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We examine how peer learning affects analyst forecast outcomes using 

network theory. We construct a measure of information network centrality among 
analysts within a brokerage using the degree of sector overlaps in their coverage 
portfolios. We find that analysts with higher centrality scores produce more 
accurate forecast estimates, exhibit less pronounced herding behavior, and 
experience stronger market reactions to their forecast revisions. Consistent with a 
peer-learning channel, high centrality analysts are also more likely to incorporate 
information from their colleagues’ recent forecast errors into their forecast 
revisions. Overall, our evidence suggests that peer-learning within a brokerage is 
an important information acquisition channel for financial analysts. 
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We examine how peer learning affects analyst forecast outcomes using 
network theory. We construct a measure of information network centrality among 
analysts within a brokerage using the degree of sector overlaps in their coverage 
portfolios. We find that analysts with higher centrality scores produce more 
accurate forecast estimates, exhibit less pronounced herding behavior, and 
experience stronger market reactions to their forecast revisions. Consistent with a 
peer-learning channel, high centrality analysts are also more likely to incorporate 
information from their colleagues’ recent forecast errors into their forecast 
revisions. Overall, our evidence suggests that peer-learning within a brokerage is 
an important information acquisition channel for financial analysts. 
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How sell-side equity research analysts generate their forecast estimates remains an open 

and important topic of research (e.g., Bradshaw, 2011). Extant studies find that an analyst’s 

individual characteristics, such as work experience and ability, and personal and 

professional connections, such as access to management, determine her forecast accuracy.1 

However, even the best research analysts do not work in isolation. Their brokerage houses 

provide not only operational and back-office resources but also co-workers, who may 

provide a potentially valuable network of knowledge and information. 

We propose that analysts who can better tap into the expertise of their in-house 

colleagues produce higher quality equity research. For example, an analyst covering Google 

may provide useful industry insights to a colleague covering Apple. This type of 

information sharing is potentially valuable because extant studies find that industry 

knowledge is an important factor in producing better forecast estimates (e.g., Clement, 

Koonce, and Lopez, 2007; Hilary and Shen, 2013). As conversations and workplace 

interactions facilitate the sharing of valuable knowledge, both analysts may be able to make 

better forecasts. Lehman Brother’s research department in the early 1990s is an example of 

the importance of peer influence. To foster peer learning, Lehman Brothers instituted a 

policy that every analyst’s presentation must refer to at least two colleagues. During that 

period, Lehman Brothers was regularly ranked among the top brokerage firms.2 

While such anecdotes emphasize the importance of collaboration, measuring 

information flows between colleagues is a challenging task because workplace interactions 

are unobservable. To test our hypothesis, we adopt a network theory approach using 

analysts as nodes within the information network of their brokerage. An analyst located in 

a central nodal position has a high Analyst Centrality score and is at the epicenter of 

information exchange within the brokerage network. In contrast, an analyst in a peripheral 

nodal position is less well-positioned to benefit from in-house information exchange and 

has a low Analyst Centrality score. To construct network connections among analysts in a 

brokerage, we track the extent of sector overlaps among their coverage portfolios.3 Our 

                        
1 See for example Clement (1999), Jacob, Lys, and Neale (1999), Chen and Matsumoto (2006), Clement, 
Koonce, and Lopez (2007), Cohen, Frazzini, and Malloy (2010), Hilary and Shen (2013), and Soltes (2014).  
2 “The Risky Business of Hiring Stars,” Harvard Business Review, May 2004 
3 Sectors are classified according to the 2-digit Global Industrial Classification Standard (GICS) codes.  
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premise is that information exchange is more likely to occur between a pair of analysts if 

there is sector overlap in their coverage portfolios. By this construction, an analyst with 

sector overlaps with a larger number of colleagues will shift towards the epicenter of the 

information network of her brokerage and will score higher on our Analyst Centrality 

measure. 

Our tests indicate that analysts with higher Analyst Centrality scores produce more 

accurate forecasts. Economically, a standard deviation increase in Analyst Centrality is 

associated with a 7.5% reduction in absolute forecast error relative to the median. Our 

tests include firm-year fixed effects to ensure that our findings are not driven by 

unobserved firm heterogeneity. Our findings are also unlikely due to variation across 

brokerages as our tests also include brokerage-year fixed effects. 

This evidence is consistent with the view that analysts with higher Analyst Centrality 

scores have better access to information. We also expect that better access to information 

translates into more informative forecast revisions. Consistent with this hypothesis, we 

find that analysts with higher Analyst Centrality scores are less likely to issue herding 

forecast revisions. Their forecast revisions command stronger market reactions, especially 

when the forecast revisions diverge from their prior forecast values or diverge from the 

prevailing forecast consensus. Holding consensus deviation at its sample mean (median), 

an increase in Analyst Centrality by one standard deviation is associated with a 4.86% 

(1.61%) increase in annualized market-adjusted abnormal returns. 

While our findings indicate that analyst centrality influences forecast outcomes, they do 

not necessarily imply that analysts learn from their peers. High centrality may simply 

reflect an analyst’s innate ability that is incremental to other factors discussed in the prior 

literature. Therefore, we design a specific test to distinguish the learning hypothesis from 

the innate ability hypothesis. We argue that learning is likely to occur when analysts 

observe the ex-post forecast errors of their colleagues. In response, they may revise their 

own forecasts to reverse the errors they observe in their colleagues’ forecasts.  
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Our findings suggest that analysts with higher centrality scores are more likely to issue 

revisions that reverse their colleagues’ forecast errors.4 Moreover, we find that their 

adjustments only occur when their colleagues’ forecast are revealed to be pessimistic. We 

find no evidence that analysts revise their forecasts when their colleagues’ forecasts are 

revealed to be optimistic. This pattern of asymmetric learning is consistent with the 

management-relations cultivation hypothesis (e.g., Francis and Philbrick, 1993; Das et al., 

1998; Lim, 2001; Matsumoto, 2002; Richardson et al., 2004; Ke and Yu, 2006). Together, 

this evidence supports the learning hypothesis. Using analyst membership in the 

Institutional Investor All-America Research Team, we show that the effect of Analyst 

Centrality on superior forecasting outcomes is incremental to innate analyst ability. 

However, we note that this is not necessarily inconsistent with the notion that high 

centrality analysts also possess higher abilities. 

One concern with our Analyst Centrality measure is that it may be capturing 

unobservable brokerage effects. While our main tests include brokerage fixed effects, this 

does not directly address concerns on the matching process between analyst and 

brokerage house. Therefore, Analyst Centrality may be capturing unobservable brokerage 

characteristics or analyst ability. For example, an analyst with expertise in a particular 

industry may be more likely to work at a brokerage that specializes in the same industry. 

We address this particular concern by excluding brokerage houses that cover less than 

three industries and find that our results are unchanged. 

To establish a causal relation between Analyst Centrality and forecast accuracy, we 

exploit employment shocks using a sample of brokerage closures (e.g., Kelly and Ljungqvist, 

2012) from years 2000 to 2007. These closures exogenously forced analysts to join new 

brokerage houses.5 We find that analysts who exogenously experienced improvements in 

their Analyst Centrality scores had superior forecast accuracy relative to those whose 

Analyst Centrality scores declined. Using a generalized difference-in-difference model that 

                        
4 We expect that analysts who benefit more from inter-colleague information exchange also incorporate 
information, learnt from their colleagues, into their own forecasts to a greater extent. 
5 Derrien and Kecskes (2013) find that most brokerage closures stem from breakdowns in business strategy. 
This implies that the closures of brokerages are unlikely to be related to the forecasting abilities of the 
affected analysts. 
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accommodates multiple treatment groups and multiple treatments across time (Autor, 

2003), we find that our results are not driven by anticipatory effects of the treatment. 

Instead, differences in forecast accuracy are found primarily in the post-treatment periods. 

Our paper contributes to several strands of literature. First, we add to a growing 

literature that seeks to penetrate the ‘black box’ of information generation of sell-side 

financial analysts (e.g., Bradshaw, 2011; Brown, Call, Clement, and Sharp, 2015). Using 

tools from network theory, we develop a measure Analyst Centrality that captures the 

propensity of an analyst to participate in information exchange with her brokerage 

colleagues. We show that within-brokerage information exchange among colleagues is an 

important information acquisition channel. 

Second, we contribute to a broader literature on learning in financial markets. 

Exploiting the educational links between analysts and senior corporate officers, Cohen, 

Frazzini, and Malloy (2010) find that analysts learn superior firm-specific information in 

social networks. To our knowledge, we are the first to examine the impact of inter-

colleague learning within brokerage networks on the production of sell-side equity 

research. 

Third, this study extends our understanding of the determinants of analyst forecast 

accuracy. Mikhail et al. (1997) and Clement (1999) show that firm-specific experience 

improves forecast accuracy. Clement et al. (2007) find that task-specific experience 

improves forecast accuracy, and that such experience can extend to other firms under the 

analyst’s coverage (Hilary and Shen, 2013). The common thread of these studies is the 

focus on individual-level learning. We complement these earlier findings by showing that 

analyst-learning at the brokerage-level also has an impact on forecasting performance. 

Finally, our study adds a new perspective of coverage portfolio complexity on analyst 

forecast accuracy. In a setting where analysts face resource constraints and diminishing 

returns to effort, Clement (1999) finds that forecast accuracy of an analyst declines as the 

numbers of industries and firms under her coverage increase. This view is echoed by Lees 

(1981) who concludes that there are economies of scale in acquiring information of other 

firms in the same industry. However, if we model brokerages as networks in which 

information exchange among analysts is possible, an analyst’s coverage portfolio 
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complexity may connect her to more colleagues and may heighten her propensity of 

benefitting from peer-learning. To be clear, we do not dispute the ‘busy analyst’ 

hypothesis.6 Instead, we conclude that there may be a bright side to coverage portfolio 

complexity in a network where the information held by individual analysts is 

complementary to one another. 

1. Sample and Data 

In this section, we describe our methodology and construction of our variables.  We also 

discuss our data and present summary statistics on our sample. 

1.1. Defining Network Connections 

Prior research has shown that analysts covering similar industries benefit from the firm-

specific information of one another (Clement, Koonce, and Lopez, 2007; Hilary and Shen, 

2013). Therefore, we hypothesize that information transfer is more likely to occur between 

a pair of analysts if there is sector overlap in their coverage portfolios. We construct 

within-brokerage network connections based on the forecast data for fiscal year one from 

the Detailed History file of I/B/E/S. We use the Global Industrial Classification Standard 

(GICS) codes to classify industries due to its popularity among financial practitioners 

(Bhojraj, Lee, and Oler, 2013). Brokerage-years with fewer than 5 analysts are dropped. 

Our methodology allows the structures of within-brokerage networks to change with 

time. Let us illustrate with two analysts, A and B, who are colleagues in the same brokerage. 

A network connection exists between A and B if each analyst makes at least one forecast 

announcement in a common 2-digit GICS sector within the same year. For example, a 

connection is present in year t if A makes forecasts in GICS sectors 20 and 45, and B makes 

forecasts in GICS sector 45. Connections governed by a greater degree of industry overlaps 

between the coverage portfolios of the two analysts are given a larger weight.  Suppose that 

B has instead made forecasts in GICS sector 20 and 45, the connection weight will then 

increase from one to two. Notably, by our construction, the connection weight is 
                        
6 Our empirical results do not dispute the ‘busy analyst’ hypothesis. In our baseline regressions, the number 
of unique sectors covered by an analyst is negatively associated with her forecast accuracy. 
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independent of the number of unique firms covered in the overlapping GICS sectors by 

either analyst. While it is plausible that information exchange between the connected 

analysts intensifies with the number of firms in their overlapping sectors, our approach is 

arguably more conservative and parsimonious. In our sample, 93.46%, 5.81%, and 0.63% 

of connections have a weight of 1, 2, and 3 respectively. The maximum connection weight is 

7.  

We provide a graphical example of a within-brokerage network constructed with our 

methodology in Figure 1. Each red node represents an individual analyst. If there is a 

connection between a pair of analysts, a black line links the two corresponding red nodes. 

For ease of presentation, connection weights are not reflected in the diagram.7 From Figure 

1, we also observe that the numbers of connections possessed by analysts are highly 

heterogeneous, as is typical of the networks in our sample. We single out Analyst A (circled 

in blue) and Analyst B (circled in green) in the example. Analyst A is only connected to two 

other colleagues in the brokerage while Analyst B possesses 17 connections.   

[Insert Figure 1] 

We do not claim that within-brokerage information transfer among colleagues occurs 

exclusively along our defined connections. Rather, we are merely proposing that there is a 

higher likelihood of information exchange between two analysts if the two are at least 

connected in the manner as defined by our methodology. 

1.2. Defining Analyst Network Centrality 

In this section, we construct our Analyst Network Centrality measure to proxy for the 

propensity of information exchange between analysts. First, we treat analysts as nodes in 

their brokerage’s information network. Under network theory, each nodal position reflects 

a unique set of benefit-constraint tradeoff with social power of the node strengthening with 

benefits and weakening with constraints. In other words, the benefit-constraint tradeoff at 

one node would be different from that at a second node and the two nodes would 

command different social power. A node with higher social power is more prominent in the 

                        
7 It is common to represent the connection weight between a pair of nodes by the thickness of the line 
connecting them. Thicker lines can be used to represent a heavier connection weight.  
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network. Broadly, social power is synonymous with the connectedness of the node or in 

our context, the centrality of the node. An analyst at a node with high social power would 

have high connectivity and hence high centrality by our definition. By virtue of their 

prominence in the network, we hypothesize that high centrality analysts tend to be 

beneficiaries of information transfer and would therefore display superior forecasting 

performance.  

To test our hypothesis, we employ four commonly used measures of network centrality 

– degree, closeness, betweenness, and eigenvector centrality (see for example, Larcker, So, 

and Wang (2013)). For each measure, we provide a mathematical and conceptual 

definition below. Details and examples of each centrality measure are provided in 

Appendix II.  

1.2.1. Degree Centrality 

First, an analyst may have more opportunities to participate in information transfer if she 

possesses more channels for inter-colleague interaction. This idea is captured by the 

Degree Centrality variable which measures the number of direct connections to other 

colleagues. Let 𝑓�𝑖,  𝑗� be an indicator which equates to unity if analysts 𝑖 and 𝑗 share a 

direct connection, and zero otherwise. We define Degree Centrality of analyst 𝑖 in her 

brokerage network 𝐺 as in (1). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝑖,  𝐺) =
∑ 𝑓(𝑖,  𝑗)𝑁𝐺−1
𝑗≠𝑖,𝑗∈𝐺

𝑁𝐺 − 1
                (1) 

where 𝑁𝐺 − 1 is the maximum number of direct connections analyst i can have and is 

applied as a normalization factor in the denominator because Degree Centrality increases 

with the number of analysts in the brokerage.  

1.2.2. Closeness Centrality 
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Second, an analyst may be more likely to benefit from information transfer if she can access 

her colleagues or is accessible by her colleagues at relatively shorter path lengths.8 This 

idea is captured by the Closeness Centrality variable, which is the reciprocal of the sum of 

shortest-path distances to all other brokerage colleagues. Assuming that the path length 

between any two analysts in a brokerage is proportional to the cost of information 

exchange between them, analysts with higher values of Closeness Centrality would have 

lower costs of interaction with their colleagues. Let 𝑑�𝑖,  𝑗� be the shortest-path distance 

between analysts 𝑖 and 𝑗. We define Closeness Centrality of analyst 𝑖 in her brokerage 

network 𝐺 following (2). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖,  𝐺) =
𝑁𝐺 − 1

∑ 𝑑(𝑖, 𝑗)𝑁𝐺−1
𝑗≠𝑖,𝑗∈𝐺

        (2) 

where 𝑁𝐺 − 1 is the minimum sum of shortest-path distances that analyst i can have and is 

applied as a scaling factor in the numerator because Closeness Centrality decreases with 

the number of analysts in the brokerage. 

1.2.3. Betweenness Centrality 

Third, information is more likely to pass through an analyst if she is positioned on many 

network paths between her brokerage colleagues. Such analysts are valuable as key brokers 

of information exchange and other inter-colleague interactions in the network. This idea is 

captured by the Betweenness Centrality variable, which is the summed proportions of all 

shortest-length paths (known as geodesics9 in network theory) passing through the analyst. 

Since Betweenness Centrality and Closeness Centrality are both built on the notion of 

geodesics, analysts with higher values of Betweenness Centrality also tend to have lower 

costs of information exchange, by virtue of their brokering capacities. Let 𝑠�𝑥,  𝑦� be the 

number of geodesics between any analyst-pair 𝑥 and 𝑦, and 𝑠�𝑥,  𝑦|𝑖� be the number of 

geodesics between any analyst-pair 𝑥 and 𝑦 that passes through analyst 𝑖. We define 

Betweenness Centrality of analyst 𝑖 in her brokerage network 𝐺 following (3). 
                        
8 Detailed explanations and examples of path lengths are contained in Appendix II. 
9 A working example of geodesics is available in Appendix II. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑖,  𝐺) =  
2

(𝐴𝐴𝐺 − 1)(𝐴𝐴𝐺 − 2)
�

𝑠(𝑥,𝑦| 𝑖)
𝑠(𝑥,𝑦)𝑥≠𝑖,𝑦≠𝑖,𝑥,𝑦∈𝐺

        (3) 

where 𝐴𝐴𝐺  is the number of unique analyst-pairs not involving analyst 𝑖. A normalization 

factor  2
(𝐴𝐴𝐺−1)(𝐴𝐴𝐺−2)

 is applied in the denominator because Betweenness Centrality 

increases with the number of analysts in the brokerage. 

1.2.4. Eigenvector Centrality 

Lastly, not all connections are equal. An analyst may be prominent in her brokerage 

network only if she is connected to other well-connected analysts. This is encapsulated in 

the Eigenvector Centrality variable. While Degree Centrality incorporates the number of 

colleagues connected directly to an analyst, it does not consider the quality of these 

connections. Analysts with high values of Eigenvector Centrality tend to be connected to 

other colleagues who also possess high values of Eigenvector Centrality.10 For her 

brokerage network 𝐺, letting 𝐕𝐆 be the eigenvector of the network’s adjacency matrix 𝐌𝐆 10F

11, 

we define the Eigenvector Centrality of analyst 𝑖 as in (4). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖,  𝐺) = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑖  𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚 𝐕𝐆        (4) 

A notable variant of Eigenvector Centrality is the PageRank algorithm used by Google to 

rank the importance of websites on the Internet. The underlying logic of the algorithm is 

that important websites are also likely to receive web-links from other important websites. 

In their study on boardroom centrality, Larcker, So, and Wang (2013) employ Eigenvector 

Centrality as a measure of prestige and power that confers special privileges to boards in 
                        
10 Appendix II contains the mathematical intuition behind Eigenvector Centrality for the interested reader. 
11 A working example of an adjacency matrix is available in Appendix II. An adjacency matrix is a symmetric 
matrix that describes the connections among all nodes in a network. Consider a network of 3 analysts X, Y, 
and Z; connection weights are all set to unity for ease of discussion. The connections in the network are as 
follows. X is connected to Y, but is not connected to Z. Y is connected to Z. Since there are 3 nodes in the 
network, the adjacency matrix is a 3 x 3 matrix with all diagonal elements equating to zero (we assume no 

self-loops in our network) –
0 1 0
1 0 1
0 1 0

XX XY XZ

YX YY YZ

ZX ZY ZZ

 
 
 
 
 

. Each element in the adjacency matrix indicates whether a 

connection exists between a pair of analysts (denoted by the subscripts). If a connection is present between a 
pair of analysts, their corresponding element equates to unity, and zero otherwise. 
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obtaining information and favors. In the context of information transfer, analysts with high 

values of Eigenvector Centrality can be interpreted as better aggregator of widely-held 

information in the network. The intuition behind this interpretation is that the information 

arriving at such an analyst is likely to originate from colleagues who are in turn connected 

to many others in the network. 

1.2.5. Principal Component Analysis 

In spite of the four measures, there is no single measure that can describe the benefits and 

constraints of each node consummately because social power in a network is a multi-

faceted construct (Newman, 2003). A particular measure may be optimal in describing the 

centrality of some nodes in the network but may be sub-optimal in describing the 

remaining nodes. This does not necessarily mean that the remaining nodes are 

unimportant in the network but rather that the measure is unable to capture their network 

prominence adequately. Generally, it is common for a given node in a network to be 

favored by one measure, and less so by another measure.  

Since it is unclear, ex-ante, which measure can describe the network centralities of 

analysts optimally, we perform a principal component analysis (PCA) on the four network 

centrality measures. From the first principal component, we extract the standardized factor 

score and define it as our Analyst Centrality measure. The factor loadings on all four 

centrality measures are positive, supporting our use of Analyst Centrality as a measure of 

aggregate analyst connectedness within their brokerage networks. Consistent with prior 

literature, we also find that there is substantial correlation12 among the four centrality 

measures – ranging from 28.2% to 89.1%. In view of this, our use of a PCA-extracted factor 

score to represent analyst connectedness helps us to avoid potential multicollinearity 

concerns in our empirical analyses. 

1.3. Discussion of Analyst Network Centrality 
                        
12 The substantial correlation among the four centrality measures is unsurprising because each centrality 
measure is merely capturing a distinct component of overall connectedness. A well-connected analyst would 
have relatively high scores across multiple centrality measures. For example, an analyst positioned at the 
center of a star-shaped network would be endowed with high values of degree, closeness, and betweenness 
centrality by definition. 
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Our modeling of information transfer within brokerages rests on a few salient assumptions. 

First, we assume that inter-colleague information transfer occurs primarily through sector 

overlaps in analysts’ coverage portfolios. This is motivated by Brown, Call, Clement, and 

Sharp (2015) who wrote that “industry knowledge is the single most useful input to 

analysts’ earnings forecasts and stock recommendations”. It is plausible that a substantial 

portion of inter-colleague communication (e.g. informal interaction) occurs outside of our 

constructed networks. Furthermore, if analyst career progressions are structured as 

competitive tournaments (Yin and Zhang, 2015), it remains an open question whether 

analysts will cooperate with their colleagues and share information. Second, we assume 

that information tends to travel via the shortest possible paths within a brokerage network. 

This assumption is implicit in the Closeness Centrality and Betweenness Centrality 
measures, which are both built on the notion of geodesics. Where informal ties are 

dominant, geodesics may cease to be the least costly paths for information transfer and 

information may flow via longer paths in actuality. If the above considerations are true, the 

centrality measures may fail to describe the true network centralities of analysts. However, 

this mismeasurement of centrality should work against us in finding support for our 

hypothesis. 

Third, there are alternative interpretations of a causal relation between Analyst 
Centrality and forecasting performance. Prior research finds that brokerage size, as a proxy 

for resources and prestige, can predict analyst forecasting performance (Clement, 1999). 

Assuming that portfolio coverage decisions are randomly made, the probability of an 

analyst gaining an incremental connection should increase with brokerage (network) size. 

Furthermore, if we view the analyst labor market as a tournament where performance 

determines continuation in the profession (Clement, 1999), we expect that higher-ability 

analysts tend to be employed longer. Consequently, the longer tenures confer higher-ability 

analysts with more opportunities to develop within-brokerage connections. This would 

then lead to higher Analyst Centrality values. In sum, the effects of Analyst Centrality on 

forecasting performance may be driven by unobserved heterogeneity and brokerage 

characteristics. We address these concerns as follows. First, we check that the univariate 

correlation between Analyst Centrality and Brokerage Size (General Experience) is low, at 
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about 5.2% (2.0%). Next, we use normalized centrality measures that adjust for network 

size. Third, we address the influence of innate analyst ability on our findings by including 

an All-Star indicator alongside Analyst Centrality in horse-race regressions. Finally, we also 

include brokerage size, general experience, and brokerage fixed effects in our regression 

analyses. 

1.4. Forecast Accuracy 

We construct three measures of forecasting accuracy from the latest firm-year forecast 

values of analysts. First, Forecast Error is the absolute difference between the analyst’s 

firm-year forecast value and the corresponding earnings-per-share (EPS) of the firm-year. 

Second, for comparability across observations, we construct Normalized Forecast Error in 

percentage points as Forecast Error scaled by the firm-year mean forecast error. Third, we 

use Clement-Tse Accuracy as an additional normalized measure of forecasting accuracy 

(Clement and Tse, 2005). In each firm-year, we first compute the maximum (Max Forecast 

Error) and minimum (Min Forecast Error) values of Forecast Error. Thereafter, the 

Clement-Tse Accuracy of an analyst in a particular firm-year is the ratio of the difference 

between Max Forecast Error and her Forecast Error to the difference between Max 

Forecast Error and Min Forecast Error. Hence, Clement-Tse Accuracy is bounded between 

zero and unity, with higher values reflecting a greater degree of forecasting accuracy. 

Formally, for analyst 𝑖 covering firm 𝑓 in year 𝑡, we define her Clement-Tse Accuracy as in 

(5). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖,𝑓,𝑡 =
𝑀𝑀𝑀.𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝑟𝑓,𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝑟𝑖,𝑓,𝑡

𝑀𝑀𝑀.𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝑟𝑓,𝑡 −  𝑀𝑀𝑀.𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝑟𝑓,𝑡
      (5) 

1.5. Herding Behavior 

We adopt the methodology of Clement and Tse (2005) in defining herding behavior. For 

each firm-year forecast revision made by a given analyst, we compute the interim forecast 

consensus. This interim forecast consensus excludes the forecast contribution of the given 

analyst and only includes the most recent forecasts of other analysts. If the analyst’s 

revision value is above her prior forecast and above the interim forecast consensus, we 
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classify that forecast revision as innovative. A forecast revision is also classified as 

innovative if it is below the analyst’s prior forecast and below the interim forecast 

consensus. If the prior forecast or interim forecast consensus is unavailable, we classify the 

forecast revision as innovative. All other forecast revisions are classified as herding. We 

also compute Herding Rate, defined as the number of herding forecast revisions made by 

an analyst in a firm-year, scaled by her total number of forecast revisions in the same firm-

year. Hence, Herding Rate is bound between zero and unity, with higher values reflecting 

stronger herding behavior. Given an analyst 𝑖  covering firm 𝑓  and making 𝑝 forecast 

revisions in year 𝑡, we let ℎ(𝑖,𝑓, 𝑡) equate to unity if the forecast revision is either above or 

below both the analyst’s prior forecast value and the interim forecast consensus, and zero 

otherwise. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑖,𝑓,𝑡 = �
ℎ(𝑖,𝑓, 𝑡)

𝑝

𝑝

1

         (6) 

We also compute the Clement-Tse Herding Rate in a similar manner to the Clement-Tse 
Accuracy measure. In each firm-year, we first compute the maximum (Max HR) and 

minimum (Min HR) values of Herding Rate. Thereafter, the Clement-Tse Herding Rate of an 

analyst in a firm-year is defined as the ratio of the difference between Max HR and Herding 

Rate to the difference between Max HR and Min HR. Hence, Clement-Tse Herding Rate is 

bounded between zero and unity, with higher values reflecting stronger herding behavior. 

1.6. Control Variables 

We control for various analyst, forecast and firm characteristics that are found to affect 

forecasting performance in prior research.13 Revision Frequency is the total number of 

forecast revisions made by the analyst in a particular firm-year. Horizon is the number of 

days that has elapsed between the analyst’s firm-year forecast and the actual earnings 

announcement. Following standard practice in the literature, we remove forecasts issued 

either more than 365 days or less than 30 days from the actual earnings announcement 

                        
13 See for example, Mikhail, Walther, and Willis (1997); Clement (1999); Jacob, Lys, and Neale (1999); and 
Brown (2001) 
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date. Log (General Experience) is the logarithm of the number of months elapsed between 

the analyst’s first appearance in the I/B/E/S dataset and her firm-year forecast. Log (Firm 

Experience) is the logarithm of the number of months elapsed between the analyst’s 

earliest forecast of the firm in the I/B/E/S dataset and her firm-year forecast. Firm Breadth 
and Industry Breadth are, respectively, the number of unique firms and the number of 2-

digit GICS sectors covered by the analyst within the year. Lowballing behavior is defined to 

be present in any given firm-year if three conditions are met. First, the forecast value must 

be below the actual EPS. Second, the Forecast Error must be either greater than $0.03 or 

higher than 5% of the actual EPS (i.e. non-trivial). Third, to reduce the likelihood of 

mistaking forecasting difficulty for lowballing behavior, the difference between the forecast 

and the consensus forecast must be greater than $0.03 or higher than 5% of the consensus 

forecast. Lowball is the number of times over the past 3 years that lowballing forecasts 

were issued for the firm by the analyst. We measure Brokerage Size by the number of 

analysts employed by the brokerage. Loss is an indicator that equates to unity if the 

announced earnings of the firm are negative, and zero otherwise. Forecast Dispersion is the 

standard deviation of forecast values in a given firm-year. Analyst Coverage is the number 

of unique analysts who have contributed at least one forecast in that firm-year. Leverage is 

the sum of short-term debt and long-term borrowings, scaled by total assets. Book-to-
Market Ratio is the ratio of firm book value to market capitalization in that year. Log (Total 

Assets) is the logarithm of total firm assets. ROA Volatility is the standard deviation of 

return on assets over the past 3 years. We also include lagged measures of forecasting 

performance and herding behavior. Lagged variables are indicated by the prefix “Prev”. All 

continuous variables are winsorized at the 1st and 99th percentile values to limit the 

influence of outliers. 

1.7. Descriptive Statistics 

Our sample comprises 3462 firms, 282 brokerages, 5429 analysts, 123038 firm-year 

forecasts from the years 1996 to 2014. The median brokerage is substantially large with 56 

analysts under its employment. Firms in our sample are covered by at least 5 analysts and 

the median Analyst Coverage is 18. The median firm and the smallest firm have Total 
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Assets of about $4300 million and $140 million, respectively. Most firm-years are 

profitable with only about 8.9% reporting losses. The median (mean) Forecast Error is 4 

(14) cents while the median (mean) Herding Rate is 25.0% (28.4%). By definition, Degree 

Centrality, Closeness Centrality, Betweenness Centrality, and Eigenvector Centrality are 

non-negative. However, many analysts in the sample have negative values of Analyst 

Centrality because we used standardized14 variables in the PCA-extraction. Most analysts 

seem to focus on a single industry with a median (mean) Industry Breadth of 1 (1.62). The 

average analyst has about 14 firms in her coverage portfolio. 

[Insert Table 1] 

Univariate correlations between the network centrality measures and 

analyst/brokerage characteristics are presented in Table 1 Panel B. Consistent with the 

notion that Analyst Centrality is capturing aggregate network connectedness, the 

correlations of Analyst Centrality with its component centrality measures are not only 

positive but large in magnitude. These correlations range from 47.5% to 75.9%. Analyst 

Centrality also shares a strong and positive correlation with Industry Breadth. This is 

unsurprising because an analyst’s wide sector coverage will increase the probability that 

she will be connected to an additional colleague. In aggregate, more connections should 

generally increase one’s centrality in the network. Comparatively, Firm Breadth is also 

positively correlated with Analyst Centrality but the correlation magnitude is low. This is 

expected because, at the extreme, all firms in an analyst’s coverage portfolio may fall under 

the same GICS industry. In such a case, coverage of firms in one industry does not yield 

connectedness benefits beyond the first firm (refer to Section 1.1 for the definitions of 

network connections). General Experience is weakly correlated with Analyst Centrality 

(2.0%). We exclude Firm Experience in correlation analysis because a given analyst-year 

has multiple values of it, making its correlations with Analyst Centrality uninformative for 

our purpose. Brokerage Size has a positive but weak correlation with Analyst Centrality 

(5.2%). 

2. Main Results 
                        
14 Standardization accounts for the different scales of the four network centrality variables. 
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2.1. Analyst Centrality and Forecast Accuracy 

To test the relation between Analyst Centrality and analyst forecast accuracy, we estimate 

regressions according to specification (7). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑖,𝑓,𝑡 =  𝛼 + 𝛽1 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑖,𝑡 +  𝜃 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑖,𝑓,𝑡 + 𝜀𝑖,𝑓,𝑡      (7)  

[Insert Table 2] 

Table 2 Panel A reports our first set of regression results. The dependent variable in 

Column (1) and (2) is the Clement-Tse Accuracy measure and we follow the regression 

specification in Clement and Tse (2005). The independent variables, including Analyst 

Centrality, are normalized using the normalization methodology of the Clement-Tse 

Accuracy measure. We first compute the maximum (Max Variable) and minimum (Min 

Variable) values of each independent variable in a given firm-year. Thereafter, each 

independent variable is normalized as the ratio of the difference between the Raw Variable 

Value and Max Variable to the difference between Max Variable and Min Variable. Hence, 

each normalized variable is bounded between zero and unity. Formally, each independent 

variable is normalized as follows. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖,𝑓,𝑡 =
𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑖,𝑓,𝑡 − 𝑀𝑀𝑛.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖,𝑓,𝑡

𝑀𝑀𝑀.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖,𝑓,𝑡 − 𝑀𝑀𝑀.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖,𝑓,𝑡
        (8) 

Variables that are invariant at the firm-year level are excluded from the specification in 

Column (1) due to the normalization procedure. From Column (1), Analyst Centrality 

positively predicts Clement-Tse Accuracy, implying that within-brokerage network 

centrality improves forecast accuracy. In Column (2), we replace the normalized 

independent variables with their raw variants while keeping Clement-Tse Accuracy as the 

dependent variable. In place of normalization, we include instead firm characteristics as 

additional controls. Furthermore, we include brokerage-year fixed effects to rule out 

concerns that Analyst Centrality is a spurious proxy of unobserved brokerage 

characteristics (e.g. prestige and resources). From Column (2), we obtain supporting 

evidence that Analyst Centrality positively predicts forecast accuracy.  
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Our findings are robust to alternative measures of forecast accuracy. The independent 

variables in Columns (3) and (4) are not normalized. In Column (3), we use Forecast Error 

as the dependent variable. The firm-year fixed effects absorb variables that have no 

variation within the firm-year. We find that Analyst Centrality is negatively associated with 

Forecast Error, suggesting that high centrality analysts tend to display better forecast 

accuracy. Specifically, one standard deviation increase in Analyst Centrality is associated 

with a decrease in forecast error of about 0.3 cents, or about 7.5% of the median forecast 

error. We arrive at similar conclusions when we employ brokerage-year fixed effects and 

use Normalized Forecast Error as the dependent variable in Column (4). 

The relation between forecast accuracy and the control variables are generally 

consistent with the extant literature. Forecast revision frequency, general experience, firm 

experience, brokerage size, and lagged measures of forecast accuracy are significantly 

associated with higher forecast accuracy, while forecast horizon, industry breadth, ROA 

volatility, and historical lowballing behavior predict forecast accuracy negatively. In 

summary, the positive association between Analyst Centrality and various measures of 

forecast accuracy is incremental to various control variables that prior research finds to 

predict forecast accuracy. 

To gain insights into the dimension of network centrality that is contributing to 

forecasting performance, we regress the four constituents of Analyst Centrality on 

Normalized Forecast Error in the same regression which also includes firm-year fixed 

effects. Panel B Column (1) suggests that our previous results are driven by Betweenness 

Centrality.  In Columns (2) to (5), we rerun our tests and include each centrality measure 

by itself in order to avoid multicollinearity among the four measures. The results indicate 

that each of the four centrality measures is negatively associated with Forecast Error when 

employed in isolation. However, Betweenness Centrality dominates the other centrality 

measures, suggesting that the forecast accuracy of high centrality analysts can be 

attributed to lower information exchange costs. 

2.2. Analyst Centrality and Herding Behavior 
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The sequence of our tests in Table 3 follows that in Table 2. To test the relation between 

Analyst Centrality and herding behavior, we estimate regressions following specification 

(9). 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑖,𝑓,𝑡 =  𝛼 +  𝛽1 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑖,𝑡 +  𝜃 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑖,𝑓,𝑡 + 𝜀𝑖,𝑓,𝑡      (9) 

[Insert Table 3] 

We present our results in Table 3 Panel A. In Column (1), we regress Analyst Centrality 
on Clement-Tse Herding Rate and include independent variables that are normalized 

according to Clement and Tse (2005). Next, we replace the normalized independent 

variables with their raw variants and include brokerage-year fixed effects in Column (2). 

Our results are robust to alternative measures of analyst herding behavior. We adopt 

Herding Rate as the dependent variable and include firm-year and brokerage-year fixed 

effects in Columns (3) and (4) respectively. In all these tests, we find that Analyst 

Centrality is statistically significant and is associated with a lower tendency to display 

herding behavior.  

In Panel B, we regress the four constituents of Analyst Centrality on Herding Rate. 

Similar to our earlier analyses, we find that Betweenness Centrality primarily explains the 

negative effects of within-brokerage centrality on analyst herding tendencies. Additionally, 

Degree Centrality is negatively associated with Herding Rate, though the economic 

magnitude of this relation is considerably weak. Our results in Table 3 suggest that inter-

colleague information exchange help analysts to issue innovative forecast revisions, and 

curtail their herding behavior through lower information exchange costs. 

3. Analyst Centrality and Market Reactions to Revisions 

If high centrality analysts are poised to benefit from information exchange within their 

brokerages, we hypothesize that their forecast revisions are also likely to contain more 

novel and value-relevant information. Since one cannot directly observe the information 

content of forecast revisions, we assume markets are efficient and test our hypothesis 

using market reactions to analysts’ revisions.  

[Insert Table 4] 
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The dependent variable in Table 4 is the absolute 3-day market-adjusted cumulative 

abnormal returns centered on the forecast revision date. We include Forecast Revision and 

Consensus Deviation as independent variables because we expect that market reactions are 

stronger when there is a greater divergence of the analyst’s revision value from her prior 

forecast and the prevailing consensus forecast. Forecast Revision is the absolute difference 

between an analyst’s revision value and her prior forecast value, scaled by the absolute 

value of her prior forecast value. Consensus Deviation is the absolute difference between 

an analyst’s revision value and the prevailing forecast consensus, normalized by the 

absolute value of the forecast consensus. To uncover moderating effects of within-

brokerage network centrality on characteristics of forecast revisions, we interact Analyst 

Centrality with Forecast Revision and Consensus Deviation separately. We also control for 

stock performance during the run-up to the forecast revision date and absorb some 

unobserved heterogeneity through firm and industry-week fixed effects. 

In line with our expectations, Columns (1) and (2) show that forecast revisions that 

deviate more from the prevailing forecast consensus tend to elicit stronger market 

reactions. We also find that Analyst Centrality does not predict market reactions in 

isolation. We repeat the tests with Forecast Revision and find similar results in Columns (3) 

and (4). Controlling for the divergence from the analyst’s prior forecast, market reactions 

are stronger for forecast revisions issued by high centrality analysts. 

4. Analyst Centrality and Peer-Learning 

Thus far, we attribute the relation between Analyst Centrality and forecasting outcomes to 

inter-colleague information exchange within brokerages. We examine this relation 

empirically using the notion of peer-learning. Suppose high centrality analysts tend to 

incorporate information or economic assumptions learnt from their colleagues into their 

forecasts. On average, we should also observe that high centrality analysts re-adjust the 

biased information in their forecasts when they realize that their colleagues were wrong. 

For example, if an analyst has incorporated her colleagues’ aggregate optimism into her 

forecast, she ought to revise her forecast downwards, and vice-versa. Furthermore, we 

conjecture that this mechanism is more pronounced as Analyst Centrality increases since 
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high centrality analysts are better positioned to benefit from information exchange within 

the brokerage.  

[Insert Table 5] 

In Table 5, we use Analyst Revision as the dependent variable, since it measures re-

adjustment of the analyst’s prior forecast in response to new information such as her 

colleagues’ biases. Analyst Revision is a signed variable defined as the difference between 

an analyst’s forecast revision value and her prior forecast value, deflated by the absolute 

value of her prior forecast value. Therefore, a positive (negative) value of Analyst Revision 

reflects an increment (a decline) in the analyst’s forecast value from her previous forecast. 

Note that Analyst Revision is defined differently from Forecast Revision (Table 4) which 

only measures the magnitude of the forecast revision. To examine the effects of peer-

learning, we focus on analysts’ revision behavior and the ex-post forecasting performance 

of their brokerage colleagues. For a given forecast revision of an analyst, we collect all 

instances of her colleagues’ realized forecast errors within the past 30 days. In other words, 

the firms covered by the analyst’s colleagues must have announced their actual earnings in 

the abovementioned 30-day window. For each of her colleagues’ realized forecast errors, 

we classify it as optimistic if the forecasted value is above the actual EPS, and pessimistic if 

the forecasted value is below the actual EPS. If the forecast error is zero, its classification is 

neither optimistic nor pessimistic although it is still counted as a forecast error in the 30-

day window. Thereafter, we define Peer Pessimism as the proportion of pessimistic 

forecast errors in the 30-day window. Peer Optimism is defined symmetrically to Peer 

Pessimism. Note that the sum of Peer Optimism and Peer Pessimism needs not be unity 

since some forecasts have no errors. Given an analyst 𝑖 in brokerage 𝐺 covering firm 𝑓 and 

making a forecast revision on date 𝑑, we let 𝑟(𝑗,𝑑) equate to unity if colleague 𝑗 has a 

realized forecast error 30 days prior to 𝑑, and zero otherwise. 

𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖,𝑓,𝑑 = �
𝑟(𝑗, 𝑑| 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑒𝑗 > 𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

𝑟(𝑗,𝑑)
   (10𝑎)

𝑗≠𝑖,𝑗∈𝐺
 

𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖,𝑓,𝑑 = �
𝑟(𝑗, 𝑑| 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑒𝑗 < 𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

𝑟(𝑗, 𝑑)
   (10𝑏)

𝑗≠𝑖,𝑗∈𝐺
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We also include separate interaction terms of Analyst Centrality with Peer Optimism 

and Peer Pessimism. Apart from stock performance during the run-up to the forecast 

revision date, we also include Net Competitors’ Firm-week Revisions as a control variable. 

In the week of the forecast revision date, we count the number of positive and negative 
forecast revisions made by other competing analysts covering the same firm. Subsequently, 

we subtract the proportion of negative forecast revisions from that of positive forecast 

revisions to compute Net Competitors’ Firm-week Revisions. By construction, Net 

Competitors’ Firm-week Revisions is bounded between zero and unity, with more positive 

values translating to more positive forecast revisions of firm earnings in aggregate. We 

argue that this control not only addresses the concern that analysts may mimic the revision 

strategies of their competitors but it may also capture changes in the information 

environment of the firm.  

Table 5 presents our results. In Column (1), we find that Peer Pessimism is associated 

with more positive Analyst Revision while Peer Optimism predicts more negative Analyst 

Revision. Further, we find that the effect of Peer Pessimism is amplified by Analyst 

Centrality, suggesting that high centrality analysts revise their forecasts more positively 

after learning ex-post that their colleagues have provided pessimistic forecasts. However, 

the mediating effect of Analyst Centrality on Peer Optimism is not statistically 

distinguishable from zero. This implies that the effect of peer-learning on an analyst’s 

revision activity is prevalent only in instances when the forecasts of her colleagues are 

revealed to be pessimistic. In Column (2), we add control variables to the model and find 

similar results. Notably, Peer Optimism ceases to be statistically significant upon the 

addition of control variables while Peer Pessimism and its interaction with Analyst 

Centrality continue to predict positive forecast revisions.  

Our results in Columns (1) and (2) are consistent with the notion that high centrality 

analysts update their forecasts to unravel the information errors of their colleagues via a 

peer-learning mechanism. However, an alternative explanation is that Analyst Centrality is 

correlated with the ability to process information. This alternative is in conflict with our 

preferred peer-learning hypothesis because the public availability of ex-post forecasting 

performance does not necessitate information exchange between an analyst and her 
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brokerage peers. To rule out the information-processing hypothesis, we introduce 2 other 

variables – Global Pessimism and Global Optimism – in our tests. Global Pessimism is the 

proportion of all pessimistic forecast errors (notably, including those of non-colleagues) in 

the same GICS sector within the 30-day window before the analyst revision date. Global 
Optimism is defined symmetrically. Similar to their Peer-level analogs, these Global-level 

measures of forecasting performance are also publicly available. If the information-

processing hypothesis is true, we ought to find that the revision activity of high centrality 

analysts is also responsive to Global Pessimism and Global Optimism. However, the 

contained information in these Global-level variables is not admissible in a peer-learning 

mechanism because it is implausible that analysts engage in systematic information 

exchange with analysts from other brokerages.  

We replace Peer Pessimism (Optimism) with Global Pessimism (Optimism) in Column 

(3). We find that the interactions between the Global-level variables and Analyst Centrality 

fail to predict the revision activity of analysts. Aligned with our predictions, the effect of 

peer-learning is not observed when we employ a source of ex-post forecasting performance 

that is publicly available but which analysts cannot learn from. In the final test, we run a 

horse race among the Peer-level variables, Global-level variables, and their respective 

interactions with Analyst Centrality in Column (4). Consistent with our findings in the 

previous columns, the interaction between Peer Pessimism and Analyst Centrality predicts 

positive analyst revisions but interactions terms between Global-level variables and 

Analyst Centrality are not statistically significant. 

In summary, our results are consistent with the notion that analysts learn from their 

colleagues’ pessimistic forecast errors and the extent of learning is increasing in Analyst 

Centrality. Additionally, we find that analysts learn from pessimistic forecast errors of their 

colleagues, but not from optimistic ones. This pattern of asymmetric learning is consistent 

with the management-relations cultivation hypothesis put forth in prior studies.15 

According to this hypothesis, analysts may be incentivized to issue optimistic forecasts to 

cultivate management relations in a multi-task environment. The implication to our study 

                        
15 See for example – Francis and Philbrick, 1993; Das et al., 1998; Lim, 2001; Matsumoto, 2002; Richardson et 
al., 2004; Ke and Yu, 2006 
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is that ex-post optimism may be less informative in our proposed peer-learning mechanism 

since analysts may understand, either explicitly or implicitly, the motives behind their 

colleagues’ optimism. This may explain why only Peer Pessimism, and not Peer Optimism, 

drives our results on peer-learning. This finding also helps us to substantiate a peer-

learning hypothesis over other alternative explanations by suggesting that there is 

strategic incorporation of new information learned through colleagues. 

5. Analyst Centrality and Innate Ability 

While our preceding evidence supports a peer-learning explanation, we have not 

disentangled the influence of innate ability from Analyst Centrality. An alternative 

explanation is that higher Analyst Centrality scores are indicative of higher analyst ability. 

If we liken the analyst labor market to a tournament in which performance determines an 

analyst’s continuation in the profession, we expect high-ability analysts to have longer 

tenures in brokerages. Owing to their longer tenures, high-ability analysts may 

consequently develop more within-brokerage connections. This can happen in at least two 

ways. First, a brokerage may strategically build a network of analysts around a high-ability 

analyst to lever on her forecasting ability. Second, a brokerage may confer more coverage 

responsibilities (e.g. coverage across sectors) to a high-ability analyst over time. Under this 

alternative explanation, superior forecasting outcomes are spuriously driven by innate 

ability, and not by peer-learning.  

While analyst ability is unobservable, prior research suggests that membership in the 

Institutional Investor All-American Research Team (all-star) is reflective of analyst 

ability.16 We separate the effect of innate ability from peer-learning by adding an All-Star 

indicator alongside Analyst Centrality in horse-race regressions. Due to data limitations, we 

end our sample period in 2008. Under the peer-learning hypothesis, we expect Analyst 

Centrality to retain its associations with superior forecasting outcomes. 

[Insert Table 6] 

                        
16 All-star analysts produces more accurate forecasts (Stickel, 1992), elicit stronger market reactions around 
their forecasts (Gleason and Lee, 2003), and attract more investment banking deal flows (Clarke et al., 2007) 
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Table 6 presents our results. In Column (1), we find that All-Star, in the absence of 

Analyst Centrality, is positively associated with Clement-Tse Accuracy. This is consistent 

with prior research that all-star analysts produce more accurate forecasts than unranked 

analysts. We include Analyst Centrality alongside All-Star in Column (2) and continue to 

find a positive relation between All-Star and forecast accuracy. Crucially, Analyst Centrality 

is also a positive predictor of forecast accuracy. We repeat the above analysis for Clement-

Tse Herding Rate. In Columns (3) and (4), we find that the effects of Analyst Centrality and 

All-Star on herding behavior are not only statistically significant but also distinct from each 

other. Similarly, Columns (5) and (6) show that our prior results on market reactions are 

robust to the inclusion of All-Star and its interaction with Consensus Deviation. In 

aggregate, our results suggest that the effect of Analyst Centrality on forecasting 

performance is incremental to that of innate analyst ability. 

6. Causal Effects of Analyst Centrality on Forecast Accuracy 

We exploit brokerage closures (Kelly and Ljungqvist, 2012) from years 2000 to 2007 as an 

exogenous employment shock to Analyst Centrality scores. Derrien and Kecskes (2013) 

find that most brokerage closures stem from breakdowns in business strategy, suggesting 

that these individual analysts are unlikely to have systematically different forecasting 

ability. We only use brokerage closures because they are cleaner employment shocks for 

our purpose. For each closure event, we track all analysts who subsequently find 

employment in another brokerage and cover the same firm pre- and post- the closure event. 

Therefore, our unit of observation in this quasi-natural experiment is an analyst-firm.  

The treatment in this test is Analyst Centrality Up, an indicator that equal to one if the 

analyst’s average post-closure Analyst Centrality is higher than her average pre-closure 

value, and to zero otherwise. Since brokerage closures are scattered temporally, we use a 

difference-in-difference model, generalized to accommodate multiple treatment groups, 

and multiple shocks across time, following Autor (2003). We estimate the following model. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑔,𝑡 = 𝛾𝑔 + 𝜏𝑡 + � 𝛽𝑗 ∙ 𝐷𝑔,𝑡(𝑡 = 𝑘 + 𝑗) + 𝜃𝑔,𝑡 ∙ 𝛿 + 𝜀𝑔,𝑡

+𝑛

𝑗=−𝑚,𝑗≠0

     (11) 
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where 𝛾𝑔 represents the group (analyst-firm) fixed effects and 𝜏𝑡 represents the year 

fixed effects. 𝑘 is the time at which the brokerage closure occurs, the term 𝐷𝑔,𝑡 is an 

indicator which switches to one in year 𝑡 if the group receives the treatment. Note that this 

generalized model allows 𝑘 to vary in different 𝑔. This is important because brokerage 

closures in our sample occur at various points in time. We let 𝑗 ≠ 0 because we skip the 

year of the brokerage closure. Visual inspection of the parallel trend assumption is tenuous 

in a model with shocks spread across time. Therefore, we include temporal leads and lags 

of the treatment in the model to test the assumption econometrically. Building 𝑚 leads and 

𝑛 lags of the treatment effect 𝛽𝑗  into the model allows us to estimate the pre-treatment 

dynamics (𝑚 leads) and post-treatment dynamics (𝑛 lags). The parallel trend assumption 

is fulfilled if 𝛽𝑗  is not statistically significant for 𝑗 < 0 – this suggests the absence of 

anticipatory effects of the treatment. 

We use a 10-year window17 centered on the brokerage closure event. We choose 

Clement-Tse Accuracy as the dependent variable because it is a normalized measure that 

allows for comparison of forecast accuracy across different analyst-firms. The key 

independent variables are the five temporal leads (Pre-Treatment) and five temporal lags 

(Post-Treatment) of the treatment.18 The mth temporal Pre-Treatment is an indicator that 

equates to unity only in the mth year before the brokerage closure and only if the analyst-

firm is treated, and zero otherwise. Similarly, the nth temporal Post-Treatment is an 

indicator that equates to unity only in the nth year after he finds new employment and only 

if the analyst-firm is treated, and zero otherwise. We add year dummies and analyst-firm 

dummies in all specifications.  

[Insert Table 7] 

We present results from the generalized difference-in-difference model in Table 7. In 

Columns (1) to (3), we find that the coefficients of the Pre-Treatment indicators are largely 

                        
17 For each analyst-firm, we look back up to 5 years before brokerage closure and skip the year in which the 
brokerage closure occurs. We only start the 5-year post-closure window when the analyst is employed at a 
new brokerage because analysts take different lengths of time to find new employment. Most analysts in our 
sample find employment within a year. This convention essentially lumps the brokerage closure events and 
the treatment into one single time point. 
18 In this study, our choice of 𝑛 = 𝑚 is arbitrary but the generalized model allows 𝑛 to differ from 𝑚. Our 
results hold when we choose an alternative window width of 𝑛 = 3 and 𝑚 = 3. 
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insignificant. This implies that before employment shocks, analysts who experienced 

Analyst Centrality Up display no systematic differences in forecast accuracy compared to 

analysts whose centrality scores did not improve. Econometrically, anticipatory effects of 

the treatment are unlikely to be the spurious driver of our results – this helps us to validate 

the parallel trend assumption. Crucially, this suggests that the assignment of analysts, into 

more central or less central network positions subsequent to the employment shocks, is 

unlikely to be dependent on their pre-shock performance. On the other hand, we find that 

the coefficients of the Post-Treatment indicators are all statistically significant and 

positively loaded on Clement-Tse Accuracy. This suggests that the positive effects of higher 

within-brokerage network centrality on forecast accuracy only occur after treatment has 

been administered. As robustness checks, we include analyst time trends in Column (2) 

and further add analyst-firm time trends in Column (3) to help control for confounding 

heterogeneity. In summary, our findings suggest that among analysts who found 

subsequent employment after brokerage closures, analysts who experience an increment 

in Analyst Centrality show higher forecast accuracy than those who did not. Moreover, 

evidence shows that the differences in forecast accuracy manifest largely in the post-

treatment period, and not in the pre-treatment period. 

7. Conclusion 

Overall, our evidence suggests that an analyst’s colleagues are valuable sources of 

information which help analysts make more accurate forecasts. Using 2-digit GICS sector 

overlaps in their coverage portfolios, we build an information network within a brokerage 

house to measure potential information flow among analysts. We find that analysts who 

are better-connected in their brokerage networks produce more accurate forecasts and 

less herding forecast revisions. We also find that analyst who are more centrally located in 

these information networks generate greater market reactions to their forecast revisions. 

This suggests that market participants believe that high centrality analysts provide more 

informative revisions, which is consistent with better information access.  

We provide more direct evidence that high centrality analysts are more likely to learn 

from their colleagues. If high centrality analysts are tapping into their colleagues’ 
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knowledge and expertise, we expect that they would be more likely to include such 

information in their forecast revisions. Consistent with this argument, we find that high 

centrality analysts are more likely to revise their forecasts after their colleagues’ 

forecasting mistakes are known. Controlling for analyst membership in the Institutional 

Investor All-America Research Team, supplementary analysis suggests that the positive 

effect of Analyst Centrality on superior forecasting outcomes is incremental to that of 

innate analyst ability. 

The formation of within-brokerage networks may be endogenous. Therefore, to better 

understand the causal relation between within-brokerage network centrality and forecast 

accuracy, we exploit exogenous brokerage closures from 2000 to 2007. These closures 

force analysts to join new brokerage houses and exogenously change their network 

centrality scores. We find that analysts who experienced increases in centrality scores at 

their new employers improve their forecast accuracy. 
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APPENDIX I 
Figure 1.  

Example of a poorly-connected analyst (Analyst A) and a well-connected analyst (Analyst B) in a within-
brokerage network. Analyst A is only connected to 2 other colleagues. Analyst B has 17 connections. 
 

 

Analyst A 

Analyst B 
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APPENDIX II 
II.A. Analyst Centrality and Forecast Accuracy 

Under the framework of network theory, social power in a network is relational in nature. A given node has 
social power only because it can dominate other nodes. Since social power is a function of relational patterns 
in the network, the amounts of social power across differently-structured networks may be highly 
heterogeneous. For instance, in a low-density network where there are few connections among nodes, the 
potential for social power to emerge there is low. On the other hand, in a high-density network where nodes 
are intricately linked to one another, there is a comparatively higher potential for the exertion of social power 
by nodes. Besides variation in the network-level (macro) amounts of power, the distribution of social power 
across nodes (micro) in a given network may also be unequal. The micro-level analysis of social power is the 
focus of this paper as we investigate the propensities of information transfer afforded to individual analysts 
by their embedded positions in their brokerages.  
 
In a given network, various embedded positions confer divergent tradeoffs between benefits and constraints 
to nodes. However, there is no single measure to describe all benefits and constraints consummately because 
social power is a multi-faceted construct (Newman, 2003). Lawyer (2015) further suggested that the 
optimality of every network theory measure is dependent on the structure of the most important (or central) 
nodes, and may be sub-optimal in analyzing the remainder of the network. For example, a particular node in a 
network may be favored by the degree centrality measure but is less favored by the eigenvector centrality 
measure. Since it is ex-ante challenging to identify the most important nodes in networks, we employ 4 
widely-used measures of network centrality to increase the likelihood that centrality is optimally measured 
in networks. The 4 measures of network centrality used in this study are degree, betweenness, closeness, and 
eigenvector centrality. In this section, we provide formal mathematical definitions, and discussions of each 
centrality measure in the context of this paper. 
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II.B. Degree Centrality 

Degree centrality is related to the number of colleagues that an analyst is immediately connected to in a 
brokerage network.  
 
For example, in Figure 1, analyst A – represented by the red node – is immediately connected to four 
colleagues. Since degree centrality is increasing in the number of analysts N in a brokerage G, we normalize 
degree centrality by NG – 1, or the maximum possible number of direct connections an analyst can have in a 
network.  
 
 
 
 
 
 
 
 
 
 
Degree centrality favors analysts who have relatively more opportunities. Consider the network in Figure 2. 
Analysts A and Z are represented as red and blue nodes respectively. If Z cannot provide resources to A, A has 
the opportunity to ask her other 3 neighbors – represented as green nodes. However, Z does not have an 
alternative connection if A is unable to provide resources. Under degree centrality, A possesses more social 
power than Z because the former is less dependent on any single colleague. Being connected to more 
colleagues also increases the likelihood that A will receive any information being circulated in the network. 
The formal mathematical definition of degree centrality for a given analyst i is as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝑖,  𝐺) =
∑ 𝑓(𝑖,  𝑗)𝑁𝐺−1
𝑗≠𝑖,𝑗∈𝐺

𝑁𝐺 − 1  

𝑁𝐺 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐺 

𝑓(𝑖,  𝑗) = �+1,   𝑖 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑗
0,   𝑖 𝑖𝑖 𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑗 

Following the above discussion, we show that analyst A has a higher degree centrality than analyst Z. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑨 =  
(3 × 1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + (1 × 1𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + (3 × 0𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

9 − 1 = 0.500 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝒁 =  
(1 × 1𝐵𝐵𝐵𝐵𝐵𝐵𝐵) + (0 × 1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) + (0 × 0𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)

9 − 1 = 0.125 

 
  

a Figure 2 
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II.C. Closeness Centrality 

Closeness centrality is related to the distances between an analyst and all her colleagues (both immediately 
or not immediately connected) in a brokerage network. 

For example, in Figure 3a, the closeness centrality of analyst A – represented by the red node – is the 
reciprocal of the sum of its shortest-path distances to all other brokerage colleagues. Since the sum of 
shortest-path distances is increasing in the number of analysts, closeness centrality is normalized by the 
minimum possible sum of shortest-path distances, NG – 1. For an analyst whose normalized closeness 
centrality equates to unity, all her colleagues are immediately connected to her. 
 

 

 

 

 

 
 
Closeness centrality favors analysts who can access their colleagues, or are reachable by their colleagues, at 
relatively shorter path lengths. An advantage of closeness centrality over degree centrality is that the former 
can also account for indirect connections in the network. This advantage is salient if there are isolated or 
disconnected components (cluster of nodes) in the network. When such components are present, closeness 
centrality, unlike degree centrality, can differentiate global (network-wide) centrality from local centrality. 
To illustrate the difference between closeness and degree centralities, consider a brokerage network G in 
which analysts A and Z are represented as a red node in Figure 3a and a green node in Figure 3b respectively. 
The shortest-path distance of each colleague from analysts A and Z is indicated in the orange nodes. We show 
below that analyst Z has a higher closeness centrality than analyst A even though both analysts have the same 
values of degree centrality. The formal mathematical definition of closeness centrality for a given analyst i is 
as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖,  𝐺) =
𝑁𝐺 − 1

∑ 𝑑(𝑖, 𝑗)𝑁𝐺−1
𝑗≠𝑖,𝑗∈𝐺

 𝑁𝐺 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐺 

𝑑(𝑖, 𝑗) = 𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑎𝑎ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖 𝑎𝑎𝑎 𝑗 

We now show that analysts A and Z have different values of closeness centrality despite having the same 
values of degree centrality. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑨 =  
8 − 1

1 + 1 + 1 + 2 + 3 + 3 + 4 = 0.467 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝒁 =  
8 − 1

1 + 1 + 1 + 2 + 2 + 3 + 3 = 0.538 

 
  

Figure 3a Figure 3b 
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Figure 4 

II.D. Betweenness Centrality 

Betweenness centrality is related to the number of geodesics (shortest paths) in the brokerage network that 
pass through an analyst. 
 
 

 
 
 
 
 
 
We first elaborate on the definition of geodesics. For a pair of analysts, a geodesic between them is a path of 
the shortest possible length. An analyst pair may have more than 1 geodesic. Consider analysts E and F. 
Analyst E may reach analyst F via 2 paths – EZF and EAF. Since both paths have lengths of 2, and the shortest 
possible path length between the analyst pair is 2, both EZF and EAF qualify as geodesics.  
 
The betweenness centrality of analyst A is the sum of proportions of all geodesics (not involving A) which 
pass through A. Revisiting the example of analyst pair E and F, there are 2 geodesics EZF and EAF between 
them but only path EAF passes through analyst A, yielding a proportion of 0.5. If we repeat this computation 
for all possible analyst pairs with reference to analyst A, we will obtain her betweenness centrality. Since 
these sums of proportions are increasing in the number of analysts, betweenness centrality is normalized by 

2
(𝑁𝐺−1)(𝑁𝐺−2)

 the number of unique analyst pairs not involving A.  

Betweenness centrality favors analysts who have brokering capacity. In Figure 4, analyst A is in an 
advantageous brokering position relative to analysts D and E. Should D and E choose to interact with each 
other, they must do so via A. In contrast, if A chooses to interact with either D or E, he may do so without the 
need to pass through any colleagues. The formal mathematical definition of betweenness centrality for a 
given analyst i is as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑖,  𝐺) =  
2

(𝑁𝐺 − 1)(𝑁𝐺 − 2)�
𝑠(𝑥, 𝑦|𝑖)
𝑠(𝑥, 𝑦)𝑥≠𝑖,𝑦≠𝑖,𝑥,𝑦∈𝐺

 

𝑁𝐺 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐺 

𝑠(𝑥, 𝑦) = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑥 𝑎𝑎𝑎 𝑦 

𝑠(𝑥, 𝑦|𝑖) = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑥 𝑎𝑎𝑎 𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡ℎ𝑟𝑟𝑟𝑟ℎ 𝑖 

We now show that analyst A has a higher betweenness centrality than analyst Z. The identities of analyst 
pairs are denoted by subscripts in the denominators of the fractions. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑨 =  
1
6 �

1
1𝐷𝐷

+
1

1𝐷𝐷
+

2
2𝐷𝐷

+
1

2𝐸𝐸
+

0
1𝐸𝐸

+
0

1𝐹𝐹
� = 0.583 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝒁 =  
1
6 �

0
1𝐷𝐷

+
0

1𝐷𝐷
+

0
1𝐷𝐷

+
0

1𝐴𝐴
+

0
1𝐴𝐴

+
1

2𝐸𝐸
� = 0.083 

 
II.E. Eigenvector Centrality 

Eigenvector centrality is related to the notion that the centrality of an analyst is high if her connected 
colleagues are highly central in the brokerage network.  
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A notable application of eigenvector centrality is the PageRank algorithm used by the Google search engine to 
determine the importance of websites on the Internet. The underlying logic of the algorithm is that important 
websites are more likely to receive more web-links from other important websites. Similarly, an analyst has a 
high eigenvector centrality if her connected colleagues also possess high eigenvector centralities. Under 
eigenvector centrality, not only does the quantity of connections determine one’s prominence in the network, 
but the quality of those connections matters as well. 
 
To motivate the mathematical intuition behind eigenvector centrality, consider a simple network structure in 
Figure 5 and its corresponding adjacency matrix 𝐌𝐆 below. The row-wise and column-wise sequences of the 
elements follow P, Q, R, and S. Where there is a connection, the element values equate to unity, and equate to 
zero otherwise. For example, element 𝐦𝟏,𝟐 equates to unity because P and Q are connected. On the other hand, 
element 𝐦𝟏,𝟑 equates to zero because there is no connection between P and R. 

 

𝐌𝐆 = �

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

� 

Next, suppose there is a 4 by 1 vector 𝐊𝐆 of centrality values. For the purpose of exposition, we begin by 
choosing 𝐊𝐆 to be a vector of un-normalized degree centralities. We arbitrarily choose un-normalized degree 
centralities as a starting point for its simplicity. For all purposes of this exposition, we could have defined 𝐊𝐆 
to be a vector of any other centrality values. Formally, we write 𝐊𝐆 as follows. 

𝐊𝐆 = �

2
3
1
2

�   𝑤ℎ𝑒𝑒𝑒 𝐤𝟏,𝟏,𝐤𝟐,𝟏,𝐤𝟑,𝟏, 𝑎𝑎𝑎 𝐤𝟒,𝟏 𝑎𝑎𝑎 𝑡ℎ𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜 𝑷,𝑸,𝑹, 𝑎𝑎𝑎 𝑺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Now we perform the below matrix multiplication, we obtain another 4 by 1 matrix. 

𝐌𝐆 ∙ 𝐊𝐆 = �

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

� ∙ �

2
3
1
2

� = �

0 × 2 + 1 × 3 + 0 × 1 + 1 × 2
1 × 2 + 0 × 3 + 1 × 1 + 1 × 2
0 × 2 + 1 × 3 + 0 × 1 + 0 × 2
1 × 2 + 1 × 3 + 0 × 1 + 0 × 2

� = �

5
5
3
5

� 

For each analyst in the network, the matrix multiplication sums up only the centralities of colleagues whom 
he is directly connected to. Alternatively, this multiplication is not only causing each analyst to receive her 
connected colleagues’ centralities, but also causing her to distribute her centrality to connected colleagues 
concurrently. From the above example, the element [1, 1], corresponding to P, of the resulting matrix carries a 
value of 5, the cumulative centrality of her connections. This value is derived from P’s connections – Q and S – 
who have degree centralities of 3 and 2 respectively. Now, we can interpret this matrix multiplication as 
‘spreading’ the initial vector 𝐊𝐆 across the network. 
Suppose we repeat the multiplication to spread the initial vector 𝐊𝐆 further, we obtain more 4 by 1 matrices. 

𝑴𝑮 ∙ 𝑴𝑮 ∙ 𝑲𝑮 = �

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

� ∙ �

5
5
3
5

� = �

10
13
5

10

� 𝐌𝐆 ∙ 𝐌𝐆 ∙ 𝐌𝐆 ∙ 𝐊𝐆 = �

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

� ∙ �

10
13
5

10

� = �

23
25
13
23

� 

While we observe that the values of elements in the matrices continue to become larger, one may speculate 
that there may exist an equilibrium where the proportion of total centralities held by each analyst is constant 
remains constant through additional stages of multiplication. At such an equilibrium, the centrality value of 

Figure 5 
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each analyst fully reflect the centralities of all connected colleagues. We can search for this equilibrium by 
choosing the initial vector 𝐊𝐆. Upon closer inspection, the search for this equilibrium solution is in fact a 
search for the eigenvector of the adjacency matrix 𝐌𝐆. 

If we had replaced each element of the centrality vector 𝐊𝐆  with values of eigenvector centralities, the 
brokerage network can be described as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖,  𝐺) = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑖  𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚 𝐕𝐆 

𝐕𝐆 𝑖𝑖 𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜 𝑡ℎ𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑘′𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝐌𝐆 

𝑜𝑜, 𝐌𝐆 ∙ 𝐕𝐆 = 𝛌 ∙ 𝐕𝐆 

𝑤ℎ𝑒𝑒𝑒  𝛌 is a scalar 

Suppose we perform a matrix multiplication between 𝐌𝐆 and its eigenvector 𝐕𝐆. 

𝐌𝐆 ∙ 𝐕𝐆 = 𝛌 ∙ 𝐕𝐆 

And multiply the resulting vector with 𝐌𝐆. 

𝐌𝐆 ∙ 𝛌 ∙ 𝐕𝐆 = 𝛌 ∙ 𝐌𝐆 ∙ 𝐕𝐆 =  𝛌 ∙ 𝛌 ∙ 𝐕𝐆 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐕𝐆  

We observe that even with incremental steps of matrix multiplication, the resulting vector is always a scalar 
inflation of the starting vector 𝐕𝐆. Thus, we can say that the vector 𝐕𝐆 fully represents the cumulative 
centrality (or prominence) of analysts and their colleagues in the brokerage network. 
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Appendix III. Variable Definitions 
Analyst Centrality Standardized PCA-extracted factor score of 4 network centrality measures – Degree Centrality, Closeness Centrality, 

Betweenness Centrality and Eigenvector Centrality. 
Degree Centrality Degree Centrality is related to the number of colleagues that the analyst is immediately connected to in the brokerage 

network (see Appendix II for details on centrality measures). 
Closeness Centrality Closeness Centrality is related to the path distances between the analyst and all her colleagues in the brokerage 

network (see Appendix II for details on centrality measures). 
Betweenness Centrality Betweenness Centrality is related to the number of geodesics (shortest paths) in the brokerage network that pass 

through the analyst (see Appendix II for details on centrality measures). 
Eigenvector Centrality Eigenvector Centrality is related to the notion that the centrality of the analyst is high if her connected colleagues are 

also well-connected in the brokerage network (see Appendix II for details on centrality measures). 
Revision Frequency Total number of revisions made by the analyst in the firm-year. 
Horizon Number of days elapsed between the analyst’s firm-year forecast and the actual earnings announcement. We exclude 

all forecasts that are more than 365 days or less than 30 days from the actual earnings announcement. 
General Experience Number of months elapsed between the analyst’s first appearance in the I/B/E/S dataset and her firm-year forecast. 
Firm Experience Number of months elapsed between the analyst’s earliest forecast of the firm in the I/B/E/S dataset and her firm-year 

forecast. 
Firm Breadth Number of unique firms covered by the analyst in the year. 
Industry Breadth Number of unique 2-digit GICS (Global Industry Classification Standard) sectors covered by the analyst in the year.  
Lowball Number of times over the past 3 years that lowballing forecasts were issued for the firm by the analyst. For a forecast 

to be classified as a lowballing one, 3 conditions must be met. First, the forecast value must be below the actual EPS 
value. Second, the forecast error (absolute difference between forecast value and actual EPS value) must be either 
greater than 3 cents or higher than 5% of the actual EPS value. Third, to reduce the likelihood of mistaking forecasting 
difficulty for lowballing behavior, the difference between the forecast value and the consensus value must be greater 
than 3 cents or higher than 5% of the consensus value. 

Brokerage Size Number of analysts employed by the brokerage in the year. 
Loss Indicator that equates to unity if the actual EPS of the firm is negative, and equates to zero otherwise. 
Forecast Dispersion Standard deviation of firm-year forecast values among analysts. 
Analyst Coverage Number of analysts who have contributed at least 1 forecast in the firm-year. 
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Appendix III. (Continued) 
Leverage Sum of short-term debt and long-term borrowings, scaled by total assets of the firm. 
Market-to-Book Ratio Ratio of firm book value to its market capitalization in the year. 
Total Assets Total Assets of Firm 
Consensus Deviation Absolute difference between the analyst’s revision value and the prevailing firm-year consensus value, scaled by the 

absolute value of the latter variable. 
Forecast Revision Absolute difference between the analyst’s revision value and her prior forecast value, scaled by the absolute value of the 

latter variable. 
Number of Forecasts Number of firm-year forecasts issued by all analysts in the week of the analyst’s forecast revision. 
Disagreement In the week of the analyst’s revision, we collect firm-year forecasts issued by all analysts and assign a value of +1 (-1) to 

an issued forecast if its value is higher (lower) than the prevailing consensus. Disagreement is the standard deviation of 
these assigned values in the week. If there is only 1 forecast issued in the week, Disagreement is set to zero. 

Peer Pessimism For a given forecast revision of an analyst, we collect all instances of her brokerage colleagues’ realized forecast errors 
within the past 30 days. Alternatively, the firms covered by the analyst’s brokerage colleagues must have announced 
their actual earnings in the same 30-day window. For each forecast error of the analyst’s colleagues, we classify it as 
optimistic if the forecasted value is above the actual earnings, and categorize them as pessimistic if the forecasted value 
is below the actual earnings. If the colleague’s forecast error is zero, the instance is neither optimistic nor pessimistic but 
is still counted in the window. Following this, Peer Pessimism is the proportion of pessimistic forecast errors issued by 
brokerage colleagues in the 30-day window. 

Peer Optimism Peer Optimism is defined symmetrically to Peer Pessimism. 
Global Pessimism For a given forecast revision of an analyst, we collect all instances (including non-colleagues) realized forecast errors in 

the same 2-digit GICS sector within the past 30 days. Alternatively, the firms covered by all analysts (including non-
colleagues) in the same 2-digit GICS sector must have announced their actual earnings in the same 30-day window. For 
each forecast error, we classify it as optimistic if the forecasted value is above the actual earnings, and categorize them 
as pessimistic if the forecasted value if below the actual earnings. If the forecast error is zero, it is neither optimistic nor 
pessimistic but is still counted in the window. Following this, Global Pessimism is the proportion of pessimistic forecast 
errors issued by all analysts in the 30-day window. 

Global Optimism Global Optimism is defined symmetrically to Global Pessimism. 
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Appendix III. (Continued) 
Competitors’ Revisions In the week of the analyst’s revision, we collect firm-year forecasts issued by all other analysts and assign a value of +1 

(-1) to an issued forecast if its value is higher (lower) than the analyst’s previous firm-year forecast. Competitors’ 
Revisions is the sum of these assigned values. 

All-Star Indicator that equates to unity if the analyst belongs to the Institutional Investor All-America Research Team in the year, 
and equates to zero otherwise. 

Forecast Error Absolute difference between the analyst’s final firm-year forecast and the actual firm-year EPS value. 
Normalized Forecast Error Forecast Error scaled by the average Forecast Error across analysts in the firm-year. 
Clement-Tse Accuracy In each firm-year, the maximum (Max FE) and minimum (Min FE) values of Forecast Error are computed. Clement-Tse 

Accuracy of an analyst in a firm-year is the ratio of the difference between Max FE and Forecast Error to the difference 
between Max FE and Min FE. Hence, Clement-Tse Accuracy is bounded between 0 and unity, with higher values 
reflecting a higher degree of forecast accuracy. 

Herding Rate Following Clement and Tse (2005), an analyst’s forecast revision in the firm-year is classified as non-herding only when 
it is either above both her prior forecast and pre-revision consensus forecast or below both her prior forecast and pre-
revision consensus forecast. Otherwise, the revision is classified as herding. Herding Rate is the ratio of herding 
revisions to the total number of revisions made by an analyst in the firm-year. 

Clement-Tse Herding Rate In each firm-year, the maximum (Max HR) and minimum (Min HR) values of Herding Rates are computed. Clement-Tse 
Herding Rate of an analyst in a firm-year is the ratio of the difference between Herding Rate and Min HR to the difference 
between Max HR and Min HR. Hence, Clement-Tse Herding Rate is bounded between 0 and unity, with higher values 
reflecting a greater degree of herding behavior. 

Abs. CAR Market-adjusted cumulative abnormal returns, centered on the forecast revision date. 
Analyst Revision Difference between the forecast revision value and the previous forecast value, scaled by the absolute value of the latter 

variable. Unlike Forecast Revision (see above for definition), Analyst Revision is a signed variable. Positive (negative) 
values of Analyst Revision reflects an increment (a decline) in the analyst’s forecasted value from her previous forecast. 
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Table 1. 
Panel A. Summary Statistics 

Variable N Mean S.D p10 p25 p50 p75 p90  
         Analyst Centrality 12075

 
0.178 1.007 -1.095 -0.589 0.127 0.866 1.456 

Degree Centrality 12075
 

0.356 0.240 0.108 0.174 0.291 0.471 0.714 
Closeness Centrality 12075

 
0.549 0.175 0.367 0.456 0.535 0.626 0.774 

Betweenness Centrality 12075
 

0.025 0.063 0 0 0 0.019 0.076 
Eigenvector Centrality 12075

 
0.142 0.116 0.007 0.041 0.124 0.216 0.304 

Horizon 12075
 

126.57
 

79.045 49 90 99 128 273 
Brokerage Size 12075

 
68.739 52.657 14 25 56 103 129 

Revision Frequency 12075
 

3.393 3.087 1 2 3 4 6 
Log (General Experience) 12075

 
4.544 0.493 3.850 4.159 4.575 4.927 5.198 

Log (Firm Experience) 12075
 

4.106 0.467 3.555 3.689 4.078 4.443 4.787 
Firm Breadth 12075

 
14.773 6.716 7 10 14 18 23 

Industry Breadth 12075
 

1.620 0.849 1 1 1 2 3 
Lowball 12075

 
0.458 0.687 0 0 0 1 1 

Loss 12075
 

0.088 0.283 0 0 0 0 0 
Forecast Dispersion 12075

 
0.146 0.228 0.016 0.031 0.069 0.157 0.346 

Analyst Coverage 12075
 

19.337 9.466 8 12 18 25 33 
Leverage 12075

 
0.561 0.229 0.253 0.396 0.558 0.717 0.883 

Book to Market Ratio 12075
 

0.480 0.370 0.126 0.240 0.397 0.629 0.925 
Log (Total Assets) 12075

 
8.366 1.673 6.226 7.187 8.288 9.512 10.574 

Forecast Error 12075
 

0.139 0.295 0.005 0.018 0.040 0.120 0.320 
Normalized Forecast Error 12057

 
101.34

 
90.958 10.185 41.667 83.582 127.83

 
207.77

 Herding Rate 12075
 

28.400 29.793 0 0 25.000 50.000 66.667 
          

Panel B. Univariate Correlations 
 (a) (b) (c) (d) (e) (f) (g) (h) (i) 

          Analyst Centrality A 1         
Degree Centrality B 0.735 1        
Closeness Centrality C 0.759 0.893 1       
Betweenness Centrality D 0.475 0.332 0.286 1      
Eigenvector Centrality E 0.591 0.756 0.619 0.358 1     
Brokerage Size F 0.052 -0.417 -0.207 -0.131 -0.489 1    
General Experience G 0.020 0.004 0.009 0.030 0.026 -0.035 1   
Firm Experience H -0.014 -0.025 -0.022 0.015 0.006 -0.011 0.615 1  
Firm Breadth I 0.106 0.058 0.100 0.074 -0.011 0.015 0.248 0.127 1 
Industry Breadth J 0.616 0.473 0.424 0.551 0.399 -0.084 0.063 0.023 0.224 
           

 



 

 
 
 

41 

Table 2. 
The Effect of Analyst Centrality on Forecast Accuracy 

This table presents results from an ordinary least squares model. The dependent variable in 
Column (3) of Panel A is Forecast Error. Forecast Error is the absolute difference between the 
analyst’s final firm-year forecast and the actual firm-year EPS value. Forecast Error is measured in 
percentage points. The dependent variable in Column (4) of Panel A is Normalized Forecast Error, 
defined as Forecast Error scaled by the average forecast error in the firm-year. The dependent 
variable in Columns (1) and (2) of Panel A is Clement-Tse Accuracy (see Clement and Tse, 2005). In 
each firm-year, the maximum (Max FE) and minimum (Min FE) values of Forecast Error are 
computed. Clement-Tse Accuracy of an analyst in a firm-year is the ratio of the difference between 
Max FE and Forecast Error to the difference between Max FE and Min FE. Hence, Clement-Tse 
Accuracy is bounded between 0 and unity, with higher values reflecting a higher degree of forecast 
accuracy. The key independent variable in Panel A is Analyst Centrality. Analyst Centrality is the 
standardized PCA-extracted factor score of 4 network centrality measures – Degree Centrality, 
Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see Appendix 2 for details 
on centrality measures). In Panel B, we regress each of the above 4 network centrality measure 
individually on Forecast Error. All independent variables in Column (1) of Panel A are normalized 
according to Clement and Tse (2005). In each firm-year, the maximum (Max Var) and minimum 
(Min Var) values of each variable are computed. Subsequently, each independent variable is 
normalized as the ratio of the difference between the variable value and Min Var to the difference 
between Max Var and Min Var. Hence, the normalized value of each independent variable is 
bounded between 0 and unity, with higher values reflecting a greater magnitude of the variable. 
This normalization is not performed for all other Columns in Panel A and Panel B. To facilitate 
presentation, estimated coefficients are multiplied by a factor of 100 in Column (2) of Panel A. 
Where firm-year fixed effects are employed, control variables specific to the firm-year are excluded 
from the regressions. Detailed definitions of other variables are in the Appendix. Robust standard 
errors are reported in parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% 
levels respectively. 
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Table 2. (Continued) 
Panel A. Analyst Centrality and Forecast Accuracy 

  (1) (2) (3) (4) 

 
Clement-Tse  

Accuracy 
Clement-Tse  

Accuracy 
Forecast  

Error 
Norm. 

Forecast Error 
          Analyst Centrality 0.026*** 0.616*** -0.003*** -1.983*** 

(0.004) (0.002) (0.001) (0.460) 
Revision Frequency 0.081*** 0.047 -0.003* -0.095 

(0.004) (0.000) (0.002) (0.067) 
Horizon -0.218*** -0.143*** 0.001*** 0.456*** 

(0.003) (0.000) (0.000) (0.006) 
Log (General Experience) 0.025*** -0.187 -0.003 1.846** 

(0.004) (0.003) (0.002) (0.908) 
Log (Firm Experience) 0.015*** -0.096 -0.003* 0.026 

(0.003) (0.003) (0.002) (0.790) 
Firm Breadth 0.005 0.017 -0.000 -0.111** 

(0.003) (0.000) (0.000) (0.055) 
Industry Breadth -0.038*** -1.120*** 0.004*** 2.123*** 

(0.003) (0.002) (0.001) (0.527) 
Lowball -0.021*** -1.842*** 0.007*** 5.456*** 

(0.003) (0.002) (0.002) (0.564) 
Brokerage Size 0.061***  0.000***  

(0.003)  (0.000)  
Loss  -1.771***  -3.709*** 

 (0.004)  (1.015) 
Forecast Dispersion  11.831***  -1.960 

 (0.005)  (1.727) 
Analyst Coverage  0.441***  0.147*** 

 (0.000)  (0.046) 
Prev. C-T Accuracy -0.024*** 6.727***   

(0.003) (0.004)   
Prev. Forecast Error   0.160***  

  (0.014)  
Prev. Norm. Forecast Error    0.092*** 

   (0.007) 
     Firm financial variables No Yes No Yes 
Observations 77,130 108,228 120,756 107,545 
R-squared 0.111 0.197 0.734 0.206 
Brokerage-Year fixed effects No Yes No Yes 
Firm-Year fixed effects No No Yes No 
Brokerage-Year cluster No Yes No Yes 
Firm-Year cluster No No Yes No 
Analyst-Firm cluster No Yes Yes Yes 
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Table 2. (Continued) 
Panel B. Individual Measures of Network Centrality and Forecast Accuracy 

  (1) (2) (3) (4) (5) 

 

Norm. 
Forecast 

Error 

Norm. 
Forecast 

Error 

Norm. 
Forecast 

Error 

Norm. 
Forecast 

Error 

Norm. 
Forecast 

Error 

            Degree Centrality -5.014 -2.514    
(3.673) (1.673)    

Closeness Centrality 1.625  -2.429   
(4.045)  (1.976)   

Betweenness Centrality -12.007**   -11.174**  
(5.420)   (5.328)  

Eigenvector Centrality 5.655    -0.528 
(4.282)    (3.520) 

Revision Frequency -0.927** -0.929** -0.930** -0.931** -0.931** 
(0.413) (0.414) (0.414) (0.414) (0.415) 

Horizon 0.576*** 0.576*** 0.576*** 0.576*** 0.576*** 
(0.009) (0.009) (0.009) (0.009) (0.009) 

Log (General Experience) -1.253 -1.256 -1.236 -1.191 -1.205 
(0.871) (0.871) (0.871) (0.871) (0.871) 

Log (Firm Experience) -1.802** -1.783** -1.792** -1.795** -1.796** 
(0.903) (0.903) (0.903) (0.903) (0.903) 

Firm Breadth -0.105* -0.100* -0.096* -0.104* -0.099* 
(0.055) (0.054) (0.054) (0.054) (0.055) 

Industry Breadth 2.752*** 2.346*** 2.213*** 2.466*** 2.037*** 
(0.570) (0.520) (0.492) (0.514) (0.496) 

Lowball 7.615*** 7.615*** 7.617*** 7.613*** 7.616*** 
(0.728) (0.728) (0.728) (0.728) (0.728) 

Brokerage Size 0.018** 0.017** 0.020*** 0.019*** 0.020*** 
(0.008) (0.007) (0.007) (0.007) (0.007) 

Prev. Norm. Forecast Error 0.089*** 0.089*** 0.089*** 0.089*** 0.089*** 
(0.005) (0.005) (0.005) (0.005) (0.005) 

      Observations 120,232 120,232 120,232 120,232 120,232 
R-squared 0.263 0.263 0.263 0.263 0.263 
Firm-Year fixed effects Yes Yes Yes Yes Yes 
Firm-Year cluster Yes Yes Yes Yes Yes 
Analyst-Firm cluster Yes Yes Yes Yes Yes 
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Table 3. 
The Effect of Network Centrality on Herding Behavior 

This table presents results from an ordinary least squares model. The dependent variable in 
Columns (3) and (4) of Panel A is Herding Rate. Following Clement and Tse (2005), an analyst’s 
forecast revision in the firm-year is classified as non-herding only when it is either above both her 
prior forecast and pre-revision consensus forecast or below both her prior forecast and pre-
revision consensus forecast. Otherwise, the revision is classified as herding. Herding Rate is the 
ratio of herding revisions to the total number of revisions made by an analyst in the firm-year. The 
dependent variable in Columns (1) and (2) of Panel A is Clement-Tse Herding Rate. In each firm-
year, the maximum (Max HR) and minimum (Min HR) values of Herding Rates are computed. 
Clement-Tse Herding Rate of an analyst in a firm-year is the ratio of the difference between Herding 
Rate and Min HR to the difference between Max HR and Min HR. Hence, Clement-Tse Herding Rate 
is bounded between 0 and unity, with higher values reflecting a greater degree of herding behavior. 
The key independent variable in Panel A is Analyst Centrality. Analyst Centrality is the standardized 
PCA-extracted factor score of 4 network centrality measures – Degree Centrality, Closeness 
Centrality, Betweenness Centrality and Eigenvector Centrality (see Appendix 2 for details on 
centrality measures). In Panel B, we regress each of the above 4 network centrality measure 
individually on Herding Rate. All independent variables in Column (1) of Panel A are normalized 
according to Clement and Tse (2005). In each firm-year, the maximum (Max Var) and minimum 
(Min Var) values of each variable are computed. Subsequently, each independent variable is 
normalized as the ratio of the difference between the variable value and Min Var to the difference 
between Max Var and Min Var. Hence, the normalized value of each independent variable is 
bounded between 0 and unity, with higher values reflecting a greater magnitude of the variable. 
This normalization is not performed for all other Columns in Panel A and Panel B. To facilitate 
presentation, estimated coefficients are multiplied by a factor of 100 in Column (2) of Panel A. 
Where firm-year fixed effects are employed, control variables specific to the firm-year are excluded 
from the regressions. Detailed definitions of other variables are in the Appendix. Robust standard 
errors are reported in parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% 
levels respectively. 
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Table 3. (Continued) 
Panel A. Analyst Centrality and Herding Behavior 

  (1) (2) (3) (4) 

 
Clement-Tse 
Herding Rate 

Clement-Tse 
Herding Rate 

Herding  
Rate 

Herding  
Rate 

  
 

        Analyst Centrality -0.027*** -0.619*** -0.540*** -0.468*** 
(0.005) (0.002) (0.135) (0.160) 

Revision Frequency 0.210*** 1.006* 0.551* 0.641** 
(0.005) (0.006) (0.331) (0.289) 

Horizon -0.020*** -0.071*** -0.044*** -0.037*** 
(0.004) (0.000) (0.005) (0.005) 

Log (General Experience) -0.004 -0.311 -0.472* -0.734** 
(0.005) (0.004) (0.280) (0.317) 

Log (Firm Experience) 0.000 -1.391*** -0.618** -0.513** 
(0.004) (0.003) (0.286) (0.260) 

Firm Breadth 0.009** -0.014 0.019 -0.042** 
(0.004) (0.000) (0.017) (0.021) 

Industry Breadth 0.032*** 0.657*** 0.880*** 0.466** 
(0.004) (0.003) (0.183) (0.190) 

Lowball 0.027*** 1.074*** 0.698*** 1.105*** 
(0.003) (0.002) (0.173) (0.145) 

Brokerage Size -0.019***  -0.008***  
(0.004)  (0.002)  

Loss  0.801  1.376*** 
 (0.005)  (0.384) 

Forecast Dispersion  -0.135  -3.152*** 
 (0.009)  (0.707) 

Analyst Coverage  -0.271***  -0.099*** 
 (0.000)  (0.016) 

Prev. C-T Herding Rate 0.057*** 4.575***   
(0.004) (0.004)   

Prev. Herding Rate   0.052*** 0.056*** 
  (0.004) (0.004) 

     Firm financial variables No Yes No Yes 
Observations 75,651 102,123 120,756 108,228 
R-squared 0.044 0.075 0.269 0.060 
Brokerage-Year fixed effects No Yes No Yes 
Firm-Year fixed effects No No Yes No 
Brokerage-Year cluster No Yes No Yes 
Firm-Year cluster No No Yes No 
Analyst-Firm cluster No Yes Yes Yes 
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Table 3. (Continued) 
Panel B. Individual Measures of Centrality and Herding Behavior 

  (1) (2) (3) (4) (5) 

 
Herding 

Rate 
Herding 

Rate 
Herding 

Rate 
Herding 

Rate 
Herding 

Rate 
            Degree Centrality -2.186* -0.992**    

(1.183) (0.502)    
Closeness Centrality 1.196  -0.821   

(1.318)  (0.605)   
Betweenness Centrality -4.383**   -4.232**  

(1.788)   (1.750)  
Eigenvector Centrality 1.473    -0.713 

(1.402)    (1.099) 
Revision Frequency 0.550* 0.549* 0.549* 0.548* 0.548* 

(0.331) (0.330) (0.330) (0.330) (0.330) 
Horizon -0.044*** -0.044*** -0.044*** -0.044*** -0.044*** 

(0.005) (0.005) (0.005) (0.005) (0.005) 
Log (General Experience) -0.458 -0.459 -0.449 -0.434 -0.441 

(0.280) (0.280) (0.280) (0.280) (0.280) 
Log (Firm Experience) -0.625** -0.622** -0.625** -0.626** -0.624** 

(0.286) (0.286) (0.286) (0.286) (0.286) 
Firm Breadth 0.014 0.017 0.019 0.016 0.017 

(0.017) (0.017) (0.017) (0.017) (0.017) 
Industry Breadth 0.796*** 0.631*** 0.567*** 0.671*** 0.534*** 

(0.184) (0.168) (0.162) (0.170) (0.163) 
Lowball 0.698*** 0.700*** 0.701*** 0.699*** 0.701*** 

(0.173) (0.173) (0.173) (0.173) (0.173) 
Brokerage Size -0.012*** -0.011*** -0.010*** -0.010*** -0.010*** 

(0.002) (0.002) (0.002) (0.002) (0.002) 
Prev. Herding Rate 0.052*** 0.052*** 0.052*** 0.052*** 0.053*** 

(0.004) (0.004) (0.004) (0.004) (0.004) 
      Observations 120,756 120,756 120,756 120,756 120,756 

R-squared 0.269 0.269 0.269 0.269 0.269 
Firm-Year fixed effects Yes Yes Yes Yes Yes 
Firm-Year cluster Yes Yes Yes Yes Yes 
Analyst-Firm cluster Yes Yes Yes Yes Yes 
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Table 4. 
The Effect of Analyst Centrality on Market Reactions to Forecasts 

This table presents results from an ordinary least squares model. The dependent variable in this 
table is the absolute 3-day market-adjusted cumulative abnormal returns, centered on the forecast 
revision date. The key independent variables in Columns (1) and (2) are Analyst Centrality, 
Consensus Deviation, and their interaction Analyst Centrality X Consensus Deviation. The key 
independent variables in Columns (3) and (4) are Analyst Centrality, Forecast Revision, and their 
interaction Analyst Centrality X Forecast Revision. Analyst Centrality is the standardized PCA-
extracted factor score of 4 network centrality measures – Degree Centrality, Closeness Centrality, 
Betweenness Centrality and Eigenvector Centrality (see Appendix 2 for details on centrality 
measures). Consensus Deviation is the absolute difference between an analyst’s revision value and 
the prevailing consensus, normalized by the absolute value of the latter variable. Forecast Revision 
is the absolute difference between an analyst’s revision value and her prior forecast value, 
normalized by the absolute value of the latter variable. All return variables are unitized in 
percentage points. Detailed definitions of other variables are in the Appendix. Robust standard 
errors are reported in parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% 
levels respectively. 
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Table 4. (Continued) 
  (1) (2) (3) (4) 

 
Abs. CAR 
[-1, +1] 

Abs. CAR 
[-1, +1] 

Abs. CAR 
[-1, +1] 

Abs. CAR 
[-1, +1] 

          Analyst Centrality 0.003 0.003 -0.010 -0.011 
(0.010) (0.010) (0.010) (0.010) 

Consensus Deviation [A] 0.737*** 0.737***   
(0.046) (0.046)   

Analyst Centrality X [A] 0.251*** 0.250***   
(0.051) (0.051)   

Forecast Revision [B]   0.851*** 0.852*** 
  (0.047) (0.047) 

Analyst Centrality X [B]   0.348*** 0.348*** 
  (0.057) (0.057) 

Log (General Experience) 0.077*** 0.077*** 0.076*** 0.075*** 
(0.016) (0.016) (0.017) (0.017) 

Log (Firm Experience) -0.011 -0.011 -0.003 -0.003 
(0.018) (0.018) (0.019) (0.019) 

Firm Breadth -0.001 -0.000 -0.001 -0.001 
(0.001) (0.001) (0.001) (0.001) 

Industry Breadth -0.014 -0.014 -0.011 -0.011 
(0.011) (0.011) (0.011) (0.011) 

Number of Forecasts 0.340*** 0.340*** 0.332*** 0.332*** 
(0.007) (0.007) (0.007) (0.007) 

Disagreement -0.227*** -0.227*** -0.231*** -0.232*** 
(0.030) (0.030) (0.031) (0.031) 

Loss 0.438*** 0.439*** 0.457*** 0.458*** 
(0.079) (0.079) (0.080) (0.080) 

Abs. CAR [-5, -2] 0.034***  0.032***  
(0.005)  (0.005)  

Abs. CAR [-10, -2]  0.021***  0.020*** 
 (0.003)  (0.003) 

     Firm financial controls Yes Yes Yes Yes 
Observations 530,623 530,623 484,934 484,934 
R-squared 0.290 0.290 0.293 0.293 
Firm fixed effects Yes Yes Yes Yes 
Industry-Week fixed effects Yes Yes Yes Yes 
Firm-Week cluster Yes Yes Yes Yes 
Analyst-Firm cluster Yes Yes Yes Yes 
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Table 5. 
Analyst Centrality and Learning from Peers’ Ex-Post Forecast Errors 

This table presents results from an ordinary least squares model. The dependent variable is Analyst 
Revision. Analyst Revision is a signed variable which equates to the difference between the revised 
forecast value and the previous forecast value, scaled by the absolute value of the latter. Hence, 
positive (negative) values of Analyst Revision reflects an increment (a decline) in the analyst’s 
forecasted value from her previous forecast. The key independent variables in Columns (1) to (4) 
are Peer Pessimism, Peer Optimism, Global Pessimism, Global Optimism and their respective 
interactions with Analyst Centrality. For a given forecast revision of an analyst, we collect all 
instances of her brokerage colleagues’ realized forecast errors within the past 30 days. 
Alternatively, the firms covered by the analyst’s brokerage colleagues must have announced their 
actual earnings in the same 30-day window. For each forecast error of the analyst’s colleagues, we 
classify them as optimistic if the forecasted value is above the actual earnings, and categorize them 
as pessimistic if the forecasted value is below the actual earnings. If the colleague’s forecast error is 
0, the instance is neither optimistic nor pessimistic but is still counted in the window. Following 
this, Peer Pessimism is the proportion of pessimistic forecast errors in the 30-day window. Peer 
Optimism is defined symmetrically. Since the analyst’s colleagues may have forecast errors of 0, the 
sum of Peer Pessimism and Peer Optimism needs not be unity. To construct Global Pessimism, we 
capture all realized forecast errors in the same GICS sector in the same 30-day window. Following 
this, Global Pessimism is the proportion of pessimistic forecast errors made by all analysts 
(including non-colleagues) in the 30-day window. Global Optimism is defined symmetrically. 
Analyst Centrality is the standardized PCA-extracted factor score of 4 network centrality measures 
– Degree Centrality, Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see 
Appendix 2 for details on centrality measures). Analyst Revision, Peer Pessimism, Peer Optimism, 
and stock return variables are expressed in percentage points. Detailed definitions of other 
variables are in the Appendix. Robust standard errors are reported in parentheses. ***, **, * 
represent statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 5. (Continued) 
  (1) (2) (3) (4) 

 Analyst  
Revision 

Analyst  
Revision 

Analyst  
Revision 

Analyst  
Revision 

          Analyst Centrality -0.224 -0.263 0.019 -0.162 
(0.178) (0.180) (0.367) (0.387) 

Peer Pessimism [A] 0.974*** 0.544***  0.463*** 
(0.182) (0.173)  (0.173) 

Analyst Centrality X [A] 0.373** 0.347**  0.309* 
(0.186) (0.175)  (0.174) 

Peer Optimism [B] -0.595*** -0.304  -0.228 
(0.203) (0.194)  (0.194) 

Analyst Centrality X [B] 0.268 0.224  0.255 
(0.204) (0.193)  (0.193) 

Global Pessimism [C]   1.350*** 1.265*** 
  (0.408) (0.408) 

Analyst Centrality X [C]   0.059 -0.001 
  (0.384) (0.383) 

Global Optimism [D]   -0.361 -0.372 
  (0.419) (0.419) 

Analyst Centrality X [D]   -0.233 -0.257 
  (0.393) (0.393) 

Competitors’ Revisions  0.077*** 0.077*** 0.076*** 
 (0.001) (0.001) (0.001) 

General Experience  0.935 0.899 0.877 
 (0.688) (0.688) (0.688) 

Firm Experience  -1.048** -0.976* -0.981* 
 (0.527) (0.527) (0.527) 

Firm Breadth  0.010 0.009 0.009 
 (0.018) (0.018) (0.018) 

Industry Breadth  0.163 0.192 0.176 
 (0.172) (0.172) (0.172) 

Brokerage Size  -0.005** -0.005* -0.005** 
 (0.003) (0.003) (0.003) 

X`Abs. CAR [-10, -2]  0.150*** 0.150*** 0.150*** 
 (0.009) (0.009) (0.009) 

     Observations 409,397 409,397 409,397 409,397 
R-squared 0.170 0.251 0.251 0.251 
Analyst-firm fixed effects Yes Yes Yes Yes 
Analyst-firm cluster Yes Yes Yes Yes 
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Table 6. 
Analyst Centrality and All-Star Status 

This table presents results from OLS regressions. Due to data limitations on the identities of all-star analysts, our sample period ends in 
2008. The dependent variables are Clement-Tse Accuracy, Clement-Tse Herding Rate, and Abs. CAR. In each firm-year, the maximum (Max 
FE) and minimum (Min FE) values of Forecast Error are computed. Clement-Tse Accuracy of an analyst in a firm-year is the ratio of the 
difference between Max FE and Forecast Error to the difference between Max FE and Min FE. Hence, Clement-Tse Accuracy is bounded 
between 0 and unity, with higher values reflecting a higher degree of forecast accuracy. Forecast Error is the absolute difference between 
the analyst’s final firm-year forecast and the actual firm-year EPS value. Clement-Tse Herding Rate is constructed in a similar fashion 
using Herding Rate. Following Clement and Tse (2005), an analyst’s forecast revision in the firm-year is classified as non-herding only 
when it is either above both her prior forecast and pre-revision consensus forecast or below both her prior forecast and pre-revision 
consensus forecast. Otherwise, the revision is classified as herding. Herding Rate is the ratio of herding revisions to the total number of 
revisions made by an analyst in the firm-year. Abs. CAR is the absolute 3-day market-adjusted cumulative abnormal returns, centered on 
the forecast revision date. The key independent variables in Columns (1) to (4) are All-Star and Analyst Centrality. In Columns (5) and (6), 
we add Consensus Deviation and its respective interactions with All-Star and Analyst Centrality as key independent variables. All-Star is 
an indicator variable that equates to unity if the analyst belongs to the Institutional Investor All-America Research Team in the year, and 
equates to zero otherwise. Analyst Centrality is the standardized PCA-extracted factor score of 4 network centrality measures – Degree 
Centrality, Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see Appendix 2 for details on centrality measures). 
Consensus Deviation is the absolute difference between an analyst’s revision value and the prevailing consensus, normalized by the 
absolute value of the latter variable. To facilitate presentation, we do not present the estimated coefficients of control variables in the 
table. Apart from the addition of All-Star, Columns (1) and (2) follow the specification in Table 2A Column 1; Columns (3) and (4) follow 
the specification in Table 3A Column 1; Columns (5) and (6) follow the specification in Table 4 Column 1. Robust standard errors are 
reported in parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 6. (Continued) 
  (1) (2) (3) (4) (5) (6) 
  Clement-Tse 

Accuracy 
Clement-Tse 

Accuracy 
Clement-Tse 
Herding Rate 

Clement-Tse 
Herding Rate 

Abs. CAR 
[-1, +1] 

Abs. CAR 
[-1, +1] 

       
Specification Table 2A Column 1 Table 3A Column 1 Table 4 Column 1 

      
All-Star [A] 0.011*** 0.011*** -0.016*** -0.016*** 0.071*** 0.068*** 

(0.004) (0.004) (0.005) (0.005) (0.024) (0.024) 
Analyst Centrality [B]  0.017***  -0.017**  0.003 

 (0.005)  (0.007)  (0.015) 
Consensus Deviation [C]     0.900*** 0.855*** 

    (0.076) (0.075) 
[A] X [C]     0.645*** 0.616*** 

    (0.167) (0.167) 
[B] X [C]      0.315*** 

     (0.086) 
       

Controls Yes Yes Yes Yes Yes Yes 
       

Observations 33,596 33,596 32,435 32,435 250,922 250,922 
R-squared 0.146 0.146 0.061 0.061 0.287 0.287 
Firm fixed effects No No No No Yes Yes 
Industry-Week fixed effects No No No No Yes Yes 
Firm-Week cluster No No No No Yes Yes 
Analyst-Firm cluster No No No No Yes Yes 

 



 

 
 
 

53 

Table 7. 
The Causal Effect of Increases in Analyst Centrality on Forecast Accuracy:  

Subsequent Analyst Employment after Brokerage Closures 
This table presents results from a difference-in-difference model with multiple groups, and multiple 
shocks across time. We define shocks to analyst employment as brokerage closures (Kelly and 
Ljungqvist, 2012) from years 2000 to 2007. For each closure event, we retain all analysts who 
subsequently find employment in another brokerage. Furthermore, these analysts are required to 
cover the same firm before and after the closure event. Therefore, our unit of observation in the 
model is an analyst-firm. The treatment in the model is Analyst Centrality Up, an indicator variable 
which equates to unity if the average post-closure Analyst Centrality is higher than the average pre-
closure Analyst Centrality, and equates to zero otherwise. Since visual inspection to validate the 
parallel trend assumption is tenuous in a model with shocks spread across time, we include 
temporal leads and lags of the treatment in the model to test the assumption econometrically (e.g. 
Autor (2003)). We use a [-5 years, +5 years] window centered on the closure event. The dependent 
variable in this table is Clement-Tse Accuracy (see Clement and Tse, 2005). In each firm-year, the 
maximum (Max FE) and minimum (Min FE) values of Forecast Error are computed. Clement-Tse 
Accuracy of an analyst in a firm-year is the ratio of the difference between Max FE and Forecast 
Error to the difference between Max FE and Min FE. Hence, Clement-Tse Accuracy is bounded 
between 0 and unity, with higher values reflecting a higher degree of forecast accuracy. The key 
independent variables are the temporal leads (Pre-Treatment) and lags (Post-Treatment) of the 
treatment. We also include analyst and analyst-firm time trends in some specifications to help 
control for confounding trends. Analyst time trends are Log (General Experience), Brokerage Size, 
Firm Breadth, and Industry Breadth. Analyst-firm time trends are Horizon, Revision Frequency, and 
Log (Firm Experience). Detailed definitions of the variables are in the Appendix. To facilitate 
presentation, coefficient estimates of analyst and analyst-firm time trends are not presented. 
Robust standard errors are reported in parentheses. ***, **, * represent statistical significance at 
the 1%, 5% and 10% levels respectively. 
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Table 7. (Continued) 
  (1) (2) (3) 

 
Clement-Tse  

Accuracy 
Clement-Tse  

Accuracy 
Clement-Tse  

Accuracy 
        Leads and Lags of 
Increases in Analyst Centrality: 

   
   

    Pre-Treatment 5 12.743 6.492 10.937 
(0.139) (0.150) (0.087) 

Pre-Treatment 4 11.699 8.629 11.364 
(0.093) (0.091) (0.105) 

Pre-Treatment 3 15.089 11.839 17.278 
(0.098) (0.091) (0.112) 

Pre-Treatment 2 21.187** 18.178** 19.536** 
(0.067) (0.056) (0.078) 

Pre-Treatment 1 1.938 0.761 6.595 
(0.043) (0.036) (0.052) 

    Post-Treatment 1 13.388** 12.475** 16.565*** 
(0.049) (0.043) (0.044) 

Post-Treatment 2 16.504** 16.655** 22.791** 
(0.058) (0.057) (0.086) 

Post-Treatment 3 15.733* 15.995* 21.135** 
(0.079) (0.082) (0.082) 

Post-Treatment 4 15.374** 15.396** 14.508* 
(0.046) (0.057) (0.071) 

Post-Treatment 5 16.915** 17.184** 18.111** 
(0.063) (0.063) (0.062) 

    Other Covariates:    
Analyst time trends No Yes Yes 
Analyst-Firm time trends No No Yes 

    Observations 1,148 1,148 1,148 
R-squared 0.251 0.254 0.339 
Analyst-Firm dummies Yes Yes Yes 
Year dummies Yes Yes Yes 
Analyst cluster Yes Yes Yes 
Industry cluster Yes Yes Yes 

 


