because it is the date within a month that is mostly like to have option contracts with

maturity of exact 30 calendar days. If at that day, there is no option with maturity of

30 calendar days, two option series with adjacent maturities that straddle 30 calendar

days are selected. The final sample for recovery of the risk-neutral density consists of call

options with maturity within two months. The average number of single option series in

the cross-section with maturity closed to 30 calendar days is around 40 before the year

2004 and more than 100 after that.

Table 1 reports the summary statistics of the number of options contracts and average

implied volatilities in the final sample. The total sample size is 24, 022. We divide the

entire sample into six moneyness and two maturities bins, creating 12 intersecting groups

in all. The cutoff points in maturity dimension corresponding to one month and two

month are 39 days and 69 days, respectively. In the two month maturity, there are more

options belong to the deep out-of-the-money groups (K/S ≤ 0.94). Across moneyness, for

both maturities, the implied volatilities exhibit smile patterns. On average, the implied

volatility at a given moneyness level decreases in maturity.

[Table 1 is here.]

Table 2 reports the summary statistics of monthly observations of the monthly (30

calendar days) gross return on the S&P 500 Index and gross LIBOR rates. The month

index return has sample skewness of −0.82 and kurtosis of 4.48, indicating asymmetry
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and heavy tail behavior. Note that to align with the SPX options data, the monthly

return is computed from the third Wednesday in the current month to the 30 calendar

days ahead.

[Table 2 is here.]

Figure 1 graphs the monthly observations of the S&P 500 Index level, its 30 day-

ahead gross return and the gross U.S. LIBOR rates. The shaded areas are recession

periods defined by the National Bureau of Economic Research (NBER). There are three

large market downturn in our sample with index returns below -15%: July 2002 (the

Crash of Dot-com firms), October 2008 (the default of Lehman Brothers) and August

2011 (the European Sovereign debt crisis), respectively.

[Figure 1 is here.]

Figure 2 examines the SPX options sample on its moneyness coverage. The time

series of the upper and lower bounds of option moneyness (strike-to-spot ratio K/S) in

the cross-section are plotted. During the normal time (NBER expansion periods), the

upper and lower bounds of moneyness fluctuate around 1.1 and 0.75 respectively. By

contrast, during recessions, the moneyness spread widened substantially, in response to

sharply raised market volatilities. In November 2008, two months after the default of

Lehman Brothers, the spread expanded to [0.37, 1.52] and remained widely since then.

The black dot line in figure shows the fixed moneyness level K/S = 0.8, which translates

into the one month index gross return of 0.8. Notice that the moneyness curve lies inside

the moneyness coverage region almost all the time. In the later empirical analyses, we

evaluate the conditional probability that one month ahead S&P 500 Index gross return less

than 0.85 and 0.9, which is well covered by the SPX option moness. Taken together, our

option sample provides adequate coverage of one-month ahead S&P 500 Index movement.

[Figure 2 is here.]
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4.2 SPX Option-Implied Risk-Neutral Density

We recover SPX option-implied conditional risk-neutral densities with constant maturity

of 30 calendar days. First, for the third Wednesday of each month, call options with ma-

turity being exact 30 calendar days are selected and their prices are converted into Black’s

implied volatilities via Black (1976)’s option pricing formula with option-implied forward

prices as the underlying. Next, the region of moneyness (the strike-spot ratio K/S) of

available options are divided into fine grids. We treat the Black’s implied volatility (IV)

for a given maturity τ as a univariate function of moneyness, denoted as σimp(K/S, τ),

and use the local linear regression to estimate the IVs at the specified moneyness grids8.

As a non-parametric regression, the local linear regression runs a linear weighted least

square regression at each point of interest (Fan and Gijbels, 1996). To estimate σimp(x0, τ),

the IV at the moneyness level x0 for the given maturity τ (τ = 1, i.e., one-month in our

context), local linear regression solves the following weighted least square problem,

minβ0(x0),β1(x0)

N∑
i=1

(σimp(Xi, τ)− β0(x0)− β1(x0)(Xi − x0))2G(
Xi − x0

h
)/h,Xi ≡

Ki

S

where N is the number of options with maturity τ in the cross-section, G(·) is a ker-

nel function that controls the weight assigned to each observation in the neighborhood

around σimp(x0, τ), and h, the so-called “bandwidth”, controls the size of the neighbor-

hood. The estimated σimp(x0, τ) is simply the intercept β̂0(x0). We use the Gaussian

kernel G(x) = 1√
2π
e−

x2

2 and select the bandwidth h via the leave-one-out cross-validation.

Finally we convert estimated constant-maturity IVs back to call options prices and take

second order numerical derivative at the specified moneyness grids. Beyond the region of

8When there are no options with maturity being exact 30 calendar days, two adjacent option series
with maturity that straddle 30 calendar days are selected. The Black’s implied volatility of the two option
series are smoothed and linearly interpolated across maturity to obtain the implied volatility at maturity
of 30 calendar days.
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available strikes, both tails of the implied conditional risk-neutral density are completed

by attaching the GEV density via Figlewski’s method.

Figure 3 plots the option-implied conditional risk-neutral densities on four selected

sample dates, 2007/02/21, 1996/04/17, 2008/07/16 and 2008/11/19, respectively. The

panel A and D are two dates which represent the least and most volatile market condition,

measured by the CBOE VIX index over the sample period. Panel B and C are the two

dates when the CBOE VIX index is at the 30% and 75% sample percentile, respectively.

Visual examination of the figure indicates that the shape and scale of the conditional

risk-neutral densities vary significantly over market conditions. When the expected future

volatility raises, risk-neutral densities become more widely dispersed with the probability

mass moving disproportionately towards the left tail. With the semi-parametric recovery

method, the rich dynamics of the conditional risk-neutral densities, especially of their left

tail behavior, are readily captured. In addition, we compute the 30 days VIX index based

on the SPX option-implied distributions, which is found to be highly correlated with the

CBOE VIX index with the correlation coefficient of more than 0.99.

[Figure 3 is here.]

5 Empirical Results

The section is organized as follows. Section 5.1 discusses the specification of the parametric

form of the projected SDF and estimation results. In Section 5.2, we transform the option-

implied conditional risk-neutral density into conditional physical density by the estimated

projected SDF and investigate the time series variation of the extent of the Peso problem

for the S&P 500 Index. Section 5.3 examines the implication of the Peso problem for

equity risk premium.
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5.1 Projected SDF Specification and Estimation

We use conditional projected SDFs to conduct measure transformation and motivate the

functional form of the conditional projected SDF from general equilibrium models. Com-

pared to unconditional (projected) SDFs used to transforms option-implied risk-neutral

distribution (Bliss and Panigirtzoglou, 2004), Kang and Kim, 2006, Liu, Shackleton, Tay-

lor and Xu, 2007 and Linn, Shive and Shumway, 2014), conditional (projected) SDFs are

both theoretically appealing and empirical supported. Theoretically, dynamic general e-

quilibrium models show that state variables which determine the investment opportunity

set faced by investors affect the representative agent’ marginal utility and hence enter

into the SDF (e.g., Merton (1973), Lucas (1978), Cox, Ingersoll, and Ross (1985) and

Campbell (1993)). Empirically, mounting evidence from literature on index option pric-

ing and cross-section stock return show that aggregate stock market variance is stochastic

and carry a negative risk premium (Bakshi and Kapadia (2003), Adrian and Rosenberg

(2008), Bollerslev, Tauchen and Zhou (2009), Carr and Wu (2009) and Drechsler and

Yaron (2010) among others).

We derive the conditional projected SDF in an infinite horizon Lucas endowment

economy in which there is a representative agent who receives the (exogenously given)

aggregate consumption stream Ct at discrete-time t = 1, 2, .... Her time-t lifetime utility Ut

over the consumption stream is described by Epstein and Zin (1989) recursive preference,

Ut = [(1− δ)C1− 1
ψ

t + δ(EtU
1−γ
t+1 )

1− 1
ψ

1−γ ]
1

1− 1
ψ (9)

where δ is her subjective discount factor, γ is the coefficient of relative risk aversion

(RRA) and ψ refers to the elasticity of inter-temporal substitution (EIS). In the Epstein-

Zin recursive utility, relative risk aversion is separated from elasticity of inter-temporal

substitution, while in the CRRA preference, one is the reciprocal of the other.
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Epstein and Zin (1989) have shown that the logarithm of the one-period SDF mt,t+1 ≡
logMt,t+1 satisfies,

mt,t+1 = θlogδ − θ

ψ
gt+1 + (θ − 1)rt+1 (10)

where θ ≡ 1−γ
1− 1

ψ

and rt+1 ≡ logRt+1 is the log return on the aggregate portfolio that

delivers the aggregate consumption stream {Ct+s}∞s=1 as its dividend. We further assume

that the aggregate consumption stream is the dividend derived from the aggregate market

portfolio, therefore Rt+1 is the return on aggregate market portfolio. The assumption can

be relaxed, however. The projected one period SDF in the economy, which is the true

SDF projected on the aggregate equity return space conditional on time-t information, is

given by,

M̃t,t+1 ≡ Et[Mt+1|Rt+1] = eθlogδ+(θ−1)rt+1 Et[e
θ
ψ
gt+1|Rt+1]︸ ︷︷ ︸

projection

(11)

To work out the analytical form of the conditional projected SDF, we complete the

model by assuming the aggregate consumption dynamics. In fact, different conditional

projected SDFs correspond to different assumption of consumption dynamics. Here we

take the stylized general equilibrium model by Bollerslev, Tauchen and Zhou (2009) (here-

after BTZ), and derive its implied projected SDF. BTZ extend the long-run risk model of

Bansal and Yaron (2004) by allowing the volatility of the aggregate consumption growth

to be driven by two volatility factors. With Epstein-Zin recursive preference, the agent

cares about the inter-temporal risk, which is the time-varying stochastic volatility of con-

sumption growth in the model. Consequently, shocks to the two consumption volatility

states are allowed to be priced and carry negative risk premium if the agent prefers early

resolution of uncertainty. The authors demonstrate that the variance risk premium, de-

fined as the difference between the expected risk-neutral variance of returns to aggregate

wealth and its expectation under the physical measure, accounts for a major fraction of
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the equity premium level and also its dynamics. Empirically, they find that the variance

risk premium is one of the best short-run return predictor.

In BTZ, the one period consumption growth log(Ct+1/Ct) has a constant mean µg

and stochastic volatility σ2
g,t. The consumption volatility σ2

g,t and the volatility of the

consumption volatility qt take the discrete-time analogy of the continuous time square-

root process as follows,

log(Ct+1/Ct) ≡ gt+1 = µg + σg,tzg,t+1

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1

qt+1 = aq + ρqqt + φq
√
qtzq,t+1

(12)

where aσ > 0, aq > 0, |ρσ| < 1 and |ρq| < 1, φq > 0, and (zg,t+1, zσ,t+1, zq,t+1) follows

i.i.d standard multivariate normal distribution. The representative agent is endowed with

the Epstein-Zin recursive utility. As the usual assumption in the long-run risk literature,

γ > 1 and ψ > 1 and hence θ < 0. The agent prefers early resolution of uncertainty.

Under the preference, both volatility factors are priced and carry negative premium. We

state the model implied one-period projected SDF in the following proposition. Appendix

B provides the derivation.

Proposition 1 (Projected SDF in BTZ) The projected one period SDF in BTZ,

M̃t,t+1(Rt,t+1) ≡ Et[M̃t,t+1|Rt,t+1] = E[M̃t,t+1|Rt,t+1, σg,t, qt] takes the following form,

M̃t,t+1 = exp[(γ0 +γ1ηt)logRt,t+1 + (1 +γ0 +γ1ηt)ζ0 + (ξ0 + ξ1ηt)σ
2
g,t + (ϕ0 +ϕ1ηt)q

2
t ] (13)

where γ0 = −γ < −1 and γ1 = θ
ψ
< 0. ηt is the one period variance risk premium over

the linear combination of the two volatility state variables.

We name this projected SDF as the “conditional slope” projected SDF as it features

for a state-dependent coefficient of market return that is an affine function of ηt. The

two factor consumption volatility structure is key. When there is only one consumption

21



volatility state variable, that is, qt degenerates into a constant, ηt degenerates into a

constant and the projected SDF is simply

Corollary 2 (Projected SDF in BTZ with one state variable)

M̃t,t+1 = exp[γ̃0logRt,t+1 + ζ̃0 + ξ̃0σ
2
g,t] (14)

where γ̃0 < −1.

The equation (13) serves as our projected SDF specification. However, it involves state

variables and the return on the aggregate market portfolio, which is not observable by

econometricians. To tackle this issue, first, following a large literature, we regard the S&P

500 Index return as a reasonable proxy for the return of the aggregate wealth (Campbell

et al. 2012 and reference therein). Second, we show in the Appendix B that both the

squared CBOE VIX and 12 month VIX are affine functions of two volatility state variables

σ2
g,t and qt. Consequently, in the projected SDF, the two state variables σ2

g,t and qt can

be substituted by V IX2
t /12 and V IX122

t/12.9

Theoretically, ηt is the one period variance risk premium V RPt divided by the linear

combination of the two volatility state variables. The denominator of ηt is proxied by a

linear combination of the squared CBOE VIX and the 12 month VIX, given the affine

relation between VIX indices and volatility state variables. The nominator of ηt, V RPt

is calculated by the difference between the squared CBOE VIX index and the expected

physical variance σ2
r,t (Bollerslev, Tauchen and Zhou (2009), Drechsler and Yaron (2010)).

To have a proxy for the latter, we find that statistically an EGARCH(2,1) model (Nel-

son, 1991) with return innovations from the family of Generalized Hyperbolic Distribution

(Barndorff-Nielsen, 1977) captures the persistence and leverage effect of variance dynam-

ics of daily S&P 500 Index returns well. We then forecast expected 30 days physical

9Since the squared VIX indices are annualized risk-neutral expected variance, we divide them by 12
to translate them into monthly unit.
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variance by the EGARCH model, fitted to past 20 years daily index returns and compute

the one period variance risk premium10. Finally, in our empirical implementation, the

conditional projected SDF takes the following functional form,

M̃t,t+1 = exp[(γ0+γ1ηt)logRt,t+1+(1+γ0+γ1ηt)ζ0+(ξ0+ξ1ηt)
V IX2

t

12
+(ϕ0+ϕ1ηt)

V IX122
t

12
]

(15)

where ηt is specified as,

ηt =
V RPt

V IX2
t /12 + κ0V IX122

t/12
(16)

Panel B of Table 2 reports the summary statistics of variables used in the projected

SDF, including the monthly squared VIX indices, V IX2
t /12, V IX122

t/12, the estimated

30 days ahead expected physical variance σ2
r,t by the EGARCH model and the associated

variance risk premium V RPt. Two prominent features emerge. First, the sample average

of both squared monthly VIX indices is the closed to each other, around 0.0047 and is

higher than the average expected physical variance, 0.0029. The average of one period

variance premium, calculated as the gap between the squared one month VIX and the

expected physical variance, is 0.0018 and accounts for 38% percent of the average squared

CBOE VIX. Second, the short term VIX is less persistent than the long term given their

first order auto-correlation coefficients, 0.76 and 0.87, respectively. Also, the short term

VIX has higher skewness (5.05 Vs 2.36) and kurtosis (37.89 Vs 13.56). These difference

imply that the short term VIX was hit by large positive yet less persistent shocks and

reverted back to its normal level quickly, as is evident from Panel A of Figure 3. The one

month expected physical variance σ2
r,t has similar persistence, skewness as well as kurtosis

10BTZ use the past 30 days realized variance, estimated from intra-day 5 minutes index returns to
proxy the expected physical variance. The resulted variance risk premium takes some extreme negative
values, especially during the 2008 Great Recession. By contrast, the estimated variance premium by the
EGARCH model takes only three negative values, all of which are closed to zero. To be aligned with
the model, we trim the variance risk premium at zero. We entertain various methods to compute the
variance premia and find the empirical results are robust to different proxies.
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as the square short term VIX index. Panel B of Figure 3 plots the dynamics of V RPt, the

one period variance risk premium. Compared with VIX indices shown in Panel A, V RPt

features for similar counter-cyclical dynamics while is less persistent with the first order

auto-correlation coefficient only 0.57.

We estimate the projected SDF via nonlinear least squares discussed in Section 3.3. To

improve estimation efficiency, for the first pricing error in equation (7), we scale it by the

square root of the EGARCH forecasted 30 days ahead expected variance. Panel A of Table

3 reports the estimate. Consistent with the model restriction on preference parameters,

the estimated γ1 is -1.8847 and the estimated γ0 is less than −1. Thus conditioning on the

two state variables V IX2
t and V IX182

t , the shape of the projected SDF is monotonically

decreasing function of S&P 500 Index returns. Our estimated projected SDF is consistent

with the economic restriction on the SDF in a representative agent model and it is also in

line with the findings by Linn, Shive and Shumway (2014) who argue that lack of using

conditioning information in estimation of the projected SDF can cause the estimated

projected SDF, as a function of the index return, to exhibit non-monotonic patterns.

[Table 3 is here.]

Figure 5 plots the absolute value of γ0 + γ1ηt, the coefficient of market return in the

projected SDF. The coefficient exhibits large time series variation. It shot up during

two recent NBER recessions and in particular, reached the all-time high during the 2011

European Sovereign debt crisis. Due to the time-varying γ0 + γ1ηt, the slope of the

projected SDF and consequently the model-implied expected equity risk premia vary over

business cycles. As will be shown in the Section 5.3, the increasing stock market volatility

(quantity of risk) and the steepened slope of the projected SDF (price of risk) during high

market volatility regime generate large counter-cyclical equity risk premia, which peaked

in the 2008 Great Recession and consequently caused the realized index returns to be

substantially negative.

24



[Figure 5 are here]

5.2 Evidence of the Peso Problem Hypothesis

Given the estimated conditional projected SDF M̃(Rt,t+1; θ̃), we transform the time-t

option-implied conditional risk-neutral density of S&P 500 index returns into the option-

implied conditional physical density and calculate the probability of one month index gross

return below 0.85 and 0.9 under the option-implied distribution, i.e., PO
t (Rt,t+1 ≤ 0.85)

and PO
t (Rt,t+1 ≤ 0.9). Alternatively, we construct index-return based conditional physical

distribution, obtained from a time series model estimated from past realized index returns

and compute the probabilities under the index-return based distribution P S
t (Rt,t+1 ≤ 0.85)

and P S
t (Rt,t+1 ≤ 0.9). To measure the extent of the Peso problem, we compute our Peso

problem measure (PPM (a)), defined in equation (1), which are the percentage difference

in conditional probability of one month index gross return below 0.85 and 0.9 under the

two conditional physical distributions, PPM(a) ≡ log(PO
t (Rt,t+1 ≤ a))− log(P S

t (Rt,t+1 ≤
a)) for a = 0.85 or a = 0.9.

To construct the index-return based physical distribution, we model the dynamics

of S&P 500 Index parsimoniously without introducing looking-ahead biases. A method

in spirit of the filtered historical simulation method is adopted by us (Barone-Adesi,

Giannopoulos and Vosper (1999) and Faias and Santa-Clara (2011)). First we standardize

monthly index log returns rt,t+1 by the expected volatility of 30 days ahead index returns√
σ2
r,t forecasted by the EGARCH (2,1) model to remove the ARCH effect of the monthly

index returns. Next at each time-t, a specified return distribution is fitted to all past

standardized log returns { rt−j,t−j+1√
σ2
r,t−j
}j=1 since the beginning of year 1980 by maximum

likelihood. When maximizing the likelihood, we assign exponentially declining weights to

historical data points to give more emphasis to more recent data.11 We choose the Variance

11Suppose at time-t the past standardized returns are {r̃t−j−1,t−j}j=1, then each r̃t−j−1,t−j is assigned
a weight wj ≡ ωj(1− ω) where ω = 0.99. We maximize the weighted likelihood function to estimate the
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Gamma (VG) distribution, a special case of the family of the Generalized Hyperbolic

distribution, as our candidate return distribution which nests the normal distribution as

a limiting case. The Variance Gamma process, introduced by Madan and Seneta (1990)

and extended by Madan, Carr and Chang (1998) to allow for asymmetry, is a pure jump

Lévy process with infinite activity rate, meaning that the number of price jumps in any

given time interval is infinite. The increments of the VG process follow independent VG

distribution. The benefit of using pure jump processes with infinite activity rate to model

asset returns is that they are highly flexible in terms of capturing asset prices variation to

various extent.12 Finally, the index-return based P S
t (Rt,t+1 ≤ a) is given by F V G

t ( loga√
σ2
r,t

)

where F V G
t is the cumulative distribution function of the fitted VG distribution.

Figure 6 displays the dynamics of P S
t (Rt,t+1 ≤ a) and PO

t (Rt,t+1 ≤ a) for a = 0.85 and

0.9. In both panels, the conditional probabilities under option-implied physical distribu-

tions (blue solid line) PO
t (Rt,t+1 ≤ a) almost always dominate the conditional probability

under index-return based distribution P S
t (Rt,t+1 ≤ a) (black dash dotted line). Howev-

er, there are two exceptions. The first is the default of Lehman Brothers on October

2008, accompanied by the most negative monthly realized S&P 500 Index return during

our sample period, -18.67%. The second one occurred during the time period from July

2011 to August 2011 when investors became increasingly worried about the resolution of

the European Sovereign debt crisis13. The global stock markets, especially the European

sector, were hit hard and the realized SPX index return -15.3% was the second most neg-

ative one during the sample period. For comparison, both panels of Figure 6 also display

distribution parameters. The results are the same if we use a rolling window approach where we fix a
window size and use standard maximum likelihood method to estimate the return distribution parameters
using past standardized returns that fall into the fixed window.

12Either frequently small changes or tail events like market crashes in 2001-2002 can be captured as
price jumps easily. Carr, Geman, Madan and Yor (2002) provide evidence that SPX index returns are
better described as pure jump processes with infinite activity rate.

13Portugal’s long-term government bond ratings was downgraded by Moody’s to junk status on July 5,
2001. The government bond yields of Italy and Spain raised to 6% in the early of August before the Euro-
pean Central Bank’s intervention. See http://en.wikipedia.org/wiki/2000s_European_sovereign_

debt_crisis_timeline for the timeline of European debt crisis.
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the conditional probability of one month index gross return below 0.85 and 0.9 under

the option-implied risk-neutral distribution (pink dash line). The gap between the pink

dash line and the blue solid line, which presents the risk premium adjustment under the

conditional projected SDF, was substantial during the large market downturns and was

particular extreme in the 2008, leading to large counter-cyclical equity risk premium.

Figure 6 points to the time-varying wedge between the two conditional probabilities.

To visualize their relative gap, we show our Peso problem measure PPM(0.85) (PPM(0.9))

in the panel A (panel B) of Figure 7. Both PPM are pro-cyclical. The time average

of PPM(0.85) is 1.13 in recessions and 2.57 in expansions, while the time averages of

PPM(0.9) are 0.57 and 1.21, respectively. Pro-cyclicality of PPM reveals that during

normal time, perceived probability of stock market downturn is persistently higher than

the extent of realization of market crash. By contrast, during hard times when the

economy is already in recession, e.g., the year 2001 or when the future macroeconomic

outlook is poor, like the situation in July and August of 2011, PPM almost vanishes. It

even became negative, after realizations of large stock market downturns, e.g., October

2008 and August 2011. This behavior of PPM supports the Peso problem hypothesis since

according to the hypothesis, the gap between ex-ante perceived risk and ex-post realized

risk will narrow and vanish if large losses expected by investors have eventually occurred.

Compared our findings with Santa-Clara and Yan (2010), as our sample period spans

much longer time (1996-2013) which covers not only the stock market boom from 2003 to

2007, but also large market downturns like the 2008 Great Recession and 2011 European

Sovereign debt crisis, we do find that the large wedge between ex-ante perceived risk and

ex-post realized risk, which was substantial during stock market booms, vanished in those

crisis periods. Thus we provide fresh evidence on the time-varying extent of the Peso

problem of the S&P 500 index.
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5.3 The Equity Risk Premium Implied From SPX Options

We examine the asset pricing implication of the estimated conditional slope projected

SDF by focusing on its ability to explain the realized risk premium of the SPX index,

defined as the difference between one month S&P 500 Index realized return and the one

month U.S. LIBOR rates. Specifically, given the estimated projected SDF, we compute

the option-implied expected monthly return on the S&P 500 Index Et[Rt,t+1] − 1, the

monthly risk-free interest rates 1/Et[Mt,t+1] − 1 and the option-implied risk premium,

defined as their difference. The first column of Table 4 presents their time series mean

for the entire sample. The statistics of the (annualized) monthly realized return on the

S&P 500 Index Rt,t+1− 1, one-month LIBOR rates exp(rft,t+1)− 1 and their difference are

shown in the row next to the option-implied. To make our interpretation easy, in what

follows, all the variables are annualized.

[Table 4 is here]

The average monthly realized return and one month LIBOR rate is 7.53% and 3.16%

per year over the sample period, respectively, which translate into the annual risk premium

of 4.37% per year. The option-implied ex-ante expected return is 10.8% per year and the

implied risk-free interest rate is 2.86%. The associated annual risk premium is 7.94%,

which is 80% higher than the realized risk premium. Santa-Clara and Yan (2010) find

that the unconditional ex-ante risk premium of the S&P 500 Index inferred from SPX

options is 70% higher than the premium corresponding to the realized risk, the magnitude

of which is similar to ours.

Figure 8 plots the dynamics of the realized and expected index returns. The expected

return inferred from SPX options are strong counter-cyclical and quite persistent with

the first order auto-correlation coefficient AC(1) of 0.7. By contrast, the realized returns

consistent of many transitory shocks and its AC(1) is only 0.0046. The dynamics of the

two return series also differs in their volatility. The time series standard deviation of the
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expected return is 9.2%, comparable to 8.9% reported in Santa-Clara and Yan (2010),

while the standard deviation of the realized return is 57.88%.

[Figure 4 is here]

The next two column of Table 4 reports the time series mean for sub-sample periods

categorized as recession and expansion defined by the NBER. The option-implied ex-ante

risk premium is strong counter-cyclical. It is substantially higher in recessions 19.59%

than in expansion 6.22%. By contrast, the realized risk premium is proc-cyclical, -8.29%

in recession and 6.2% in expansion. The different cyclical behavior of expected risk premia

and realized risk premia is consistent with the long-run risk model of Bansal and Yaron

(2004). The heightened macroeconomic volatility during recession periods raises discount

rates and consequently increase the equity risk premia. Since the macroeconomic volatility

is persistent, heightened volatility generates negative and persistent discount rate shocks,

leading to consecutively negative realized return. Finally we notice that there is difficult

for the SDF-implied risk free rate to match the LIBOR rate during recession periods. The

average model-implied risk free rate is too low in recession, 0.01%, compared to the average

one month LIBOR of 2.38%. Alternatively speaking, the projected SDF specification in

conjunction with the option-implied distribution generates excessive pre-cautionary saving

effect and drives the model-implied interest rate too low.

Overall, we conclude that the conditional projected SDF with forward looking distri-

bution recovered from SPX options generates sizable ex-ante risk premia of the S&P 500

Index that is more than 80% higher than realized risk premia. More importantly, the

preference parameters of the Epstein-Zin representative agent are reasonable with RRA

around 1.2 and EIS greater than 1. Since the conditional slope projected SDF features

for a time-varying coefficient of market return γ + γ1ηt, if we take the overall magnitude

of γ + γ1ηt into consideration, its time series average is 1.96, which is comparable to the

RRA of 1.92 estimated by Santa-Clara and Yan (2010) in a setting where the represen-
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tative agent has CRRA preference and is only half of the RRA estimated by Bliss and

Panigirtzoglou (2004).

6 Concluding Remarks

It has been well established that endowment economy models in a representative agent

framework with a peso component can generate sizable equity premium. However, the

empirical evidence of the existence of the Peso problem for the U.S. equity market is

limited. In this paper, we document that there is Peso problem for the S&P 500 Index,

a broad market index of U.S. equity market and the extent of the Peso problem is pro-

cyclical.

We first propose with a framework to quantify the extent of the Peso problem by

using information from time series of asset returns and cross-section options prices jointly.

From cross-sectional options prices at a given point of time, we obtain the option-implied

conditional risk-neutral density of equity returns with constant maturity, convert it to the

conditional physical density in conjunction with a specification of the Stochastic Discount

Factor (SDF), and compare it with the conditional physical density of equity returns

implied by a time series model estimated on a finite sample of realized returns. We define

Peso Probability as the relative gap in the conditional probability of large negative equity

returns between the option-implied physical distribution and the time series model implied

physical distribution.

Empirically, we apply our method to investigate the Peso problem hypothesis for the

S&P 500 Index, over the period from 1996 to 2013. Motivated by the general equilibrium

long-run risk model, we specify a projected SDF, derived from Bollerslev, Tauchen and

Zhou (2009). Using the S&P 500 Index returns and index options, we find that there is

a Peso problem for the S&P 500 Index over the sample period and document that the

extent of the Peso problem is pro-cyclical. In particular, it was high during stock market
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booms while vanished after realization of large stock market downturn. These finding

complement the Peso problem literature. Finally we examine the SDF-implied risk premia

and compare it with the realized risk premia. With the ex-ante distribution of S&P 500

Index return recovered from SPX options, the projected SDF generates sizable annualized

expected risk premia of 7.94% which is 80% higher than the realized risk premia. The

expected risk premia exhibits strong counter-cyclical dynamics which peaked during high

economic uncertainty states, consistent with long run risk literature.
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Table 1: Summary Statistics of the Option Contracts and Implied Volatilities
from the SPX Options

Panel A: Number of Option Contracts

TTM

Moneyness(K/F ) 1m 2m Subtotal
K/F ≤ 0.94 6801 4761 11562

0.94 < K/F ≤ 0.97 1238 739 1977
0.97 < K/F ≤ 1.00 1346 856 2202
1.00 < K/F ≤ 1.03 1325 827 2152
1.03 < K/F ≤ 1.06 1196 732 1928

1.06 < K/F 2375 1826 4201
Subtotal 14281 9741 24022

Panel B: Average implied volatility

TTM

1m 2m Subtotal
K/F ≤ 0.94 0.3714 0.3370 0.3573

0.94 < K/F ≤ 0.97 0.2197 0.2143 0.2177
0.97 < K/F ≤ 1.00 0.1950 0.1934 0.1944
1.00 < K/F ≤ 1.03 0.1750 0.1760 0.1754
1.03 < K/F ≤ 1.06 0.1618 0.1651 0.1631

1.06 < K/F 0.2139 0.1912 0.2041
Subtotal 0.2797 0.2612 0.2722

37



Table 2: Summary Statistics

Data sources: Data on S&P 500 Index is from CRSP. U.S. LIBOR rates come from Data Stream. The

one month VIX index and VIX term structure are obtained from the CBOE and homepage of Travis L.

Johnson. The sample period spans from January 1996 to January 2013, 205 months in total. In Panel

A, Rt,t+1 ≡ St+1/St is the 30 days gross return on the S&P 500 Index. Rft,t+1 is the 30 days gross

LIBOR rates. In Panel B, V IX2
t /12 and V IX182t/12 are squared 1 month and 12 month VIX indices,

respectively. σ2
r,t is the expected physical variance of 30 days ahead S&P 500 Index log return, forecasted

by the EGARCH (2,1) model. V RPt is the 30 days variance risk premium, calculated by the difference

between V IX2
t /12 and σ2

r,t. ηt is the ratio of V RPt over the linear combination of the squared 1 month

and 12 month VIX indices: ηt ≡ V RPt
V IX2

t+κ0V IX122t
. The table reports the sample mean, median, standard

deviation, minimum, maximum, first order autocorrelation AC(1), skewness and kurtosis of the variables.

Panel A SPX Gross Return and Gross LIBOR Rates

Variable Mean Median StdD AC(1) Skew Kurt Min Max

Rt,t+1 1.0063 1.0104 0.0482 0.0046 -0.8226 4.4843 0.8134 1.1077

Rf
t,t+1 1.0025 1.0025 0.0018 0.9831 -0.061 1.3698 1.0002 1.0053

Panel B Conditioning Variables in SDF

V IX2
t /12 0.0047 0.0035 0.0050 0.7585 5.0582 37.8865 0.0008 0.046

V IX122
t/12 0.0047 0.0042 0.0028 0.8666 2.3638 13.555 0.0013 0.0229

σ2
r,t 0.0029 0.0021 0.0032 0.7763 5.2422 39.6188 0.0004 0.0297
V RPt 0.0018 0.0013 0.0021 0.5808 3.867 27.2709 0 0.0192
ηt 0.4592 0.4722 0.2397 0.5726 -0.062 2.6102 0 1.0806
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Table 3: Estimates of Conditional Slope Projected SDF Specification

The table reports the estimated one period conditional slope projected SDF M̃t,t+1 by nonlinear least
squares. The sample for estimation is the monthly gross return on the S&P 500 Index and monthly gross
U.S. LIBOR rates from January 1996 to January 2013. The parametric form of M̃t,t+1 is given by,

M̃t,t+1 = exp[(γ0 + γ1ηt)logRt,t+1 + (1 + γ0 + γ1ηt)ζ0 + (ξ0 + ξ1ηt)
V IX2

t

12
+ (ϕ0 + ϕ1ηt)

V IX122t
12

]

ηt is the ratio of V RPt over the linear combination of the squared 1 month and 12 month VIX indices:

ηt ≡ V RPt
V IX2

t+κ0V IX122t
. V RPt is the 30 days variance risk premium, calculated by the difference between

V IX2
t /12 and σ2

r,t and σ2
r,t ≡ V arPt (logRt,t+1) is the time-t expected physical variance of 30 days ahead

S&P 500 Index log return. ∗, ∗∗ and ∗∗∗ indicate statistical significance at 10%, 5% and 1% level,

respectively, based on the bootstrap percentile interval.

Conditional-Slope Projected SDF

Parameter γ0 γ1 ζ0 ξ0 ξ1 ϕ0 ϕ1 κ0

Point Est −1.1056∗∗∗ −1.8847∗∗ -0.0027 -0.0350 2.0861 -0.0234 -1.2389 −0.1651
ObjFun 198.316
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Table 4: Risk Premium Implied from SPX Options

Table 4 reports the (time series) average of the (annualized) option-implied monthly expected return

on the S&P 500 Index, Et[Rt,t+1 − 1], (annualized) option-implied monthly risk-free interest rates

1/Et[Mt,t+1] − 1, as well as the option-implied risk premium, defined as their difference, under the

estimated conditional slope projected SDF. The average of monthly realized return on the S&P 500

Index Rt,t+1 − 1, one month U.S. LIBOR rates exp(rft,t+1) − 1 and their difference are shown next to

option-implied. The sample period is from January 1996 to January 2013. The Mean(Recession) and

Mean(Expansion) are sub-sample mean of periods of recession and expansion defined by the NBER.

Mean Mean(Recession) Mean(Expansion)

Et[Rt,t+1 − 1] 0.108 0.196 0.0953
Rt,t+1 0.0753 -0.0591 0.0948

1/Et[Mt,t+1]− 1 0.0286 0.0001 0.0331

exp(rft,t+1)− 1 0.0316 0.0238 0.0328

Et[Rt,t+1]− 1/Et[Mt,t+1] 0.0794 0.1959 0.0622

Rt,t+1 − exp(rft,t+1) 0.0437 -0.0829 0.062
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Panel A: Level of the S&P 500 Index
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Figure 1: S&P 500 Index and U.S. LIBOR Rates

Figure 1 plots the monthly observations of the closing price of the S&P 500 Index, its 30 calendar day-

ahead gross return and the gross U.S. LIBOR rates. The sample period is from January 1996 to January

2013, 205 months in total. The shaded areas are the recession periods defined by the NBER.
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Figure 2: The Moneyness Coverage of SPX Options

The figure plots the monthly observation of the SPX option moneyness spread (strike-to-spot ratio K/S)

in the cross-section used in the risk-neutral density recovery. The red solid line (blue dash-dot line)

represents the minimum (maximum) of option moneyness. The black dot line shows the fixed moneyness

level at 0.8. The shaded areas are the recession periods defined by the NBER.
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Figure 3: Dynamics of SPX Option-Implied Risk-Neutral Densities

Figure 3 plots the SPX option-implied conditional risk-neutral densities on four selected sample dates,

2007/02/21, 1996/04/17, 2008/07/16 and 2008/12/17, respectively. The panel A and D are two dates

which represent the least and most volatile market condition, measured by the CBOE VIX index over

the sample period. Panel B and C are the two dates when the CBOE VIX index is at the 30% and 75%

sample percentile, respectively.
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Figure 4: VIX Indices and Variance Risk Premium
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Slope of the Conditional Slope Projected SDF
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Figure 5: The Slope of the Conditional Slope Projected SDF

Figure 5 plots the absolute value of γ0 +γ1ηt, the coefficient of market return in the conditional projected

SDF, at the estimated values. ηt is the ratio of V RPt over the linear combination of the squared 1 month

and 12 month VIX indices: ηt ≡ V RPt
V IX2

t+κ0V IX122t
. V RPt is the 30 days variance risk premium, calculated

by the difference between V IX2
t /12 and σ2

r,t and σ2
r,t ≡ V arPt (logRt,t+1) is the time-t expected physical

variance of 30 days ahead S&P 500 Index log return.
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Panel B: Conditional Probability Pt(Rt,t+1 ≤ 0.9)
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Figure 6: Dynamics of the Conditional Tail Probability

Pt(Rt,t+1 ≤ 0.85) and Pt(Rt,t+1 ≤ 0.9) are the conditional probabilities of one month ahead S&P 500

gross return less than 0.85 and 0.9, respectively. In Panel A (Panel B), the blue solid curve is the

conditional probabilities POt (Rt,t+1 ≤ 0.85) (POt (Rt,t+1 ≤ 0.9)) under the option-implied conditional

physical distribution. The black dash-dotted curve is the conditional probabilities PSt (Rt,t+1 ≤ 0.85)

(PSt (Rt,t+1 ≤ 0.9)) under the index-return based conditional physical distribution. In both panels, for

comparison, the conditional probabilities under the SPX option-implied conditional risk-neutral distri-

bution (red dash line) are also plotted.
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Figure 7: Peso Problem Measures PPM(0.85) and PPM(0.9)

The peso problem measure (PPM (a)) for a = 0.85 or a = 0.9, defined as PPM(a) ≡ log(POt (Rt,t+1 ≤

a)) − log(PSt (Rt,t+1 ≤ a)) are plotted. PPM measures the percentage difference in conditional proba-

bility of one month index gross return below 0.85 and 0.9 under the option-implied conditional physical

distribution and the index-return based conditional physical distribution.
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Figure 8: Expected Return V.s Realized Return of the S&P 500 Index
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Appendix A Complete the Tails of SPX Option-

Implied Risk-Neutral Density

In this section, we detail the method of completing the left tail of the option-implied conditional risk-

neutral density by the Generalized Extreme Value (GEV) density function, which is first proposed by

Figlewski (2009). The method of completing the right tail of the risk-neutral density is similar.

Let G(x; ξ) (g(x; ξ)) be the cumulative distribution function (the probability density function) of the

GEV distribution family with the shape parameter ξ. G(x; ξ) is given by,

G(x; ξ) ≡ exp[−(1 + ξx)−1/ξ]

with the probability density function g(x; ξ) being,

g(x; ξ) ≡ exp[−(1 + ξx)−1/ξ](1 + ξx)−1/ξ−1

Let fEMP (x) be the value of the option-implied conditional risk-neutral density at x. To attach the

GEV density to the left tail of the risk-neutral density, two connection points Xα0L
and Xα1L

are chosen

such that Xα0L
and Xα1L

are strike prices at which the cumulative risk-neutral probability recovered

from SPX options equal α0L and α1L respectively, that is, they are α0L-th and α1L-th percentiles under

the risk-neutral measure.14

Following Figlewski (2009), X(α1L) is typically chosen to be the second smallest strike price or the

2%-percentile under the risk-neutral measure. X(α1L) is chosen to make α0L = α1L + 0.03. As shown in

the panel B of the Figure 2, in the cross-section, the moneyness coverage of SPX options increases over

time, therefore the two connection points are adjusted to be 1%-percentile and 3%-percentile such that

we can use more original information from SPX options directly. After the connection points are chosen,

14F (Kn), the cumulative risk-neutral distribution at strike Kn is recovered from SPX options by,

F (Kn) ≈ erft,t+τ C(t, T,Kn+1)− C(t, T,Kn−1)

24K + 1
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Table 5: Parameters of Attached GEV Density Functions

Left tail Mean Median StdD Min Max

µ -1192.2 -1199.2 243.87 -2128.9 -567.61
σ 57.67 37.783 63.243 0.0002 584.67
η 0.091 0.087 0.275 -0.492 2.012

Right tail

µ 1168.4 1197.1 237.49 120.79 1571
σ 30.761 26.682 32.351 0.001 432.97
η -0.045 -0.059 0.183 -0.419 1.911

the shape parameter ξ with the location-scale parameters (µ, σ) are determined by the following three

conditions, which is solved numerically:

G(−X(α0L)−µ
σ ) = 1− α0L

g(−X(α0L)−µ
σ )/σ = fEMP (X(α0L))

g(−X(α1L)−µ
σ )/σ = fEMP (X(α1L))

(17)

In the above equation, all variables are formed in the way: −X−µσ . This is because we intend to attach the

GEV density function to the left tail of the conditional risk-neutral density, therefore we need a negative

sign in front of X.

Similarly, to complete the right tail of the conditional risk-neutral density, two connection data points

X(α0R) and X(α1R) are chosen. Typically, X(α1R) is 95%th-percentile (or the second largest strike price)

and X(α1R) is chosen to make α0R = α1R+0.03. We also adjust the two connection data points similarly.

Then the parameter vector (ξ, µ, σ) is determined by the following system,

G(X(α0R)−µ
σ ) = α0R

g(X(α0R)−µ
σ )/σ = fEMP (X(α0R))

g(X(α1R)−µ
σ )/σ = fEMP (X(α1R))

(18)

Table 5 reports the summary statistics of parameters for the attached GEV density functions. Figure

9 provides a concrete example of how to attach the GEV density to both left and right tails of the

conditional risk-neutral density recovered from SPX options on a particular date in the sample.
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Appendix B Projected SDF under BTZ (2009)

In this section, we decribe the model setting of Bollerslev, Tauchen and Zhou (2009) and derive the

implied projected SDF. BTZ consider an endowment long-run risk model where the consumption growth

log(Ct+1/Ct) has a constant mean and time-varying stochastic volatility. The consumption volatility σ2
g,t

and the volatility of the consumption volatility qt take the discrete-time square-root process as follows,

log(Ct+1/Ct) ≡ gt+1 = µg + σg,tzg,t+1

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1

qt+1 = aq + ρqqt + φq
√
qtzq,t+1

(19)

where aσ > 0, aq > 0, |ρσ| < 1 and |ρq| < 1, φq > 0, and (zg,t+1, zσ,t+1, zq,t+1) follows i.i.d standard

multivariate normal distribution.

The representative agent is endowed with Epstein-Zin recursive utility. The logarithm of the one-

period SDF mt+1 is

mt+1 = θlogδ − θ

ψ
gt+1 + (θ − 1)rt+1 (20)

where δ is the time preference, γ is the risk aversion of the representative agent, ψ refers to the elasticity

of intertemporal substitution and θ ≡ 1−γ
1− 1

ψ

. Like the usual long-run risk literature, γ and ψ are both

assumed to be greater than 1 and hence θ < 0.

In this closed economy, consumption equals dividend and rt+1 is the return from t to t + 1 of the

total wealth that delivers the aggregate consumption stream {Ct+i}∞i=1 as its dividend in each period. To

solve the model, conjecture that the log wealth-consumption ratio is an affine function of the two state

variables,

wt = A0 +Aσσ
2
g,t +Aqqt (21)

Using the Campbell-Shiller (1988) return decomposition for rt+1

rt+1 = k0 + k1wt+1 − wt + gt+1 (22)

By exploiting the conditional normality of mt+1 and rt+1, the Euler equation can be solved analyti-

cally,

Et[e
mt+1+rt+1 ] = Et[e

θlogδ− θ
ψ gt+1+θrt+1 ] = 1 (23)
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and get the coefficients A0, Aσ and Aq, where Aσ and Aq are both negative under the parameter restric-

tions γ > 1 and ψ > 1.

Plugging (21) and the solution of A0, Aσ and Aq into (22), BTZ show that the return dynamics can

be written as,

rt+1 = −logδ +
µg
ψ
− (1− γ)2

2θ
σ2
g,t + (k1ρq − 1)Aqqt + k1

√
qt(Aσzσ,t+1 +Aqφqzq,t+1) + σg,tzg,t+1 (24)

The log SDF mt+1 can be written as a function of rt+1 and shocks to state variables,

mt+1 = −γrt+1 + (1− γ)(logδ− µg
ψ

)− (1− γ)2

2ψ
σ2
g,t +

θ

ψ
(k1ρq − 1)Aqqt +

θ

ψ
k1
√
qt(Aσzσ,t+1 +Aqφqzq,t+1)

(25)

B.1 Projected SDF

The projected SDF M̃t+1 = E[emt+1 |rt+1, σg,t, qt] can be calculated by integrating out the last term in

(25), which is unknown at time-t,

E[emt+1 |rt+1, σg,t, qt] = exp(−γrt+1 + (1− γ)(logδ − µg
ψ )− (1−γ)2

2ψ σ2
g,t + θ

ψ (k1ρq − 1)Aqqt)

E[e
θ
ψ k1
√
qt(Aσzσ,t+1+Aqφqzq,t+1)|rt+1, σg,t, qt]

(26)

Denote yt+1 = k1
√
qt(Aσzσ,t+1 +Aqφqzq,t+1) and its variance as σ2

y,t ≡ k21(A2
σ+A2

qφ
2
q)qt. yt+1 follows

the standard normal distribution, conditional on qt

yt+1|{qt} ∼ N(0, σ2
y,t)

In addition, given the joint normality of (zg,t+1, zσ,t+1, zq,t+1), yt+1 and rt+1 are jointly conditional

normal. Hence the conditional distribution of yt+1 conditioning on {rt+1, σg,t, qt} still follows the normal

distribution. Specifically,

yt+1|{rt+1, σg,t, qt} ∼ N((rt+1 + logδ − µg
ψ

+
(1− γ)2

2θ
σ2
g,t − (k1ρq − 1)Aqqt)

σ2
y,t

σ2
y,t + σ2

g,t

, σ2
g,t

σ2
y,t

σ2
y,t + σ2

g,t

)
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Define ηt ≡ σ2
y,t

σ2
y,t+σ

2
g,t

, the remaining expectation in (26) is given by

E[e
θ
ψ k1
√
qt(Aσzσ,t+1+Aqφqzq,t+1)|rt+1, σg,t, qt] =

exp[ θψ (rt+1 + logδ − µg
ψ + (1−γ)2

2θ σ2
g,t − (k1ρq − 1)Aqqt)ηt + 1

2 ( θψ )2σ2
g,tηt]

Thus the projected SDF M̃t+1 = E[emt+1 |rt+1, σg,t, qt], in log form is, is,

logM̃t+1 = logE[emt+1 |rt+1, σg,t, qt] = (−γ + θ
ψηt)rt+1+

(1− γ + θ
ψηt)(logδ −

µg
ψ ) + ((1− γ)2ηt − (1− γ)2 + θ2

ψ ηt)
σ2
g,t

2ψ + θ
ψ (k1ρq − 1)Aqqt(1− ηt)

(27)

Due to the two factor consumption volatility dynamics, the most salient feature of the projected SDF

is that coefficients of market return rt+1 and two state variables (σg,t, qt) is time-varying. Specifically it

depends on

ηt =
σ2
y,t

σ2
y,t + σ2

g,t

=
k21(A2

σ +A2
qφ

2
q)qt

k21(A2
σ +A2

qφ
2
q)qt + σ2

g,t

(28)

To relate ηt to the market return dynamics, we compute the conditional expected variance under the

both physical and risk-neutral measure. From the return dynamics (24),

σ2
r,t = vart(rt+1) = σ2

g,t + k21(A2
σ +A2

qφ
2
q)qt = σ2

g,t + σ2
y,t (29)

The one-step ahead expected physical variance is then

Et[σ
2
r,t+1] = Et[σ

2
g,t+1 + k21(A2

σ +A2
qφ

2
q)qt+1] = aσ + ρσσ

2
g,t + k21(A2

σ +A2
qφ

2
q)(aq + ρqqt) (30)

In discrete-time, V IX2
t = EQt [σ2

r,t+1] , i.e., the time-t expectation of the one-step ahead expected

variance under the risk-neutral measure. BTZ show that

EQt [σ2
r,t+1] = Et[σ

2
r,t+1] + (θ − 1)k1[Aσ +Aqφ

2
qk

2
1(A2

σ +A2
qφ

2
q)]qt (31)

The one period variance risk premium is defined as EQt [σ2
r,t+1]−Et[σ2

r,t+1], which turns out to be an

affine function of qt only,

V RPt ≡ EQt [σ2
r,t+1]− Et[σ2

r,t+1] = (θ − 1)k1[Aσ +Aqφ
2
qk

2
1(A2

σ +A2
qφ

2
q)]qt (32)

Since θ < 0, Aσ < 0, and Aq < 0, V RPt is strictly positive.
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The nominator of ηt is then proportional to the variance risk premium while its denominator is a

linear combination of the two volatility state variables σg,t and qt. From the equation (31), we know

that the squared VIX index is an affine function of the two state variables. By the affine structure of

the model, the squared 12 month VIX index is also an affine function of state variables. Therefore, the

denominator of ηt can be expressed by a linear combination of the two squared VIX indices.

ηt would then be proportional to the following term,

ηt ∝
V RPt

V IX12t/12 + κ0V IX122t/12
(33)

Finally, we replace the two state variables σg,t and qt in the projected SDF in (27) by observable

market variables, e.g., the SPX return, the CBOE VIX index and the 12 month VIX index. We obtain

the reduced-form expression of the one period projected SDF, with γ0 < −1 and γ1 < 0,

M̃t,t+1 = exp[(γ0+γ1ηt)logRt,t+1+(1+γ0+γ1ηt)ζ0+(ξ0+ξ1ηt)V IX
2
t /12+(ϕ0+ϕ1ηt)V IX122t/12] (34)
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