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Abstract

Liquidity backstops have important implications for financial stability. The different

experiences of the municipal bond markets for variable rate demand obligations (VR-

DOs) and auction rate securities (ARS) during the recent financial crisis of 2007-09

provide a natural experiment to study the role of a liquidity backstop in mitigating

runs: the liquidity-backstop-lacking ARS market collapsed subsequently, while the

liquidity-backstop-possessing VRDO market survived. In this paper we develop a

tractable dynamic model of debt runs in these markets and show that the lack of a

liquidity backstop makes the ARS market more susceptible to runs than the VRDO

market. Intuitively, absent a liquidity backstop, ARS creditors face a liquidity risk

of being unable to liquidate their holdings if auctions fail en masse in the future. We

conceptualize and evaluate the value of a liquidity backstop. The calibration results

shed light on one central difference between shadow banks and traditional banks that

have differential access to public liquidity backstops.
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1 Introduction

Liquidity backstops have important implications for financial stability, as demon-

strated by the recent financial crisis of 2007-09. On the one hand, concerns about

the provision of private liquidity backstops by banks (e.g., committed lines of credit)

contributed to runs on asset-backed commercial paper programs in the summer 2007

(Covitz, Liang, and Suarez (2013)). These runs together with those in several other

markets (e.g., markets for repo, money market funds) tightened credit going to firms

and households and inflicted widespread damage to the US and global economy. On

the other hand, during the financial crisis banks had relied on public liquidity back-

stops by the government and agencies (e.g., liquidity facilities) to be able to continue

to honor their liquidity commitments: “the role of banks as liquidity providers was

itself in crisis” (Acharya and Mora (2014)). In this paper we study the important

role of liquidity backstops in mitigating runs (or, conversely, the role of the lack of

liquidity backstops in exacerbating runs): How does a liquidity backstop work to mit-

igate runs? How to define and evaluate the value of a liquidity backstop in mitigating

runs?

Addressing these questions helps us better understand the fragility in the shadow

banking system. Runs on the traditional banking system were ended due to the

existence of public liquidity backstops (e.g., federal deposit insurance and the central

bank’s lender-of-last-resort capacity). However, the shadow banking system lacks such

liquidity backstops; hence, the money-like securities it created are runnable (Moreira

and Savov (2013)). In fact, the recent financial crisis can be considered as modern

bank runs on the shadow banking system (Gorton and Metrick (2010, 2012)). In this

paper we provide the micro-foundation of runs triggered by the lack of a liquidity

backstop that emphasizes the dynamic feature of runs on shadow banks. The value

of a liquidity backstop we conceptualize and estimate in this paper points directly to

how vulnerable the shadow banking system is compared to the traditional banking
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system.

To address these questions, in this paper we develop a dynamic model of debt runs

in the municipal bond markets for variable rate demand obligations (VRDOs) and

auction rate securities (ARS). As we will describe shortly, both markets experienced

turmoil when the liquidity backup mechanism of the banking system broke down in

the crisis of 2007-08. However, their experiences during the crisis are different due

to the different extent of liquidity support they received from the banking system.

Therefore, these markets provide an ideal laboratory to study and identify the value

of a liquidity backstop in mitigating runs.

Figure 1: Historical Average Interest Rates

Figure 1 plots the average interest rates on the indexes of weekly resettable high-grade

ARS (solid line) and VRDO (dashed line) between May 2006 and December 2009, main-

tained by the Securities Industry and Financial Markets Association (SIFMA).
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VRDOs and ARS are money-like municipal bonds with floating interest rates that

are reset on a periodic basis (typically weekly). VRDOs are structured with a liquidity
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backstop facility committed by a liquidity provider (usually a large bank) who acts

as a “buyer of last resort” by buying the securities. By contrast, there are no explicit

liquidity backstops in the ARS market: in the event when there are insufficient bids at

an auction, the auction will fail and selling creditors will be stuck with their holdings

until the next successful auction.1

The distinction between ARS and VRDOs had been blurred in the period prior to

2007 when auction failures were very rare and ARS were often marketed by broker-

dealers as “cash equivalents.”: investors had a wrong perception that auction agents

would always step in to help prevent ARS auctions from failing. It is apparent from

Figure 1 that before the end of 2007, the average ARS and VRDO interest rates were

very close, suggesting that market participants considered the possibility of auction

failures remote, and viewed both ARS and VRDO as almost identical securities.

However, such a seemingly “explicit” liquidity provision viewed by ARS creditors is

illusory. At the onset of the crisis, banks exposed to commitment drawdowns were

particularly hit and were forced to cut back on new lending including uncommitted

lending in the ARS market. Consequently, several major banks who are also auction

agents in the ARS market decided not to intervene and instead let the auctions fail in

early 2008 – the ARS market experienced a wave of auction failures in mid-February

2008 when “about two-thirds of auctions have failed per day” at the peak.2 The sheer

volume of failed auctions and fear of future auction failures propelled more investors

to run on ARS. As shown in Figure 1, the ARS rate spiked as high as 6.6% in the

second half of February and March in 2008, while, at the same time, the explicit

liquidity provision in the VRDO market helped to stabilize its interest rate around

2%.

Later, in September 2008, following the bankruptcy of Lehman Brothers, the

1See Section 2 for more detail about the markets for VRDOs and ARS.
2See “Florida Schools, California Convert Auction-Rate Debt,” Bloomberg L.P., February 22,

2008.
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strength of explicit liquidity backstops that helped stabilize the VRDO market in

February was in doubt as well. Investors worried whether banking institutions with

explicit liquidity facility commitment would be able to meet their obligations – as a

result, the average VRDO and ARS rates spiked around 8% on September 24, 2008,

as shown in Figure 1. The runs on ARS and VRDO in 2008 allow us to distinguish the

different effects of explicit and implicit liquidity provisions on the running decision

of creditors, and make it possible to evaluate the commitment value of providing an

explicit liquidity backstop.

In this paper, we develop a continuous time model of dynamic debt runs in the

markets for ARS and VRDO based on He and Xiong (2012, HX hereafter). Our

model captures several key characteristics of ARS and VRDO: the floating interest

rate, the pre-specified interest rate cap or maximum interest rate, and more impor-

tantly, the underlying (explicit or implicit) liquidity provision. The model is very

tractable. The decision of investors to run is solved in closed form in the unique

threshold equilibrium where creditors decide to run if the fundamental falls below

a certain endogenous threshold. The equilibrium threshold is determined by taking

into account the difference between explicit and implicit liquidity provision and the

time-varying interest rate.

We obtain three main results. First, we show that the lack of a liquidity backstop

can exacerbate runs. The intuition can be understood as follows in the context of the

ARS market. Absent a liquidity backstop, an ARS creditor faces not only credit risk

that the project would fail, but also liquidity risk that auctions would fail, if future

creditors choose not to roll over their debt. The former credit risk leads to possible

credit loss in the event of default, while the latter liquidity risk results in losses due to

illiquidity in the event of auction failures where creditor are stuck with their holdings.

Because of these risks, the running decision of future creditors imposes a negative

externality on the current creditor, making him more likely to run, ex ante. The
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existence of liquidity backstops, for instance in the VRDO market, largely mitigates

the liquidity risk. As a result, the VRDO market is less susceptible to runs than the

ARS market, which is consistent with the experiences of these markets during the

crisis.

Second, our model shows that introducing a floating interest rate that is inversely

related to the issuer’s fundamental generally makes runs occur less frequently. In-

tuitively, when the issuer’s fundamental deteriorates, the interest rate increases to

compensate investors for the higher default risk, and thus makes them more willing

to roll over. Consistent with this intuition, we analytically prove that, all else equal,

the likelihood of runs decreases with the maximum interest rate, which is consistent

with the empirical findings in McConnell and Saretto (2010).

Lastly, we conceptualize and evaluate the value of a liquidity backstop based on a

calibration of the model. As shown in Figure 1, following the eruption of auction fail-

ures, the ARS rate started to diverge from the VRDO rate since November 2007 when

ARS creditors took into account the possibility of auction failures they previously ig-

nored. This structural shift helps us to identify the value of a liquidity backstop in

a spirit similar to the “differences-in-differences” approach. In the pre-crisis period

prior to November 2007, ARS were considered as almost identical to VRDOs and

as a result creditors in both markets make the same running decision, characterized

by a common rollover threshold. However, as the crisis broke out and ARS creditors

started to recognize the lack of a liquidity backstop in the ARS market, they thus face

a higher rollover threshold than that in the VRDO market. Put differently, the lack

of a liquidity backstop prompts ARS creditors to run more often. This is consistent

with our main model prediction that the lack of a liquidity backstops makes creditors

more likely to run, i.e., the run threshold is higher.

The value of a liquidity backstop can now be conceptualized in the following

thought experiment. To drive down the run threshold in the ARS market to that
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in the VRDO market, the ARS rate need to be increased by a certain amount at

each point of time, or alternatively, the ARS issuer can pay a fee to acquire the

same liquidity backstop facility as in the VRDO market. A risk neutral ARS issuer

would be indifferent between these two methods, as long as the fee for acquiring the

liquidity backstop is the same as the constant increment in the ARS rate. Therefore,

the value of a liquidity backstop equals the increment in the ARS rate that equalizes

the rollover thresholds in both markets. Based on the calibrated paramteers, we show

that a liquidity backstop is valued at about 40-60 basis points per annum. Our study

complements Veronesi and Zingales (2010) that empirically estimates the cost (and

benefit) of government intervention during the financial crisis.3

Our paper contributes to the theoretical debt-run literature that examines the

determinants of runs.4 Our model is built upon He and Xiong (2012), which extends

the literature on static bank-run models (Diamond and Dybvig (1983); Rochet and

Vives (2004); Goldstein and Pauzner (2005), etc.). The He-Xiong model highlights

the dynamic coordination problem and one main finding is that fear of future rollover

risk could motivate each creditor to run ahead of others. The extension in our paper

has two key departures: one is the introduction of floating interest rate, and more im-

portantly, the other is the possible failure of an implicit (i.e., uncommitted) liquidity

provision. We show that absent a liquidity backstop, a run in the future generates

a liquidity risk for current creditors and thus, in anticipation of the future liquidity

risk, current creditors would tend to run earlier. Schroth, Suarez, and Taylor (2014), a

closely related paper, extends and applies the He-Xiong model to the ABCP market.

3Note that we only consider liquidity backstops provided by banks in the private sector and thus

our estimate applies to the value of a private liquidity backstop and can be considered as a lower

bound for the value of a public liquidity backstop if the latter is perceived to be more robust.
4For empirical studies, please see Carey, Correa, and Kotter (2009) and Covitz, Liang, and Suarez

(2012) for the run on ABCP, Gorton and Metrick (2012) for the run on repo, McCabe (2010),

Kacperczyk and Schnabl (2012), Wermers (2012) for the run on money market mutual funds, and

Shin (2009) on the run on Northern Rock, and Han and Li (2009) and McConnell and Saretto (2010)

for the run on ARS.
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Complementary to theirs, our paper has a different focus on the effect of liquidity

backstops on the likelihood of runs.

This paper is also related to the literature on the role of banks as liquidity

providers. Kashyap, Rajan, and Stein (2002) provides a convincing argument that

banks have a natural advantage of acting as liquidity providers to provide liquidity

on demand. The advantage stems from a synergy between deposit-taking and loan

commitments to the extent that both types of activities require banks to hold large

balances of liquid assets. The synergy exists as long as both activities are not too

highly correlated, which holds up very well during normal times or several recent

episodes of market stress.5 However, as Acharya and Mora (2014) argues, during the

banking crisis of 2007-08, the role of banks as liquidity providers was itself in crisis as

both sides of their balance sheet were hit. In this paper, we argue that although they

honored contractual obligations in the VRDO market, banks as liquidity providers

cut back on uncommitted lending and failed to provide implicit liquidity support in

the ARS market, resulting in the wave of auction failures and runs on ARS. By con-

trasting the run episodes in the VRDO and ARS markets, our paper is able to shed

new light on how valuable the role of banks in providing backup liquidity is.

The remainder of this paper is structured as follows. In Section 2, we provide an

overview of the VRDO and ARS markets and the turmoil in these markets during the

financial crisis. Section 3 presents the model. Section 4 characterizes the equilibrium

and discusses key model implications, including the externalities imposed on future

creditors by the running decisions of current creditors. In Sections 5 and 6, we

discuss calibration procedure and results. Section 7 concludes. Most proofs are in the

appendix at the end of this paper. A companion internet appendix provides omitted

proofs and additional derivations.

5See Gatev and Strahan (2006) and Gatev, Schuermann, and Strahan (2009) for evidence of a

negative correlation between deposit withdrawals and commitment draw-downs in the commercial

paper market.
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2 Overview of the Markets for VRDOs and ARS

In this section, we first provide a description of VRDOs and ARS, and then an

overview of these markets, and a narrative of the disruptions in these markets in 2008

during the recent financial crisis.

2.1 Background

In this subsection we provide some background information on VRDOs and ARS.

Auction Rate Securities. ARS are long-term municipal bonds with interest

rates that are periodically reset through a Dutch auction process at short-term in-

tervals, usually 7, 28 or 35 days. Following a successful auction, buyers purchase

the bonds at par and receive the market clearing interest rate until the next interest

reset date. ARS have nominally long-term maturities that usually range from 20

to 30 years. Nonetheless, the interest rate reset mechanism provides creditors with

frequent opportunities to sell their holdings through auctions, and thus makes ARS

priced and traded as short-term instruments.

At each auction, the auction agent accepts bids frommarket participants. Existing

bond holders can submit one of three types of orders: a “hold at market” order if

they wish to maintain their positions regardless of the market-clearing rate; a “sell

at market” (market sell) order if they wish to sell regardless of the market-clearing

rate; a “hold at rate” (limit sell) order if they commit to sell their positions under the

condition that the market-clearing rate is equal to or lower than the specified rate.

Potential buyers can submit a limit buyer order to buy the bond if the bid is less than

or equal to the market-clearing rate. The auction agent then receives all the bids and

can submit his/her own order.

The market-clearing interest rate is bounded from above by a pre-specified maxi-

mum interest rate, often shortened to “max rate” inWall Street parlance. Throughout
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this paper we use the terms “maximum interest rate” and “max rate” interchangeably.

The max rates are either fixed, or floating and usually tied to a reference rate (e.g.,

LIBOR). Fixed max rates are specified for all ARS, in a wide range of 9% to 25%.

For ARS that also have floating max rates, the binding max rate is the minimum of

the two.6

An auction fails when there are not sufficient bids to clear the market at a rate less

than the max rate. In the case of auction failure, the max rate is imposed, however,

importantly, creditors are stuck with the bonds until the next successful auction.

Until the ARS market froze in mid-Februrary 2008, auction failures were extremely

rare – there were only 13 failed auctions between 1984 and 2006.7 However, as

described shortly in the next subsection, after the financial crisis broke out, a tidal

wave of auction failures hit the market.

Variable Rate Demand Obligations. VRDOs are very similar to ARS; they

are also long-term floating-rate bonds with periodic interest rate resets. Unlike ARS,

interest rates of VRDOs are reset periodically through “remarketing agents” so that

the securities can be sold at par.

The key distinguishing characteristic of VRDOs is the existence of an explicit

liquidity facility/backstop. VRDO creditors have a “tender” or “put” option which

allows them to put the bonds at par value (plus any accrued interest) to the remar-

keting agent who then try to resell (remarket) the tendered bonds to new investors.

To make the tender option feasible, VRDOs are usually structured with a liquidity

facility provided by a third-party “liquidity provider.” The liquidity provider, usually

a large bank, acts as a buyer of last resort; it provides liquidity support by buying the

bonds if the remarketing agent is unable to remarket them. In this case, the bonds

become the so-called “bank bonds” showing up on the liquidity provider’s balance

6Please see McConnell and Saretto (2010) for some examples of how floating max rates are set.
7“Prolonged disruption of the auction rate market could have negative impact on some ratings,”

Special Report, Moody’s Investors Service, February 20, 2008.
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sheet.

The liquidity facility is in the form of a direct Letter of Credit (LOC) under which

the liquidity provider acts as the first source of payment of principal and interest, or

a standby LOC under which the issuer is the first source of liquidity and the liquidity

provider acts as a back-up, or a Standby Bond Purchase Agreement (SBPA) under

which the VRDO instrument is insured by an investment-grade insurer and in the case

of unsuccessful remarketing, the liquidity provider is obligated to buy the tendered

bonds as long as the insurer maintains its investment grade rating. Regardless of

which structure is used, the liquidity provider is the ultimate source of liquidity. As

a result, the VRDO instrument carries short-term rating of its liquidity provider.

VRDOs are also typically sold with credit enhancement, which takes the form of

a municipal bond insurance policy provided by some monoline bond insurers. The

credit enhancement protects creditors and the liquidity provider from long-term credit

risk. Therefore, the VRDO instrument carries long-term rating of its insurer, typically

triple A.

2.2 The VRDO and ARS Markets and the Crisis in 2008

The VRDO and ARS markets are significant components of the $3.7 trillion munic-

ipal bond market, with sizes of about $200 billion and $500 billion in 2008 at their

peak time, respectively. The markets were an attractive financing venue for municipal

issuers because they allow for the issuance of long-term obligations using short-term

interest rates that are typically lower than long-term interest rates. For investors,

these securities were also attractive because they offered better returns than tradi-

tional money market investments. Both markets have existed since 1980s and had

functioned well until the financial crisis broke out in 2007. In the aftermath of the fi-

nancial crisis, the ARS market collapsed afterwards and there have been no new ARS

issuance since 2008. Meanwhile, new issuance of VRDOs surged in 2008 as many
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existing ARS were converted into VRDOs. Figure 2 below plots the annual amount

of issuance in both markets since 1988, calculated using SDC platinum.

Figure 2: VRDO and ARS Annual Issuance Amounts (in Billion)
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The ARS market encountered significant problems in early 2008. Since mid-2007,

the disruption in the subprime mortgage market spread to the monoline insurance

market where several major municipal bond insurers (e.g., Ambac and MBIA) were

downgraded because of their exposure to subprime mortgage debt. These down-

grades resulted in increased selling pressure in ARS. On the other hand, the subprime

mortgage meltdown also significantly strained balance sheets of auction agents (e.g.,

Citibank, Goldman Sachs, Lehman Brothers, UBS, Royal Bank of Canada and JP

Morgan) to the extent that they decided not to intervene and let the auctions fail in

mid-February 2008. Reportedly, about 60% to 80% of auctions failed in the second

half of February in 2008.8 The wave of auction failures drove up the ARS rate to as

high as 6.6% around mid-February 2008 as shown in Figure 1. The sheer volume of

8See, “Breakdown of auction rate securities markets,” congressional testimony by Leslie Norwood,

September 18, 2008.
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failed auctions and fear of future auction failures propelled more investors to run on

ARS.

The run on ARS highlighted the implicitness of the liquidity provision in the ARS

market: although in less tumultuous times prior to 2007, auction agents had almost

always stepped in to buy some of these securities to help keep the market functioning,

they have no contractual obligations to do so. During the financial crisis, major

auction agents indeed chose no longer to be “buyers of last resort.” By contrast, the

VRDO market was not as much affected in early 2008 due to the explicit structure

of liquidity facility.

However, later in 2008 the VRDO (as well as ARS) market experienced a run

as a result of the bankruptcy of Lehman Brothers declared on September 15, 2008

and the subsequent panic in the market of money market mutual funds (e.g., runs on

the Reserve Primary Fund that “broke the buck”, and other money market mutual

funds). Investors worried about whether banking institutions that explicitly provided

liquidity facility would be able to meet their obligations. The run on VRDO is evident

in the spike of 7.96% of the average VRDO rate on September 24, 2008, as shown in

Figure 1.

The runs on ARS and VRDO in 2008 allow us to distinguish the differential effects

of explicit and implicit liquidity provisions on the running decision of investors. In

particular, we build a dynamic-debt-run model of the VRDO and ARS markets to

illustrate why the ARS market became more susceptible to runs in early 2008 once

investors started to recognize the implicitness of the liquidity provision. Furthermore,

we also structurally estimate the model to assess the value of providing an explicit

liquidity facility as in the case of VRDOs.
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3 The Model

We develop a model of dynamic debt runs for the markets for VRDOs and ARS,

based on He and Xiong (2012). The model contains several common features shared

by VRDOs and ARS: a floating short-term interest rate and a pre-specified maximum

interest rate. Moreover, the model captures a unique feature of VRDOs that ARS

do not have: a liquidity backstop (facility), structured as imperfect credit lines, to

support the tender option of VRDO investors. We use “floating-rate (municipal)

bonds” or simply “bonds” to refer to both VRDOs and ARS when describing the

setting that applies to both.

3.1 Asset

At time 0, a government-related entity (referred to as a municipality, hereafter) issues

floating-rate municipal bonds (i.e., VRDOs or ARS) to borrow $1 to finance a long-

horizon project that generates cash flow at a constant rate . At a random arrival

time  according to a Poisson process with intensity   0, the project is terminated

with a final payoff. The final payoff is the realization of a geometric Brownian motion

process  at time ,

 =  (+ )  (1)

where {} is a standard Brownian motion. The project’s fundamental value under
a discount rate  is determined as follows:

 () = 

∙Z 



−(−)+ −(−)

¸
=



+ 
+



+ − 
 (2)

Due to tax exemption, the discount rate  equals the after-tax risk-free rate, that is,

 =  (1− )  (3)
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where  denotes the taxable Treasury yield and  the marginal tax rate. The discount

rate  is identical for all recditors.

3.2 VRDO/ARS Financing

The long-term project is financed by the issuance of VRDOs or ARS whose matu-

rity coincides with the termination of the project. That is, the issued VRDOs or

ARS have a long-term nominal maturity, equal to 1 or the expected time until the

project is terminated. Despite the long-term nominal maturity, VRDOs and ARS

have been considered as short-term securities in practice, because of periodical (typi-

cally, weekly) remarketing or auctions through which creditors can sell their holdings

(see Section 2). To capture the short-term nature of VRDO/ARS financing in a

tractable way, we assume that there is a continuum of risk neutral creditors with

measure 1, and each creditor decides to sell his bond holdings at a random time  

which arrives following a Poisson process with intensity     0. This assumption

shares the spirit of the Calvo (1983) staggered-pricing model: at each time interval

[ + ], a fixed fraction  of creditors arrive to make their rollover decision. For

example, creditors may experience idiosyncratic private liquidity shocks such that

their rollover decision making is uniformly spread out across time.

A coordination problem between current and future creditors arises in the model.

This is because current creditors face a so-called rollover risk that they may suffer

losses if future creditors choose not to roll over their debt. As a result, each creditor’s

rollover decision depends on the action of future creditors he anticipates. This dy-

namic nature of creditors’ rollover decisions makes this model distinct from the static

bank-run models (Diamond and Dybvig (1983)).

Another prominent feature associated with financing via VRDO or ARS is the

floating interest rate. In the next section, we will discuss in detail how the interest

rate is determined.
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3.3 Runs, Liquidity Backstops, and Auction Failures

A run occurs if creditors decide not to roll over their debt. In the model, creditors

may refuse to roll over their debt for fear of future distressed liquidations, but also for

fear of auction failures in the ARS market that lacks a liquidity backstop, which are

both triggered by a run by future creditors. The latter fear of auction failures due to

the lack of a liquidity backstop is an innovative feature of our model. As we will show

shortly, because one central distinction between VRDOs and ARS is whether or not

a liquidity backstop exists, a run induces very different dynamics in these markets.

VRDOs are structured with an explicit liquidity backstop (i.e., a liquidity facility

in the form of a letter of credit or stand-by purchase agreement) committed by a

liquidity provider. Upon a run when the remarketing agent cannot find enough buyers,

the liquidity provider is contractually obligated to provide liquidity and buy the

bonds. However, the liquidity facility may not be perfectly reliable, even though it

is explicitly committed. For example, the liquidity provider may becomes so severely

financial distressed (e.g., Lehman Brothers) that it may fail to honor its liquidity

commitment. To model the extent of unreliability of the liquidity facility, we assume

that with probability , the committed liquidity support may fail, and, once it

fails, the asset will be forced into premature liquidation, sold at a fraction  of its

fundamental value (e.g., fire sale). That is, the liquidation value is

 () =  () =


+ 
+



+ − 
 ≡ + . (4)

If the liquidation value is not enough to pay off all the creditors, a bankruptcy occurs.

Therefore, a run in the future will expose creditors to possible bankruptcy loesses.

In anticipation of the bankruptcy losses, creditors may refuse to roll over the debt

earlier on.

By contrast, ARS are not structured with a liquidity backstop. As a result, ARS

16



creditors face an additional risk of auction failures. Without a liquidity commitment,

the auction agent can choose whether or not to participate in an auction. Upon a run

when there are insufficient buyers, the auction agent has no contractual obligation to

act as the residual bidder and the auction would fail if the agent decides not to step in.

To capture this layer of uncertainty due to the lack of a liquidity backstop in the ARS

market, we assume that upon a run, with probability , the auction agent will not

step in to intervene the market and the auctions will fail; with probability 1− ,

the auction agent will intervene to keep the auctions functioning. For tractability, we

further assume that once an auction fails, all the following auctions continue to fail.

In the event of successful auctions, the market-clearing interest rate  prevails and

premature liquidation occurs with probability . In the autarkic event of failed

auctions, the max rate  is imposed and premature liquidation occurs with probability

.

3.4 Timeline

Figures 3A and 3B summarize the sequence of events in the model of VRDOs and

ARS, respectively. All participants observe the fundamental  and the max rate

. At the beginning, the (remarketing or auction) agent announces and commits

to an interest rate formula  (; ∗) which may depend on certain (endogenously)

determined parameter ∗ which we will discuss shortly in the following section.

In the case of VRDOs (shown in Figure 3A), at each time , a fraction  of

creditors decide whether to roll over their debt or to run. They base their decision on

the observation of the fundamental  and the interest rate  reset by the remarketing

agent. If they decide to roll over, the game continues to the next instant. If they

decide to run, the liquidity facility is drawn upon to purchase the tendered bonds, but

the facility may fail with probability . If it fails, the game ends and the project is

liquidated to pay off all the creditors. If it succeeds, the game continues to the next
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instant.

Figure 3: Models of VRDO and ARS
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Figure 3A: VRDO
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Figure 3B: ARS

The case of ARS, shown in Figure 3B, has a similar timeline as VRDOs, except

that when the creditors decide to run, with probability  the auction agent may

decide not to intervene and then the auctions would continue to fail until the project

fails eventually. This additional layer of uncertainty, highlighted by the flowchart

within the dashed circle in Figure 3B, captures the central distinction between VRDOs

and ARS in terms of the existence of a liquidity backstop.
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3.5 Parameter Restrictions

We impose a few parameter restrictions for the model to be meaningful. We keep the

same parameter restrictions as in HX:

  +  (5)

   (1− − ) +  (1−  (1))  (6)

 

∙


+ 
+



+ − 

¸−1
 (7)

The first one of the above three restrictions imposes an upper bound on the growth

rate of the fundamental to ensure the fundamental value is finite. The second re-

striction ensures that the parameter  is sufficiently high so that bankruptcy becomes

likely when some creditors choose to run.  (·) denotes the value function in the case
of continued auction failures, which we derive shortly in the next section. The third

restriction stipulates a sufficiently low premature recovery rate so that +   1.

In addition, we impose the following restriction for the additional parameters in

our model, namely, , ∆, and :

  +∆+ 

µ
1− 

µ
1− 



¶¶
 (8)

0 ≤ ∆ 
1 (+ ) (+ +  (1− )− )

2 (+ +  (1 +  + ))
 (9)

(1 − 1)
¡
2 +7

¢
+ 3 (1 − 3)1  0 (10a)

(1 − 1)
¡
4 +9

¢
+ 3 (1 − 3)3 ((1− ) )

3−1  0 (10b)

where 1 and 2 as well as other constants (e.g., 2) are defined in Appendix A.

The restriction (8) ensures that the max rate is sufficiently high for the model to
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be meaningful. The restriction (9) rules out the degenerate case where the liquidity

component ∆ is too large and it is thus always profitable to hold the bonds, implying

that the equilibrium threshold ∗ is zero. Note that ++ (1− ) is an endogenous

upper bound on the max rate. Furthermore, this restriction also implies  (0)  1.

Lastly, the restriction (10a,b) is needed for the model to be well-behaved. To simplify

exposition, we assume  = 1 +  throughout the paper.

4 Equilibrium

We now turn to the characterization of monotone equilibriums in which creditors

choose to roll over if and only if the fundamental is above a threshold. In this section,

we first analyze an individual creditor’s problem of optimal threshold choice. Then

we study how the interest rate should be set in a monotone equilibrium. Lastly, we

derive a unique symmetric monotone equilibrium in closed form in which the optimal

threshold, denoted by ∗, is unique for all creditors and the equilibrium interest rate

is set in a way that the debt is priced at par whenever  ≥ ∗. We also discuss an

extension of the model which is needed when we conceptualize and estimate the value

of a liquidity backstop.

4.1 Value Functions

We derive the optimal rollover threshold ∗ by solving an individual creditor’s optimal

rollover problem. Consider an individual creditor who is making his rollover decision.

Suppose all the other creditors choose a rollover threshold ∗ and the (remarketing or

auction) agent resets the interest rate  =  (; ∗) based on the same threshold ∗.

Denote by  (; ∗) the creditor’s value function when auctions have been successful,

and by  () the value function when auctions have failed.

First, we determine the value function  (; ∗) when auctions have been suc-
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cessful. For each unit of debt, each creditor receives a stream of interest payments

 (; ∗) until the earliest of the following four events occur. The first event occurs

at stopping time  when the asset matures and the creditor gets a final payoff of

min
¡
1 

¢
. The second event occurs at stopping time   when the creditor gets

the opportunity to decide whether to roll over the debt. Whether or not the credi-

tor decides to roll over depends on whether or not the continuation value  ( ; ∗)

exceeds the one-dollar par value. The third and fourth events occur when the funda-

mental falls below other creditors’ rollover threshold ∗: upon a run by other creditors,

with probability 1{≤∗}, the third event occurs at the stopping time  when

auctions fail and the creditor will be stuck with the debt valued at  (); with prob-

ability 1{≤∗}, the fourth event occurs at the stopping time   when the project

is forced to premature liquidation with payoff min (1 + ). The stopping time

 ≡ min {     } is the minimum of these four stopping times, representing the
earliest time when any of these four events occur. Due to risk neutrality, the value

function  (; ∗) is given by

 (; ∗) = 

∙Z 



−(−) (; ∗) + −(−)min (1 ) 1{=} (11)

+−(−)min (1 + ) 1{=} + −(−) () 1{=}

+−(−) max
 or 

( ( ; ∗)  1) 1{=}
i


The Hamilton-Jacobi-Bellman (HJB) equation is given below:

 (; ∗) =  (; ∗) +
2

2
2  (; ∗) + (; ∗) (12)

+ [min (1 )−  (; ∗)]

+1{≤∗} [min (1 + )−  (; ∗)]

+1{≤∗} [ ()−  (; ∗)]

+ max
 or 

(0 1−  (; ∗)) 
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It shows that the creditor’s required return on the left hand side,  (; ∗), is equal

to the expected increase in his continuation value as summarized by the terms on

the right hand side. The creditor will choose to roll over the debt if and only if

 (; ∗) ≥ 1. If we denote as 0∗ = inf { :  (; ∗) ≥ 1} the minimum fundamental
value at which the continuation value is no less than 1, then 0∗ is the creditor’s

optimal rollover threshold since  (0∗; ∗) = 1 and  (; ∗)  1 for   0∗. In the

symmetric equilibrium we consider below, each creditor’s optimal threshold choice 0∗

must coincide with other creditors’ threshold ∗. Thus the optimality condition is

 (∗; ∗) = 1.

Similarly, we can determine the value function () when auctions have continued

to fail. Under the assumption that the auctions, once failed, would continue to fail,

creditors’ rollover decision becomes irrelevant and thus the value function  () does

not depend on their rollover threshold ∗. In this autarkic scenario, the max rate  is

imposed until the asset matures at the stopping time  or the project is prematurely

liquidated at the stopping time  . As a result, the value function  () is given by

 () = 

∙Z ∧



−(−)+ −(−) min
¡
1 

¢
1{≤} (13)

+−(−) min
¡
1 + 



¢
1{}

i


In Lemma 1, we derive the value function in closed form as below, and prove that it

is strictly monotonically increasing:

 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 +2 + 1

3
 , if  ∈ (0 1]

3 +4 + 2
−3
 + 3

3
  if  ∈ (1 1−


]

5 + 4
−3
 , if  ∈ (1−


∞)

 (14)

22



where the coefficients 1, etc. are defined in Appendix A or in the proof of Lemma

1.

Lemma 1  () is strictly monotonically increasing.

To determine the value function  (; ∗), we need to spell out how the floating

interest rate  =  (; ∗) is determined first, to which we will turn next.

4.2 Floating Interest Rate

We now consider how the interest rate  is reset at each point of time. We first derive

the unconstrained interest rate in the benchmark case where there is no interest rate

cap, and then determine the constrained interest rate once an interest rate cap is

imposed.

In the absence of a maximum interest rate, for any fixed threshold ∗ ≥ 0, the
interest rate is unbounded and can be set arbitrarily high to ensure that VRDOs or

ARS are priced at par. Based on the HJB equation (12), the value function is always

equal to one under the following unconstrained interest rate  (; ∗)

 (; ∗) = +  (1− )
+
+ 1{≤∗}

£
 (1− [+ ])

+
+  (1−  ())

¤
(15)

where ()
+
denotes  if   0, or zero otherwise. The unconstrained interest rate

schedule takes a different shape when ∗ is in a different range: ∗ ≤ 1, 1  ∗ ≤ 1−

,

and ∗  1−

, as shown in Panels A, B, and C of Figure 4, respectively.

Figure 4: Unconstrained Interest Rate Schedule
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The unconstrained interest rate in Eq. (15) can be decomposed into three compo-

nents: a risk-free component , a component related to losses at maturity  (1− )
+
,

and the last component associated with possible credit losses. Intuitively, the un-

constrained interest rate decreases with the fundamental . That is, creditors are

generally paid by a higher interest rate when the fundamental deteriorates. As we will

show shortly, such countercyclicality of the interest rate tends to alleviate runs. Fur-

thermore, the unconstrained interest rate jumps to a higher value when the threshold

∗ is reached from above. The upward jumps occur in these cases because of the pos-

sible losses incurred due to premature liquidation (1− [+ ])
+
and auction failures

(1−  ()). However, in the absence of a maximum rate, the interest rate can freely

adjust to guarantee the value of debt always equal to one. As a result, in equilibrium,

creditors are indifferent between rolling over and running.

In the presence of an interest rate cap , creditors will be under-compensated in

bad states if  is imposed instead of the higher unconstrained interest rate. Therefore,

if the interest rate is given as the lower value between  and (; ∗), then creditors’s

continuation value is strictly less than 1 and thus always prefers to run, i.e., ∗ =∞.
To avoid such a degenerate case and to keep tractability, throughout the rest of the
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paper, we adds a new component ∆ ≥ 0 to the unconstrained interest rate, which
we refer to as a “liquidity premium”, and then impose the following interest rate

schedule:

 (; ∗) = min (
 (; ∗) +∆ )  (16)

Depending on the values of ∆ and , as shown in Figure 5, there are totally eight

different cases (Case A, · · · , Case H) where the constrained interest rate schedule
takes a different functional form.

Figure 5: Constrained Interest Rate Schedule
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The component ∆ introduces a trade-off for creditors. On one hand, when the

fundamental falls below the rollover threshold, creditors are undercompensated by the

max rate, which is usually lower than what the market-required rate would have been

had creditors decided to roll over the debt. On the other hand, when the fundamental

remains above the threshold, creditors are overcompensated by an amount equal to

∆. Therefore, however small ∆ is, creditors receive the benefit of overcompensation

during tranquil times and trade off the benefit against the loss due to undercompen-

sation during future run scenarios. As we prove in the next subsection, the trade-off
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guarantees uniqueness of the symmetric equilibriumwhere the threshold ∗ is uniquely

pinned down at which creditors are just indifferent between rolling over and running.

Another possible interpretation of the component ∆ is that it can also be an extra

compensation demanded by the (auction or remarketing) agent for possible inventory

risk or holding costs. Lastly and importantly, it is also related to the concept of the

value of a liquidity backstop we introduce shortly in the next section. For the above

reasons, we will refer to ∆ as a “liquidity premium.”

4.3 Unique Threshold Equilibrium

We focus on symmetric monotone equilibria where all creditors in equilibrium will

choose the same threshold ∗ and the agent resets the interest rate based on ∗.

The threshold ∗ is defined as the minimum value at which  (; ∗) ≥ 1, i.e., ∗ =
min { :  (; ∗) ≥ 1}. When  falls below the threshold ∗, due to monotonicity

of the value function, the decision to run is strictly preferable since  (; ∗)  1

for   ∗. Theorem 1 below proves the existence of a unique symmetric monotone

equilibrium.

Theorem 1 There exists a unique symmetric monotone equilibrium in which the run

threshold ∗ is uniquely determined – each maturing creditor chooses to roll over his

debt if   ∗, and to run otherwise.

Proof. See Appendix C.

5 Model Implications

In this section, we explore main implications of our model. The model has two

key ingredients: a liquidity backstop and a floating interest rate. The rest of this
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section is devoted to understanding how these features affect equilibrium outcomes,

in particular, the likelihood of runs. We first examine the role of a floating interest

rate by focusing on the model of VRDOs where  is set to zero to reflect the existence

of an explicit liquidity backstop. We then turn to the model of ARS to examine the

role of (lack of) a liquidity backstop where   0 is positive to reflect the possibility

of auction failures. Lastly, we formally define the value of a liquidity backstop, which

will be estimated structurally in the next section.

5.1 Implications of Floating Interest Rate: The VRDOModel

To single out the role of a floating interest rate, we start with a special case where 

is set to be zero – the liquidity support, albeit imperfect, is explicit such that the

liquidity provider has contractual obligation to honor its liquidity commitment. In

this special case where  = 0, the model reduces to the one of VRDOs.

The endogenous interest payment {} in this paper, a key departure from HX,

affects the creditors’ rollover decision in a profound way. For example, as the fun-

damental deteriorates, the interest rate increases in a manner so as to compensate

creditors for credit losses. However, the magnitude of overall interest payments to

creditors depends on two factors: the maximum interest rate  and the liquidity pre-

mium ∆.

We show in Proposition 1 below that the equilibrium rollover threshold ∗ de-

creases with the maximum interest rate  or the liquidity premium ∆. The result

that ∗ decreases with the liquidity premium is very important when we define and

measure the value of a liquidity backstop later. The intuition is straightforward: a

higher maximum interest rate  or a higher liquidity premium ∆ allows the interest

rate to increase further in a severely adverse environment; therefore, it increases the

expected interest income for creditors and they will roll over more frequently. In the

extreme case where the maximum interest rate  is sufficiently high, then the run
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threshold is zero (i.e., ∗ = 0), that is, the likelihood of runs is zero.

Proposition 1 The equilibrium rollover threshold ∗ decreases with the maximum

interest rate  or the liquidity premium ∆. In particular, when ∆ goes to 0, the

equilibrium run threshold ∗ tends to infinity.

Proof. See Appendix C.

5.2 Implications of Liquidity Backstop: The ARS Model

Next, we examine how the lack of a liquidity backstop in the ARS market affects equi-

librium outcomes. To examine the role of (lack of) a liquidity backstop in isolation,

we assume away the floating interest rate. In particular, we assume that the interest

rate is always fixed as , the max rate, regardless of auction success or failure. This

simplified model is very similar to the one in HX, except that there is an additional

risk of auction failures.

In Proposition 2 below, we prove that when the max rate is low enough, increasing

 from zero to a positive value makes creditors more likely to run. Intuitively, a low

enough max rate leads to a very low continuation value  () in the event of failed

auctions and thus, ex ante, creditors choose to run more often.

Proposition 2 If  is sufficiently low, the equilibrium rollover threshold ∗ increases

as the arrival intensity of auction failures  increases from zero; that is,

∗


¯̄̄̄
=0

 0.

Proof. See Appendix C.
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Proposition 2 illustrates how the lack of a liquidity backstop may exacerbate

runs, which provides an explanation for the turmoil in the ARS market in early 2008

when investors started to factor in the possibility of auctions failures. As we show

below, the destabilizing effect of the lack of liquidity backstops results from a new

type of externality. The running decision of current creditors accelerates the issuer’s

default probability and may also trigger auction failures. Therefore, their decision

to run affects payoffs of future creditors. Table 1 summarizes the current and future

creditors’ payoffs in different scenarios depending on whether the current creditors

run or not.

Table 1: Run-Induced Externalities

Choice of current creditors Run Rollover

Liquidity Provision NO YES

Failed Survived Survived

Probability   1− −  1

Payoff of current creditors  ()  () 1  ()

Payoff of future creditors  ()  ()  ()  ()

From Table 1, we can see that the current creditors will choose to run if and only

if 1·(1− − )+ ()·+ ()·   ()·1, or  ()  1 after ignoring
higher order terms. Furthermore, because of the lack of a committed liquidity facility,

a run on ARS may lead to auction failure when the auction agent stops providing

liquidity, which imposes an additional implicit cost on future maturing creditors.

Specifically, a run by the current creditors reduce the future creditors’ value function
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by

 ()− [ () · (1− − ) +  () · +  () · ]
= [ ()−  ()]| {z }

cost due to default loss

+ [ ()−  ()]| {z } 
cost due to auction failure

Besides the implicit cost of default loss as studied in HX, a run in our model also

induces an additional cost in the event of auction failure. This additional externality,

absent in the VRDO market, makes the ARS market more susceptible to runs: in

anticipation of possible auction failures and the associated losses as a result of runs

by future creditors, the current creditors have less incentives to roll over their debt.

5.3 The Value of a Liquidity Backstop

We are now in position to define the value of a liquidity backstop. From our earlier

discussion (Section 2), prior to the crisis, ARS were considered to have the same

explicit liquidity backstops as VRDOs. Put differently, before 2007 investors perceived

the probability of auction failures to be negligible, i.e.,  = 0 for both ARS and

VRDOs. However, the wave of auction failures in 2008 during the crisis revealed

the implicit nature of liquidity support in the ARS market, and investors started

to realize that   0. As proved in Proposition 2, an increase in  increases the

run threshold ∗. Our estimation results reported in the following section confirms

that after the crisis broke out, the estimated run threshold ∗ (∆ ) in the ARS

market is substantially higher than  
∗ (∆ 0) in the VRDO market. Note that we

explicitly type the argument (∆ ) of the run threshold (in the case of VRDOs,  is

always zero).

To define the value of a liquidity backstop, let us consider the following thought

experiment. On one hand, an ARS issuer can pay a certain fee per annum to purchase

30



a liquidity backstop from a liquidity provider, and effectively reduce the run threshold

∗ to the same level as  ∗ (∆ 0). On the other hand, the ARS issuer can raise

the level of interest rate by a constant amount Γ  0, and thus effectively increases

∆ to ∆+ Γ. According to Proposition 1, a higher liquidity premium ∆+ Γ induces

a lower run threshold. From the perspective of the (risk neutral) issuer, the two

methods are equivalent as long as the fee to purchase a liquidity backstop is the same

as Γ. Therefore, the increment in the ARS rate Γ measures the value of a liquidity

backstop, satisfying

∗ (∆+ Γ ) =  
∗ (∆ 0)  (17)

In the next section, we use the historical data to estimate Γ based on the estimated

thresholds ∗ (∆ ) and  
∗ (∆ 0).

6 Calibration

The markets for VRDOs and ARS provide an ideal laboratory for us to identify the

value of a liquidity backstop. The identification benefits from the structural change

in the belief of ARS investors since the wave of auction failures in mid-February

2008. We first describe the data and calibration of the parameters, and then report

calibration results.

6.1 Data

The weekly data of 1-week tax-exempt VRDO and ARS rates are obtained directly

from the Securities Industry and Financial Markets Association (SIFMA) website.9

The historical data for the VRDO rate is available for the period from May 22, 1991

to October 24, 2012, while the ARS historical rate is only available for a shorter

9The website’s URL is http://archives.sifma.org/swapdata.html.
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period from May 31, 2006 to December 30, 2009. We also obtain the 1-week Treasury

repo rate from Bloomberg for the same sample period.

For the purpose of calibration, we obtain information about characteristics of VR-

DOs or ARS (e.g., the max rate) from the Municipal Securities Rulemaking Board

(MSRB)’s SHORT database from its inception date of April 1, 2009 through Novem-

ber 8, 2012. The SHORT database has been built from the Short-term Obligation

Rate Transparency (SHORT) System and the Real-Time Transaction Reporting Sys-

tem (RTRS), which the MSRB launched in early 2009 to collect and disseminate

interest rates and important descriptive information about these ARS and VRDOs.

The SHORT database provides a centralized source of information about municipal

ARS and VRDOs that was previously unavailable. Starting from May 2011, MSRB

rules require VRDO remarketing agents to report to the MSRB the aggregate amount

of par value of “bank bonds” and bonds held by investors or remarketing agents.

There are 20,547 distinct VRDOs in the SHORT database during our sample period.

We focus on the VRDOs with weekly interest resets, which accounts for 90.7% of the

whole sample (i.e., 18,630).

The SHORT database does not contain maturity information. Therefore, we

merge it with the Mergent Municipal Bond database to collect information on matu-

rities.

6.2 Calibration

There are ten primitive model parameters in the model:          ∆.

The contractual maximum interest rate  is calibrated to be 12% using the SHORT

database. Among the 18,630 VRDOs with weekly interest resets in the SHORT

database, 53.42% of them have the max rate of 12%, 26.13% of them have the max

rate of 10%, and 10.37% of them have the max rate of 15%. The weighted average of

these three rates is 11.76%. Therefore, we set  as 12%. The average debt maturity
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of our merged VRDO sample from the SHORT and Mergent databases is 25.2 years

(and the median is 25.96 years). We therefore set 1, the expected asset maturity,

to 25 based on the assumption that the average maturity coincides with the average

asset maturity; that is,  = 004. The tax-adjusted risk-free rate  is set to the

average value of the tax-adjusted repo rate, or  = 00195, during the sample period

between 1991 and 2012 using a tax rate of 40% following Longstaff (2011).

The parameter  represents the arrival intensity of creditors who make the running

decision. In the model, once a run occurs, the proportion of creditors who decide not

to roll over the debt is ∆, where we set∆ = 736525 to reflect the weekly frequency

of the interest rate reset for the constituent VRDOs/ARS in the SIFMA indexes. In

reality, VRDO/ARS creditors come to the remarketing or auction agent to buy or

sell the securities on the interest rate reset dates. A run is considered to occur if a

significant number of creditors decide to not roll over the debt. As a result, we set

 = 12, meaning that on average creditors make the running decision on a monthly

basis, and upon a run, about ∆ = 23% of the securities are not rolled over.

The default intensity  is set to 00278 so that the average time from a run to

eventual bankruptcy is equal to 1 () = 3 years, which is roughly in line with the

bankruptcy experience of Jefferson County, AL (Woodley (2012)). Furthermore, we

set  = 00159, under which the fraction of auctions that have failed within the

14-week window between November 14, 2007 and February 20, 2008 is about 5%.10

The parameters  and  is calibrated based on the formula  = 
+

and  =



+− . We set  = 90% to reflect relatively high recovery rates for municipal bonds.
11

10By definition, following a run, a fraction () of auctions will fail in the first week, or (1− )

of auctions will surive the first week. Similarly, among the ARS whose auctions succeeded in the first

week, a fraction of them, (1− )
2
, will continue to surve in the second week, · · · . The cumulative

fraction of auctions that have failed with  weeks equals 1− (1− )

. Plugging in  = 001159,

 = 12,  = 7365 leads to a failure rate of 5% in a 14-week window.
11The recovery rate of municipal bonds is not readily available given municipal bankruptcy is rare.

See, for instance, Coval and Stafford (2007) for the estimates of the recovery rate for stocks; and

Andrade and Kaplan (1998), Hennessy and Whited (2007) , Ellul, Jotikashira, and Lundblad (2010),
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Furthermore, we set  to be equal to the average VRDO interest rate in the data,

i.e.  = 0024. That is, the average rate at which the project generates cash flow

is close to the average interest rate the issuer pays to creditors. We further assume

 = 0 to have zero expected growth rate in the levels of the fundamental. Given the

values of , , and , the parameters governing the recovery rate of the asset in the

worse case scenario are calibrated as: ( ) = (363% 605%). Lastly, the volatility 

is calibrated to fit the volatility of the historical VRDO rate in the pre-crisis period,

or  = 0143. The last structural parameter ∆ is left uncalibrated. In our numerical

experiments, we consider a variety of realistic values for ∆. The calibrated parameter

values are reported in Table 2.

Table 2: Calibrated Parameter Values

Variable Symbol VRDO ARS

max rate  012 same

avg. maturity 1 25 same

avg. duration 1 112 same

tax-adj. riskless rate  002 same

drift  0 same

volatility  0143 same

recovery rate ( ) (036 061) same

default intensity  00278 same

auction failure intensity  0 00159

for the estimates of the recovery rate for corporate bonds.
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6.3 Results

We apply the above estimation methodology to the SIFMA historical interest rate

indexes for the VRDO and ARS markets. The VRDO historical data ranges be-

tween May 22, 1991 and October 24, 2012, while the ARS data ranges between May

31, 2006 and December 30, 2009 when SIFMA stopped producing the index for the

ARS market. As shown in Figure 1, the ARS rate had largely moved in lockstep

with the VRDO rate until November 14, 2007, and have diverged since then. One

interpretation of this behavior is that market participants considered the possibility

of auction failures as remote and viewed both ARS and VRDO as almost identical

securities. In fact, auction failures were very rare prior to 2007 and ARS were often

marketed by broker-dealers as “cash equivalents.” As a result, we set  to zero for the

pre-crisis period when using the ARS data. Specifically, in our structural estimation,

we restrict  to zero for the whole sample periods for both VRDOs and ARS, except

for the period between November 14, 2007 and December 30, 2009 for ARS when we

allow for a positive  to reflect a possible structural change in investors’ belief.

Table 3: Value of a Liquidity Backstop and Equilibrium Thresholds

∆  
∗ ∗ Γ

1 065 080 38

5 062 077 43

10 059 075 45

20 055 071 50

30 050 068 54

40 045 065 59

50 040 061 64
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The calibration results are reported in Table 3. We consider a wide range of values

for the liquidity component ∆ from 1 to 50 basis points. A value of ∆ equal to 50

basis points accounts for about 21% of the average VRDO interest rate (i.e., 2.4%), or

17% of the average ARS interest rate (i.e., 3.02%) in the data. Note that the wave of

auction failures in early 2008 revealed the fact that the liquidity support by auction

agents is only implicit and may fail when it is needed most.

The estimation results also suggest that floating interest rates tend to mitigate

runs in both markets. In fact, if we restrict the interest rate to be the constant , the

model in the VRDO case reduces to the HX model with a fixed interest rate, and the

implied run threshold 
∗ = 087 is typically higher than the one for VRDOs  

∗ .

It is worthwhile to point out that the constant rate  is calibrated to be equal to the

average VRDO interest rate; hence, VRDO investors receive almost the same interest

rate payments on average as those in the HX model, and tend to run less frequently

exactly because the floating interest rates are reset higher in bad times.

The positive , capturing the lack of a liquidity backstops in the ARS market,

implies a higher rollover threshold for ARS investors: ∗   
∗ , as shown in

the third column of Table 3. As we discussed in Section 5.2, the fear of getting stuck

when future auctions fail propels ARS creditors more likely to run, ex ante, relative

to VRDO creditors. The higher rollover threshold for ARS creditors reflects the lack

of a liquidity backstop in the ARS market. On the other hand, from Proposition

1, we know that the rollover threshold ∗ decreases with the liquidity/risk premium

∆. Therefore, to measure the value of a liquidity backstop Γ, we should find out

how much the interest rate need to be increased so that the ARS rollover threshold

can be reduced to the same level of the VRDO rollover threshold. The required

increase Γ in the interest rate is a measure of the value of a liquidity backstop.

Mathematically, we express the rollover thresholds ∗ (∆ ) and  
∗ (∆ 0) to

denote their dependence on ∆, and define the value of a liquidity backstop Γ  0 as
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the solution to the following equation:

∗ (∆+ Γ ) =  
∗ (∆ 0) 

The last column of Table 3 reports the valuation of a liquidity backstop, ranging

from 38 to 64 basis points. In present value (i.e., Γ (+ )), a liquidity backstop is

evaluated to be about 64% to 108% of the par value. Therefore, the implied value

(or cost) of providing liquidity backstops for the ARS market is about $12.8 to $21.5

billion for the $200 billion ARS market at the peak level before its collapse.

7 Concluding Remarks

In this paper, we develop a model of dynamic debt runs in the markets for ARS and

VRDOs. Not only does the model capture several common features of these mar-

kets (e.g., floating interest rate and an interest rate cap), it also captures distinctive

characteristics, such as the explicit (implicit) liquidity provision in the VRDO (ARS)

market. Based on the calibrated model, we show that the value of a liquidity backstop

is worth about 40-60 basis points per annum.
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Appendix A: Notation

We denote by − and  two real roots of the quadratic equation 1
2
2 (− 1)+−

(+ + ) = 0,  = 1 2 3,

− = −
− 1

2
2 +

q¡
1
2
2 − 

¢2
+ 22 [+ + ]

2
 0

 = −
− 1

2
2 −

q¡
1
2
2 − 

¢2
+ 22 [+ + ]

2
 0

where 1 =  (1 +  + ), 2 = 0, 3 = .

The following notation is used in determining equilibrium threshold

1 =
+(1+)

++(1++)
1 =

+

++

2 =
+

++(1++)− 2 =
+

++−
3 =

++(1+)

++(1++)
3 =

++

++

4 =


++(1++)− 4 =


++−
5 =


+

5 =
++

++

6 =


+− 6 =  1

++(1++)

7 =
++(1++)

++(1++)
7 =  2

++(1++)−
8 =

+

+
8 =  3

++(1++)

9 =
++(1+)

++(1++)
9 =  4

++(1++)−
10 =

+

+
10 =  5

++(1++)

Appendix B: Proofs

Proof of Lemma 1. The HJB equation for  () is the following

 () =  () +
2

2
2 () + 

+ [min (1 )−  ()] +  [min (1 + )−  ()] 

Depending on the value of , the HJB equation can be re-expressed as

¡
+ + 

¢
 −  − 2

2
2 =

⎧⎨⎩
 +  +  (+ ) , if  ∈ (0 1];
 + +  (+ ) , if  ∈ (1 1−


];

 + + , if  ∈ (1−

∞)
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Therefore, the solution has the functional form in Eq. (14). We determine the

unknown coefficients 1 · · ·  4 from the value-matching and smooth-pasting condi-
tions:

1 =
¡
3 +4

¢− ¡1 +2

¢
+ 2 + 3

2 = −3
¡
3 −1

¢
+ (3 − 1)

¡
4 −2

¢
3 + 3



3 =
−3

¡
3 −5

¢− (3 + 1)4

¡
1−


¢
(3 + 3)

¡
1−


¢3 

4 = −4

¡
1−


¢− 32
¡
1−


¢−3 + 33
¡
1−


¢3
3
¡
1−


¢−3 

To prove the monotonicity of  (), we first prove that   0, for  = 1 · · ·  4.
Substituting the expressions of 1, · · · , 5 into 1 2 3, we have

1 =
+  (1− )

¡
1−


¢−3
(3 + 3)

∙
3

+ + 
− 3 + 1

+ +  − 

¸
 0;

2 = − 

3 + 3

∙
3

+ + 
− 3 − 1

+ +  − 

¸
 0;

3 =
 (1− )

(3 + 3)
¡
1−


¢3 ∙ 3

+ + 
− 3 + 1

+ +  − 

¸
 0

Lastly, from the above expression of 3 and the result 2  0, we have

3

µ
1− 



¶−3
4 = −

"
(3 − 1)  (1− )

(3 + 3)
¡
+ +  − 

¢ − 32

µ
1− 



¶−3#
 0

Next, we prove  () is monotonically increasing for   0. Note that  0 () =
4 (−3) −3−1  0 for   1−


since 4  0. Therefore, we only need to establish

the monotonicity for 0   ≤ 1−

. We prove it for the cases of 0   ≤ 1 and

1   ≤ 1−

, respectively. For 0   ≤ 1, because ¡1−



¢−3  
1− (or equivalently,
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+ +  − 

¸
=

3
¡
+ 

¢
3 + 3

∙
3

+ + 
− 3 − 1

+ +  − 

¸
 0;

and for 1   ≤ 1−

,

 0 () = 4 + (−3)2−3−1 + 33
3−1

 4 − 32 + 33

µ
1− 



¶3−1

=


+ +  − 
+ 3



3 + 3

∙
3

+ + 
− 3 − 1

+ +  − 

¸
+3



(3 + 3)

∙
3

+ + 
− 3 + 1

+ +  − 

¸
=

3
¡
+ 

¢
3 + 3

∙
3

+ + 
− 3 − 1

+ +  − 

¸
 0

The following lemmas are needed.

Lemma 2 For  and ,  = 1 2 3, defined in Appendix A, the following statements

are true: (i)


+ + 
=
( − 1) ( + 1)
+ +  − 

=
2

2


(ii) Under the restriction +   ,

 ≡


+ + 
−  − 1

+ +  − 
 0

Proof of Lemma 2. (i) Note that  =
2
2
(+ + ) and − = 2

2

¡
− 1

2
2
¢
.
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Thus,


++
= 2

2
and

(−1)(+1)
++− =

2

2
(++)− 2

2
(− 1

2
2)−1

++− = 2
2
.

(ii) It is equivalent to proving the following inequality

+ + 


  =

q¡
1
2
2 − 

¢2
+ 22 [+ + ]−

¡
− 1

2
2
¢

2

which holds as long as ++   . Therefore, under the restriction +  , the

statement indeed holds since  ≥ 0, for  = 1 2 3.

Lemma 3 Under the restrictions on parameter values, the function  () is strictly

increasing.

Proof of Lemma 3. Because there are eight different cases and in each different

case the function  () takes a different form. Below we prove the monotonicity of

 () in each of the ten cases.

Define

∗∗ =
+ − 


 1

and ∗∗, 

∗∗ as solutions to the following equations:

 = + 
¡
1− ∗∗

¢
+ 

¡
1− £+ ∗∗

¤¢
+ 

¡
1− £1 +2


∗∗ + 1

¡
∗∗
¢3¤¢ 

 = + 
¡
1− £+ ∗∗

¤¢
+ 

³
1−

h
3 +4


∗∗ + 2

¡
∗∗
¢−3 + 3

¡
∗∗
¢3i´ 

(i) In Case A where    +  (1− ) +  (1− [+ ]) +  (1−  ()), the

function  () = (), for  ∈ (0 1]

 () =
17 + 28

1 + 2
+

1 + 1
1 + 2

2
−1

where

2 =
1
¡
1 +6 −7

¢
+ (1 − 1)

¡
2 +7

¢
∗∗ + (1 − 3)1

¡
∗∗
¢3

(1 + 1) (
∗∗)
−1 

To prove  () is strictly increasing, we only need to prove 2  0. Substituting
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the expression of ∗∗ into the above equation, we have

(1 + 1)
¡
∗∗
¢−1 2

= 1
 − £+ +  (1− ) + 

¡
1−1

¢¤
+ +  (1 +  + )

+ (1 − 1)
¡
+  + 2

¢
∗∗

+ +  (1 +  + )− 
+ (1 − 3)1

¡
∗∗
¢3

= − ¡+  + 2

¢
∗∗1 +

∙
1 − 3 −

1
+ +  (1 +  + )

¸
1
¡
∗∗
¢3 

From Condition (10)a and Lemma 2, we have

(1 − 1)
¡
+  + 2

¢
+ +  (1 +  + )− 

=
¡
+  + 2

¢
11  −3 (1 − 3)1

and, note that 1 − 1 = 3 − 3 and
11

(1++)
=

33
++

,

3 (1 − 3) + 1

µ
1 − 3 −

1
+ +  (1 +  + )

¶
= 3 (1 − 1 − 3) +

(+ +  (1 + )) 11
+ +  (1 +  + )

= −33 +
(+ +  (1 + )) 11
+ +  (1 +  + )

= 0

Therefore, since 0 
¡
∗∗
¢3  ∗∗  1, we have

(1 + 1)
¡
∗∗
¢−1 2



∙
− ¡+  + 2

¢
1 +

µ
1 − 3 −

1
+ +  (1 +  + )

¶
1

¸ ¡
∗∗
¢3



∙
3 (1 − 3) + 1

µ
1 − 3 −

1
+ +  (1 +  + )

¶¸
1

¡
∗∗
¢3

1
= 0

(ii) In Case B where  +  (1− ) ≤  ≤  +  (1− ) +  (1− [+ ]) +

 (1−  ()), the function  () = (), for  ∈ (0 1]

 () =
1
¡
1 +6

¢
+ 28 + (1 − 1)

¡
2 +7

¢


1 + 2
+
(1 − 3)1

3

1 + 2

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Under Condition (10)a and  ≤ 1, we have

(1 + 2)
0
 () = (1 − 1)

¡
2 +7

¢
+ 3 (1 − 3)1

3−1

≥ (1 − 1)
¡
2 +7

¢
+ 3 (1 − 3)1

 0

(iii) In Case C where   +  (1− )  + , the function  () = (), for

 ∈ (0 1]

 ()

=
25 + 1

¡
1 +6

¢
+ (2 + 1)6 + (1 − 1)

¡
2 +7

¢


(1 + 2)

+
1 − 3
1 + 2

1
3 +

2 (8 −5)− (2 + 1)6

∗∗

(1 + 2) (
∗∗)

2
2 

When   + , it is true that

2 (8 −5)− (2 + 1)6

∗∗ = (+ − )

∙
2

+ 
− 2 + 1

+ − 

¸
 0

Furthermore, since   ∗∗  1 and 1  0, we have that under Condition (10)a,

(1 + 2)
0
 ()

= (1 − 1)
¡
2 +7

¢
+ (2 + 1)6 + 3 (1 − 3)1

3−1

+
£
2 (8 −5)− (2 + 1)6


∗∗
¤
2

2−1

(∗∗)
2

 (1 − 1)
¡
2 +7

¢
+ (2 + 1)6 + 3 (1 − 3)1

¡
∗∗
¢3−1

+
£
2 (8 −5)− (2 + 1)6


∗∗
¤ 2
∗∗

= (1 − 1)
¡
2 +7

¢
+ 3 (1 − 3)1

¡
∗∗
¢3−1

 (1 − 1)
¡
2 +7

¢
+ 3 (1 − 3)1

 0

(iv) In Case D where  ≥ + (1− − )+ (1−  (1)), the function () =

 () = (), for  ∈
¡
1 1−



¢
. The proof in (i) applies here too.

(v) In Case E where + (1− − )+ (1−  ())    + (1− − )+
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 (1−  (1)), the function  () = () for 1  ∗∗    1−


 () =
17 + 28

1 + 2
+

1 + 1
1 + 2

4
−1

where

4 = 2 +

¡
∗∗
¢1

(1 + 1)

∙
1
¡
3 +8 −7

¢
+ (1 − 1)

¡
4 +9

¢
∗∗

+(1 + 3)2
¡
∗∗
¢−3 + (1 − 3)3

¡
∗∗
¢3 ¸ 

2 =
1

1 + 1

∙
1
¡
1 +6 −3 −8

¢− (1 − 1) ¡4 +9 −2 −7

¢
+(1 − 3) (1 − 3)− (1 + 3)2

¸


To prove the increasing monotonicity of  (), we only need to prove the coefficient

of −1 in  () is negative, or 4  0. It is straightforward to verify that 2 = 0.

As a result,

(1 + 1)4
¡
∗∗
¢−(1+1)

= − ¡ + 4

¢
1 +

µ
1 + 3 −

1
+ +  (1 +  + )

¶
2
¡
∗∗
¢−(3+1)

+

µ
1 − 3 −

1
+ +  (1 +  + )

¶
3
¡
∗∗
¢3−1



"
− ¡ + 4

¢
1 +

µ
1 − 3 −

1
+ +  (1 +  + )

¶
3

µ
1− 



¶3−1
#µ

∗∗
(1− ) 

¶3−1

 0

where we used the following fact based on a similar argument as in in the proof of (i)

that under Condition (10)b

− ¡ + 4

¢
1 +

µ
1 − 3 −

1
+ +  (1 +  + )

¶
3

µ
1− 



¶3−1


1

1

∙
3 (1 − 3) + 1

µ
1 − 3 −

1
+ +  (1 +  + )

¶¸
3

µ
1− 



¶3−1

= 0

(vi) In Case F where  ≤ + (1− − )+ (1−  ()), the function () =

 () for  ∈
¡
1 1−



¢

 () =

∙
1
¡
3 +8

¢
+ 28 + (1 − 1)

¡
4 +9

¢


+(1 + 3)2
−3 + (1 − 3)3

3

¸
(1 + 2)

+
1 + 1
1 + 2

2
−1
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where 2 = 2 = 0. Under Condition (10)b, we have

(1 + 2)
0
 ()

= (1 − 1)
¡
4 +9

¢− 3 (1 + 3)2
−3−1 + 3 (1 − 3)3

3−1



"
(1 − 1)

¡
4 +9

¢
+ 3 (1 − 3)3

µ
1− 



¶3−1
#µ



(1− ) 

¶3−1

 0

(vii) In Case G where  ≥ + (1− − )+ (1−  (1)), the function () =

 () = () for  ≥ 1−

. The proof of (i) applies here too.

(viii) In Case Hwhere +
¡
1− 

¡
1−


¢¢ ≤   + (1− − )+ (1−  (1)),

the function () =  () =  () for  ≥ 1−

. The proof of (v) applies here

too.

Proof of Theorem 1. The equilibrium threshold ∗ is determined by the condition
 (∗; ∗) = 1. Define  (∗) ≡  (∗; ∗). Here we prove that there always exists a
unique ∗ such that  (∗) = 1. To simplify notation, we replace ∗ by  and express
 (∗) as  () throughout the proof. It is easy to show that under the parameter

restriction (9),  (0)   (0)  1,  (∞)  1, and  (∞)  1.
Denote by ∗∗ = max { :  (; ∗) = } the maximum fundamental value that is

associated with the max rate. That is, the constraint of the max rate is binding if and

only if  ≤ ∗∗. It is straightforward to see that in Case B or Case F, ∗∗ coincides
with ∗ (i.e., ∗∗ = ∗), and in Case C, ∗∗ ≡ +−


≤ 1. For the other cases, ∗∗ is

determined by  (∗∗) = 0 where the function  (·) is defined as

 () = +  (1− )
+
+  (1− − )

+
+  (1−  ())− 

Then from Lemma 1,  () is continuous and strictly decreasing. Furthermore, under

the parameter restrictions (8) and (9), we have  (0)  0 and 
¡
1−


¢ ≤ 0., implying
that  (∗∗) = 0 has a unique solution ∗∗ ∈ (0 1− ]. It is straightforward to check
that 

¡
∗∗
¢
=

¡
∗∗
¢
,  (∗∗) = (∗∗),  (∗∗) = (∗∗), and  (1) =

 (1).

We now prove the existence of the unique threshold ∗ by considering all the possi-
ble max rates . Under the restriction (6), +  + (1− − )+ (1−  (1)).

There are three possibilities.

(i) Consider the possibility where  ≥ + (1− − )+ (1−  (1)), implying

 (1) ≤ 0 and ∗∗ ∈ (0 1]. Based on the strict monotonicity of  and , as well

as ∗∗ ≤ 1, we have

 (0)   (∗∗) = (∗∗) ≤ (1)   (∞) 
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If  (1)  1, then Case D or Case G holds (note  (∞)  1) where  () = 1

has a unique root   1, depending on whether 

¡
1−


¢ ≥ 1 or not. Otherwise,
if  (1) ≥ 1, depending on whether  (∗∗) =  (∗∗)  1 or not, either Case

A holds where  () = 1 has a unique root  ∈ (∗∗ 1], or Case B holds where
 () = 1 has a unique root  ∈ (0 ∗∗].
(ii) Consider the possibility where + ≤   +  (1− − )+ (1−  (1)),

implying  (1)  0 and ∗∗ ∈ (1 1− ]. Based on the strict monotonicity of , ,

and  , and ∗∗  1, we know

 (1) = (1)   (∗∗) = (∗∗) 

If  (∗∗)  1, then Case E or Case H holds (note  (∞)  1) where  () = 1

has a unique root   ∗∗, depending on whether 

¡
1−


¢ ≥ 1 or not. Otherwise, if
 (∗∗) =  (∗∗) ≥ 1, depending on whether  (1) =  (1)  1 or not, either

Case F holds where  () = 1 has a unique root  ∈ (1 ∗∗], or Case B holds where
 () = 1 has a unique root  ∈ (0 1].
(iii) Consider the possibility where    + , implying 0  ∗∗ ≤ 1 and ∗∗ ∈

(1 1−

]. Based on the strict monotonicity of  and , as well as ∗∗  1, we have

 (0)  

¡
∗∗
¢
=

¡
∗∗
¢
  (1) = (1)   (∗∗) = (∗∗) 

If 

¡
∗∗
¢ ≥ 1, then Case C holds (note  (0)  1) where  () = 1 has a

unique solution  ∈ (0 ∗∗]. Otherwise, if 

¡
∗∗
¢
 1, by the same argument

used in Possibility (ii), we can prove that Case B holds if  (1) ≥ 1, or Case E or
Case H holds if  (1)  1 and  (∗∗)  1, or Case F holds if  (1)  1 and

 (∗∗) ≥ 1.

Proof of Proposition 1. (i) We first prove ∗


 0. By the implicit function

theorem, ∗

= − 

∗
. We have shown in Lemma 3 that   0. Therefore,

we only need to show that   0 for each of functions  ()  · · ·  () in

order to prove the claim. From Lemma 2, we have

 ()


=

−1

(1 + 2)


h
1 (1 −7)

¡
∗∗
¢1 + (1 − 1)2

¡
∗∗
¢1+1i



=
(1 + 1) 

−1
¡
∗∗
¢1

(1 + 2)

∙
1

+ +  (1 + )
− 1 − 1

+ +  (1 + )− 

¸
 0
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When   + , for   ∗∗, from Lemma 2, we have

 ()


=


h
11+25

1+2
+

2(8−5)−(2+1)6
∗∗

(1+2)(
∗∗)

2 2
i



=
1

1 + 2

∙
1

+ +  (1 + )
+

2
+ 

¸
+
(2 − 1) 2

¡
∗∗
¢−2

1 + 2

∙
2

+ 
− 2 + 1

+ − 

¸


1

1 + 2

∙
1

+ +  (1 + )
+

2
+ 

¸
+

2 − 1
1 + 2

∙
2

+ 
− 2 + 1

+ − 

¸
=

1

1 + 2

1
+ +  (1 + )

 0

When   +  (1− − ), from Lemma 2, we have

 ()


=

−1

1 + 2


h
1 (3 −7)

¡
∗∗
¢1 + (1 − 1)4

¡
∗∗
¢1+1i



=
(1 + 1) 

−1
¡
∗∗
¢1

1 + 2

∙
1

+ +  (1 + )
− (1 − 1)

+ +  (1 + )− 

¸
 0

Lastly,
()


=

 ()


=

1
1+2

1
++(1+)

 0 .

(ii) Next, we prove ∗
∆

 0. By the similar argument as in (i), we only need to

show that ∆  0 for each of functions  ()  · · ·  (). From Lemma 2,

we have

 ()

∆

=
1

1 + 2

1

+ +  (1 + )
+

2
1 + 2

1

+ 

−(1 + 1) 
−1
¡
∗∗
¢1

(1 + 2)

µ
1

+ +  (1 + )
− 1 − 1

+ +  (1 + )− 

¶


1
1 + 2

1

+ +  (1 + )
+

2
1 + 2

1

+ 

− 1 + 1

1 + 2

µ
1

+ +  (1 + )
− 1 − 1

+ +  (1 + )− 

¶
=

2
1 + 2

1

+ 

 0;
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and when    + , for   ∗∗,
()

∆
=

(2−1)2(∗∗)
−2

1+2

³
2+1

+− − 2
+

´
 0; and

furthermore, when   +  (1− − ), we have

 ()

∆

=
1

1 + 2

1

+ +  (1 + )
+

2
1 + 2

1

+ 

−(1 + 1) 
−1
¡
∗∗
¢1

1 + 2

∙
1

+ +  (1 + )
− (1 − 1)

+ +  (1 + )− 

¸


1
1 + 2

1

+ +  (1 + )
+

2
1 + 2

1

+ 

− 1 + 1

1 + 2

∙
1

+ +  (1 + )
− (1 − 1)

+ +  (1 + )− 

¸
=

2
1 + 2

1

+ 

 0

Lastly,
()

∆
=

 ()

∆
=

2
1+2

1
+

 0.

(iii) Lastly, we prove by contradiction that 
∆→0

∗ =∞. Suppose &∗ = 0 

∞. Consider two cases:   +  (1− − ) and  ≤ +  (1− − ).

(iii-A) If   +  (1− − ), then & (∗) = 1 = & (0). How-

ever, note that when  tends to , 7 and 8 tends to 1. Therefore, we have

& (0)

= 1 + &

1 (7 − 1) + 2 (8 − 1)
1 + 2

+
1 (1 −7) + (1 − 1)2


∗∗

(1 + 2) (
∗∗)
−1 

−1
0

= 1 +
1 (1 −7) + (1 − 1)2


∗∗

(1 + 2) (
∗∗)
−1 

−1
0  1

which is a contradiction.
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(iii-B) If  ≤ +  (1− − ), then & (1)  1 because

 (1)− 1 = 1 (1 − 1) + 2 (8 − 1) + (1 − 1)2

1 + 2

→ 1
1 + 2

µ
 +  (1 + )

+ +  (1 + )
− 1
¶
+

1 − 1
1 + 2

+ 

+ +  (1 + )− 

= − 1
1 + 2

µ
(+  (1− − ))− 

+ +  (1 + )

¶
−+ 

1 + 2

µ
1

+ +  (1 + )
− 1 − 1

+ +  (1 + )− 

¶
 0

Similarly as before, we can prove that in this case, &∗ = ∞. We can prove
it by contradiction. Suppose &∗ = 0  ∞. Then & (∗) = 1 =

& (0). However,

& (0) = 1 +

∙
1 + 1
1 + 2

2 +
1 (3 −7) + (1 − 1)4


∗∗

(1 + 2) (
∗∗)
−1

¸

−1
0  1

which is a contradiction.

Proof of Proposition 2. There are only three possibilities: ∗  1, 1 ≤ ∗ ≤ 1−

,

and ∗  1−

:

1. If ∗ ≤ 1, then the value function is given by

 (; ∗) =

⎧⎨⎩
¡
1 +6

¢
+
¡
2 +7

¢
 + 1

3 +1
1, if  ∈ (0 ∗]

5 +6 +2
−2 +3

2 if  ∈ (∗ 1]
10 +4

−2 , if  ∈ (1∞)

2. If 1  ∗ ≤ 1−

, then the value function is given by

 (; ∗) =

⎧⎪⎪⎨⎪⎪⎩
¡
1 +6

¢
+
¡
2 +7

¢
 + 1

3 +1
1, if  ∈ (0 1]∙ ¡

3 +8

¢
+
¡
4 +9

¢
 + 2

−3
+3

3 +2
−1 +3

1

¸
 if  ∈ (1 ∗]

10 +4
−2 , if  ∈ (∗∞)
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3. If ∗  1−

, then the value function is given by

 (; ∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¡
1 +6

¢
+
¡
2 +7

¢
 + 1

3 + 1
1, if  ∈ (0 1]∙ ¡

3 +8

¢
+
¡
4 +9

¢
 + 2

−3
+3

3 + 2
−1 + 3

1

¸
 if  ∈ (1 1−


]¡

9 +10

¢
+ 4

−3 + 4
−1 + 5

1 , if  ∈ (1−

 ∗]

10 + 6
−2 , if  ∈ (∗∞)

where the unknown coefficients1 · · ·  6 are determined through the value matching
and smooth pasting conditions.

Similarly as the proof of Proposition 1, to prove ∗


 0, we only need to prove
 ()


 0 for Case A, Case B, and Case C.

For simplicity, we only provide the proof for Case A:
()


 0 for 0   ≤ 1.

The proof for the other two cases is similar. In Case A,

 ()

=
1
¡
1 +6

¢
+ 25

1 + 2
+
(1 − 1)

¡
2 +7

¢
+ (1 + 2)6

1 + 2


+
2 (10 −5)− (1 + 2)6

1 + 2
2 +

1 − 3
1 + 2

1
3

=  +  + 
2 + 

3

Note that 


¯̄
=0

= 1
1+2

1


¯̄̄
=0

 0. Below we consider the first three terms.

First, it is straightforward to show that


¡
1 +6

¢


=

¡
3 +8

¢


= − 2 (1− )

(+ +  (1 +  + ))
2



¡
2 +7

¢


=

¡
4 +9

¢


=
2

(+ +  (1 +  + )− )
2



¡
9 +10

¢


= 0
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Therefore,

 ()



¯̄̄̄
=0



∙
2 (1 +2)

(1 + 2)
2
− 2 (10 −5)− (1 + 2)6

(1 + 2)
2

2

¸
1


+
1

1 + 2

µ
− 2 (1− )

(+ +  (1 + ))
2
+

2

(+ +  (1 + )− )
2


¶


Because 2 (10 −5)− (1 + 2)6 = 
³

2
+
− 1+2

+−

´
 0 and  ≤ 1, we have

 ()



¯̄̄̄
=0

≤ 2 (1 +2)− (2 (10 −5)− (1 + 2)6)

(1 + 2)
2

1


+
1

1 + 2

µ
2

(+ +  (1 + )− )
2
− 2 (1− )

(+ +  (1 + ))
2

¶


Therefore, for
()



¯̄̄
=0

 0, it is sufficient to have

1 +2 
2 (10 −5)− (1 + 2)6

2

+
1 (1 + 2) 

2

2

µ
1− 

(+ +  (1 + ))
2
− 

(+ +  (1 + )− )
2

¶


which imposes an upper bound on .

In Case B,

 () =
1
¡
3 +8

¢
+ 210

1 + 2
+
(1 − 1)

¡
4 +9

¢
1 + 2



+
1
¡
3 −1

¢
+ (1 − 1)

¡
4 −2

¢
1 + 2

−1

+
(1 + 3)2

1 + 2
−3 +

(1 − 3)3

1 + 2
3

=  +  + 
−1 + 

−3 + 
3
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



¯̄̄̄
=0

=

³

1
1+2

´


¡
3 +4 +

¡
3 −1 +4 −2

¢
−1

¢
+

1
1 + 2


¡
3 +8

¢


+
1 − 1
1 + 2


¡
4 +9

¢




−1
¡
3 −1

¢
+ (1 − 1)

¡
4 −2

¢
1 + 2

log ()
1


−1

=
2

(1 + 2)
2

1


¡
3 +4 +

¡
3 −1 +4 −2

¢
−1

¢
−2 1

1 + 2

1− 

(+ +  (1 +  + ))
2
+ 2

1 − 1
1 + 2



(+ +  (1 +  + )− )
2


−1
¡
3 −1

¢
+ (1 − 1)

¡
4 −2

¢
1 + 2

log () −1
1



2

(1 + 2)
2

1


Ã
3 +4

1− 


+
¡
3 −1 +4 −2

¢µ1− 



¶−1!
−2 1

1 + 2

1− 

(+ +  (1 +  + ))
2
+ 2

1 − 1
1 + 2

1− 

(+ +  (1 +  + )− )
2

where we used the fact 1   ≤ 1−

,

3 −1 +4 −2 =


+ + 
− 

+ +  − 
 0

1
¡
3 −1

¢
+ (1 − 1)

¡
4 −2

¢
= 

µ
1

+ + 
− 1 − 1

+ +  − 

¶
 0

Therefore, for
()



¯̄̄
=0

 0, it is sufficient to have

1

(+ +  (1 + ))
2


1 − 1
(+ +  (1 + )− )

2
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and

3 +4

1− 





µ


+ +  − 
− 

+ + 

¶µ
1− 



¶−1
+
2 (1− )

1


1 + 2
2

µ
1

(+ +  (1 + ))
2
− 1 − 1
(+ +  (1 + )− )

2

¶
which imposes an upper bound on  and .

In Case C,

 () =
1
¡
9 +10

¢
+ 210

(1 + 2)

+

"
−1

¡
3 +8 −1 −6

¢
+ (1 − 1)

¡
4 +9 −2 −7

¢
1 + 2

#
−1

+
1
¡
3 +8 −9 −10

¢
+ (1 − 1)

¡
4 +9

¢ ¡
1−


¢
(1 + 2)

µ


(1− ) 

¶−1
+
(1 + 3)4

(1 + 2)
−3 − (1 + 3)2 + (1 − 3) (3 − 1)

1 + 2
−1

+
(1 + 3) (2 − 4)

¡
1−


¢−3 + (1 − 3)3
¡
1−


¢3
(1 + 2)

¡
1−


¢−1 −1

=  + 
−1 + 

µ


(1− ) 

¶−1
+ 

where we used the facts


¡
4 +9 −2 −7

¢


=

¡
3 +8 −1 −6

¢


=

¡
9 +10

¢


= 0

1 (3 −1) + (1 − 1) (4 −2) = 1  0

1 (3 −9) + (1 − 1)4

µ
1− 



¶
= − (1− )1  0
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1 −3 +2 −4 =


+ +  (1 +  + )− 
− 

+ +  (1 +  + )
 0

3 −9 +4

µ
1− 



¶
=

 (1− )

+ +  (1 +  + )− 
−  (1− )

+ +  (1 +  + )
 0

and

1

¡
3 +8

¢


+ (1 − 1)

¡
4 +9

¢


µ
1− 



¶
= −2 (1− )

µ
1

(+ +  (1 +  + ))
2
− 1 − 1
(+ +  (1 +  + )− )

2

¶
thus





¯̄̄̄
=0



³

1
1+2

´


Ã
9 + (1 −3 +2 −4)

µ
1− 



¶−1
+

µ
3 −9 +4

µ
1− 



¶¶!

−2 (1− )

1
(++(1++))2

− 1−1
(++(1++)−)2

(1 + 2)

µ


(1− ) 

¶−1
Therefore, for

()



¯̄̄
=0

 0, it is sufficient to have

1

(+ +  (1 +  + ))
2


1 − 1
(+ +  (1 +  + )− )

2

and

2

(1 + 2)
2

1


Ã
9 + (1 −3 +2 −4)

µ
1− 



¶−1
+

µ
3 −9 +4

µ
1− 



¶¶!

 2 (1− )

1
(++(1++))2

− 1−1
(++(1++)−)2

(1 + 2)

µ


(1− ) 

¶−1
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