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Abstract

Ambiguity-averse investors demand a higher risk premium from a firm whose fu-

ture performance in R&D is difficult to evaluate. We construct a R&D information

quality (IQ) measure by linking a firm’s historical innovation input (R&D expen-

ditures) and innovation outcome (sales), and find statistically and economically

significant evidence that expected excess returns decrease with R&D IQ. The high-

minus-low IQ hedge portfolio earns excess return of about −39 (−48) basis points

per month in value-weighted (equal-weighted) returns. The IQ-return relationship

becomes stronger in firms with greater uncertainty business environment. Finally,

we form a R&D IQ factor-mimicking portfolio, which is found to be weakly corre-

lated with commonly used factors and is shown to have incremental pricing effects.
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I. Introduction

As an essential component of innovation, research and development (R&D) plays a crit-

ical role in developing new competitive advantages of firms. However, evaluating R&D

information has been posing a challenge to investors because R&D is usually featured

with future-oriented, long-term activities in science and technology, whose information

is hard to process and whose outcomes are difficult to predict. Moreover, the lack of

accounting disclosure suggests that investors may not be fully informed about all infor-

mation related to firms’ R&D activities, resulting in the asymmetric information problem

(Aboody and Lev, 2000). All these facts make expected returns on R&D investments

subject to a high degree of uncertainty. Even though there are a large number of works

that devote to investigating whether stock prices fully impound information contained

in firms’ R&D, very little attention has been paid to relationship between R&D infor-

mation uncertainty and stock returns. It is thus an important issue to understand how

investors resolve uncertainties inherent in the long road of R&D from conceptualiza-

tion to commercialization when making investment decisions based on publicly available

information. Do they demand a higher risk premium from a firm whose future perfor-

mance in R&D is hard to evaluate, and does such a behavior affect the firm’s future

stock return?

There are abundant theoretical works that link information uncertainty to asset

prices. As early as in 1921, Knight argues for importance to distinguish uncertainty

from risk (Knight, 1921). Chen and Epstein (2002) show in a theoretical model that

excess return should be composed of a risk premium and a premium for Knightian un-

certainty (ambiguity). Epstein and Schneider (2008) make a further refinement and

present a model in which expected excess return decreases with information quality and

ambiguity-averse investors require compensation for holding an asset with low quality

information. However, Veronesi (2000) considers a pure exchange economy with power

utility preferences, and shows that the equity risk premium increases with information

quality. In this paper, we focus on this contentious issue using information contained
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in a firm’s R&D activities and empirically investigate the relationship between R&D

information quality and future stock returns.

Similar to Cohen, Diether, and Malloy (2013), we argue that a firm’s innovative

ability is persistent and predictable, and that even though we don’t know its future

R&D information quality, past information on its success in R&D provides us a useful

measure to evaluate its future R&D activities. We therefore propose a measure of R&D

information quality by looking at how well a firm’s R&D expenditures are translated to

its future sales. Specifically, a firm’s R&D information quality (IQ) is measured by the R-

square from regressing its sales growth on the realized R&D capital. When constructing

our measure of R&D information quality, we take into account the facts that different

firms may have different R&D lifespans and each year’s R&D expenditures may have

different impact on future sales growth. Using all firms listed on NYSE, AMEX, and

NASDAQ with valid accounting and returns data, we find that the mean (median) value

of the resulted R&D IQ measure varies across industries from 0.41 (0.37) for automobiles

to 0.67 (0.69) for utilities. R&D IQ is in general not correlated with other firm-specific

variables such as size, book-to-market, cash holdings, return of assets, return of equity,

and some innovation-related variables. For example, among all variables we consider in

this paper, the correlation coefficient ranges from -0.05 to 0.07, indicating that IQ is

distinct from the well-known firm characteristics and contains different information.

We hypothesize that when past track record of a firm indicates a high R-square from

the regression of its sales growth on the R&D capital, investors become less uncertain and

are more willing to make investments in its future R&D activities; otherwise, investors

would require higher premium for making such investments. To test our hypothesis, we

implement portfolio analysis in ways similar to Fama and French (1996). At the end of

June of each year, we sort all firms into three R&D IQ portfolios (low, middle, and high)

based on the 30th and 70th percentiles of R&D IQ in the previous year and construct

a hedge portfolio that longs the high IQ portfolio and shorts the low IQ portfolio. We

hold these portfolios over the next 12 months and compute their value/equal-weighted

monthly returns. We find that the average excess portfolio returns decrease with R&D
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IQ. For example, the low IQ portfolio earns 127 basis points (t = 4.23) per month in

value-weighted returns and 126 basis points (t = 4.14) per month in equal-weighted

returns, whereas the high IQ portfolio earns only 78 basis points (t = 2.56) per month

in value-weighted excess returns and 88 basis points (t = 2.99) per month in equal-

weighted excess returns. Furthermore, the monthly return on the hedge portfolio is

economically substantial and statistically significant: it is -48 basis points (t = −4.69) in

value-weighted excess returns and -39 basis points (t = −4.16) in equal-weighted excess

returns. The same pattern also holds in characteristic- and industry-adjusted returns.

Alphas from the factor models also decrease with R&D IQ. Specifically, in the Fama-

French three-factor model (Fama and French, 1993), the monthly alphas for the low,

middle, and high R&D IQ portfolios are 16, 14, and -24 basis points, respectively, in

value-weighted excess returns, and are 20, 14, and -32 basis points, respectively, in equal-

weighted excess returns. The alpha for the high-minus-low IQ hedge portfolio is -40 basis

points (t = −4.04) per month in value-weighted excess returns and is -52 basis points

(t = −4.73) per month in equal-weighted excess returns. The pattern for the estimated

alphas for the low, middle, and high IQ portfolios, as well as the hedge portfolio is the

same in the Carhart four-factor model (Carhart, 1997). The above results indicate that

investors are strongly uncertain about low IQ firms’ future R&D activities and require

higher premium for making such investments.

We further perform the Fama-MacBeth cross-sectional regressions that allow us for

controlling for a large number of variables, including size, book-to-market, momentum,

leverage, idiosyncratic volatility, illiquidity, innovation-related variables, and so on. In

spite of such extensive controls, the coefficient on R&D IQ is alway negative and sta-

tistically significant. This finding further supports our hypothesis that expected excess

returns decreases with R&D IQ.

If our IQ measure really captures information quality/uncertainty in firms’ R&D,

it should have little effects on fundamentals. We take return on assets (ROA), cash

flows (CF), sales, and performance (PM) as proxies for fundamentals, and examine the

relationship between R&D IQ and subsequent operating performance by implementing
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Fama-MacBeth regressions. After controlling the standard variables in the regressions

such as size, book-to-market, leverage, idiosyncratic volatility, and illiquidity, as well as

some innovation-related variables, we find that for all the four proxies of fundamentals,

the coefficient on IQ is insignificant, whereas the coefficients on lagged fundamentals and

changes of fundamentals are significant. These findings indicate that our IQ measure is

nothing related to undervaluation or overvaluation.

We observe that there exists the IQ-return relationship and investors require higher

premium for investing in low IQ firms’ R&D. We conjecture that this relationship should

become stronger among firms with smaller market capitalization, with younger age, with

greater financial constraint, and with higher fundamental volatility. These firms may

have more uncertain business environments and investors are more ambiguous about

their future prospects. To test this hypothesis, we perform independent double sorts

on IQ and size, age, the KZ index, and the cash-flow uncertainty. We find that among

firms with small size, the monthly value-weighted excess returns on low, middle, and

high IQ portfolios are 139 (t = 4.34), 91 (t = 2.57), and 44 (t = 1.05) basis points,

respectively, whereas they are 128 (t = 4.39), 122 (t = 4.75), and 100 (t = 3.78) basis

points, respectively, among firms with large size. The high-minus-low IQ hedge portfolio

earns -76 (t = −2.91) basis points per month among firms with small size, whereas it

earns only -28 (t = −2.34) basis points per month among firms with large size. The

alphas from the Fama-French three-factor model and the Carhart four-factor model for

the hedge portfolio are -99 (t = −3.02) and -110 (t = −3.23) basis points per month,

respectively, among small firms, whereas they become small and marginally significant,

-24 (t = −1.94) and -25 (t = −1.96) basis points per month, among large firms. Our

tests on age, the KZ index, and the cash-flow uncertainty deliver the same implications

and provide further evidence on our hypothesis.

To further explore the relationship between R&D IQ and future stock returns and

examine whether the IQ effect reflects commonality in returns that is not captured by

the existing factors, we construct a factor-mimicking portfolio for R&D information

quality following the similar methodology used in Fama and French (1993). At the end
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of June of each year, we first sort firms into two size groups (small “S” and big “B”)

and then sort each size group into three IQ subgroups (low “L”, middle “M”, and high

“H”). We thus have six portfolios (S/L, S/M, S/H, B/L, B/M, and B/H). The IQ factor

(IQF) is constructed as (S/L + B/L)/2 - (S/H + B/H)/2. We find that the IQF is

not highly correlated with the commonly used factors such as the market factor (MKT),

the size factor (SMB), the value factor (HML), and the momentum factor (MOM). For

example, the monthly correlation between IQF and MKT is only about 3%; its monthly

correlations with SMB, HML, and MOM are 22%, -13%, and 19%, respectively. We

also find that IQF captures a different pricing factor that is distinct from the existing

factors through constructions of tangency portfolios. For example, adding IQF to the

Fama-French three factors improves the ex post Sharpe ratio of the tangency portfolio

by 14% with the weight on IQF being 42%, larger than weights on MKT (26%), SMB

(25%), and HML (7%).

Our study relates with and contributes to two strands of literature. On the one hand,

there are many works investigating whether asset prices fully impound information con-

tained in the innovation process. On the innovation input side, Chan, Lakonishok, and

Sougiannis (2001) find that R&D intensity measured as R&D expenditures relative to

the market value of equity has ability to predict future returns. However, its predictabil-

ity power disappears when the ratio of R&D expenditures to sales is used. Eberhart,

Maxwell, and Siddique (2004) empirically report significant positive long-term abnormal

stock returns following unexpected and economically significant increases in R&D and

argue that R&D increases are beneficial investments, but the market underreacts to this

benefit. Li (2011) argues that the positive relationship between R&D intensity and stock

returns exists only in financially constrained firms, and this relationship is robust to mea-

sures of R&D intensity. Cohen, Diether, and Malloy (2013) demonstrate that firm-level

innovation is persistent and predictable, but the market appears to ignore the publicly

available information in R&D when valuing future innovation. On the innovation output

side, Gu (2005) finds that changes in patent citations relative to total assets are posi-

tively related with firm’s future earnings and stock returns. Pandit, Wasley, and Zach

6



(2011) show that firm’s patent citations positively associate with its future operating

performance. Hirsleifer, Hsu, and Li (2013, 2015) construct an innovative efficiency (IE)

measure and an innovative originality (IO) measure, respectively, using the number of

patents and patent citations of a firm and find that both IE and IO positively predict

the future stock returns. They mainly attribute this positive IE/IO-return relationship

to limited investor attention. However, different from the above works, our paper fo-

cuses on information quality/uncertainty related to the innovation process by connecting

innovation input (R&D) and innovation outcome (sales).

On the other hand, how information quality/uncertainty affects asset returns has

attracted a large amount of attention. Veronesi (2000) considers a pure exchange econ-

omy with a power utility preferences, and find that the equity risk premium increases

with information quality. Brevik and d’Addona (2010) introduce Epstein-Zin recursive

preferences to Veronesi’s model and find an opposite result: high information quality

decreases the equity premium. Epstein and Schneider (2008) build a theoretical model

and show in markets with ambiguous information, expected excess returns decrease with

future information quality. Ai (2010) develops a production-based long-run risk model,

which indicates that high information quality decreases equity premium. Zhang (2006)

implements an empirical investigation on information uncertainty and stock returns.

He finds that greater information uncertainty leads to higher expected excess returns

following good news but lower returns following bad news. Focusing on R&D-related

information, we find robust empirical results that expected excess returns contain an

uncertainty/ambiguity premium, and the higher the information quality is, the smaller

the future excess return is.

The rest of the paper is organized as follows. Section II introduces the data and

provides summary statistics. Section III investigates the return predictability based

on R&D information quality using portfolio analysis and Fama-MacBeth cross-sectional

analysis. Section IV provides further evidence on the return predictability power of R&D

information quality. Section V constructs a R&D information quality factor. Section VI

concludes the paper.
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II. The Data and Summary Statistics

A. The Data and R&D Information Quality

The sample we use in this paper combines different data sources and spans over the

period from July 1980 to July 2012. We obtain firm-specific accounting data, such

as R&D expenditures, sales, and book equity from Compustat, and monthly stock re-

turns, shares outstanding, and volume capitalization from Center for Research in Security

Prices (CRSP). All common stocks trading on NYSE, AMEX, and NASDAQ with valid

accounting and returns data are included in the sample. Firms need to be listed on

Compustat for two years before including in our sample. We exclude financial firms,

which have four-digit standard industrial classification (SIC) codes between 6000 and

6999 (finance, insurance, and real estate sectors). Similar to Fama and French (1993),

we further discard closed-end funds, trusts, American Depository Receipts, Real Estate

Investment Trusts, units of beneficial interest, and firms with negative book equity. For

some of our tests, we also use the firm-level patent-related data, which are mainly drawn

from the updated National Burearu of Economic Research (NBER) patent database orig-

inally developed by Hall, Jaffe, and Trajtenberg (2001). However, these data are only

available up to December 2006.

We measure R&D information quality by assessing how well a firm’s past R&D

expenditures are translated to its future sales growth. Similar to Cohen, Diether, and

Malloy (2013), we argue that a firm’s innovative ability is persistent and predictable and

that even though we don’t know its future R&D information quality, past information

on its success in R&D provides us a useful measure to evaluate its future R&D activities.

Specifically, we regress sales growth separately on each of the past five-year’s realized

R&D capitals, and then take the largest resulted R-square as our measure of information

quality. When constructing this measure, we take into account the facts that different

firms may have different R&D lifespans and each year’s R&D expenditures may have

different impact on future sales growth. Therefore, our regression for any firm i at each
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year t takes the form of

log
( salesi,t
salesi,t−1

)
= αi,j + βi,j log(1 +RDCk

i,t−j) + εi,t, (1)

where

RDCk
i,t−j =

k

10
RDi,t−j−1 + (

k

10
)2RDi,t−j−2 + (

k

10
)3RDi,t−j−3 + (

k

10
)4RDi,t−j−4, (2)

for j = 1, 2, ..., 5, and k = 1, 2, ..., 9, where RD is R&D expenditures, and RDC is

the realized R&D capital. Equation (1) assumes that R&D capitals from year t − 5

to t − 1 are relevant to sales of year t. In fact, we have tried other assumptions on

R&D lifespan up to ten years. We find that our results are identically the same. Our

definition of R&D capital in Equation (2) is more flexible than that defined in Chan,

Lakonishok, and Sougiannis (2001) who assume that the productivity of R&D spending

declines linearly by 20 percent each year. The key points in Equations (1) and (2) are

that simply assuming the same time-span between R&D input and output and the same

R&D productivity decay rate for all firms is too restrictive. Some firms may take longer

time to materialize R&D spendings (e.g., pharmacy) than other firms (e.g., utilities); and

technologies and services in some industries (e.g., chemicals) can be utilized for a longer

time than those in other industries (e.g., machinary). To accommodate these concerns,

we regress the sales growth on R&D inputs in two dimensions: time span between R&D

input and output (j) and R&D capital decay rate (k).

The regression is run for each firm at each fiscal year t on time series from year t− 7

to year t. We require that there are at least 6 valid observations on R&D expenditures

and at least 4 RDCs are non-zero. As a result, for each firm-year, there are in total 45

regressions. R&D information quality is then defined as

IQi,t = max
{
R2(j, k)

}
, (3)

where R2(j, k) is the R-square resulted from the regression in Equation (1). The selection
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of the largest value of R-squares in Equation (3) should not pose any problem to our

study, as our hypothesis is that the lower information quality is, the higher excess return

we expect. Taking maximum here in fact works against finding any significant results.

The previous studies mainly examine the relationship between stock returns and

innovation input (R&D) and/or output (patents) and check whether the market fully

impounds information contained in the innovation process. For example, Chan, Lakon-

ishok, and Sougiannis (2001), Eberhart, Maxwell, and Siddique (2004), and Li (2011)

directly investigate the effect of firms’ R&D on future stock returns. Cohen, Diether,

and Malloy (2013) explore the R&D-return relationship by constructing a measure for

firms’ innovation ability based on similar premise to ours. Gu (2005), Pandit, Wasley,

and Zach (2011), and Hirsleifer, Hsu, and Li (2013, 2015) try to use information con-

tained in patents to check the effect of innovation on operating performance and stock

returns. Differently, our work focuses on the effect of innovation information quality on

stock returns by connecting innovation input (R&D) and innovation outcome (sales).

B. Summary Statistics

Panel A of Table I presents the pooled mean, standard deviation, median, 25th and

75th percentiles of the R&D IQ measure for each industry according to Fama-French 17

industry classifications. It also reports the number of firms in each industry included in

our sample, the market share of each industry in our sample, and the market share of

each industry in the universal sample.

The mean (median) value of the R&D IQ measure varies across industries from 0.41

(0.37) for Automobiles to 0.67 (0.69) for Utilities. The standard deviation does not vary

much across industries: its minimum is 0.20 for Transportation, and its maximum is

0.25 for Retails Stores. However, the number of firms in each industry included in our

sample are very different. For example, there are in total 583 firms from Machinery

and Business Equipment; 122 firms from Drugs, Soap, Perfumes, and Tobacco; 11 firms

from Mining and Minerals; and only 4 firms from Utilities. This fact indicates that it

is important to control industry effect when examining the R&D IQ-return relationship.
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Having compared market share of each industry in our sample and that in universal

sample, we find that for most industries these two shares are quite similar. For example,

the market share of Textiles, Apparel & Footware in our sample is 0.9%, and it is 0.8% in

the universal sample; the market share of Food in our sample is 4.9% and it is 5.7% in the

universal sample. There are a couple of exceptions: Utilities in our sample takes 0.1%,

whereas it takes 5.3%; and Machinery takes 28.2% in our sample, but only 13.8% in the

universal sample. This fact suggests that overall our sample is economically meaningful

and representative, but it also suggests once again that it is important to control industry

effect in our study.

In Panel B, we presents average values of some firm-specific variables for the three

R&D IQ portfolios constructed according to the 30th and 70th percentiles of the lagged

IQ (see Section III for detailed discussions). These variables include (log) market equity

(ME), book-to-market ratio (BEME), return on assets (ROA, Income before extraor-

dinary items plus interest expenses divided by lagged total assets), return on equity

(ROE, Income before extraordinary items plus interest expenses divided by lagged com-

mon equity), leverage (DXA, long-term debt plus debt in current liability divided by total

assets), cash holding, industry concentration index (HHI, Hou and Robinson, 2006), and

idiosyncratic volatility (IVOL, standard deviation of Fama-French three-factor residuals

for the past 12 months). We also construct some innovation-related variables: R&D

intensity (RDA, R&D expenditures divided by total assets), innovation ability (InnAb,

Cohen, Diether, and Malloy, 2013), and innovative efficiency (IE, Hirsleifer, Hsu, and Li,

2013).

We find that innovation ability increases with R&D information quality. It is 0.29,

0.57, and 0.80 for the low, middle, and high IQ portfolios, respectively, whereas the

innovative efficiency of low and high IQ portfolios is quite similar (3.08) and is larger

than that of the middle IQ portfolio (2.66). The difference of size among these three

portfolio is not big: the high IQ portfolio has a little larger size than the low IQ portfolio.

The low IQ portfolio has larger ROA, but smaller ROE than the high IQ portfolio. The

book-to-market, R&D intensity, leverage, cash holdings, industry concentration, and
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idiosyncratic volatility do not vary much across these three portfolios.

Panel C reports the time-series average of cross-sectional correlations between IQ and

the above-mentioned firm characteristics. IQ is weakly correlated with these variables.

The correlations range from -0.05 (with ROA) to 0.07 (with InnAb). Its correlations

with ROE, R&D intensity, and IE are the smallest, ±0.01. The above findings indicate

that our R&D IQ measure is distinct from the well-known firm characteristics and may

contain different information.

III. R&D Information Quality and Return Predictability

In this section, we examine the relationship between R&D IQ and future stock returns.

Our main hypothesis is that there exists a premium for information uncertainty and ex-

pected excess returns should decrease with R&D information quality. We first implement

portfolio sorts in Subsection A, then perform Fama-MacBeth cross-sectional regressions

in Subsection B, and finally investigates effects of R&D IQ on firms’ subsequent operating

performance in Subsection C.

A. Portfolio Analysis

We first examine R&D information quality and return predictability using portfolio sorts.

At the end of June of each year from 1981 to 2012, similar to Fama and French (1996),

we sorts all firms into three R&D IQ portfolios (low, middle, and high). The low IQ

portfolio contains all stocks below the 30th percentile in R&D IQ, and the high IQ

portfolio contains all stocks above the 70th percentile in R&D IQ. The rest of stocks

between the 30th and 70th percentiles belongs to the middle IQ portfolio. We further

form a hedge portfolio that longs the high IQ portfolio and shorts the low IQ portfolio.

We hold these portfolios over the next twelve months and compute their value/equal-

weighted monthly returns.

Panel A of Table II presents both value- and equal-weighted average monthly re-

turns in excess of one-month Treasury bill rate for these portfolios. The characteristic-
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and industry-adjusted returns are also reported in order to make sure that the results

are robust for firm characteristics and industry effects. The characteristic-adjusted re-

turns are computed following Daniel et al. (1997) as the difference between individual

firms’ returns and 125 size/book-to-market/momentum benchmark portfolios, and the

industry-adjusted returns are calculated as the difference between individual firms’ re-

turns and the returns of firms in the same industry according to Fama-French 17 industry

classifications.

We clearly see that portfolio returns decrease with R&D IQ. This result holds for both

value- and equal-weighted excess returns, characteristic-adjusted returns, and industry-

adjusted returns. For example, the low IQ portfolio earns 127 basis points (t = 4.23)

per month in value-weighted excess returns and 126 basis points (t = 4.14) per month

in equal-weighted excess returns; it earns 18 basis points (t = 2.25) per month in value-

weighted characteristic-adjusted returns and 16 basis points (t = 1.98) per month in

equal-weighted characteristic-adjusted returns; and it earns 30 basis points (t = 2.46)

per month in value-weighted industry-adjusted returns and 14 basis points (t = 0.91)

per month in equal-weighted industry-adjusted returns. However, the high IQ portfolio

only earns 88 basis points (t = 2.99) per month in value-weighted excess returns and

78 basis points (t = 2.56) in equal-weighted excess returns; and its returns become

even smaller after control of firm characteristics and industry effects. Furthermore, the

monthly returns of the high-minus-low hedge portfolio are economically substantial and

statistically significant. The hedge portfolio earns -39 basis points (t = −4.16), -42

basis points (t = −4.23), and -45 basis points (t = −4.80) per month, respectively,

in value-weighted excess returns, characteristic- and industry-adjusted returns and -48

basis points (t = −4.69), -50 basis points (t = −4.46), and -50 basis points (t = −4.90)

per month, respectively, in equal-weighted excess returns, characteristic- and industry-

adjusted returns.

Panel B and Panel C of Table II present alphas and factor loadings from the Fama-

French three-factor model (Fama and French, 1993) and the Carhart four-factor model

(Carhart, 1997). The estimates of alphas deliver the same implication. In both models,
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the alpha is positive for the low IQ portfolio, whereas it is negative for the high IQ

portfolio, in both value- and equal-weighted returns. For example, in the Carhart four-

factor model, it is 25 basis points (t = 2.70) per month in the value-weighted returns and

29 basis points (t = 3.08) per month in equal-weighted returns for the low IQ returns;

however, it is -13 basis points (t = −1.29) per month in the value-weighted returns

and -20 basis points (t = −2.01) per month in equal-weighted returns for the high IQ

portfolio. The hedge portfolio’s alpha is negative, economically substantial, and highly

statistically significant in both models. For example, the alpha from the Carhart four-

factor model is -38 basis points (t = −3.71) per month in value-weighted returns and -49

basis points (t = −4.40) per month in equal-weighted returns. These findings indicate

that investors are quite uncertain about low IQ firms’ future R&D activities and usually

require high compensation for making investments in their future R&D.

All three IQ portfolios load positively and significantly on the market, size, and value

factors, but negatively and significantly on momentum, and the factor loadings are quite

similar across these three portfolios. Furthermore, the factor loadings for the hedge

portfolio are small and hardly significant, indicating that returns on this portfolio do

not covary with any of these well-known factors. This result suggests that there may be

important factor(s) missed apart from these well-known factors.

Our results above provide an empirical support to some theoretical implications.

Brevik and d’Addona (2010) introduce Epstein-Zin recursive preferences to Veronesi’s

(2001) pure exchange economy model and find high information quality decreases the

equity premium. Ai (2010) develops a production-based long-run risk model, which in-

dicates that high information quality decreases equity premium. Epstein and Schneider

(2008) build a theoretical model and show in markets with ambiguous information, ex-

pected excess returns decrease with future information quality. They further show that

ambiguity-averse investors require compensation for holding an asset with low quality in-

formation. Furthermore, as R&D spending is usually regarded as a good signal of firms’

future prospect, our results are also consistent with those in Zhang (2006) who imple-

ments an empirical investigation on information uncertainty and stock returns and finds

14



that greater information uncertainty leads to higher expected excess returns following

good news but lower returns following bad news.

Figure 1 presents the time series of annual equal-weighted (upper panel) and value-

weighted (lower panel) excess returns on short position of the hedge portfolio over the

period from July 1981 to July 2012. We can see that the annual returns to this strategy

are relatively stable over time. The volatility is about 7.9% for the value-weighted returns

and is about 8.5% for the equal-weighted returns, whereas it is about 17.3% for the excess

market returns over the same period. The annual correlation of returns on this strategy

with the excess market returns is low: it is about 28.3% for the value-weighted returns

and about 30.3% for the equal-weighted returns.

We further test our hypothesis by looking at the long-term cumulative portfolio

returns. As before, at the end of June of each year, we construct three R&D IQ portfolios

and a hedge portfolio and hold them over the next 12, 24, and 36 months. Table III

reports the value-weighted excess returns and three- and four-factor alphas for these

portfolios. Even though the low, middle, and high IQ portfolios have similar cumulative

returns and the hedge portfolio’s cumulative return is not significant for the past 12

months, the low IQ portfolio earns much higher cumulative return, 13.38% (t = 4.77),

than the high IQ portfolio, 9.70% (t = 2.99) and the hedge portfolio cumulative return is

statistically significant, -3.68% (t = −2.80) for the future 12 months. The same results

can been seen in three- and four-factor alphas. All returns and alphas for three IQ

portfolios and hedge portfolio keep increasing and statistically significant in the future

24 and 36 months, and we have not seen any reversals, indicating that our IQ measure

does capture a premium for information quality instead of any form of overreaction.

B. Fama-MacBeth Cross-Sectional Analysis

We further test the return predictive power of R&D IQ by employing monthly Fama and

MacBeth (1973) cross-sectional regressions. This analysis can allow us for extensive con-

trols of industry effects and those variables that have been found to have predictive power

to stock returns. To be specific, we control for size (Banz, 1981), book-to-market ratio
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(Fama and French, 1992), and momentum (Carhart, 1997). Additionally, we further in-

clude in our regressions leverage (Miller and Modigliani, 1958; Ozdagli, 2012), illiquidity

(Amihud, 2002), idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006; Bali,

Cakici, and Whitelaw, 2011), one-month lagged returns, turnover, capital expenditures

(CapEX), and industry concentration (HHI). In our regressions, an industry dummy is

also introduced to control for any industry-related effects that may drive our results.

The definitions of these variables have been given previously in Section II.

For each month from July of year t to June of year t+ 1, we regress monthly excess

returns of individual stocks on our R&D IQ measure and the above control variables of

year t − 1. Table IV presents the regression results that further confirms our hypothe-

sis: the lower R&D information quality is, the higher excess returns we expect, as the

coefficient on IQ in each of regressions we consider is negative and statistically signifi-

cant. Model 1 in the table considers a simple regression in which we exclude all control

variables and take R&D IQ as the only predictor. The coefficient on R&D IQ is -0.81

and highly statistically significant (t = −4.36), and the adjusted R2 is about 1.3%, but

highly statistically significant (t = 6.46). When we introduce the effects of size, book-

to-market, momentum, leverage, lagged returns, and turnover in Model 2, the slope

estimate on IQ becomes slightly small, -0.69, but still highly significant (t = −3.67).

The coefficients on the other variables are not statistically significant. The adjusted R2

increases to 5.4% (t = 13.0). We further introduce idiosyncratic volatility and illiquidity

in Model 3 and find that the coefficient of our interest, IQ, is -0.53 (t = −2.94) and

the adjusted R2 is further increased to 7.2% (t = 15.2). The coefficient on turnover

is negative and significant, -0.59 (t = −2.91), and the coefficient on IVOL is positive

and marginally significant, 0.04 (t = 1.91), which is consistent with Bali, Cakici, and

Whitelaw (2011). Model 4, which introduces capital expenditures to Model 2, and Model

5, which introduces industry concentration to Model 2, deliver the similar implication

that the coefficient on IQ is still negative and significant. We note that in both Model 4

and Model 5, the coefficient on turnover is negative and significant and that in Model 4,

the coefficient on CapEx is negative and highly significant. The adjusted R2s from these
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two models are 5.6% (t = 13.5) and 5.5% (t = 13.2), respectively.

Recently, several works find that there exists a positive R&D-return relationship

(Chan, Lakonishok, and Sougiannis, 2001; Eberhart, Maxwell, and Siddique, 2004; and

Li, 2011). Cohen, Diether, and Malloy (2013) construct an innovation ability measure

and argue that firms that exhibit high ability in the past and that continue to spend

a large amount of R&D outperform in the future. We therefore introduce variables of

R&D intensity: RDS (R&D expenditures scaled by sales) and RDA (R&D expenditures

relative to total assets), and innovation ability in our regressions. The estimates in Model

6 show that after controlling for R&D intensity, RDA, and the variables used in Model 2,

our estimate on IQ is still negative and significant, -0.64 (t = −3.46), and the coefficient

on RDA is not significant. We find that in this model, the coefficient on turnover is

negative and significant. Furthermore, the estimates in Model 7 show that even after

controlling for both R&D intensity, RDS, and innovation ability, we obtain the similar

result as before: the estimate on IQ is negative and significant, -0.56 (t = −3.04). The

coefficient on RDS is insignificant and the coefficient on InnAb is negative and significant,

-0.28 (t = −2.53). The adjusted R2s from Model 6 and Model 7 are 6.0% (t = 13.7) and

6.2% (14.1), respectively.

Hirsleifer, Hsu, and Li (2013) show that firms’ patents and patent citations contain

rich information on future stock returns. We therefore construct their innovative effi-

ciency measure (IE) and include it in our test. As patent database from NBER is only

updated to December 2006. Our sample here is from July 1980 to July 2006. Model 8

shows that when even introducing IE in the Fama-MacBeth regression, the coefficient on

IQ is still negative and statistically significant, -0.69 (t = −2.78), whereas the coefficient

on IE is insignificant. The adjusted R2 is about 5.7% (t = 11.2).

C. R&D IQ and Subsequent Operating Performance

In this part, we take one step further to show that our R&D IQ measure should not

capture undervaluation or overvaluation. If IQ constructed in Equation (3) really cap-

tures information quality in firms’ R&D, it should have little effects on fundamentals.
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We take return on assets (ROA), cash flows (CF), sales, and performance (PM, operat-

ing income before depreciation scaled by the lagged sales) as proxies for fundamentals

and examine the relationship between IQ and subsequent operating performance by im-

plementing Fama-MacBeth regressions. As before, we control for size, book-to-market,

leverage, idiosyncratic volatility, illiquidity, and some innovation-related variables such

as R&D intensity and innovation ability. We also introduce the lagged values and the

changes of fundamental variables in the regressions.

Table V reports the Fama-MacBeth regression results. We find that for all the four

proxies of fundamentals, the coefficients on IQ are insignificant. For example, the co-

efficient on IQ is -0.01 (t = −1.36) in the ROA regression, -26.3 (t = −1.02) in the

Sales regression, 0.02 (t = 1.53) in the PM regression, and -0.01 (t = −1.47) in the

CF regression. For these four regressions, the coefficients on the lagged fundamentals

and changes of fundamentals are highly statistically significant except for the changes of

performance. We also find that the coefficient on size is highly statistically significant in

all cases, indicating that the larger the firm size is, the better its subsequent performance

is. These findings suggest that our IQ measure is nothing related to undervaluation or

overvaluation.

IV. Further Empirical Evidence

In this section, we provide further evidence on the relationship between R&D IQ and

future stock returns. If our IQ measure really captures information quality in firms’

R&D, and there really exists a premium for R&D IQ in excess returns, we conjecture

that the relationship should become stronger and the premium should be larger in firms

with smaller size, younger age, greater financial constraints, and higher return and fun-

damental volatility, as in general these firms have more uncertain business environments

and investors are more ambiguous to their future prospects.

We perform independent double sorts on R&D IQ and firm size, firm age, financial

constraint, return volatility, and fundamental volatility. At the end of June of each year,
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we first sort all firms into three portfolios based on each of the above conditioning vari-

ables, and then sort each of these three portfolios into three subgroups based on R&D

IQ and form a high-minus-low IQ hedge portfolio in each of these three portfolios. In

his study, Zhang (2006) uses firm size, firm age, stock return volatility, and cash flow

volatility (as well as analyst coverage) to measure information uncertainty. In what fol-

lows, we only report the results based on value-weighted portfolio returns. The results in

equal-weighted returns are quite similar and available in an unreported appendix, where

we also implement monthly Fama-MacBeth cross-sectional regressions across subsamples

split by the above conditioning variables, respectively, and find that the same results as

presented below hold.

A. Firm Size

We measure firm size by its market capitalization. Small firms usually have more expen-

sive access to outside financial fundings; are more likely to be growing firms in rapidly

developing and intrinsically volatile industries; are less diversified; and have more serious

asymmetric information problem. Banz (1981) regards firm size a proxy for risk; Amihud

and Mendelson (1986) and Liu (2006) find that the size effect is linked to liquidity risk;

Zhang (2006) takes firm size as a proxy for information uncertainty.

Table VI presents the double-sorting results in the value-weighted returns, and they

strongly confirm our conjecture. From Panel A, we find that the hedge portfolio’s returns

and alphas are economically substantial and statistically significant in small size firms,

whereas they become smaller in big size firms. For example, its monthly excess returns,

characteristic- and industry-adjusted returns are -96 basis points (t = −2.91), -100 basis

points (t = −3.02), and -104 basis points (t = −3.03), respectively, in small size firms,

whereas they are only -28 basis points (t = −2.34), -32 basis points (t = −2.57), and -30

basis points (t = −2.58), respectively, in big size firms. The Fama-French three-factor

alpha is -99 basis points (t = −3.02) per month and the Carhart four-factor alpha is

-110 basis points (t = −3.23) per month in small size firms; however, these two alphas

become only -24 basis points per month and -25 basis points per month, respectively,
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and are only marginally significant in big size firms.

B. Firm Age

Young firms may face liability of newness (Stinchcombe, 1965). They are vulnerable

to unexpected shocks and their growth paths are hardly predictable. This makes their

future prospects more ambiguous to investors. On the contrary, old firms may have

smoother growth paths with fewer bumps and surprises and usually have more easy-

to-access information available to investors (Barry and Brown, 1985). Investors should

become more concerned when they observe low quality information in young firms’ R&D.

Panel B reports portfolio results based on firm age and R&D IQ. Firm age is defined

as the number of years listed on Compustat with non-missing price data. Consistent to

our conjecture, we find that for young firms, the low IQ portfolio always earns higher

returns per month, which are always statistically significant, than the high IQ portfolio,

whose returns are hardly significant. For example, for young firms, the excess return,

the characteristic- and industry-adjusted returns are 150 basis points (t = 4.13), 41 basis

points (t = 2.46), 55 basis points (t = 2.94) per month, respectively, and the three-factor

and four-factor alphas are 42 basis points (t = 2.27) and 43 basis points (t = 2.22),

respectively, for the low IQ portfolio, whereas all three returns and two alphas become

smaller for the high IQ portfolio. However, the pattern that holds for young firms is

hardly seen for old firms.

Furthermore, the high-minus-low IQ hedge portfolio earns much more substantial

and significant returns and alphas per month in young firms than in old firms. The

hedge portfolio earns -120 basis points of excess return per month, -112 basis points

of characteristic-adjusted return per month, and -123 basis points of industry-adjusted

return per month, all of which are statistically significant at 1% level, and its three- and

four-factor alphas are -110 basis points (t = −3.98) and -91 basis points (t = −3.22) per

month, respectively. However, for older firms, the hedge portfolio’s returns and alphas

are very small and completely insignificant.
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C. Firm’s Financial Constraints

Firms with financial constraints have limited ability to fund their desired investments.

Lamont, Polk, and Saá-Requejo (2001) show that financial constraints affect firm value

and the severity of constraints varies over, but constrained firms surprisingly earn lower

returns than unconstrained firms. However, Whited and Wu (2006) find that more con-

strained firms earn higher average returns than less constrained firms, but the difference

is not significant. Livdan, Sapriza, and Zhang (2009) revisit the relationship between

financial constraints and stock returns and find that more financially constrained firms

are riskier and earn higher expected stock returns than less financially constrained firms.

Campello and Chen (2010) find evidence suggesting that financially constrained firms

have higher systematic risk and that the constraint risk is priced in the financial mar-

kets. Li (2011) finds that the positive R&D-return relationship only exists in financially

constrained firms.

Financial constraint is alway related to firm size and firm age. Small firms and young

firms are usually considered to be more financial constrained than larger firms and old

firms. Li (2011) takes firm size and firm age as two proxies for financial constraint. We

have seen above that for small firms and young firms, the relationship between R&D

IQ and future stock returns are much stronger than that for large and old firms, indi-

rectly indicating that investors require higher premium for ambiguous R&D information

quality. Here we further investigate this implication by using a more formal measure of

financial constraint, the KZ index (Kaplan and Zingales, 1997).

Panel C compares R&D IQ effect between financially constrained (high KZ index)

firms and financially unconstrained (low KZ index) firms. We find that the IQ effect

becomes much stronger in firms with high KZ index. The returns and alphas of the

hedge portfolio are large and statistically significant in financially constrained firms,

whereas they become small and alway insignificant in financially unconstrained firms.

For example, the monthly excess return, characteristic- and industry-adjusted return of

the hedge portfolio are -42 basis points (t = −3.18), -41 basis points (t = −3.02), and -51
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basis points (t = −3.83), respectively, in high KZ index firms, whereas they are only -23

basis ponts, -37 basis points, and -41 basis points, respectively, and are not statistically

significant. The estimates of Fama-French three-factor alpha and Carhart four-factor

alpha exhibit the same pattern.

D. Firm’s Fundamental and Return Volatility

Zhang (2006) takes both fundamental volatility and return volatility as two proxies for

information uncertainty. In a theoretical model, Epstein and Schneider (2008) show that

investors require more compensation for poor information quality when fundamentals are

more volatile, whereas when fundamentals do not move much, investors do not care much

whether information quality is good or not. We investigate this issue here by using our

R&D IQ measure.

Fundamental volatility is measured by the cash flow uncertainty, which is defined

as the standard deviation of return on asset (ROA) for the past three years. In Panel

D, we do find that returns and alphas of the high-minus-low hedge portfolio are much

more economically substantial and statistically significant in high fundamental volatility

firms than in low fundamental volatility firms. For example, the monthly excess return,

characteristic- and industry-adjusted returns of the hedge portfolio are -103 basis points

(t = −3.91), -103 basis points (t = −3.58), and -110 basis points (t = −4.43), respec-

tively, and its Fama-French and Carhart alphas are -98 basis points (t = −3.54) and

-104 basis points (t = −3.42) per month, respectively, in high fundamental volatility

firms. However, both returns and alphas of the hedge portfolio become much small and

insignificant in low fundamental volatility firms.

We further examine the R&D IQ effect in high return volatility firms and low return

volatility firms, where return volatility is calculated as the standard deviation of the

Fama-French three-factor residuals for the past 12 months. We find exactly the same

pattern as above (not reported).
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V. A R&D Information Quality Factor

We have seen in Table II that the commonly used factor models, such as the Fama-

French three-factor model and the Carhart four-factor model, can not fully explain return

dynamics. To further examine whether R&D IQ effect on future stock returns reflects

commonality in returns that is not captured by the existing factors, we construct a factor-

mimicking portfolio for R&D information quality following the same methodology as in

Fama and French (1993). Given that the firm size increases with R&D IQ as reported

in Table I, we control for size in constructing the R&D IQ factor. At the end of June of

year t from 1981 to 2012, we firstly sort firms into two size portfolios (small “S” and big

“B”) based on NYSE median size breakpoint at the end of June of year t, and then sort

each size portfolio into three R&D IQ portfolios (low “L”, middle “M”, and high “H”)

based on the 30th and 70th percentiles of R&D IQ in year t− 1. As a result, there are

in total six size-IQ portfolios, namely, S/L, S/M, S/H, B/L, B/M, and B/H.

We hold these six portfolios over the next 12 months and compute their monthly

value-weighted returns. The factor-mimicking portfolio for R&D IQ (IQF) is constructed

as follows: (S/L + B/L)/2 - (S/H + B/H)/2. The IQF factor is thus size-adjusted

and reflects the return comovement associated with R&D information quality. The

IQF factor constructed from equal-weighted returns is quite similar and available upon

request. Panel A of Table VII reports the means, standard deviations, and ex post

Sharpe ratios of IQF and the commonly used factors, i.e., the market factor (MKT), the

size factor (SMB), the value factor (HML), and the momentum factor (MOM). In order

to have a comparison with other innovation-related measures, we construct the following

innovation factors: RDF (the factor based on R&D intensity), RDGF (the factor based

on significant R&D growth), IEF (the factor based on Hirsleifer, Hsu, and Li (2013)’s

innovative efficiency), and NPF (the factor based on the number of patents scaled by

market equity).

The average return of IQF is 30 basis points per month, which is smaller than that of

MKT (60 basis points), HML (36 basis points), and MOM (60 basis points), but larger
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than average returns of SMB (10 basis points) and all innovation-related factors. The

standard deviation of IQF is 2.83%, which is smaller than nearly all the factors considered

except NPF (2.67%). Furthermore, when we take a look at the ex post Sharpe ratios of

these factors, we see that IQF offers a Sharpe ratio of 0.11, which is a little bit lower

than those of MKT (0.13), HML (0.12), and MOM (0.13), but larger than those of SMB

(0.04) and all innovation-related factors.

Panel B of Table VII presents the monthly correlations of all these factors. We find

that IQF is weakly correlated with and distinct from these factors. Its correlation with

MKT is the smallest, 0.03, and its correlation with RDF is the strongest, 0.27. The

average of the absolute correlations between IQF and other factors is about 0.17, which

is smaller than all other factors except MOM (0.13) and RDGF (0.15).

Figure 2 plots annual returns on the IQ factor (IQF) and the market factor (MKT)

from 1981 to 2012. The market factor is more volatile than the IQ factor. It can

be as large as about 30% and as small as nearly -40%, and its standard deviation is

about 17.32%. However, the IQ factor ranges from about -15% to about 20% and has a

standard deviation of 8.45%. In the figure, we also highlight the NBER recessions using

the gray-shadowed areas. We can see for four recessions in 1982, 1991, 2001, and 2008,

the IQ factor performs better than the market factor in 1982, 2001, and 2008, and its

outperformance is particularly striking during the internet bubble burst in 2001 and the

recent global financial crisis in 2008. In 2001, the market factor has a return of -15.2%,

whereas the IQ factor earns a positive return of 8.27%. In 2008, there is a severe market

downturn: the return on the market factor reaches its historical low, -38.34%; however,

the return on the IQ factor is still positive, 3.36%. The annual correlation between MKT

and IQF is about 34.2%.

These above findings indicate that IQF captures a different factor and it may be

beneficial to add IQF to the existing factor models. For this purpose, similar to Hirsh-

leifer, Hsu, and Li (2013), we construct different tangency portfolios using the above risk

factors. Panel C presents optimal portfolio weights and Sharpe ratios for these tangency

portfolios. We can see that when we only use the market factor (MKT), the monthly
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optimal Sharpe ratio is 0.13. Whenever we introduce SMB together with MKT, the

optimal weight on SMB is only 3%, whereas it is 97% on MKT. The optimal Sharpe

ratio remains the same as above (0.13). When we use the Fama-French three factors

(MKT, SMB, and HML) to construct the tangency portfolio, the optimal Sharpe ratio

increases to 22% with mean 0.40 and standard deviation 1.79, and the largest weigh is

on HML (52%), followed by MKT (33%) and SMB (15%).

Now we put our R&D IQ factor (IQF) and the Fama-French three factors together.

We find that the optimal Sharpe ratio further increases to 0.25 with mean 0.39 and

standard deviation 1.54. The largest portfolio weight is now on IQF (42%) and the

smallest weight is on HML (7%). When the momentum factor (MOM) is also available,

the optimal Sharpe ratio reaches 0.31 with mean 0.44 and standard deviation 1.44. For

this tangency portfolio, the largest weight is still on IQF (37%), followed by SMB (24%),

MKT (15%), MOM (19%), and HML (5%).

From row 6 to 9, we introduce one-by-one the innovation-related factors, that is,

RDF, RDGF, IEF, and NPF, to the tangency portfolio, together with IQF and the

Fama-French three factors. We find that the Sharpe ratios of these tangency portfolios

are nearly the same as that only using IQF and the Fama-French three factors, and the

weights on these innovation-related factors are quite small, ranging from 2% (in row 6)

to 5% (in row 7). When we put all factors together in row 10, the Sharpe ratio is 0.31,

the same as that of the tangency portfolio in row 5, and the weights on these innovation-

related factors are still very small (ranging from -3% for RDF to 5% for NPF). The

largest weight for these tangency portfolio is again on IQF, ranging from 35% to 42%.

The significant weight on IQF in these tangency portfolios and its role in improving

the ex post Sharpe ratio are consistent to what we have see in Panel A and Panel B,

where IQF has relatively high mean and small standard deviation, and its correlation

with other factors are very small. The above findings suggest that IQF does capture a

pricing factor that is distinct from the other existing well-known factors.
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VI. Conclusion

R&D investments are surrounded by a high degree of uncertainty due to the nature of

R&D activity and the lack of accounting disclosure. We hypothesize that there exists

a premium for ambiguous R&D information. Even though we do not know future in-

formation quality of a firm’s R&D activities, past information on its success in R&D

provides us a useful measure to evaluate its future R&D activities. We construct a R&D

information quality (IQ) measure by connecting innovation input (R&D expenditures)

and innovation outcome (sales). Specifically, R&D information quality is captured by

the R-square from the regression of sales growth on the realized R&D capital.

We find strong evidence that expected excess returns decrease with R&D information

quality. The high-minus-low IQ hedge portfolio earns excess return of about -39 basis

point per month, characteristic-adjusted return of about -42 basis points per month, and

industry-adjusted return of about -45 basis points per month in value-weighted returns.

The risk-adjusted monthly alpha of the hedge portfolio is about -40 basis points in the

Fama-French three-factor model and about -38 basis points in the Carhart four-factor

model in value-weighted returns. All of them are highly statistically significant. The

same pattern is also found in equal-weighted returns. The Fama-MacBeth cross-sectional

analysis shows that these results are robust to controlling for firm-specific variables that

have been shown to have return predictability power and for some innovation-related

variables.

The IQ-return relationship becomes even stronger in firms with smaller size, younger

age, greater financial constraints, and higher fundamental and return volatility, as these

firms usually have more uncertain business environments and investors are more ambigu-

ous to their future prospects. Based on R&D IQ, we form a factor-mimicking portfolio

(IQF), which is found to be weakly correlated with commonly used factors such as the

market, size, value and momentum factors, and those innovation-related factors pro-

posed in literature. The constructions of tangency portfolio show that adding IQF to

the Fama-French three factors improves the ex post Sharpe ratio by 14% and that the
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weight on IQF dominates the other factors, indicating that IQF has incremental pricing

effects relative to the well-known pricing factors.
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Table I: Summary Statistics

Panel A reports the pooled mean, standard deviation, 25th percentile, median, and 75th percentile of
the R&D information quality (IQ) measure across industries according to the Fama-French 17 industry
classifications from 1980 to 2012. The number of firms in each industry included in the sample (NFirm),
the market share of each industry in the sample (SShare), and the market share of each industry in
Compustat (MShare) are also reported. Panel B reports the average values of some of firm-specific
variables, including (log) market equity (ME), book-to-market ratio (BEME), return on assets (ROA,
Income before extraordinary items plus interest expenses divided by lagged total assets), return on equity
(ROE, Income before extraordinary items plus interest expenses divided by lagged common equity),
leverage (DXA, long-term debt plus debt in current liability divided by total assets), cash holding,
industry concentration index (HHI, Hou and Robinson, 2006), idiosyncratic volatility (IVOL, standard
deviation of Fama-French three-factor residuals for the past 12 months), R&D intensity (RDA, R&D
expenditures divided by total assets), innovation ability (InnAb, Cohen, Diether, and Malloy, 2013),
and innovative efficiency (IE, Hirsleifer, Hsu, and Li, 2013) for the three R&D IQ portfolios constructed
according to the 30th and 70th percentiles of the lagged IQ. Panel C reports the time-series correlations
between R&D IQ and the above-mentioned firm characteristics.

Panel A: R&D Information Quality across Industries

Mean STD Q25 Median Q75 NFirms SShare MShare
Cars 0.41 0.21 0.24 0.37 0.56 43 1.5 2.0

Chems 0.43 0.23 0.23 0.38 0.62 74 3.2 2.4
Clths 0.47 0.22 0.28 0.46 0.62 45 0.9 0.8
Cnstr 0.46 0.22 0.29 0.42 0.61 83 2.8 2.6

Cnsum 0.47 0.23 0.26 0.44 0.67 122 19.2 12.5
Durbl 0.46 0.23 0.25 0.42 0.65 94 2.0 1.0
FabPr 0.47 0.23 0.27 0.45 0.62 28 0.6 0.3
Food 0.44 0.24 0.24 0.40 0.61 63 4.9 5.7

Machn 0.45 0.23 0.26 0.42 0.61 583 28.2 13.8
Mines 0.45 0.21 0.29 0.43 0.57 11 0.6 0.8

Oil 0.55 0.23 0.34 0.59 0.73 29 4.9 9.1
Other 0.49 0.23 0.29 0.47 0.67 693 27.6 30.5
Rtail 0.54 0.25 0.34 0.51 0.77 22 0.2 7.9
Steel 0.47 0.23 0.26 0.46 0.63 42 1.2 0.8
Trans 0.49 0.20 0.33 0.47 0.67 52 2.0 4.4
Utils 0.67 0.22 0.54 0.69 0.85 4 0.1 5.3

Panel B: Summary Statistics across IQ Portfolios

ME BEME ROA ROE DXA Cash HHI Ivol RDA IE InnAb
Low IQ 205 0.68 0.03 -0.04 0.18 0.43 0.18 10.5 0.06 3.08 0.29
Mid IQ 248 0.73 0.02 -0.09 0.19 0.43 0.19 10.8 0.05 2.66 0.57
High IQ 278 0.71 0.01 0.09 0.20 0.52 0.19 11.3 0.06 3.08 0.80

Panel C: Correlation Matrix

IQ ME BEME ROA ROE DXA Cash HHI Ivol RDA IE InnAb
IQ 1.00
ME 0.03 1.00

BEME 0.02 -0.12 1.00
ROA -0.05 0.12 -0.14 1.00
ROE 0.01 0.01 0.00 0.07 1.00
DXA 0.05 -0.01 0.06 -0.11 0.01 1.00
Cash 0.02 -0.02 -0.05 -0.19 -0.02 -0.13 1.00
HHI -0.02 -0.04 0.10 0.10 0.02 0.12 -0.10 1.00
Ivol 0.06 -0.11 0.09 -0.38 -0.01 -0.01 0.09 -0.14 1.00

RDA -0.01 -0.06 -0.16 -0.45 -0.05 -0.17 0.26 -0.24 0.29 1.00
IE -0.01 0.32 -0.05 0.06 0.01 -0.01 -0.02 0.01 -0.05 -0.04 1.00

InnAb 0.07 -0.04 0.04 -0.03 -0.01 0.05 -0.00 0.04 0.06 -0.06 -0.04 1.00
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Table II: R&D Information Quality and Return Predictability

This table presents average monthly portfolio returns (in %) based on single sort using R&D IQ. Each
month stocks with non-missing lagged IQ are sorted into three groups based on the 30%/40%/30%
breakpoints of IQ. When forming portfolios, we impose the restriction that lagged price must be greater
than $5 (breakpoints are computed before imposing the lagged price restriction). We hold these port-
folios over the next 12 months and compute both their equal-weighted and value-weighted returns. In
Panel A, we report excess returns, characteristic-adjusted returns, and industry-adjusted returns. Excess
return is the difference between portfolio returns and the one-month Treasury bill rate. Characteristic-
adjusted returns are computed by adjusting returns using 125 (5x5x5) size/book-to-market/momentum
portfolios (Daniel et al., 1997), and industry-adjusted returns are computed by adjusting returns using
17 industry portfolios (Fama and French, 1997). In Panel B and C, we report the alphas and factor
loadings from regressing portfolio excess returns on the Fama-French three factors (Fama and French,
1993) and Carhart four factors (Carhart, 1997). The sample period is from July 1981 to June 2012.

Value-Weighted Returns Equal-Weighted Returns
IQL IQM IQH H-L IQL IQM IQH H-L

Panel A: Portfolio Returns
Excess Returns 1.27 1.23 0.88 -0.39 1.26 1.22 0.78 -0.48

(4.23) (4.32) (2.99) (-4.16) (4.14) (4.14) (2.56) (-4.69)
Char-Adj Returns 0.18 0.14 -0.24 -0.42 0.16 0.11 -0.33 -0.50

(2.25) (1.84) (-2.70) (-4.23) (1.98) (1.45) (-3.36) (-4.46)
Ind-Adj Returns 0.30 0.23 -0.15 -0.45 0.14 0.07 -0.36 -0.50

(2.46) (1.96) (-1.37) (-4.80) (0.91) (0.47) (-2.08) (-4.90)
Panel B: Alphas and Loadings from the Fama-French Three-Factor Model

Alpha 0.16 0.14 -0.24 -0.40 0.20 0.14 -0.32 -0.52
(1.59) (1.58) (-2.32) (-4.04) (2.02) (1.52) (-2.94) (-4.73)

MKT 1.06 1.04 1.06 -0.01 1.02 1.02 1.03 0.01
(44.9) (40.7) (42.3) (-0.29) (47.6) (36.7) (41.4) (0.43)

SMB 0.45 0.44 0.41 -0.04 0.58 0.55 0.51 -0.07
(6.33) (6.06) (6.07) (-1.28) (9.90) (7.72) (7.78) (-1.82)

HML 0.15 0.14 0.21 0.06 0.07 0.12 0.16 0.09
(2.97) (2.81) (3.68) (1.58) (1.51) (2.48) (2.81) (2.14)

Panel C: Alphas and Loadings from the Carhart Four-Factor Model
Alpha 0.25 0.22 -0.13 -0.38 0.29 0.20 -0.20 -0.49

(2.70) (2.30) (-1.29) (-3.71) (3.08) (2.02) (-2.01) (-4.40)
MKT 1.04 1.02 1.02 -0.01 0.99 1.00 1.00 0.00

(44.2) (42.3) (35.7) (-0.46) (45.7) (38.6) (36.3) (0.16)
SMB 0.46 0.45 0.42 -0.04 0.59 0.56 0.52 -0.07

(7.68) (7.09) (7.89) (-1.23) (12.3) (8.74) (10.2) (-1.80)
HML 0.12 0.11 0.17 0.05 0.03 0.10 0.12 0.09

(2.44) (2.55) (3.53) (1.46) (0.83) (2.25) (2.63) (2.04)
MOM -0.11 -0.09 -0.13 -0.02 -0.11 -0.07 -0.14 -0.03

(-3.71) (-2.75) (-3.58) (-0.90) (-4.25) (-2.06) (-3.92) (-0.98)
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Table III: R&D Information Quality and Long-Term Future Returns

This table presents long-term portfolio cumulative returns (in %) based on single sort using R&D IQ.
At the end of June of each year, stocks with non-missing lagged IQ are sorted into three groups based
on the 30%/40%/30% breakpoints of IQ. We then hold these portfolios over the next 12/24/36 months
and compute value-weighted returns of these IQ portfolios. We report excess returns, and the three-
factor (Fama and French, 1993) and four-factor (Carhart, 1997) alphas. When forming portfolios, we
also impose the restriction that lagged price must be greater than $5 (breakpoints are computed before
imposing the lagged price restriction). We also report the past 12-month portfolio returns. The sample
period is from July 1981 to June 2012.

Past 12-Month Returns Future 12-Month Returns
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 25.66 27.82 24.68 -0.98 13.38 13.49 9.73 -3.64
(7.55) (7.23) (6.71) (-0.36) (4.77) (5.44) (2.99) (-2.80)

FF3F Alphas 23.13 24.30 21.93 -1.20 16.70 15.78 12.54 -4.16
(7.11) (5.87) (4.94) (-0.38) (3.72) (3.83) (2.51) (-2.48)

Carhart4F Alphas 24.26 25.25 24.10 -0.16 14.13 13.33 10.92 -3.21
(5.10) (4.97) (4.09) (-0.05) (3.68) (3.48) (2.49) (-1.80)

Future 24-Month Returns Future 36-Month Returns
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 24.46 26.42 18.62 -5.84 37.83 39.62 29.24 -8.60
(5.15) (5.48) (3.53) (-2.66) (4.82) (5.38) (4.43) (-2.89)

FF3F Alphas 28.70 29.97 22.44 -6.27 43.26 44.36 31.96 -11.30
(4.59) (4.98) (3.44) (-2.64) (4.67) (5.84) (4.26) (-3.82)

Carhart4F Alphas 28.40 30.62 23.32 -5.09 39.53 42.09 31.13 -8.40
(4.59) (4.58) (3.47) (-1.75) (4.57) (5.41) (4.13) (-2.31)
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Table IV: Fama-MacBeth Cross-Sectional Regressions

This table presents monthly Fama-MacBeth (1973) regressions of returns on R&D IQ. IQ is computed
as described in Eq. 3. Control variables include: size (Banz, 1981), book-to-market ratio (Fama and
French, 1992), momentum (Carhart, 1997), leverage (Miller and Modigliani, 1958; Ozdagli, 2012), illiq-
uidity (Amihud, 2002), idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006; Bali, Cakici,
and Whitelaw, 2011), one-month lagged returns, turnover, capital expenditures (CapEX), and industry
concentration (HHI). Some innovation-related variables are also taken into consideration: R&D expen-
ditures scaled by sales, R&D expenditures scales by total assets, innovation ability (Cohen, Diether,
and Malloy, 2013), and innovative efficiency (Hirsleifer, Hsu, and Li, 2013). All regressions includes
industry dummies (using Fama and French (1997) 17-industry classification scheme). The regressions
only include stocks with lagged price greater than $5. The sample period is from July 1981 to June
2012. t-statistics are in parenthesis.

(1) (2) (3) (4) (5) (6) (7) (8)
IQ -0.81 -0.69 -0.53 -0.68 -0.66 -0.64 -0.56 -0.69

(-4.36) (-3.67) (-2.94) (-3.61) (-3.46) (-3.46) (-3.04) (-2.78)
log(ME) 0.04 0.08 0.05 0.04 0.04 -0.02 0.02

(0.85) (2.05) (1.01) (0.82) (0.88) (-0.35) (0.25)
BEME 0.04 0.08 -0.02 0.03 0.03 -0.02 0.26

(0.22) (0.50) (-0.08) (0.17) (0.17) (-0.11) (1.23)
MOM 0.08 0.10 0.09 0.08 0.06 0.10 0.12

(0.53) (0.71) (0.59) (0.51) (0.41) (0.68) (0.71)
DXA -0.13 -0.27 -0.21 -0.08 -0.10 -0.31 -0.13

(-0.38) (-0.78) (-0.61) (-0.22) (-0.29) (-0.90) (-0.29)
R−1 -0.00 -0.01 -0.00 -0.00 -0.00 -0.00 -0.00

(-0.49) (-1.26) (-0.45) (-0.48) (-0.53) (-0.40) (-0.20)
turnover -0.38 -0.59 -0.42 -0.39 -0.44 -0.29 -0.28

(-1.92) (-2.91) (-2.12) (-1.98) (-2.26) (-1.46) (-1.08)
IVOL 0.04

(1.91)
ILLIQ -0.00

(-0.91)
CapEx -3.69

(-2.93)
HHI -0.34

(-1.13)
RDS -0.54

(-0.61)
RDA 1.24

(1.03)
InnAb -0.28

(-2.53)
IE -0.01

(-0.89)
Intercept 1.40 0.95 0.01 1.06 0.99 0.94 1.71 1.16

(4.29) (1.25) (0.02) (1.39) (1.31) (1.32) (2.22) (1.18)
Adj R2 1.3 5.4 7.2 5.6 5.5 6.0 6.2 5.7

(6.46) (13.0) (15.2) (13.5 ) (13.2) (13.7) (14.1) (11.2)
Industry Yes Yes Yes Yes Yes Yes Yes Yes
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Table V: R&D Information Quality and Subsequent Operating Performance

This table reports the average slopes (in percent) and their time series t-statistics in parentheses from
annual Fama-MacBeth (1973) cross-sectional regressions of individual stocks’ operating performance
measures in year t+1 on IQ and other control variables in year t. We measure operating performance
by return on assets (ROA), cash flows (CF), sales, and performance (PM, operating income before
depreciation scaled by the lagged sales). We control for size, book-to-market, leverage, idiosyncratic
volatility, illiquidity, and some innovation-related variables such as R&D intensity and innovation abil-
ity. We also introduce the lagged values and the changes of fundamental variables in the regressions.
Industry dummies are also introduced based on the Fama and French (1997) 17 industry classification.
The reported adjusted R2 is the time series average of the adjusted R2 of each annual cross-sectional
regression.

ROAt+1 Salest+1 PMt+1 CFt+1

IQ -0.01 -26.3 0.02 -0.01
(-1.36) (-1.02) (1.53) (-1.47)

ROA 0.61
(13.67)

∆ROA -0.13
(-3.64)

Sales 1.05
(89.9)

∆Sales 36.4
(2.50)

PM 0.59
(4.96)

∆PM 0.06
(1.08)

CF 0.58
(15.2)

∆CF -0.22
(-9.66)

log(ME) 0.00 48.1 0.02 0.01
(4.46) (9.97) (3.37) (6.06)

BEME -0.02 13.3 -0.01 -0.00
(-3.44) (1.78) (-1.08) (-0.63)

DXA -0.02 33.3 0.04 0.08
(-1.95) (1.02) (1.23) (6.22)

IVOL -0.00 0.41 -0.00 -0.00
(-6.24) (0.44) (-0.36) (-3.18)

ILLIQ 0.00 0.05 -0.00 -0.00
(1.39) (1.38) (-0.09) (-2.56)

RDS -0.02 -5.24 -0.04 -0.05
(-2.38) (-0.47) (-0.27) (-2.94)

InnAb -0.00 1.70 -0.00 -0.00
(-0.85) (2.26) (-0.46) (-0.96)

Intercept 0.03 -473.4 -0.11 0.01
(2.26) (-6.30) (-1.92) (0.23)

Adj R2 43.6 97.4 55.6 39.4
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Table VI: Firm Characteristics and Return Predictability Power of IQ

This table presents monthly portfolio returns (in %) based on double sorts on firm characteristics
and R&D IQ. At each month stocks with non-missing lagged firm characteristics and R&D IQ are
firstly sorted into three portfolios at 30%/40%/30% breakpoints based on each firm’s characteristics
(firm size in Panel A, firm age in Panel B, firm’s financial constraints in Panel C, and fundamental
volatility in Panel D) and each of these portfolios is then sorted into three sub-groups at 30%/40%/30%
breakpoints based on R&D IQ. Excess return is the difference between portfolio returns and the one-
month Treasury bill rate. Characteristic-adjusted returns are computed by adjusting returns using 125
(5x5x5) size/book-to-market/momentum portfolios (Daniel et al., 1997), and industry-adjusted returns
are computed by adjusting returns using 17 industry portfolios (Fama and French, 1997). When forming
portfolios, we impose the restriction that lagged price must be greater than $5. The three-factor (Fama
and French, 1993) and four-factor (Carhart, 1997) alphas are also reported. The sample period is from
July 1981 to June 2012.

Panel A: Firm’s Size

Small Size Big Size
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.39 0.91 0.44 -0.76 1.28 1.22 1.00 -0.28
(4.34) (2.57) (1.05) (-2.91) (4.39) (4.75) (3.78) (-2.34)

Char-Adj Returns 0.11 -0.34 -0.89 -1.00 0.21 0.19 -0.11 -0.32
(0.56) (-1.55) (-2.84) (-3.02) (2.15) (2.21) (-1.11) (-2.57)

Ind-Adj Returns 0.47 -0.11 -0.58 -1.04 0.25 0.26 -0.06 -0.30
(1.65) (-0.49) (-1.72) (-3.03) (2.11) (2.28) (-0.51) (-2.58)

FF3F Alphas 0.50 -0.12 -0.51 -0.99 0.13 0.15 -0.10 -0.24
(2.24) (-0.57) (-1.57) (-3.02) (1.13) (1.31) (-0.80) (-1.94)

Carhart4F Alphas 0.54 -0.13 -0.56 -1.10 0.23 0.30 -0.02 -0.25
(2.27) (-0.59) (-1.71) (-3.23) (2.03) (2.49) (-0.18) (-1.96)

Panel B: Firm’s Age

Young Age Old Age
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.50 1.16 0.30 -1.20 1.07 1.14 1.09 0.01
(4.13) (3.60) (0.84) (-4.47) (3.82) (4.37) (3.49) (0.08)

Char-Adj Returns 0.41 0.12 -0.71 -1.12 0.14 0.14 0.06 -0.08
(2.46) (0.91) (-3.63) (-4.30) (1.11) (1.37) (0.36) (-0.44)

Ind-Adj Returns 0.55 0.16 -0.68 -1.23 0.15 0.23 0.02 -0.13
(2.94) (1.03) (-3.36) (-4.90) (1.03) (1.58) (0.12) (-0.74)

FF3F Alphas 0.42 0.11 -0.68 -1.10 -0.00 0.08 -0.00 0.00
(2.27) (0.79) (-3.29) (-3.98) (-0.03) (0.68) (-0.02) (0.01)

Carhart4F Alphas 0.43 0.24 -0.48 -0.91 0.07 0.16 0.04 -0.02
(2.22) (1.62) (-2.32) (-3.22) (0.47) (1.29) (0.23) (-0.13)
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Panel C: Firm’s Financial Constraint

Low KZ Index High KZ Index
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.16 1.17 0.93 -0.23 1.28 1.32 0.86 -0.42
(2.94) (3.32) (2.92) (-0.87) (4.65) (4.88) (2.95) (-3.18)

Char-Adj Returns 0.10 0.04 -0.26 -0.37 0.17 0.25 -0.24 -0.41
(0.52) (0.18) (-1.38) (-1.47) (1.93) (2.74) (-2.13) (-3.02)

Ind-Adj Returns 0.35 0.22 -0.06 -0.41 0.29 0.31 -0.22 -0.51
(1.38) (0.96) (-0.29) (-1.53) (2.22) (2.33) (-1.78) (-3.83)

FF3F Alphas -0.12 0.01 -0.28 -0.16 0.23 0.28 -0.19 -0.43
(-0.53) (0.03) (-1.30) (-0.61) (2.14) (2.58) (-1.56) (-3.07)

Carhart4F Alphas -0.05 0.08 -0.15 -0.10 0.33 0.38 -0.13 -0.46
(-0.21) (0.39) (-0.75) (-0.34) (3.43) (3.34) (-1.04) (-3.27)

Panel D: Firm’s Fundamental Volatility

Low Volatility High Volatility
IQL IQM IQH H-L IQL IQM IQH H-L

Excess Returns 1.33 1.29 1.05 -0.27 1.20 0.96 0.17 -1.03
(4.99) (5.31) (3.69) (-1.82) (3.25) (2.95) (0.47) (-3.91)

Char-Adj Returns 0.21 0.20 -0.01 -0.22 0.09 -0.04 -0.94 -1.03
(1.96) (2.08) (-0.06) (-1.48) (0.50) (-0.23) (-4.60) (-3.58)

Ind-Adj Returns 0.35 0.24 -0.02 -0.37 0.24 -0.037 -0.86 -1.10
(2.19) (1.83) (-0.17) (-2.41) (1.18) (-0.38) (-4.76) (-4.43)

FF3F Alphas 0.23 0.24 -0.02 -0.25 0.06 -0.13 -0.92 -0.98
(1.72) (2.11) (-0.12) (-1.64) (0.32) (-0.84) (-4.55) (-3.54)

Carhart4F Alphas 0.31 0.31 0.11 -0.20 0.18 -0.02 -0.85 -1.04
(2.50) (2.82) (0.67) (-1.27) (0.84) (-0.09) (-3.95) (-3.42)
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Table VII: The Factor-Mimicking Portfolios

At the end of June of year t from 1981 to 2012, we firstly sort firms into two size portfolios (small “S”
and big “B”) based on NYSE median size breakpoint at the end of June of year t, and then sort each
size portfolio into three R&D IQ portfolios (low “L”, middle “M”, and high “H”) based on the 30th
and 70th percentiles of R&D IQ in year t − 1. As a result, there are in total six size-IQ portfolios,
namely, S/L, S/M, S/H, B/L, B/M, and B/H. We hold these six portfolios over the next 12 months and
compute their monthly value-weighted returns. The factor-mimicking portfolio for R&D IQ (IQF) is
constructed as follows: (S/L + B/L)/2 - (S/H + B/H)/2. Size is the market equity at the end of June
of year t. We also construct four innovation-related factors based on R&D intensity (R&d expenditures
scaled by sales), significant R&D growth (RDG), innovative efficiency (IE), and the number of patents
scaled by market equity, respectively. MKT is the return on the value-weighted NYSE, Amex, and
Nasdaq portfolio minus the one-month Treasury bill rate. SMB and HML are the returns on two factor-
mimicking portfolios associated with the size effect and the book-to-market effect, respectively. MOM
denotes the momentum factor. Panel A reports the mean, standard deviation, and ex post Sharpe ratio
(SR) for these factors. Panel B reports the Pearson correlation coefficients among these factors. Panel C
report the portfolio weights and monthly Sharpe ratios of ex post tangency portfolios based on investing
in subsets of these factor-mimicking portfolios. All returns and standard deviations are in percentage.

Panel A: Summary Statistics

IQF MKT SMB HML MOM RDF RDGF IEF NPF
Mean 0.30 0.60 0.10 0.36 0.60 0.06 0.12 0.06 0.03
Stdev 2.83 4.54 3.09 3.04 4.57 3.68 3.18 3.10 2.67

SR 0.11 0.13 0.03 0.12 0.13 0.02 0.04 0.02 0.01
Panel B: Correlation Matrix

IQF MKT SMB HML MOM RDF RDGF IEF NPF
IQF 1.00

MKT 0.03 1.00
SMB 0.22 0.23 1.00
HML -0.13 -0.33 -0.34 1.00
MOM 0.19 -0.18 0.05 -0.13 1.00
RDF 0.27 0.28 0.38 -0.44 0.11 1.00

RDGF 0.16 0.14 0.06 -0.19 0.12 0.38 1.00
IEF 0.23 0.15 0.26 -0.29 -0.09 0.40 0.08 1.00
NPF 0.09 0.14 0.16 -0.22 -0.14 0.34 -0.07 0.84 1.00

Panel C: Constructions of Tangency Portfolio

Portfolio Weights Sharpe Ratio
MKT SMB HML IQF MOM RDF RDGF IEF NPF Mean Stdev SR

1. 1.00 0.60 4.54 0.13
2. 0.97 0.03 0.58 4.42 0.13
3. 0.33 0.15 0.52 0.40 1.79 0.22
4. 0.26 0.25 0.07 0.42 0.39 1.54 0.25
5. 0.15 0.24 0.05 0.37 0.19 0.44 1.44 0.31
6. 0.25 0.25 0.06 0.42 0.02 0.38 1.52 0.25
7. 0.24 0.24 0.07 0.40 0.05 0.37 1.47 0.25
8. 0.25 0.24 0.06 0.41 0.04 0.38 1.50 0.25
9. 0.25 0.24 0.06 0.41 0.03 0.38 1.50 0.25
10. 0.12 0.22 0.04 0.35 0.18 -0.03 0.03 0.04 0.05 0.41 1.31 0.31
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Figure 1: Annual Returns on IQ Spread Portfolios

This figure presents the time series of annual equal-weighted (upper panel) and value-weighted (lower

panel) excess returns on short position of the high-minus-low hedge portfolio over the period from July

1981 to July 2012. Each month stocks with non-missing lagged IQ are sorted into three groups based

on the 30%/40%/30% breakpoints of R&D IQ. We hold these portfolios over the next 12 months and

compute both equal-weighted and value-weighted returns of these IQ portfolios.
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Figure 2: Annual Returns on the IQ Factor and the Market Factor

This figure plots the return (on a per annum basis) for the IQF factor and the market factor from

1981 to 2012. MKT is the return on the value-weighted NYSE, Amex, and Nasdaq portfolio minus the

one-month Treasury bill rate. At the end of June of year t from 1981 to 2012, we firstly sort firms into

two size portfolios (small “S” and big “B”) based on NYSE median size breakpoint at the end of June

of year t, and then sort each size portfolio into three R&D IQ portfolios (low “L”, middle “M”, and

high “H”) based on the 30th and 70th percentiles of R&D IQ in year t − 1. As a result, there are in

total six size-IQ portfolios, namely, S/L, S/M, S/H, B/L, B/M, and B/H. We hold these six portfolios

over the next 12 months and compute their monthly value-weighted returns in excess of the one-month

Treasury bill rates. The factor-mimicking portfolio for R&D IQ (IQF) is constructed as follows: (S/L

+ B/L)/2 - (S/H + B/H)/2. The gray-shadowed areas represent NBER recessions.
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