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I. Introduction

According to U.S. Social Security Administration, over one in four of today’s 20 year-

olds will become disabled before they retire (Fact Sheet February 7, 2013). Over 37

million Americans are classified as disabled; about 12% of the total population. More

than 50% of those disabled Americans are in their working years, from 18-64. Most of

the disabled individuals have to reduce their work load significantly (see U.S. Census

Bureau, American Community Survey, 2011). In this paper, we examine the impact

of long term disability (LTD) on lifecycle consumption and investment for an investor

who exhibits ratcheting of consumption as proposed by Duesenberry.

Our paper offers the following new results:

• The traditional financial advice that one should invest less as one ages is only

partially correct. In particular, the fraction of financial wealth invested in stock

should increase as time passes at the beginning of working life.

• The long-term disability risk significantly reduces consumption and investment.

• The inability to borrow against future income magnifies the impact of long term

disability and further decreases consumption and investment.

• Our model generates hump shaped lifecycle consumption and investment pat-

terns that are consistent with empirical evidence and shows the importance of

the access to long term disability insurance.

These results are derived analytically in a consistent framework that yields rich em-

pirical predictions. We hope that these analysis and extensions will lend themselves

to the study of policy questions in insurance, pensions, and retirement.
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We solve three cases to isolate the effects on the optimal consumption and in-

vestment strategy of LTD and consumption ratcheting with and without borrowing

against future income. We derive almost explicit solutions (at least parametrically

up to at most some constants) in two of these three models. Except for income

and LTD status these cases share common features: a constant mortality rate, dif-

ferent marginal utility per unit of consumption before and after LTD, possibly age

dependent income, mandatary retirement, and LTD insurance.1

The first case serves as a benchmark, it considers the investor’s problem after

LTD. This simple model extends Dybvig (1995) in three main aspects. First, we

allow the consumption to fall below the historically highest level, as long as it is

above a certain fraction, say 75%, of it. Second, the investor has income stream

that can be or cannot be borrowed against. Third, there is LTD risk. This model

seems intractable in the primal, so we solve it in the dual (i.e., as a function of

the marginal utility of wealth) and obtain an explicit parametric solution up to two

constants that are easy to determine numerically. We show that there exist two critical

wealth-to-historically-high-consumption ratios above which it is optimal to increase

the consumption beyond the habit level and the historically high level respectively.

Compared to a model without consumption ratcheting, the investor consumes less and

invest less conservatively to ensure all future consumption to be above the habit level.

Compared to Dybvig (1995), the investor consumes more and invest more because of

1In general, labor income may be stochastic before LTD. In this paper, we only consider the labor
income riskiness from LTD. As shown in Dybvig and Liu (2007), the effect of the riskiness of labor
income is small when labor income is a diffusion process. See Lazear [15] for why mandatory retire-
ment may be optimal. An alternative model of mandatory retirement that allows for early retirement
is more complicated because of the extra time dimension, but can be solved using the randomization
method employed by Liu and Loewenstein (2002) (see also Panageas and Farhi (2007)). Our simpler
assumption of retirement at a fixed date T enables us to solve the model exactly and it is easier to
compare with the other models.
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the less stringent consumption restriction. In addition, consumption exhibits two flat

segments: one at the habit level and one at the historically high level. The implied

consumption paths are less smooth than those in Dybvig (1995) but smoother than

in a model without consumption ratcheting. The second case considers the period

before LTD but after retirement. Compared to the first case, the investor has one more

decision to make: how much LTD insurance to buy. As in the first case, we show that

there exist two critical wealth-to-historically-high-consumption ratios above which it

is optimal to increase the consumption beyond the habit level and the historically high

level respectively. Due to the presence of LTD risk, the investor invests and consumes

much less than the case without LTD risk. An increase of the LTD insurance premium

significantly hurts the investor and further reduces consumption and investment. The

third case considers the period before LTD and before retirement. If the investor can

borrow against future income, the the investor’s problem is essentially the same as

the case, because in both cases the investor simply capitalize all future income and

the problems reduce to one that does not have income flow. Because the wage rate is

hump shaped against age, the optimal consumption and investment as a fraction of

the total wealth (financial wealth plus human capital) is also hump shaped, matching

empirical evidence. When borrowing against income is prohibited, the two critical

wealth-to-historically-high-consumption ratios above which it is optimal to increase

the consumption beyond the habit level and the historically high level respectively

become age dependent.

Financial advisors often advise investors to invest more in the stock market when

young and to shift gradually into the riskless asset as they age. Three main justifi-

cations are provided in the literature. Bodie, Merton, and Samuelson (1992) (BMS)

show that if investors can frequently change working-hours, then labor income will
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be negatively perfectly correlated with the stock market and therefore the young

should invest more in the stock market, because they can work longer hours if market

goes down. However, working-hours are typically inflexible and consistent with this,

an extensive empirical literature shows that labor income has a very low correlation

with the stock market (e.g., Heaton and Lucas (1997)). Therefore this working-hour

flexibility is unlikely the main justification for the traditional advice. Dybvig and

Liu (2007) (DL) show that even though wage rate itself might be uncorrelated with

the stock market, human capital can be significantly negatively correlated with the

market given voluntary retirement. This retirement flexibility, like working-hour flex-

ibility, can make it optimal for the young to invest more in the stock. In contrast,

Jagannathan and Kocherlakota [11] (JK) argue that total capital is human capital

(which is bond-like) plus financial capital (whose market risk can be chosen). To

keep the overall mix constant, financial capital has to have a high beta on market

risk when young (when total wealth consists mostly of human capital) but a more

modest beta on market risk when old (when total wealth consists mostly of financial

capital).

Our analysis contributes to this literature by providing two more important factors

that affect the validity of the traditional advice. Our model implies that consumption

ratcheting and LTD risk may be more important for portfolio choice than just age and

the relative size of financial wealth and earnings capacity. In contrast to our model,

neither BMS nor DL nor JK considers consumption ratcheting or LTD risk, which is

arguably one of the most important life-cycle risks. Compared to JK, our analysis

suggests that the traditional advice may be valid for an even larger class of labor

income distributions, because LTD risk and consumption ratcheting can even make

the fraction of total wealth invested in stock decline over time. However, contrary
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to the traditional advice, the fraction of financial wealth invested in stock should

increase as time passes at the beginning of working life.

This paper is also related to the literature on portfolio choice with borrowing

constraint against labor income (e.g., He and Paǵe (1993)) and the literature with

drawdown constraint on wealth. Different from these literature, we consider the joint

impact of borrowing constraint and consumption ratcheting in the presence of LTD.

The rest of the paper is organized as follows. Section II presents the model with

LTD risk and consumption ratcheting. We provide theoretical results in Section III.

Numerical and graphical analysis is presented in Section IV. Section V closes the

paper. All of the proofs are in the Appendix.

II. The model

We consider an investor with an infinite horizon who maximizes his expected utility

from intertemporal consumption. The investor can invest in two financial assets. The

first asset (“bond”) is riskless, growing at a continuously compounded, constant rate

r. The second one is risky (“stock”), which can be viewed as an index or a portfolio

of stocks, whose price St evolves continuously as

dSt

St

= µdt+ σdBt, (1)

where µ > r, σ > 0 are constants and {Bt; t ≥ 0} is a one-dimensional Brownian

motion.

Different from the standard literature, we assume that the investor requires his

living standard (measured by consumption rate) never falls below a certain fraction

α ∈ [0, 1] of the highest living standard he has ever enjoyed. Specifically, let {c}

5



denote the adapted consumption process. Then the investor requires

ct ≥ αMt, (2)

where

Mt = sup
0≤s≤t

cs.

In addition, the investor is subject to a long term disability (LTD) risk. The

LTD shock occurs at the first jump time τ of an independent Poisson process with

a constant intensity of λ ≥ 0. Before the LTD shock, the investor works to earn a

deterministic wage rate of w(t) with w(t) = wR ≡ ιw(T ) for any t > T , where T is

the full retirement age T and ι ≤ 1 represents the ratio of the after-retirement income

to the income at retirement. After the LTD shock, the investor loses his job and may

need to pay medical expenses at a constant rate of e ≥ 0. In addition, the marginal

utility per unit of consumption may also be different as a result of the LTD. To hedge

against the LTD risk, the investor can continuously purchase and vary LTD insurance

at a constant premium of p > 0 per dollar of insurance payment at the LTD shock.2

Let θt be the dollar amount invested in the stock, It be the dollar coverage of the LTD

insurance, and Wt be the financial wealth of the investor at t. Then the investor’s

budget constraint before the shock is

dWt = rWtdt+ θt(µ− r)dt+ θtσdBt − ctdt− pIt dt+ w(t) dt (3)

and the investor’s budget constraint after the shock is

dWt = rWtdt+ θt(µ− r)dt+ θtσdBt − ctdt−m(τ) dt, (4)

2One alternative form of LTD insurance payment is to periodic payment of a certain fraction of
the wage rate before LTD. This alternative form can be dealt with using the same approach and
yields the same qualitative results.
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with

Wτ = Wτ− + Iτ−,

where

m(τ) ≡ e−
τ ∧ T − t0
T − t0

ι w(τ ∧ T )

denotes the medical expense net of income after LTD, which is proportional to the

years of working before LTD occurs and capped by wR and t0 is the starting working

age.

The investor has constant relative risk aversion (CRRA) preferences before and

after the shock. We assume that the utility function before the shock is

u(c) =
c1−γ

1− γ

and becomes

uD(c) =
(k c)1−γ

1− γ

after the shock, where γ is the risk aversion coefficient and k > 0 measures the change

in the utility from one unit of consumption after disabled.

To prevent arbitrage such as a doubling strategy, we impose the following wealth

constraint (Dybvig and Huang (1986)):

Wt ≥ −K, (5)

where K ≥ 0. Setting K to be the present value of all future income means that the

investor is allowed to borrow against his labor income. On the other hand, setting

K = 0 prohibits borrowing against any future income. We will examine the impact

of the no-borrowing constraint.

The investor’s problem is then

max
{c,θ,I}

E

[
∫ τ

0

e−ρtu(ct)dt+

∫ ∞

τ

e−ρtuD(ct)dt

]
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subject to (3), (4), (2), and (5).

III. Analytical results

A. After the LTD Shock

In this section, we first solve the investor’s problem after the LTD shock at τ . In this

period, the investor’s problem becomes

max
{ct,θt}

E

[
∫ ∞

0

e−ρt (k ct)
1−γ

1− γ
dt

]

(6)

subject to

dWt = rWtdt+ θt(µ− r)dt+ θtσdBt − ctdt−m(τ) dt, (7)

ct ≥ αMt, (8)

subject to

Wt ≥
m(τ)

r
, (9)

where −m(τ)
r

is equal to the present value of income net of medical expense,

Mt = max

(

M0−, sup
0≤s≤t

cs

)

.

Let

ηD ≡
k−bγ2

ρ− (1− γ)(r + κ2

2γ
)
, (10)

where

b = 1− 1/γ, κ =
µ− r

σ
. (11)

Let

ẑt ≡ ẑ0e
−(r−ρ+ 1

2
κ2)t−κBt
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be the state price density and Ṽ D(ẑ,M, τ) be the dual value function. Then Ṽ D(ẑ,M, τ)

satisfies the following HJB equation:

1

2
κ2ẑ2Ṽ D

ẑẑ (ẑ,M, τ)−(r−ρ)ẑṼ D
ẑ (ẑ,M, τ)−ρV D(ẑ,M, τ)+ max

αM≤c≤M
[uD(c)−cẑ]−m(τ)ẑ = 0.

(12)

Due to homogeneity, we can write Ṽ D(ẑ,M, τ) in the following form:

Ṽ D(ẑ,M, τ) =M1−γϕD(y, τ)−
m(τ)

r
ẑ, y =

zt
M
, zt = ẑ−1/γ , (13)

for some function ϕD. The optimal consumption can be shown to be

c∗t =























zt
ȳD

if zt
Mt−

≥ ȳD

Mt− if ȳD > zt
Mt−

≥ kb,

k−bzt if kb > zt
Mt−

≥ αkb,

αMt− if zt
Mt−

< αkb.

(14)

Then the HJB equation can be simplified to

1

2
κ2y2ϕ′′

D(y, τ) +

(

(r − ρ)γ +
1

2
(1 + γ)κ2

)

yϕ′
D(y, τ)− γ2ρϕD(y, τ)

+
γ2

1− γ
(fD(y)

1−γ − fD(y)y
−γ(1− γ)) = 0, (15)

where

fD(y) =























y
ȳD

if y ≥ ȳD

1 if ȳD > y ≥ kb,

k−by if kb > y ≥ αkb,

α if y < αkb.

(16)

For the existence of a solution, the following assumption is necessary and suffi-

cient:3

Assumption 1 ηD > 0.

3This assumption is also the condition for the corresponding Merton problem to have a solution.
If ηD < 0, then the investor can achieve infinite utility by delaying consumption. If relative risk
aversion γ > 1, ηD is always positive, but for 1 > γ > 0, whether ηD is positive depends on the
other parameters.
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When borrowing against income is allowed or when m(τ) ≥ 0, we have the fol-

lowing boundary conditions:

(1− γ)ϕD(ȳD, τ) = ȳDϕ
′
D(ȳD, τ) (17)

−γϕ′
D(ȳD, τ) = ȳDϕ

′′
D(ȳD, τ) (18)

lim
y↓0

(

ϕD(y, τ) +
1

γ
yϕ′

D(y, τ)

)

=
(kα)1−γ

ρ(1− γ)
, (19)

where (17) and (18) follow from the smooth pasting conditions at ȳD, and (19) follows

because at y = 0 (which is equivalent to ṼM = 0 and ṼMM = 0 at ȳD), the investor can

only consume αM forever and thus V D(W,M, τ) =M1−γ
(

ϕD(y, τ) +
1
γ
yϕ′

D(y, τ)
)

=

(kαM)1−γ

ρ(1−γ)
.

If m(τ) < 0, i.e., income is greater than the medical expense, and the investor

cannot borrow against future net income, then we have the same boundary conditions

at ȳD, but the lower boundary conditions are different. In this case, there exist a lower

boundary y
D
at which the financial wealth Wt is 0 and at y = y

D
, the investor cannot

invest any amount in stock, otherwise any loss would make the investor violate the

consumption constraint. Therefore, we have the following boundary conditions:4

1

γ
y1+γ

D
ϕ′
D(yD, τ)Mt− +

m(τ)

r
=
αMt−

r
(20)

(1 + γ)ϕ′
D(yD, τ) + y

D
ϕ′′
D(yD, τ) = 0. (21)

We can then solve the HJB equation (15) subject to the above boundary condi-

tions. In general, solving a PDE with time varying free boundaries is difficult. On the

other hand, a special structure of the HJB equation (15) helps simplify the solution:

the HJB equation does not have any term that involves a derivative with respect to

4With the transformation of Ŵt = Wt −
αMt−

r
, the argument of He and Paǵe (1993) implies the

boundary conditions at the lower boundary y
D
.
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M . So one can fix anM and solve an ODE with free boundaries, then pick anotherM

and solve again. Thus the problem reduces to a series of ODEs with free boundaries.

Even better, we next show that there exists an explicit solution up to one constant

(ȳD) for the case without borrowing constraint and up to two constants (ȳD and y
D
)

for the case with borrowing constraint.

Define

βm =
− (r − ρ+ κ2/ 2)−

√

(r − ρ+ κ2/ 2)2 + 2 κ2ρ

κ2
γ < −γ;

βp =
− (r − ρ+ κ2/ 2) +

√

(r − ρ+ κ2/ 2)2 + 2 κ2ρ

κ2
γ;

ϕD(y, τ) =























A0
y1−γ

1−γ
if y ≥ ȳD

k1−γ

ρ(1−γ)
− 1

r
y−γ + A1y

βm + A2y
βp if ȳD > y ≥ kb,

ηD
y1−γ

1−γ
+B1y

βm +B2y
βp if kb > y ≥ αkb,

(kα)1−γ

ρ(1−γ)
− α

r
y−γ + C1y

βm + C2y
βp if y < αkb,

(22)

where A0, A1, A2, B1, B2, C1, C2, and ȳD > kb are constants to be determined.

Given this explicit form of ϕD, we can then solve for A0, A1, A2, B1, B2, C1, C2,

ȳD, and y
D

(with borrowing constraints) subject to the above boundary conditions

and C1 conditions across across αkb and kb.5 Since these smooth pasting conditions

are linear in A0, A1, A2, B1, B2, C1, C2, one can solve explicitly these constants in

terms of ȳD and then numerically solve one algebraic equation for ȳD in the absence of

borrowing constraints. Note that in the absence of borrowing constraint, neither the

HJB equation nor the boundary conditions depend on τ . This implies that without

borrowing constraint, ϕD(y, τ) is independent of τ . In addition, it can be easily veri-

fied that the boundary condition (19) reduces to C1 = 0. With borrowing constraints,

5The matching of the values and the first derivatives across αkb and kb ensures that ϕD(y, τ) is
also C2 across these points because of the continuity of the HJB equation across these points.
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the system of equations can be reduced to two nonlinear equations in y
D
and ȳD to

be numerically solved and ϕD(y, τ) depends on τ .

Let the indicator function B equal to 1 if borrowing against income is allowed and

0 otherwise. Then the solution to the investor’s problem (6) can be written in terms

of the dual variable zt and Mt.

Theorem 1 Suppose

W0 ≥
αM0− +m(τ)B +m(τ)+(1− B)

r
. (23)

Then there exists a unique solution to A0, A1, A2, B1, B2, C1, C2, ȳD, and yD such

that ϕD(y, τ) as defined in (22) is C2 across αkb and kb and satisfies the boundary

conditions (17) to (19) for the case without borrowing constraint, and the boundary

conditions (17), (18), (20), (21) for the case with borrowing constraint, the optimal

consumption policy is as in (14), which implies that

M∗
t = max

(

M0−,
1

ȳD
sup
0≤s≤t

zt

)

, (24)

the optimal wealth is

W ∗
t =

1

γ
y1+γ
t ϕ′

D (yt, τ)Mt− +
m(τ)

r
, (25)

the optimal trading strategy is

θ∗t

W ∗
t − m(τ)

r

=
µ− r

γσ2
−
µ− r

γσ2
(ψD (yt, τ)− γ) , (26)

where

ψD(y, τ) ≡ −
yϕ′′

D (y, τ)

ϕ′
D (y, τ)

represents the risk aversion coefficient of ϕD, and furthermore, the value function can

be written in the following explicit parametric form

V D(W,M, τ) =M1−γ

(

ϕD(y, τ) +
1

γ
yϕ′

D(y, τ)

)

, (27)
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with

W =
1

γ
y1+γϕ′

D (y, τ)M +
m(τ)

r
. (28)

Theorem 1 implies that there are four regions for zt/Mt−: (0, αkb), [αkb, kb),

[kb, ȳD), and [ȳD,∞), across which the optimal consumption and optimal investment

strategy may differ. It can be shown that these four regions correspond to four regions

for the ratio πt of the adjusted wealth Wt −m(τ)/r to the historical high Mt, where

πD
t =

Wt −m(τ)/r

Mt−
.

specifically, let

r∗D1 =
1

γ
(αkb)1+γϕ′

D

(

αkb, τ
)

, r∗D2 =
1

γ
kb(1+γ)ϕ′

D

(

kb, τ
)

, r∗D3 =
1

γ
ȳ1+γ
D ϕ′

D (ȳD, τ) .

Then the four regions for zt/Mt− correspond to the following four regions for πt:

(α/r, r∗D1), [r
∗
D1, r

∗
D2), [r

∗
D2, r

∗
D3), and [r∗D3,∞) respectively. Theorem 1 implies that the

optimal consumption policy can be equivalently stated as follows, using the adjusted

wealth to the historical high ratio to define the regions.

c∗t =























W ∗

t −m(τ)/r

r∗
D3

if πt ≥ r∗D3

Mt− if r∗D3 > πt ≥ r∗D2,

k−bzt if r∗D2 > πt ≥ r∗D1,

αMt− if r∗D1 > πt ≥ α/r.

(29)

The above description of the optimal consumption policy suggests that when the

wealth is low the investor consumes the minimum αMt−. When wealth increases

beyond a certain level, the investor increases his consumption until it reaches the

historical high Mt−. When wealth increases further, the investor keeps consuming

at the level of the historical high without increasing it. If wealth is above a high

threshold, the investor increases his consumption above the historical high such that
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the wealth to the new high ratio is equal to r∗D3. Dybvig (1992) is a special case where

α = k = 1. In this special case, r∗D1 = r∗D2 and thus the second region disappears and

the solution reduces to that in Dybvig (1992).

For the optimal trading strategy without borrowing constraint, it can be shown

that limy↓0 ψD(y, τ) = 1 + γ and ∀y ≥ ȳD, ψD(y, τ) = γ. Since as y ↓ 0, wealth W ∗
t

goes to (αMt− +m(τ))/r, Theorem 1 implies that as W ∗
t goes to (αMt− +m(τ))/r,

the optimal amount invested in the stock goes to zero. Intuitively, this is the only

feasible strategy to ensure the consumption never falls below αMt−. When the wealth

is sufficiently high (W ∗
t − m(τ)/r ≥ r∗D3Mt−), it is optimal to adopt the Merton

strategy in the unconstrained case of investing a fraction µ−r
γσ2 of W ∗

t −m(τ)/r in the

stock.

B. Before LTD but after retirement

In this subsection, we solve the investor’s problem after retirement but before the

LTD shock. In this period, the investor’s problem becomes

max
{ct,θt}

E

[
∫ τ

0

e−ρt c
1−γ
t

1− γ
dt+ e−ρτV D(Wτ + Iτ ,Mτ , T )

]

(30)

subject to

dWt = rWtdt+ θt(µ− r)dt+ θtσdBt − ctdt+ wR dt− pItdt, (31)

ct ≥ αMt, (32)

and

Wt ≥ −

(

wR

r + p
−

pm(T )

r(r + p)

)

, (33)

where wR

r+p
− pm(T )

r(r+p)
> 0 represents the present value of the labor income net of the

medical expense,

Mt = max

(

M0−, sup
0≤s≤t

cs

)

.
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Let

η ≡
γ2

ρ+ λ− (1− γ)(r + p+ κ2

2γ
)
. (34)

For the existence of a solution, the following assumption is necessary and sufficient:

Assumption 2 η > 0 and ηD > 0.

Ṽ R(ẑ,M) be the dual value function. Then Ṽ R(ẑ,M) satisfies the following HJB

equation:

1

2
κ2ẑ2Ṽ R

ẑẑ−(r+p−λ−ρ)ẑṼ R
ẑ −(ρ+λ)Ṽ R+ max

αM≤c≤M
[u(c)−cẑ]+wRẑ+λṼ

D
(p

λ
ẑ,M, T

)

= 0.

(35)

Due to homogeneity, we can write Ṽ (ẑ,M) in the following form:

Ṽ R(ẑ,M) =M1−γϕR(y)−

(

pm(T )

r(r + p)
−

wR

r + p

)

ẑ, y =
z

M
, z = ẑ−1/γ , (36)

for some function ϕR. The optimal consumption can be shown to be

c∗t =























zt
ȳR

if zt
Mt−

≥ ȳR

Mt− if ȳR >
zt

Mt−
≥ 1,

zt if 1 > zt
Mt−

≥ α,

αMt− if zt
Mt−

< α.

(37)

Then the HJB equation can be simplified to

1

2
κ2y2ϕ′′

R(y) +

(

(r + p− λ− ρ)γ +
1

2
(1 + γ)κ2

)

yϕ′
R(y)− γ2(ρ+ λ)ϕR(y)

+γ2λϕD (ξy; 0) +
γ2

1− γ
(fR(y)

1−γ − fR(y)y
−γ(1− γ)) = 0, (38)

where

fR(y) =























y
ȳR

if y ≥ ȳR

1 if ȳR > y ≥ 1,

y if 1 > y ≥ α,

α if y < α,

(39)
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and

ξ =
(p

λ

)−1/γ

.

When borrowing against income is allowed or when wR

r+p
− pm(T )

r(r+p)
≤ 0, we have the

following boundary conditions:

(1− γ)ϕR(ȳR, τ) = ȳRϕ
′
R(ȳR, τ) (40)

−γϕ′
R(ȳR, τ) = ȳRϕ

′′
R(ȳR, τ) (41)

lim
y↓0

(

ϕR(y, τ) +
1

γ
yϕ′

R(y, τ)

)

=
(kα)1−γ

ρ(1− γ)
, (42)

where (40) and (41) follow from the smooth pasting conditions at ȳR, and (42) follows

because at y = 0, the investor can only consume αM forever and thus V D(W,M, τ) =

M1−γ
(

ϕR(y, τ) +
1
γ
yϕ′

R(y, τ)
)

= (kαM)1−γ

ρ(1−γ)
.

If wR

r+p
−pm(T )

r(r+p)
> 0, i.e., income is greater than the medical expense, and the investor

cannot borrow against future net income, then we have the same boundary conditions

at ȳR, but the lower boundary conditions are different. In this case, there exist a lower

boundary y
R
at which the financial wealth Wt is 0 and at y = y

R
, the investor cannot

invest any amount in stock, otherwise any loss would make the investor violate the

consumption constraint. Therefore, we have the following boundary conditions:

1

γ
y1+γ

R
ϕ′
R(yR, τ)Mt− +

m(τ)

r
= 0 (43)

(1 + γ)ϕ′
R(yR, τ) + y

R
ϕ′′
R(yR, τ) = 0. (44)

We can then solve the HJB equation (38) subject to the above boundary condi-

tions. We next show that there exists an explicit solution up to one constant (ȳR) for

the case without borrowing constraint and up to two constants (ȳR and y
R
) for the

case with borrowing constraint.
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Define

β− =
− (r + p− λ− ρ+ κ2/ 2)−

√

(r + p− λ− ρ+ κ2/ 2)2 + 2 κ2(ρ+ λ)

κ2
γ;

β+ =
− (r + p− λ− ρ+ κ2/ 2) +

√

(r + p− λ− ρ+ κ2/ 2)2 + 2 κ2(ρ+ λ)

κ2
γ;

The investor’s problem can be divided into several cases by certain parameter

values such that for each case an explicit solution (up to some numerically determined

constants) can be obtained. Next we state the explicit form for one of the main cases

to illustrate the form of the solutions. Suppose ȳR > ȳD > kb > 1 > αkb > α. Define

ϕR(y) =



















































C0
y1−γ

1−γ
if y ≥ ȳR

D1y
β− +D2y

β+ + h1(y) + g0(y) if ȳR > y ≥ ȳD

E1y
β− + E2y

β+ + h1(y) + g1(y) if ȳD > y ≥ kb

F1y
β− + F2y

β+ + h1(y) + g2(y) if kb > y ≥ 1

G1y
β− +G2y

β+ + h2(y) + g2(y) if 1 > y ≥ αkb

H1y
β− +H2y

β+ + h2(y) + g3(y) if αkb > y ≥ α

I1y
β− + I2y

β+ + h3(y) + g3(y) if y < α

(45)

where functions h1(·)− h3(·) and g0(·)− g3(·) are specified in the Appendix, C0, D1,

D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, I2, and ȳR are constants to be determined.

We can then solve for C0, D1, D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, I2, ȳR, and

y
R
(with borrowing constraints) subject to the above boundary conditions and C1

conditions across α, αkb, 1, kb, and ȳD.
6 Since these smooth pasting conditions are

linear in C0, D1, D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, and I2, one can solve explicitly

these constants in terms of ȳR and then numerically solve one algebraic equation for

ȳR in the absence of borrowing constraints. Note that in the absence of borrowing

constraint, the condition (42) reduces to I1 = 0. With borrowing constraints, the

6As in the after LTD case, the matching of the values and the first derivatives across the break
points ensures that ϕR(y) is also C2 across these points.
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system of equations can be reduced to two nonlinear equations in y
R
and ȳR to be

numerically solved.

Then the solution to the investor’s problem (30) can be written in terms of the

dual variable zt and Mt.

Theorem 2 Suppose

W0 ≥
αM0−

r
+
p (m(T )B +m(T )+(1−B))

r(r + p)
−

wR

r + p
. (46)

Suppose there exists a unique solution to C0, D1, D2, E1, E2, F1, F2, G1, G2, H1,

H2, I1, I2, ȳR, and yR such that ȳR > ȳD > kb > 1 > αkb > α and ϕR(y) as defined

in (45) is C2 across α, αkb, 1, kb, and ȳD and satisfies the boundary conditions (40)

to (42) for the case without borrowing constraint, and the boundary conditions (40),

(41), (43), (44) for the case with borrowing constraint. Then the optimal consumption

policy is as in (37), which implies that

M∗
t = max

(

M0−,
1

ȳR
sup
0≤s≤t

zt

)

, (47)

the optimal wealth is

W ∗
t =

1

γ
y1+γ
t ϕ′

R (yt)Mt− +
pm(T )

r(r + p)
−

wR

r + p
, (48)

the optimal trading strategy is

θ∗t

W ∗
t −

(

pm(T )
r(r+p)

− wR

r+λ

) =
µ− r

γσ2
−
µ− r

γσ2
(ψ (yt)− γ) , (49)

and the optimal LTD insurance is

I∗t =
1

γ
(ξyt)

1+γ ϕ′
D (ξyt; 0)Mt− −

1

γ
y1+γ
t ϕ′

R (yt)Mt− +
wR +m(T )

r + p
, (50)

where

ψR(y) ≡ −
yϕ′′

R (y)

ϕ′
R (y)
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represents the risk aversion coefficient of ϕD, and furthermore, the value function can

be written in the following explicit parametric form

V R(W,M) =M1−γ

(

ϕR(y) +
1

γ
yϕ′

R(y)

)

, (51)

with

W =
1

γ
y1+γϕ′

R (y)M +
pm(T )

r(r + p)
−

wR

r + p
. (52)

Theorem 2 implies that there are four regions for zt/Mt−: (0, α), [α, 1), [1, ȳR),

and [ȳR,∞), across which the optimal consumption and optimal investment strategy

may differ. It can be shown that these four regions correspond to four regions for the

ratio πt of the adjusted wealth Wt − (pm(T )
r(r+p)

− w
r+p

) to the historical high Mt, where

πR
t =

Wt −
(

pm(T )
r(r+p)

− wR

r+p

)

Mt−
.

specifically, let

r∗R1 =
1

γ
α1+γϕ′

R (α) , r∗R2 =
1

γ
ϕ′
R (1) , r∗R3 =

1

γ
ȳ1+γ
R ϕ′

R (ȳR) .

Then the four regions for zt/Mt− correspond to the following four regions for πt:

(α/r, r∗R1), [r
∗
R1, r

∗
R2), [r

∗
R2, r

∗
R3), and [r∗R3,∞) respectively. Theorem 2 implies that the

optimal consumption policy can be equivalently stated as follows, using the adjusted

wealth to the historical high ratio to define the regions.

c∗t =























W ∗

t −(
pm(T )
r(r+p)

−
wR
r+p)

r∗
R3

if πt ≥ r∗R3

Mt− if r∗R3 > πt ≥ r∗R2,

zt if r∗R2 > πt ≥ r∗R1,

αMt− if r∗R1 > πt ≥ α/r.

(53)

Similar to the case after LTD, the above description of the optimal consumption

policy suggests that when the wealth is low the investor consumes the minimum αMt−.
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When wealth increases beyond a certain level, the investor increases his consumption

until it reaches the historical high Mt−. When wealth increases further, the investor

keeps consuming at the level of the historical high without increasing it. If wealth is

above a high threshold, the investor increases his consumption above the historical

high such that the wealth to the new high ratio is equal to r∗R3.

For the optimal trading strategy without borrowing constraint, it can be shown

that limy↓0 ψ(y) = 1 + γ and ∀y ≥ ȳR, ψ(y) = γ. Since as y ↓ 0, wealth W ∗
t goes

to αMt−

r
+ pm(T )

r(r+p)
− wR

r+p
, Theorem 2 implies that as W ∗

t goes to αMt−

r
+ pm(T )

r(r+p)
− wR

r+p
,

the optimal amount invested in the stock goes to zero. Intuitively, this is the only

feasible strategy to ensure the consumption never falls below αMt−. When the wealth

is sufficiently high (W ∗
t −

(

pm(T )
r(r+p)

− wR

r+p

)

≥ r∗R3Mt−), it is optimal to adopt the Merton

strategy in the unconstrained case of investing a fraction µ−r
γσ2 of W ∗

t −
(

pm(T )
r(r+p)

− wR

r+p

)

in the stock.

C. Before LTD and before retirement

In this section, we solve the investor’s problem before the LTD shock and before

retirement. In this period, the investor’s problem becomes

max
{ct,θt}

E

[
∫ τ

0

e−ρt c
1−γ
t

1− γ
dt + e−ρτV D(Wτ + Iτ ,Mτ , τ)

]

(54)

subject to

dWt = rWtdt+ θt(µ− r)dt+ θtσdBt − ctdt+ w(t) dt− pItdt, (55)

ct ≥ αMt, (56)

and

Wt ≥ −

(

g(t)−
pm(t)

r(r + p)

)

, (57)
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where

Mt = max

(

M0−, sup
0≤s≤t

cs

)

,

and

g(t) =

∫ T

t

e−(r+p)(s−t)w(s)ds+
wR

r + p
e−(r+p)(T−t). (58)

is the present value of the labor income.

Ṽ (ẑ,M, t) be the dual value function. Then Ṽ (ẑ,M, t) satisfies the following HJB

equation:

Ṽt+
1

2
κ2ẑ2Ṽẑẑ−(r+p−ρ−λ)ẑṼẑ−(ρ+λ)Ṽ+ max

αM≤c≤M
[u(c)−cẑ]+w(t)ẑ+λṼ D

(p

λ
ẑ,M, t

)

= 0,

(59)

with terminal condition

Ṽ (ẑ,M, T ) = Ṽ R(ẑ,M).

Due to homogeneity, we can write Ṽ (ẑ,M, t) in the following form:

Ṽ (ẑ,M, t) =M1−γϕ(y, t)−

(

pm(t)

r(r + p)
− g(t)

)

ẑ, y =
z

M
, z = ẑ−1/γ , (60)

for some function ϕ. The optimal consumption can be shown to be

c∗t =























zt
ȳ

if zt
Mt−

≥ ȳ(t)

Mt− if ȳ(t) > zt
Mt−

≥ 1,

zt if 1 > zt
Mt−

≥ α,

αMt− if zt
Mt−

< α.

(61)

Then the HJB equation can be simplified to

ϕt +
1

2
κ2y2ϕyy +

(

(r + p− ρ− λ)γ +
1

2
(1 + γ)κ2

)

yϕy − γ2(ρ+ λ)ϕ

+γ2λϕD (ξy, t) +
γ2

1− γ
(f(y, t)1−γ − f(y, t)y−γ(1− γ)) = 0, (62)

with terminal condition

ϕ(y, T ) = ϕR(y), (63)
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where

f(y, t) =























y
ȳ

if y ≥ ȳ(t)

1 if ȳ(t) > y ≥ 1,

y if 1 > y ≥ α,

α if y < α.

(64)

In the absence of borrowing constraint, the investor can capitalize the entire labor

income at time t0 and thus the investor’s problem reduces to a problem without labor

income but a higher initial wealth. Therefore, in this case, ϕD(y, τ) is independent

of τ , ϕ(y, t) and ȳ(t) are both independent of time. This implies that in the absence

of borrowing constraint, we have ϕ(y, t) = ϕR(y) (by (63)) and thus ȳ(t) = ȳR. The

only difference from the After Retirement case is the present value of labor income.

With borrowing constraint, both the value function and the free boundaries be-

come time dependent. We have the following similar boundary conditions:

(1− γ)ϕ(ȳ(t), t) = ȳ(t)ϕ′(ȳ(t), t) (65)

−γϕ′(ȳ(t), t) = ȳ(t)ϕ′′(ȳ(t), t) (66)

1

γ
y(t)1+γϕ′(y(t), t)Mt− +

m(τ)

r
= 0 (67)

(1 + γ)ϕ′(y(t), t) + y(t)ϕ′′(y(t), t) = 0, (68)

where (65) and (66) follow from the smooth pasting conditions at ȳ(t) and (67) and

(68) from the requirement that at y = y(t) the financial wealth Wt be 0 and the

investor cannot invest any amount in stock.

We can then solve the HJB equation (62) subject to the above boundary condi-

tions. With the additional time dimension, we solve backward from time T for each

fixedM value, which essentially reduces the problem to be a series of solving an ODE

with free boundaries.
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IV. Numerical Analysis

In this section, we conduct analysis of the optimal consumption and investment poli-

cies.

Following Cocco, Gomes, and Maenhout (2005), we use the following default pa-

rameter values for numerical analysis: r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5,

ρ = 0.04, T = 65 and t0 = 20; wage rate function w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 .

According to disability statistics, we choose λ = 0.0064 and p = λ. In addition, we

set e = 0, k = 0.5, α = 0.75, M0 = 20, and W0 = 1500. We set initial M0 to be the

initial consumption level when α = 0.

A. After LTD

We first examine the optimal consumption and investment policies after the LTD

shock. In Figure 1, we plot the free boundaries y
D

and ȳD against M with and

without the borrowing constraint. Without the borrowing constraint, the investor

capitalizes all the future income and increases the consumption above the historically

highest level of M only when y exceeds 1.22, which is independent of M . With

borrowing constraint, Figure 1 shows that the wealth level (which y is proportional

to) at which the investor increases consumption beyond HHL is higher than without

the constraint because the value of future income is effectively reduced. The boundary

y
D
at which the borrowing constraint is borrowing decreases withM . This is because

when M is small (relative to the income), the investor can afford to using most of the

financial wealth because future consumption can be supported by future income and

thus the borrowing constraint binds at a higher wealth level. Note that when M is

low, the investor can still consume more than the minimum living standard αM even
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when the borrowing constraint binds. This is because the future income is relatively

large and is more than enough to support the minimum consumption level in the

future.

In Figure 2, we plot r∗D1, r
∗
D2, and r∗D3 without borrowing constraint against α.

Figure 2 shows that all three boundaries increase with α. When α = 0, we recover

the standard result in the absence of consumption ratcheting and the investor does

not leave a buffer between the wealth level at which he increase beyond M and the

wealth level above which he consumes M . When α = 1, we recover the results in

Dybvig (1993) where the critical wealth above which the investor consumesM and the

critical wealth below which the investor consumes αM coincide. In Figure 3, we plot

the fraction of financial wealth invested in stock against the LTD shock time from 20

to 80 for α = 0.75, 1. Recall that the earlier the LTD shock, the lower the investor’s

income after LTD. This figure suggests that as the after LTD income increases, the

investor invests more in stock. As α increases, the investment decreases.

In Figure 4, we plot the consumption to wealth ratio against the LTD shock time

from 20 to 80 for α = 0.75, 1. Figure 4 shows that when after LTD income is low, the

investor consumes the minimum level of αM . As income increases, the consumption

also increases. An increase in α decreases consumption.

In Figures 5 and 6, we plot the fraction of financial wealth invested in stock

and consumed respectively against financial wealth W from $4, 500 to $45, 000 for

α = 0, 0.75, 1. Figures 5 and 6 show that the fractions decrease with financial wealth.

This is because the investor keeps a constant fraction of the total wealth in stock and

for consumption. With a constant present value of income, the fraction of financial

wealth invested in stock and consumed decreases with the financial wealth.
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Figure 1: The free boundaries y
D
and ȳD against M with and without the borrowing

constraint. The default parameter values are: ρ = 0.04, r = 0.02, µ = 0.06, σ = 0.157,
ι = 0.6, γ = 5, t0 = 20, T = 65, w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064,
p = λ, e = 0, k = 0.5, M0 = 20, W0 = 1500 and α = 0.75.

B. Before LTD but after retirement

In Figure 7, we plot r∗R1, r
∗
R2, andr

∗
R3 againstM for p = λ = 0.0064, 2x0.0064, 3x0.0064

with and without borrowing constraints. As in the case after LTD, without borrowing

constraints, the critical ratios are flat across differentM levels as shown in the analyt-

ical section and with borrowing constraints, the ratios decrease with M . An increase

in the LTD risk significantly increases these critical ratios. Intuitively, with greater

LTD risk, the future income net of medical expense is lower and the investor needs

greater consumption to achieve the same utility after LTD. Therefore, the investor is

more conservative in increasing consumption and thus the critical ratios increase.

C. Before LTD and before retirement

In Figure 8, we plot the fraction of financial wealth invested in stock and the consump-

tion to wealth ratio against age from 20 to 80 for p = λ = 0.0064, 2x0.0064, 3x0.0064.
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Figure 2: r∗D1, r
∗
D2, and r∗D3 without borrowing constraint against α. The default

parameter values are: ρ = 0.04, r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5,
t0 = 20, T = 65, w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064, p = λ, e = 0,
k = 0.5, M0 = 20, W0 = 1500 and α = 0.75.

Figure 3: The fraction of financial wealth invested in stock against the LTD shock
time from 20 to 80 for α = 0.75, 1. The default parameter values are: ρ = 0.04,
r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5, t0 = 20, T = 65, w(t) =
e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064, p = λ, e = 0, k = 0.5, M0 = 20, and
W0 = αM0/r.
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Figure 4: The consumption to financial wealth ratio against the LTD shock time
from 20 to 80 for α = 0.75, 1. The default parameter values are: ρ = 0.04,
r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5, t0 = 20, T = 65, w(t) =
e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064, p = λ, e = 0, k = 0.5, M0 = 20, and
W0 = αM0/r.

Figure 5: The fraction of financial wealth invested in stock against financial wealth
W . The default parameter values are: ρ = 0.04, r = 0.02, µ = 0.06, σ = 0.157,
ι = 0.6, γ = 5, t0 = 20, T = 65, w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064,
p = λ, e = 0, k = 0.5, M0 = 20, and W0 = 1500.

Figure 6: The fraction of financial wealth consumed against financial wealth W . The
default parameter values are: ρ = 0.04, r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5,
t0 = 20, T = 65, w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064, p = λ, e = 0,
k = 0.5, M0 = 20, and W0 = 1500.
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Figure 7: r∗R1, r
∗
R2, andr

∗
R3 against M with and without borrowing constraints. The

default parameter values are: ρ = 0.04, r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5,
t0 = 20, T = 65, w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 , e = 0, k = 0.5, M0 = 20,
W0 = 1500 and α = 0.75.

Figure 8 shows that our model implies a hump shaped consumption investment policy

over life cycle, which is consistent with widely documented empirical evidence. The

hump shape is driven by the hump shaped labor income before retirement. Thus the

traditional financial advice that one should invest less as one ages is only partially

correct. When an investor is at the beginning of his working life, the fraction of finan-

cial wealth invested in stock should increase with age, because of the labor income

effect. As the LTD risk increases, both consumption and investment decrease.

In Figure 9, we plot the fraction of total wealth consumed, invested in stock and

used to buy LTD insurance against financial wealth for p = λ = 0.0064, 2x0.0064, 3x0.0064.

Figure 9 shows that the optimal consumption fraction is nonmonotonic in the financial

wealth. The initial increasing part corresponds to the region between the minimum

consumption of αM and M . As financial wealth increases, the consumption fraction

increases. As financial wealth increases further, the consumption increases to M and

stays there in a certain region, and thus the fraction starts to decrease. Finally, when

the wealth is high enough, the investor further increases consumption such that the
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Figure 8: The fraction of financial wealth invested in stock and the consump-
tion to wealth ratio against age. The default parameter values are: ρ = 0.04,
r = 0.02, µ = 0.06, σ = 0.157, ι = 0.6, γ = 5, t0 = 20, T = 65, w(t) =
e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064, p = λ, e = 0, k = 0.5, M0 = 20,
W0 = 1500 and α = 0.75.

29



Figure 9: The default parameter values are: ρ = 0.04, r = 0.02, µ = 0.06, σ = 0.157,
ι = 0.6, γ = 5, t0 = 20, T = 65, w(t) = e−1.9348+0.3194t−0.00577t2+0.000033t3 , λ = 0.0064,
p = λ, e = 0, k = 0.5, M0 = 20, W0 = 1500 and α = 0.75.
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fraction stays constant. As financial wealth increases, the fraction of total wealth in-

vested in stock increases because the investor has more to invest. When the financial

wealth is high enough for the investor to increase the historically highest consumption

level M , the fraction of total wealth invested in stock reaches the Merton level and

stays flat afterwards. In contrast, the LTD insurance as a fraction of total wealth

decreases as the financial wealth increases, because the marginal utility gain from

additional insurance decreases due to the reduced relative risk aversion. Clearly, as

the insurance premium p increases, both the insurance fraction and the stock frac-

tion decrease because of the higher cost of insurance. While this is also true for the

consumption for low and high financial wealth levels, it does not hold for the middle

range of wealth levels. For example, at W = 3, 000, the relationship is reversed. The

reason is that at this financial wealth level, the consumption levels for all three p

levels are the same at M , but the total wealth level is higher with a lower insurance

premium.

V. Conclusion

We propose a lifecycle consumption and investment model in the presence of long

term disability risk for an investor who needs to maintain a living standard that is at

least a certain fraction of the historically highest level. We show that there exists an

optimal wealth-to-historically-highest-consumption threshold ratio above which the

investor increases consumption beyond the historically highest level. We find that

the long-term disability risk significantly reduces consumption and investment. The

inability to borrow against future income magnifies the impact of long term disabil-

ity and further decreases consumption and investment. Our model generates hump

shaped lifecycle consumption and investment patterns that are consistent with em-
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pirical evidence. In addition, the access to long term disability insurance is important

for reducing the large negative impact of the LTD risk.
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Appendix A

Proof of Theorems 1 and 2: We only provide a sketch of the proof that contains

the main steps for Theorem 2. The proof for Theorem 1 only needs minor changes on

income flow and is thus omitted to save space. It is tedious but straightforward to use

the generalized Itô’s lemma, equations (45), (48), (37), (49), (50) to verify that the

claimed optimal strategy W ∗
t , c

∗
t , θ

∗
t , and I

∗
t in these two theorems satisfy the budget

constraint (31). In addition, it can be shown that z0 exists and is unique and W ∗
t

satisfies the borrowing constraint in each problem. Furthermore, there is a unique

solution to the equations for ȳR and y
R
(with borrowing constraint).

After integrating out the LTD risk, the utility function can be written as

E

∫ ∞

0

e−(ρ+λ)s

(

c1−γ
s

1− γ
+ λV D(Ws + Is,Ms, T )

)

ds. (69)

Accordingly, define

Nt =

∫ t

0

e−(ρ+λ)s

(

c1−γ
s

1− γ
+ λV D(Ws + Is,Ms, T )

)

ds

+e−(ρ+λ)tV (Wt,Mt, t). (70)

One can show that Nt is a supermartingale for any feasible policy (c, θ, I) and a

martingale for the claimed optimal policy (c∗, θ∗, I∗), which implies that N0 ≥ E[Nt],

i.e.,

V (W0,M0, 0) ≥ E

∫ t

0

e−(ρ+λ)s

(

c1−γ
s

1− γ
+ λV D(Ws + Is,Ms, T )

)

ds

+E[e−(ρ+λ)tV (Wt,Mt, t)], (71)

and with equality for the claimed optimal policy. In addition, it can be shown that

lim
t→∞

E[e−(ρ+λ)tV (Wt,Mt, t)] ≥ 0,
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with equality for the claimed optimal policy.

Therefore, taking the limit as t ↑ ∞ in (71), we have

V (W0,M0, 0) ≥ E

[
∫ ∞

0

e−(ρ+λ)s

(

c1−γ
s

1− γ
+ λV D(Ws + Is,Ms, T )

)

ds

]

,

with equality for the claimed optimal policy (c∗, θ∗, I∗). This completes the proof.

A. Functions for Theorem 2

g0(y) =
A0γλ

ρ+ λ− (1− γ)
(

λ+ r + κ2

2γ

)

y1−γ

1− γ
; (72)

g1(y) =
k1−γλ

(1− γ)ρ(λ+ ρ)
−

λ

r(λ+ r)
y−γ + Â1y

βm + Â2y
βp; (73)

g2(y) =
γληD

ρ+ λ− (1− γ)
(

λ+ r + κ2

2γ

)

y1−γ

1− γ
+ B̂1y

βm + B̂2y
βp (74)

g3(y) =
(αk)1−γλ

(1− γ)ρ(λ + ρ)
−

αλ

r(λ+ r)
y−γ + Ĉ2y

βp (75)

h1 =
1

(1− γ)(λ+ ρ)
−

1

λ+ r
y−γ; (76)

h2 =
γ2

(1− γ)
(

ρ+ λ− (1− γ)
(

λ+ r + κ2

2γ

))y1−γ; (77)

h3 =
α1−γ

(1− γ)(λ+ ρ)
−

α

λ+ r
y−γ, (78)

where

Â1 = A1, Â2 = A2

B̂1 = B1, B̂2 = B2

Ĉ2 = C2.
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