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What does the volatility risk premium say about liquidity

provision and demand for hedging tail risk?

ABSTRACT

This paper provides a data-driven analysis of the volatility risk premium,

using tools from high-frequency finance and Big Data analytics. We argue that

the volatility risk premium, loosely defined as the difference between realized

and implied volatilities, can best be understood when viewed as a systemati-

cally priced bias. We first use ultra-high-frequency transaction data on SPDRs

and a novel approach for estimating integrated volatility on the frequency do-

main to compute realized volatility. From that we subtract the daily VIX, our

measure of implied volatility, to construct a time series of the volatility risk

premium. To identify the driving factors behind the volatility risk premium

as a priced bias we decompose it into magnitude and direction. We find com-

pelling evidence that the magnitude of the deviation of the realized volatility

from implied volatility represents supply and demand imbalances in the market

for hedging tail risk. It is difficult to conclusively accept the hypothesis that

the direction or sign of the volatility risk premium reflects expectations about

future levels of volatility. However, strong evidence supports the hypothesis

that the sign of the volatility risk premium is indicative of gains or losses on a

delta-hedged portfolio.



1 Introduction

Whether realized volatility is greater than or less than implied volatility is an empirical

question, and one that has been studied over time (see Mixon, 2009). However,

the literature contains conflicting evidence about implied volatility as an unbiased

estimator of future realized volatility (e.g. Canina and Figlewski, 1993; Christensen

and Prabhala, 1998). Theory suggests that implied volatility should be a biased

estimate of future realized volatility since implied volatility includes the market price

of risk; that is, implied volatility is the expected “actual” (or statistical) volatility

plus a risk premium. In mathematical finance this is formalized in terms of a change

of measure. The volatility risk premium is defined as the difference between the

expected future volatility under the physical measure (ex-ante forecast of realized

volatility) and the expected future volatility under the risk-neutral measure (implied

volatility from option prices). Therefore, the existence of a non-zero volatility risk

premium indicates that not only is implied volatility a biased estimator of future

realized volatility but, furthermore, that the bias is systematically priced.

The volatility risk premium has been an active area of research in financial eco-

nomics for some time now. Whereas existing studies typically begin with an asset

pricing model or some framework of stochastic or time-varying volatility, we take

a step back from the theoretical foundation of volatility in financial markets and

perform a purely data-driven analysis of the volatility risk premium, leveraging the

insights of Big Data analytics. That is, we start with a massive data-set of transac-

tion level prices: our sample includes over half a billion trades in SPDRs, the ETF

that tracks the S&P 500 index, from 2006 to 2011. We use this data to estimate the

realized volatility of the market using a robust methodology with minimal parametric

assumptions. Then, we compare this realized volatility to a measure of model-free

implied volatility, daily over the same five year period. Our proxy for the model-free

implied volatility is the VIX volatility index, which is commonly used in other studies

of the volatility risk premium. Since our objective is to quantify the volatility risk

premium in a model-free, nonparametric manner, we compare the computed ex-post
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realized volatility to the contemporaneous level of VIX.1 As a result, we essentially

return to the fundamental idea of the volatility risk premium as a bias – not a random

bias, but a systematically priced bias. Through our data-driven analysis we seek to

better understand the economic determinants of this bias.

Our study of the volatility risk premium represents a shift in the existing paradigm

in financial research and risk analysis. In any quantitative field, there are two ap-

proaches to conducting research: model-based and data-driven. This dichotomy is

perhaps more pronounced now than ever in the quantitative fields of financial eco-

nomics – i.e. asset pricing, derivatives, and risk management. Traditionally, the

researcher would construct a model based on theory and then use data to empirically

verify or validate the model and justify the economic intuition it conveys. However,

with the abundance of financial data being generated every day and the increasing

popularity of “Big Data” along with data mining and machine learning techniques

making their way into the financial engineer’s toolbox, a new data-driven approach

to research in these areas is gaining popularity. We view our study as an extension

of this research philosophy to better understand how the market prices volatility.

As mentioned above, the model-based approach is found in most of the existing

studies of the volatility risk premium; that is, they begin with an asset pricing model

with time-varying volatility, then use data to test hypotheses related to the insights

obtained from the model. From such studies we can identify several stylized facts

about the volatility risk premium, upon which our data-driven analysis will build.

First, traditional risk factors have poor explanatory power for the volatility risk pre-

mium (Carr and Wu, 2009). Second, the volatility risk premium is intimately related

to the payoff and P&L on volatility swaps and hence reflects the market price that

investors are willing to pay to hedge away uncertainty about future realized volatility

(Demeterfi et al., 1999; Carr and Wu, 2009; Egloff et al., 2010; Wu, 2011; Aı̈t-Sahalia

et al., 2012). Third, the volatility risk premium is, on average or in expectation,

negative – the volatility implied from option prices tends to be higher than the ex-

1As we will discuss in Section 2, most (but not all) existing studies use an ex-ante estimate of
the expected future realized volatility estimated from an autoregressive model. However, this gives
rise to statistical problems of overfitting and model misspecification, which we wish to avoid.
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pected realized volatility – which serves as evidence that investors will pay to hedge

volatility risk (Bakshi and Kapadia, 2003; Carr and Wu, 2009). Fourth, the volatility

risk premium is highly correlated with market-wide risk aversion (Bollerslev et al.,

2009, 2011; Bekaert et al., 2013; Bekaert and Hoerova, 2014). Lastly, investors are net

buyers of index options (Gârleanu et al., 2009) and the volatility risk premium rep-

resents market makers’ willingness to absorb inventory and provide liquidity (Nagel,

2012).

Our study builds upon these insights, focusing on how the market prices volatility

within the context of intermediaries that provide liquidity to investors who seek to

hedge their downside tail risk; that is, a supply and demand framework. We begin

with a statistical analysis of the data, using large-scale data collected from several

different sources. This introduces the additional challenge of having to collate data

from multiple platforms, in different formats, often on differing time scales. Such

challenges are commonplace in “Big Data” research and give rise to problems such

as spurious correlation, time asynchronicity, and noise accumulation (see Fan, 2013;

Fan et al., 2014). However, using tools from high-frequency finance and big data

analytics, we are able to obtain a clean and more precise estimate of the true in-

tegrated volatility without any reliance on a model or parametric assumptions.Our

consistently estimated realized volatility is then compared to a model-free measure of

implied volatility, proxied by the VIX index to get our time-series of the volatility risk

premium. We make the distinction between this ex-post formulation of the volatility

risk premium with other studies and note that our resulting time series is the daily

realization of the volatility risk premium. We still interpret this as the market price

of volatility risk, but consistent with our data-driven philosophy, frame our measure

of the volatility risk premium as a systematically priced bias.

When analyzing a statistical bias, sometimes it is insightful to analyze the mag-

nitude of the bias separate from the direction. In fact, based on previously observed

features of the volatility risk premium in the literature, we are able to construct

several testable hypotheses about the underlying drivers of the magnitude (absolute

value) and direction (sign) of the volatility risk premium. We are the first to perform
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a comprehensive analysis on the magnitude and direction of the systematically priced

bias associated with the volatility risk premium, which is a significant contribution of

our work. The findings are much stronger, both statistically and economically, when

looking at the determinants of the absolute value of the volatility risk premium. First

of all, while in theory or in expectation, the volatility risk premium should be nega-

tive, the realization of the volatility risk premium can be (and sometimes is) positive.

This makes sense when viewed in terms of the P&L on volatility swaps; otherwise

one side of the volatility swap would always make money which would be inconsistent

with no arbitrage. However, this raises a paradox with our observed results and the

stylized facts from the existing literature: how does one interpret long stretches of a

positive volatility risk premium? Does this mean that investors go from being risk-

averse to risk-loving? Or that they have to be paid to hedge volatility risk? Whereas

common sense may hint that these cannot be right, our analysis confirms that is not

what is happening. For example, we find that the biggest spike and largest stretch of

a positive volatility risk premium occurs at the depth of the Financial Crisis – right

after Lehman Brothers failed in Fall of 2008. Herein, our data-driven approach shows

its true value. We find that the magnitude of the volatility risk premium, that is the

absolute value of the bias between the realized and implied volatility, reflects supply

and demand imbalances in the index option market where investors buy protection

on downside tail risk. The demand effects are captured by a statistically significant

relationship between open interest on S&P 500 index put options and the magnitude

of the volatility risk premium. The supply effects, are captured by the TED spread

and the credit spread. The former often appears as a proxy for liquidity (or illiq-

uidity) in financial markets and is viewed a general measure of financial instability.

The latter, which is most significant during the Financial Crisis, interestingly has the

interpretation of dealers deleveraging and shrinking their balance sheets by selling off

risky positions. This is consistent with the evidence provided by Adrian and Shin

(2010).

As for the direction of the volatility risk premium, practitioners believe that the

volatility risk premium’s sign is indicative about future levels of realized volatility.
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When the volatility risk premium is negative, implied volatility is higher than realized

volatility and market participants believe that volatility is likely to increase in the

future. On the contrary, when the volatility risk premium is positive, implied volatility

is less than realized volatility and market participants believe that volatility is likely

to decrease in the future. This is related to the contentious idea of implied volatilitys

ability to forecast future realized volatility in the literature and, more recently, the

“Expectation Hypothesis” discussed in Aı̈t-Sahalia et al. (2012). In fact, Aı̈t-Sahalia

et al. (2012) provides a way to test this hypothesis about the direction of the volatility

risk premium. An alternative explanation in the finance literature says that the sign

of the volatility risk premium represents the gains or losses on market makers delta-

hedged positions. This was first proposed by Bakshi and Kapadia (2003) within the

context of stochastic volatility and jump-diffusion models.2 Using our model-free,

data-driven analysis, we are able to find much stronger evidence in favor of this

explanation. This is also consistent with the realized P&L on a long position in a

volatility swap.

The remainder of this paper is structured as follows. The next section, Section 2,

provides more detail on the volatility risk premium and why implied volatility can,

and will, deviate from realized volatility. We first make the distinction between the

ex-ante formulation of the variance and volatility risk premium, which requires the use

of an econometric (AR) model to forecast expected future realized variance/volatility

from lagged values, and our ex-post realization of the volatility risk premium and its

interpretation as a systematic bias that is priced by the market. In Section 2 we also

propose our hypotheses. Then, in Section 3, we review methods for computing realized

volatility with emphasis on the estimation of integrated volatility with high-frequency

data. Section 4 details the data collection and methodology for constructing the

volatility risk premium. Our empirical analysis and results are presented in Section

5. Section 6 concludes. We have two Appendices: Appendix A covers the technical

details on the Fourier transform method that we use to address the microstructure

2In a Black-Scholes-Merton world (Black and Scholes, 1973; Merton, 1973) gains or losses on the
delta-hedge perfectly offset the loss or gain on the short option position. However, that is not the
case with jumps and, in fact, there is evidence that downward jumps explain much of the pricing of
volatility risk.
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noise in our estimation of integrated volatility with the ultra-high-frequency data;

Appendix B presents simulations that demonstrate the benefit of using ultra-high-

frequency data in estimating integrated volatility and the extent to which our method

performs better than alternatives.

2 Implied Volatility and the Volatility Risk Pre-

mium

The notion of implied volatility is well understood and widely used by options traders

and financial engineers. In this section we briefly review the concept of implied

volatility and discuss in greater detail the volatility risk premium which is imbedded

in implied volatilities but not included in realized volatilities. Therefore, if we wish

to look at the difference between realized volatility and implied volatility, it gives us

a measure of the volatility risk premium. We further view this deviation between

realized and implied volatilities in an ex-post sense as a priced bias in the options

markets.

While it is well known that the Black-Scholes-Merton option pricing model relies

on unrealistic assumptions and therefore cannot reasonably price options, the model

is still widely used by traders to infer the level of volatility associated with a partic-

ular option on a given asset (e.g. stocks, indexes, or currencies). The idea is that

since volatilities are unobservable but option prices are observed and convey traders

expectations about the future riskiness of the underlying asset over the life of the

option, the financial engineer is faced with a mathematical inverse problem. Given

the output of the model – option price – solve for the value of the volatility param-

eter that sets the model value equal to the market price of the option. This is the

implied volatility. Now, of course, any option pricing model can be used; it is just

that the Black-Scholes-Merton model is the most basic and convenient. Regardless,

implied volatilities computed in this fashion are by definition model-dependent and

constrained by parametric restrictions.
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Researchers including Rubinstein (1994), Dupire (1994), and Derman and Kani

(1994) have, to much success, extended this idea of implied volatility to extract market

information across entire classes of options on a given asset (i.e. different strikes

and/or maturities; often referred to as the “volatility smile” or “volatility surface”)

and fit a deterministic function of asset price, strike price, and time to expiry.

More recently, the work of Britten-Jones and Neuberger (2000) and Jiang and

Tian (2005) broke away from the reliance on models and derived and implemented a

model-free implied volatility using only current option prices. It is along these lines

that we would like to use implied volatility in our data-driven analysis.

The implied volatility is forward-looking and represents the market’s expectation

of volatility over the life of the option. Mathematically, it can be thought of as an

expectation under the risk-neutral or pricing measure. The volatility as computed

from the underlying asset price movement can be thought of as being generated under

the physical or statistical measure. The difference between the two represents the

market price of volatility risk, or what is referred to as the “volatility risk premium”.

In some instances it is easier to work with the squared volatility, which leads to the

variance risk premium defined as follows.

VRPt = EP
t

[∫ T

t

σ2
udu

]
− EQ

t

[∫ T

t

σ2
udu

]
. (1)

If you take the square root of each of the expectations in Equation (1) you would

get the volatility risk premium which we will denote as a lowercase vrpt. While

we present all of our results in terms of the volatility risk premium, everything is

robust with respect to the variance risk premium. The reason we chose to use the

former is because the results are easier and more natural to interpret in terms of vol

units. Evidence that the two may be used interchangeably is found throughout the

literature. A recent example is Drechsler and Yaron (2011) where volatility is the

object of interest, but the quantity used in the analysis is the variance risk premium.

They define the “variance premium” as the difference between VIX squared and the

conditional expectation of the realized variance. Conceptually, this definition follows
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the idea that, for a financial instrument, the risk premium is the difference between the

price of the contract (VIX squared) and the expected payoff of the contract (realized

variance). In fact, in most volatility (variance) risk premium studies the expectation

under the risk-neutral measure will be proxied by the VIX volatility index (VIX

squared). Using VIX will be nice for our purposes as it is closely related to the

aforementioned model-free implied volatility.3 We will discuss VIX more in Section

4.2. The reader may note that the Drechsler and Yaron (2011) setup is the reverse

of our definition given in Equation (1). The decision of how to sign the volatility

or variance risk premium is a matter of personal preference and perspective. We

follow Carr and Wu (2009) who take the perspective that the negative sign reflects

investors’ willing to pay to hedge their volatility risk. The idea of hedging downside

tail risk will become a central theme in explaining our empirical results. However,

we further assert that the sign of the volatility risk premium plays a secondary role

to the magnitude of the volatility risk premium when trying to find the underlying

economic determinants over time.

In many studies the first term in Equation (1) is computed as an ex-ante condi-

tional expectation of the future realized volatility or variance given the current value

through an autoregressive model. We intentionally choose not to do this, but rather

use an ex-post measure of the realized volatility. The reason is computing the ex-ante

conditional expected realized volatility introduces model error and possible misspec-

ification bias. Instead we compare the ex-post realized volatility (averaged over a

one month period) to the model-free implied volatility (covering the same horizon) to

get a realization of the volatility risk premium on each trading day over the sample

period. In symbols, this is

vrpt =

√∫ T

t

σ2
udu−

√
EQ
t

[∫ T

t

σ2
udu

]
. (2)

3See Carr and Wu (2006) and Jiang and Tian (2007) for more on the relationship between the
model-free implied volatility and the VIX volatility index.
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Therefore another distinction from the uppercase VRPt in Equation (1) and the

lowercase vrpt in Equation (2) is that the latter is our bias representation of the

volatility risk premium. Furthermore, once we substitute the level of the VIX volatil-

ity index in for the risk-neutral expectation, it would be the realization of the volatility

risk premium which is similar to the realized P&L on a volatility swap (see Demeterfi

et al., 1999).

Recent studies have been able to establish some interesting empirical properties of

the volatility/variance risk premium. Carr and Wu (2009) note that traditional risk

factors have very little explanatory power for the variance risk premium (we are able

to confirm this in our empirical analysis of the volatility risk premium). They suggest

that there is an independent risk factor that is driving the principally negative vari-

ance risk premium. Furthermore, they find evidence that the VRP is time-varying.

Bollerslev et al. (2009) study the predictability of the variance risk premium on stock

market returns from 1990 to 2005. They find that there is a strong, statistically

significant positive relationship between the VRP and quarterly future stock returns.

They note that the predictive power is better than other financial and macroeconomic

factors that are typically used in stock market return forecasting. Bollerslev et al.

(2011) examine the volatility risk premium and its relation to several macro-financial

state variables. They find that the vrp exhibits significant temporal dependencies

related to the macro-finance state variables and is also able to help predict stock

market returns. Zhou (2011) studies the predictability of the variance risk premium

across financial markets through equity returns, bond returns, and credit spreads. He

observes that the VRP predictability maximizes typically in the one to four month

horizon, and the short-run risk premium dynamics can be interpreted within a gen-

eral equilibrium model which prices stochastic economic uncertainty. The calibrated

model can help explain the equity premium puzzle and the credit spread puzzle in

the short-run. However, it remains a challenge to incorporate long-run predictability

patterns of consumption growth and asset returns found in literature.

Several studies have examined the role that jumps play. Using high-frequency

index futures data, Wu (2011) computes maximum likelihood estimators of the in-
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stantaneous realized return variance. His analysis shows that both the jump arrival

rate and the absolute value of the negative variance risk premium are proportional

to the variance level. This last finding, in terms of the absolute value, will be very

relevant in developing our hypotheses below and in interpreting the results of our

analysis. Specifically, it is evidence that when volatility is high, the volatility risk

premium is either very positive or very negative; that is the bias between realized

and implied volatility increases when the level of uncertainty is heightened.

Todorov (2010) analyzes the variance risk premium under a semi-parametric stochas-

tic volatility model with the inclusion of price jumps. The model parameters are

estimated by GMM with high-frequency data on the five-minute return of S&P 500

index futures contract from 1990 to 2002. The results provide empirical evidence that

investors are willing to pay for protection against jumps, especially when preceded

by recent jumps, which supports the hypothesis that risk aversion is time-varying

and that the volatility risk premium represents the cost of protection against market

crashes.

The main takeaways are that the volatility risk premium appears to be a priced

risk factor in the capital markets (both equity and credit) and investors are willing

to pay a premium to hedge their downside risk, especially when uncertainty is high.

However, our knowledge is still very limited about the determinants of the volatility

risk premium and we do not have sound empirical evidence documenting what exactly

the volatility risk premium says about the mechanics of the market for pricing and

hedging risk.

Bollerslev et al. (2011) refer to their estimate of the vrp as a “risk aversion index”.

It seems that many practitioners agree with this interpretation of the volatility risk

premium, and we are able to find some evidence that supports this point. This leads to

something of a paradox: suppose we choose to define the volatility risk premium such

that it is typically negative, thereby indicating that market participants are willing to

pay to hedge their volatility risk. Then, when the vrp gets more negative it indicates

that investors are becoming more risk averse. But then how do we explain the

occurrence of a large positive spike in the volatility risk premium; investors becoming
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risk loving? As we will show, the data indicates several instances over our five year

sample period where the vrp turns positive, most notably during the Financial Crisis.

Surely, investors did not become risk loving during the Financial Crisis.

Our prior is that the positive spikes in the volatility risk premium reflect liquid-

ity conditions in the financial markets. Consequently, several recent papers in the

financial economics literature have linked the vrp to liquidity, intermediation, and

hedging demand. These papers provide the conceptual underpinning that we use to

construct stylized facts and testable hypotheses about the economic meaning of the

volatility risk premium. First, the volatility risk premium represents option mar-

ket makers’ willingness to absorb inventories and provide liquidity (Gârleanu et al.

(2009), Nagel (2012)). Also, investors are net buyers of index options (Gârleanu et al.

(2009)). To the extent that investors use index put options to hedge their downside

tail risk, then we should be able to use option market data to draw inferences about

investors’ demand for hedging downside tail risk and intermediaries’ willingness to

meet this demand (i.e. provide liquidity). The volatility risk premium can, there-

fore, naturally be interpreted as the compensation that option market makers receive

for this intermediation and liquidity provision to meet hedging demand. Adrian and

Shin (2010) find evidence of this interpretation in the expansion and contraction of

financial intermediaries’ balance sheets.

Even within this conceptual framework of intermediation and liquidity provision,

the existence of a positive vrp is still a bit puzzling. Does this mean that periods of

positive vrp indicate that sellers of volatility have to pay hedgers in order to meet

their demand? Rather, perhaps the direction (sign) contains different information

than the magnitude of the vrp. By some accounts, traders view the sign of the

volatility risk premium as indicative of nothing more than the market’s expectation of

future levels of volatility. It is then the magnitude of the volatility risk premium that

represents the actual price of volatility risk. The magnitude of the volatility captures

the extent to which market makers are willing to absorb inventory, provide liquidity,

and meet hedging demand. When demand for hedging downside tail risk increases,

market makers will take the short side (sell volatility) but must be compensated
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appropriately. The price of volatility increases and implied volatility rises relative to

realized levels. When demand for hedging downside tail risk decreases, there will be a

selloff of volatility and market makers will take the other side, but only at a substantial

discount. Implied volatility falls relative to realized levels. Therefore, the magnitude

captures the extent to which market makers must be compensated to provide liquidity

to the options markets, either as a premium or discount if intermediaries are selling

volatility to meet hedging demand or buying it back in response to a reduction in

hedging demand.

Taking the view of the volatility risk premium as a systematically priced bias we

decompose the vrp in Equation (2) into sign and magnitude as follows

vrpt =

∣∣∣∣∣∣
√∫ T

t

σ2
udu−

√
EQ
t

[∫ T

t

σ2
udu

]∣∣∣∣∣∣× sgn(vrpt). (3)

.

We then perform several statistical and econometric tests on each of the compo-

nents of vrp in Equation (3). First we must introduce our testable hypotheses about

both the magnitude and direction of the volatility risk premium.

Magnitude Hypotheses:

H1: The magnitude of the volatility risk premium reflects investors’ demand for

hedging tail risk.

H2: The magnitude of the volatility risk premium reflects the willingness of option

market makers to absorb inventory and provide liquidity.

Direction Hypotheses:

H3: The sign of the volatility risk premium contains information about future

levels of realized volatility relative to implied volatility.

H4: The sign of the volatility risk premium reflects the delta-hedged gains or losses

for option market makers.
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We should note that the hypotheses need not be mutually exclusive. Hypothesis

H1 can be thought of as demand-side effects and Hypothesis H2 can be thought of

as supply-side effects. We may, therefore, find that supply and demand forces work

with or against each other to determine the magnitude of the vrp at a given time.

In order to econometrically test the volatility risk premium, we must come up

with an accurate and clean measure of the actual volatility in the market. With the

growth of high-frequency financial data and the application of continuous time finance

to the analysis of such data, the tools for estimating the integrated volatility of a price

process have become plentiful. In the next section, we first review various estimators

and then present our methodology for computing the volatility risk premium using

ultra-high-frequency data.

3 Realized Volatility and Estimating Integrated

Volatility with High-Frequency Data

In this section we review some of the existing methodologies for estimating volatility,

with emphasis on recent advances in the use of high-frequency data. Typically, the

modeler will assume that the latent true (log)price Xt follows an Ito process

dXt = µtdt+ σtdWt (4)

where Wt is a standard Brownian Motion and µt and σt are time-varying drift and

volatility, respectively, that may or may not follow stochastic processes themselves.4

However, what we observe is the transaction price, or its logarithm, Yt at times

{ti} ∈ [0, T ], which are related to Xt according to

Yti = Xti + εti , (5)

4Some methodologies can also be applied to jump-diffusion processes rather than just pure dif-
fusion processes.

13



Note that the εti in Equation (5) represents microstructure noise.

The goal is to use observable price data to estimate the volatility σt in Equation

(4). It is important to note the different assumptions on the structure of σt and εt as

quite often these are the subtleties that set one method apart from another.

First, suppose we observe regularly spaced Yti , where ti − ti−1 = ∆. Then, let

us define n = T
∆

; i.e. n is the number of sampled data points. If σt is modeled

parametrically as constant σ, and the noise distribution is assumed to be Gaussian

with mean 0 and variance a2, then the log-likelihood function of δYi = Yti − Yti−1
is

l(σ2, a2) = −1

2
log det(Ω)− n

2
log(2π)− 1

2
δY ′Ω−1δY, (6)

where Ω is the covariance matrix of δY and Ω−1 can be calculated explicitly.

Choosing σ and a to maximize Equation (6) gives the Maximum Likelihood Es-

timator, or MLE, of volatility. It can be shown that the MLE is consistent for

both the volatility component σ2 and the noise component a2 at rates Op(n
−1/4) and

Op(n
−1/2), respectively. Moreover, misspecification of the marginal distribution of ε

does not have adverse consequences. (Aı̈t-Sahalia et al. (2005), Xiu (2010))

The assumption that volatility is constant is probably not very reasonable. There

is considerable evidence of time-varying volatility which means that we have to come

up with a way to estimate the instantaneous volatility process σt either parametrically

or nonparametrically (see, e.g., Andersen et al. (2004)). Quite often we are interested

in estimating the integrated volatility over a period of time. This is done by making use

of the quadratic variation, 〈X,X〉T , of the stochastic process described by Equation

(4). The quadratic variation is

〈X,X〉T =

∫ T

0

σ2
t dt. (7)
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We want to estimate this quantity using the observable price data. A näıve estimator

would be the Realized Volatility (RV) estimator

[Y, Y ]T =
n∑
i=1

(Yti+1
− Yti)2, (8)

which is a consistent estimator in a noise-free model. However, since the observable

price process given by Equation (5) is contaminated by the microstructure noise this

RV estimator is both biased and inconsistent.

Statistical theory indicates that we should be able to improve the accuracy and

precision of our estimate by increasing the rate at which we sample the data; hence

the value of ultra-high-frequency data.5 This would be the case if we could observe

Xt directly; but microstructure noise introduces an added dimension of complexity

to the problem. In fact, assuming iid noise, the bias of the RV estimator is 2nE[ε2].

This tells us that as we increase the frequency of the price data, the effect from noise

becomes more overwhelming.

One way to address the problem of noise when sampling at too high of a fre-

quency is to sample sparsely and use the corresponding RV estimator. This practice,

known as the subsampling approach, was first introduced by Zhou (1996). However,

even when sampling sparsely at the optimally-determined frequency, the fact that

large portions of data are discarded violates basic statistical principles. Furthermore,

Zhang et al. (2005) argue that sampling over longer horizons merely reduces the im-

pact of microstructure, rather than quantifying and correcting its effect for volatility

estimation.

One of the earliest solutions to incorporate the full data sample is Two Scales

Realized Volatility (TSRV) as proposed by Zhang et al. (2005). The TSRV estimator

is based on subsampling, averaging, and bias-correction. They sample sparsely over

subgrids of n observations to get K subsamples on a slower time scale. For each such

sample the RV estimator is [Y, Y ]
(sparse,k)
T , k = 1, · · · , K. Averaging them yields the

5See Appendix B where we use simulations to illustrate the benefit of using ultra-high-frequency
data.
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estimator [Y, Y ]
(avg)
T , and the final de-biased estimator is:

〈̂X,X〉
(tsrv)

T = [Y, Y ]
(avg)
T − n̄

n
[Y, Y ]T , (9)

after accounting for the bias, where n̄ = n
K

. Choosing the optimal sampling step

K = cn2/3 yields the convergence rate n−1/6. The TSRV estimator is shown to

outperform the standard RV estimator empirically in the study by Aı̈t-Sahalia and

Mancini (2008).

A closely related estimator is Multiple Scale Realized Volatility (MSRV), which

is proposed and derived in Zhang (2006). As a generalization of TSRV, the MSRV

estimator combines M different time scales with weights, when chosen optimally, can

achieve the optimal convergence rate n−1/4. Based on a different smoothing idea, Fan

and Wang (2007) introduces a different estimator achieves the same rate, but allows

jumps in the price processes.

Realized kernels, which are based on linear combination of autocovariances, rep-

resent another popular class of estimators. Barndorff-Nielsen et al. (2008) designed

several realized kernels which are robust to endogenous sampling and noise. The real-

ized kernel estimators can achieve convergence rates up to that of MSRV. Barndorff-

Nielsen et al. (2009) discuss details of implementing the realized kernel methodology

to estimate integrated volatility with high-frequency data. Barndorff-Nielsen et al.

(2011) are able to achieve consistency for one of the more problematic realized kernel

estimators by making use of subsampling.

The pre-averaging approach of Jacod et al. (2009) uses all or most of the data,

but averages over a moving window. The averages are used to compute the real-

ized volatility, which then have to be adjusted by an additive term to eliminate bias.

The result is a rate optimal (with convergence rate n−1/4) consistent estimator of

integrated volatility in the presence of microstructure noise. In many ways, one can

think of the pre-averaging approach as removal of microstructure noise by local aver-

age smoothing. Additionally, pre-averaging is an effective method of data cleaning.
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Returning to the parametric approach, if we do not assume that volatility is

constant and noise normally distributed with variance a2, but nevertheless use the

log-likelihood function in Equation (6), the resulting estimator is the quasi maximum

likelihood estimator (QMLE). Interestingly, it is still a consistent estimator at the

most efficient rate n−1/4. Statistical properties of the QMLE are derived in Xiu (2010).

Finally, another interesting approach involves working on the frequency domain

rather than the time domain. As such, it relies on the Fourier transform (see Olhede

et al. (2009)). The procedure computes a consistent and unbiased estimator of in-

tegrated volatility at ultra-high-frequencies under very general specifications of the

microstructure noise process. This is the methodology that we employ to estimate

integrated volatility for our study.

With the frequency domain method, integrated volatility is estimated through the

variance of the Fourier transform of the increment process. Under the rationale that

the high-frequency coefficients are more heavily contaminated by the noise, the de-

bias procedure is done locally at each frequency. The unknown parameters involved

in the de-bias are estimated through MLE using a Whittle likelihood function. This

frequency domain methodology allows us to easily model autocorrelated noise as a

moving average process, and then disentangle the noise effect at each frequency in the

same way. The order of the moving average process – i.e. the appropriate number

of lags in the autocorrelated noise – is determined through model selection using

the corrected Akaike information criteria (AICC). Technical details regarding this

procedure can be found in our Appendix A.

The frequency domain method for estimating integrated volatility has several de-

sirable features, both in terms of the statistical properties and the practicality in

applying to real financial data. From the financial modeling and data analysis point-

of-view, working in the frequency domain provides an elegant way to address more

general specifications of the microstructure noise process. For the most part, the

other methods discussed above assume that the noise process, εt, is iid or uncor-
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related. However, in practice this is an unreasonable assumption.6 Autocorrelated

microstructure noise may be a more reasonable assumption, since large disturbances

this second may be highly correlated with large disturbances last second, especially

if there is a lot of noise in the market. This may give the impression that the market

is more turbulent or volatile, when in fact the persistent volatility in our observed

time series, Y , is coming from the microstructure noise. Thus, we need a clean way

to strip away the true volatility of the price process in the presence of microstructure

noise at ultra-high-frequencies. This is why we use the frequency domain estimation

method in computing integrated volatility. In fact, we find that the data indicates

the latent noise process has on average lag-1 autocorrelation, and the time varying

order of autocorrelation ranges from 0 to 5.

4 Data and Methodology

4.1 Data Collection

The data used for our empirical analysis came from several different sources, on

multiple platforms, and were analyzed using a variety of softwares. This is a common

feature of Big Data analytics and requires careful processing and collating to ensure

that the data are in consistent formats, with large-scale computations often being

done in parallel (see Fan et al., 2014). First, we began by cleaning and processing

the ultra-high-frequency transaction data for the SPDR ETF. Then we used the

cleaned price data estimate the integrated volatility on the frequency domain via the

Fast Fourier Transform (FFT) algorithm. The computed integrated volatility was

then merged with a daily time series of the VIX index, and the difference between

the two time series gave us the volatility risk premium. Finally, we had to collect,

clean, and merge with the economic, financial market, and risk factor variables from

6While most previous approaches assume iid microstructure noise, recent work by Aı̈t-Sahalia
et al. (2011) addresses the complicated issue of estimating volatility from ultra-high-frequency data
with dependent microstructure noise. Our methodology is similar in that it also permits estimation
of integrated volatility for more general classes of microstructure noise, but with less parametric
restrictions.
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their respective databases. This data was used in our econometric analyses of the

determinants and drivers of the volatility risk premium.

Transaction price data for the SPDR ETF (ticker SPY) was obtained from the

TAQ database within WRDS. The sample period we studied goes from July 2006 to

June 2011. Over these five years there were a total of 523,814,632 trades. For our

integrated volatility estimation method to work best, we need as many observations

as possible.7 Trade volume decreases considerably as we go further back in time

which is why we stop at 2006. The first year of data (2006-2007) has approximately

one-quarter the number of trades as the final year of data (2010-2011). Additionally,

this sample period contains about the same number of observations Pre-Crisis, Crisis,

and Post-Crisis for better comparison across subperiods.

For data cleaning and processing purposes, we filtered the data based on the

“Correction Indicator” (CORR) and “Sale Condition”. We kept only transactions

where CORR=00; these represent regular trades that were not cancelled or corrected.

This resulted in only 0.003% of the data being removed from the sample, leaving

us with 523,796,850 trades remaining. We also eliminated any “Special Condition

Trades” which introduced suspicious and irregular patterns in the transaction price

sequences (i.e. large jumps that were immediately reversed). This resulted in 1.8% of

the data being removed from the sample leaving us with 514,270,624 trades remaining.

Since multiple trades can occur in any given second, we next introduced an aggre-

gation step in the data processing. This would allow us to have a second-by-second

time series of SPY prices. We tried two methods for aggregation: median and size-

weighted average price and did not find significant aberrations. Finally, we had to

include an expansion step to account for seconds where no trades were executed. To

address these instances we used piecewise constant interpolation; i.e. if there was

no trade at second t then we filled it with the last executed price t− 1 (“last tick”).

7We illustrate this principle with simulations in Appendix B. The simulations show that, under
our method, sampling at higher frequencies allows for the most precise estimation of integrated
volatility. Our method performs better than näıve subsampling rules that are typically used in
high-frequency studies, and as noted earlier, has the added benefit that the microstructure noise
can be autocorrelated and so we need not restrict ourselves to the case where microstructure noise
is independent over time.
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This resulted in 29,461,859 second-by-second data points covering 1,259 trading days.

This was the data that was used to compute our daily time series of monthly realized

volatility (on a rolling 21 trading day basis) via the frequency domain estimation

methodology.

The daily opening level of the VIX volatility index was obtained from the CBOE

database. As discussed in Section 2, the VIX is a model-free implied volatility ex-

tracted from near-term put and call options on the S&P 500 index.8

The explanatory variables in our regressions also come from multiple sources.

First, we have the traditional risk factors from the Fama-French Three Factor Model

(Fama and French, 1993); the data for the Fama-French factors are available from

Kenneth French’s website.9 We also include the credit spread, also known as the

default risk premium, which is the difference in yield on Baa-rated and Aaa-rated

corporate debt. The yields on corporate debt, by Moody’s rating, are available from

the FRED database maintained by the Federal Reserve Bank of St. Louis. Use of

the credit spread as a risk factor in asset pricing studies goes back to Chen et al.

(1986) and has the interpretation as a measure of investor risk aversion. It has sub-

sequently been used in volatility risk premium studies such as Zhou (2011). We will

see that there is also a supply-side interpretation of the highly significant effects that

the credit spread has on the volatility risk premium (and its magnitude), especially

during the Crisis subperiod. The TED spread is included to capture liquidity ef-

fects in the financial markets and as a measure of distress in the financial system.

The TED spread is the difference between 3-month Eurodollar rates and 3-month

Treasury rates, both of which are also available through the FRED database. The

interpretation of the TED spread follows from the logic that as uncertainty in the

financial system heightens, financial institutions charge more to each other for short-

term borrowing– this is reflected in Eurodollar rates; at the same time they require

8For details on the methodology used in constructing the VIX volatility index please see CBOE
(2009). A similar methodology is employed in Jiang and Tian (2005) where the information content
of model-free implied volatility is studied. The CBOE volatility index is studied in Carr and Wu
(2006) and Jiang and Tian (2007).

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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better collateral, which drives up demand for Treasury Bills and pushes down their

rates (Brunnermeier, 2009).

As a final explanatory variable we include the daily open interest for put options

on SPY, which is obtained from the OptionMetrics database. We use this as a

proxy for investors’ demand for hedging tail risk, following the combined logic of

several recent options studies. Cao and Han (2013) use open interest as a proxy

for option demand pressure. Additionally, Gârleanu et al. (2009) find that investors

are net buyers of index options. Since S&P 500 index put options give investors

a way to hedge against market-wide crashes, the open interest provides a natural

proxy for investors’ demand to purchase protection and hedge downside tail risk.

While options on the SPDR ETF (SPY) are different from index options on the S&P

500 (SPX), they essentially provide the same protection for investors and have some

features that may make them more attractive (see Kelly et al., 2012). In fact, our

choice to use SPDR options might be even more consistent with our desired proxy as

demand for hedging downside tail risk, since the former are American-style options

with physical settlement (SPX index options are European-style options with cash

settlement only) and therefore give the investor more flexibility and robustness in

protecting themselves against market crashes. Furthermore, when we discuss market

makers’ delta-hedging, SPDRs would be a more effective hedge on SPY put options

than on SPX index options.

The explanatory variables are summarized in Table 1. Descriptive statistics for

all variables are given in Table 2, which will be referred to throughout the discussion.

4.2 Construction of the Volatility Risk Premium

In this section we discuss our construction of the volatility risk premium from the

market data. Consistent with our representation of the vrp as a “bias”, we calculate

it as the deviation of the realized volatility from the expected volatility implied by

option prices. Therefore we first compute the realized volatility as the estimated

integrated volatility using the Fourier method, described in Section 3 and detailed
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in Appendix A, on the ultra-high-frequency transaction data for the SPDR S&P 500

ETF (ticker SPY). This gives us a daily time series of the realized volatility; however,

there is a lot of variation in the day-to-day realization of this quantity which will

contribute to additional statistical noise in our attempt to quantify the systematic

bias that is the vrp. To better represent this systematic bias we smooth the time-

series of realized volatility by taking a rolling average of the next 21 trading days so

as to cover the same month as the contemporaneous VIX index, which is our measure

of model-free implied volatility. Define this rolling average as
{
RVt

}2011.06

t=2006.07
, where

RVt = 1
21

21∑
i=1

RVt+i−1 and RVi represents the realized volatility for day i computed

using the frequency domain methodology.

The time series of the VIX Open value, {VIXt}2011.06
t=2006.07 is then subtracted from the

average realized volatility to measure the extent that the implied volatility represents

a biased expectation of the future realization:

vrpt = RVt − VIXt. (10)

We use the Open value (rather than the Close) of VIX so as to be consistent with

our realized volatility estimate in terms of the 21-trading-day period for which we are

looking at on any given day.10

A time series of our computed vrp over the sample period is plotted in Figure 1.

Looking at the Figure, two things stand out immediately: first, the risk premium is

negative throughout most of the sample period; second, there are a few pockets where

the vrp goes positive– most notably in the third quarter of 2008. That large positive

spike which extended for a period of more than two months seemed to be anomalous

to what most of the literature says. To the extent that the negative vrp represents

investors being risk averse, does a positive vrp mean that investors went from risk

averse to risk loving during this time? That certainly does not seem right, since

that period includes the failure of Lehman Brothers and the plunging of the global

economy into the worst financial crisis in history. So perhaps it means that investors

10For robustness, we ran the regressions using the VIX Close value and found that the results
(sign, significance) are consistent for the variables of interest in our study.
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who typically pay to hedge volatility risk were no longer willing to, but rather required

compensation (i.e. be paid) to enter into any volatility related transaction? A similar

story was told about the negative yields on T-Bills during the Fall of 2008, but it

doesn’t seem to fit with what is going on in our data. So perhaps it is a fictitious

by-product of the frequency domain estimation methodology? Fortunately, that was

not the case as we were able to confirm positive vrp including the third quarter of

2008 using other methods for computing realized volatility (i.e. the TSRV estimator

of Zhang et al. (2005) and the pre-averaging estimator of Jacod et al. (2009)).

One possible explanation for this large positive spike is that the option markets

underpriced the actual volatility level during that period of time. Unexpected shocks

such as Lehman Brothers’ failure and subsequent government interventions kept the

markets on edge, and it was impossible to know the magnitude of such a market

tsunami and its impacts on realized volatilities, a priori. The idea that the government

would provide a backstop against any large financial catastrophe, known as the “Fed

put”, was arguably priced into the market keeping implied volatilities low relative to

realized volatilities. Therefore, there was a strong bias in one direction with implied

volatility underestimating the realized volatility. This eased a bit after Lehman did

fail, but when officials were quick to step in thereafter, it remained to keep implied

volatilities lower than perhaps they should have been given the circumstances. After

the government programs such as TARP and QE were in place and it became clear

there would be no “quick fix”, implied volatilities rose relative to realized levels (even

though both were rising steadily during this entire period because of the high degree

of overall uncertainty) thus reversing the bias.

5 Empirical Analysis

5.1 Preliminary Regressions

We start with a couple of baseline regressions. First, we ran a standard regression

with the traditional risk factors from the Fama-French Three Factor Model (Fama
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and French (1993)).11 The Fama-French regression is

vrpt = β0 + β1Mktt + β2SMBt + β3HMLt + εt. (11)

The results for the Fama-French regression can be found in Table 3.12 Note that

although the market risk premium is highly significant (HML is also significant at the

< 5% level), the R-squared is very small (less than 3%) indicating that traditional

risk factors have very little explanatory power for the volatility risk premium. This

is consistent with previous findings in other studies.

We now introduce additional risk factors that may have theoretical links to the

volatility risk premium as indicated by the literature (e.g. Gârleanu et al. (2009),

Nagel (2012), etc.). We want to be able to capture demand for hedging tail risk,

liquidity provision, and the overall stability of the financial system. We proxy demand

for hedging tail risk with the open interest on SPY put options. The TED spread is

viewed by many as a proxy for liquidity risk and a measure of distress in the financial

sector (see Brunnermeier, 2009). The credit spread, or the default risk premium, can

be viewed as a measure of macro-level risk aversion, but also has a nice interpretation

in terms of liquidity provision capturing the de-leveraging and risk reduction that

occurred after the onset of the Financial Crisis. This next regression is specified as

vrpt = β0 + β1Mktt + β2SMBt + β3HMLt + β4CSt + β5TEDt + β6POIt + εt. (12)

The results for this regression over the whole sample period are reported in Table

4. Here we see that the inclusion of the additional factors – credit spread, TED

spread, and put option open interest – improve the explanatory power substantially

as the R-squared is over 40%. The market risk premium remains significant at the

< 1% level; the credit spread and put option open interest are also significant at the

< 1% level. TED spread is not significant.

11Data for the Fama-French factors are available from Kenneth French’s website: http://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

12All regressions results are reported with Newey-West robust standard errors.
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Continuing with our view that the vrp is a priced bias, we next decompose it

into magnitude and sign and test the hypotheses proposed in Section 2. We start

by examining the magnitude of the bias and its relationship to supply and demand

imbalances in the market for hedging tail risk.

5.2 Magnitude Regressions

Our next econometric specification is to use the explanatory variables from Equation

(12), but now regressing the magnitude component of the volatility risk premium on

them to see what additional insights might be obtained within the context of our

hypotheses. The magnitude regression is specified as

|vrpt| = β0 + β1Mktt + β2SMBt + β3HMLt + β4CSt + β5TEDt + β6POIt + εt. (13)

The results of the magnitude regression for the whole sample period are shown

in Table 5. By regressing the absolute value of vrp on the explanatory variables,

the R-squared increases to 58.32% compared to 41.55% in the original vrp regression

specified by Equation (12). That is, that over our entire sample period the factors are

able to explain more than half of the variation in the magnitude of the volatility risk

premium. Since the most significant variables are the credit spread and the put option

open interest, much of the explanatory power may be attributed to these supply and

demand effects after controlling for the traditional risk factors.

Additional evidence for the value of studying the size of the bias apart from the

direction can be seen by comparing the sign and economic meaning of the coefficient

estimates in the original regression (Table 4) with those in the magnitude regression

(Table 5). Both regressions have credit spread as one of the most significant factors.

Note, however, that the p-value associated with the magnitude regression is much

smaller than that on the original vrp regression. Furthermore, the coefficient of CS

in the magnitude regression is positive, but negative in the original regression. Given

the popular interpretation of the vrp as the amount that investors pay to hedge

their volatility risk, the difference in signs is perfectly explainable, but only during
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those times when the vrp is negative. The coefficient estimate of -6.9265 indicates

that a 100bps widening of the credit spread results in an increase of approximately

693bps in the cost of hedging such risk (i.e. more negative). This is consistent with

our interpretation of the coefficient estimate of 5.1703 in the magnitude regression.13

Since, under our hypotheses, it is the magnitude of the deviation of realized volatility

from implied volatility that represents the market price of volatility, the interpretation

is that a 100bps widening of the credit spread results in an increase of approximately

517bps in this price, holding the effects from the other factors constant. However, this

intuition falls apart when we consider the times when vrp is positive (e.g. December

2007 through January 2008, and August 2008 through October 2008). The coefficient

estimate of -6.9265 basically says that a 100bps widening of the credit spread results

in a decrease in the positive vrp of 693bps. This interpretation is not economically

justified, especially within the context of the framework we propose. Aside from the

R-squared and coefficient signs, analyzing the magnitude of the bias is provides more

statistical clarity since allowing the volatility risk premium to change sign introduces

additional noise that cannot be explained by the data. This can easily be seen in

Table 2, where the standard deviation of vrp is uniformly higher than abs(vrp) across

the entire sample (23% higher) and all subperiods (39% higher during the Crisis).

The other highly significant variable in the magnitude regression is the put option

open interest, which is our measure of demand for hedging downside tail risk. For the

entire sample period, the estimated coefficient of put option open interest is 6.7138×

10−7 and is statistically significant at the< 1% level. The interpretation and economic

significance of this result is that, over the entire sample period, a 1 million unit

increase in hedging demand results in an increase in the magnitude of the volatility

13Also, when credit spreads widen, other variables can change too. Therefore, it might be insightful
to also perform marginal regressions on the individual factors. The logic behind marginal regressions
is as follows. Suppose Y = α + β1X1 + β2X2 + ε; when X1 increases from x1 to x1 + ∆1, a more
plausible scenario is for X2 to change from E[X2|X1 = x1] to E[X2|X1 = x1+∆1] rather than staying
the same. If we treat the conditional expectation E[X2|X1] as linear in X1 (i.e., E[X2|X1] = a+bX1),
then the change in y is ∆y = (β1+β2b)∆1 rather than just β1∆1, which is equivalent to the marginal
regression of Y on X1. That is, if we regress Y on X1 only, then the coefficient before X1 is exactly
β1 + β2b. We ran marginal regressions of this type on all of the factors for the entire sample period
and each of the subperiods for robustness. We find that the results are consistent with those reported
for the multivariate regressions. Some marginal regression results are reported in the paper.
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risk premium of approximately 67bps. This is what can be considered a demand-side

effect, holding supply constant. If we were to allow the supply and other factors to

change, then the marginal regressions tell a similar story: a 1 million unit increase in

hedging demand results in an increase in the magnitude of the volatility risk premium

of approximately 57bps.14 For the entire sample period, the data supports H1, both

statistically and economically.

Next, we performed the magnitude regression in Equation (13) for three subperi-

ods – “Pre-Crisis”, “Crisis”, and “Post-Crisis” – to see if we can identify any patterns

that might coincide with the dramatic changes in financial markets as a result of the

Financial Crisis of 2007-2009. It is difficult to assign start and end points to financial

crises, since they are not as clearly defined as business cycles. To best address this, we

use the official NBER recession dates which puts our “Crisis” period from December

2007 to June 2009. The results for the magnitude regressions for the three subperi-

ods are reported in Tables 6, 7, and 8, for “Pre-Crisis”, “Crisis”, and “Post-Crisis”,

respectively.

An initial comparison of the results in Tables 6, 7, and 8 with those in Table

5 reveals two preliminary observations. First, there is considerable variation in the

explanatory power of the factors over the three subperiods. The R-squared in the

“Pre-Crisis” subperiod is only slightly lower than the R-squared for the whole sample

period; the R-squared for the “Crisis” subperiod is higher than the whole sample

period; and the R-squared for the “Post-Crisis” subperiod is lower than the whole

sample period. We might, therefore, interpret the R-squared for the whole sample

period as representative of the average explanatory power of our factors with respect

to the magnitude of the volatility risk premium. We also observe that, over the entire

sample period, the most significant explanatory variables are credit spread and put

option open interest (which serves as compelling evidence in favor of the hypotheses

H1 and H2); and there seems to be a trend that these two factors become increasingly

more significant over time. In the “Pre-Crisis” subperiod, neither the credit spread

14The coefficient on the POI marginal regression is 5.6972 × 10−7 and is significant at the < 1%
level.
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nor put option open interest are significant, but the TED spread is the sole significant

explanatory variable (at the < 1% level). During the “Crisis” subperiod, the credit

spread is highly significant (at the < 1% level) and open interest is significant at the

10% level. In the “Post-Crisis” subperiod, both credit spread and put option open

interest are highly significant (at the < 1% level), and the TED spread reappears as

minimally significant (< 10% level). When examined together, the results render an

interesting story that supports our hypothesis that the magnitude of the volatility risk

premium (i.e. the bias between realized and implied volatilities) represents the price

that options dealers require to provide liquidity and investors pay to hedge their tail

risk. In fact, the trend seems to indicate that the increase in high-frequency data will

allow for more precise and accurate measurement of the volatility risk premium and

that going forward the results will provide even stronger support for this data-driven

analysis of the priced bias in options markets.

During the “Crisis” subperiod, the R-squared of the magnitude regression indi-

cates that the factors are able to explain more than 63% of the variation in the

magnitude component of the volatility risk premium. The most significant explana-

tory variable is the credit spread, which not only provides validation for the risk

aversion interpretation of the volatility risk premium, but also supports the hypothe-

sis that the magnitude of this bias reflects the willingness of market makers to absorb

inventory and take risk onto their balance sheet. This is what we refer to as the

supply-side effect.

The supply-side effect is, holding demand for hedging tail risk constant, if market

makers are less willing to take on additional risk then as a result the price for volatility

risk will increase. There is evidence of this through the credit spread variable. In

addition to being used in the literature as a proxy for risk aversion, more recently

some papers have suggested that the credit spread represents “global risk appetite”

(Bekaert et al., 2009, 2011). Professional traders view the magnitude of the volatility

risk premium as a reflection of the risk tolerance of market makers, along the lines

of this “risk appetite” interpretation. We further believe that credit spreads, or the

difference between yields on speculative and investment grade debt, captures a related
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supply-side effect that is present for the entire sample period and seems to dominate

during the “Crisis” subperiod. When a financial institution is concerned with the risk

on its balance sheet, one way to reduce the overall risk exposure is to de-leverage.

De-leveraging can be achieved through the right-hand-side of the balance sheet by

altering the capital structure: buying back debt, issuing equity, or both. However,

there is evidence that large financial institutions have a preference to de-leverage

through the left-hand-side of the balance sheet: i.e. reducing its holding of risky

assets (Adrian and Shin, 2010). Bai and Collin-Dufresne (2011) show that the credit

spread actually picks up this effect quite well, particularly during the 2007- 2009

Financial Crisis. They present evidence that the large financial institutions classified

as primary dealers in the credit markets sold off their holdings of risky corporate debt

which would have exerted downward pressure on speculative grade bond prices and

increases in yields relative to investment grade debt.

This de-leveraging justifies the dominant impact of credit spreads in explaining

the volatility risk premium during the “Crisis” subperiod in our results, since there

is a high degree of overlap in the set of institutions that serve as primary dealers in

the credit markets and those that are market makers in index options.15 During the

“Crisis” subperiod, recall that the most statistically significant explanatory variable

was the credit spread (see Table 7). The economic significance of the coefficient

estimate is that for a 100bps widening of the credit spread we would expect a 624bps

increase in the price of volatility risk. As can be seen from Figure 2, credit spreads

increased dramatically at the end of 2008. While this can certainly be viewed as an

increase in risk aversion or decrease in global risk appetite, it is also reflective of the

massive de-leveraging that occurred after the failure of Lehman Brothers. As large

financial institutions reduced their holdings of speculative grade debt they were also

reluctant to take on additional risk in other markets. It is reasonable to conclude

that during this time dealers in index options increased the price at which they were

willing to make a market for hedging downside tail risk, thus increasing the magnitude

15Compare the Federal Reserve Bank of New York’s list of primary dealers at http://www.

newyorkfed.org/markets/pridealers_current.html with the members of the Options Clearing
Corporation that are dealers of index options at http://www.optionsclearing.com/membership/
member-information/.
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of the volatility risk premium during this time. Because of the inherent leverage in

option positions, it is not surprising to see a multiplier effect to the order of 5 to 7

times that of what occurs in the credit markets. This supply-side effect was clearly

the driving force behind the increase in the magnitude of the volatility risk premium,

not only because it is the only statistically significant explanatory variable during the

“Crisis” subperiod, but also because there were no sharp increases in demand for put

options on SPRDs as can be seen in Figure 3 where open interest fluctuated between

5,000,000 and 10,000,000 when the range for the entire sample period is 2,000,000

to nearly 16,000,000; this can also be seen in Table 2 by comparing the standard

deviation for the put open interest variable across subperiods. While it may seem

curious that during the most uncertain point in the financial crisis investors were

not aggressively trying to hedge their downside tail risk, but there is an intuitive

explanation for this: the so-called “Fed put”. After the failure of Lehman Brothers

and the subsequent bailout of the financial industry, it became clear that the federal

government would provide a backstop either implicitly or explicitly. Therefore, there

was little need for investors to pay the high price to hedge their downside tail risk.

After the financial crisis, however, demand for hedging downside tail risk returned

(see Figure 3) and, indeed, put option open interest was highly significant in the

“Post-Crisis” subperiod (see Table 8). This is in addition to the credit spread which

still represents the supply-side effect.

Of course, we can also examine what impact this supply-side effect would have

on the magnitude of the volatility risk premium if we allow the demand-side effect

and other factors to change with it. The marginal regressions indicate that a 100bps

increase in the CS results in a 550bps increase in the price of volatility risk over the

entire sample period.16

Lastly, there is the “Post-Crisis” subperiod. Although the R-squared (27.75%)

drops off substantially compared to either of the other subperiods or the entire sample

period, first note that both the credit spread and the put option open interest are

highly significant. The economic interpretation of the coefficients is consistent with

16The coefficient on the CS marginal regression is 5.5003 and is significant at the < 1% level.
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the findings from the whole sample period and supports our hypotheses. The R-

squared is interesting since it indicates perhaps a structural change after the financial

crisis. Since the R-squared measures the proportion of the variation in the y-variable

(here the magnitude of the vrp) that is explained by the x-variables (the risk factors

and economic variables) it makes sense to simply look at the descriptive statistics to

see if any patterns emerge to which we might attribute a structural change. In the

“Post-Crisis” subperiod, both the vrp and its magnitude have less variation (standard

deviations of 4.19 and 3.52, respectively) than the entire sample period (standard

deviations of 6.91 and 5.63, respectively), so a possible explanation is that some

factor(s) lost relatively more of their variability and became less correlated with the

vrp. We know that early on in the sample period, the TED spread appeared to have

good explanatory power with respect to the vrp and even more so for the magnitude,

but that the significance seems to disappear over time. We also see that the mean

and standard deviation of the TED spread become very small in the “Post-Crisis”

subperiod (mean of 38bps and standard deviation of 17bps). The TED spread was

our proxy for liquidity risk and financial market stability, which has a secondary or

tertiary effect when analyzing the regression results. However, it is possible that

after the Crisis, the low TED spread, with its minimal variation, ceased to be a good

proxy for liquidity risk and financial stability. We also saw that over time the put

option open interest, our proxy of demand for hedging tail risk, seemed to become

increasingly more important. While the mean put option open interest increased over

time (4.13mm, 6.59mm, and 10.51mm, for the “Pre-Crisis”, “Crisis, and “Post-Crisis”

subperiods, respectively), which could just be indicative of the growing market for

index options and options on ETF’s, its standard deviation falls during the “Crisis”

subperiod (from 1.57 to 0.92) and then more than doubles in the “Post-Crisis” period

(2.05). It is possible that because of the government’s implicit and explicit backstop

– the so-called “Fed put” – made demand play less of a role during the Crisis, but as

we emerged, new demand for hedging tail risk came to be a key driver in explaining

the market price of volatility risk. Therefore, our structural change could be the

increased role of put option open interest and investors’ demand for hedging tail risk

rather than liquidity and overall financial stability as being a key factor. Additionally,
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since the quality and quantity of data increased over this period, it might also suggest

the additional economic insight that can be obtained from in-depth analysis of large

scale financial data.

Wu (2011) shows that the absolute value of the variance risk premium is propor-

tional to the level of volatility in the market. Therefore, the variance risk premium

(and consequently the volatility risk premium) is either very negative or very positive

when volatility levels are high. This provides added justification for examining the

absolute value of the volatility risk premium to make inferences about the price of

volatility risk. More specifically, it suggests that uncertainty in the market increases

the bias between realized and implied volatility and the price that must be paid to

hedge this risk. In this section we were able to provide empirical evidence explicitly

linking this to demand for hedging tail risk and liquidity provision to the volatility

market (hypotheses H1 and H2). Next we examine the direction, or sign, of the

volatility risk premium.

5.3 Sign Tests

While a negative volatility risk premium is justified theoretically and for the most

part supported by the data, the large positive spike in vrp in the middle of the Finan-

cial Crisis as well as several other positive spikes throughout the entire sample period

provides a paradox. To help reconcile this paradox within our price bias interpreta-

tion, we now examine the information in the direction, or sign, of the bias as proposed

by Hypotheses H3 and H4. Recall, H3 echos the view of some derivative traders that

the direction of the volatility risk premium reflects the market’s expectation of future

changes in volatility. When the vrp is negative, then the realized volatility in the eq-

uity market is less than the implied volatility extracted from option prices. Volatility

is priced higher in the forward-looking options market indicating that market partic-

ipants expect realized volatility to increase in the future. When the vrp is positive,

then the realized volatility in the equity market is greater than the implied volatility

extracted from option prices. Volatility is priced lower in the forward-looking options

32



market indicating that market participants expect realized volatility to decrease in

the future.

We seek to test Hypothesis H3 using a modified version of the regression proposed

in Aı̈t-Sahalia et al. (2012) to test the Expectation Hypothesis. First, to establish a

baseline we run the following specification of the Expectation Hypothesis:

RVt = α + β1VIXt−21 + εt. (14)

Here, the y-variable is the average ex-post realized volatility using the frequency do-

main estimation methodology for the current 21 trading-day period; the x-variable is

the 21 trading-day lagged VIX. The idea is to see whether implied volatility doescon-

vey information about the market’s expectations about the future realized volatility

levels. If implied volatilities are unbiased and efficient estimates of future realized

volatility, then we could use the VIX index to predict what the future level of realized

volatility will be one month in the future. This is the essence of the Expectation

Hypothesis.

The results for this regression can be found in Table 9. The coefficient β1 is

significant at the < 1% level and the R-squared indicates that the lagged VIX is able

to explain 32.56% of the future realized volatility. This suggests that implied volatility

does have some predictive power for realized volatility, or in other words, it represents

to some extent the market’s expectation about future realized volatility. We note

that the t-statistic and p-value associated with β1 just tells us that the coefficient

is statistically different from zero. It is easy to show that β1 is also statistically

less than 1.17 The implication is that given the current level of VIX, to predict the

future realized volatility you would first discount the level of VIX (by approximately

0.45) and then add a constant (α = 5.28%). Furthermore, the results in Table 9

indicate that for VIX > 9.629, implied volatility tends to overestimate future realized

volatility; this implies that, except when VIX is very low, there should be a negative

volatility risk premium. However, we know from examining our time series, that the

17Construct the new test statistic t̂ = β1−1
seβ1

= 0.45133−1
0.06634 = −8.27.
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vrp was positive when VIX was approaching historical highs. Therefore, perhaps a

simple linear model such as in Equation (14) does not tell the entire story about the

Expectations Hypothesis when it comes to volatilities.

To test hypothesis H3, we introduce a binary variable, sgn(vrp) which equals -1

if vrp < 0 and +1 if vrp > 0 and run the modified regression specified as:

RVt = α + β1VIXt−21 + β2sgn(vrpt−21) + εt. (15)

This attempts to identify whether or not the direction, or the sign, of the volatility

risk premium provides additional information about future levels of realized volatility.

The results in Table 10 indicate that including the sign of the vrp improves the

explanatory power as the adjusted R-squared is 54.7% with everything – α, β1, β2 –

significant at the < 1% level. Note that β1 is still statistically less than 1, but the

relationship between the lagged level of VIX and the future level of realized volatility

is no longer linear.

The results can be used to predict next month’s realized volatility in terms of

the sign of the current volatility risk premium and conditional on the current level

on VIX. Suppose the VIX is currently 21 (roughly the median value for our entire

sample period). Then our prediction for next month’s realized volatility level depends

on whether the vrp is currently positive or negative. If the vrp is negative, then the

results of the regression specified by Equation (15) predicts next month’s realized

volatility to be approximately 13.41%; and, thus, when the vrp is negative, implied

volatility overestimates expected future realized volatility. However, if the vrp is

positive, the forecast changes to 29.95% and now implied volatility underestimates

expected future realized volatility. This appears to confirm hypothesis H3; similar

analysis of higher and lower VIX values (e.g., using 30 and 13, roughly the median

value for the “Pre-Crisis” and “Crisis” subperiods, respectively) leads to the same

conclusion.

These results should be met with some degree of skepticism. Aı̈t-Sahalia et al.

(2012) show that as the forecasting horizon increases, the parameter estimates of
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the Expectation Hypothesis regression become biased and inefficient. So, while our

results do perhaps provide some evidence in favor of hypothesis H3, the statistical

inferences may not be sound. Furthermore, it does not say much about the economic

meaning of a positive or negative volatility risk premium.

Alternatively, Bakshi and Kapadia (2003) provide an explanation that is more

consistent with our motivating theme about market-making and intermediation in

the options market. They show, both theoretically and with empirical evidence on

index options, that a negative volatility risk premium is representative of the under-

performance of a delta-neutral portfolio, where the trader sells calls and purchases ∆

units of the underlying as a hedge (or sells puts and short sells ∆ units of the under-

lying as a hedge). Since we are examining the vrp in terms of market makers who

provide liquidity to investors that wish to hedge downside tail risk with put options

on the market (the S&P 500 index or SPDR ETF), the market maker must short sell

the underlying (e.g. SPDRs) in order to maintain delta-neutrality. Consequently, the

market maker will have a gain on the delta-hedge when the S&P 500 is down and

a loss on the delta-hedge when the S&P 500 is up. Table 11 shows the annualized

returns on the S&P 500 index when the volatility risk premium is positive (Panel A)

and negative (Panel B). We can see that for every period that the vrp is positive, the

S&P 500 has negative returns. This is consistent that, in the less frequent instances

when the vrp is positive, traders making a market in SPY put options have a profit

on their delta-neutral hedge. More often than not, when the vrp is negative, traders

making a market in SPY put options are losing money on their delta-neutral hedge

as evidenced by the majority of periods that show positive returns on the S&P500,

as well as the overall average annualized return of 10.99% when the vrp is negative.

This suggests strong evidence in favor of H4.

In order to give more econometric rigor and statistical significance of this rela-

tionship posited by hypothesis H4, we ran the following regression:

S&P returnt = β0 + β1sgn(vrpt) + εt (16)
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where the dependent variable, S&P returnt, is the annualized daily return on the

S&P500 index and on day t and the independent variable, sgn(vrpt), is the sign of

the contemporaneous volatility risk premium; The results for the regression specified

by Equation (16) can be found in Table 12. The coefficient estimate for β1 is negative

and significant at the < 5% level. We can therefore conclude from this regression

that returns on the S&P 500 index statistically depend on whether the volatility

risk premium is positive or negative. Furthermore, the negative coefficient estimate

supports the delta-hedged gains argument of Bakshi and Kapadia (2003), but within

the context of put options on the market: when the vrp is positive, returns on the

S&P 500 (or SPDRs) can be expected to be negative (and the delta hedge of being

short the underlying will make money), whereas when the vrp is negative, returns

on the S&P 500 (or SPDRs) can be expected to be positive (and the delta hedge of

being short the underlying will lose money).

In sum, we find that there is evidence, albeit weak, in favor of H3. We find

more economic significance supporting H4. There is also very strong statistical and

economic relationships found in the data to support H1 and H2, and the marginal

regression results confirm that these relationships still hold and need not be mutually

exclusive.

6 Conclusion

“Big Data” has the potential to transform research in many areas, including financial

economics and risk analysis. We use a massive data set, collected from numerous

sources, to perform a unique study of how the market prices volatility. Our research

questions equate the volatility risk premium to a systematically priced bias between

ex-post realized volatility and ex-ante expected volatility implied by options. Unlike

most other studies of the volatility risk premium, rather than start with a theoret-

ical model of volatility, we begin with intensive data-driven methods leveraging the

insights of Big Data analytics.
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First, we collected price and volume data on every transaction in SPDRs, the

ETF that tracks the S&P 500 index, over a five year period from 2006 through 2011

yielding over half a billion observations. We then use a novel technique to estimate the

integrated volatility using the processed ultra-high-frequency data in the frequency

domain. This methodology allows us to distinguish the true volatility of the price

process and the microstructure noise, even when the noise is correlated over time. The

result is a consistent, de-biased estimate of the integrated volatility as our measure

of realized volatility. In constructing the time series of the volatility risk premium,

we smooth the daily realized volatility by taking a 21-trading-day rolling average and

subtract from it the daily value of VIX volatility index for the same month.

Insofar as the option implied volatility represents the market’s expectation of

future volatility, this formulation of the volatility risk premium is very much like a

statistical bias. We decompose this bias into magnitude (absolute value) and direction

(sign) and analyze them separately. Based on stylized facts about the volatility

risk premium, we construct four testable hypotheses about its economic meaning

and determinants. The general theme is that the volatility risk premium cannot be

explained by traditional risk factors, but rather are related to supply and demand

forces in option markets and the role of market makers in providing liquidity to

investors who seek to hedge their downside tail risk. This is all viewed within the

lens of the volatility risk premium being systematically priced bias.

The results indicate that the size of this bias represents the price that market

makers require to meet the demand of investors who wish to hedge their downside

tail risk and compensates for supply and demand imbalances in this market. In

fact, we find compelling evidence that during the Financial Crisis, supply-side forces

dominated as financial intermediaries shed risky positions and were reluctant to take

more risk onto their balance sheets. Demand-side forces dried up as the implicit

guarantees and “Fed put” made hedging tail risk less attractive for investors. This

is reflected in the highly significant credit spread, which reflects market makers de-

leveraging during the Crisis, and reduced significant in put option open interest, which

is our proxy for investors’ demand for hedging tail risk.

37



Practitioners view the sign of the volatility risk premium, on the other hand,

to the market’s expectation about future levels of volatility. This is similar to the

Expectation Hypothesis discussed in Aı̈t-Sahalia et al. (2012) and, while we are able to

find some evidence in favor of this hypothesis in the data, statistical issues raise doubt

on the validity of the inferences and there is no clear economic interpretation within

the conceptual framework we established. An alternative hypothesis links the sign of

the volatility risk premium to the gains and losses on traders’ delta-hedged positions

when making a market for index options. Bakshi and Kapadia (2003) were the first

to propose this interpretation, and we are able to find fairly conclusive evidence in

favor of it in the market for S&P 500 put options. That is, market makers provide

liquidity to investors seeking to hedge their downside tail risk – via put options on

SPDRs – will delta-hedge these positions by shorting shares of the underlying ETF.

We find that returns on the S&P 500 are negative over all consecutive trading days

where the volatility risk premium is positive, indicating a delta-hedged gain for the

market maker. We find that the returns on the S&P 500 are positive over all but

two series of consecutive trading days where the volatility risk premium is negative,

indicating a delta-hedged loss for the market maker.

Overall, the ability of our data-driven analysis to identify economic insights into

how the market prices volatility is very encouraging for researchers interested in us-

ing similar approaches for other quantitative studies in financial economics and risk

analysis. While we do utilize the results from the existing literature along with eco-

nomic intuition to highlight some stylized facts about the volatility risk premium and

come up with testable hypotheses, our analysis does not rely on any specific theo-

retical model and has minimal parametric assumptions. The trend over our sample

period seems to indicate that the increase in high-frequency data will allow for more

precise and accurate measurement of the volatility risk premium as a systematically

priced bias. This will then allow for even better identification of the determinants

of the volatility risk premium and highlight role that intermediation in the market

for volatility and hedging downside risk as well as the role that supply and demand

imbalances play in driving the deviation between realized and implied volatilities.
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Appendix

A The Fourier Transform Method

A.1 Frequency Domain Representation

First define the discrete Fourier transform of the increment process ∆Utj = Utj+1
−Utj

of a sample from a generic time series Utj , j = 1, · · · , N,

J
(U)
k =

√
1

N

N∑
j=1

∆Utje
−2πitjfk , fk =

k

T
. (17)

Assume that the latent true (log)price Xt follows an Ito process as in Equation

(4). To simplify the notation, we assume the drift term is zero as it does not affect

the asymptotic behaviour (for a more complete version, see Olhede et al. (2009)).

The frequency domain estimator uses the fact that the integrated volatility can be

written in terms of the variance of J
(X)
k . It can be shown that

∫ T

0

E{σ2
s}ds =

N−1∑
k=0

E|J (X)
k |

2 +O(∆t). (18)

However, what we observe is the transaction price Yt at times {ti} ∈ [0, T ] as in

Equation (5), so at each frequency there is a noise contribution,

N−1∑
k=0

E|J (Y )
k |

2 =
N−1∑
k=0

(
E|J (X)

k |
2 + a2|2 sin(πfk∆t)|2

)
, (19)

where for now we assume εt is a white noise process with variance a2.
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A.2 The De-biased Estimator

The frequency domain representation gives us a nice way to disentangle the the mi-

crostructure noise. If we could shrink by

Lk =
E|J (X)

k |2

E|J (X)
k |2 + a2|2 sin(πfk∆t)|2

(20)

at each frequency, an oracle estimator would be 〈̂X,X〉
(Lk)

T =
∑N−1

k=0 Lk|J
(Y )
k |2. It

remains the task to estimate the multiscale ratio Lk. The unknown quantities in

Equation (20) can be estimated by the Whittle log-likelihood,

l
(
σ2
X , a

2
)

= −
N/2−1∑
k=1

log
(
σ2
X + a2|2 sin(πfk∆t)|2

)
−

N/2−1∑
k=1

|JYk |2

σ2
X + a2|2 sin(πfk∆t)|2

,

(21)

therefore

L̂k =
σ̂2
X

σ̂2
X + â2|2 sin(πfk∆t)|2

. (22)

The final de-biased estimator is

〈̂X,X〉
(L̂k)

T =
N−1∑
k=0

L̂k|J (Y )
k |

2. (23)

It can be shown that this is a consistent estimator of the integrated volatility,

〈̂X,X〉
(L̂k)

T =

∫ T

0

σ2
t dt+Op(∆t

1/4). (24)

A.3 Autocorrelated Noise

If we assume that εtj is an autocorrelated stationary time series, it is convenient to

model it as a moving average process of order q,

εtj = ηtj +

q∑
k=1

θkηtj−k
, (25)
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where {ηtj} is a white noise process with variance σ2
η. This MA(q) specification leads

to a new likelihood function

l
(
σ2
X , σ

2
η, {θk}

q
k=1

)
(26)

= −
N/2−1∑
k=1

log

(
σ2
X + σ2

η|1 +

q∑
k=1

θke
2iπfk|2

)
−

N/2−1∑
k=1

|JYk |2

σ2
X + σ2

η|1 +
∑q

k=1 θke
2iπfk|2

,

and therefore the multiscale ratio is defined as

L̂k =
σ̂2
X

σ̂2
X + σ̂2

η|1 +
∑q

k=1 θ̂ke
2iπfk|2

. (27)

To determine the order q in Equation (25), we minimize the corrected Akaike infor-

mation criterion (AICC),

AICC(q) = −2l
(
σ̂2
X , σ̂

2
η, {θ̂k}

q
k=1

)
+ 2

(q + 2)N

N − q − 3
. (28)
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B Simulations

We compare the performance of Fourier method and naive subsampling at different

sampling frequency on simulated data using a Heston (1993) model:

dXt = (µ− νt/2)dt+ σtdBt,

dνt = κ(α− νt)dt+ γν
1/2
t dWt,

where νt = σ2
t . The parameters are set as follows: µ = 0.05, κ = 5, α = 0.04, γ = 0.5,

and the correlation between the two Brownian motions Bt and Wt is ρ = −0.5.18 The

initial values are X0 = 0 and ν0 = 0.04. We take T as one day, and simulate data

with ∆t = 0.1s, which yields a sample path of length N = 234, 000 in one trading

day. We first calculate the underlying true integrated volatility by a Riemann sum

approximation of the integral, i.e.: T
N

∑N
i=1 σ

2
i =

∫ T
0
σ2
t dt. Then we add AR(2) noise

εi = 0.6εi−1 − 0.4εi−2 + ηi, to get the observed data Yi = Xi + εi, whereηi’s are i.i.d.

N (0, σ2
η) and we set ση = 5× 10−4.

We estimate the integrated volatility using two methods, the Fourier method and

the naive subsampling, which yields < X,X >Fourier
T and < X,X >subsampling

T . We

calculate the RMSE (root-mean-square error) of the estimates to the truth over 200

simulated sample paths. To further illustrate the effect of high frequency data, we

evaluate two methods from ∆t = 1s up to ∆t = 150s. Figure 4 shows the RMSE of the

Fourier method and the naive subsampling against decreasing sampling frequencies.

The takeaway of this figure is two folds. First, the Fourier method can effec-

tively filter the correlated microstructure noise, and works better than naive sampling

method. We did not implement other more sophisticated methods for comparison, as

the simulation is not to illustrate the superiority of the Fourier method, but rather

to justify the use of high frequency data. Second, if we can filter the microstructure

noise, higher frequency gives us a better estimate as we are able to utilize more data

hence more information.

18These are the same as those used in the Olhede et al. (2009) simulations.
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Figure 1: Time Series of the Volatility Risk Premium
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Figure 2:
Top: Time series of the absolute value of the volatility risk premium or the magnitude
component of the vrp
Bottom: Time series of the credit spread, defined as the yield on Baa-rated and Aaa-
rated corporate debt.
Note: The vertical lines separate the three subperiods.
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Put open interest is our proxy for investor demand for hedging downside tail risk.
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Variable Name Description
rm − rf (Mkt) Fama-French market risk factor; market return minus risk-free rate
SMB Fama-French size factor
HML Fama-French value factor
Credit Spread (CS) Difference in yield on Baa-rated and Aaa-rated corporate debt
TED Spread (TED) Difference between 3-month Eurodollar rate and 3-month Treasury rate
Put Open Interest (POI) Daily open interest for put options on SPY

Table 1: Explanatory variables

Whole-Sample Pre-Crisis Crisis Post-Crisis
(N = 1238) (N = 338) (N = 375) (N = 525)

Mean Med Std Mean Med Std Mean Med Std Mean Med Std
vrp -8.10 -8.32 6.91 -4.53 -3.86 3.82 -9.17 -9.05 10.20 -9.63 -10.00 4.19

abs(vrp) 9.03 8.68 5.63 4.86 3.88 3.39 11.58 10.58 7.34 9.90 10.00 3.52
VIX 24.20 21.88 11.70 15.56 13.54 5.16 34.58 28.19 14.68 22.34 21.84 4.86
Mkt 0.02 0.10 1.60 0.04 0.11 0.86 -0.09 -0.01 2.45 0.09 0.14 1.10
SMB 0.016 0.02 0.64 -0.02 -0.04 0.42 -0.02 -0.03 0.88 0.03 0.05 0.54
HML -0.007 -0.01 0.73 -0.03 -0.03 0.26 -0.004 0.01 1.13 0.007 -0.01 0.55
CS 1.35 1.09 0.68 0.90 0.90 0.05 2.07 1.56 0.80 1.12 1.07 0.25
TED 0.87 0.44 0.88 0.61 0.40 0.51 1.78 1.38 1.03 0.38 0.33 0.17

POI(×106) 7.58 7.04 3.15 4.13 3.86 1.57 6.59 6.50 0.92 10.51 10.65 2.05

Table 2: Descriptive statistics for all variables across all periods.
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Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) -8.074632 0.329221 -24.5265 < 2.2e-16 ***
Mkt -0.876107 0.190903 -4.5893 4.902e-06 ***
SMB 0.049744 0.365566 0.1361 0.8918
HML 1.008269 0.478214 2.1084 0.0352 **

Adjusted R2 0.02711
F-statistic 12.49 on 3 and 1234 DF
p-value 4.759e− 08

Table 3: Regression of vrp on Fama-French risk factors. Standard errors and t-
statistics are computed using the Newey-West correction. Significance levels are <
1%, < 5%, and < 10% for ***, **, and *, respectively.

Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) 4.2742e+00 1.4152e+00 3.0201 0.002579 ***
Mkt -7.4433e-01 1.5077e-01 -4.9368 9.033e-07 ***
SMB 2.3838e-01 2.4281e-01 0.9817 0.326418
HML 7.1323e-01 3.7520e-01 1.9009 0.057546 *
CS -6.9265e+00 1.2609e+00 -5.4935 4.785e-08 ***
TED 2.0051e+00 1.4945e+00 1.3416 0.179965
POI -6.2710e-07 9.9694e-08 -6.2902 4.396e-10 ***

Adjusted R2 0.4155
F-statistic 147.6 on 6 and 1231 DF
p-value < 2.2e− 16

Table 4: Regression of vrp on explanatory variables: Whole Sample Period. Stan-
dard errors and t-statistics are computed using the Newey-West correction. Signifi-
cance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
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Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) -3.6404e+00 1.0045e+00 -3.6239 0.000302 ***
Mkt 4.2400e-01 9.4296e-02 4.4965 7.560e-06 ***
SMB -1.1227e-01 1.5503e-01 -0.7242 0.469092
HML -1.3273e-01 1.4148e-01 -0.9381 0.348354
CS 5.1703e+00 6.4763e-01 7.9833 3.243e-15 ***
TED 6.8857e-01 5.3153e-01 1.2955 0.195408
POI 6.7138e-07 8.3925e-08 7.9998 2.856e-15 ***

Adjusted R2 0.5832
F-statistic 289.5 on 6 and 1231 DF
p-value < 2.2e− 16

Table 5: Regression of |vrp| on explanatory variables: Whole Sample Period. Stan-
dard errors and t-statistics are computed using the Newey-West correction. Signifi-
cance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.

Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) -4.7395e+00 7.4185e+00 -0.6389 0.5233
Mkt 1.5573e-01 1.5360e-01 1.0139 0.3114
SMB 1.6859e-01 3.2744e-01 0.5149 0.6070
HML 4.1528e-01 6.1978e-01 0.6700 0.5033
CS 7.5490e+00 8.0908e+00 0.9330 0.3515
TED 5.6288e+00 8.7777e-01 6.4126 4.934e-10 ***
POI -1.6247e-07 2.9512e-07 -0.5505 0.5823

Adjusted R2 0.5789
F-statistic 78.23 on 6 and 331 DF
p-value < 2.2e− 16

Table 6: Regression of |vrp| on explanatory variables: Pre-Crisis Subperiod. Stan-
dard errors and t-statistics are computed using the Newey-West correction. Signifi-
cance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
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Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) -1.0040e+01 4.0327e+00 -2.4897 0.01322 **
Mkt 4.8153e-01 1.1335e-01 4.2481 2.735e-05 ***
SMB 1.4010e-01 1.7774e-01 0.7883 0.43105
HML -1.6113e-01 1.8898e-01 -0.8527 0.39440
CS 6.2419e+00 7.3952e-01 8.4405 7.350e-16 ***
TED 8.9576e-01 6.6878e-01 1.3394 0.18127
POI 1.0826e-06 5.8060e-07 1.8647 0.06302 *

Adjusted R2 0.6366
F-statistic 110.2 on 6 and 368 DF
p-value < 2.2e− 16

Table 7: Regression of |vrp| on explanatory variables: Crisis Subperiod. Standard
errors and t-statistics are computed using the Newey-West correction. Significance
levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.

Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) -6.3951e+00 3.1377e+00 -2.0381 0.042046 **
Mkt 5.2553e-02 1.6511e-01 0.3183 0.750387
SMB -2.5424e-01 2.6633e-01 -0.9546 0.340230
HML 2.9242e-01 3.3875e-01 0.8632 0.388413
CS 1.1665e+01 2.2727e+00 5.1329 4.042e-07 ***
TED -5.2204e+00 3.0118e+00 -1.7333 0.083630 *
POI 4.9471e-07 1.6949e-07 2.9188 0.003666 ***

Adjusted R2 0.2775
F-statistic 34.55 on 6 and 518 DF
p-value < 2.2e− 16

Table 8: Regression of |vrp| on explanatory variables: Post-Crisis Subperiod. Stan-
dard errors and t-statistics are computed using the Newey-West correction. Signifi-
cance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
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Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) 5.28323 1.70561 3.0976 0.001996 ***
VIXt−21 0.45133 0.06634 6.8033 1.601e-11 ***

Adjusted R2 0.3256
F-statistic 588 on 1 and 1215 DF
p-value < 2.2e− 16

Table 9: Regression to test the Expectation Hypothesis. Standard errors and t-
statistics are computed using the Newey-West correction. Significance levels are <
1%, < 5%, and < 10% for ***, **, and *, respectively.

Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) 11.61774 3.27874 3.5434 0.0004101 ***
VIXt−21 0.47898 0.05470 8.7565 < 2.2e− 16 ***
sgn(vrpt−21) 8.26995 3.13237 2.6402 0.0083930 ***

Adjusted R2 0.547
F-statistic 735.2 on 2 and 1214 DF
p-value < 2.2e− 16

Table 10: Regression to test the Modified Expectation Hypothesis (H3). Standard
errors and t-statistics are computed using the Newey-West correction. Significance
levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
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Positive vrp Dates Trading Days Avg(vrp) S&P500 Return
2007/02/02 - 2007/02/27 17 1.49 -47.81%
2007/07/12 - 2007/07/26 11 2.76 -53.34%
2007/12/21 - 2008/01/02 7 1.17 -30.65%
2008/08/15 - 2008/10/08 38 11.69 -169.62%
2010/04/08 - 2010/05/04 19 3.63 -8.37%

Average S&P500 return when vrp is positive: -88.13%

(a) Panel A: S&P500 returns (annualized) when vrp is positive

Negative vrp Dates Trading Days Avg(vrp) S&P500 Return
2006/07/31 - 2007/02/01 128 -3.88 24.50%
2007/02/28 - 2007/07/11 93 -3.72 22.89%
2007/07/27 - 2007/12/20 103 -8.18 -1.71%
2008/01/03 - 2008/08/14 156 -6.52 -15.89%
2008/10/09 - 2010/04/07 375 -13.40 18.56%
2010/05/05 - 2011/06/29 291 -9.88 10.42%

Average S&P500 return when vrp is negative: 10.99%

(b) Panel B: S&P500 returns (annualized) when vrp is negative

Table 11: Test of Delta-Hedged Gain/Loss Hypothesis

Variable Estimate Std Error t-value Pr(> |t|) Significance
(Intercept) -0.38570 0.23188 -1.6633 0.09650 *
sgn(vrp) -0.49555 0.22375 -2.2148 0.02696 **

Adjusted R2 0.00347
F-statistic 5.308 on 1 and 1236 DF
p-value 0.0214

Table 12: Regression of S&P 500 return on the direction of vrp. Standard errors
and t-statistics are computed using the Newey-West correction. Significance levels
are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
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