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1 Introduction

Counterparty risk is a major concern in derivative markets. For example, when Lehman

Brothers filed for bankruptcy protection in September 2008, it froze the positions of more

than 900,000 derivative contracts (about 5% of all derivative transactions globally) in which

Lehman Brothers was a party (Fleming and Sarkar, 2014). The standard tool to mitigate

counterparty risk is to use margins, which are a form of collateral in the context of deriva-

tive contracts. The immediate response of regulators and law-makers to the financial crisis

therefore was to require a significant expansion of the use of margins in derivative activity

(Dodd-Frank Act in the US, EMIR in the EU). However, there is a growing awareness that

margins can be pro-cyclical (BIS, 2010). Margins calls, which occur when concerns about

counterparty risk increase, can lead to assets sales that exert downward pressure on market

prices with further adverse consequences for market participants.

This paper evaluates the benefit and cost of margin requirements. The benefit of margins

is more risk-sharing in the presence of potential counterparty risk. Potential counterparty

risk arises because the seller of insurance via derivatives is subject to moral hazard. The

cost of margins is a fire-sale externality. Margin calls lead to asset sales that lower asset

prices, which in turn make margin calls more expensive. We evaluate the benefit and cost

of margins in a model with optimal contracts and endogenous asset prices. The optimal

derivative contract limits moral hazard and reflects the equilibrium market price of assets.

Our model features risk-averse agents who want to insure against a common exposure

to risk (protection buyers) and risk-neutral agents who are not directly exposed to the risk

of buyers and who offer insurance (protection sellers). A key feature of our model is that

new contractible information about the insured risk becomes available during the life of the

insurance contract. Such news affect the expected pay-offs of the contracting parties: it

makes the contract an asset for one party and a liability for the other.

Protection sellers have a moral hazard problem. They have risky assets and, because of

limited liability, can make insurance payments only if these assets are sufficiently valuable.

The value of a protection seller’s assets depends on her effort to prevent downside risk.

Without exerting costly effort, the value of her assets may be so low that she may be unable

to make insurance payments. Negative news about the insured risk turns the derivative

contract into a liability for a protection seller, and undermines her incentive to exert the

risk-prevention effort, exposing the protection buyer to counterparty risk.
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The benefit of margins is they ring-fence assets from moral hazard, as in Biais, Heider

and Hoerova (2012a). A margin call requires a protection seller to deposit safe, liquid assets

in a third-party escrow account (e.g., at a central counterparty). As protection seller’s assets

are risky, opaque and subject to moral hazard, she has to sell some of her assets in exchange

for assets that can be deposited in the margin account. After a margin call, a protection

seller has fewer risky assets subject to moral-hazard and the safe, liquid assets on the margin

account are outside of her control. This incentive benefit of margins enhances the scope for

risk-sharing via derivatives.

The cost of margins is a fire-sale externality, as in Gromb and Vayanos (2002) and

Brunnermeier and Pedersen (2009). A margin call triggers the sale of protection sellers’

assets and increases the supply of these assets in the market. There is a continuum of

arbitrageurs willing to buy these assets but they value them less than the protection sellers

(e.g., because they are less skilled at managing them). Asset sales are inefficient as they

occur at fire-sale prices. Protection sellers anticipate the cost of selling assets in case of a

margin call and demand compensation. This compensation makes the derivative contract

more expensive.

Key to our analysis of the benefit and cost of margins is the interaction of optimal

contracting and equilibrium pricing. On the one hand, the optimal contract limits moral

hazard and rationally anticipates future asset prices. On the other hand, the asset price

is determined by market clearing and reflects the supply of the asset that is triggered by

margin calls. Thus, there is a rational expectations loop, of which the optimal contract and

the equilibrium price are fixed points.

Our model has two important implications that we explore in depth. First, margin

requirements may create financial instability via multiple equilibria. Second, we show that

the private market outcome is not socially efficient: margins are used too much.

Our model admits multiple, welfare-ranked equilibria. Multiple equilibria arise because

the supply of assets in the market, induced by margin calls, can be downward-sloping. The

proceeds from margin calls are used to offer more incentive-compatible insurance to the

protection buyer after a bad signal. If the price decreases, proceeds decrease taking the size

of the margin call as given. If the protection buyer is very risk averse, he wants to offset

this by raising the amount of the margin. Multiple equilibria give rise to self-fulfilling asset

price drops. If market participants expect the price to be high, they request small margins.
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Small asset sales generate enough funds to be deposited on the margin account. Because the

asset sale is small, it does not depress the price much, which confirms the initial expectation

of high prices. In contrast, if market participants expect the price to be low, they request

large margins, which depresses prices via fire-sales, again confirming the initial expectation.

If market participants are pessimistic, and focus on the equilibrium with low prices, this

amplifies fire-sales. When there are multiple equilibria, protection buyers prefer the high-

price equilibrium, but arbitrageurs prefer the low price-equilibrium. Yet, the high-price

equilibrium dominates the low-price one in terms of utilitarian welfare. While a low price

leads to profits for arbitrageurs, these profits are lower than the utility cost to protection

buyers (protection sellers always break-even) because it is inefficient to have arbitrageurs

hold the assets of protection sellers.

Because all agents have well-defined expected utility which they maximize using optimal,

complete contracts, welfare is well-defined. Thus, we can characterize the second-best and

compare it to the market equilibrium. We show that market equilibrium has larger margin

calls than the second-best. Over-margining arises because of a negative (pecuniary) external-

ity. When the protection buyer wants to obtain more insurance, he increases the margin in

his optimal contract. The seller must liquidate assets to satisfy margin calls. This lowers the

equilibrium price, which makes other protection sellers worse off. This negative externality

implies that market equilibrium is not second-best, as in Greenwald and Stiglitz (1986). Note

that over-margining arises even when the equilibrium is unique. When there are multiple

equilibria, they are all different from the second-best and all involve over-margining.

This welfare analysis shows that in equilibrium too much insurance is sold, implying that

aggregate margin calls are too large. The second-best can be achieved by imposing a cap

on margins. This also eliminates the market instability when there are multiple equilibria.

When the regulator/central bank caps margins, the asset market equilibrium is unique.

While our model illustrates how over-margining can arise in equilibrium, we do not argue

that in reality markets always choose excessively large margins. In practice other forces

are at play which, for simplicity and clarity, we do not include in the present model. For

example, if protection buyers are insured against counterparty default by a central clearing

counterparty, then they prefer not to use margins, which undermines incentives (see Biais,

Heider and Hoerova, 2012b). To avoid this, the regulator can impose a floor on margins.

In sum, in the presence of moral hazard, market forces do not always lead to information-
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constrained efficient amount of margins. Hence, regulatory intervention may be needed, for

example via caps and floors on margins.

We also want to issue a warning about the implementation of the margin-cap policy.

Suppose some market participants have already entered derivative contracts before the cap

is introduced. These contracts entail large insurance payments, made incentive-compatible

by high margins. Now suppose the regulator caps margins, as we suggest above. Clearly,

the cap should be applied to new contracts, but should it also be applied to the pre-existing

ones? If it is applied to both, while leaving contracted transfers unchanged, then the risk-

prevention effort may no longer be incentive-compatible, and many protection sellers may

end up in default. Therefore, if a margin-cap is introduced, old contracts should either be

exempt or the transfers they promise should be revised downwards.

The empirical implications of our theoretical analysis reflect the interaction of optimal

contracting and equilibrium asset pricing. For example, our model generates contagion from

the market for protection buyer assets to the market for the protection seller assets. The

arrival of bad news about protection buyer assets triggers margin calls, and hence fire-sales

for protection seller assets. In another example, the greater the risk aversion of protection

buyers, the volatility of protection buyer assets, or the moral hazard problem of protection

sellers, the larger are the required margins and the associated fire-sales, and the greater is

the scope for decreasing supply curves and the emergence of “bad equilibria”.

The next section surveys the related literature. Section 3 describes the model and presents

the first-best benchmark. Section 4 analyzes optimal margining under moral hazard. The

analysis in that section builds on the analysis in Biais, Heider and Hoerova (2012a). Section

5, which derives the market equilibrium and the second-best equilibrium, and compares the

two, is the key contribution of the present paper. Section 6 discusses the empirical and policy

implications of our analysis. The proofs are in the appendix.

2 Literature

In Biais, Heider and Hoerova (2012a), we show that margins are features of optimal derivative

contracts when risk averse agents buy insurance from protection sellers subject to moral

hazard. Margins ring-fence assets from moral hazard and are thus privately optimal for two

contracting parties. In that analysis, we interpret margins as an institutional arrangement

that affects split of a protection seller’s balance sheet between transparent assets and opaque
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investments, which are then subject to moral hazard. In the current paper, we examine the

consequences for asset prices when protection sellers sell some of their risky, opaque assets in

order to obtain safe, transparent ones for the margin deposit. With endogenous asset prices,

margin calls increase the supply of assets and depress asset prices with consequences for the

cost of margins for all market participants.

The analysis of the interaction between liquidation induced by financial constraints and

equilibrium prices goes back, at least, to Kiyotaki and Moore (1997) and Shleifer and Vishny

(1992). In their 2011 survey, Shleifer and Vishny write:

“a fire-sale is essentially a forced sale of an asset at a dislocated price... The

price is dislocated because the highest potential bidders are typically involved in

a similar activity as the seller, and ... cannot .... buy the asset ... assets are then

bought by nonspecialists who ... are only willing to buy at valuations that are

much lower.”

The fire-sales and inefficiencies arising in our model are in line with this characterization.

Differences between our analysis and that of Shleifer and Vishny (1992) include our focus on

i) margins, ii) optimal contracting and iii) information-constrained Pareto optimality.

Gromb and Vayanos (2002) offer the first analysis of how margin/collateral constraints

depress prices in financial markets, giving rise to pecuniary externalities, and driving the

equilibrium away from information-constrained efficiency.1 Suppose there is a liquidity shock

so that some investors must sell their holdings of an asset. This will generate a drop in

the price, unless arbitrageurs step in and buy. Arbitrageurs, however, can’t freely do so

because they are subject to margin/collateral constraints. More precisely, the amount each

can buy is limited by an upper bound, increasing in his own wealth. Now, this wealth

is evaluated at current prices. So if the arbitrageur is long in the asset, the lower the

price, the tighter the constraint, the less the arbitrageur can buy. This generates pecuniary

externalities: If one arbitrageur is constrained and cannot buy, this depresses the price. This

depressed price tightens the margin/collateral constraint of the other arbitrageurs. Because

of these pecuniary externalities, equilibrium is not efficient. The major difference between

this analysis and ours is that, in Gromb and Vayanos (2002), margin/collateral constraints

are exogenous, while in our model they are endogenous and emerge as features of the optimal

1Gromb and Vayanos (2010) is a very interesting survey of the literature on limits to arbitrage, including
an illuminating presentation of a simplified version of Gromb and Vayanos (2002).
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contract in the presence of moral hazard. This enables us to study privately and socially

optimal margins and the tradeoff between the costs and benefits of margins.

This comment also applies to Brunnermeier Pedersen (2009) where, similarly to Gromb

and Vayanos (2002), margin constraints are exogenous. In addition, the economic mechanism

linking margins and equilibrium price is different in Brunnermeier and Pedersen (2009) and

in our paper. In their analysis, market participants are learning about volatility. When they

observe a large price drop, they increase their estimate of the volatility. Because volatility is

higher, margins are raised. This triggers fire-sales amplifying the initial price drop. Because

our economic mechanism is different, we get different implications: From a normative point

of view, modelling private and social costs and benefits of margins yields our implication on

over-margining. From a positive point of view, our implication that larger protection buyers’

risk aversion or protection sellers’ moral hazard increase margins, fire-sales and the scope for

equilibrium multiplicity differs from the implications of Brunnermeier and Pedersen (2009).

Lorenzoni (2008) and Hombert (2009) also study pecuniary externalities associated with

collateral, but in a different context. In Lorenzoni (2008), entrepreneurs raise funds to

invest. Then, if there is a bad aggregate shock, all entrepreneurs need more cash to salvage

their projects. Because of limited commitment, entrepreneurs cannot raise new debt at

this point, while outside investors cannot credibly promise to insure entrepreneurs against

the negative shock. Hence, when the negative shock hits, entrepreneurs must sell assets to

raise money to salvage their project. These fire-sales depress the price and are inefficient

because they allocate the asset to outside agents who value it less than entrepreneurs. As in

Gromb and Vayanos (2002), this gives rise to pecuniary externalities. When one entrepreneur

invests a lot initially, this implies he must sell a lot after the bad shock, which depresses

the price. This depressed price is costly for the other entrepreneurs, because it forces them

to sell more assets to raise the same amount of cash. Because of this negative externality,

equilibrium is not efficient, more precisely, equilibrium prices are too low. In contrast,

Hombert (2009) show that equilibrium prices can be too high relative to the second-best. He

identifies two possible sources of externalities: On the one hand, when firms liquidate their

assets, they reduce the pledgeable income of other firms. This collateral effect is similar to

that in Lorenzoni (2008). On the other hand, depressed prices offer attractive investment

opportunities to entrepreneurs who exerted high effort initially and succeeded. This incentive

effect, which differs from that in Lorenzoni, can outweigh the collateral effect, implying that
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low prices increase welfare. The major difference between the analyses of Lorenzoni (2008)

and Hombert (2009) and ours is that they consider real-economy firms borrowing funds

against initial collateral. This differs from our analysis of risk-sharing in financial markets

with variation margins.

This difference in economic objects also differentiates our analysis from those of Acharya

and Viswanathan (2011) and Kuong (2014). Acharya and Viswanathan (2011) study the

equilibrium price at which borrowers resell their assets to overcome credit rationing, and

analyze the negative externality induced by fire-sales. In Kuong (2014), as in our paper,

there is an interaction between equilibrium prices and optimal contracts. Investment in his

model (insurance in ours) can lead to collateral liquidation (margin calls in our analysis)

and generate fire-sales and the associated negative externality. There are further important

differences with both of these papers.

In our analysis, optimal contracts feature variation margins, called after the arrival of

new information (unavailable at the time at which the contract was signed), but generating

asset liquidation before effort is exerted. Thus, in our context, margins are beneficial because

they directly relax the incentive-compatibility constraint of the agent, although they tighten

the participation constraint of the principal. In contrast, in Kuong (2014), as in Acharya and

Viswanathan (2011), collateral is supplied when the contract is signed, but liquidated after

effort is exerted. Thus, collateral has no direct effect on incentives. Its direct effect is to relax

the participation constraint of creditors. This reduces the repayment they request which,

in turn, relaxes the incentive constraint of the borrower. Another difference between our

analysis and those of Kuong (2014) and Acharya and Viswanathan (2011) is that they don’t

study the second-best, while the characterization of the second-best and the finding that it

differs from the equilibrium are key contributions of the present paper. Relatedly, another

difference between our analysis and that of Kuong (2014) pertains to policy implications.

In Kuong (2014), high price equilibria can coexist with less efficient low price equilibria,

implying that a commitment by the central bank to support prices will improve efficiency

by eliminating the bad (low price) equilibria. While our analysis may also feature multiple

equilibria, we additionally show that market equilibria are inefficient as they involve excessive

margining, implying that a cap on margins will improve efficiency, eliminate multiplicity and,

in fact, achieve the second-best.
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3 Model and First-Best Benchmark

3.1 The model

There are three dates, t = 0, 1, 2, a mass-one continuum of protection buyers, a mass-one

continuum of protection sellers, a mass-one of arbitrageurs. At t = 0, each protection buyer

is matched with a protection seller and they contract. At t = 1, margining and trading

decisions are made. At t = 2, payoffs are received.

Players and assets. Protection buyers are identical, with twice differentiable concave

utility function u, and are endowed with one unit of an asset with random return θ̃ at t = 2.2

For simplicity, we assume θ̃ can only take on two values: θ̄ with probability π and θ with

probability 1 − π, and we denote ∆θ = θ̄ − θ. The risk θ̃ is the same for all protection

buyers.3

Protection buyers seek insurance against the risk θ̃ from protection sellers who are risk-

neutral and have limited liability. Each protection seller j has an initial endowment of one

unit of a risky asset returning R̃j at t = 2. This payoff is affected by a protection seller’s

risk-management decision at t = 1. To model risk-management in the simplest possible way,

we assume that each seller j can undertake a costly effort to make her assets safer. If she

undertakes such risk-prevention effort, the per unit return R̃j is R with probability one. If

she does not exert the risk-prevention effort, then the return is R with probability µ < 1

and zero with probability 1 − µ. The risk-management process reflects the unique skills

of the protection seller and is therefore difficult to observe and monitor by outside parties.

Combined with limited liability, effort unobservability generates moral hazard.

Exerting the risk-prevention effort costs C per unit of assets under management at t = 1.4

Because protection seller assets are riskier without costly effort, we also refer to the decision

2The concavity of the objective function of the protection buyer can reflect institutional, financial or
regulatory constraints, such as leverage constraints or risk-weighted capital requirements. For an explicit
modeling of hedging motives see Froot, Scharfstein and Stein (1993).

3At the cost of unnecessarily complicating the analysis, we could also assume that the risk has an id-
iosyncratic component. This component would not be important as protection buyers could hedge this risk
among themselves, without seeking insurance from protection sellers.

4We show in Biais, Heider and Hoerova (2012a) that the qualitative results are unchanged when C is
convex in the amount of assets under management.
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not to exert effort as “risk-taking”.5 Undertaking effort is efficient,

R− C > µR, (1)

i.e., the expected net return is larger with effort than without it. We also assume that when a

protection seller exerts risk-prevention effort, return on her assets is higher than one (return

on cash),

R− C > 1. (2)

For simplicity, conditional on effort, R̃j is independent across sellers and independent of

protection buyers’ risk θ̃. To allow protection sellers who exert effort to fully insure buyers,

we assume

R > π∆θ. (3)

Each arbitrageur k values one unit of the risky asset at vk < R − C. We assume vk is

distributed over [x, 1].6 Arbitrageurs do not insure protection buyers (e.g., because they are

infinitely risk averse or because they do not have the information and trading technology to

do so). For simplicity, we assume all protection buyers value the asset at x, so that it is not

optimal that they buy it or obtain it from the protection sellers and then hold it.

Advance information. At the beginning of t = 1, before investment and effort decisions

are made, a public signal s̃ about protection buyers’ risk θ̃ is observed. For example, when

θ̃ is the credit risk of real-estate portfolios, s̃ can be the real-estate price index. Denote the

conditional probability of a correct signal by

λ = prob[s̄|θ̄] = prob[s|θ].

The probability π of a good outcome θ̄ for protection buyers’ risk is updated to π̄ upon

observing a good signal s̄ and to π upon observing a bad signal s, where by Bayes’ law,

π̄ = prob[θ̄|s̄] =
λπ

λπ + (1− λ)(1− π)
and π = prob[θ̄|s] =

(1− λ)π

(1− λ)π + λ(1− π)
.

We assume that λ ≥ 1
2
. If λ = 1

2
, then π̄ = π = π and the signal is completely

uninformative. If λ > 1
2
, then π̄ > π > π, i.e., observing a good signal s̄ increases the

5Here effort improves returns in the sense of first-order stochastic dominance. We have checked that our
results are robust when effort improves returns in the sense of second-order stochastic dominance, so that
lack of effort corresponds to risk-shifting.

6Alternatively, we could assume the upper bound of the support of vk is R − C. The reason we assume
the upper bound is 1 is that this setting nests Biais, Heider, Hoerova (2012).
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probability of a good outcome θ̄ whereas observing a bad signal s decreases the probability

of a good outcome θ̄. If λ = 1, the signal is perfectly informative.

Contracts and margins. At time 0, the protection buyer makes a take–it–or–leave–it

contract offer to the protection seller. Similar results would hold if, instead, we assumed the

protection seller had (some or all the) bargaining power. The contract specifies a transfer τ

at time 2 between the protection seller and the protection buyer. When τ > 0 the protection

seller pays the protection buyer and vice versa when τ < 0. The transfer τ can be conditional

on all observable information: the realization of the risk θ̃, the return on the seller’s assets

R̃ and the advance signal s̃. Hence, transfers are denoted by τ(θ̃, s̃, R̃).

The contract also specifies margin requirements. At the beginning of t = 1, after the

advance signal s̃ was observed, a variation margin can be called. To satisfy the margin call,

a protection seller can liquidate a fraction α(s̃) ∈ [0, 1] of her assets by selling them at price

p per unit and deposit the resulting cash on a margin account. The cost of such deposits is

that their liquidation value is lower than what it could have been had the assets remained

under the management of the protection seller R−C > 1 > p. In Biais, Heider and Hoerova

(2012a), the price was exogenous and normalized to one. The analysis in the present paper

considers endogenous prices, set by market clearing conditions.

Yet margins also have advantages. Our key assumption is that the cash deposited in the

margin account is safe and no longer under the discretion of the protection seller, i.e., it is

ring-fenced from moral hazard. Furthermore, if the protection seller defaults, the cash on

the margin account can be used to pay the protection buyer.

Margin accounts can be implemented as escrow accounts set up by the protection buyer

or via a market infrastructure such as a central counterparty (CCP). Importantly, we assume

that margin deposits are observable and contractible, and that contractual provisions calling

for margin deposits are enforceable. It is one of the roles of market infrastructures to ensure

such contractibility and enforceability.

Transfers from protection sellers are constrained by limited liability,

τ(θ̃, s̃, R̃) ≤ α(s)p+ (1− α(s))R, ∀(θ, s, R). (4)

A protection seller cannot make transfers larger than what is returned by the fraction (1−
α(s)) of assets under her management and by the fraction α(s) of assets she deposited on

the margin account.

Asset market. The supply of the asset, denoted by S, is given by the asset liquidations
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of protection sellers due to margin calls:

S = α (s) . (5)

The demand for the asset, denoted byD (p), comes from a mass of arbitrageurs with valuation

vk ≥ p:

D (p) = 1− F (p) (6)

Market clearing at t = 1 requires that the supply of the asset is equal to the demand for

the asset at price p:

p = F−1 (1− α (s)) . (7)

Note that the price p ≤ 1 since vk ≤ 1. In the special case of the uniform distribution of vk

over [x, 1], we have D (p) = 1−p
1−x so that

p = 1− (1− x)α (s) .

The case where p = 1, analyzed in Biais, Heider and Hoerova (2012a) arises in the limit when

x goes to 1. If there were only protection sellers and arbitrageurs, protection sellers would

always keep the asset, since their value for the asset would exceed that of the arbitrageurs,

as R− C > 1. The sequence of events is summarized in Figure 1.

Insert Figure 1 here

3.2 First-best: observable effort

In this subsection we consider the case in which protection sellers’ risk-prevention effort is

observable so that there is no moral hazard and the first-best is achieved. While implausible,

this case offers a benchmark against which we will identify the inefficiencies that arise when

protection seller’s risk-prevention effort is not observable.

In the first-best, protection sellers are requested to exert risk-prevention effort when

offering protection since doing so increases the resources available for risk-sharing (see (1)).

Margins are not used because they are costly (see (2)) and offer no benefit when risk-

prevention effort is observable. The transfers are chosen to maximize buyers’ utility

E[u(θ̃ + τ(θ̃, s̃, R̃)] (8)

subject to the limited liability constraints (4), as well as the constraint that protection sellers

accept the contract. By accepting (and exerting effort) sellers obtain R−C−E[τ(θ̃, s̃, R̃)]. If
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they do not sell protection, they obtain R−C.7 Therefore, a protection seller’s participation

constraint in the first-best is

E[τ(θ̃, s̃, R̃)] ≤ 0. (9)

In the first-best, protection sellers exert risk-prevention effort. In this context, the return

R̃ is always equal to R and we drop the reference to the return in the transfers τ for ease

of notation. As shown in Biais, Heider and Hoerova (2012a), the optimal contract provides

full insurance, is actuarially fair and does not react to the signal. Margins are not used and

the transfers are given by

τ(θ̄, s̄) = τ(θ̄, s) = E[θ̃]− θ̄ = − (1− π) ∆θ < 0

τ(θ, s̄) = τ(θ, s) = E[θ̃]− θ = π∆θ > 0.

The first-best insurance contract is actuarially fair since the expected transfer from protection

sellers is zero, E[τ(θ̃, s̃)] = 0.

4 Optimal margins under moral hazard

If protection buyers want protection sellers to exert risk-prevention effort, then it must be in

sellers’ own interest to do so after observing the signal s about buyers’ risk θ̃. The incentive

compatibility constraint under which a protection seller exerts effort after observing s is:

E[α(s̃)p+ (1− α(s̃))(R̃− C)− τ(θ̃, s̃, R̃)|e = 1, s̃ = s]

≥ E[α(s̃)p+ (1− α(s̃))R̃− τ(θ̃, s̃, R̃)|e = 0, s̃ = s].

The left-hand side is a protection seller’s expected payoff if she exerts risk-prevention effort.

The effort costs C per unit of assets she still controls, 1 − α(s). The right-hand side is her

(out-of-equilibrium) expected payoff if she does not exert effort and therefore does not incur

the cost C. We hereafter focus on contracts for which this incentive compatibility condition

always holds. This is optimal if lack of effort generates very low expected output.

Without effort, her assets under management return R with probability µ and zero with

probability 1−µ. In order to relax the incentive constraint, the contract requests the largest

possible transfer from a protection seller when R̃ = 0: τ(θ̃, s̃, 0) = α(s̃)p. This rationalizes

7Without derivative trading, protection sellers always exert effort since it is efficient to do so (see condition
(1)).
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the stylized fact that, in case of default of a protection seller, margin deposits are ceized and

used to pay protection buyers.

With effort, protection seller assets are safe, R̃ = R. For brevity, we write τS(θ̃, s̃, R) as

τS(θ̃, s̃). The incentive constraint after observing s then is

α(s)p+ (1− α(s))(R− C)− E[τS(θ̃, s̃)|s̃ = s]

≥ µ
(
α(s)p+ (1− α(s))R− E[τS(θ̃, s̃)|s̃ = s]

)
,

or, using the notion of “pledgeable return” P (see Holmström and Tirole, 1997),

P ≡ R− C

1− µ
, (10)

the incentive compatibility constraint rewrites as

α(s)p+ (1− α(s))P ≥ E[τ(θ̃, s̃)|s̃ = s]. (11)

The right-hand side is what protection sellers expect to pay to the buyer after seeing the

signal about buyers’ risk. The left-hand side is the amount that protection sellers’ can pay

(or pledge) without undermining their incentive to exert risk-prevention effort. The left-hand

side is positive because the assumption that effort is efficient, condition (1), ensures positive

pledgeable return, P > 0. The right-hand side is positive when conditional on the signal,

a protection seller expects, on average, to make transfers to the buyer. If, after seeing the

signal, she expects, on average, to receive transfers from the buyer, then the right-hand side

is negative and the incentive constraint does not bind. This is an important observation to

which we return later.

For sufficiently high levels of P , the incentive-compatibility constraints are not binding

at the first-best allocation. As shown in Biais, Heider and Hoerova (2012a), even if effort

is not observable, the first-best can be achieved if and only if the pledgeable income is high

enough, in the sense that

P ≥ (π − π)∆θ = E[θ̃]− E[θ̃|s]. (12)

In what follows, we will focus on the case when the first-best cannot be reached, i.e., when

P < (π − π)∆θ = E[θ̃]− E[θ̃|s̃ = s]. (13)

The participation constraint of the protection seller is

E[α(s̃)p+ (1− α(s̃))(R̃− C)− τ(θ̃, s̃, R̃)|e = 1] ≥ R− C.

13



Because protection sellers exert effort on the equilibrium path, we have R̃ = R and again,

for brevity, we write τ(θ̃, s̃, R̃) as τ(θ̃, s̃). Collecting terms, the participation constraint is

−E[τ(θ̃, s̃)] ≥ E [α(s̃)(R− C − p)] , (14)

The expected transfers to a protection seller (left-hand-side) must be high enough to com-

pensate her for the opportunity cost of the expected use of margins (right-hand-side). Thus,

if margins are used, the contract is not actuarially fair.

To keep the next steps of the analysis tractable, we make the following two simplifying

assumptions:

R > π̄∆θ − prob[s]

prob[s̄]
P (15)

1− π∆θ

R− P
>

(1− π)R− P
π + (1− π)R− P

(16)

These assumptions guarantee that limited liability conditions are slack in states (θ, s̄) and

(θ, s) (see Biais, Heider and Hoerova, 2012a, for details).

As shown in Biais, Heider and Hoerova (2012a), margins are not used after a good signal,

α(s̄) = 0, or if the moral hazard is not severe, i.e., P ≥ p. Furthermore, the participation

constraint and the incentive constraint after a bad signal are binding, which gives expected

transfers conditional on the signal (as a function of α(s) and p):

E[τ(θ̃, s̃)|s̃ = s] = α(s)p+ (1− α(s))P (17)

E[τ(θ̃, s̃)|s̃ = s̄] = −prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ] . (18)

Finally, as also shown in Biais, Heider and Hoerova (2012a), the optimal contract provides

full insurance conditional on the signal: For a given realization of the signal, the consumption

of the protection buyer at time 2 is independent of the realization of θ. More precisely, the

transfers are given by

τ(θ̄, s̄) = (E[θ̃|s̄]− θ̄)− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ] < 0

τ(θ, s̄) = (E[θ̃|s̄]− θ)− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ] > 0

τ(θ̄, s) = (E[θ̃|s]− θ̄) + α(s)p+ (1− α(s))P < 0

τ(θ, s) = (E[θ̃|s]− θ) + α(s)p+ (1− α(s))P > 0

14



The key difference to the first-best contract is that the transfers now depend on the

signal. To preserve the seller’s incentives to exert effort, the buyer must reduce the amount

of insurance after a bad signal, τ(θ, s) < τ(θ, s̄), and thus accept incomplete risk-sharing.

Hence, the protection buyer bears signal risk. Conditional on the signal, the optimal contract

provides full insurance against the underlying risk θ̃:

τ(θ, s̄)− τ(θ̄, s̄) = τ(θ, s)− τ(θ̄, s) = ∆θ > 0 (19)

Since there is full insurance conditional on the signal, we can rewrite the objective of the

risk-averse protection buyer as

prob[s̄]u(E[θ|s̄] + E[τ(θ̃, s̃)|s̃ = s̄]) + prob[s]u(E[θ|s] + E[τ(θ̃, s̃)|s̃ = s]). (20)

To simplify the notation, let

c̄ ≡ E[θ|s̄] + E[τ(θ̃, s̃)|s̃ = s̄]

c ≡ E[θ|s] + E[τ(θ̃, s̃)|s̃ = s]

We now turn to the determination of the optimal margin call after a bad signal. To

analyze the amount of margin calls, it is useful to consider the ratio of the marginal utility

of a protection buyer after a bad and a good signal. Denoting this ratio by ϕ, and using (17)

and (18), we have

ϕ(α(s), p) =
u′(c)

u′(c̄)
=

u′ (E[θ|s] + α(s)p+ (1− α(s))P)

u′
(
E[θ|s̄]− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ]

) . (21)

In the first-best, there is full insurance, margins are not used and ϕ is equal to 1. With moral

hazard, protection buyers are exposed to signal risk. This makes insurance imperfect and

drives ϕ above one. By (17), E[τ(θ̃, s̃)|s̃ = s̄] is decreasing in α(s). Hence the denominator

of ϕ is increasing in α(s). On the other hand, the numerator of ϕ is decreasing in α(s).

Hence, ϕ is decreasing in α(s). Higher margins reduce ϕ, as they reduce the wedge between

consumption after a good and a bad signal, i.e., they improve insurance against signal risk.

Optimal margins trade-off this benefit with their cost: assets in the margin account are less

profitable than under the management of a protection seller exerting effort. Note that it is

never optimal to liquidate all assets of a protection seller, i.e., the optimal margin is always

smaller than one (see Biais, Heider and Hoerova, 2012).
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Maximizing (20) with respect to α(s) and using (17) and (18), while taking the price p as

given, the optimal margin after bad news (if it is interior) is implicitly given by the following

condition:

ϕ(α∗(s), p)− 1− R− C − p
p− P

= 0. (22)

The last term on the left-hand side of (22) reflects the trade-off between the cost and benefit

of margins. The numerator, R − C − p, is the opportunity cost of depositing a margin.

The denominator goes up as P decreases, i.e., as the incentive problem gets more severe.

Equation (22) is illustrated in Figure 2. Also, it will be useful hereafter to note that Equation

(22) re-writes as

ϕ(α∗(s), p) =
R− C − P
p− P

(23)

Insert Figure 2 here

5 Equilibrium and optimality

We first study the market equilibrium with optimal margins. We then derive the second-best

with margins, and compare it with the market equilibrium.

5.1 Market equilibrium

5.1.1 Existence

The supply of the asset at time 1 is zero after a good signal, and the equilibrium price is

p∗ = 1. After a bad signal, the supply is the amount of margin calls α∗(s). While, at t = 1,

the supply is a fixed number, at t = 0, margin calls are optimally set by contracting parties

rationally anticipating the equilibrium price. For each possible anticipated price p, there is

an optimal amount of margin calls after a bad signal, α∗(s). This is the supply function,

S(p) = α∗(s).

When parties anticipate a price lower than the pledgeable income, they choose not to use

margins. Thus, for any p < P , S(p) = 0. Denote by p̂ the price such that ϕ(0) = R−C−P
p−P ,

p̂ ≡ P +
R− C − P

u′(c)
u′(c̄)

. (24)

Now, α∗(s) = 0 whenever

ϕ(0) ≤ R− C − P
p− P

(25)
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because and the right-hand side of (25) is decreasing in p. Hence, for any p < p̂, we still

have S(p) = 0. For p ≥ p̂, α∗(s) > 0, with α∗(s) given by (23). As shown in the appendix,

building on this analysis, one obtains the following characterization of the equilibrium.

Proposition 1 (Existence) Equilibrium exists. If D (p̂) > 0, the optimal margin is inte-

rior, and given by

α∗(s) = ϕ−1

(
R− C − P
p− P

)
(26)

while the market clearing price is

p∗ = F−1 (1− α∗(s)) > p̂. (27)

5.1.2 Uniqueness

We now investigate if equilibrium is unique. The demand curve is decreasing, but, as shown

below, the supply curve can be non–monotonic. This can generate multiplicity, and we

discuss its economic interpretation.

Using equation (26) and using the implicit function theorem we show in appendix (see

(32)) that the supply function S (p) is increasing if and only if:

R− C − P
(p− P)2 > α∗(s)ρ (c)ϕ(α∗(s), p). (28)

where ρ (c) denotes the coefficient of the absolute risk aversion. Using (23), (28) is equivalent

to

α∗(s) = S(p) <
1

ρ (c) (p− P)
. (29)

Thus, if (29) holds, then higher price p leads to an increase in the supply of the asset α (p).

Conversely, if

α∗(s) = S(p) ≥ 1

ρ (c) (p− P)
(30)

holds, then higher price p leads to a decrease in the supply of the asset α (p). These two

cases are illustrated in Figure 3. In Panel A, (29) holds for all p ∈ [p̂, 1]. In Panel B, (29)

initially holds for relatively low values of p, but then, for larger values of p, (30) holds and

supply decreases.

Insert Figure 3 here
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To offer an example where supply can be increasing or non-monotonic, consider the case

of the exponential utility with absolute risk–aversion parameter ρ. In that case ϕ(α∗(s), p)

is given by

exp

[
ρ

{
E[θ|s̄]− E[θ|s]− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ]− [α(s)p+ (1− α(s))P ]

}]
and we state, in the following propositions, that if is low supply is increasing and equilibrium

unique, while if is large supply can be non–monotonic, giving rise to multiple equilibria.

Proposition 2 (Sufficient condition for uniqueness) Suppose utility is exponential. If

the coefficient of the absolute risk aversion of protection buyers is sufficiently small, ρ < 1
1−P ,

then the supply is non-decreasing and the market equilibrium is unique.

Proposition 3 (Necessary condition for multiplicity) Suppose utility is exponential.

For each price p, there exists a threshold value of the coefficient of the absolute risk aversion

of protection buyers ρ, ρ∗, such that if ρ > ρ∗, then α∗(s) ≥ 1
ρ(p−P)

and the supply of the

asset is decreasing in p, ∂α
∂p
< 0.

The intuition is as follows. When protection buyers are very risk-averse, they care a

lot about their consumption after bad news, c, which is determined by margins. Although

margins carry an opportunity cost, this cost is paid with consumption after good news, c̄,

which is less important for risk-averse protection buyers. When the price p goes down, α(s)p

decreases, and so does consumption after bad news (17). Therefore, if the protection buyer is

very risk–averse, she finds it optimal to increase α∗(s) to counter the impact of the decrease

in the price p. This gives rise to non–monotonic supply. In addition, with exponential utility,

we can pin down the impact of risk aversion on supply.

Proposition 4 Suppose utility is exponential. If ρ increases, supply increases.

Thus, there can be two regimes in the market, depending on risk aversion. When risk

aversion is low, supply is relatively low and upward-sloping, and equilibrium is unique, with

a relatively high price and low margins. When risk aversion gets higher, however, supply

increases, which lowers the price. In addition, supply can become non–monotonic. Corre-

spondingly there may be multiple equilibria. With multiple equilibria, if market participants

expect the price to be reasonably high, they don’t need to request large margins to generate

enough pledgeable income after bad news. Because margins are small, prices are not severely
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depressed after bad news, confirming the initial expectation. In contrast, if market partici-

pants expect very low prices, they request large margins, which depress prices via fire-sales,

again confirming the initial expectation. These two regimes, and the possibility of multiple

equilibria, are illustrated in Figure 4.

Insert Figure 4 here

The next proposition states that, when there are multiple equilibria, they are Pareto-

ranked.

Proposition 5 If there are multiple equilibria, they are Pareto-ranked from the point of view

of protection buyer-protection seller pair, with the high price-low margin equilibrium being

the preferred one.

A lower price is preferred from the point of view of arbitrageurs as a higher price decreases

their payoff. The welfare of arbitrageurs is given by (1− F (p)) (E [v | v > p]− p), with the

underlying utility of arbitrageurs given by max[0, v − p]. Yet, the equilibrium with the

highest price dominates the other equilibria in terms of utilitarian welfare. This is because

while arbitrageurs make profits thanks to low prices, these profits are lower than the utility

cost to the other market participants because it is inefficient to have arbitrageurs buy the

asset.

5.2 Second-best

In equilibrium, protection buyers maximize their objective, (20) at time 0, to determine

margins. Margins, in turn, determine supply, and therefore the equilibrium price, at time

1. Because they are competitive, individual protection buyers don’t take into account the

aggregate effect of their individual margins on the market clearing price. Yet, when one

protection buyer increases the margin she requests, she exerts a negative externality on the

others, by pushing the price down. Under symmetric information, this pecuniary externality

would not reduce welfare, but under information asymmetry it does, as in Greenwald and

Stiglitz (1986). Thus, as we’ll show below, the equilibrium is not information–constrained

Pareto optimal. In contrast to the market equilibrium, the second–best entails socially

optimal margins, internalizing pecuniary externalities.
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More precisely, the second best is obtained by maximizing (20) with respect to α(s),

substituting the optimal transfers (17), (18), and the market clearing price (7). When the

optimal margin is interior, it is pinned down by the following optimality condition:

ϕ(αSB(s)) =
R− C − P

pSB − P + αSB(s)∂p
SB

∂α

(31)

where pSB = F−1
(
1− αSB

)
. (31) is very similar to (23). The difference is that, in (31),

there is an additional term: ∂pSB

∂α
, capturing the external effect of margins on prices.

We can now state our key result that compares the second-best equilibrium outcome with

the market equilibrium outcome.

Proposition 6 (Over-margining) In the market equilibrium with α∗(s) > 0, margining is

excessive compared to the second-best equilibrium, α∗(s) > αSB(s).

What leads to excessive margining is the contractual externality: When one hedger

wants to obtain more insurance, he raises the margin in his optimal contract. By doing so,

he increases supply. This lowers the equilibrium price, which makes other hedgers worse off.

This negative externality implies that the market equilibrium is not constrained-efficient.

Importantly, over-margining arises even when the market equilibrium is unique. When there

are multiple equilibria, they are all different from the second-best, and all involve over-

margining.

6 Empirical and policy implications

Empirical implications. The empirical implications of our theoretical analysis reflect the

interaction between optimal contracting and equilibrium pricing.

First, our model generates contagion from the market for the protection buyer’s asset

towards the market for the protection seller’s asset. The arrival of bad news about protection

buyer’s assets worsens seller’s incentives, margins are called to restore incentives, and this

affects the (market) value of protection seller’s assets.8

Second, higher risk aversion of protection buyers or more severe moral hazard problem of

protection sellers create a need for larger margins, which increases the associated fire-sales.

8This is a different form of contagion than in Biais, Heider and Hoerova (2012). In that paper, contagion
arises in case protection sellers don’t do effort after bad news. Here, contagion arises even when protection
sellers always do effort.
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In other words, contagion is more pronounced. Similarly, higher volatility of the protection

buyer’s risk, ∆θ, necessitates larger equilibrium margins and depresses the price of protection

seller’s assets.

Moreover, as equilibrium margins increase, there can be a switch from increasing supply

and equilibrium uniqueness, to non-monotonic supply curve and multiple equilibria. There-

fore, the scope for the emergence of “bad equilibria” is higher when the risk aversion of

protection buyers or the volatility of their assets is higher, or when the agency problems of

protection sellers are more severe.

Policy implications. Our welfare analysis shows that in equilibrium too much insurance

is sold by protection sellers, implying that aggregate margin calls are too large. The second-

best can be achieved by imposing a cap on margins.

A cap on margins also solves the market instability problem caused by multiplicity: when

the regulator/central bank caps margins, equilibrium in the protection seller’s asset market

is unique.

Margins caps are a form of macro-prudential policy. Since the scope for multiplicity and

market instability is higher when risk aversion increases, regulators must impose margin caps

in this case. This implies that margins should be countercyclical.

Our analysis also highlights that phasing-in of the margin-cap policy must be carefully

designed; otherwise margin caps can lead to suboptimal outcomes. For example, suppose

some market participants have already contracted, before the cap is introduced. In these con-

tracts, protection sellers have promised large insurance payments, made incentive-compatible

by large margins. Now suppose the regulator caps margins, as we suggested above. Clearly,

the cap should be applied to new contracts, but should it also be applied to the old contracts?

If it is, while keeping transfers promised in the old contracts, then effort may no longer be

incentive-compatible, and many protection sellers end up defaulting. So, if a margin cap is

introduced, either old contracts should keep high margins and be exempt from the cap, or

their transfers should be revised downwards.

Our model implies that, in the presence of moral hazard, margining can be excessive.

However, we are not arguing that in reality markets always choose excessively large margins.

In practice other forces are at play which, for simplicity and clarity, we don’t include in the

present model. For example, if protection buyers are insured against counterparty default

by a central clearing counterparty, then they prefer not to use margins, which undermines
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incentives (see Biais, Heider and Hoerova, 2012b). To avoid this, the regulator can impose a

floor on margins. In sum, when agency problems lead to margining practices which are not

in line with information-constrained efficiency, a regulatory intervention may be needed, for

example via caps and floors on margins.
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Appendix

Proof of Proposition 1 The first step is to show that the supply function S (p) =

α∗(s) is continuous in p and increasing in p on a non-empty interval (p̂, p̃), p̃ ≤ 1. We

first investigate how the optimal interior margin α∗(s) > 0 changes as the price p changes.

Denoting the left-hand side of (22) by F , we have by the implicit function theorem that

∂α
∂p

= −∂F
∂p
/∂F
∂α

. Then,

∂F

∂p
=

u′′ (c)α(s)

u′(c̄)
+
R− C − P

(p− P)2 =

(
−α(s)u′(c)

u′(c̄)

)(
−u

′′ (c)

u′(c)

)
+
R− C − P

(p− P)2

= −α(s)ρ (c)ϕ(α∗(s), p) +
R− C − P

(p− P)2

where ρ (c) denotes the coefficient of the absolute risk aversion. Also,

∂F

∂α
=

u′′ (c) (p− P)u′(c) + u′(c)u′′(c̄)prob[s]
prob[s̄]

(R− C − P)

[u′(c̄)]2

=
u′′ (c)

u′(c̄)
(p− P) +

prob[s]

prob[s̄]

u′(c)

u′(c̄)

u′′(c̄)

u′(c̄)
(R− C − P)

= −
[
−u

′′ (c)

u′(c)

]
u′(c)

u′(c̄)
(p− P)− prob[s]

prob[s̄]

u′(c)

u′(c̄)

[
−u

′′(c̄)

u′(c̄)

]
(R− C − P)

= −ϕ(α∗(s), p)

[
ρ (c) (p− P) +

prob[s]

prob[s̄]
ρ (c̄) (R− C − P)

]
Hence,

∂α

∂p
= −∂F

∂p
/
∂F

∂α
=

−α(s)ρ (c)ϕ(α∗(s), p) + R−C−P
(p−P)2

ϕ(α∗(s), p)
[
ρ (c) (p− P) + prob[s]

prob[s̄]
ρ (c̄) (R− C − P)

]
It follows that ∂α

∂p
> 0 if and only if

R− C − P
(p− P)2 > α∗(s)ρ (c)ϕ(α∗(s), p). (32)

Using (23) in (32), we get that if

α∗(s) <
1

ρ (c) (p− P)
(33)

holds, then higher price p leads to an increase in the supply of the asset S (p). Conversely, if

α∗(s) ≥ 1

ρ (c) (p− P)
(34)
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holds, then higher price p leads to a decrease in the supply of the asset S (p).

For any p ≤ p̂, the supply function is continuous (and equal to zero). By construction,

at p = p̂, the supply is given by α∗(s) = ϕ−1
(
R−C−P
p̂−P

)
= 0. The supply is continuous at

p = p̂. This is because limit from the left is zero since we have shown that α∗(s) = 0 for any

p ≤ p̂. Limit from the right is also zero as ϕ−1
(
R−C−P
p−P

)
is continuous and equal to zero at

p = p̂. Using (32), we also have that ∂α
∂p
> 0 at α∗(s) = ϕ−1

(
R−C−P
p̂−P

)
. Any interior α∗(s) is

determined by (23) where function ϕ is continuous in p.

The second step is to show that the demand for the asset lies above the supply at p = P ,

while it lies below the supply at p = 1. At p = P , S (p) = α∗(s) = 0 whileD (p) = 1−F (P) >

0. At p = 1, D (p) = 0. As for the supply, there are two possibilities. Either the supply

function is increasing for any p > p̂, implying that S (p = 1) > 0. Or the supply is decreasing

over some range of p > p̂ but then we have that S (p) = α∗(s) ≥ 1
ρ(c)(p−P)

> 1
ρ(c)(1−P)

> 0 (by

(34)). Therefore, at p = 1, D (p = 1) = 0 < S (p = 1) > 0.

In sum, both the demand for and the supply of the asset are continuous in p. The demand

is decreasing in p, and lies above the supply at p = P , while it lies below the supply at p = 1.

It follows that the equilibrium exists.

Proof of Proposition 2

ϕ(α∗(s), p) = exp

[
ρ

{
E[θ|s̄]− E[θ|s]− P

prob[s̄]
+

α(s)

prob[s̄]
[P − prob[s̄]p− prob[s] (R− C)]

}]
Taking logs and using (23), we get

α∗(s) =
prob[s̄]

P − prob[s̄]p− prob[s] (R− C)

[
1

ρ
ln

(
R− C − P
p− P

)
+

P
prob[s̄]

− (E[θ|s̄]− E[θ|s])
]

=
prob[s̄]

−prob[s̄] (p− P)− prob[s] (R− C − P)

[
1

ρ
ln

(
R− C − P
p− P

)
+
P− (π − π) ∆θ

prob[s̄]

]
(35)

where the last term follows from:

prob[s̄] (π̄ − π) ∆θ = [prob[s̄]π̄ − (1− prob[s]) π] ∆θ

= [prob[s̄]π̄ − (1− prob[s]) π] ∆θ = [πλ+ π (1− λ)− π] ∆θ = (π − π) ∆θ.

Note that P < (π − π) ∆θ holds since we are not in the first-best. Moreover, the denominator

of the first fraction in (35) is negative.
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Suppose, contrary to the claim in the proposition, that ρ < 1
1−P and the supply is

decreasing in p. Since ρ < 1
1−P , we have

1 <
1

ρ (1− P)
<

1

ρ (p− P)

where the last inequality follows from 1
ρ(p−P)

being decreasing in p and p ≤ 1.

Since α∗(s) < 1, it follows that

α∗(s) <
1

ρ (p− P)

so that (33) holds. But then, the supply is increasing in p, a contradiction.

By Proposition 1, equilibrium exists so that the supply and demand cross. Since the

supply is non-decreasing while the demand is decreasing, they cross exactly once.

Proof of Proposition 3 The optimal α∗(s) ∈ [0, 1]. For α∗(s) = 1, the claim in the

proposition is straightforward. An interior α∗(s) is given by equation (35). Therefore, we

need to show that

prob[s̄]

−prob[s̄] (p− P)− prob[s] (R− C − P)

[
1

ρ
ln

(
R− C − P
p− P

)
+
P− (π − π) ∆θ

prob[s̄]

]
≥ 1

ρ (p− P)
.

(36)

Consider ρ → ∞. We have 1
ρ

ln
(
R−C−P
p−P

)
→ 0 in (36) and, therefore, α∗(s) > 0. The

right-hand side of (36), 1
ρ(p−P)

→ 0. Now consider ρ → 0. We have that the left-hand side

of (36) → −∞, while the right-hand side →∞.

Hence, at ρ→ 0, the left-hand side of (36) is below the right-hand side of (36), while at

ρ→∞, it is the other way around. Since the left-hand side of (36) is increasing in ρ, while

the right-hand side of (36) is decreasing in ρ, the claim in the proposition follows.

Proof of Proposition 5 We claim that an equilibrium with a higher price is preferred

to an equilibrium with a lower price from the point of view of protection buyers (protection

sellers are held at their participation constraints). Let p̄ denote a higher and p
¯

a lower price,

respectively, p̄ >p
¯
. Let EU (p, α (p)) denote the value of the expected utility of a protection

buyer at an equilibrium with the price p and the corresponding margin α (p). Then, we have

that

EU (p̄, α∗ (p̄)) > EU
(
p̄, α∗

(
p
¯

))
> EU

(
p
¯
, α∗

(
p
¯

))
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where the first inequality follows from the fact that α∗
(
p
¯

)
was not chosen for p̄ and the

second inequality follows from the fact that, given the same α, a protection buyer always

prefers to get a higher price for the asset.

Proof of Proposition 4 By (35), ∂α∗(s)
∂ρ

> 0 for all p. Higher risk aversion ρ leads to

a higher supply.

Proof of Proposition 6 In the market equilibrium,

ϕ(α∗(s), p∗) [p∗ − P ] = R− C − P

while in the second-best equilibrium

ϕ(αSB(s), pSB)

[
pSB − P + αSB(s)

∂pSB

∂α

]
= R− C − P .

Therefore, we have

ϕ(α∗(s), p∗)

ϕ(αSB(s), pSB)
=
pSB − P + αSB(s)∂p

SB

∂α

p∗ − P
. (37)

First, we show that α∗(s) 6= αSB(s) whenever α∗(s) > 0. We prove the claim by con-

tradiction. Suppose that α∗(s) = αSB(s) > 0. Since α∗(s) = αSB(s), we also have that

p∗ = pSB so that ϕ(α∗(s), p∗) = ϕ(αSB(s), pSB). Hence, the left-hand side of (37) is equal to

1 implying that

αSB(s)
∂pSB

∂α
= 0

must hold. However, αSB(s) > 0 while ∂pSB

∂α
< 0. A contradiction.

Second, we show that α∗(s) > αSB(s). We prove the claim by contradiction. Suppose

that αSB(s) > α∗(s). Then, pSB < p∗ (since the equilibrium price is decreasing in the supply

of the asset). Also, expected utility in the second-best is necessarily higher than in the

market equilibrium (the market allocation is feasible for the planner but it is not chosen),

i.e.:

pr[s̄]u

(
E[θ|s̄]− prob[s]

prob[s̄]

[
αSB(s) (R− C) + (1− αSB(s))P

])
+

+ pr[s]u
(
E[θ|s] + αSB(s)pSB + (1− αSB(s))P

)
> pr[s̄]u

(
E[θ|s̄]− prob[s]

prob[s̄]
[α∗(s) (R− C) + (1− α∗(s))P ]

)
+ pr[s]u (E[θ|s] + α∗(s)p∗ + (1− α∗(s))P)
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implying that

pr[s̄]
[
u
(
c̄
(
αSB(s), pSB

))
− u (c̄ (α∗(s), p∗))

]
> pr[s]

[
u (c (α∗(s), p∗))− u

(
c
(
αSB(s), pSB

))]
(38)

where we used our short-hand notation for consumption after good and bad news, c̄ and c.

Note that

c̄
(
αSB(s), pSB

)
< c̄ (α∗(s), p∗) (39)

since αSB(s) > α∗(s). Since u is increasing, the left-hand side of (38) is negative, implying

that the right-hand side is negative and

c (α∗(s), p∗) < c
(
αSB(s), pSB

)
. (40)

By (39), u′(c̄
(
αSB(s), pSB

)
) > u′ (c̄ (α∗(s), p∗)). By (40), u′(c (α∗(s), p∗)) > u′

(
c
(
αSB(s), pSB

))
.

Therefore,

ϕ(α∗(s), p∗) =
u′ (c (α∗(s), p∗))

u′ (c̄ (α∗(s), p∗))
>
u′
(
c
(
αSB(s), pSB

))
u′ (c̄ (αSB(s), pSB))

= ϕ(αSB(s), pSB) (41)

or, equivalently,
ϕ(α∗(s), p∗)

ϕ(αSB(s), pSB)
> 1.

Using (37), it follows that

αSB(s)
∂pSB

∂α
> p∗ − pSB (42)

must hold. Since αSB(s) > α∗(s), pSB < p∗ so that the right-hand side of (42) is positive.

However, αSB(s) > 0 while ∂pSB

∂α
< 0, a contradiction.
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Figure 1: Timing

-t=0 t=1 t=2

Contract Signal s about θ observed

Margin α

Market clearing price p

Effort or not

θ and Rj realize

Transfers τ

Figure 2: Optimal margin

φ(0)

0 α

1

1 + R−C−p
p−P

Opportunity

cost of margin

Trades off opportunity cost of

margins with incentives benefits

α∗



Figure 3, Panel A: Increasing supply curve
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Figure 3, Panel B: Non-monotonic supply curve
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Figure 4, Panel A: Unique equilibrium
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Figure 4, Panel B: Multiple equilibria
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